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Abstract. In this paper we derive the global bifurcation diagrams of a SD

oscillator which exhibits both smooth and discontinuous dynamics depending

on the value of a parameter a. We research all possible bifurcations of this sys-
tem, including Pitchfork bifurcation, degenerate Hopf bifurcation, Homoclinic

bifurcation, Double limit cycle bifurcation, Bautin bifurcation and Bogdanov-

Takens bifurcation. Besides we prove that the system has at most five limit
cycles. At last, we give all numerical phase portraits to illustrate our results.

1. Introduction and main results

In recent years SD (Smooth and Discontinuous, for short) oscillator was proposed
and investigated for studying the transition from smooth to discontinuous dynamics,
see for instance [2, 3, 4, 5, 16]. In those papers it is proposed the elastic beam model

ẍ+ ξ(b+ x2)ẋ+ x

(
1− 1√

x2 + a2

)
= 0(1)

for studying this transition, where a ≥ 0, b and ξ can take arbitrary real values.
More precisely, the smooth dynamics appears when a > 0, while the discontinuous
dynamic behavior occurs at a = 0. The global dynamics was completely studied in
[5] when a = 0, and in [16] when |a− 1| < ε, |ξ| < ε and ε is sufficiently small.

Clearly system (1) can be rewritten as the 2-dimensional differential system

ẋ = y − ξ̂(b̂x+ x3) =: y − F (x),

ẏ = −x
(

1− 1√
x2 + a2

)
=: −g(x),

(2)

where ξ̂ = ξ/3, b̂ = 3b, and for simplicity in what follows we still denote ξ̂ and b̂
by ξ and b respectively. Note that system (2) is invariant by the transformation
(y, t, ξ)→ (−y,−t,−ξ). Therefore, we only need to consider the set of parameters

G := {(a, b, ξ) ∈ R+ × R× R+},
where R+ = [0,+∞).

In this paper we shall describe the dynamics of system (2). Thus, the following
theorem is our main result.

Theorem 1. System (2) has three equilibria EL = (−
√

1− a2,−(1−a2+b)ξ
√

1− a2),

E0 = (0, 0) and ER = (
√

1− a2, (1−a2+b)ξ
√

1− a2) if a < 1, and only E0 if a ≥ 1.
The global bifurcation diagram of system (2) consists of the following bifurcation
surfaces:
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Figure 1. Global qualitative bifurcation diagram of system (2)
on the half-plane (a, b) ∈ R+ × R with ξ = ξ∗ > 0 small.

(i) Pitchfork surface P := {(a, b, ξ) ∈ G : a = 1};
(ii) Hopf surfaces

H1 := {(a, b, ξ) ∈ G : a > 1, b = 0},
H2 := {(a, b, ξ) ∈ G : b = 3a2 − 3, 1/

√
3 < a < 1} and

H3 := {(a, b, ξ) ∈ G : b = 3a2 − 3, 0 < a < 1/
√

3};
(iii) Homoclinic surface HL := {(a, b, ξ) ∈ G : b = ϕ(a, ξ), 0 < a < 1};
(iv) Double limit cycle surfaces

DL1 := {(a, b, ξ) ∈ G : b = φ1(a, ξ), 0 < a < 1} and

DL2 := {(a, b, ξ) ∈ G : b = φ2(a, ξ), 0 < a < 1/
√

3};
(v) Codimension 2 Bogdanov-Takens bifurcation with symmetry curve:

BT := {(a, b, ξ) ∈ G : a = 1, b = 0};

(vi) Bautin bifurcation curve: B0 := {(a, b, ξ) ∈ G : a = 1/
√

3, b = −2};
where

ϕ(a, ξ) < φ1(a, ξ) < a2 − 1, ϕ(1, ξ) = φ1(1, ξ) = 0,

φ2(a, ξ) < min{ϕ(a, ξ), 3a2 − 3}, φ2(1/
√

3, ξ) = −2, and
ϕ(0, ξ) = φ1(0, ξ) = φ2(0, ξ),

as shown in Figure 1. Consequently, the complete classification of the phase por-
traits of system (2) is given in Figure 2, where

I {(a, b, ξ) ∈ G : b > max{3− 3a2, φ1(a, ξ)}, 0 < a < 1},
II {(a, b, ξ) ∈ G : b > 0, a > 1},

III {(a, b, ξ) ∈ G : b < 0, a > 1},
IV {(a, b, ξ) ∈ G : b < min{3− 3a2, φ2(a, ξ)}, 0 < a < 1},
V {(a, b, ξ) ∈ G : φ2(a, ξ) < b < min{3− 3a2, ϕ(a, ξ)}, 0 < a < 1},

VI {(a, b, ξ) ∈ G : ϕ(a, ξ) < b < min{3− 3a2, φ1(a, ξ)}, 0 < a < 1},



GLOBAL DYNAMICS OF A SD OSCILLATOR 3

(a) I ∪H31 (b) II ∪H1 ∪ P1 ∪BT (c) III ∪ P2

(d) IV ∪H2 ∪B0 (e) V (f) V I

(g) V II (h) V III ∪H32 (i) IX ∪H33

(j) DL11 (k) DL12 (l) DL2

(m) HL1 (n) HL2

Figure 2. Phase portraits of system (2) on the Poincaré disc.
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VII {(a, b, ξ) ∈ G : φ1(a, ξ) < b < 3− 3a2, 0 < a < 1},
VIII {(a, b, ξ) ∈ G : max{3− 3a2, ϕ(a, ξ)} < b < φ1(a, ξ), 0 < a < 1},

IX {(a, b, ξ) ∈ G : 3− 3a2 < b < ϕ(a, ξ), 0 < a < 1},
HL1 {(a, b, ξ) ∈ G : b = ϕ(a, ξ) < 3a2 − 3, 0 < a < 1},
HL2 {(a, b, ξ) ∈ G : b = ϕ(a, ξ) ≥ 3a2 − 3, 0 < a < 1},
DL11 {(a, b, ξ) ∈ G : b = φ1(a, ξ) < 3a2 − 3, 0 < a < 1},
DL12 {(a, b, ξ) ∈ G : b = φ1(a, ξ) ≥ 3a2 − 3, 0 < a < 1},
P1 {(a, b, ξ) ∈ G : b > 0, a = 1},
P2 {(a, b, ξ) ∈ G : b < 0, a = 1},
H31 {(a, b, ξ) ∈ G : b = 3a2 − 3 > φ1(a, ξ), 0 < a < 1/

√
3},

H32 {(a, b, ξ) ∈ G : ϕ(a, ξ) < b = 3a2 − 3 < φ1(a, ξ), 0 < a < 1/
√

3},
H33 {(a, b, ξ) ∈ G : φ2(a, ξ) < b = 3a2 − 3 < ϕ(a, ξ), 0 < a < 1/

√
3}.

Moreover, all results about limit cycles and homoclinic loops are listed in Table 1.

Subsets of G large limit cycles surrounding small limit cycles only homoclinic loops

all ER, E0, EL surrounding E0 EL, ER respectively

I, II,H1, 0 0; 0; 0 0

H31, P1, BT

III, P2 0 1 stable; 0; 0 0

IV,H2, B0 1 stable 0; 0; 0 0

0; 2 the inner one is stable, 0

the outer one is unstable;

V 1 stable 2 the inner one is stable,

the outer one is unstable

V I 2 the inner one is unstable, 0; 1 stable ; 1 stable 0

the outer one is stable;

V II 0 0; 1 stable; 1 stable 0

V III,H32 2 the inner one is unstable, 0; 0 ; 0 0

the outer one is stable;

IX,H33 1 stable 0; 1 unstable; 1 unstable 0

DL11 1 semistable 0; 1 stable; 1 stable 0

DL12 1 semistable 0; 0; 0 0

DL2 1 stable 0; 1 semistable; 1 semistable 0

HL1 1 stable 0; 1 stable; 1 stable figure-eight loop,

unstable

HL2 1 stable 0; 0; 0 figure-eight loop,

unstable

Table 1. Limit cycles and homoclinic loops of system (2).

In this paper we call large limit cycles to the ones surrounding all three equilibria,
and small limit cycles the ones surrounding a single equilibrium. For the notions
and definitions which appear in the statement of Theorem 1 see its proof.

The paper is organized as follows. In section 2 we analyze the local bifurcations,
namely pitchfork bifurcation, Hopf bifurcation, Bautin bifurcation and codimension
2 Bogdanov-Takens bifurcation with symmetry. In section 3 we estimate the number
of limit cycles in difference parameter regions and curves. In section 4 we study the
global bifurcations, namely the different kinds of homoclinic connections and the
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double limit cycles. In section 5 we give the numerical phase portraits in difference
parameter regions.

2. Local bifurcations

Computing the Jacobian matrix at equilibrium E0, we have

J0 :=

(
−bξ 1
1
a − 1 0

)
.

Then, at E0 the determinant det(J0) = 1−1/a and the trace tr(J0) = −bξ, implying
that E0 is a saddle if a < 1, stable focus or node if a > 1 and b > 0, and unstable
focus or node if a > 1 and b < 0. When a = 1, equilibrium E0 is a stable node if
b > 0, and unstable node if b < 0 by applying [8, Theorem 2.19]. By the symmetry
of the vector field (2), equilibrium EL is of the same type as ER. The Jacobian
matrix at ER is

JR :=

(
−ξ(b+ 3− 3a2) 1
−(1− a2) 0

)
.

