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Explicit time-dependent Schrodinger propagators
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Abstract. We compute explicitly the time-dependent Schrodinger and heat propagator for
the potentials -[A^m(m-l-l)]/cosh^ Ax, a 6 function potential, several cases of periodic ô
function potentials and a S function potential in a square well. We also discuss the
semiclassical approximation for the ô function potential.

1. Introduction

There are few time-dependent Schrodinger propagators that can be computed explicitly.
Except for the case of quadratic Hamiltonians [1,2] (which includes the harmonic
oscillators with constant electric or magnetic field) where the path integral can be done
exactly and is equal to its semiclassical approximation, or for systems which are in
some sense free [2], we know only the example of the knife edge [3,4] and the case
of refiectionless potentials [5,6]; in all these cases, the propagator is a superposition
of Gaussians. Note that we distinguish the time-dependent propagator from the
energy-dependent Green function for which many more explicit examples are known
[7,8,9].

The object of this paper is to compute three other examples of time-dependent
propagators: the first is the cosh"^ x potential (also studied in [5]; however, our method
is different); the second one is the 8 function potential which can be done both by
functional integrals and by spectral resolution; the third set of examples are various
combinations of S potentials, two cases of periodic 8 potential and a 8 potential in a
square well.

In principle, one can recover the time-dependent propagator by Fourier trans¬
forming the energy-dependent propagator but this may not be very explicit; for example,
the cosh"^ X potential has a very simple time-dependent propagator, but a complicated
energy propagator (see [8]); the same remark applies to some cases of 8 function
potentials for which the energy-dependent propagators have been computed in various
situations (see [7] for general information on 8 function potentials).

One of the reasons why it is important to obtain a simple expression for time-
dependent propagators is the study of non-stationary problems in quantum mechanics.
In particular, the influence of an external random environment depending on time and
the relation between quantum dissipation and tunnelling can be satisfactorily handled
only if we know the time-dependent propagators of the non-perturbed problems.
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2. The potential cosh"^ jc

We start with a general remark. Suppose that one can solve both the heat equation
d^v/dx^ = (pv + dv/dt (2.1)

and the eigenvalue problem

d'f/dx^=<pf+hj (2.2)
where is a given function of x and /i, a given constant. We define

u{x, t) = dv{x, t)/dx-vix, t)r\x)df{x)/dx. (2.3)
A direct calculation shows that u satisfies the heat equation

du
U4--. (2.4)

This procedure is analogous to the identity employed by Darboux [ 10] for eigenvalue
problems.

Suppose now that we want to solve the initial value problem
du du f,

— —2"'"
dt dx^ L "|.=o=«o- (2.5)

First return to equation (2.1), defining Vo(x) by
Uo(x) =dVo/dx - v^r^df/dx.

Thus

We then consider the initial value problem
) .

j-ipv t)|,=0=1^0- (2.7)
dV d^V
dt ÔX

Our assumption is that we can solve (2.7) explicitly by a function v{t, x). We return
to (2.5) by the formula

u{t,x)=dv/dx-vj~^df/dx. (2.8)
It is clear, by our previous calculations, that it solves (2.5) and that it is Mq at í = 0.
We apply this method to the case

fix) = cosh"^ Ax.

Then

d^f I3^\^ 13(13+ i)\^
dx^ cosh" Ax cosh""^^ Ax'

Fix an integer m and choose /8 = -{m + 1), then

d^f m(m + l)A^
«■- cosh-Ax + (")
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Define

K^m(m + 1)
"cosh^Ax

/„+, = cosh"''^' Ax
''m+l=[('" + OA]^

If we can solve

dv/dt = d^vldX^-(p„+lV

then the function u

u =dv/dt - v{m-i- 1)A tanh Ax

satisfies (2.5) with /„+i and
du d L 4.^1 ^ fm+ l_2f-2

oX
dt dX

The term in square brackets in (2.12) is exactly
(m + l)(m +2)A^

u.

(2.10)„^,

(2.11)™^,

(2.12)

cosh Ax
-=-<Pm+2Íx)

so that if we can solve (2.10)^+,, we can also solve (2.10)^+2 by the transformation
(2.11)„.,.

