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GLOBAL DYNAMICS OF A SD OSCILLATOR

HEBAI CHEN!, JAUME LLIBRE? AND YILEI TANG3

ABSTRACT. In this paper we derive the global bifurcation diagrams of a SD
oscillator which exhibits both smooth and discontinuous dynamics depending
on the value of a parameter a. We research all possible bifurcations of this sys-
tem, including Pitchfork bifurcation, degenerate Hopf bifurcation, Homoclinic
bifurcation, Double limit cycle bifurcation, Bautin bifurcation and Bogdanov-
Takens bifurcation. Besides we prove that the system has at most five limit
cycles. At last, we give all numerical phase portraits to illustrate our results.

1. INTRODUCTION AND MAIN RESULTS

In recent years SD (Smooth and Discontinuous, for short) oscillator was proposed
and investigated for studying the transition from smooth to discontinuous dynamics,
see for instance [2, 3, 4, 5, 16]. In those papers it is proposed the elastic beam model

. 2N\ - ].
(1) :E+§(b+x)x+x<1 —w2+a2> 0
for studying this transition, where a > 0, b and ¢ can take arbitrary real values.
More precisely, the smooth dynamics appears when a > 0, while the discontinuous
dynamic behavior occurs at a = 0. The global dynamics was completely studied in
[5] when a = 0, and in [16] when |a — 1| < ¢, |[¢]| < € and ¢ is sufficiently small.

Clearly system (1) can be rewritten as the 2-dimensional differential system

i =y—{(bx+2%) =y - F(x),

0 i (1- ) = o),

where é = ¢&/3, b = 3b, and for simplicity in what follows we still denote é and b

by ¢ and b respectively. Note that system (2) is invariant by the transformation
(y,t,€) = (—y, —t, —&). Therefore, we only need to consider the set of parameters

G:={(a,b,§) e RT x R x R},
where Rt = [0, +00).

In this paper we shall describe the dynamics of system (2). Thus, the following
theorem is our main result.

Theorem 1. System (2) has three equilibria B, = (—v/1 — a2, —(1—a?+b)éV/1 — a2),
Eo=(0,0) and Er = (V1 — a2, (1—a?4+b)éV/1 —a?) ifa < 1, and only Ey ifa > 1.
The global bifurcation diagram of system (2) consists of the following bifurcation
surfaces:
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FIGURE 1. Global qualitative bifurcation diagram of system (2)
on the half-plane (a,b) € RT x R with £ = £* > 0 small.

Pitchfork surface P .= {(a,b,§) € G:a =1};
Hopf surfaces
Hy :={(a,b,§) €G:a>1,b=0},
Hy = {(a,b,¢) €G:b=3a>-3, 1/v/3<a<1} and
Hs:={(a,b,§) €G:b=3a%> -3, 0<a<1/V3};
Homoclinic surface HL := {(a,b,§) € G : b= p(a,§), 0 < a < 1};
Double limit cycle surfaces
DL, :={(a,b,&) € G:b=¢1(a,&), 0 <a< 1} and
DLy = {(a,0,6) € G : b= ¢a(a,€), 0 <a < 1/V3}
Codimension 2 Bogdanov-Takens bifurcation with symmetry curve:

BT :={(a,b,§) € G:a=1, b=0};
Bautin bifurcation curve: By := {(a,b,£) € G:a=1/V3, b= —2};
p(a,€) < ¢1(a,€) <a®—1, p(L,€) = ¢1(1,€) =0,

é2(a, &) < min{p(a, ¢),3a% — 3}, $2(1/4/3,€) = =2, and
30(0:5) = ¢1(07§) = ¢2(07€)7

as shown in Figure 1. Consequently, the complete classification of the phase por-
traits of system (2) is given in Figure 2, where

I {(a,b,&) €G:b>max{3—3a?%, ¢1(a,&)}, 0<a <1},
II {(a,b,§) €G:b>0, a> 1},
III {(a,b,£) €G:b< 0, a> 1},
IV {(a,b,&) € G : b < min{3 — 3a?, ¢2(a,&)}, 0<a <1},
V {(a,b,&) € G: ¢a(a,€) < b<min{3 — 3a%, p(a,€)}, 0<a < 1},
VI {(a,b,¢) € G : p(a,€) < b< min{3 — 3a?, ¢1(a,&)}, 0 <a <1},
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FIGURE 2. Phase portraits of system (2) on the Poincaré disc.



VII {(a,b,§) €G:
VII {(a,b,€) € G:
IX {(a,b,&) €G:
HL; {(a,0,8) € g
HLy {(a,b,¢) €G
DLy {(a,b,&) €G
DLys {(a,b,&) €G
P {(a,0,) € g
P, {(a,b,6) € G
Hs {(a,b,¢) € g
Hsy {(a,b,¢) € G
Hss {(a,b,8) €G:
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é1(a, &) <b<3-3a% 0<a<1},

max{3 — 3a%, p(a, &)} < b < ¢1(a,§), 0 <a <1},

3—3a2 <b<p(af), 0<a<l},

tb=p(a,€) <3a®> -3, 0<a<1},
tb=¢(a,§) >3a®> -3, 0<a<1},
b= ¢1(a,8) <3a> -3, 0<a<1},

tb=¢1(a,&) >3a® -3, 0<a< 1},
:b>0, a=1},
:b <0, a=1},
:b=3a>-3> ¢1(a,€), 0<a<1/V3},
cp(a, &) <b=3a%—-3 < ¢1(a,), 0<a<1/V3},
$2(a, &) <b=3a>—3 < ¢(a,f), 0<a<1/V3}.

Moreover, all results about limit cycles and homoclinic loops are listed in Table 1.

Subsets of G | large limit cycles surrounding small limit cycles only homoclinic loops
all Er, Eo, EL surrounding Eo Er,, Er respectively
I,II,H,, 0 0; 0; 0 0
Hsy, P, BT
I1I,Ps 0 1 stable; 0; 0 0
1V, H>, By 1 stable 0; 0; 0 0
0; 2 the inner one is stable, 0
the outer one is unstable;
|4 1 stable 2 the inner one is stable,
the outer one is unstable
|7 2 the inner one is unstable, 0; 1 stable ; 1 stable 0
the outer one is stable;
VII 0 0; 1 stable; 1 stable 0
VIII,Hso 2 the inner one is unstable, 0; 0;0 0
the outer one is stable;
IX,Hss 1 stable 0; 1 unstable; 1 unstable 0
DLqq 1 semzistable 0; 1 stable; 1 stable 0
DLqo 1 semistable 0; 0; 0 0
DL 1 stable 0; 1 semistable; 1 semistable 0
HL;y 1 stable 0; 1 stable; 1 stable figure-eight loop,
unstable
HL> 1 stable 0; 0; 0 figure-eight loop,
unstable

TABLE 1. Limit cycles and homoclinic loops of system (2).

In this paper we call large limit cycles to the ones surrounding all three equilibria,
and small limit cycles the ones surrounding a single equilibrium. For the notions
and definitions which appear in the statement of Theorem 1 see its proof.

The paper is organized as follows. In section 2 we analyze the local bifurcations,
namely pitchfork bifurcation, Hopf bifurcation, Bautin bifurcation and codimension
2 Bogdanov-Takens bifurcation with symmetry. In section 3 we estimate the number
of limit cycles in difference parameter regions and curves. In section 4 we study the
global bifurcations, namely the different kinds of homoclinic connections and the
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double limit cycles. In section 5 we give the numerical phase portraits in difference
parameter regions.

2. LOCAL BIFURCATIONS

Computing the Jacobian matrix at equilibrium Fy, we have

JO = <1_b€1 é) .

Then, at Ey the determinant det(Jy) = 1—1/a and the trace tr(Jy) = —b, implying
that Ejy is a saddle if a < 1, stable focus or node if @ > 1 and b > 0, and unstable
focus or node if @ > 1 and b < 0. When a = 1, equilibrium Ej is a stable node if
b > 0, and unstable node if b < 0 by applying [8, Theorem 2.19]. By the symmetry
of the vector field (2), equilibrium E, is of the same type as Er. The Jacobian

matrix at Er is
Jo e —£(b+3-3a% 1
B —-1-a®)  0)°

Calculating det(Jg) = 1 — a? and tr(Jg) = —£(b+ 3 — 3a?). Hence Ep is a stable
focus or node if @ < 1 and b+ 3 — 3a® > 0, and unstable focus or node if ¢ < 1 and
b+3—3a®<0.

