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Abstract

We present a generalization of the strong Fitzpatrick inequality in the
context of re�exive Banach spaces, involving a twisted bigger conjugate
function. We also introduce a related family of gap functions for maximal
monotone inclusion problems.
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1 Introduction

The main result of this mote is a generalization of the strong Fitzpatrick in-
equality ([8, Theorem 4], [4, Theorem 9.7.2]) in the context of re�exive Banach
spaces. In our generalized inequality, a twisted bigger conjugate function [7,
De�nition 19.14] de�ned on the product of the space with its dual plays the role
that the norm on this product plays in the case of the classical strong inequal-
ity. Related to the new inequality, we introduce a new family of gap functions,
parameterized by Tykhonov well-posed twisted bigger conjugate functions, for
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a general maximal monotone inclusion problem, that is, the problem of �nding
a zero of a maximal monotone operator. By means of a gap function one can
reformulate the maximal monotone inclusion problem as a convex optimization
problem. We compare our new family with a gap function recently proposed in
[2].
The rest of the paper is organized as follows. Section 2 deals with the funda-

mental notions on maximal monotone operators and Fitzpatrick functions that
are used in the paper. In Section 3 we present our generalization of the strong
Fitzpatrick inequality. Section 4 introduces a related family of gap functions for
maximal monotone inclusion problems.

2 Preliminaries

Let (X; k�k) be a real Banach space with dual (X�; k�k�). We will denote by
h�; �i : X�X� ! R the duality pairing between these spaces. The duality pairing
between the space X �X� and X��X is the function on (X �X�)�X��X,
also denoted by h�; �i ; given by

h(x; x�); (y�; y)i = hx; y�i+ hy; x�i : (1)

We recall that X��X can be canonically identi�ed with a subspace of the dual
space (X �X�)

� of X � X�; under this identi�cation, one has (X �X�)
�
=

X� �X if and only if the space is re�exive.
Let T : X � X� be a set-valued operator. The graph and the domain of T

are given, respectively, by

gph T := f(x; x�) 2 X �X� j x� 2 T (x)g

and
dom T := fx 2 X j T (x) 6= ;g:

Recall that T is said to be monotone if

hx� y; x� � y�i � 0

whenever x; y 2 X and (x; x�); (y; y�) 2 gph T .
A monotone map T : X � X� is said to be maximal monotone if there is no

monotone map whose graph properly contains the graph of T . The Fitzpatrick
function associated with a maximal monotone operator T is the lsc convex
extended real valued function on X �X� de�ned by

FT (x; x
�) := sup

(y;y�)2gph T
fhx� y; y�i+ hy; x�ig:

Equivalently,

FT (x; x
�) = hx; x�i � inf

(y;y�)2gph T
hx� y; x� � y�i : (2)
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Since T is maximal monotone, we can easily see that the Fitzpatrick function
satis�es

FT (x; x
�) � hx; x�i for all (x; x�) 2 X �X�; (3)

with equality if and only if (x; x�) 2 gph T:
Given an lsc proper convex function f : X ! R [ f+1g, its Fenchel conju-

gate f� : X� ! R [ f+1g is de�ned by

f�(x�) := sup
x�2X�

fhx; x�i � f�(x�)g:

Therefore, in view of (1), the restriction of the Fenchel-Moreau conjugate of
g : X �X� ! R [ f+1g to X� �X is given by

g�(x�; x) := sup
(y;y�)2X�X�

fh(y; y�); (x�; x)i � g(y; y�)g:

It is not di¢ cult to see that the conjugate F �T of the Fitzpatrick function FT
associated with a maximal monotone operator T satis�es

F �T (x
�; x) � FT (x; x�) for all (x; x�) 2 X �X�: (4)

Theorem 1 (see [4, Exercise 9.23]) Let T : X � X� be maximal monotone.
Then

FT (x; x
�)� hx; x�i+ FT (w;w�)� hw;w�i � �

1

2
hx� w; x� � w�i

for all (x; x�); (w;w�) 2 X �X�.

