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Universitat Autònoma de Barcelona, Spain

and

BGSMath, Barcelona, Spain

JuanEnrique.Martinez.Legaz@uab.cat

Rossana Riccardi

Dipartimento di Economia e Management
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characterization of their global optimal solutions. As immediate consequences

of our general multiduality principle, we obtain Toland - Singer duality theo-

rem as well as an analogous result involving generalized perspective functions.

Based on our duality theory, we propose an extension of an existing algorithm

for the minimization of d.c. functions, which exploits Toland - Singer duality,

to a more general class of nonconvex optimization problems.

Keywords Nonconvex optimization · Multiduality · Toland-Singer duality

Mathematics Subject Classification (2000) 90C26 · 49M29

1 Introduction

One of the main tools in optimization is duality theory, which associates to a

given (primal) problem (P) another (dual) problem (D), in such a way that

the relation between the two problems provides useful information about (P).

In the case of convex optimization problems, under suitable assumptions, the

optimal values of (P) and (D) coincide, and the primal optimal solutions can

be recovered from the dual optimal solutions; this is particularly useful when

(D) happens to be easier to solve than (P). The essential tools of convex du-

ality theory are convex conjugation and the notion of subgradient; we refer to

the classical book by Rockafellar [1] for a detailed treatment of classical convex

duality. In the last decades, there has also been a very active research in non-

convex programming, motivated by the fact that many real life optimization

problems are nonconvex. In this paper, we propose a generalization of one of
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the most classical nonconvex duality theories, namely, Toland - Singer dual-

ity for d.c. (difference of convex) functions [2–4], consisting in a multiduality

principle involving a (possibly infinite) collection of mutually dual problems.

Our simple multiduality result does not require any convexity assumption,

and one of its consequences is a new duality theorem involving just two mu-

tually dual problems, expressed in terms of classical Fenchel conjugates. This

theorem generalizes the well-known Toland - Singer duality theorem, and we

use it to characterize (approximate) global optimal solutions, thus generaliz-

ing a well known necessary and sufficient global optimality condition due to

Hiriart-Urruty [5]. Another application of the new theorem yields a duality

result involving the generalized perspective functions introduced by Maréchal

in [6].

There are some numerical algorithms based on Toland - Singer duality, such

as the DC algorithm [7] and branch-and-bound/cutting-plane type algorithms

[8,9]. Following the approach by Tao & El Bernoussi in [7], we propose an

algorithm for searching local optimal solutions of nonconvex problems having

the format considered in our duality theorem.

The paper consists of three more sections. In Section 2, we state the new

multiduality principle, which is naturally formulated in the framework of gen-

eralized conjugation theory. Section 3 considers the special case when the

collection of mutually dual problems consists of just two problems; for sim-

plicity, this section is presented in the setting of classical convex conjugation.
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In Section 4 we propose an extension of the DC algorithm to the broader class

of nonconvex problems considered in Section 3.

2 Multiduality

Let (Xi)i∈I be a family of nonempty sets, indexed by I 6= ∅. We denote

X :=
∏
i∈I Xi and X−i :=

∏
j∈I\{i}Xj for i ∈ I. For y ∈ X−i and z ∈ Xi, we

define x(−i,y),(i,z) ∈ X by

(
x(−i,y),(i,z)

)
i

:= z,
(
x(−i,y),(i,z)

)
j

:= yj for j ∈ I \ {i}. (1)

Given a function c : X → R, for each i ∈ I we consider the coupling function

ci : X−i ×Xi → R defined by

ci(y, z) := c(x(−i,y),(i,z)).

Notice that, for x ∈ X, one has ci(x−i, xi) = c(x); here and throughout we

denote by x−i the projection of x ∈ X onto X−i, that is,

(x−i)j := xj for j ∈ I \ {i}.