2.1. Pitchfork bifurcation. From the expressions of the equilibria Fp,, Fy and Er
it follows immediately that a pitchfork bifurcation occurs at the origin of coordinates
when a = 1; i.e. for a > 1 we have a unique antisaddle, while for 0 < a < 1 from
the previous antisaddle it bifurcates at a = 1 a saddle and two antisaddles. For
more details on this kind of bifurcation see [7, 10].

2.2. Hopf bifurcations. There are two kinds of Hopf bifurcations, one at the
equilibrium Fj, and the other at the equilibria Fr, and Er, which is essentially the
same bifurcation in both, because due to the invariance of system (2) with respect
to the symmetry (z,y) — (—z, —y), what occurs at the equilibrium point E, occurs
to its symmetric Eg.

2.2.1 Hopf bifurcation at Fy. The next result characterizes the Hopf bifurcation
at the equilibrium point Ey, it is proved using the averaging theory in this way we
also can estimated the shape of the limit cycle bifurcating from Ej, and we avoid
the computation of the Liapunov constant.

Proposition 2. The following statements hold for the differential system (2).

(a) If a > 1, b = 0 and & > 0, then a Hopf bifurcation takes place at the
equilibrium point located at the origin of coordinates, and the limit cycle v
bifurcating from this equilibrium exists for b < 0 sufficiently small.

(b) For e > 0 sufficiently small if b = —Be? < 0, then the limit cycle v passes

through the point
(2\/§€ + 0(e?), O) .

Moreover, this limit cycle is stable.
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Proof. Assume that a > 1, £ > 0 and b = —B¢? < 0 where ¢ is a sufficiently small
parameter. Writing the differential system (2) in polar coordinates we get

j— L COBUSIRT cosfsinf &r3cost 0 4 €268 r cos? 0,
Va2 +r2cos? 0
®) . cos? 6
0= -1+ ———— +(r?sinfcos® 0 — 268 cosfsin b

Va2 +r2cos? 0
Since we want to study the Hopf bifurcation at the origin of coordinates we blow

up the origin doing the scaling r = R, then differential system (3) taking as new
independent variable the 6§ becomes
dR _ Rsinfcosf
7 dd ~ cos2f—a
2 R (2¢a*(a — 1)(R? — 28R?cos(20)) + R*sin(26)) cos? 0
4a(cos? 6 — a)?
In order to apply the averaging theory described in the appendix we need that
the differential equation (4) starts at least with order e. So we do the change of
variables R — p defined by

+0(e"),

2(1—a)

h= 1 — 2a + cos(26)

p-

Then differential equation (4) in the new variable p writes
dp 5, 2(a—1)pcos®6
bl
do a(l — 2a + cos(20))3

(5) 2¢a* ((a — 1)p* + B) cos(26) + p?sin(20)) + O(e*)+

= 2Fi(0,p) + O(e*).

Differential equation (5) is written into the normal form (37) for applying the
averaging theory summarized in the appendix, using the notation of the appendix
we only need to take n =1, x = p, t =0, p = 2, Fy(t,x) = F1(0,p) and T = 2,
all the necessary assumptions for applying the averaging theory described in the
appendix are satisfied. Then we compute

(2¢a® ((a — 1)p* — 208 + B) +

_1 27 _E a )
mm—%é Fi(0,0)d0 = [ =2 p(30* — 1)

Since 8 > 0 the averaged function f1(p) has a unique positive zero, p = 24/3/3
which satisfies the condition

(©) Dﬂ1@¢f):g¢:fl¢o

In fact this last expression is positive because a > 1 and £ > 0, and consequently,
by the results described in the appendix the differential equation (5) has a periodic
solution p(6,¢) satisfying that

(7) p(0,0) = 2\/§ +0(e%).

Moreover, this periodic solution p(6,¢) is unstable because the derivative (6) is
positive.
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Now we will go back through the changes of variables for obtaining the periodic
solution bifurcating from the equilibrium at the origin of coordinates of the differ-
ential system (2). Thus, the periodic solution p(f, ¢) satisfying the initial condition
(7) in the variables of the differential system (4) becomes the periodic solution

2(1—a)
1 —2a + cos(20)

R(0,0) = 2\/§+ O(e?).

This periodic solution in the differential system (3) becomes (r(t,¢), 0(t,¢)) with

R(0,e) = p(0.¢),

satisfying

rit.e) = \/1 - 2a2+(1¢;s(az)9(t o) POte)e)e + O(<),

and it pass through the point

(8) <2\/§5 + 0(53),o>

in the coordinates (r, ). Finally, this periodic solution in the coordinates of system
(2) is the periodic solution (z(t,¢),y(t,£)) given by

5\/ - 2a2+(1c;s?2) o) p(0(t,€),e)(cos(B(t,€)),sin(0(t,€))) + O(e?),

passing through the point (8) now in coordinates (x,y). Therefore, when € — 0
such periodic solution tends to the origin, so it is a periodic solution of a Hopf
bifurcation.

We remark that the periodic solution p(6, ) was an unstable limit cycle, but due
to the fact that 6 is negative in a neighborhood of the origin, when we pass the
unstable limit cycle R(6,¢) to the periodic solution (r(¢,¢),0(t,€)) it changes to a
stable limit cycle. O

In short, Proposition 2 shows the existence of the Hopf bifurcation surface H;.

2.2.2 Hopf bifurcation at E; and Eg.

Proposition 3. The following statements hold for the differential system (2).
(a) If0 <a<1,a#1/V3, b=23(a*-1) and £ > 0, then one limit cycle
bifurcates from each one of the equilibria Er, and ER.

(b) Fore > 0 sufficiently small if b = 3a® — 3+ 32, then those two limit cycles
exist if B(1 — 3a?) < 0, and they pass through the points

+ <\/1 —a2+2 W5+0(52),§\/1 — a2(2a? —2+552)> .

3 1)

Moreover, these limit cycles are stable if B < 0, and unstable if 3 > 0.
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Proof. Assume 0 < a < 1, a # 1/v/3, € > 0 and b = 3(a? — 1) + Be2, where ¢ is
a sufficiently small parameter. We shall prove the proposition studying the Hopf
bifurcation at the equilibrium point Eg.

We translate the equilibrium point Fgr to the origin of coordinates doing the

change
(z,9) = (X + V1 —a2, Y + &1 —a2(2a® — 2 + Be?),

and system (2) is transformed into

X = —e26BX +Y — 3¢V/1 — a2X2 — X3,

. 1
Ve(-X-vVi-a)|1- .
( )< \/X2+2\/1—a2X+1>
Writing the differential system (9) in polar coordinates we get
(10)
7= —rcosf (&r? cos® 0 4 3¢V/1 — a?r cos® § — sinf) — (rcosf + V1 — a?)

9)

. (1 - ! > sin @ — £2£4r cos? 6,
\/r200529+2m7"0059+1
0= —1+¢&(r?cos? 0+ 3v1— a?rcos) sind cos 0+
(rcosf + V1 —a?) cosf V1 —a2cosf
r\/r200529+2mrc056+17 r .

Again since we want to study the Hopf bifurcation now at the origin of coordi-
nates we blow up the origin doing the scaling r = R, then differential system (10)
taking as new independent variable the 0 writes

dR a?Rcosfsin®  3v1—a?R*cos? 6 (2¢ (a® — 1) cosf — a®sin6)
9 aeosth-1  © 2 (a2 cos2 0 — 1)
L Rcos? 6
32 (a?cos? 0 —
—102¢a*R? — 16£Ba* — 72¢%a* R? sin(26) — 38a* R? sin(20)
(11) —36£2a* R? sin(46) + a*R? sin(46) + 64€a?R% + 48¢Ba?
+2¢a? (9a* — 29a? + 20) R? cos(46) + 144£%a® R? sin(26)
+32a%R?sin(20) + 72¢%a% R? sin(46) — 166 R? — 32¢3
+8¢ (a? — 1) (9R%*a* — a® (11R? + 253) + 2R?) cos(26)

% (545(1632 + 2a8 R? sin(26) + a% R? sin(40)

_72¢2R% sin(26) — 3662 R sin(40)) +O(e%),

Again for applying the averaging theory of the appendix we need that the d-
ifferential equation (11) starts at least with order . Hence we do the change of
variables R — p defined by

B 2(1—a?)
r= \/2 — a2 + a2 cos(26) P
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Then differential equation (11) in the new variable p writes

d
(12) d% = eF(0,p) + £2F5(0, p) + O(®),

where

3(a® — 1) p* cos® 6 (2¢ (a® — 1) cos 0 — a*sin6)
V2 (a2 cos? 6 — 1) /2 — a% — a2 cos(20)
(a2 — 1) pcos?