Calculating det(JR) = 1− a2 and tr(JR) = −ξ(b+ 3− 3a2). Hence ER is a stable
focus or node if a < 1 and b+ 3− 3a2 > 0, and unstable focus or node if a < 1 and
b+ 3− 3a2 < 0.

2.1. Pitchfork bifurcation. From the expressions of the equilibria EL, E0 and ER
it follows immediately that a pitchfork bifurcation occurs at the origin of coordinates
when a = 1; i.e. for a ≥ 1 we have a unique antisaddle, while for 0 < a < 1 from
the previous antisaddle it bifurcates at a = 1 a saddle and two antisaddles. For
more details on this kind of bifurcation see [7, 10].

2.2. Hopf bifurcations. There are two kinds of Hopf bifurcations, one at the
equilibrium E0, and the other at the equilibria EL and ER, which is essentially the
same bifurcation in both, because due to the invariance of system (2) with respect
to the symmetry (x, y) 7→ (−x,−y), what occurs at the equilibrium point EL occurs
to its symmetric ER.

2.2.1 Hopf bifurcation at E0. The next result characterizes the Hopf bifurcation
at the equilibrium point E0, it is proved using the averaging theory in this way we
also can estimated the shape of the limit cycle bifurcating from E0, and we avoid
the computation of the Liapunov constant.

Proposition 2. The following statements hold for the differential system (2).

(a) If a > 1, b = 0 and ξ > 0, then a Hopf bifurcation takes place at the
equilibrium point located at the origin of coordinates, and the limit cycle γ
bifurcating from this equilibrium exists for b < 0 sufficiently small.

(b) For ε > 0 sufficiently small if b = −βε2 < 0, then the limit cycle γ passes
through the point (

2

√
β

3
ε+O(ε3), 0

)
.

Moreover, this limit cycle is stable.
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Proof. Assume that a > 1, ξ > 0 and b = −βε2 < 0 where ε is a sufficiently small
parameter. Writing the differential system (2) in polar coordinates we get

(3)

ṙ =
r cos θ sin θ√
a2 + r2 cos2 θ

− ξr3 cos4 θ + ε2ξβ r cos2 θ,

θ̇ = −1 +
cos2 θ√

a2 + r2 cos2 θ
+ ξr2 sin θ cos3 θ − ε2ξβ cos θ sin θ.

Since we want to study the Hopf bifurcation at the origin of coordinates we blow
up the origin doing the scaling r = εR, then differential system (3) taking as new
independent variable the θ becomes

(4)

dR

dθ
=

R sin θ cos θ

cos2 θ − a +

ε2
R
(
2ξa2(a− 1)(R2 − 2βR2 cos(2θ)) +R2 sin(2θ)

)
cos2 θ

4a(cos2 θ − a)2
+O(ε4),

In order to apply the averaging theory described in the appendix we need that
the differential equation (4) starts at least with order ε. So we do the change of
variables R 7→ ρ defined by

R =

√
2(1− a)

1− 2a+ cos(2θ)
ρ.

Then differential equation (4) in the new variable ρ writes

(5)

dρ

dθ
= −ε2 2(a− 1)ρ cos2 θ

a(1− 2a+ cos(2θ))3

(
2ξa2

(
(a− 1)ρ2 − 2aβ + β

)
+

2ξa2
(
(a− 1)ρ2 + β

)
cos(2θ) + ρ2 sin(2θ)

)
+O(ε4)+

= ε2F1(θ, ρ) +O(ε4).

Differential equation (5) is written into the normal form (37) for applying the
averaging theory summarized in the appendix, using the notation of the appendix
we only need to take n = 1, x = ρ, t = θ, µ = ε2, F1(t,x) = F1(θ, ρ) and T = 2π,
all the necessary assumptions for applying the averaging theory described in the
appendix are satisfied. Then we compute

f1(ρ) =
1

2π

∫ 2π

0

F1(θ, ρ)dθ =
ξ

8

√
a

a− 1
ρ(3ρ2 − 4β).

Since β > 0 the averaged function f1(ρ) has a unique positive zero, ρ = 2
√
β/3

which satisfies the condition

(6) Dρf1

(
2

√
β

3

)
= ξ

√
a

a− 1
6= 0.

In fact this last expression is positive because a > 1 and ξ > 0, and consequently,
by the results described in the appendix the differential equation (5) has a periodic
solution ρ(θ, ε) satisfying that

(7) ρ(0, 0) = 2

√
β

3
+O(ε2).

Moreover, this periodic solution ρ(θ, ε) is unstable because the derivative (6) is
positive.
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Now we will go back through the changes of variables for obtaining the periodic
solution bifurcating from the equilibrium at the origin of coordinates of the differ-
ential system (2). Thus, the periodic solution ρ(θ, ε) satisfying the initial condition
(7) in the variables of the differential system (4) becomes the periodic solution

R(θ, ε) =

√
2(1− a)

1− 2a+ cos(2θ)
ρ(θ, ε),

satisfying

R(0, 0) = 2

√
β

3
+O(ε2).

This periodic solution in the differential system (3) becomes (r(t, ε), θ(t, ε)) with

r(t, ε) =

√
2(1− a)

1− 2a+ cos(2θ(t, ε))
ρ(θ(t, ε), ε)ε+O(ε3),

and it pass through the point

(8)

(
2

√
β

3
ε+O(ε3), 0

)

in the coordinates (r, θ). Finally, this periodic solution in the coordinates of system
(2) is the periodic solution (x(t, ε), y(t, ε)) given by

ε

√
2(1− a)

1− 2a+ cos(2θ(t, ε))
ρ(θ(t, ε), ε)

(
cos(θ(t, ε)), sin(θ(t, ε))

)
+O(ε3),

passing through the point (8) now in coordinates (x, y). Therefore, when ε 7→ 0
such periodic solution tends to the origin, so it is a periodic solution of a Hopf
bifurcation.

We remark that the periodic solution ρ(θ, ε) was an unstable limit cycle, but due

to the fact that θ̇ is negative in a neighborhood of the origin, when we pass the
unstable limit cycle R(θ, ε) to the periodic solution (r(t, ε), θ(t, ε)) it changes to a
stable limit cycle. �

In short, Proposition 2 shows the existence of the Hopf bifurcation surface H1.

2.2.2 Hopf bifurcation at EL and ER.

Proposition 3. The following statements hold for the differential system (2).

(a) If 0 < a < 1, a 6= 1/
√

3, b = 3(a2 − 1) and ξ > 0, then one limit cycle
bifurcates from each one of the equilibria EL and ER.

(b) For ε > 0 sufficiently small if b = 3a2−3 +βε2, then those two limit cycles
exist if β(1− 3a2) < 0, and they pass through the points

±
(√

1− a2 + 2

√
β(1− a2)

3(3a2 − 1)
ε+O(ε2), ξ

√
1− a2(2a2 − 2 + βε2)

)
.

Moreover, these limit cycles are stable if β < 0, and unstable if β > 0.
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Proof. Assume 0 < a < 1, a 6= 1/
√

3, ξ > 0 and b = 3(a2 − 1) + βε2, where ε is
a sufficiently small parameter. We shall prove the proposition studying the Hopf
bifurcation at the equilibrium point ER.

We translate the equilibrium point ER to the origin of coordinates doing the
change

(x, y) = (X +
√

1− a2, Y + ξ
√

1− a2(2a2 − 2 + βε2),

and system (2) is transformed into

(9)

Ẋ = −ε2ξβX + Y − 3ξ
√

1− a2X2 − ξX3,

Ẏ =
(
−X −

√
1− a2

)
(

1− 1√
X2 + 2

√
1− a2X + 1

)
.

Writing the differential system (9) in polar coordinates we get
(10)

ṙ = −r cos θ
(
ξr2 cos3 θ + 3ξ

√
1− a2r cos2 θ − sin θ

)
−
(
r cos θ +

√
1− a2

)

·
(

1− 1√
r2 cos2 θ + 2

√
1− a2r cos θ + 1

)
sin θ − ε2ξβr cos2 θ,

θ̇ = −1 + ξ
(
r2 cos2 θ + 3

√
1− a2r cos θ

)
sin θ cos θ+

(
r cos θ +

√
1− a2

)
cos θ

r
√
r2 cos2 θ + 2

√
1− a2r cos θ + 1

−
√

1− a2 cos θ

r
.

