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ON THE PERIODIC SOLUTIONS OF THE
MILCHELSON CONTINUOUS AND DISCONTINUOUS

PIECEWISE LINEAR DIFFERENTIAL SYSTEM

JAUME LLIBRE1, REGILENE OLIVEIRA2 AND CAMILA A. B.
RODRIGUES3

Abstract. Applying new results from the averaging theory for
discontinuous and continuous differential systems, we study the
periodic solutions of two distinct versions of the Michelson differ-
ential system: a Michelson continuous piecewise linear differential
system, and a Michelson discontinuous piecewise linear differential
system.

1. Introduction and statement of the main result

The Michelson differential system is given by

ẋ = y,

ẏ = z,

ż = c2 − y − x2

2
,

(1)

with (x, y, z) ∈ R3 and the parameter c ≥ 0. The dot denotes derivative
with respect to an independent variable t, usually called the time. This
system is due to Michelson [13] for studying the traveling solutions of
the Kuramoto-Sivashinsky equation. It also arises in the analysis of
the unfolding of the nilpotent singularity of codimension three [4, 6].

This system has been largely investigated from the dynamical point
of view. In the first study of Michelson [13] he proved that if c > 0 is
sufficiently large, then system (1) has a unique bounded solution which
is a transversal heteroclinic orbit connecting the two finite singularities
(−

√
2c, 0, 0) and (

√
2c, 0, 0). When c decreases there will appear a

cocoon bifurcation (see [7, 8, 13]). A complete description of the phase
portrait at infinity of system (1) via the Poincaré compactification was
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given in [14]. In [12] there is an analytical proof of the existence of a
zero-Hopf bifurcation for system (1).

In [3, 2] the authors consider a continuous piecewise linear version
of Michelson differential system changing the non linear function x2 in
(1) by the linear function |x|. For such system they proved that some
dynamical aspects of the Michelson system remains as the existence of
a reversible T–point heteroclinic cycle.

Doing the change of variable (x, y, z, c) → (2εX, 2εY, 2εZ, 2εd) with
d ≥ 0 and ε > 0 sufficiently small to the differential Michelson system
(1), followed by the change of the function X2 → |X|, we obtain the
system

ẋ = y,

ẏ = z,

ż = −y + ε(2d2 − |x|),
(2)

that we call the Milchelson discontinuous piecewise linear differential
system, where we still use x, y, z instead of X, Y, Z.

In this paper first we study analytically the periodic solutions of the
Michelson continuous piecewise linear differential system. Thus our
first main result is the following.

Theorem 1. For all d > 0 and ε = ε(d) > 0 sufficiently small the
Michelson continuous piecewise linear differential system (2) has a pe-
riodic solution of the form

x(t) = −π d2+O(ε), y(t) = π d2 sin t+O(ε), z(t) = π d2 cos t+O(ε).

Moreover this periodic solution is linearly stable.

Theorem 1 is proved in section 3. Its proof uses an extension of the
classical averaging theory for smooth differential systems to continuous
differential systems given in [10], the first results in this continuous
direction appeared in [1].

Many problems in physics, economics, biology and applied areas are
modeled by discontinuous differential systems but there exist only few
analytical techniques for studying their periodic solutions. In [11] the
authors extended the averaging theory to discontinuous differential sys-
tems. An improvement of this result for a much bigger class of discon-
tinuous differential systems is given in [9].

Applying these tools we investigate the periodic solutions of the
Milchelson discontinuous piecewise linear differential system. In this
version of the Michelson system we do the change of variable (x, y, z, c) →
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(2εX, 2εY, 2εZ, 2εd) with d ≥ 0 and ε > 0 sufficiently small to the dif-
ferential Michelson system (1), and then the nonlinear function x2 is
changed by the discontinuous piecewise function

f(x) = x+ sign(x),

where here

sign(x) =

{
−1 if x ≤ 0,
1 if x ≥ 0.

In short we consider the Milchelson discontinuous piecewise linear dif-
ferential system given by

ẋ = y,

ẏ = z,

ż = −y + ε(2d2 − f(x)).