2 (cos(20)a? + a® — 2)

—102ep?a* — 12eBa* — 72e2p? sin(26)a* — 38p? sin(26)a*

—36e2p? sin(40)a* + p? sin(40)a* + 64ep?a® + 32¢PBa®

+2e (9p%a* — (29p% + 28) a® + 20p?) cos(46)a?

+144€2p? sin(20)a? + 32p? sin(20)a? + 722 p? sin(46)a?

—16ep? — 32¢3 + 8e(9p%al — 2 (10p? + BB) a*

+ (13p% + 483) a® — 2p?) cos(26) — 72¢%p? sin(26)

F1(07p) =

3

F»(0,p) = I (54ep2a6 + 2p? sin(260)a’ + p? sin(46)ab

—36e2p? sin(46)>.

Differential equation (12) is already into the normal form (37) for applying the
averaging theory of the appendix. Again using the notation of the appendix we
taken =1, x =p,t =0, u =¢, Fi(t,x) = F1(0,p) and T = 2m, and all the
necessary hypotheses for applying the averaging theory of the appendix hold. Then
we compute

27
filo) =5 [ R@.pw=0

Since the first averaged function fi(p) is identically zero, we must compute the
second one f(p). We start calculating

p*N(0)
2v2 —2a? (2 — a® — a? cos(29))3/27

0
/0 Fi(0,p)ds =
where
N(#) = 3a(1—a?)?cosf — a’*V/2(2 — a® — a® cos(26))3/?
+m<(a2 — a*) cos(30) + 2¢(3(a® — 3) sin 6
+(3a% — 1) sin(39))).

Then the second averaged function

1 2m

fa(p)

0
DpFl(G,p)/ Fi(s,p)ds + Fx(0,p)| do
0

27 Jo

&p (3 (1 —3a?) p* 4 4P)
8v1 —a?
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has a unique positive zero, p = 21/3/(3(3a2 — 1)), recall that a # 1/v/3. This zero
satisfies the condition

B _ £
(13) Dyfs (2,/3(%2 - 1)> vt

by assumptions. Consequently, by the results described in the appendix the differ-
ential equation (12) has a periodic solution p(6, ) satisfying that

__B
3(3a%2 - 1)

(14) p(0,0) =2 + O(e).
Moreover, from (13) this periodic solution p(f, €) is unstable if 5 < 0, and stable if
B8 >0.

Now we will go back through the changes of variables for obtaining the periodic
solution bifurcating from the equilibrium Eg of the differential system (2). Thus,
the periodic solution p(f,¢) satisfying the initial condition (14) in the variables of
the differential system (11) becomes the periodic solution

R(e,e>—\/2 M) 0.,

— a? + a? cos(20)
satisfying

Al —a?)
3(3a%2 —1)

This periodic solution in the differential system (10) becomes (r(t,¢), 8(t,€)) with

R(0,0) =2 +0(e).

rite) = \/ 2 — a2 i(;2zoz2()29(t, o) P0G, e)e + (%),

and it pass through the point
B(1 —a?) 2
1 24| ————
(15) ( 3(3@271)64-0(8 ),0

in the coordinates (r,6). This periodic solution in the coordinates of system (9) is
the periodic solution (X (¢,¢),Y (t,¢€)) given by

8\/2 —a? —i2—(i2_coa:()20(t,€)) plO(t,€),€) (cos(0(t, £)). sin(0(¢, ) + O(”),

passing through the point (15) now in coordinates (X,Y’). Finally, we get the
periodic solution (x(¢,¢),y(t, <)) given by

(z(t,e),y(t,e)) = (X(t,e) + V1 —a2, Y (t,e) + /1 — a2(2a* — 2 + Be?)),

and passing through the point

<\/1 Tt o, 209 O(e2),6V/1 — a2(2a> — 2 + 55“))

3(3a%2 —1)

in coordinates (x,y). So, when € — 0 such periodic solution tends to the equilibrium
ER, so it is a periodic solution of a Hopf bifurcation.
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Again we note that the limit cycle p(6,¢) was unstable if § < 0, and stable if
B > 0, but due to the fact that 0 is negative in a neighborhood of the origin, when
we pass the limit cycle R(6,¢) to the cycle (r(t,¢),0(t,e)) it changes its type of
stability. [

In particular Proposition 3 shows the existence of the Hopf bifurcation surfaces
H2 and H3.

2.2.3 The Bautin bifurcation curve Bj. The standard or classical Hopf bifur-
cation in a 2-dimensional differential system, i.e. that a limit cycle bifurcates from
an equilibrium point, takes place in an equilibrium point with purely imaginary
eigenvalues which is not a center because the first Liapunov constant at that equi-
librium is not zero. These are the Hopf bifurcations studied in subsection 2.2.2.
But when the first Liapunov constant is zero, also can bifurcate a limit cycle of the
equilibrium point if the second Liapunov constant is not zero, such more degener-
ate Hopf bifurcation is called for some authors a Bautin bifurcation. See for more
details about these Hopf bifurcations [11, Chapter 8].

When b = 3(a? — 1), with the change of variables 1 = z — V1 —d2, y; =

y/V1—a2—¢&(b+1—a?) and 7 = V1 — a2t in a small neighborhood of Eg, system
(2) can be written as

dr _ 2 £ 3 _. ;
(16)
dy 3a%x? (4a? — 5a*)x3

= T st 2oae  TOW) = thi),

where, for simplicity, we still use the variables (z,y,t) instead of the new ones
(z1,91,7). From [10, p. 156] we compute the first Liapunov constant at the origin
of system (16) and we get §1 = 3£(3a® — 1)/(8v/1 — a2?). From the expressions of
g1, we can confirm that the classical Hopf bifurcation happens when a # 1/4/3 and
b= 3a® — 3. Clearly, when a = 1/v/3 and b = —2 we have §; = 0. By [11, Chapter
8], we can obtain that the second Liapunov constant g, = 5v/6 £/32 > 0 at those
values of a and b.

In short, system (2) exhibits a Bautin bifurcation at a = 1/v/3 and b = —2 by
[11, Chapter 8], i.e. at the intersection point of the surfaces Hs, Hs and DLy, in
particular ¢(1/v/3,€) = —2.

2.3. Codimension 2 Bogdanov-Takens bifurcation with symmetry. From
[16] a codimension 2 Bogdanov-Takens bifurcation with symmetry happens in sys-
tem (2) in a neighborhood of the curve a = 1 and b = 0. So, in a neigborhood of
the intersection point of P, Hy, Hy, HL and DL, of the bifurcation diagram of
Figure 1, i.e. ¢(1,&) = ¢1(1,€) = 0.

2.4. The dynamics near infinity. In this subsection we will discuss the qualita-
tive properties of the equilibria at infinity, which describe the behavior of the orbits
of system (2) when x and y are sufficiently large.

Proposition 4. As shown in Figure 3 the differential system (2) with & > 0 has
four equilibria at infinity Ijr,lgf, where If are the two endpoints of the x-axis,
and []jgz are the two endpoints of the y-axis. The equilibria Ij are unstable star
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Fi1GURE 3. Equilibria at infinity.

nodes, and the equilibria Iﬁ are degenerate equilibria, formed by the union of two
hyperbolic sectors.

Proof. Doing the Poincaré transformation z = 1/z, y = u/z, system (2) becomes

du — fu + beuz? — ul2? — 2% + P
dr V1+a2z2’
d
d—z =2+ b2 — s,

-

where dt = z2dr. Obviously, this system has a unique equilibrium A : (0,0) on the
u-axis (the infinity), where A is an unstable star node.