Suppose, for example, that we want to solve
du d^u 2A^

;+ ■ "|<=o="o-
dt dX^ COSh^ X

Call Go(x-Xo, /) the free propagator of
dv/dt = d^v/dx^ t)l,=o=t^o-

We start with (2.6) and define
uoix')

(2.13)

(2.14)

Voix) = cosh Ax

then solve (2.14) by

Í"J a cosh Ax'
dx'

t;(t, x) = | Go(x-Xo, Ouo(*o)
and apply (2.6) to obtain

f / f''o Uo(x') dx'\ ^
- A tanh Ax 1 Go(x -Xo, t) cosh ■^^0^ cosh Ax' /
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This does not depend on the choice of a and integrating by parts using a = —oo,we obtain

M{t,x) = | dx'Mo(x') Go(x-x', t)

( f"" \+ ÀI Go(y, t) sinh \y dy I (cosh Ax cosh Ax (2.15)
which is equivalent to Crandall's expression [5]. This formula gives the kernelP',^'(x, x') of equation (2.10)2.

Denote in general by P)'"^"(x, x') the propagator for (2.10)„+,; we can obtain thepropagator of equation (2.10),„+2

x') = i·n , (^ - A ( m +1 ) tanh Ax)cosh Ax \dx 1

<"'"'"(x,i)cosh'""" Afd^j. (2.16)
The Schrodinger propagator is obtained by changing f into it in these formulae.

3. The potential 5(x): propagating H = -^d^/dx^)-a8{x)
3.1. Using functional integrals
We first recall some facts about standard Brownian motion [11,12]. Call b, theBrownian path starting at / = 0 from x = 0. The reflected Brownian path is |6,| and itslocal time spent at x = 0 up to time t is

T(i) = lim:^| ;k'[o,+.](|h.|) ds
(3.1)e-.0 ¿e Jo

where ;t'[o+c] is the characteristic function of the set [0, +6]; this random variable existsby a theorem of Levy [12, p 68].
Now, there is another way to describe the reflected Brownian motion and its localtime. Let

X{t) = -b,+ max bs

0{t)=maxb,.
(3.2)

It is known that the process {X{t), d{t)) has the same joint laws as the process(l6,|, r(i)) defined above (see [11] or [12]).
Suppose now we consider the initial value problem

du/dt=^d^u/dx^+a8ix)u u|,=o=Uo. (3.3)
We approach this problem by the following:

dujdt=\dujdx^ + {a/2e)xi_,_,fx)u^ "f|,.o=Wo. (3.3),.
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For problem (3.3)^ we have a probabilistic solution by the Feynman-Kac formula

wJi,x) = JE'j^exp^^| Arc-E,£](^+ i'Jd5^Mo(jc+ h,)j. (3.4)
Suppose now that we start at time t = 0 from x~0. The corresponding propagator

is

K,ix', Í |0) = £j^exp^^ I e dx') j.
It is clear that this depends only on [x] and if a < 0, by Lebesgue theorem, this

tends to
Kix', Í|0) dx' = \Eo{c\p{aT{t))x{\b,\edx')).

However, by the previous remark, this is
K{x', i|0) dx'^lEo^exp^a max bs^x^-b, +max fe,edx'jy

Now by McKean [12, p 27], it is known that

Prob^b,€dx,maxh,€dy^ exp-^^^^^^j^jAf(>'>x) dy dx
and so

K(x, i|0) dx = j^J" (t + x) exp[-(T + x)V2t] dr] dx
and after a slight transformation we obtain

1 / 2/- N . ^'|0)=7r—Tï72exp(-xV2í)+ {Irrty^ e^"^exp[-(í+lxl)V2/]de (3.5)

This formula has been derived rigorously if a ^ 0. However we can continue it to
a > 0 also, because the integral is still absolutely convergent.

Next we obtain the propagator starting from any Xo. Consider the Brownian path
starting from Xq

K(x, t |xo) dx = £(exp(aT(Í))Ar(xo+ b, e dx)).
We call To the first hitting time of point 0.
For i< To, t(í) = 0 obviously. Using the Markov property we obtain

X (x, ÍI Xo ) dx = E^ixi To < í)£o(exp[aT( t - To)]a'( b,_ To e dx))}
+ £'x„(A'(To> t), b,edx)

-/1 + /2 (3.6)
where E^ is the conditional expectation of the path knowing that it starts at Xo at t = 0.