(3)

Again we will work with x, y, z instead of X, Y, Z. We get the following
result on the periodic solutions of system (3).

Theorem 2. For ε > 0 sufficiently small the Milchelson discontinu-
ous piecewise linear differential system (3) satisfies the following state-
ments.

(a) If d ∈
(
0,
√

3
√
3−π
6π

)
, then it has the two periodic solutions

(x(t, ε), r(t, ε), θ(t, ε)) given by
(
−r±0 ± 1

4

√
16(r±0 )

2 − π2(r±0 )
4, (r±0 ) sin t, (r

±
0 ) cos t

)
+O(ε),

one with + and the other with −, where r−0 (d) ∈ (0, 0.742953263..)
and r+0 (d) ∈ (0.742953263.., 2

√
3/π).

(b) If d ∈
[√

3
√
3−π
6π

, 1√
2

)
, then it has only the above periodic solu-

tion with r−0 .

These periodic solutions are linearly stable.

Theorem 2 is proved in section 4.

2. Preliminary

For proving Theorems 1 and 2 we apply two recent results from the
averaging theory, one for the continuous piecewise linear differential
systems, and the other for the discontinuous piecewise linear differential
systems. In this section we present these results and some remarks
necessary for their applications.
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2.1. Continuous piecewise linear differential systems. From The-
orem B of [10] we get the following result adapted to the next system
(4).

Theorem 3. Consider the following system

(4) ẋ(t) = F0(t, x) + εF1(t, x) + ε2R(t, x, ε),

where Fi : R × D → Rn for i = 0, 1 and R : R × D × (−ε0, ε0) → Rn

and for each t ∈ R the functions F0(t, .) ∈ C1, F1(t, .) ∈ C0 and DxF0

is locally Lipschitz in the second variable, and R ∈ C0 and locally
Lipschitz in the second variable. Moreover D ⊂ Rn is an open subset
and ε is a small parameter. Consider ϕ(., z) : [0, tz] → Rn the solution
of the unperturbed system such that ϕ(0, z) = z. Denote by M(z) the
fundamental solution matrix of the variational equation

ẋ(t) = F0(t, x),

such that M(0) is the identity. Assume that there exists an open and
bounded subset of V with its closure V ⊂ D such that for each z ∈ V ,
the solution x(t, z) is T - periodic and satisfies x(0, z) = z. If a ∈ V is
a zero of the map F : V → Rn defined by

F(z) =

∫ T

0

M−1(t)F1(t, x(t, z))dt

and det(DzF(a)) 6= 0, then for ε > 0 sufficiently small, system (4) has
a T -periodic solution x(t, ε) such that x(0, ε) → a as ε → 0. More-
over the linear stability of the periodic solution x(t, ε) is given by the
eigenvalues of the matrix DzF(a).

Note that the stability of the periodic solutions of system (4) when
it is applied to the Michelson continuous piecewise linear differential
system can be obtained from the stability of a differential system asso-
ciated to it. In fact given the continuous system (1) consider a band of
amplitude ε > 0 around the plane x = 0 and a differentiable extension
of the continuous system (1) to this band. Studying the limit of this
extended differentiable system when ε → 0 we conclude that the linear
stability of system (1) is given by the eigenvalues of DzF(a).

2.2. Discontinuous piecewise linear differential systems. LetD ⊂
Rn an open subset and h : R×D → R a C1 function having 0 as reg-
ular value. Consider F 1, F 2 : R × D → Rn continuous functions and
Σ = h−1(0). We define the Filippov’s system as

(5) ẋ(t) = F (t, x) =

{
F 1(t, x) if (t, x) ∈ Σ+,

F 2(t, x) if (t, x) ∈ Σ−,
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where Σ+ = {(t, x) ∈ R×D : h(t, x) > 0} and Σ− = {(t, x) ∈ R×D :
h(t, x) < 0}.
The manifold Σ is divided in the closure of two disjoint regions,

namely Crossing region (Σc) and Sliding region (Σs),

Σc = {p ∈ Σ : 〈∇h(p), (1, F 1(p))〉 · 〈∇h(p), (1, F 2(p))〉 > 0},
Σs = {p ∈ Σ : 〈∇h(p), (1, F 1(p))〉 · 〈∇h(p), (1, F 2(p))〉 < 0}.