Doing the other Poincaré transformation z = v/z,y = 1/z, system (2) writes as
dv

U2‘2|3

w o 2 034 2,2 —
- i bévz? — Evd 4 vz N Uy (v, 2),
dz 3 v23|2] Uo(0.2)
— =zt — ———— 1= Uy(v,2
dt ’1}2 +a222 2\V, 9

where dt = 22d7. In this local chart we only need to study the equilibrium B : (0, 0)
of system (17), which corresponds to two equilibria Ig+ and Iz- at infinity of the
system (2) at the endpoints of the positive and negative y-semiaxes, respectively.
By Lemmas 1 and 3 of [14, Chapter 2] we only need to discuss the orbits along
characteristic directions of system (17) at B.

Applying the polar coordinate changes x = rcos€ and y = rsinf, system (17)

can be written ) W
1dr H(0)+ o(1
rdd GO +o)y B0

where
G(0) = —sin® 0/ cos2 0 + a2sin® 0, H(0) = sin? 6 cos 01/ cos? § + a2 sin? 6.

Hence a necessary condition for § = 6 to be an characteristic direction is G(6p) = 0,
which has exactly two roots 0 and 7. Except these two directions, there are no
directions along which system (17) has orbits connecting B.

Notice that the vector field (17) is symmetric with respect to the v—axis. Thus,
we only need to discuss the orbits connecting the origin B of (17) in the half plane
z > 0. We will construct some related open quasi—sectors to determine how many
orbits of (17) connecting B in the first and the second quadrants.
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Observing that system (17) has four horizontal isoclines: the v-axis, the z-axis
and

HE ::{(u,z)ERQ:v:j: 1-a2z, 0<r<¥, a<1},
where ¢ > 0 is a sufficiently small constant. Set
i::{(’U,Z)E]R2:z:0, +v >0, O<r<€}.

The possible vertical isocline is
V.= {(U,Z) ERZ:p=¢523 —I—o(zg)7 0<r< Z}.
Obviously, the isocline V is tangent to the v—axis at the origin. Set
L = {(v,z)ERQ:z::I:crv, 0<r</, azl},
where o > 0 is a small constant. Hence, if there exist orbits of system (17) connect-
ing B along the direction of the v—axis in the first and the second quadrants, then
near the origin must lie in the sector regions AV+BH* or AV-BH~ ifa < 1, and

AVFBL+ or AV-BL- if a = 1. The directions of vector field of (17), i.e., the
directions of arrows, and the positions of the isoclines are shown in Figure 4.

FIGURE 4. The vector field of system (17).

Flrstly, we consider the case a a< 1. We can check that v > O and £ > 0 in
AVB?—H v<0andz>01nAV+BV and &> 0 and % < 0 in AV-BH-.

Lemma 4 in [15] guarantees that no orbits connect B in AV+BY. There are
also no orbits connecting B in the interior of AV*/I;’}-F, because ¥y (v, 2) /¥ (v, 2)
is not equal to the slopes of the curves tangent to the v—axis. On the other hand,
we compute that (9/0v)(¥; (v, 2)/Ps(v,2)) < 0 in the generalized normal sector
AVBH? of class II,i.e. 7> 0in AVBH* and all positive semi-orbits starting from
the curves BY and BH™ go into AVE’I?“. The definition of generalized normal
sectors can be seen in [15, Section 2]. Therefore, there exists a unique orbit leaving
from B in AVBH* by Lemma 2 and Lemma 5 in [15].

Similarly, in case a = 1, we can also prove that exactly one orbit connects B
along the v—axis, which lies in AVBL*. O
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3. LIMIT CYCLES

Lemma 5. Assume that a > 1. System (2) has no limit cycles if b > 0, and a
unique limit cycle if b < 0.

Proof. When b > 0, since the divergence of system (2) is f(z) = F'(x) = &(b +
32%) > 0, by the Bendixson criterion (see for instance [8, Theorem 7.10]), the
system (2) has no limit cycles.
When b < 0, the following conditions are satisfied.
(i) g(x) is an odd function and zg(x) > 0 if x # 0;
(ii) F(x) is an odd function, F(z) < 0 if 0 < & < v/=b, and F(z) > 0 if
x> /=b;
(i) [° f(z)dz = [, g(z)dz = +o0;
(iv) f(z) and g(z) satisfy the Lipschitz condition in any bounded interval.
Then, by Theorem 4.1 of [18, Chapter 4], the system (2) has a unique limit cycle,
which is stable. g

Note that the phase portraits (b) and (c) of Figure 2 in Theorem 1 are obtained
from Lemma 5 and from the properties of equilibria.

Since the phase portrait of system (2) is symmetric with respect to the point
Ejy, the small limit cycles surrounding Fy, are of the same type as that surrounding
FEr. Hence, in what follows we only consider the small limit cycles around Eg.

Lemma 6. If0 <a <1 and b> a® — 1, then system (2) has no limit cycles.

Since the proof is similar to Lemma 4 of [5], we omit it.

Lemma 6 shows that ¢1(a,&) < a? — 1 and the phase portrait (a) of Figure 2 in
Theorem 1 is obtained.

Consider equation
dz
dy
where both F(z) and F’(z) are continuous in [0, z), and F'(0) = 0. Let L denote
the integral curve of (18) passing through the point P(z;, F(z;)) on the curve
y = F(z). Also, let y = p,(z) and y = @;(2) represent the orbit segments of
L; below and above the curve y = F(z) When 0 < 2z < zj, we clearly have
01(2) < F(z) < ¢5(2) and ¢';(2) > 0 > ¢/;(2). Moreover, we introduce the symbol

] F'(2) F/(Z)A .
F(2) —ps(2)  ¢4(2) = F(2)

(18) :y_ﬁ‘(z)v()SZSZOv

(19) V(F(2),¢.(2),8(2)) =
Then, we have

(20) / Py = [ VB, 01(2), p0(2))dz

0

for some ay.

Lemma 7. [Lemma 4.5 of [18, Chapter 4]] For equation (18), suppose there is
ap > 0 with F(ap) = 0, and F(z) > 0, F(2)F'(z) is nondecreasing for z > ay.
Then

zJ

/ZQ V(E(2),00(2), po(2))dz < / V(E(2),05(2), .5(2))dz, for ag < zg < z;.

0 ao
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Lemma 7 will be applied in the following lemma.

Lemma 8. If0 < a < 1 and b < a® — 1, then system (2) has at most two large
limit cycles.

N - r,’/'

— v

(a) 3a2 —3<b<a®—-1 (b) b< 3a%® -3

FIGURE 5. Two large limit cycles.

Proof. Assume that system (2) has at least two large limit cycles surrounding the
three equilibria Ey, Ey and Fg, and that L; and Ly are the most external limit
cycles, where Lo denotes the outer one.

We first consider 3a2 —3 < b < a? — 1. The corresponding phase portrait is
shown in Figure 5(a). By the Bendixson criterium, each L; has two intersection
points, denoted by B; and C; (i = 1,2) with the straight line = z¢, where x¢ is
the abscissa of the equilibrium Eg, as shown in Figure 5(a). By the symmetry of
the phase portrait

2 [ syt 7{ fla)dt = — f div(y — F(z), —g(z))dt,

for ¢ = 1,2. On the arcs A/lB\l and Ang, let y = y1(z) and y = ya(x), respectively.
In fact, for each i = 1,2, we have

[t P@) [P ) -yl i),
/mf(c“)dt‘ L o= e
), e - [
I‘Fm)—yxm n’mo)—yi(m) e
F(0) — 4:(0) FO) —piwo) | Jo F@)—u@)?
- _In F(xo0) — yi(x0) i ( o gl .
- 1‘F( ) — wi(z0) / BOEO) W) / F@) — @)
B —Feo)| [ Faew)
= T / ) =
implying
/ B ' _ o |y@o) = Fxo) | |y2(@o) — Fixo) |, [
/A/zB\zF(x)dt /AﬁF(x)dt = In (7o) In 2 (7o) —0—/0 F(z)dzx
(y1(z0) — y2(20))F(x0) 0~
Lt o) (o) — Flao)) */0 Fla)de
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where
oy IWFE  e@)F@)
yi(@)(F(z) —p1(2)?  y(2)(F(z) — y2(z))?

and y;(z) is the function corresponding to the arc A,B;. Clearly, since F(z) <0 <

y1(z) < y2(x) in (0,z0) we obtain
(y1(w0) — y2(0)) F (o)
y1(20)(y2(z0) — F(0))

Zo -

> 0, / F(z)dz > 0.
0

Thus

(21) /A/B\ f(z)dt > /A/B\ f(z)dt.