Suppose that Xo>0; it is well known that
Probx„(To€ds) = (27rs')'"'^^Xoexp(-Xo/2s) ds

see [11, 12] so that in general

/, = ^| ds(27rs^)""^|xo| exp(-Xo/2s)X(x, i-sjO)^ dx. (3.7)
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Moreover

l2 = E^ixiTo>t),b,edx}
is the solution of the Dirichlet problem

du/dt=jd^u/dx^ u(0,x) = 8{x-Xo) u{t,0) = 0
where x, Xq are of the same sign and is 0 if x and Xq are not of the same sign soI2 = (27ri)"'^^[exp (-|xo- x|V2i) - exp( - |xo + x|V2/)] xix, Xq> 0) dx. (3.8)Combining these results we obtain that the heat propagator of the potential a5(x)
is given by
K(x, t|xo,0) = [Go(x-Xo, /)-Go(x + Xo, i)]Ar(xoX>0)

+ Í ds(27rs')~'''^|xolexp(-Xo/2s)X(x, r-s|0) (3.9)Jo
where Go(x, t) = exp(-x^/2i) is the free Gaussian kernel. For example (3.9)can be simplified to

r +00

X(x, i|y, 0) = Go(x->',/) + a du e''"Go(|x| + |y|+M, i). (3.10)Jo
We now check directly that this expression satisfies (3.3); it is clear that it satisfiesthe equation outside 0 with the appropriate initial condition.At 0, the equation means that

.//'(0"')-i/''(0") = -2aiA(0).
We check this boundary condition directly:

^(0"", i|j,0)-^(0", íjy.G)dx dx

f+<» n
= 2a du e""—Go(|x| + |y|+u, i)|;,.oJo ox

r+OO /
^

= 2a dul —(e'""Go)-Go I ^-2a/<:(0, í |y, 0).Jo \3u du }

3.2. Using spectral resolution
We provide a second derivation of the propagator of equation (3.3). Consider thespectral resolution of

{^d^/dx^+a8o)u = -k^u.
(3.11)This is satisfied by cos(\/2/c|x|-5(fc)), where the phase shift 8(k) is given byi&n 8{k) = -a/kVl.
(3.12)Then

r +00

K{x, i|0) = C exp(-fc^i)cos(V2fc|x|-5(k))cos5(fc)dk
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assuming that the spectral function is a constant C. This last integral can be calculated
and we obtain

1
— K{x, t\0)=\ I exp(i\/2fclx|) exp(-fc^t) d/cC' J —oo

/• +00

+ 1 exp(-/c^i) exp[i('s/2k|x|-25(/c))] dfc. (3.13)
J —CO

Using (3.12) and the identity
i r+oo
P= exp[+i/i(fc-ia\/2)] d/i, a<0

-iaV2 Jok

we obtain

í: exp(-fc^í) exp[i(·\/2fe|xl-2S(fc))] dk
Ç +00

= exp(-fc^/) exp(iv^fclx:|) dfc
J —00

+V2a
+00

exp(/itaV2) d/A exp(-k^r) exp[i(>/2|x|+/i,)fc] dfc. (3.14)

On the right-hand side we see that the free propagator appears. Adjusting C so
that for í^·O^ K{x, i|0)^ ô(x), we obtain the same formula as (3.10) for >> = 0.

3.3. A periodic propagator
We use the preceding method to obtain an explicit example of a propagator in a
periodic potential.

We consider the unit circle parametrised by xe[-7r, tt] with periodic boundary
conditions and consider the Schrodinger equation

{âVâx^+ û[3(x) - ô(x- 7r)]}M = -fc^u (3.15)
with 2tt periodic condition on u.