Consider the differential system associated to system (5)

(6) ẋ(t) = F (t, x) = χ+(t, x)F
1(t, x) + χ−(t, x)F

2(t, x),

where χ+, χ− are the characteristic functions defined as

χ+(t, x) =

{
1 if h(t, x) > 0,

0 if h(t, x) < 0.

and

χ−(t, x) =

{
0 if h(t, x) > 0,

1 if h(t, x) < 0.

Systems (5) and (6) does not coincides in h(t, x) = 0, but applying
the Fillipov’s convention for the solutions of systems (5) and (6) (see
[5]) passing through a point (t, x) ∈ Σ we have that these solutions do
not depend on the value of F (t, x), so the solutions are the same.

Let P be the space formed by the periodic solutions of (6). If
dimP = dimD = d then the following result follows directly from
Theorem B of [9].

Theorem 4. Consider the differential system

(7) ẋ(t) = F0(t, x) + εF1(t, x) + ε2R(t, x, ε).

where

Fi(t, x) = χ+F
1
i (t, x) + χ−F 2

i (t, x), for i = 0, 1, and

R(t, x) = χ+R
1(t, x) + χ−R2(t, x),

with F 1
i ∈ C1, for i = 0, 1 and R1, R2 are continuous functions which

are Lipschitz in the second variable, and all these functions are T -
periodic functions in the variable t ∈ R.
For z ∈ D and ε > 0 sufficiently small denote by x(., z, ε) : [0, t(z,ε)] →

Rd the solution of system (7) such that x(0, z, ε) = z.

Define the averaged function

(8) F(z) =

∫ T

0

M(s, z)−1F1(s, x(s, z, 0))ds
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where x(s, z, 0) is a periodic solution of (7) with ε = 0 such that
x(0, z, 0) = z, and M(s, z) is the fundamental matrix of the variational
system ẏ = DxF0(t, x(t, z, 0))y associated to the unperturbed system
evaluated on the periodic solution x(s, z, 0) such that M(0, z) = Id.
Moreover we assume the following hypotheses.

(H−) There exists an open bounded subset C ⊂ D such that, for ε
sufficiently small, every orbit starting in C reaches the set of
discontinuity only at its crossing region.

(H+) For a ∈ C with f(a) = 0 there exists a neighborhood U ⊂ C of
a such that f(z) 6= 0, for all z ∈ Ū\{a} and det(DzF(a)) 6= 0.

Then for ε > 0 sufficiently small there exists a T–periodic solution
x(t, ε) of (7) such that x(0, ε) → a as ε → 0. Moreover the linear
stability of the periodic solution x(t, ε) is given by the eigenvalues of
the matrix DzF(a).

The same arguments for computing the kind of stability of the ob-
tained periodic solution from the eigenvalues of the Jacobian matrix
for the continuous piecewise differential systems, also work for the dis-
continuous piecewise differential systems.

3. Proof of Theorem 1

Doing to the Michelson continuous piecewise linear differential sys-
tem (2) the change to cylindrical coordinates x = x, y = r sin θ and
z = r cos θ, then we have

ẋ = r sin θ,

ṙ = ε cos θ(2d2 − |x|),
θ̇ = 1− ε

r
sin θ(2d2 − |x|).

(9)

Taking θ as the new independent variable we obtain the system

dx

dθ
= x′ = r sin θ + ε(2d2 − |x|) sin2 θ +O(ε2),

dr

dθ
= r′ = ε(2d2 − |x|) cos θ +O(ε2).

(10)

The unperturbed system is

x′ = r sin θ,

r′ = 0.
(11)

For each (x0, r0) the solution ϕ(θ, (x0, r0)) such that ϕ(0, (x0, r0)) =
(x0, r0) is ϕ(θ, (x0, r0)) = (x0 + r0(1 − cos θ), r0), which is 2π–periodic
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for all (x0, r0) 6= (0, 0). When (x0, r0) = (0, 0) we have an equilibrium
point.