Similarly we obtain that

//\ f(x)dtf//\ f(x)dt > 0.
CoFs C1Fy

Setting z = [ g(s)ds, from (20) we get

/Bl/Gl\Cl F'(z)dt = /Bl/Gl\cl F'(2)dy :/ V(F(2),06,(2), ¢a, (2))dz.

Zo

By Lemma 7, in order to prove the inequality

2Gy A zGy .
[ VEE) pee fa iz > [ V)6 () e ()
z(xo z(To
where F(z) = F(x) — F(z0), we only need to prove that F(z(xo)) =0, F(z) >0
and F(z)F’(z) is nondecreasing for z > z(xg). Clearly we have F(z(zo)) = 0 and

F(z) > 0 for z > z(x). Note that
F(2)F'(2) = [F(z) = F(V1 - a?)|f(2)/g().
For x > /1 — a? we have
[F(z) - F(V1—a®)|f(x)

(z)
_ 52[ng + 23 —bV1+ a2 — (1 —a?)V1 — a2](b+ 32?)
x(1—1/vVz? 4+ a?)
_@h+a?+(1-a?)+ V1 —a2z](b+ 32%) (Va2 + a2 + 2% + a?)
z(x++v1—a?)

b+1—a? b
=& (H—i-x) <x+3x) (Va2 + a? + 22 + a?),

z+V1—a?
where the three factors of the last line are positive and increasing. Therefore,
[F(x) — F(V1—a?)]f(z)/g(x) is positive and increasing. By Lemma 7, we have

that
/ f(z)dt — / f(z)dt > 0.
B@z Bl/Gl\Cl
Therefore

(22) %L div(y — F(z), —g(x))dt > 7{ div(y — F(z), —g(x))dt.

Ly

Now we consider b < 3a? — 3. The corresponding phase portrait is shown in
Figure 5(b). By the Bendixson criterium again, each L; has two intersection points
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with the straight line z = g, being xy the unique positive zero of F'(x) when
x > 0, and the intersection points are denoted by B; and C; (i = 1,2). Then the
inequality (22) can be proved in a similar way to the case 3a? —3 < b < a? — 1.
Since f(z) < 0 for 0 < z < x¢ and y;(z) — F(x) > 0 (i = 1,2), we have

Joy, St [ sy L e e v e

[ @ -we)
(23) - /o (@) - F@)(nle) - Fa) ™ ™"

Similarly we obtain that

//\ fx)dt — //\ f(x)dt > 0.
CoFy C1Fy

Now, using again Lemma 7, we only need to prove that F'(z(zo)) = 0, and F(z) > 0,
F(2)F'(z) is nondecreasing for z > z(xg), where F(z) = F(z) — F(xg). Clearly,
we have F(z(z )) 0 and F(z) > 0 for z > z(xzg). Note that F(z)F'(z) =

— F(/-b/3)]f(x)/g(z). For > \/—b/3 we have
[F(w)— (\/— / )If (@)

g(z)
_ E[bx + 23 — by/—b/3 — (=b/3)/—b/3](b + 32?)
z(1—1/vVx? + a?)
€2[2b/3 + 22 + \/—b/3z](b + 322) (V22 + a® + 22 + a?) x — /—b/3
z(zx+ V1 —a?) x—V1—a?

e (26/3-V1-a?(V/-b/3-V1-a?) 7 a2
=¢ ( i +a++/-b/3 \/ﬁ>

<z+3x> (Va? + a2 + 22 + a?) (1+m \/T)

r—+V1—a?

Where all of the factors of the last two lines are positive and increasing. Therefore
— F(\/=b/3)]f(x)/g(z) is positive and increasing. By Lemma 7, we have

//\ f(x)dt — //\ f(z)dt >0
ByG2Co B.G.1Cq

and therefore (22) follows.

However, it is impossible to have two attracting (repelling) limit cycles sur-
rounding the same equilibrium (equilibria) adjacent one to the other. So, from
the inequality (22) and the repelling of the infinity, we obtain that system (2) has
at most three large limit cycles, where the outer one is stable, the middle one is
semistable, the inner one is stable. Clearly, for fixed values a and &, system (2) is
a family of generalized rotated vector fields with respect to the parameter b. As-
sume that system (2) has exactly three large limit cycles. By Theorem 3.5 of [18,
Chapter 4], the outer limit cycle and the inner one neither split, nor disappear as
b varies monotonically. By Theorem 3.4 of [18, Chapter 4], the middle limit cycle
will bifurcate into at least one stable and one unstable cycle when b varies in the
suitable direction. This is a contradiction. Therefore, system (2) has at most two
large limit cycles. If the two large limit cycles exist, we can obtain that the outer
limit cycle is stable and the inner one is unstable. (I
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We consider a generic Liénard system
=1y — F(x),
(24) o o
Y= _g(‘%.)a
where F is C?, g is C! and = € (, 8)(c, 8 can be +00). The following proposition
partly improves the result of [9, Theorem 2.1].
Proposition 9. Consider system (24), which satisfies (1)-(iv), where
(i): f(z) = F'(x) has a unique zero 0 and f(z) <0 (resp. >0) asa <z <0
(resp. 0 <z < B);
(ii): F(0) = 0;
(iii): zg(z) > 0 forz #0, z € (o, B);
(iv): the system
(25) F(x1) = F(w2), Az1) = Aa2)
has at most one solution w5 < 0 < x1, where X := g(z)/f(x).
Moreover, when F(x1) = F(x3), Ma1) > Maa) (resp. F(x1) = F(x2), Mx1) <
Mx2)) as |z1], |x2| are small, system (24) satisfies either (v) or (v'), where

(v): the function F(z)f(x)/g(z) is decreasing (resp. increasing) for a < x <

0;
(v'): the function F(z)f(x)/g(x) is increasing (resp. decreasing) for 0 < x <
B and

lim F(x) = lim F(z).

rz—at B~

Then system (24) has at most one closed orbit in the region {(z,y) € R? 1 a <z <
B}. The closed orbit is simple and unstable (resp. stable) if it exists.

Proof. Assume that system (24) exists a limit cycle v, as shown in Figure 6(a). In
the following we will ascertain the sign of

N 7£ f(x)dt = jngi(y — F(x), —g(x))dt.

Clearly w = F(z) has two inverse functions, r1(w) (respectively xz(w)), on the
right (resp. left) side of the origin. The functions A\(z;(w)) will be denoted simply

by Ai(w).
By w = F(z), we rewrite system (24) into
(26) W = fzi(w)(y —w), §=—g(zi(w)),
which deduces
dy _ Ai(w)

2 — = .

(27) dw w—y
Let y1(w) and yo(w)(resp. z1(w) and z2(w)) be functions determined by the orbits

of (26) below (resp. above) the line y = w, which correspond the parts of the
trajectories of system (24) below (resp. above) the curve y = F(z) and depend
whether they are to the left or right of the origin.

From condition (iv), A;(w) = Az(w) has at most one root. When the equation

A1(w) = Aa(w) has no roots, by the comparison theorem we obtain either z; (w) >
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¥y =W
T ] =7,(w)

o - (W)
b

y= 52(“‘1\

(a) Assume that system (24) ex- (b) Orbits of system (26)
hibits a limit cycle

FIGURE 6. Limit cycles of system (24).

zo(w) and y1 (w) < y2(w) or z1(w) < z2(w) and y1 (w) > ya(w). By Green formula,
we have

ﬁg(x)dx + (y — F(x))dy = — / s f(x)drdy = //Int'y,z<0 dwdy — //Int'y,z>0 dwdy # 0,

which contradicts 3@7 g(z)dz + (y— F(z))dy = 0. When the equation \;(w) = Ag(w)
has a unique root and the equation z;(w) = z2(w) has no roots, we can similarly
prove that (24) has no limit cycles. When the equation A1 (w) = A2(w) has a unique
root, applying again the comparison theorem the equation z;(w) = z2(w) has at
most one root.