Following the generalized conjugation scheme of [10], we define a new coupling

function c′i : Xi ×X−i → R by

c′i(z, y) := ci(y, z)

and consider the conjugation operators associated with ci and c′i, namely the

ci-conjugate of g : X−i → R is the function gci : Xi → R defined by

gci(z) := sup
y∈X−i

{ci(y, z)− g(y)},
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and, analogously, the c′i-conjugate of h : Xi → R is hc
′
i : X−i → R, defined by

hc
′
i(y) := sup

z∈Xi

{c′i(z, y)− h(z)};

here and in the sequel we adopt the conventions

+∞+ (−∞) = −∞+ (+∞) = +∞− (+∞) = −∞− (−∞) := −∞.

For h : Xi → R, z ∈ h−1 (R) and ε ≥ 0, we set

∂
c′i
ε h (z) := {y ∈ X−i : h (z)− h (z) ≥ c′i (z, y)− c′i (z, y)− ε for every z ∈ Xi} .

One can easily check that

∂
c′i
ε h (z) =

{
y ∈ X−i : −(hc

′
i (y)− c′i (z, y)) ≥ h (z)− ε

}
.

Given f : X → R, for i ∈ I and z ∈ Xi we define fi,z : X−i → R by

fi,z(y) := f(x(−i,y),(i,z)).

Notice that, for x ∈ X, one has fi,xi(x−i) = f(x).

Theorem 2.1 Let f : X → R. For every i ∈ I one has

sup
z∈Xi

f cii,z(z) = sup
x∈X
{c(x)− f(x)}.

Hence, the optimal value of problem

(Pi) sup
z∈Xi

f cii,z(z)

does not depend on i.
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Proof We have

sup
z∈Xi

f cii,z(z) = sup
z∈Xi

sup
y∈X−i

{ci(y, z)− fi,z(y)}

= sup
x∈X
{ci(x−i, xi)− fi,xi

(x−i)}

= sup
x∈X
{c(x)− f(x)}. ut

Corollary 2.1 Let G ⊆ X and, for i ∈ I, denote by Ci : Xi ⇒ X−i the

set-valued mapping defined by

Ci(z) := {y ∈ X−i : x(−i,y),(i,z) ∈ G}.

Then

sup
z∈Xi

δciCi(z)
(z) = sup

x∈G
c(x).

Proof Apply Theorem 2.1 with f := δG. ut

Corollary 2.2 Let Gi ⊆ Xi for every i ∈ I. Then

sup
z∈Gi

δciG−i
(z) = sup

x∈G
c(x).

Proof Apply Corollary 2.1 with G :=
∏
i∈I Xi. ut

Corollary 2.3 Let fi : Xi → R ∪ {+∞}(i = 1, ..., n), and define

f :

n∏
i=1

Xi → R ∪ {+∞} by f (x1, ..., xn) :=

n∑
i=1

fi (xi) .

Then, for every i ∈ I, one has

sup
z∈Xi


 n∑
j=1
j 6=i

fj


ci

(z)− fi (z)

 = sup
x∈X
{c(x)− f(x)}.
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Theorem 2.2 Assume that the optimal value of (Pi) is finite, and let ε, η ≥ 0.

If z̄ is an ε-optimal solution to (Pi) such that f
cic
′
i

i,z̄ = fi,z̄, then, for every

ȳ ∈ ∂ηf
ci
i,z̄(z̄) and j ∈ I \ {i}, the point ȳj is an (ε + η)-optimal solution to

(Pj) .

Proof We have

f
cj
j,ȳj

(ȳj) ≥ cj
(
x(i,z̄),(I\{i,j},ȳ−j), ȳj

)
− fj,ȳj (x(i,z̄),(I\{i,j},ȳ−j))

= c(x(−i,ȳ),(i,z̄))− f(x(i,z̄),(−i,ȳ))

= ci(y, z)− fi,z̄(ȳ) = c′i(z, y)− fi,z̄(ȳ)

= c′i(z, y)− f cic
′
i

i,z̄ (ȳ) ≥ f cii,z̄(z̄)− η

≥ sup
z∈Xi

f cii,z(z)− ε− η = sup
v∈Xj

f
cj
j,v(v)− (ε+ η),

the last equality being an immediate consequence of Theorem 2.1. ut

3 Nonconvex Duality

3.1 A Generalization of Toland - Singer Duality

Let (X1, X2, 〈·, ·〉) be a dual pair of locally convex spaces and f : X1×X2 → R.