Again since we want to study the Hopf bifurcation now at the origin of coordi-
nates we blow up the origin doing the scaling r = εR, then differential system (10)
taking as new independent variable the θ writes

(11)

dR

dθ
=

a2R cos θ sin θ

a2 cos2 θ − 1
− ε3

√
1− a2R2 cos2 θ

(
2ξ
(
a2 − 1

)
cos θ − a2 sin θ

)

2 (a2 cos2 θ − 1)
2

+ε2 R cos2 θ

32 (a2 cos2 θ − 1)
3

(
54ξa6R2 + 2a6R2 sin(2θ) + a6R2 sin(4θ)

−102ξa4R2 − 16ξβa4 − 72ξ2a4R2 sin(2θ)− 38a4R2 sin(2θ)

−36ξ2a4R2 sin(4θ) + a4R2 sin(4θ) + 64ξa2R2 + 48ξβa2

+2ξa2
(
9a4 − 29a2 + 20

)
R2 cos(4θ) + 144ξ2a2R2 sin(2θ)

+32a2R2 sin(2θ) + 72ξ2a2R2 sin(4θ)− 16ξR2 − 32ξβ

+8ξ
(
a2 − 1

) (
9R2a4 − a2

(
11R2 + 2β

)
+ 2R2

)
cos(2θ)

−72ξ2R2 sin(2θ)− 36ξ2R2 sin(4θ)
)

+O(ε3),

Again for applying the averaging theory of the appendix we need that the d-
ifferential equation (11) starts at least with order ε. Hence we do the change of
variables R 7→ ρ defined by

R =

√
2(1− a2)

2− a2 + a2 cos(2θ)
ρ.
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Then differential equation (11) in the new variable ρ writes

(12)
dρ

dθ
= εF1(θ, ρ) + ε2F2(θ, ρ) +O(ε3),

where

F1(θ, ρ) =
3
(
a2 − 1

)
ρ2 cos2 θ

(
2ξ
(
a2 − 1

)
cos θ − a2 sin θ

)
√

2 (a2 cos2 θ − 1)
2
√

2− a2 − a2 cos(2θ)
,

F2(θ, ρ) =

(
a2 − 1

)
ρ cos2 θ

2 (cos(2θ)a2 + a2 − 2)
4

(
54eρ2a6 + 2ρ2 sin(2θ)a6 + ρ2 sin(4θ)a6

−102eρ2a4 − 12eβa4 − 72e2ρ2 sin(2θ)a4 − 38ρ2 sin(2θ)a4

−36e2ρ2 sin(4θ)a4 + ρ2 sin(4θ)a4 + 64eρ2a2 + 32eβa2

+2e
(
9ρ2a4 −

(
29ρ2 + 2β

)
a2 + 20ρ2

)
cos(4θ)a2

+144e2ρ2 sin(2θ)a2 + 32ρ2 sin(2θ)a2 + 72e2ρ2 sin(4θ)a2

−16eρ2 − 32eβ + 8e
(
9ρ2a6 − 2

(
10ρ2 + β

)
a4

+
(
13ρ2 + 4β

)
a2 − 2ρ2

)
cos(2θ)− 72e2ρ2 sin(2θ)

−36e2ρ2 sin(4θ)
)
.

Differential equation (12) is already into the normal form (37) for applying the
averaging theory of the appendix. Again using the notation of the appendix we
take n = 1, x = ρ, t = θ, µ = ε, F1(t,x) = F1(θ, ρ) and T = 2π, and all the
necessary hypotheses for applying the averaging theory of the appendix hold. Then
we compute

f1(ρ) =
1

2π

∫ 2π

0

F1(θ, ρ)dθ ≡ 0.

Since the first averaged function f1(ρ) is identically zero, we must compute the
second one f2(ρ). We start calculating

∫ θ

0

F1(θ, ρ)ds =
ρ2N(θ)

2
√

2− 2a2 (2− a2 − a2 cos(2θ))
3/2

,

where

N(θ) = 3a2(1− a2)3/2 cos θ − a2
√

2(2− a2 − a2 cos(2θ))3/2

+
√

1− a2
(

(a2 − a4) cos(3θ) + 2ξ
(
3(a2 − 3) sin θ

+(3a2 − 1) sin(3θ)
))
.

Then the second averaged function

f2(ρ) =
1

2π

∫ 2π

0

[
DρF1(θ, ρ)

∫ θ

0

F1(s, ρ)ds+ F2(θ, ρ)

]
dθ

=
ξρ
(
3
(
1− 3a2

)
ρ2 + 4β

)

8
√

1− a2
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has a unique positive zero, ρ = 2
√
β/(3(3a2 − 1)), recall that a 6= 1/

√
3. This zero

satisfies the condition

(13) Dρf2

(
2

√
β

3(3a2 − 1)

)
= − ξβ√

1− a2
6= 0,

by assumptions. Consequently, by the results described in the appendix the differ-
ential equation (12) has a periodic solution ρ(θ, ε) satisfying that

(14) ρ(0, 0) = 2

√
β

3(3a2 − 1)
+O(ε).

Moreover, from (13) this periodic solution ρ(θ, ε) is unstable if β < 0, and stable if
β > 0.

Now we will go back through the changes of variables for obtaining the periodic
solution bifurcating from the equilibrium ER of the differential system (2). Thus,
the periodic solution ρ(θ, ε) satisfying the initial condition (14) in the variables of
the differential system (11) becomes the periodic solution

R(θ, ε) =

√
2(1− a2)

2− a2 + a2 cos(2θ)
ρ(θ, ε),

satisfying

R(0, 0) = 2

√
β(1− a2)

3(3a2 − 1)
+O(ε).

This periodic solution in the differential system (10) becomes (r(t, ε), θ(t, ε)) with

r(t, ε) =

√
2(1− a2)

2− a2 + a2 cos(2θ(t, ε))
ρ(θ(t, ε), ε)ε+O(ε2),

and it pass through the point

(15)

(
2

√
β(1− a2)

3(3a2 − 1)
ε+O(ε2), 0

)

in the coordinates (r, θ). This periodic solution in the coordinates of system (9) is
the periodic solution (X(t, ε), Y (t, ε)) given by

ε

√
2(1− a2)

2− a2 + a2 cos(2θ(t, ε))
ρ(θ(t, ε), ε)

(
cos(θ(t, ε)), sin(θ(t, ε))

)
+O(ε2),

passing through the point (15) now in coordinates (X,Y ). Finally, we get the
periodic solution (x(t, ε), y(t, ε)) given by

(x(t, ε), y(t, ε)) = (X(t, ε) +
√

1− a2, Y (t, ε) + ξ
√

1− a2(2a2 − 2 + βε2)),

and passing through the point
(√

1− a2 + 2

√
β(1− a2)

3(3a2 − 1)
ε+O(ε2), ξ

√
1− a2(2a2 − 2 + βε2)

)

in coordinates (x, y). So, when ε 7→ 0 such periodic solution tends to the equilibrium
ER, so it is a periodic solution of a Hopf bifurcation.
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Again we note that the limit cycle ρ(θ, ε) was unstable if β < 0, and stable if

β > 0, but due to the fact that θ̇ is negative in a neighborhood of the origin, when
we pass the limit cycle R(θ, ε) to the cycle (r(t, ε), θ(t, ε)) it changes its type of
stability. �

In particular Proposition 3 shows the existence of the Hopf bifurcation surfaces
H2 and H3.

2.2.3 The Bautin bifurcation curve B0. The standard or classical Hopf bifur-
cation in a 2-dimensional differential system, i.e. that a limit cycle bifurcates from
an equilibrium point, takes place in an equilibrium point with purely imaginary
eigenvalues which is not a center because the first Liapunov constant at that equi-
librium is not zero. These are the Hopf bifurcations studied in subsection 2.2.2.
But when the first Liapunov constant is zero, also can bifurcate a limit cycle of the
equilibrium point if the second Liapunov constant is not zero, such more degener-
ate Hopf bifurcation is called for some authors a Bautin bifurcation. See for more
details about these Hopf bifurcations [11, Chapter 8].

When b = 3(a2 − 1), with the change of variables x1 = x −
√

1− a2, y1 =

y/
√

1− a2− ξ(b+ 1−a2) and τ =
√

1− a2t in a small neighborhood of ER, system
(2) can be written as

dx

dt
= y − 3ξx2 − ξ√

1− a2
x3 =: y + f̂(x),

dy

dt
= −x− 3a2x2

2
√

1− a2
+

(4a2 − 5a4)x3

2− 2a2
+O(x4) =: −x+ ĥ(x),

(16)

where, for simplicity, we still use the variables (x, y, t) instead of the new ones
(x1, y1, τ). From [10, p. 156] we compute the first Liapunov constant at the origin

of system (16) and we get ĝ1 = 3ξ(3a2 − 1)/(8
√

1− a2). From the expressions of

ĝ1, we can confirm that the classical Hopf bifurcation happens when a 6= 1/
√

3 and

b = 3a2 − 3. Clearly, when a = 1/
√

3 and b = −2 we have ĝ1 = 0. By [11, Chapter

8], we can obtain that the second Liapunov constant ĝ2 = 5
√

6 ξ/32 > 0 at those
values of a and b.

In short, system (2) exhibits a Bautin bifurcation at a = 1/
√

3 and b = −2 by
[11, Chapter 8], i.e. at the intersection point of the surfaces H2, H3 and DL2, in

particular φ2(1/
√

3, ξ) = −2.

2.3. Codimension 2 Bogdanov-Takens bifurcation with symmetry. From
[16] a codimension 2 Bogdanov-Takens bifurcation with symmetry happens in sys-
tem (2) in a neighborhood of the curve a = 1 and b = 0. So, in a neigborhood of
the intersection point of P , H1, H2, HL and DL1 of the bifurcation diagram of
Figure 1, i.e. ϕ(1, ξ) = φ1(1, ξ) = 0.

2.4. The dynamics near infinity. In this subsection we will discuss the qualita-
tive properties of the equilibria at infinity, which describe the behavior of the orbits
of system (2) when x and y are sufficiently large.

Proposition 4. As shown in Figure 3 the differential system (2) with ξ > 0 has
four equilibria at infinity I±A , I

±
B , where I±A are the two endpoints of the x-axis,

and I±B are the two endpoints of the y-axis. The equilibria I±A are unstable star



12 H. CHEN, J. LLIBRE AND Y. TANG

Figure 3. Equilibria at infinity.

nodes, and the equilibria I±B are degenerate equilibria, formed by the union of two
hyperbolic sectors.

Proof. Doing the Poincaré transformation x = 1/z, y = u/z, system (2) becomes

du

dτ
= ξu+ bξuz2 − u2z2 − z2 +

|z|3√
1 + a2z2

,

dz

dτ
= ξz + bξz3 − uz3,

where dt = z2dτ . Obviously, this system has a unique equilibrium A : (0, 0) on the
u-axis (the infinity), where A is an unstable star node.