Proof. Using the convexity of the Fitzpatrick function and the fact that it is
bounded below by the duality product, we obtain

FT (x; x
�)� hx; x�i+ FT (w;w�)� hw;w�i

= 2
�
1
2FT (x; x

�) + 1
2FT (w;w

�)
�
� hx; x�i � hw;w�i

= 2
�
1
2FT (x; x

�) + 1
2FT (w;w

�)
�
� hx; x�i � hw;w�i

� 2FT
�
1
2 (x+ w) ;

1
2 (x

� + w�)
�
� hx; x�i � hw;w�i

= � 1
2 hx� w; x

� � w�i :

We conclude this section enunciating a version of Fenchel Duality Theorem.
It will play an essential role in the proof of the main result of this work. We recall
that the domain of a function f : X ! R [ f+1g is the set dom f := f�1 (R) :

Theorem 2 [4, See Theorem 4.4.18] Let f; g : X ! R [ f+1g be convex and
such that 0 2 int (dom f � dom g), where int denotes interior. Then

inf
x2X

ff(x) + g(x)g = sup
x�2X�

f�f�(x�)� g�(�x�)g (5)

and the supremum in (5) is attained if �nite.
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3 Main result

We say that an lsc proper convex function g : X�X� ! R[f+1g is a twisted
bigger conjugate function (TBC-function in short) [7, De�nition 19.14] if

�hx; x�i � g(x; x�) � g�(�x�;�x) (6)

for all (x; x�) 2 X �X�.

Example 3 The function g : X � X� ! R [ f+1g de�ned by g(x; x�) :=
f(x) + f�(�x�), where f : X ! R [ f+1g is an lsc proper convex function,
is a TBC-function. In particular, so is the function g de�ned by g(x; x�) :=
1
pkxk

p
+ 1

qkx
�kq�, where p � 1 and 1

p +
1
q = 1.

The folowing proposition will be useful in the next section.

Proposition 4 Let g : X �X� ! R[ f+1g be a non-negative TBC-function.
Then

min
(x;x�)2X�X�

g(x; x�) = g (0; 0) = 0: (7)

Proof. By (6) and the nonnegativity of g; we have

0 � g (0; 0) � g� (0; 0) = � inf
(x;x�)2X�X�

g(x; x�) � 0:

Theorem 5 Let X be re�exive, T : X � X� be maximal monotone, and
g : X�X� ! R[f+1g be a TBC-function. Consider the following conditions:

(i) dom FT = X �X�,

(ii) dom g = X �X�.

If any one of them holds then

FT (x; x
�)� hx; x�i � 1

2
inf

(w;w�)2gph T
g(w � x;w� � x�)

for all (x; x�) 2 X � X�; with strict inequality whenever the in�mum is not
attained.

Proof. For (x; x�) 2 X � X�, consider the maximal monotone operator L :
X � X� de�ned by L(y) := T (y + x)� x�. Since

gphL = gphT � (x; x�); (8)
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the functions FL and g satisfy the assumptions of Theorem 2. Thus, since
FL(x; x

�) � hx; x�i and g(x; x�) � �hx; x�i for every (x; x�) 2 X�X�, we have

0 � inf
(x;x�)2X�X�

fFL(x; x�) + g(x; x�)g

= sup
(y�;y)2X��X

f�F �L(y�; y)� g�(�y�;�y)g

� sup
(y�;y)2X��X

f�F �L(y�; y) + hy; y�ig

� sup
(y�;y)2X��X

f�FL(y; y�) + hy; y�ig � 0; (9)

the last two inequalities following from (4) and (3). Thereby

max
(y�;y)2X��X

f�F �L(y�; y)� g�(�y�;�y)g = 0:

Thus, there exists (y�; y) 2 X� �X such that F �L(y
�; y) + g�(�y�;�y) = 0. By

(4), we obtain that
FL(y; y

�) + g�(�y�;�y) � 0:

So, since g is a TBC-function, we conclude that

FL(y; y
�) + g(y; y�) � 0

and thus, in view of the �rst inequality in (9), FL(y; y�) + g(y; y�) = 0 and
(y; y�) is a minimizer of FL + g.
Since

0 = FL(y; y
�) + g(y; y�) � FL(y; y�)� hy; y�i � 0;

we have
�g(y; y�) = FL(y; y�) = hy; y�i :

Thus (y; y�) 2 gph L and, setting (w;w�) := (x+ y; x� + y�); by (8) we obtain
that (w;w�) 2 gph T and �g(w � x;w� � x�) = hw � x;w� � x�i, and from
Theorem 1 we conclude that

FT (x; x
�)� hx; x�i = FT (w;w

�)� hw;w�i+ FT (x; x�)� hx; x�i

� �1
2
hw � x;w� � x�i = 1

2
g(w � x;w� � x�);

which ends the proof.