In this section we will apply the general results of Section 2 to the special case

when I := {1, 2} and c is the duality pairing 〈·, ·〉.

We recall that the Fenchel conjugates of g : X2 → R and h : X1 → R are

the functions g∗ : X1 → R and h∗ : X2 → R, respectively, defined by

g∗ (z) := sup
y∈X2

{〈z, y〉 − g (y)} , h∗ (y) := sup
z∈X1

{〈z, y〉 − h (z)} .
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It is easy to see that, for the coupling function c considered in this section,

one has gc1 = g∗ and hc2 = h∗. Thus, Theorem 2.1 and Corollaries 2.1 and 2.2

yield:

Corollary 3.1 Let f : X1 ×X2 → R. Then

sup
z∈X1

f(z, ·)∗(z) = sup
(z,y)∈X1×X2

{〈z, y〉 − f (z, y)} = sup
y∈X2

f(·, y)∗(y).

Corollary 3.2 Let T : X1 ⇒ X2. Then

sup
z∈X1

δ∗T (z)(z) = sup
(z,y)∈Graph T

〈z, y〉 = sup
y∈X2

δ∗T−1(y)(y).

Proof Apply Corollary 2.1 with G := Graph T. ut

Corollary 3.3 Let Z ⊆ X1 and Y ⊆ X2. Then

sup
z∈Z

δ∗Y (z) = sup
x∈Z×Y

〈z, y〉 = sup
y∈Y

δ∗Z(y).

Similarly, from Corollary 2.3 or, alternatively, Corollary 3.1 (by setting

f (z, y) := h (z) + g (y)), one obtains the following version of the classical

Toland - Singer duality theorem [2,4]:

Corollary 3.4 Let g : X2 → R and h : X1 → R. Then one has

sup
z∈X1

{g∗(z)− h (z)} = sup
(z,y)∈X1×X2

{〈z, y〉 − h (z)− g (y)} = sup
y∈X2

{h∗(y)− g (y)} .

From the preceding corollary, by taking g := k∗, with k : X1 → R such that

k∗∗ = k, one immediately obtains the standard Toland - Singer formula.

We recall that, for η ≥ 0, the η-subdifferential of h : X1 → R at z̄ ∈ h−1 (R)

is the set

∂ηh (z̄) := {y ∈ X2 : h (z) ≥ h (z̄) + 〈z − z̄, y〉 − η for every z ∈ X1} .
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From Theorem 2.2, one gets the following result on approximate optimal so-

lutions of the pair of dual problems

(P) maximize f(z, ·)∗(z)

and

(D) maximize f(·, y)∗(y)

of Corollary 3.1. A related result, showing how to obtain optimal dual solutions

from optimal primal solutions of nonconvex problems, can be found in [3,

Theorem 2.4].

Corollary 3.5 Assume that the optimal value of (P) is finite, and let ε, η ≥ 0.

If z̄ is an ε-optimal solution to (P) such that f (z, ·) is convex and l.s.c. then,

for every ȳ ∈ ∂ηf (z, ·)∗ (z̄), the point ȳ is an (ε+ η)-optimal solution to (D) .

The following characterization of approximate global optimal solutions gen-

eralizes a well known necessary and sufficient global optimality condition due

to Hiriart-Urruty [5].

Theorem 3.1 Assume that the optimal value of (P) is finite, and let z̄ ∈ X1

and ε ≥ 0. Then z̄ is an ε-optimal solution to (P) if and only if for every η ≥ 0

and every y ∈ f(z̄, ·)−1 (R) such that z̄ ∈ ∂ηf(z̄, ·)(y) one has

y ∈ ∂ε+ηf(·, y)(z̄). (2)

Proof Let z̄ be an ε-optimal solution to (P), and η ≥ 0 and y ∈ f(z̄, ·)−1 (R)

be such that z̄ ∈ ∂ηf(z̄, ·)(y). Using Corollary 3.1, we obtain

f (·, y) (z̄) = f(z̄, ·) (y) ≤ 〈z̄, y〉+ η − f(z̄, ·)∗(z̄)

≤ 〈z̄, y〉+ η − sup
z∈X1

f(z, ·)∗ + ε ≤ 〈z̄, y〉+ η − f(·, y)∗(y) + ε,
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which proves (2).