Now note that the function F0(θ, (x, r)) = (r sin θ, 0) is C∞ and in
particular C1, and that the function

F1(θ, (x, r)) = ((2d2 − |x|) sin2 θ, (2d2 − |x|) cos θ)
is C0, and both are Lipschitz. So the differential system (9) satisfies the
assumptions of Theorem 3. Then, by Theorem 3, we need to calculate
the averaged function

F(x0, r0) =

∫ 2π

0

M(θ)−1F1(θ, ϕ(θ, (x0, r0)))dθ,

where

M(θ) =

(
1 1− cos θ
0 1

)

is the fundamental matrix of the variational differential system asso-
ciated to system (11) evaluated on the periodic solution (x0 + r0(1 −
cos θ), r0) such that M(0) is the identity matrix. Therefore we have

F(x0, r0) =

∫ 2π

0

(
1 cos θ − 1
0 1

)(
(2d2 − |x0 + r0(1− cos θ)|) sin2 θ
(2d2 − |x0 + r0(1− cos θ)|) cos θ

)
dθ

=

∫ 2π

0

(
(2d2 − |x0 + r0(1− cos θ)|)(1− cos θ)

(2d2 − |x0 + r0(1− cos θ)|) cos θ

)
dθ

=

∫ 2π

0

g(θ)dθ.

Note that g(θ) = g(−θ) and g(θ) is 2π-periodic. So
∫ 2π

0

g(θ)dθ =

∫ π

−π

g(θ)dθ = 2

∫ π

0

g(θ)dθ.

To calculate this integral we need to study the zeros of the function
G(θ)

.
= x0 + r0(1− cos θ).

As G(θ) = 0 if and only if θ = ± arccos

(
x0 + r0

r0

)
and the function

arccos(x) takes real values when x ∈ [−1, 1] we have to consider the
following cases.

Case 1:

∣∣∣∣
x0 + r0

r0

∣∣∣∣> 1. So r0 + x0 − r0 cos θ 6= 0 and we consider two

subcases.

Subcase 1.1:
x0 + r0

r0
< −1. Then r0 + x0 − r0 cos θ < 0 in [0, π].

Subcase 1.2:
x0 + r0

r0
> 1. Then r0 + x0 − r0 cos θ > 0 in [0, π].
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Case 2:

∣∣∣∣
x0 + r0

r0

∣∣∣∣≤ 1. In this case θ = arccos

(
r0 + x0

r0

)
∈ [0, π] is the

unique zero of G(θ). So we need to divide this analysis in two subcases:

Subcase 2.1: r0 + x0 ≤ 0. Then

(i) r0 + x0 − r0 cos θ < 0, if θ ∈
(
0, arccos

(
r0 + x0

r0

))
,

(ii) r0 + x0 − r0 cos θ > 0, if θ ∈
(
arccos

(
r0 + x0

r0

)
, π

)
.

Subcase 2.2: r0 + x0 > 0. Then

(i) r0 + x0 − r0 cos θ > 0, if θ ∈
(
0, arccos

(
r0 + x0

r0

))
,

(ii) r0 + x0 − r0 cos θ < 0 if θ ∈
(
arccos

(
r0 + x0

r0

)
, π

)
.

In the computation of the integral

∫ π

0

g(θ)dθ we need to distinguish

the previous four subcases.

Subcase 1.1. In this subcase the averaged function is

F(x0, r0) = 2

∫ π

0

(
(2d2 + (x0 + r0(1− cos θ))(1− cos θ)

(2d2 + (x0 + r0(1− cos θ)) cos θ

)
dθ

= π(4d2 + 3r0 + 2x0),−πr0),

whose unique zero is (x0, r0) = (−2d2, 0). Since this initial condition
corresponds to an equilibrium point of the unperturbed system (11),
the averaging theory in this case does not provide periodic solutions.

Subcase 1.2. Analogously to Subcase 1.1 we have

F(x0, r0) = 2

∫ π

0

(
(2d2 + (x0 + r0(1− cos θ))(1− cos θ)

(2d2 + (x0 + r0(1− cos θ)) cos θ

)
dθ

= π(4d2 − 3r0 − 2x0), πr0),

whose unique zero is (x0, r0) = (2d2, 0). The conclusion follows as in
Subcase 1.1.