Doing the other Poincaré transformation x = v/z, y = 1/z, system (2) writes as

dv

dt
= z2 − bξvz2 − ξv3 + v2z2 − v2|z|3√

v2 + a2z2
:= Ψ1(v, z),

dz

dt
= vz3 − vz3|z|√

v2 + a2z2
:= Ψ2(v, z),

(17)

where dt = z2dτ . In this local chart we only need to study the equilibrium B : (0, 0)
of system (17), which corresponds to two equilibria IB+ and IB− at infinity of the
system (2) at the endpoints of the positive and negative y-semiaxes, respectively.
By Lemmas 1 and 3 of [14, Chapter 2] we only need to discuss the orbits along
characteristic directions of system (17) at B.

Applying the polar coordinate changes x = r cos θ and y = r sin θ, system (17)
can be written

1

r

dr

dθ
=
H(θ) + o(1)

G(θ) + o(1)
, as r → 0,

where

G(θ) = − sin3 θ
√

cos2 θ + a2 sin2 θ, H(θ) = sin2 θ cos θ
√

cos2 θ + a2 sin2 θ.

Hence a necessary condition for θ = θ0 to be an characteristic direction is G(θ0) = 0,
which has exactly two roots 0 and π. Except these two directions, there are no
directions along which system (17) has orbits connecting B.

Notice that the vector field (17) is symmetric with respect to the v–axis. Thus,
we only need to discuss the orbits connecting the origin B of (17) in the half plane
z ≥ 0. We will construct some related open quasi–sectors to determine how many
orbits of (17) connecting B in the first and the second quadrants.
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Observing that system (17) has four horizontal isoclines: the v-axis, the z-axis
and

H± :=
{

(u, z) ∈ R2 : v = ±
√

1− a2z, 0 < r < `, a < 1
}
,

where ` > 0 is a sufficiently small constant. Set

V ± :=
{

(v, z) ∈ R2 : z = 0, ±v > 0, 0 < r < `
}
.

The possible vertical isocline is

V :=
{

(v, z) ∈ R2 : v = ξ−
1
3 z

2
3 + o(z

2
3 ), 0 < r < `

}
.

Obviously, the isocline V is tangent to the v–axis at the origin. Set

L± :=
{

(v, z) ∈ R2 : z = ± σv, 0 < r < `, a = 1
}
,

where σ > 0 is a small constant. Hence, if there exist orbits of system (17) connect-
ing B along the direction of the v–axis in the first and the second quadrants, then

near the origin must lie in the sector regions ∆ ̂V +BH+ or ∆ ̂V −BH− if a < 1, and

∆ ̂V +BL+ or ∆ ̂V −BL− if a = 1. The directions of vector field of (17), i.e., the
directions of arrows, and the positions of the isoclines are shown in Figure 4.

Figure 4. The vector field of system (17).

Firstly, we consider the case a < 1. We can check that v̇ > 0 and ż > 0 in

∆V̂BH+; v̇ < 0 and ż > 0 in ∆V̂ +BV; and v̇ > 0 and ż < 0 in ∆ ̂V −BH−.

Lemma 4 in [15] guarantees that no orbits connect B in ∆V̂ +BV. There are

also no orbits connecting B in the interior of ∆ ̂V −BH−, because Ψ2(v, z)/Ψ1(v, z)
is not equal to the slopes of the curves tangent to the v–axis. On the other hand,
we compute that (∂/∂v)(Ψ1(v, z)/Ψ2(v, z)) < 0 in the generalized normal sector

∆V̂BH+ of class II, i.e. ṙ > 0 in ∆V̂BH+ and all positive semi-orbits starting from

the curves BV and BH+ go into ∆V̂BH+. The definition of generalized normal
sectors can be seen in [15, Section 2]. Therefore, there exists a unique orbit leaving

from B in ∆V̂BH+ by Lemma 2 and Lemma 5 in [15].

Similarly, in case a = 1, we can also prove that exactly one orbit connects B

along the v–axis, which lies in ∆V̂BL+. �
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3. Limit cycles

Lemma 5. Assume that a ≥ 1. System (2) has no limit cycles if b ≥ 0, and a
unique limit cycle if b < 0.

Proof. When b ≥ 0, since the divergence of system (2) is f(x) = F ′(x) = ξ(b +
3x2) ≥ 0, by the Bendixson criterion (see for instance [8, Theorem 7.10]), the
system (2) has no limit cycles.

When b < 0, the following conditions are satisfied.

(i) g(x) is an odd function and xg(x) > 0 if x 6= 0;
(ii) F (x) is an odd function, F (x) < 0 if 0 < x <

√
−b, and F (x) ≥ 0 if

x ≥
√
−b;

(iii)
∫∞

0
f(x)dx =

∫∞
0
g(x)dx = +∞;

(iv) f(x) and g(x) satisfy the Lipschitz condition in any bounded interval.

Then, by Theorem 4.1 of [18, Chapter 4], the system (2) has a unique limit cycle,
which is stable. �

Note that the phase portraits (b) and (c) of Figure 2 in Theorem 1 are obtained
from Lemma 5 and from the properties of equilibria.

Since the phase portrait of system (2) is symmetric with respect to the point
E0, the small limit cycles surrounding EL are of the same type as that surrounding
ER. Hence, in what follows we only consider the small limit cycles around ER.

Lemma 6. If 0 < a < 1 and b ≥ a2 − 1, then system (2) has no limit cycles.

Since the proof is similar to Lemma 4 of [5], we omit it.
Lemma 6 shows that φ1(a, ξ) < a2 − 1 and the phase portrait (a) of Figure 2 in

Theorem 1 is obtained.
Consider equation

dz

dy
= y − F̂ (z), 0 ≤ z ≤ z0,(18)

where both F̂ (z) and F̂ ′(z) are continuous in [0, z0), and F̂ (0) = 0. Let LJ denote

the integral curve of (18) passing through the point P (zJ , F̂ (zJ)) on the curve

y = F̂ (z). Also, let y = ϕJ(z) and y = ϕ̃J(z) represent the orbit segments of

LJ below and above the curve y = F̂ (z). When 0 < z < zJ , we clearly have

ϕJ(z) < F̂ (z) < ϕ̃J(z) and ϕ′J(z) > 0 > ϕ̃′J(z). Moreover, we introduce the symbol

V (F̂ (z), ϕJ(z), ϕ̃J(z)) =
F̂ ′(z)

F̂ (z)− ϕJ(z)
+

F̂ ′(z)

ϕ̃J(z)− F̂ (z)
.(19)

Then, we have
∫

LJ

F̂ ′(z)dy =

∫ zJ

a0

V (F̂ (z), ϕJ(z), ϕ̃J(z))dz(20)

for some a0.

Lemma 7. [Lemma 4.5 of [18, Chapter 4]] For equation (18), suppose there is

a0 ≥ 0 with F̂ (a0) = 0, and F̂ (z) > 0, F̂ (z)F̂ ′(z) is nondecreasing for z > a0.
Then∫ zQ

a0

V (F̂ (z), ϕQ(z), ϕ̃Q(z))dz ≤
∫ zJ

a0

V (F̂ (z), ϕJ(z), ϕ̃J(z))dz, for a0 < zQ < zJ .
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Lemma 7 will be applied in the following lemma.

Lemma 8. If 0 < a < 1 and b < a2 − 1, then system (2) has at most two large
limit cycles.

(a) 3a2 − 3 ≤ b < a2 − 1 (b) b < 3a2 − 3

Figure 5. Two large limit cycles.

Proof. Assume that system (2) has at least two large limit cycles surrounding the
three equilibria EL, E0 and ER, and that L1 and L2 are the most external limit
cycles, where L2 denotes the outer one.

We first consider 3a2 − 3 ≤ b < a2 − 1. The corresponding phase portrait is
shown in Figure 5(a). By the Bendixson criterium, each Li has two intersection
points, denoted by Bi and Ci (i = 1, 2) with the straight line x = x0, where x0 is
the abscissa of the equilibrium ER, as shown in Figure 5(a). By the symmetry of
the phase portrait

2

∫

ÂiFi

f(x)dt =

∮

Li

f(x)dt = −
∮

Li

div(y − F (x),−g(x))dt,

for i = 1, 2. On the arcs Â1B1 and Â2B2, let y = y1(x) and y = y2(x), respectively.
In fact, for each i = 1, 2, we have
∫

ÂiBi

f(x)dt = −
∫ x0

0

F ′(x)

F (x)− yi(x)
dx = −

∫ x0

0

F ′(x)− y′i(x) + y′i(x)

F (x)− yi(x)
dx

= −
∫ x0

0

1

F (x)− yi(x)
d(F (x)− yi(x))−

∫ x0

0

y′i(x)

F (x)− yi(x)
dx

= − ln

∣∣∣∣
F (0)− yi(x0)

F (0)− yi(0)

∣∣∣∣− ln

∣∣∣∣
F (x0)− yi(x0)

F (0)− yi(x0)

∣∣∣∣−
∫ x0

0

g(x)

(F (x)− yi(x))2
dx

= − ln

∣∣∣∣
F (x0)− yi(x0)

F (0)− yi(x0)

∣∣∣∣+
∫ x0

0

y′i(x)

F (0)− yi(x)
dx−

∫ x0

0

g(x)

(F (x)− yi(x))2
dx

= − ln

∣∣∣∣
yi(x0)− F (x0)

yi(x0)

∣∣∣∣−
∫ x0

0

F (x)g(x)

yi(x)(F (x)− yi(x))2
dx,

implying
∫

Â2B2

F ′(x)dt−
∫

Â1B1

F ′(x)dt = ln

∣∣∣∣
y1(x0)− F (x0)

y1(x0)

∣∣∣∣− ln

∣∣∣∣
y2(x0)− F (x0)

y2(x0)

∣∣∣∣+
∫ x0

0

F̃ (x)dx

= ln

∣∣∣∣1 +
(y1(x0)− y2(x0))F (x0)

y1(x0)(y2(x0)− F (x0))

∣∣∣∣+
∫ x0

0

F̃ (x)dx,
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where

F̃ (x) =
g(x)F (x)

y1(x)(F (x)− y1(x))2
− g(x)F (x)

y2(x)(F (x)− y2(x))2

and yi(x) is the function corresponding to the arc ÂiBi. Clearly, since F (x) < 0 <
y1(x) < y2(x) in (0, x0) we obtain

(y1(x0)− y2(x0))F (x0)

y1(x0)(y2(x0)− F (x0))
> 0,

∫ x0

0

F̃ (x)dx > 0.