Conversely, assume that the condition stated after “if and only if” holds,

let y ∈ f(z̄, ·)−1 (R) , and define η := f(z̄, y) + f(z̄, ·)∗(z̄)− 〈z̄, y〉 . Then η ≥ 0

and z̄ ∈ ∂ηf(z̄, ·)(y), and therefore (2) holds. Hence

f(z̄, ·)∗(z̄) = 〈z̄, y〉+ η − f(z̄, y) ≥ f(·, y)∗(y)− ε,

which shows that z̄ is an ε-optimal solution to (P). ut

To apply the duality theory presented in this section to a given optimization

problem, one has to be able to recognize whether the objective function of the

problem under consideration can be written in the form f (z, ·)∗ (z) for some

function f : X1 ×X2 → R. The following theorem provides a useful criterion

to make this recognition possible.

Theorem 3.2 For every f : X1 ×X2 → R, the function ϕ : X2
1 → R defined

by ϕ(z, z′) := f (z, ·)∗ (z′) is convex, proper (accepting as proper the constant

functions +∞ and −∞) and l.s.c. in its second argument. Conversely, for

every function ϕ : X2
1 → R with these properties there exists f : X1×X2 → R

such that f (z, ·)∗ (z) = ϕ(z, z) for every z ∈ X1.

Proof The first part of the statement is an immediate consequence of well

known properties of conjugate functions. To prove the converse, define f :

X1 ×X2 → R by f (z, y) := ϕ (z, ·)∗ (y) ; then, since ϕ (z, ·) is convex, proper

and l.s.c, from the equality f (z, ·) := ϕ (z, ·)∗ it follows that ϕ (z, ·) := f (z, ·)∗ ,

and therefore ϕ (z, z) := f (z, ·)∗ (z) . ut
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According to the preceding theorem, the class of problems

(P) maximize f (z, ·)∗ (z)

to which our duality theory applies coincides with that consisting of problems

with format

(P) maximize ϕ(z, z), (3)

the function ϕ : X2
1 → R being as in the statement. Since, in view of the

proof, the objective function of these two problems are linked by the relation

f (z, ·) := ϕ (z, ·)∗ , a straightforward computation yields the dual objective

function in terms of ϕ :

f (·, y)
∗

(y) = sup
z∈X1

{〈z, y〉 − f (z, y)} = sup
z∈X1

{
〈z, y〉 − ϕ (z, ·)∗ (y)

}
. (4)

Hence, if the primal problem is stated as (3), the formulation of the dual

problem is

(D) supz∈X1

{
〈z, y〉 − ϕ (z, ·)∗ (y)

}
.

To illustrate that solving the dual problem may be advantageous, we present

the following academic example, in which the primal problem consists in maxi-

mizing a non concave function and, on the contrary, the dual objective function

is concave.

Example 3.1 Let us consider the primal problem

(P) maximize α(z),

where α is a non concave function defined on a normed space X1. Let us define

ϕ : X2
1 → R by

ϕ(z, z′) := α(z)− ||z||2 + 〈z′, z〉+ δNB(z′ − z);
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here B is the closed unit ball in X1 and N > 0. Clearly, ϕ(z, z) = α(z), and

therefore (P) can be rewritten as (3). Since

ϕ (z, ·)∗ (y) = sup
z′∈X1

{〈z′, y〉 − ϕ (z, z′)}

= sup
z′∈X1

{〈z′, y − z〉+ δNB(z′ − z)} − α(z) + ||z||2

= sup
v∈X1

{〈z + v, y − z〉 − δNB(v)} − α(z) + ||z||2

= sup
v∈NB

〈v, y − z〉+ 〈z, y〉 − α(z)

= N ||y − z||+ 〈z, y〉 − α(z),

according to (4) we get the following expression for the dual objective function:

f (·, y)
∗

(y) = sup
z∈X1

{
〈z, y〉 − ϕ (z, ·)∗ (y)