Now we only need to discuss the system A\ (w) = Ao(w) and z1(w) = z2(w)
having a unique root. Here we consider that condition (v) holds. By (w,y) —
(pw, py) with g := w3 /wi > 1, where w} is the intersection of z;(w) and the line
y = w, system (27) deduces

dy — Aa(pw)
28) dw — plw—y)

First, we consider that Aj(w) > Aa(w) as w — 0. Moreover, the limit cycle v of
(24) with 2 > 0 corresponds to the broken curve in Figure 6(b) and ya(w), 2z2(w)
are changed into two new functions, denoted go(w) and Za(w), respectively. It
is easy to check that ya(w) = pge(w/p) and z2(w) = pZa(w/w). By p > 1 and
the increasing of A\(w)/w, we get A(pw)/p > M(w). Furthermore, using again the
comparison theorem to (27) and (28), we obtain y; (w) < g2(w) and z1(w) > Za(w).



20 H. CHEN, J. LLIBRE AND Y. TANG
Thus

: B f(z)
j{f(x)dt _iy—F(x)dx
w3 dw w3 dw wy dw wy dw
B /o ya(w) — w ‘/o 2(w) —w +/o a1 (w) —w ‘/o yr(w) —w
B wi pdw B wi pdw wi dw B wi dw
B /0 Yo (pw) — pw /0 Zz(Mw)—Hw+/o z1(w) —w /0 y1(w) —w

_ /w{ (Y1 — §2)dw /wT (21 — Z2)dw <0
o W) —w)(Z(w) —w)  Jo (a(w)-w)(Z(w)—w)
So in the region {(z,y) € R? : @ < z < B} ~ is unstable and simple if it exists.
Moreover, it is impossible to have two attracting (repelling) limit cycles surrounding
the same equilibrium adjacent one to the other. Therefore, the uniqueness has also
been proved.

For the case Aj(w) < A2(w) as w is small, we can prove that ﬁy f(x)dt >01in a
similar way to the case A;(w) > Az(w). So, in the region {(z,y) € R? : a < z < B},
the limit cycle ~ is stable and simple if it exists. Therefore, we have completed this
proof. O

The proof of Proposition 9 gives the following corollary directly.

Corollary 10. Assume that system (24) satisfies conditions (i)-(iii) of Proposition
9. If there is no solutions to (25), then system (24) has no closed orbits.

Under the preparations of above Proposition 9 and Corollary 10, we obtain the
existence of small limit cycles on the parameter surfaces Ho and Hj as follows.

Lemma 11. Assume that0 < a < 1 and b = 3a®>—3. Then system (2) has no small
limit cycles if 1/v/3 < a < 1, and at most two small limit cycles if 0 < a < 1//3.

Proof. By the transformation (z,y) — (z + v1 —a?,y + F(V1 — a?)), system (2)
can be rewritten as
(29) j.jzy—F(x—o—\/l—aQ)—i—F(\/l—aQ),
§=—g(x+v1—ad2).
It is easy to show that system (29) satisfies conditions (i)-(iii) of Proposition 9

when z € (—v1 —a?,40). Condition (iv) of Proposition 9 is equivalent to the
fact that system

F(il+\/1*a2):F(.igﬁ»\/].*aQ),
(30) g(ir +VI=a®) _ gz +VI—a?)

fE+V1I=a®)  fl@2+V1—a?)’

has at most one solution, where —v'1 — a? < #; < 0 < Z2. Clearly (30) is equivalent
to the fact that the system

g(e)) _ glas)
@)~ )

has a unique solution when 0 < z; < V1 —a? < 22 and z; = Z; + V1 —a?,
j=1,2. Let s := 21 + x2. From F(z1) = F(z2), we have z122 = 3(a® — 1) + s%.

(31) F(.Tl) = F(.TQ),
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Since 0 < x1 < V1 — a2 < x9, we obtain V3 — 3a2 < s < 2v/1 — a?. Note that

glz) _ x
(32) flx)  3¢(Va? + a2 + 22+ a?)’

From the second equality of (31) and (32), we have

a28

2 2
5°+2a° -3 — =0
z2\/73 + a® + 1\/23 + a?

And consequently

2
(wg\/x%—l—cﬁ—i—xl\/x%—l—(ﬁ)

Qx%mg + a2(x% + :rg) + 22129 \/x%x% +a?(2? 4+ 23) + a*

= 25+ (11a® — 12)s® +6(1 — a?)(3 — 2a?)
+2(s% + 3a® — 3)\/s* + (5a2 — 6)s2 + (202 — 3)2.

Let 1 := s?. Then, for 3(1 — a?) < n < 4(1 — a?), we have

d |:(£132 2 4+ a? + x14/22 +a2>2/32}

dn
1 — a2)(3 — 242 1— g2 2 _ 3)(9 2
_ 2_6( a)gi’y a)+6( 2a)\/772_‘_(5&2_6)77_|_(2a2_3)2_|_ (n+ 3a 3)(2n + ba 6)
n n nv/n? + (5a2 — 6)n + (2a% — 3)2
_ o 6(1 — a®)(n+ 54> — 6) (n+ 3a2 — 3)(2n + 5a® — 6)
n(v/n? + (5a2 — 6)n + (2a® = 3)2 +3 = 2a%)  1y/n? + (a2 — 6)1 + (242 — 3)2
S 2_6(1 a®) mn+3a 3>0‘

n n

Thus, if k(n) = n+2a® —3—a®\/f/[x2/23 + a® +z1y/2% + a?], then the function

h(n) is increasing in 3(1 — a?) < n < 4(1 — a?®). On the other hand, we have
h(3—3a%) = —a—a? < 0 and h(4—4a?) = 1 —3a?. Therefore, when v/3/3 <a < 1,
the function h(n) has no solutions for 3(1 — a?) < 7 < 4(1 — @?®). By Corollary
10, system (2) has no limit cycles in the region > 0. When 0 < a < /3/3, the
function h(n) has a unique root in 3(1 — a?) < n < 4(1 — a?). Now we only need to
verify the condition (v’) of Proposition 9. We have

(F(z) — F(V1—a?)f(z) 362\/x2+a2+x2+a2
g(x) x
— q2)3/
3¢2 (3@2—34—2(1;2)”4—9@2) (Va2 +a% + 2° + a?).

(302 — 3)x +2(1 — a?)3/2 + 23
( )

Then, we obtain

) = (=P _ (20
dx x2

2(1 — a?)3/? T

2 2

+ -3+ —+ ——+2

<3a 3 x o z | >0,

—|—2x)( 22 + a2 + 2% +ad?)
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for 0 < a < v/3/3 and x > /1 — a2, because

—2(1 — a?)%/?

5 + 2z > 0 and
T

_,2)3/2 a2 —— o o
3a2_3+M+x2:(1’ V1—a?)(2® + V1 —d?x - 2(1 a)>0'
z x

So condition (v') of Proposition 9 holds. Therefore, when 0 < a < v/3/3, system
(2) has at most one limit cycle which lies in the region & > 0 by Proposition 9. O

FIGURE 7. The uniqueness of limit cycles.

Lemma 12. When 1/v/3 < a <1 and b = 3a®> — 3, system (2) has a unique limit
cycle surrounding all equilibria.

Proof. If 1/4/3 < a < 1 and b = 3a® — 3, i.e., on the parameter curve Hy we obtain
Figure 7 by Proposition 4 and Lemma 11, which shows the existence of a Poincaré-
Bendixson annulus, i.e., any trajectory starting at a point of the boundary curves
of the annulus enters (or leaves) the annulus, and inside the annulus there is no
equilibrium points. So, the existence of some large limit cycles is obtained. Assume
that system (2) has two large limit cycles. Let the outer limit cycle and inner one
denoted by v2 and «y;. Therefore fw div(y—F(z), —g(x))dt < 0fori = 1,2. By (22),
¢, div(y — F(z), —g(z))dt > ¢ div(y — F(z), —g(x))dt. However, it is impossible
to have two attracting (repelling) limit cycles surrounding the same equilibrium
(equilibria) adjacent one to the other. Therefore

j{ div(y — F(z),—g(z))dt =0 > j{ div(y — F(z), —g(z))dt.