Thus ∫

Â2B2

f(x)dt >

∫

Â1B1

f(x)dt.(21)

Similarly we obtain that ∫

Ĉ2F2

f(x)dt−
∫

Ĉ1F1

f(x)dt > 0.

Setting z =
∫ x

0
g(s)ds, from (20) we get

∫

̂B1G1C1

F ′(x)dt =

∫

̂B1G1C1

F̂ ′(z)dy =

∫ zG1

x0

V (F̂ (z), ϕG1(z), ϕ̃G1(z))dz.

By Lemma 7, in order to prove the inequality
∫ zG2

z(x0)

V (F̂ (z), ϕG2(z), ϕ̃G2(z))dz >

∫ zG1

z(x0)

V (F̂ (z), ϕG1(z), ϕ̃G1(z))dz,

where F̂ (z) = F (x) − F (x0), we only need to prove that F̂ (z(x0)) = 0, F̂ (z) > 0

and F̂ (z)F̂ ′(z) is nondecreasing for z > z(x0). Clearly we have F̂ (z(x0)) = 0 and

F̂ (z) > 0 for z > z(x0). Note that

F̂ (z)F̂ ′(z) = [F (x)− F (
√

1− a2)]f(x)/g(x).

For x >
√

1− a2 we have

[F (x)− F (
√

1− a2)]f(x)

g(x)

=
ξ2[bx+ x3 − b

√
1 + a2 − (1− a2)

√
1− a2](b+ 3x2)

x(1− 1/
√
x2 + a2)

=
ξ2[b+ x2 + (1− a2) +

√
1− a2x](b+ 3x2)(

√
x2 + a2 + x2 + a2)

x(x+
√

1− a2)

= ξ2

(
b+ 1− a2

x+
√

1− a2
+ x

)(
b

x
+ 3x

)
(
√
x2 + a2 + x2 + a2),

where the three factors of the last line are positive and increasing. Therefore,
[F (x) − F (

√
1− a2)]f(x)/g(x) is positive and increasing. By Lemma 7, we have

that ∫

̂B2G2C2

f(x)dt−
∫

̂B1G1C1

f(x)dt > 0.

Therefore ∮

L1

div(y − F (x),−g(x))dt >

∮

L2

div(y − F (x),−g(x))dt.(22)

Now we consider b < 3a2 − 3. The corresponding phase portrait is shown in
Figure 5(b). By the Bendixson criterium again, each Li has two intersection points
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with the straight line x = x0, being x0 the unique positive zero of F ′(x) when
x > 0, and the intersection points are denoted by Bi and Ci (i = 1, 2). Then the
inequality (22) can be proved in a similar way to the case 3a2 − 3 ≤ b < a2 − 1.
Since f(x) < 0 for 0 < x < x0 and yi(x)− F (x) > 0 (i = 1, 2), we have
∫

Â2B2

f(x)dt−
∫

Â1B1

f(x)dt =

∫ x0

0

{
f(x)

y2(x)− F (x)
− f(x)

y1(x)− F (x)

}
dx

=

∫ x0

0

f(x)(y1(x)− y2(x))

(y1(x)− F (x))(y2(x)− F (x))
dx > 0.(23)

Similarly we obtain that
∫

Ĉ2F2

f(x)dt−
∫

Ĉ1F1

f(x)dt > 0.

Now, using again Lemma 7, we only need to prove that F̂ (z(x0)) = 0, and F̂ (z) > 0,

F̂ (z)F̂ ′(z) is nondecreasing for z > z(x0), where F̂ (z) = F (x) − F (x0). Clearly,

we have F̂ (z(x0)) = 0 and F̂ (z) > 0 for z > z(x0). Note that F̂ (z)F̂ ′(z) =

[F (x)− F (
√
−b/3)]f(x)/g(x). For x >

√
−b/3 we have

[F (x)− F (
√
−b/3)]f(x)

g(x)

=
ξ2[bx+ x3 − b

√
−b/3− (−b/3)

√
−b/3](b+ 3x2)

x(1− 1/
√
x2 + a2)

=
ξ2[2b/3 + x2 +

√
−b/3x](b+ 3x2)(

√
x2 + a2 + x2 + a2)

x(x+
√

1− a2)

x−
√
−b/3

x−
√

1− a2

= ξ2

(
2b/3−

√
1− a2(

√
−b/3−

√
1− a2)

x+
√

1− a2
+ x+

√
−b/3−

√
1− a2

)

(
b

x
+ 3x

)
(
√
x2 + a2 + x2 + a2)

(
1 +

√
1− a2 −

√
−b/3

x−
√

1− a2

)
,

where all of the factors of the last two lines are positive and increasing. Therefore
[F (x)− F (

√
−b/3)]f(x)/g(x) is positive and increasing. By Lemma 7, we have

∫

̂B2G2C2

f(x)dt−
∫

̂B1G1C1

f(x)dt > 0

and therefore (22) follows.

However, it is impossible to have two attracting (repelling) limit cycles sur-
rounding the same equilibrium (equilibria) adjacent one to the other. So, from
the inequality (22) and the repelling of the infinity, we obtain that system (2) has
at most three large limit cycles, where the outer one is stable, the middle one is
semistable, the inner one is stable. Clearly, for fixed values a and ξ, system (2) is
a family of generalized rotated vector fields with respect to the parameter b. As-
sume that system (2) has exactly three large limit cycles. By Theorem 3.5 of [18,
Chapter 4], the outer limit cycle and the inner one neither split, nor disappear as
b varies monotonically. By Theorem 3.4 of [18, Chapter 4], the middle limit cycle
will bifurcate into at least one stable and one unstable cycle when b varies in the
suitable direction. This is a contradiction. Therefore, system (2) has at most two
large limit cycles. If the two large limit cycles exist, we can obtain that the outer
limit cycle is stable and the inner one is unstable. �
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We consider a generic Liénard system

ẋ = y − F̄ (x),

ẏ = −ḡ(x),
(24)

where F̄ is C2, ḡ is C1 and x ∈ (α, β)(α, β can be ±∞). The following proposition
partly improves the result of [9, Theorem 2.1].

Proposition 9. Consider system (24), which satisfies (i)-(iv), where

(i): f̄(x) = F̄ ′(x) has a unique zero 0 and f̄(x) < 0 (resp. > 0) as α < x < 0
(resp. 0 < x < β);

(ii): F̄ (0) = 0;
(iii): xḡ(x) > 0 for x 6= 0, x ∈ (α, β);
(iv): the system

F̄ (x1) = F̄ (x2), λ̄(x1) = λ̄(x2)(25)

has at most one solution x2 < 0 < x1, where λ̄ := ḡ(x)/f̄(x).

Moreover, when F̄ (x1) = F̄ (x2), λ̄(x1) > λ̄(x2) (resp. F̄ (x1) = F̄ (x2), λ̄(x1) <
λ̄(x2)) as |x1|, |x2| are small, system (24) satisfies either (v) or (v′), where

(v): the function F̄ (x)f̄(x)/ḡ(x) is decreasing (resp. increasing) for α < x <
0;

(v′): the function F̄ (x)f̄(x)/ḡ(x) is increasing (resp. decreasing) for 0 < x <
β and

lim
x→α+

F̄ (x) = lim
x→β−

F̄ (x).

Then system (24) has at most one closed orbit in the region {(x, y) ∈ R2 : α < x <
β}. The closed orbit is simple and unstable (resp. stable) if it exists.

Proof. Assume that system (24) exists a limit cycle γ, as shown in Figure 6(a). In
the following we will ascertain the sign of

−
∮

γ

f̄(x)dt =

∮

γ

dvi(y − F̄ (x),−ḡ(x))dt.

Clearly w = F̄ (x) has two inverse functions, x1(w) (respectively x2(w)), on the
right (resp. left) side of the origin. The functions λ̄(xi(w)) will be denoted simply
by λi(w).

By w = F̄ (x), we rewrite system (24) into

ẇ = f̄(xi(w))(y − w), ẏ = −ḡ(xi(w)),(26)

which deduces

dy

dw
=
λi(w)

w − y .(27)

Let y1(w) and y2(w)(resp. z1(w) and z2(w)) be functions determined by the orbits
of (26) below (resp. above) the line y = w, which correspond the parts of the
trajectories of system (24) below (resp. above) the curve y = F̄ (x) and depend
whether they are to the left or right of the origin.