}
= sup
z∈X1

{α(z)−N ||y − z||} ,

which, in view of [11, p. 200], shows that it is the smallestN -Lipschitz majorant

of α. This N -Lipschitz envelope is concave in some cases; for instance, let us

consider the case when X1 := R,

α(z) := −2z6 + 15z4 − 36z2

and N := 10. Then one can easily prove that

f (·, y)
∗

(y) =


10y + r + α(−r), if y ≤ −r,

α(y), if y ∈ [−r, r],

−10y + r + α(r), if y ≥ −r.

with r being the smallest positive real number satisfying α′(−r) = 10.

Figure 1 depicts the graphs of both α and y → f (·, y)
∗

(y) and shows that the

latter function is concave.
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Fig. 1 Graph of α(y) (black line) and y → f (·, y)∗ (y) (dash line)

3.2 Example: Generalized Perspective Functions

Let g : X2 → ]0,+∞[ and h : X1 → ]0,+∞[ , and define f : X1×X2 → ]0,+∞[

by f(z, y) := h(z)g(y). For this particular function f, the objective functions

of problems (P) and (D) can be expressed by means of the operation ∆ in-

troduced in [6], which constitutes a generalization of the so called perspective

function of Convex Analysis. Indeed, for z ∈ X1 one has f(z, ·) = h(z)g, and

hence

f(z, ·)∗(z) = (h(z)g)
∗

(z) = h(z)g∗
(

z

h(z)

)
= (g∗∆h) (z, z) .

Similarly, for y ∈ X2 one has

f(·, y)∗ (y) = (g(y)h)
∗

(y) = g(y)h∗
(

y

g(y)

)
= (h∗∆g) (y, y) .
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Thus, Theorem 3.1 yields:

Corollary 3.6 Let g : X2 → ]0,+∞[ and h : X1 → ]0,+∞[ . Then

sup
z∈X1

(g∗∆h) (z, z) = sup
y∈X2

(h∗∆g) (y, y) .

4 An Algorithm

In the setting of the preceding section, in this one we will assume that X1 and

X2 are the Euclidean space Rn and 〈·, ·〉 is the standard Euclidean product.

Let f : Rn × Rn → R, and consider the sets

Pl = {z̄ ∈ Rn : y ∈ Rn and z̄ ∈ ∂f(z̄, ·)(y) imply y ∈ ∂f(·, y)(z̄)}

and

Dl = {ȳ ∈ Rn : z ∈ Rn and ȳ ∈ ∂f(·, ȳ)(z) imply z ∈ ∂f(z, ·)(ȳ)}.

According to Theorem 3.1, the set Pl contains all the optimal solutions to

(P) and the set Dl contains all the optimal solutions to (D).

For z̄ ∈ Rn and ȳ ∈ Rn, we consider the auxiliary problems

S(z̄) maximize f(·, y)∗(y) subject to y ∈ ∂f(z̄, ·)∗(z̄)

and

T (ȳ) maximize f(z, ·)∗(z) subject to z ∈ ∂f(·, ȳ)∗(ȳ).

We will denote by OS(z̄) and OT (ȳ) the sets of optimal solutions to problems

S(z̄) and T (ȳ), respectively.
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Proposition 4.1 (1) If z̄ ∈ Pl and f(z̄, ·) is convex, proper and l.s.c., then

the function y 7→ f(·, y)∗(y) is constant on ∂f(z̄, ·)∗(z̄).

(2) If ȳ ∈ Dl and f(·, ȳ) is convex, proper and l.s.c., then the function

z 7→ f(z, ·)∗(z) is constant on ∂f(·, ȳ)∗(ȳ).