Subcase 2.1. Here

F(x0, r0) =2

∫ arccos
(

r0+x0
r0

)

0

(
(2d2 + (x0 + r0(1− cos θ))(1− cos θ)

(2d2 + (x0 + r0(1− cos θ)) cos θ

)
dθ

+ 2

∫ π

arccos
(

r0+x0
r0

)

(
(2d2 − (x0 + r0(1− cos θ)))(1− cos θ)

(2d2 − (x0 + r0(1− cos θ))) cos θ

)
dθ

=

(
f1(x0, r0)
f2(x0, r0)

)
,
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where

(12)
f1(x0, r0) = 4d2π −

√
−x0(2r0 + x0)

r0
(6r0 + 2x0)

−π(3r0 + 2x0) + (6r0 + 4x0) arccos

(
r0 + x0

r0

)
,

(13)
f2(x0, r0) = πr0 + 2(r0 + x0)

√
−x0(2r0 + x0)

r0

−2r0 arccos

(
r0 + x0

r0

)
.

Claim: The unique real root of this function is (x0, r0) = (−d2π, d2π).

Proof. In fact, calling A = arccos

(
x0 + r0

r0

)
then f2(x0, r0) = 0 if and

only if A =
1

2r0

(
πr0 +

2(r0 + x0)

r0

√
−x0(2r0 + x0)

)
.

Replacing the expression of A in (12) we obtain

f1(x0, y0)|A = 4d2π − 4r0

(
−x0(2r0 + x0)

r20

) 3
2

.

The function f1(x0, y0)|A has two real zeros if −d4/3π2/3r
4/3
0 + r20 ≥ 0,

namely,

x0 = −r0 ±
√

−d4/3 π2/3 r
4/3
0 + r20.

Now if we replace x0 = −r0 −
√

−d4/3 π2/3 r
4/3
0 + r20 in (13) we obtain

f2(r0) =−
2π1/3d2/3

√
−d4/3 π2/3 r

4/3
0 + r20

r
1/3
0

− 2r0 arc csc


 r0√

−d4/3 π2/3 r
4/3
0 + r20


 .

Since the function arc csc(z) > 0 for all z > 0 and goes to 0 when
z → ∞ we have that

−2r0 arc csc


 r0√

−d4/3 π2/3 r
4/3
0 + r20


 < 0,
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and taking into account that

−
2π1/3d2/3

√
−d4/3 π2/3 r

4/3
0 + r20

r
1/3
0

≤ 0

for all r0 > 0, then the unique possibility in order that f2(r0) to be

zero, is when −d4/3 π2/3 r
4/3
0 + r20 → 0, i. e. r0 → d2π.

Moreover if r0 → d2π then x0 → −d2π, and we have a candidate to
zero of the averaged function, which is a zero because F(−dπ2, dπ2) = 0
by direct computations. This completes the proof of the claim. �
The Jacobian of the map F(x0, r0) evaluated at (x0, r0) = (−d2π, d2π)

is ∣∣∣∣
8 −4
4 4

∣∣∣∣ = 16 6= 0.

It follows from Theorem 3 and for any d > 0 and ε = ε(d) > 0
sufficiently small that system (10) has a periodic solution ϕ(θ, ε) =
(x(θ, ε), r(θ, ε)) = (−d2π + O(ε), d2π + O(ε)). Moreover the eigenval-
ues of the Jacobian matrix of F(x0, r0) at the solution (−d2π, d2π) are
±4i, so the periodic solution is linearly stable.

Subcase 2.2. In this subcase

F(x0, r0) =2

∫ arccos
(

r0+x0
r0

)

0

(
(2d2 − (x0 + r0(1− cos θ))(1− cos θ)

(2d2 − (x0 + r0(1− cos θ)) cos θ

)
dθ

+ 2

∫ π

arccos
(

r0+x0
r0

)

(
(2d2 + (x0 + r0(1− cos θ)))(1− cos θ)

(2d2 + (x0 + r0(1− cos θ))) cos θ

)
dθ

=

(
g1(x0, r0)
g2(x0, r0)

)
,

where

g1(x0, r0) = 4d2π +

√
−x0(2r0 + x0)

r0
(6r0 + 2x0)

+(6r0 + 4x0) arccos

(
r0 + x0

r0

)
,

g2(x0, r0) = −πr0 − 2(r0 + x0)

√
−x0(2r0 + x0)

r0

+2r0 arccos

(
r0 + x0

r0

)
.