2

So 71 is a semistable limit cycle. Since the vector field of (2) is rotating with respect
to b, by Theorem 3.4 of [18, p.211] there is a stable limit cycle 42 near 2 for a
perturbation of b, and two limit cycles 41,41 (%1 is smaller than 4;) near v;. By
(22) and stabilities of equilibria, we obtain

7{ div(y — F(x), —g(x))dt <0, % div(y — F(z), —g(x))dt > 0,

and
7{ div(y — F(z),—g(z))dt < 0,
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which contradicts f% div(y — F(z), —g(x))dt > fﬁl div(y — F(z), —g(z))dt. There-
fore, system (2) has at most one large limit cycle. Thus, the uniqueness of limit
cycle is proved and the phase portrait (d) of Figure 2 in Theorem 1 is obtained. O

Moreover, we can get the phase portraits (i), (e) and (n) of Figure 2 in Theorem
1 by Proposition 3, Lemmas 8, 11, 12 and the continuity of the vector fields.
From [5] it follows that system (2) has no limit cycles for a — 0 and b = 3a% — 3.

Proposition 13. System (2) has at most two small limit cycles around the equi-
libria Er or Er, for the values of the parameters in G1 := {(a,b,{) € G: 0 < a <
1, b<3a? -3, 0< &< 1)

Proof. By the homeomorphism (z,y) — (x,y + F(x)), system (2) can be rewritten
as

T =y,
(33) - 1
y=—x (1 — m) —&(b+ 322)y.

In z > 0 we do the change of variables w = v/22 + a? and the time scaling dt =
V' 1+ a?/x2dr to system (33), and we get

w =y,
(34) . §w 2 2
=1—-w— ———(b—3a” + 3w)y.
When £ = 0 this system is the Hamiltonian system
W=y,
(35) g=1—uw,
with the first integral
2 2
(36) Hlw,y) =+ 5 —w

Its level curves 'y, := {(w,y) : H(w,y) = h, —1/2 < h < a®/2 — a} are shown in
Figure 8.

FIGURE 8. The phase portrait of the Hamiltonian system (35).

Of course H = —1/2 corresponds to the center (1,0), and for the values of h
such that —1/2 < h < a?/2 — a, the curve H(w,y) = h corresponds to a periodic
orbit of Hamiltonian system (35) surrounding the point (1,0), which intersects the
positive half w-axis inside the interval (a,1).

Now we consider system (34) as a perturbation of system (35) for small £. Here
we only will discuss how many small limit cycles surround the equilibrium point
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(1,0) of system (34) when ¢ is sufficiently small. On the other hand, for every
h € (=1/2,a/2—a) the orbit T, intersects the the segment L : (a, 1) of the w-axis
at exactly one point Qp(x(h),0). Therefore, the segment L1 can be parameterized
by h € (=1/2,a/2 — a).

For every h € (—1/2,a?/2—a), we consider the trajectory of system (33) passing
through the point @, (x(h),0) € L,. This trajectory goes forward and backward
until it intersects the positive w-axis at points ()1 and @3, respectively, as in Figure
9. We denote the piece of trajectory from Q3 to Q1 by v(h, &, a,b). Then v(h, &, a,b)
is a periodic orbit if and only if @1 = Q2. From (36), we have

0H(w,y)
ow
Hence Q1 = Q2 if and only if H(Q1) = H(Q2).

w—14#0, if jw| # 1.

j‘,:

Q4

FIGURE 9. The perturbation of (35).

On the other hand, along the orbits of system (35) we have

dH(w,y) . §w 2 2\, 2 5 §w 2 2

This implies that

dt

_ [ drmy)
t (35)

H -H
@)-H@)= [ 5

(b —3a® + 3w?)ydw = —¢F(h, €, a,b).

w
5/ﬂh,é,a,b) Vuw? —a?
Therefore v(h, &, a,b) is a periodic orbit if and only if F(h,&, a,b) = 0.
We consider F'(h, &, a,b) as a perturbation of F'(h, 0, a,b). The function F'(h,0,a,b)
is given by
F(h,0,a,b) = (b—3a*)I,(h) + 3I3(h),
where

I;(h ydw for i=1,3.

w'
)= /I“h VwZ — a2
The orientation of I', is determined by the direction of the vector field (35). By
the Green’s formula

Ii(h) = dwdy >0, he(-1/2,a*/2 - a),

w w
Y e // v
r, Vw? — a2 y p(h) Vw? — a2

where D(h) is the region surrounded by I'j,.
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It is easy to show that

h—>1£ri/2 1(h) h—)lfl}/2 S(h) 0

By the Mean Value Theorem of integrals, we have

dwdy

I3(h) . //D(h) \/%

im = 1m
h——1/2 I1(h)  h——1/2 // dedy
D(h) Vw? —a?

where (w(h),g(h)) € D(h) and D(h) shrinks to the point (1,0) as h — —1/2.
Now we define the function

I3(h)

u(h) ={ Ti(h)

1 if h=-1/2.

= lim w?(h) =1,
h——1/2

if he(-1/2,a2/2—a),

It is continuous in the interval [—1/2,a?/2 — a]. Therefore, to determine the exis-
tence and the number of small limit cycles for system (34) for £ sufficiently small, we
only need to study the existence and the number of zeros of the function F'(h, &, a,b)
in the interval h(—1/2,a%/2 — a). In addition, since

F(h,€.a,b) ~ F(h,0,a,b) = I(h) (b —3a%+ 3%3) ’

for £ sufficiently small, we obtain that the behavior of the function v = u(h), as a
ratio of two Abelian integrals, is crucial in our discussion.
From the notations in [12, Corollary 2], taking

2 3
d(w) = %uﬂ —w, Y(y) = %7 fi(w) = \/ﬁ, f3(w) = h

for system (34). Note that H(w,y) = ®(w) + ¥(y) and I;(h) = fl‘h fi(w) ydw,
i =1,3. We can calculate
—w?(2 — w)? + a?(4 — 2w + w?)
W wE -
[w3(2 — w)3 + 2(—4 + 2w + 3w? — 4w3 + wh)a® + (2 + 2w — w?)a?
(w2 — a2)3/2[(2 — w)2 — 232 } )

M (i, w) + M(w, @) = 4(w — 1)* {

where w 4+ w = 2, and
M(@w) = [0(0) @) (f5() fa(w) — () falw)) + B (1) (fa(w) o ()
—fi(w) f3(w)) + &' (w)[f3(@) f1(w) = f1 (@) f3(w)]}.

In fact, s1(w,a) = —w?(2 — w)? + a®>(4 — 2w + w?) is decreasing if w € (a,1).
Therefore, min{s;(w,a)} = s1(1,a) = —1 + 3a?, and max{s;(w,a)} = s1(a,a) =
2a® > 0 as w € (a, 1). Therefore s;(w,a) >0 when 1/v/3 < a < 1, and s1(w,a) =0
has a unique root (denoted by w;) when 0 < a < 1/v/3. On the other hand,
so(w,a) i= —w3(2 — w)® — 2(—4 + 2w + 3w? — 4w3 + wH)a?® — (2 + 2w — w?)a? is
also decreasing if w € (a,1) because 9sq(w,a)/0w < 0. Hence min{sy(w,a)} =
s2(1,a) = (3a® — 1)(1 — a?), and max{ss(w,a)} = s2(a,a) = 4(a — 1)(a — 2)a® > 0
as w € (a,1). Similarly, so(w,a) > 0 when 1/v/3 < a < 1, and sy(w,a) = 0 has a
unique root (denoted by ws) when 0 < a < 1/v/3. Therefore, M (@, w)+M (w, @) >
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0 for all w € (a,1) when 1/v/3 < a < 1. Next, we have that w; < ws, because
sa2(w1,a) = 2(4— 6wy +3w?)a?—6a* > 2(4— 6w +3w?)a? —2a® = 6(1—w1)%a® > 0.
So we only need to consider the zeros of M (w,w) + M(w,w) for w € (wsq,1).
Moreover,

d{y/(w? — a?)[(2 - w)? — a’s1 (w,a)} { (2w(2 —w) + a®)(w? — a®)((2 — w)* — a?)
dw VWw? —a?)[(2 - w)? - a’]

w2 = w) +a®)[w? (2 — w)® + a*(4 = 2w + w?)]
V(w? —a?)[(2 - w)? — a?]

for w € (wy,1). Therefore, /(w2 — a2)[(2 — w)? — a?]s1(w, a) + sa(w, a) is decreas-
ing for w € (w1, 1), which implies that \/(w? — a2)[(2 — w)2 — a]s1(w, a)+s2(w, a)
has a unique zero. Thus M (w,w)+ M (w,w) = 0 has a unique zero for w € (wy,1).
By [12, Corollary 2], the inequality M (w,w) + M (w, @) > 0 (resp. < 0) induces
that u'(h) < 0 (resp. > 0). So u/(h) has at most one zero. Then F(h,0,a,b) has
at most two zeros because b — 3a® < 0. The proof is completed. ]

}2(w1)<0,

4. GLOBAL BIFURCATION

The aim of this section is to show that the global bifurcation surfaces HL, DL,
D L5 of homoclinic loop and double limit cycles in Figure 1 exist and how they are
located in the bifurcation diagram of system (2).