Proof By symmetry, we only need to prove (1). Let z̄ ∈ Pl. If y ∈ ∂f(z̄, ·)∗(z̄),

then

f(z̄, ·)∗(z̄) = 〈z̄, y〉 − f(z̄, ·)∗∗ (y) = 〈z̄, y〉 − f(z̄, y) (5)

and, since y ∈ ∂f(·, y)(z̄) (as z̄ ∈ Pl),

f(·, y)∗(y) = 〈z̄, y〉 − f(z̄, y). (6)

From (6) and (5) it immediately follows that

f(·, y)∗(y) = f(z̄, ·)∗(z̄). (7)

ut

Starting with an initial point z0 ∈ Rn, we construct two sequences zk and

yk as follows:

z0 7→ y0 ∈ OS(z0)

z1 ∈ OT (y0) 7→ y1 ∈ OS(z1)

...
...

zk+1 ∈ OT (yk) 7→ yk+1 ∈ OS(zk+1).

(8)

This algorithm requires the auxiliary problems occurring at each iteration to

be solvable, and from now on we will assume that this is the case. The follow-

ing proposition states sufficient conditions for solvability of these problems.
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We recall that a function is called co-finite if its conjugate is finite valued

everywhere.

Proposition 4.2 Let z̄ ∈ Rn and ȳ ∈ Rn, and assume that f is continuous.

If f(z̄, ·) is co-finite and the mapping y 7−→domf(·, y) is compact-valued and

continuous, then OS(z̄) 6= ∅. Analogously, if f(·, ȳ) is co-finite and the mapping

z 7−→ domf(z, ·) is compact-valued and continuous, then OT (ȳ) 6= ∅.

Proof The co-finiteness of f(z̄, ·) guarantees that the feasible set ∂f(z̄, ·)∗(z̄)

of S(z̄) is nonempty and compact. On the other hand, continuity of f together

with compact-valuedness and continuity of the mapping y 7−→ domf(·, y)

implies, by Berge’ maximum theorem, continuity of the objective function

y 7−→ f(·, y)∗(y). It thus suffices to apply Weierstrass’ extreme value theorem

to conclude that OS(z̄) 6= ∅. The proof of the nonemptiness of OT (ȳ) is the

same, mutatis mutandis. ut

Theorem 4.1 Let f : Rn ×Rn → R∪ {+∞} and let the sequences zk and yk

be constructed according to (8). Then

f(zk+1, ·)∗(zk+1) ≥ f(·, yk)∗(yk) ≥ f(zk, ·)∗(zk). (9)

The first inequality holds with the equal sign if and only if zk+1 ∈ ∂f(zk+1, ·)(yk),

in which case, assuming that the function f(·, yk) is convex, proper and l.s.c.,

we have yk ∈ Dl. The second inequality holds with the equal sign if and only if

yk ∈ ∂f(·, yk)(zk), in which case, assuming that the function f(zk, ·) is convex,

proper and l.s.c., we have zk ∈ Pl.
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Proof Because of Fenchel inequality and the relations zk+1 ∈ ∂f(·, yk)∗(yk)

and yk ∈ ∂f(zk, ·)∗(zk), we obtain

f(zk+1, ·)∗(zk+1) ≥
〈
zk+1, yk

〉
− f(zk+1, yk)

= f(·, yk)∗(yk)

≥
〈
zk, yk

〉
− f(zk, yk)

= f(zk, ·)∗(zk).

The ‘if and only if” assertions follow from the above chain of inequalities, com-

bined with the well-known characterization of subgradients as those elements

that satisfy the Fenchel inequality with the equal sign.

Let us assume that the first inequality holds with the equal sign, and let

z ∈ Rn be such that yk ∈ ∂f(·, yk)(z). Since we have zk+1 ∈ OT (yk) and

zk+1 ∈ ∂f(zk+1, ·)(yk), using that f(·, yk) is convex, proper and l.s.c., we

obtain

f(z, ·)∗(z) ≤ f(zk+1, ·)∗(zk+1) =
〈
zk+1, yk

〉
− f(zk+1, yk)

=
〈
zk+1, yk

〉
− f(·, yk)∗∗

(
zk+1

)
≤
〈
z, yk

〉
− f(·, yk)∗∗ (z)

=
〈
z, yk

〉
− f(z, yk) ≤ f(z, ·)∗(z);

therefore f(z, ·)∗(z) =
〈
z, yk

〉
− f(z, yk), that is, z ∈ ∂f(z, ·)(yk). This shows

that yk ∈ Dl.