We define the Jacobi theta function
+00

^3(2,0= L exp(Í7rtfc^) exp(2fciz). (3.16)
k=—co

As before, the 8 potential is expressed as a boundary condition. Using ^.^x)-»
27r5(x) if i-»0, we find as above that

K(x, .10) If .£) é,. (3,17)
This is formally similar to the non-periodic case (3.10) except that we replace Go

by a Jacobi theta function. The general case /((x, i|y, 0) follows from (3.10) by
replacing Go by the Jacobi theta function.
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3.4. Physical time in the Schrodinger equation and semiclassical approximation
For the physical time in the Schrodinger equation, the 'time' of our heat kernel formulaebecomes pure imaginary. We denote the Schrodinger propagator by G(x, /|y) so that(H-id/dt) G = 0 and G is obtained from the K of (3.10) by the replacement i-»i/.In particular for the free particle

Go(x, (|>') = (2Í7rí)~'''^exp[i(x-y)V2/] (3.18)and for H = — \d^ldu^ — a8{x)
Ç +00G(x, i|j) = Go(x,/|y) + a dw e""Go(|x| + |y| + u, i|0). (3.19)Jo

Until now, we have written ü = 1 to simplify the notation. First we reinstall h inthe time-dependent propagator (3.19) to yield
G{x, t\y} = (2rrhit)~^^^ exp[i(x->')V2ht]

-I-
h^Jo du{2\7rfit) ' exp

(au , i(g-fM)^\
Iht ) (3.20)

where f = |x| -I- |y|. In principle the semiclassical approximation for G would be thereplacement of G by exp(iS(x, t;y}/h) with S the classical action. However, this isnot particularly informative for the following reasons.First consider the case a <0 (i.e. repulsive S function). In the spirit of (3.1), thiscan be thought of as the limit of repulsive step functions of width e, height -a/e (stends to 0).
For y<0 and X > 0 and given t, there is in fact a classical path for any positivenon-zero e, but a simple calculation shows that the classical action along this path isasymptotic to j(x-y)(-2a/e)'^^ and this tends to oo for e^O. To the extent thatmeaningful conclusions can be drawn from this, it suggests there should be no trans¬mission through the barrier in the h-*0 limit (imagine e held fixed at a small value;then the large value of S~ l/\/e will make the integral using exp(iS/ft) have rapidlyvarying phase beyond that already due to í/h).In fact, this preliminary conclusion is not entirely misleading since we can examinethe small h approximation for G in (3.19).
For the case of interest x > 0 > y, ^ also equals x-y. For the integral over u, wedo an asymptotic expansion which, because there are no stationary points on thecontour of integration, is given simply by the terms in the exponential linear in u; thus

G(x,t\y)~(2i'7rht) exp{i^^/2ht) l+- du exp
/ au iíu\

(3.21)
Recall a <0; we perform the integral; its leading term precisely cancels that fromGo so that

fl > i^hexp{if/2ht)

This is smaller by a factor h than the usual propagator, giving more preciseinformation than the hints obtained from an earlier semiclassical calculation. For thecase that x and y have the same sign, there is no exact cancellation since now|x|-l-|y| 5^ x-y and a short calculation shows that the 6 function now acts like amirror with an order h term getting through the mirror.
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The failure of the semiclassical approximation in this case can be ameliorated by
redefining that approximation in the manner of Keller's geometric diffraction theory.
That is, to lowest order, paths do not get through the S function, but there is a 'diffracted
ray propagator', reduced by a factor h which is given by (3.22). Its strength is also,
reasonably, inversely proportional to |a|. This is in the spirit of Keller's work [13]
where'an exact solution was used to suggest the form of diffracted rays that entered
regions inaccessible in classical geometrical optics.

Now, consider the case a>0 (an attractive 5 function). Again a simple classical
mechanics calculation gives S~(^^/2t)(^ = x-y,x>0>y) with only 0(N/e) correc¬
tions due to the well of depth a/e and width e. The ft ^0 limit of (3.20) is trickier
since the integral ostensibly diverges in the sense of functions, but it is standard
procedure to assume a small imaginary part in the mass (not explicitly written in our
formulae) to ensure convergence. The growing exponential in (3.20) now implies that
the integral will be of maximum norm for large positive u, so that we extend the
integral to —oo and integrate formally. More precisely we write