By the transformation (z,y) — (z,y + F(z)), system (2) can be rewritten as
system (33). Then For fixed values of a and &, system (2) is a rotational family of
vector fields (see [18] for definitions and properties) with respect to the parameter
b. This implies that when b increases unstable limit cycles increase and stable ones
decrease in size. Furthermore, the double limit cycle that is stable in its outside
part splits into a pair of limit cycles.

Lemma 14. The surface DLs does not lie in Go = {(a,b,) € G : 0 < a <
1, 3a% —3 < b < a®—1} and system (2) has at most one small limit cycle around
the equilibria Er or Er, in Gs.

Proof. By Lemma 11 system (2) has no small limit cycles if 1/v/3 < a < 1 and
b = 3a?—3, and at most one small limit cycle around equilibria Er or Er, if 0 < a <
1/\/3 and b = 3a? — 3. Therefore DLy cannot intersect with the curve b = 3a? — 3
except when a = 1/v/3. Computing the trace at Ey we obtain tr(Jy) = —b¢ > 0,
because b < 0 and £ > 0. So the homoclinic loops have to be unstable if they exist
by [7, Chapter 3, Theorem 3.3]. Assume that system (2) exhibits at least two small
limit cycles surrounding Er for (a,b,£) € Go. For fixed a and £, we obtain that
system (2) has a small semi-stable limit cycle Ty when b = by from the rotational
properties of system (2) with respect to b. Now, given b, £ and a perturbation
a — a + ¢, there exists a solution ¢(t, g, yo) for ¢ € (0,T) which lies in the small
neighborhood of I'y from the continuous dependence of solutions on the parameters
and initial conditions, where T is the periodic of I'g and € > 0 is small. Then using
again the properties of the rotational vector fields, we can take a suitable parameter
bp + &1 such that system (2) has a new semi-stable small limit cycle fo, because
the homoclinic loops cannot be semistable, when ¢; > 0 is small. By continuity
system (2) has a small semi-stable limit cycle in the parameter curve either Hs, or
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Hj, which leads to a contradiction. Therefore system (2) has at most one small
limit cycle in Go. We have completed the proof. O

By a similar discussion as that in the proof of Lemma 14, the phase portraits
(f)-(h) and (j)-(m) of system (2) in Figure 2 of Theorem 1 are obtained from the
properties of rotational vector fields, continuity, Lemma 14 and the results of section
3.

Remark 1. The surface DLy of double small limit cycles is the graph of a function
b= 2 (CL, 5) .

From [5] we can obtain that a pair of grazing loop are stable for a = 0 if they
exist. However, the pair of homoclinic loops have to be unstable if they exist when
a # 0. In fact, HL, DLy, DL have a common intersection point for the limit value
a=0,ie, (0, = $1(0,&) = ¢1(0,£) < —3. Since system (33) is a rotational
vector field with respect to the parameter b, the manifolds of £y move monotonically
as a, ¢ are fixed and b increases, see [5, 6]. Therefore, it is worthwhile to note that
HL, DL, and DLs have no intersection points except at endpoints. Summarizing
the previous results, we can obtain Theorem 1, as shown in Figure 1.

(a) (v/2,1,1) € IT (b) (V2,-1,1) € I1I

FIGURE 10. Simulations with a single equilibrium

5. NUMERICAL EXAMPLES

In this section we give several numerical examples of previous results.

Example 1. Let ¢ = v/2 and ¢ = 1. When b = 1 the system has a unique
equilibrium (0, 0), which is a sink, and no limit cycles, as shown in Figure 10(a).

However, when b = —1 the system has a unique equilibrium, the origin (0, 0)
which is a source. Furthermore, from Lemma 5, there is a unique limit cycle, which
is stable, as shown in Figure 10(b).

Example 2. Let ¢ = 1. When a = v/2/2 and b = —2 the system has three
equilibria and exactly one large limit cycle, as shown in Figure 11(a).

When a = 0.3 and b = —2.77 the system has three equilibria and exactly two
small limit cycles, as shown in Figure 11(b).

When a = v/2/2 and b = —0.5 the system has three equilibria and no limit
cycles, as shown in Figure 11(c).
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(a) (v2/2,-2,1) € IV (b) (0.3,-2.77,1) € VII (c) (V2/2,-0.5,1) €I

FiGUuRrE 11. Simulations with three equilibria

(a) (0.9,—0.46,0.1) € VIIT  (b) (0.9,—0.5558,0.1) € IX

(c) (3v/2/10,-2.461,0.1) €e VI  (d) (v/5/5,—2.41,0.1) € V
FIGURE 12. Simulations with three equilibria

Example 3. Let £ = 0.1. When a = 0.9 and b = —0.46 the system has three
equilibria and exactly two large limit cycles, as shown in Figure 12(a).

When a = 0.9 and b = —0.555 the system has three equilibria, exactly two small
limit cycles and one large limit cycle, as shown in Figure 12(b).

When a = 3v/2/10 and b = —2.461 the system has three equilibria, exactly two
small limit cycles and two large limit cycles, as shown in Figure 12(c).

When a = v/5/5 and b = —2.41 the system has three equilibria, exactly four
small limit cycles and one large limit cycle, as shown in Figure 12(d).
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APPENDIX: AVERAGING THEORY OF FIRST AND SECOND ORDER

The averaging theory of second order for studying specifically periodic orbits
can be found in [13] for S?* differential systems and in [1] for Lipschitz differential
systems, see also Chapter 11 of [17]. Here we present a brief summary with the
results that we need for studying the Hopf bifurcation of the SD oscillator systems.

Consider the differential system
(37) x(t) = pFy(t,x) + p? Fa(t,x) + > R(t, %, 1),

where F1,F : RXx D — R, R: R x D X (—po, po) — R are continuous functions,
T—periodic in the first variable, and D is an open subset of R™. Assume:

(i) Fi(t,") € S3(D), Fy(t,) € SY(D) for all t € R, Fy, Fy, R, D2F|,D,Fy

are locally Lipschitz with respect to x, and R is twice differentiable with

respect to p.
We define the functions Fyg: D — R for k = 1,2 as follows

T
filx) = %/o Fi(s,x)ds,

T s
fo(x) = %/0 [DXF1(87X)/0 Fi(t,x)dt + F»(s,x)| ds.

(ii) For V' C D an open and bounded set and for each p € (—puo, o) \ {0},
suppose that either fi(x) # 0, there exists a € V such that fi(a) = 0 and
the Jacobian det Dx(f1)(a) # 0; or f1(x) = 0, there exists a € V such that
f2(a) = 0 and the Jacobian det Dx(f2)(a) # 0.

Then for |u| > 0 sufficiently small there exists a T—periodic solution x(t,u) of
system (37) such that x(0, ) — a when p — 0.

If for the i for which f;(a) = 0 the real part of all the eigenvalues of the Jacobian
matrix Dx(f;)(a) are negative, then the periodic solution x(t, u) is asymptotically
stable, if some eigenvalue has a positive real part then it is unstable.

The averaging theory of first order takes place when f;(x) # 0. If f1(x) =0 and
f2(x) £ 0 we say that that we work with the averaging theory of second order.
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