From condition (iv), λ1(w) = λ2(w) has at most one root. When the equation
λ1(w) = λ2(w) has no roots, by the comparison theorem we obtain either z1(w) >
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(a) Assume that system (24) ex-
hibits a limit cycle

(b) Orbits of system (26)

Figure 6. Limit cycles of system (24).

z2(w) and y1(w) < y2(w) or z1(w) < z2(w) and y1(w) > y2(w). By Green formula,
we have

∮

γ

ḡ(x)dx+ (y − F̄ (x))dy = −
∫∫

Intγ

f̄(x)dxdy =

∫∫

Intγ,x<0

dwdy −
∫∫

Intγ,x>0

dwdy 6= 0,

which contradicts
∮
γ
ḡ(x)dx+(y− F̄ (x))dy = 0. When the equation λ1(w) = λ2(w)

has a unique root and the equation z1(w) = z2(w) has no roots, we can similarly
prove that (24) has no limit cycles. When the equation λ1(w) = λ2(w) has a unique
root, applying again the comparison theorem the equation z1(w) = z2(w) has at
most one root.

Now we only need to discuss the system λ1(w) = λ2(w) and z1(w) = z2(w)
having a unique root. Here we consider that condition (v) holds. By (w, y) →
(µw, µy) with µ := w∗2/w

∗
1 > 1, where w∗i is the intersection of zi(w) and the line

y = w, system (27) deduces

dy

dw
=

λ2(µw)

µ(w − y)
.(28)

First, we consider that λ1(w) > λ2(w) as w → 0. Moreover, the limit cycle γ of
(24) with x > 0 corresponds to the broken curve in Figure 6(b) and y2(w), z2(w)
are changed into two new functions, denoted ỹ2(w) and z̃2(w), respectively. It
is easy to check that y2(w) = µỹ2(w/µ) and z2(w) = µz̃2(w/µ). By µ > 1 and
the increasing of λ̄(w)/w, we get λ̄(µw)/µ > λ̄(w). Furthermore, using again the
comparison theorem to (27) and (28), we obtain y1(w) < ỹ2(w) and z1(w) > z̃2(w).
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Thus ∮

γ

f̄(x)dt =

∮

γ

f̄(x)

y − F̄ (x)
dx

=

∫ w∗
2

0

dw

y2(w)− w −
∫ w∗

2

0

dw

z2(w)− w +

∫ w∗
1

0

dw

z1(w)− w −
∫ w∗

1

0

dw

y1(w)− w

=

∫ w∗
1

0

µdw

y2(µw)− µw −
∫ w∗

1

0

µdw

z2(µw)− µw +

∫ w∗
1

0

dw

z1(w)− w −
∫ w∗

1

0

dw

y1(w)− w

=

∫ w∗
1

0

(y1 − ỹ2)dw

(y1(w)− w)(ỹ2(w)− w)
−
∫ w∗

1

0

(z1 − z̃2)dw

(z1(w)− w)(z̃2(w)− w)
< 0.

So in the region {(x, y) ∈ R2 : α < x < β} γ is unstable and simple if it exists.
Moreover, it is impossible to have two attracting (repelling) limit cycles surrounding
the same equilibrium adjacent one to the other. Therefore, the uniqueness has also
been proved.

For the case λ1(w) < λ2(w) as w is small, we can prove that
∮
γ
f(x)dt > 0 in a

similar way to the case λ1(w) > λ2(w). So, in the region {(x, y) ∈ R2 : α < x < β},
the limit cycle γ is stable and simple if it exists. Therefore, we have completed this
proof. �

The proof of Proposition 9 gives the following corollary directly.

Corollary 10. Assume that system (24) satisfies conditions (i)-(iii) of Proposition
9. If there is no solutions to (25), then system (24) has no closed orbits.

Under the preparations of above Proposition 9 and Corollary 10, we obtain the
existence of small limit cycles on the parameter surfaces H2 and H3 as follows.

Lemma 11. Assume that 0 < a < 1 and b = 3a2−3. Then system (2) has no small

limit cycles if 1/
√

3 ≤ a < 1, and at most two small limit cycles if 0 < a < 1/
√

3.

Proof. By the transformation (x, y) → (x +
√

1− a2, y + F (
√

1− a2)), system (2)
can be rewritten as

ẋ = y − F (x+
√

1− a2) + F (
√

1− a2),

ẏ = −g(x+
√

1− a2).
(29)

It is easy to show that system (29) satisfies conditions (i)-(iii) of Proposition 9

when x ∈ (−
√

1− a2,+∞). Condition (iv) of Proposition 9 is equivalent to the
fact that system

F (x̃1 +
√

1− a2) = F (x̃2 +
√

1− a2),

g(x̃1 +
√

1− a2)

f(x̃1 +
√

1− a2)
=
g(x̃2 +

√
1− a2)

f(x̃2 +
√

1− a2)
,

(30)

has at most one solution, where −
√

1− a2 < x̃1 < 0 < x̃2. Clearly (30) is equivalent
to the fact that the system

F (x1) = F (x2),
g(x1)

f(x1)
=
g(x2)

f(x2)
(31)

has a unique solution when 0 < x1 <
√

1− a2 < x2 and xj = x̃j +
√

1− a2,
j = 1, 2. Let s := x1 + x2. From F (x1) = F (x2), we have x1x2 = 3(a2 − 1) + s2.
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Since 0 < x1 <
√

1− a2 < x2, we obtain
√

3− 3a2 < s < 2
√

1− a2. Note that

g(x)

f(x)
=

x

3ξ(
√
x2 + a2 + x2 + a2)

.(32)

From the second equality of (31) and (32), we have

s2 + 2a2 − 3− a2s

x2

√
x2

1 + a2 + x1

√
x2

2 + a2
= 0.

And consequently

(
x2

√
x2

1 + a2 + x1

√
x2

2 + a2

)2

= 2x2
1x

2
2 + a2(x2

1 + x2
2) + 2x1x2

√
x2

1x
2
2 + a2(x2

1 + x2
2) + a4

= 2s4 + (11a2 − 12)s2 + 6(1− a2)(3− 2a2)

+2(s2 + 3a2 − 3)
√
s4 + (5a2 − 6)s2 + (2a2 − 3)2.

Let η := s2. Then, for 3(1− a2) < η < 4(1− a2), we have

d

[(
x2
√
x21 + a2 + x1

√
x22 + a2

)2
/s2
]

dη

= 2− 6(1− a2)(3− 2a2)

η2
+

6(1− a2)

η2

√
η2 + (5a2 − 6)η + (2a2 − 3)2 +

(η + 3a2 − 3)(2η + 5a2 − 6)

η
√
η2 + (5a2 − 6)η + (2a2 − 3)2

= 2 +
6(1− a2)(η + 5a2 − 6)

η(
√
η2 + (5a2 − 6)η + (2a2 − 3)2 + 3− 2a2)

+
(η + 3a2 − 3)(2η + 5a2 − 6)

η
√
η2 + (5a2 − 6)η + (2a2 − 3)2

> 2− 6(1− a2)

η
− η + 3a2 − 3

η
> 0.

Thus, if h(η) := η+2a2−3−a2√η/[x2

√
x2

1 + a2 +x1

√
x2

2 + a2], then the function

h(η) is increasing in 3(1 − a2) < η < 4(1 − a2). On the other hand, we have

h(3−3a2) = −a−a2 < 0 and h(4−4a2) = 1−3a2. Therefore, when
√

3/3 ≤ a < 1,
the function h(η) has no solutions for 3(1 − a2) < η < 4(1 − a2). By Corollary

10, system (2) has no limit cycles in the region x > 0. When 0 < a <
√

3/3, the
function h(η) has a unique root in 3(1− a2) < η < 4(1− a2). Now we only need to
verify the condition (v′) of Proposition 9. We have

(F (x)− F (
√

1− a2)f(x)

g(x)
= 3ξ2

√
x2 + a2 + x2 + a2

x

(
(3a2 − 3)x+ 2(1− a2)3/2 + x3

)

= 3ξ2

(
3a2 − 3 +

2(1− a2)3/2

x
+ x2

)
(
√
x2 + a2 + x2 + a2).

Then, we obtain

d[(F (x)− F (
√

1− a2)f(x)/(3ξ2g(x))]

dx
=

(−2(1− a2)3/2

x2
+ 2x

)
(
√
x2 + a2 + x2 + a2)

+

(
3a2 − 3 +

2(1− a2)3/2

x
+ x2

)(
x√

x2 + a2
+ 2x

)
> 0,
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for 0 < a <
√

3/3 and x >
√

1− a2, because

−2(1− a2)3/2

x2
+ 2x > 0 and

3a2 − 3 +
2(1− a2)3/2

x
+ x2 =

(x−
√

1− a2)(x2 +
√

1− a2x− 2(1− a2)

x
> 0.

So condition (v′) of Proposition 9 holds. Therefore, when 0 < a <
√

3/3, system
(2) has at most one limit cycle which lies in the region x > 0 by Proposition 9. �

Figure 7. The uniqueness of limit cycles.

Lemma 12. When 1/
√

3 ≤ a < 1 and b = 3a2 − 3, system (2) has a unique limit
cycle surrounding all equilibria.