^ poo ^ poo . au i(f-u)^

However, this last integral is exactly the one which was computed in (3.21) (except
for a change a-*—a, and so it exactly cancels the Gq term which is insensitive
to a and to the sign of ^ and leaves a term of the form (3.22). Therefore
G{x,t\y)~^-^ Go(g, f + ^ [ dt;exp(iuV2fti + au/ft^)at (linfit) ft J_oo

=^ Go(4 í|0)+¿exp(-aí/ft^) exp(ia^í/2ft'). (3.23)at ft

Although the second term in this expression appears large for ft ^ 0 it is in fact the
ground state contribution to the time-dependent Green function and is significant only
in the small region |x| -I- |y| « ftV a. This result is totally at variance with the semiclassical
hint which suggested that the attractive 8 function should be invisible. In fact it is as
fully effective as a barrier as the repulsive potential except for a small enhancement
near the origin.

4. Combination of a potential and a ô function

Let Hv = -èdVdx'-f V(x)
H, = X.W{x).

Call Gv(x, ily) the propagator for
id/dt = Hv
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and K the propagator for

i ô/3i = Hy + .

We obviously have the integral equation

'!>')= Gv{x, t|j')-i j" di j" dzGvix, s\z)W{z)K{z, /-sly).
For W(z) = AS{z), this equation becomes

if(x,/|y)= Gv(x, í|y)-iA 1 ds Gv(x, s|0)ff(0,/-sjy). (4.i;Jo
We call

í)v(í) = Gv(0,s|0) <p(s)=/C(0,5|0)
and

<Pv(M) =
+ 00

e '^'ipv(s) ds

and the same for (p(s). Then the Laplace transform of (4.1) gives
<P(/X) = (PV(M)/(1+Í^<PV(M-))-

(4.2)If we can explicitly invert the Laplace transform of (4.2) we immediately obtain

K^(x,/jO) = Gv(x,/jO)-iA Í ds Gv(x, s|0)(p(/-s)Jo
and then by (4.1) the general kernel K{x, /|y).The advantage of this method is that we do not have to compute (or guess) theproper spectral function.

4.1. The propagator for a periodic Dirac potential
We consider the following potential:

+ao

W(x) = a X S(x-nL)
(4.3)n — —oo

and we want to find the propagatoi" for the heat equation

d/dt^\d^dx^+W{x).
(4.4)As usual, we call Go the free propagator

If G(x, /jy) is the propagator with the periodic Dirac potential, we have byintegrating (4.4)

G(x,/|y) = Go(x,/|y)+X a [ ds Go(x, / - s | nL)G(fjL, s |.n Jo V). (4..'i)
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Define

fifi)
Jo

e-'-'/COdi

for any function fit). We have in particular

Go{x,p,\y) = (2fi) 1/2
expí-V^ïïlx-yl). (4.6)

Take y = 0, x=jL {j integer) in (3.5) and take the Laplace transform of (4.5).
Taking into account (4.6), we obtain

GijL, M10) = sxpi-s/2jI\j\L) + X a exp(-v/2^|; - n\L)0(nL, p.\0).
This can be rewritten as an infinite system of linear equations for the unknown

numbers

Xj = â{jL,pi\0) (4.7)
with the given Y,

cxp[-i2py''\j\L]
i2p-y"yj-

+00

X [0ij-n)-aYj_„]X„=Yj.

Define

X{e)= I
j=-CO

4-00

y(0)= X 6""^/ =
y =-00

1 l-exp[-2(2M)'^^L]
(2M)"' |l-e"'exp[-(2M)"'L]r

We deduce immediately that for any 6

i\-aY(e))Xid)=^Y(0)
and

' 2« J.
1 f 2t

e""®X(6)d0 =—277
-y». y(e)
l-ay(0)

de.

We can also take j ^ 0; a trivial computation gives
y(g) A

I-aY{0)~ 1-2^ cos e

1 —exp[—2(2/x"'L]
(2/x)"'(l + exp[-

exr

where

A =

(2/x)"'(l + exp[-2(2M)"'L] - a{l -exp[-2(2M)"'L]})
exp[-2(2/x)"'¿]

H-exp[-2(2M)''"L] - a{l-exp[-2(2M)"'L]}
(4.8)

I '4'

i ft ■
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and so at least for a sufficiently small

p^ =A_If 2 cos «.
However

¿ I ^ ¿ (fc)^(2fe-j-n)
and we have to consider two cases.