If we work as in Subcase 2.1 we will find that the only possibility for
the vanishing of this function is when x0 = −r0 with r0 < 0. Hence
F(x0, r0) has no solutions with r0 > 0.
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Now we must identify the periodic solution of system (2) which cor-
responds to the periodic solution found in Subcase 2.1. Going back
to system (9) with the independent variable t we obtain the periodic
solution

(x(t, ε), r(t, ε), θ(t, ε)) = (−d2π, d2π, t(mod 2π)) +O(ε).

Finally coming back to system (2) we find the periodic solution

(x(t, ε), y(t, ε), z(t, ε)) = ((−d2π , d2π sin t , d2π cos t) +O(ε).

This concludes the proof of Theorem 1.

4. Proof of Theorem 2

Doing the change to cylindrical coordinates x = x, y = r sin θ and
z = r cos θ the Michelson discontinuous piecewise linear differential
system becomes

ẋ = r sin θ,

ṙ = ε cos θ(2d2 − f(x)),

θ̇ = 1− ε

r
sin θ(2d2 − f(x)).

(14)

Now taking as new independent variable the angle θ we get the system

x′ = r sin θ + ε(2d2 − (x+ sign(x)))(1− cos θ) +O(ε2),

r′ = ε(2d2 − (x+ sign(x))) cos θ +O(ε2),
(15)

where the prime denotes the derivative with respect to θ.

The unperturbed system is given by (11) and the fundamental matrix

is M(θ) =

(
1 1− cos θ
0 1

)
. Then by Theorem 4 we need to calculate

F(x0, r0) =

∫ 2π

0

g(θ)dθ.

where

g(θ) =

(
(2d2 − (x0 + r0(1− cos θ) + sign(x0 + r0(1− cos θ)))(1− cos θ)

(2d2 − (x0 + r0(1− cos θ) + sign(x0 + r0(1− cos θ))) cos θ

)
.

Since g(θ) is 2π–periodic and g(θ) = g(−θ) then
∫ 2π

0

g(θ)dθ = 2

∫ π

0

g(θ)dθ.

Analogously to the study of the continuous system, we separate the
calculation of the averaged function in four subcases, the same ones as
in Theorem 3.
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Subcase 1.1. In this subcase r0 + x0 − r0 cos θ < 0 in [0, π]. Then the
averaged function, computed using formula (8), is

F(x0, r0) = (π(2 + 4d2 − 3r0 − 2x0), πr0),

whose unique zero is (x0, r0) = (1 + 2d2, 0). Since this initial condition
correspond to an equilibrium point of the unperturbed system (11), the
averaging theory in this case does not produce any periodic solution.

Subcase 1.2. Now analogously to Subcase 1.1 we have

f(x0, r0) = (π(−2 + 4d2 − 3r0 − 2x0), πr0),

whose only zero is (x0, r0) = (−1 + 2d2, 0). The conclusion follows as
in Subcase 1.1.

Subcase 2.1. Here r0+x0−r0 cos θ < 0 when θ ∈
(
0, arccos

(
r0 + x0

r0

))
,

and r0 + x0 − r0 cos θ > 0, when θ ∈
(
arccos

(
r0 + x0

r0

)
, π

)
, so

F(x0, r0) =

(
f1(x0, r0)
f2(x0, r0)

)
,

with

f1(x0, r0) = −4

√
−(x0(2r0 + x0))

r0
− 4 arccos

(
x0 + r0

r0

)
+

+4d2π − 3πr0 − 2πx0,

f2(x0, r0) = πr0 + 4

√
−x0(2r0 + x0)

r0
.

Note f2(x0, r0) = 0 if and only if r20 = −4

π

√
−x0(2r0 + x0) < 0, which

has no real solutions.