Proof. If 1/
√

3 ≤ a < 1 and b = 3a2− 3, i.e., on the parameter curve H2 we obtain
Figure 7 by Proposition 4 and Lemma 11, which shows the existence of a Poincaré-
Bendixson annulus, i.e., any trajectory starting at a point of the boundary curves
of the annulus enters (or leaves) the annulus, and inside the annulus there is no
equilibrium points. So, the existence of some large limit cycles is obtained. Assume
that system (2) has two large limit cycles. Let the outer limit cycle and inner one
denoted by γ2 and γ1. Therefore

∮
γi

div(y−F (x),−g(x))dt ≤ 0 for i = 1, 2. By (22),∮
γ1

div(y − F (x),−g(x))dt >
∮
γ2

div(y − F (x),−g(x))dt. However, it is impossible

to have two attracting (repelling) limit cycles surrounding the same equilibrium
(equilibria) adjacent one to the other. Therefore

∮

γ1

div(y − F (x),−g(x))dt = 0 >

∮

γ2

div(y − F (x),−g(x))dt.

So γ1 is a semistable limit cycle. Since the vector field of (2) is rotating with respect
to b, by Theorem 3.4 of [18, p.211] there is a stable limit cycle γ̂2 near γ2 for a
perturbation of b, and two limit cycles γ̂1, γ̃1 (γ̂1 is smaller than γ̃1) near γ1. By
(22) and stabilities of equilibria, we obtain

∮

γ̂1

div(y − F (x),−g(x))dt ≤ 0,

∮

γ̃1

div(y − F (x),−g(x))dt ≥ 0,

and ∮

γ̂2

div(y − F (x),−g(x))dt < 0,
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which contradicts
∮
γ̂1

div(y − F (x),−g(x))dt >
∮
γ̃1

div(y − F (x),−g(x))dt. There-

fore, system (2) has at most one large limit cycle. Thus, the uniqueness of limit
cycle is proved and the phase portrait (d) of Figure 2 in Theorem 1 is obtained. �

Moreover, we can get the phase portraits (i), (e) and (n) of Figure 2 in Theorem
1 by Proposition 3, Lemmas 8, 11, 12 and the continuity of the vector fields.

From [5] it follows that system (2) has no limit cycles for a→ 0 and b = 3a2−3.

Proposition 13. System (2) has at most two small limit cycles around the equi-
libria ER or EL for the values of the parameters in G1 := {(a, b, ξ) ∈ G : 0 < a <
1, b < 3a2 − 3, 0 < ξ � 1}.
Proof. By the homeomorphism (x, y)→ (x, y+F (x)), system (2) can be rewritten
as

ẋ = y,

ẏ = −x
(

1− 1√
x2 + a2

)
− ξ(b+ 3x2)y.

(33)

In x > 0 we do the change of variables w =
√
x2 + a2 and the time scaling dt =√

1 + a2/x2dτ to system (33), and we get

ẇ = y,

ẏ = 1− w − ξw√
w2 − a2

(b− 3a2 + 3w2)y.
(34)

When ξ = 0 this system is the Hamiltonian system

ẇ = y,
ẏ = 1− w,(35)

with the first integral

H(w, y) =
y2

2
+
w2

2
− w.(36)

Its level curves Γh := {(w, y) : H(w, y) = h, −1/2 ≤ h < a2/2 − a} are shown in
Figure 8.

Figure 8. The phase portrait of the Hamiltonian system (35).

Of course H = −1/2 corresponds to the center (1, 0), and for the values of h
such that −1/2 < h < a2/2 − a, the curve H(w, y) = h corresponds to a periodic
orbit of Hamiltonian system (35) surrounding the point (1, 0), which intersects the
positive half w-axis inside the interval (a, 1).

Now we consider system (34) as a perturbation of system (35) for small ξ. Here
we only will discuss how many small limit cycles surround the equilibrium point
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(1, 0) of system (34) when ξ is sufficiently small. On the other hand, for every
h ∈ (−1/2, a2/2−a) the orbit Γh intersects the the segment L1 : (a, 1) of the w-axis
at exactly one point Qh(x(h), 0). Therefore, the segment L1 can be parameterized
by h ∈ (−1/2, a2/2− a).

For every h ∈ (−1/2, a2/2−a), we consider the trajectory of system (33) passing
through the point Qh(x(h), 0) ∈ L1. This trajectory goes forward and backward
until it intersects the positive w-axis at points Q1 and Q2, respectively, as in Figure
9. We denote the piece of trajectory from Q2 to Q1 by γ(h, ξ, a, b). Then γ(h, ξ, a, b)
is a periodic orbit if and only if Q1 = Q2. From (36), we have

∂H(w, y)

∂w
= w − 1 6= 0, if |w| 6= 1.

Hence Q1 = Q2 if and only if H(Q1) = H(Q2).

Figure 9. The perturbation of (35).

On the other hand, along the orbits of system (35) we have

dH(w, y)

dt
dt = − ξw√

w2 − a2
(b− 3a2 + 3w2)y2dt = − ξw√

w2 − a2
(b− 3a2 + 3w2)ydw.

This implies that

H(Q1)−H(Q2) =

∫ t(Q1)

t(Q2)

dH(w, y)

dt

∣∣∣∣
(35)

dt

= −ξ
∫

γ(h,ξ,a,b)

w√
w2 − a2

(b− 3a2 + 3w2)ydw = −ξF (h, ξ, a, b).

Therefore γ(h, ξ, a, b) is a periodic orbit if and only if F (h, ξ, a, b) = 0.

We consider F (h, ξ, a, b) as a perturbation of F (h, 0, a, b). The function F (h, 0, a, b)
is given by

F (h, 0, a, b) = (b− 3a2)I1(h) + 3I3(h),

where

Ii(h) =

∫

Γh

wi√
w2 − a2

y dw for i = 1, 3.

The orientation of Γh is determined by the direction of the vector field (35). By
the Green’s formula

I1(h) =

∫

Γh

w√
w2 − a2

y dw =

∫∫

D(h)

w√
w2 − a2

dwdy > 0, h ∈ (−1/2, a2/2− a),

where D(h) is the region surrounded by Γh.
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It is easy to show that

lim
h→−1/2

I1(h) = lim
h→−1/2

I3(h) = 0.

By the Mean Value Theorem of integrals, we have

lim
h→−1/2

I3(h)

I1(h)
= lim
h→−1/2

∫∫

D(h)

w3

√
w2 − a2

dwdy

∫∫

D(h)

w√
w2 − a2

dwdy

= lim
h→−1/2

w̄2(h) = 1,

where (w̄(h), ȳ(h)) ∈ D(h) and D(h) shrinks to the point (1, 0) as h→ −1/2.

Now we define the function

u(h) =





I3(h)

I1(h)
if h ∈ (−1/2, a2/2− a),

1 if h = −1/2.

It is continuous in the interval [−1/2, a2/2 − a]. Therefore, to determine the exis-
tence and the number of small limit cycles for system (34) for ξ sufficiently small, we
only need to study the existence and the number of zeros of the function F (h, ξ, a, b)
in the interval h(−1/2, a2/2− a). In addition, since

F (h, ξ, a, b) ≈ F (h, 0, a, b) = I1(h)

(
b− 3a2 + 3

I3(h)

I1(h)

)
,

for ξ sufficiently small, we obtain that the behavior of the function u = u(h), as a
ratio of two Abelian integrals, is crucial in our discussion.

From the notations in [12, Corollary 2], taking

Φ(w) =
1

2
w2 − w, Ψ(y) =

y2

2
, f1(w) =

w√
w2 − a2

, f3(w) =
w3

√
w2 − a2

for system (34). Note that H(w, y) = Φ(w) + Ψ(y) and Ii(h) =
∫

Γh
fi(w) y dw,

i = 1, 3. We can calculate

M(w̃, w) +M(w, w̃) = 4(w − 1)4

{−w2(2− w)2 + a2(4− 2w + w2)

(w2 − a2)[(2− w)2 − a2]
−

[w3(2− w)3 + 2(−4 + 2w + 3w2 − 4w3 + w4)a2 + (2 + 2w − w2)a4]

(w2 − a2)3/2[(2− w)2 − a2]3/2

}
,

where w̃ + w = 2, and

M(w̃, w) = [Φ′(w̃)]2{Φ′(w̃)(f ′3(w)f1(w)− f ′1(w)f3(w)) + Φ′′(w)(f3(w)f1(w̃)

−f1(w)f3(w̃)) + Φ′(w)[f3(w̃)f ′1(w)− f1(w̃)f ′3(w)]}.
In fact, s1(w, a) := −w2(2 − w)2 + a2(4 − 2w + w2) is decreasing if w ∈ (a, 1).
Therefore, min{s1(w, a)} = s1(1, a) = −1 + 3a2, and max{s1(w, a)} = s1(a, a) =

2a3 > 0 as w ∈ (a, 1). Therefore s1(w, a) > 0 when 1/
√

3 ≤ a < 1, and s1(w, a) = 0

has a unique root (denoted by w1) when 0 < a < 1/
√

3. On the other hand,
s2(w, a) := −w3(2 − w)3 − 2(−4 + 2w + 3w2 − 4w3 + w4)a2 − (2 + 2w − w2)a4 is
also decreasing if w ∈ (a, 1) because ∂s2(w, a)/∂w < 0. Hence min{s2(w, a)} =
s2(1, a) = (3a2 − 1)(1− a2), and max{s2(w, a)} = s2(a, a) = 4(a− 1)(a− 2)a2 > 0

as w ∈ (a, 1). Similarly, s2(w, a) > 0 when 1/
√

3 ≤ a < 1, and s2(w, a) = 0 has a

unique root (denoted by w2) when 0 < a < 1/
√

3. Therefore, M(w̃, w)+M(w, w̃) >
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0 for all w ∈ (a, 1) when 1/
√

3 ≤ a < 1. Next, we have that w1 < w2, because
s2(w1, a) = 2(4−6w1 +3w2

1)a2−6a4 > 2(4−6w1 +3w2
1)a2−2a2 = 6(1−w1)2a2 > 0.