Let us assume that the second inequality holds with the equal sign, and

let y ∈ Rn be such that zk ∈ ∂f(zk, ·)(y). Since we have yk ∈ OS(zk) and

yk ∈ ∂f(·, yk)(zk), using that f(zk, ·) is convex, proper and l.s.c. and the fact
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that zk ∈ ∂f(zk, ·)∗∗(y), we obtain

f(·, y)∗(y) ≤ f(·, yk)∗(yk) =
〈
zk, yk

〉
− f(zk, yk) =

〈
zk, yk

〉
− f(zk, ·)∗∗

(
yk
)

≤
〈
zk, y

〉
− f(zk, ·)∗∗ (y) =

〈
zk, y

〉
− f(zk, y) ≤ f(·, y)∗(y);

therefore f(·, y)∗(y) =
〈
zk, y

〉
− f(zk, y), that is, y ∈ ∂f(·, y)(zk). This shows

that zk ∈ Pl. ut

Corollary 4.1 (1) Let f, zk and yk be as in Theorem 4.1. Then

lim
k→∞

f(zk, ·)∗(zk) = lim
k→∞

f(·, yk)∗(yk). (10)

(2) If f is continuous, z is a cluster point of the sequence zk, and the sequence

yk is bounded, then

f(z, ·)∗(z) = lim
k→∞

f(zk, ·)∗(zk). (11)

(3) If f is continuous, y is a cluster point of the sequence yk, and the sequence

zk is bounded, then

f(·, y)∗(y) = lim
k→∞

f(·, yk)∗(yk).

Proof (1) The equality (10) is an immediate consequence of (9).

(2) If f is continuous, then the function z 7→ f(z, ·)∗(z) is l.s.c.. If z is a

cluster point of zk, then

lim
j→∞

zkj = z

for some subsequence zkj . Since the sequence yk is bounded, we can suppose

(extracting again subsequences if necessary) that the sequence ykj converges

to a point y. Using the chain of inequalities at the beginning of the proof of
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Theorem 4.1, the continuity of f, and the lower semicontinuity of the function

z 7→ f(z, ·)∗(z), we obtain

lim
k→∞

f(zk, ·)∗(zk) = lim
j→∞

f(zkj , ·)∗(zkj ) = lim
j→∞

(〈
zkj , ykj

〉
− f(zkj , ykj )

)
= 〈z, y〉 − f(z, y) ≤ f(z, ·)∗(z) ≤ lim

j→∞
f(zkj , ·)∗(zkj )

= lim
k→∞

f(zk, ·)∗(zk),

which proves (11).

The proof of (3) is similar to that of (2). ut

Theorem 4.2 Let f be continuous.

(1) If f is convex and proper in its first argument, z is a cluster point of zk,

and the sequence yk is bounded, then z ∈ Pl.

(2) If f is convex and proper in its second argument, y is a cluster point of yk,

and the sequence zk is bounded, then y ∈ Dl.

Proof (1) Let y ∈ Rn be such that z ∈ ∂f(z, ·)(y). Since z is a cluster point of

zk, we have

lim
j→∞

zkj = z

for some subsequence zkj . We can suppose (extracting subsequences if nec-

essary) that the sequence ykj−1 converges to a point y ∈ Rn. Given that

zkj ∈ OT (ykj−1) and ykj ∈ OS(zkj ), we have zkj ∈ ∂f(·, ykj−1)∗(ykj−1) and

ykj ∈ ∂f(zkj , ·)∗(zkj ). Hence, using the properties of f and Corollary 4.1, we
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get

f(·, y)∗(y) ≤ lim
j→∞

f(·, ykj−1)∗(ykj−1) (12)

= lim
j→∞

(〈
zkj , ykj−1

〉
− f(zkj , ykj−1)

)
≤ lim

j→∞
f(zkj , ·)∗(zkj )

= f(z, ·)∗(z)

= 〈z, y〉 − f(z, y)

From (12) and Fenchel inequality, we obtain y ∈ ∂f(·, y)(z). This shows that

z ∈ Pl.

The proof of (2) is similar. ut
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