Subcase 2.2. In this case

F(x0, r0) =

(
f1(x0, r0)
f2(x0, r0)

)
,

where

f1(x0, r0) =4

√
−x0(2r0 + x0)

r0
− 4 arccos

(
x0 + r0

r0

)
+

+ π(2 + 4d2 − 3r0 − 2x0),

(16)

(17) f2(x0, r0) = πr0 − 4

√
−x0(2r0 + x0)

r0
.
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Note that f2(x0, r0) = 0 if and only if x0 = −r0 ±
1

4

√
16r20 − π2r40.

So these zeros exist if and only if r0 ∈
(
0,

4

π

)
.

Doing x0 = −r0 −
1

4

√
16r20 − π2r40 in (16) we get

f1(r0) = f1(x0, r0) |x0=−r0− 1
4

√
16r20−π2r40

= 4d2π +
1

2
πr0

√
16− π2r20 − 4arc csc

(
4√

16− π2r20

)
.

DefineH−(r0) = f1(r0)−4d2π. Figure 1 is the graphic of the function

H−(r0) when r0 ∈
(
0,

4

π

)
. From this graphic we conclude that the

existence of zeros of f1(r0) depends on d. If such a zero r−0 exists then
it is unique. So it follows easily that r−0 ∈ (0, 0.742953263..) exists if

and only if d ∈
(
0,

1√
2

)
.

0.2 0.4 0.6 0.8 1.0 1.2

-6

-5

-4

-3

-2

-1

1

Figure 1. Graphic of H−(r0)

Now taking x0 = −r0 +
1

4

√
16r20 − π2r40 in (16) we get

f1(r0) = f1(x0, r0) | x0 = −r0 +
1

4

√
16r20 − π2r40

=4d2π − 1

2
πr0

√
16− π2r20 + 4arc csc

(
4√

16− π2r20

)
.
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Again defining H+(r0) = f1(r0)− 4d2π and plotting its graphic (see
Figure 2) we can see that if we find the minimum of H+(r0) we will be
able to provide the condition in d for the existence of zeros of f1(r0).

0.2 0.4 0.6 0.8 1.0 1.2

-1

1

2

3

4

5

6

Figure 2. Graphic of H+(r0)

As H ′
+(r0) =

π(π2r20 − 12)√
16− π2r20

, it follows that the minimum of H+(r0)

takes place at r0 = 2
√
3/π. Hence f1(r0) has a simple zero r+0 ∈

(0.742953263.., 2
√
3/π) if and only if d ∈

(
0,

√
3
√
3− π

6π

)
. Moreover

this zero is unique. So from Theorem 4 it follows

(i) if d ∈
(
0,

√
3
√
3− π

6π

)
, then system (15) has at least two pe-

riodic solutions;

(ii) if d ∈
(√

3
√
3− π

6π
,
1√
2

)
then system (15) has at least one

periodic solution; and

(iii) if d ∈
(

1√
2
,∞
)
, we cannot apply the averaging theory for

finding periodic solutions of system (15).

Going back to the independent variable t for system (14) we conclude
that there exist at least two periodic solutions (x(t, ε), r(t, ε), θ(t, ε)) of
system (14), namely

(
−r±0 ± 1

4

√
16(r±0 )

2 − π2(r±0 )
4, r±0 , t( mod 2π)

)
+O(ε),
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one with + and the other with −. Finally coming back to the Michelson
discontinuous piecewise linear differential system (3) we get the two
periodic solutions (x(t, ε), r(t, ε), θ(t, ε)) given by

(
−r±0 ± 1

4

√
16(r±0 )

2 − π2(r±0 )
4, r±0 sin t, r±0 cos t

)
+O(ε).

Since ±2
√

r0(−12 + π2r20)/r
3/2
0 are the eigenvalues of the Jacobian

matrix ofF(x0, r0) at the solutions (x0, r0) =

(
−r0 ±

1

4

√
16r20 − π2r40, r0

)
,

and 0 < r±0 < 2
√
3/π, both periodic solutions of system (3) are linearly

stable. This completes the proof of Theorem 2.
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