So we only need to consider the zeros of M(w̃, w) + M(w, w̃) for w ∈ (w1, 1).
Moreover,

d{
√

(w2 − a2)[(2− w)2 − a2]s1(w, a)}
dw

=

{
(2w(2− w) + a2)(w2 − a2)((2− w)2 − a2)√

(w2 − a2)[(2− w)2 − a2]

− [w(2− w) + a2][−w2(2− w)2 + a2(4− 2w + w2)]√
(w2 − a2)[(2− w)2 − a2]

}
2(w − 1) < 0,

for w ∈ (w1, 1). Therefore,
√

(w2 − a2)[(2− w)2 − a2]s1(w, a)+s2(w, a) is decreas-

ing for w ∈ (w1, 1), which implies that
√

(w2 − a2)[(2− w)2 − a2]s1(w, a)+s2(w, a)
has a unique zero. Thus M(w̃, w) +M(w, w̃) = 0 has a unique zero for w ∈ (w1, 1).

By [12, Corollary 2], the inequality M(w̃, w) +M(w, w̃) > 0 (resp. < 0) induces
that u′(h) < 0 (resp. > 0). So u′(h) has at most one zero. Then F (h, 0, a, b) has
at most two zeros because b− 3a2 < 0. The proof is completed. �

4. Global bifurcation

The aim of this section is to show that the global bifurcation surfaces HL, DL1,
DL2 of homoclinic loop and double limit cycles in Figure 1 exist and how they are
located in the bifurcation diagram of system (2).

By the transformation (x, y) → (x, y + F (x)), system (2) can be rewritten as
system (33). Then For fixed values of a and ξ, system (2) is a rotational family of
vector fields (see [18] for definitions and properties) with respect to the parameter
b. This implies that when b increases unstable limit cycles increase and stable ones
decrease in size. Furthermore, the double limit cycle that is stable in its outside
part splits into a pair of limit cycles.

Lemma 14. The surface DL2 does not lie in G2 := {(a, b, ξ) ∈ G : 0 < a <
1, 3a2 − 3 < b < a2 − 1} and system (2) has at most one small limit cycle around
the equilibria ER or EL in G2.

Proof. By Lemma 11 system (2) has no small limit cycles if 1/
√

3 ≤ a < 1 and
b = 3a2−3, and at most one small limit cycle around equilibria ER or EL if 0 < a <
1/
√

3 and b = 3a2 − 3. Therefore DL2 cannot intersect with the curve b = 3a2 − 3

except when a = 1/
√

3. Computing the trace at E0 we obtain tr(J0) = −bξ > 0,
because b < 0 and ξ > 0. So the homoclinic loops have to be unstable if they exist
by [7, Chapter 3, Theorem 3.3]. Assume that system (2) exhibits at least two small
limit cycles surrounding ER for (a, b, ξ) ∈ G2. For fixed a and ξ, we obtain that
system (2) has a small semi-stable limit cycle Γ0 when b = b0 from the rotational
properties of system (2) with respect to b. Now, given b, ξ and a perturbation
a → a + ε, there exists a solution ϕ(t, x0, y0) for t ∈ (0, T ) which lies in the small
neighborhood of Γ0 from the continuous dependence of solutions on the parameters
and initial conditions, where T is the periodic of Γ0 and ε > 0 is small. Then using
again the properties of the rotational vector fields, we can take a suitable parameter
b0 + ε1 such that system (2) has a new semi-stable small limit cycle Γ̂0, because
the homoclinic loops cannot be semistable, when ε1 > 0 is small. By continuity
system (2) has a small semi-stable limit cycle in the parameter curve either H2, or
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H3, which leads to a contradiction. Therefore system (2) has at most one small
limit cycle in G2. We have completed the proof. �

By a similar discussion as that in the proof of Lemma 14, the phase portraits
(f)-(h) and (j)-(m) of system (2) in Figure 2 of Theorem 1 are obtained from the
properties of rotational vector fields, continuity, Lemma 14 and the results of section
3.

Remark 1. The surface DL2 of double small limit cycles is the graph of a function
b = ϕ2(a, ξ).

From [5] we can obtain that a pair of grazing loop are stable for a = 0 if they
exist. However, the pair of homoclinic loops have to be unstable if they exist when
a 6= 0. In fact, HL, DL1, DL2 have a common intersection point for the limit value
a = 0, i.e., ϕ(0, ξ) = φ1(0, ξ) = φ1(0, ξ) < −3. Since system (33) is a rotational
vector field with respect to the parameter b, the manifolds of E0 move monotonically
as a, ξ are fixed and b increases, see [5, 6]. Therefore, it is worthwhile to note that
HL, DL1 and DL2 have no intersection points except at endpoints. Summarizing
the previous results, we can obtain Theorem 1, as shown in Figure 1.

(a) (
√

2, 1, 1) ∈ II (b) (
√

2,−1, 1) ∈ III

Figure 10. Simulations with a single equilibrium

5. Numerical examples

In this section we give several numerical examples of previous results.

Example 1. Let a =
√

2 and ξ = 1. When b = 1 the system has a unique
equilibrium (0, 0), which is a sink, and no limit cycles, as shown in Figure 10(a).

However, when b = −1 the system has a unique equilibrium, the origin (0, 0)
which is a source. Furthermore, from Lemma 5, there is a unique limit cycle, which
is stable, as shown in Figure 10(b).

Example 2. Let ξ = 1. When a =
√

2/2 and b = −2 the system has three
equilibria and exactly one large limit cycle, as shown in Figure 11(a).

When a = 0.3 and b = −2.77 the system has three equilibria and exactly two
small limit cycles, as shown in Figure 11(b).

When a =
√

2/2 and b = −0.5 the system has three equilibria and no limit
cycles, as shown in Figure 11(c).
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(a) (
√

2/2,−2, 1) ∈ IV (b) (0.3,−2.77, 1) ∈ V II (c) (
√

2/2,−0.5, 1) ∈ I

Figure 11. Simulations with three equilibria

(a) (0.9,−0.46, 0.1) ∈ V III (b) (0.9,−0.5558, 0.1) ∈ IX

(c) (3
√

2/10,−2.461, 0.1) ∈ V I (d) (
√

5/5,−2.41, 0.1) ∈ V

Figure 12. Simulations with three equilibria

Example 3. Let ξ = 0.1. When a = 0.9 and b = −0.46 the system has three
equilibria and exactly two large limit cycles, as shown in Figure 12(a).

When a = 0.9 and b = −0.555 the system has three equilibria, exactly two small
limit cycles and one large limit cycle, as shown in Figure 12(b).

When a = 3
√

2/10 and b = −2.461 the system has three equilibria, exactly two
small limit cycles and two large limit cycles, as shown in Figure 12(c).

When a =
√

5/5 and b = −2.41 the system has three equilibria, exactly four
small limit cycles and one large limit cycle, as shown in Figure 12(d).
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Appendix: Averaging theory of first and second order

The averaging theory of second order for studying specifically periodic orbits
can be found in [13] for S3 differential systems and in [1] for Lipschitz differential
systems, see also Chapter 11 of [17]. Here we present a brief summary with the
results that we need for studying the Hopf bifurcation of the SD oscillator systems.

Consider the differential system

(37) ẋ(t) = µF1(t,x) + µ2F2(t,x) + µ3R(t,x, µ),

where F1, F2 : R ×D → R, R : R ×D × (−µ0, µ0) → R are continuous functions,
T–periodic in the first variable, and D is an open subset of Rn. Assume:

(i) F1(t, ·) ∈ S2(D), F2(t, ·) ∈ S1(D) for all t ∈ R, F1, F2, R, D2
xF1,DxF2

are locally Lipschitz with respect to x, and R is twice differentiable with
respect to µ.

We define the functions Fk0 : D → R for k = 1, 2 as follows

f1(x) =
1

T

∫ T

0

F1(s,x)ds,

f2(x) =
1

T

∫ T

0

[
DxF1(s,x)

∫ s

0

F1(t,x)dt+ F2(s,x)

]
ds.

(ii) For V ⊂ D an open and bounded set and for each µ ∈ (−µ0, µ0) \ {0},
suppose that either f1(x) 6≡ 0, there exists a ∈ V such that f1(a) = 0 and
the Jacobian detDx(f1)(a) 6= 0; or f1(x) ≡ 0, there exists a ∈ V such that
f2(a) = 0 and the Jacobian detDx(f2)(a) 6= 0.

Then for |µ| > 0 sufficiently small there exists a T–periodic solution x(t, µ) of
system (37) such that x(0, µ) 7→ a when µ 7→ 0.

If for the i for which fi(a) = 0 the real part of all the eigenvalues of the Jacobian
matrix Dx(fi)(a) are negative, then the periodic solution x(t, µ) is asymptotically
stable, if some eigenvalue has a positive real part then it is unstable.

The averaging theory of first order takes place when f1(x) 6≡ 0. If f1(x) ≡ 0 and
f2(x) 6≡ 0 we say that that we work with the averaging theory of second order.
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laterra, Barcelona, Catalonia, Spain
E-mail address: jllibre@mat.uab.cat

3 Department of Mathematics, Shanghai Jiao tong University, Shanghai, 200240, P.R.
China

E-mail address: mathtyl@sjtu.edu.cn