(1) j is even; j=2y.
Then n must be even; n=2q and

2^2/=>l I ei I ^ (2g_+2/)!1^1 \q + j/ ,%q] i2j + q)l+ q)!
and so

X2; =Af'FiJ+-Lf+l; 2j + 1 ; (2^)^)
where F(a, /3; y; z) denotes the hypergeometric function.
{2)j is odd; j =2/+l.
Then n must be odd; n = 2^1 -1 and

X- -A ? {"(2/+I + 2,)!U +/j Á,! (2/+, + ,)!and so

^2/A, = Af^^'F(j+ij + l-2j+2-i2m-
In both cases, this can be rewritten as

Xj = A^^F{¡j + l,kj+hj+U{2m.
If we recall that Xj was defined by (4.7) and A and f by (4.8), we can rewrite thisas

â(jL, At 10) = A^Fi^+l, y + h 7+1; (2^)^)
with 7 a positive integer and

(4.9)

A = l-exp[-2(2At)'/^L1
\/27r(l + exp[-2(2At)'''^L] -a{l -exp[-2(2Ai)"^L]})

, exp[-2(2M)'^^L]
1 +exp[-2(2Ai)"''L] - a{l -exp[-2(2Ai)"'L]}

and we can recover the time-dependent propagator by simply inverting the Laplacetransform (recall that /jl is the Laplace variable associated with t). Clearly the generalpropagator between two general points is much more complicated.
4.2. A Dirac potential in a square well
We consider now an infinite square well of length 2b and centre 0. The associatedpotential is then

V(X):
0 if|x|<fi
00 ifU|>fi.
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We call Ho the Hamiltonian of this square well; Hq is just - \à^/àx^ with boundary
conditions 0 at ±b. The propagator of the square well denoted by Gsw(^,'ly) is
defined by the formula

+00

Gsw(x,'|y)= Z [Goix-y-i-4nb,t\0)-Go{x + y + 2b{2n + \),t\0)]
n =—co

for |x| and |j| < b

Gsw(x, t|y)=0 if |x| or |>'1> f) (4.10)
and Goix, t\y) is the usual free space propagator. In fact, it is clear that Gsw(x, tly)
satisfies the propagation equation in |x|<ft and tends to SCx-y) if t^O^. Moreover,
it satisfies the boundary condition

Gswi^b, Íly) = 0

because if we take the term Go(b-y + 4nfi, /|0) in (4.15) it has an exponent containing
|>'-(4n + l)b)p and this exactly cancels the term -Go(6 + y + 2fc(2p+1),/|0) which
has an exponent containing |y+ (4p + 2+l)bp if 4p + 2+1 =-(4n +1) or p = -n-l.

Let us now put a Dirac potential of intensity -a at point 0. The Hamiltonian is
then H =—^d^/dx^- a8{x) on [-b,+b] with boundary conditions 0 at ±b. The
propagator for this Hamiltonian H is G{x, i|y) defined by the formula

r+oo

G(x, i|y)= Gsw(^, i|y) + a dw e°"Gsw(|x| +|y|+M, í |0) (4.11)
Jo

(with the convention (4.10) if |x|-l- \y\ + u>b).
In fact, it is clear that G(x, i|y) satisfies the propagation equation outside 0 in

[ — b, +b] and also the boundary condition at ±b. The only problem is to check the
boundary condition at 0. Fix y # 0 in [+b, +b]

r 6-|x|-|y|
G(x,/ly) = Gsw(x, i|y) + a du e"" Gsw(|^l + |y|+w,'|0)Jo

and so

s<»*. (»". 'li) = 2» [ " (1,1+ u, ,|0).
(we have used the boundary condition at b).

Integrating by parts and remarking that

Gsw(|yl, t|o) = Gswiy, '|o) = Gsw(o, ' |y)
we obtain the boundary condition at 0

^(0"", t|y)-^(0", t|y) = 2aG(0, <|y).
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