Since the function g of Example 3 is a TBC-function and its domain is
X �X�, applying Theorem 5 to this case we obtain the following result:

Corollary 6 Let X be re�exive, T : X � X� be maximal monotone, and
f : X ! R[f+1g be convex, proper and lsc. Consider the following conditions:

(i) dom FT = X �X�,
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(ii) dom f = X and dom f� = X�:

If any one of them holds then

FT (x; x
�)� hx; x�i � 1

2
inf

(w;w�)2gph T
ff (w � x) + f� (x� � w�)g

for all (x; x�) 2 X � X�; with strict inequality whenever the in�mum is not
attained.
In particular, for every p � 1 and q such that 1p +

1
q = 1; one has

FT (x; x
�)� hx; x�i � 1

2
inf

(w;w�)2gph T

�
1

p
kw � xkp + 1

q
kw� � x�kq�

�
for all (x; x�) 2 X � X�; with strict inequality whenever the in�mum is not
attained.

Concerning the condition dom f� = X� in (ii) of Corollary 6, we recall that
a su¢ cient (and necessary in the �nite dimensional case) condition for it to hold
is f to be supercoercive [1, Theorem 3.4]:

lim
kxk�!+1

f (x)

kxk = +1:

Setting p = 2 in Corollary 6, we obtain the following known result:

Corollary 7 (Strong Fitzpatrick Inequality) [8, Theorem 4] (see also [4,
Theorem 9.7.2]). Let X be re�exive and T : X � X� be maximal monotone.
Then

FT (x; x
�)� hx; x�i � 1

4
inf

(w;w�)2gph T

n
kw � xk2 + kw� � x�)k2�

o
for all (x; x�) 2 X �X�.

4 A new family of gap functions

In this section, we shall consider the so called maximal monotone inclusion
problem (MIP) [2, 3]: Given a maximal monotone operator T : X � X�, �nd
a point x 2 X such that

0 2 T (x):

The (possibly empty) solution set of MIP is T�1(0) = fx 2 X j 0 2 T (x)g.
A gap function for MIP is a function ' : X ! R [ f+1g satisfying the

following conditions:

i) '(x) � 0 for all x 2 X.
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ii) '(x) = 0 if and only if x 2 T�1(0).

Thereby, the minimizers of ' are exactly the elements in the solution set of
MIP. Thus, we can reformulate MIP as the optimization problem consisting in
minimizing '. The following result has an immediate proof.

Proposition 8 (see [2, Theorem 2.1]) Let ' be a gap function for MIP. If
MIP has a solution, then minx2X ' (x) = 0. Conversely, if X is re�exive,
infx2X ' (x) = 0; and ' is weakly lsc (in particular, if it is convex and lsc) and
weakly coercive in the sense that

lim
kxk!1

'(x) = +1

then MIP has a solution.

In [2], Borwein and Dutta present a gap function GT for MIP, associated
with the Fitzpatrick function FT of T . It is de�ned by GT (x) := FT (x; 0), or,
more explicitly,

GT (x) = sup
(y;y�)2gph T

hx� y; y�i :

It is easy to see that GT is indeed a gap function, and Borwein and Dutta found
that it has good properties.
For g : X �X� ! R [ f+1g, we de�ne GT;g : X ! R [ f+1g by

GT;g(x) :=
1

2
inf

(w;w�)2gph T
g(w � x;w�):

Note that GT;g is convex whenever g is convex, since in this case the function
(x;w;w�) 7! g(w � x;w�) is convex, jointly in its three arguments. Moreover,
it is proper as long as g is �nite at some (w;w�) 2 gph T:
The following proposition is an immediate consequence of Theorem 5.

Proposition 9 Under the assumptions of Theorem 5, one has GT � GT;g; and
hence GT;g is �nite whenever GT is �nite.

We refer to [2] for conditions on T ensuring that GT is �nite.

De�nition 10 [6, De�nition 10.1.1] Let E be a metric space. An lsc function
' : E ! R[f+1g is said to be Tykhonov well-posed if it satis�es the following
conditions:

(i) It has a unique global minimizer x:

(ii) Every sequence xn such that '(xn)! '(x) satis�es xn ! x.

Example 11 [6, Example 10.1.4] If X is a �nite dimensional vector space,
then every lsc proper convex function f : X ! R [ f+1g with a unique mini-
mum point is Tykhonov well-posed. In particular, so is every lsc strictly convex
function de�ned on X.
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Example 12 A function f : X ! R [ f+1g is said to be strongly convex if
there exists 
 > 0 such that, for every x; y 2 X and �; � � 0 with � + � = 1,
one has

f(�x+ �y) � �f(x) + �f(y)� 
��kx� yk2: (10)

If f is strongly convex and has a minimizer then it is Tykhonov well-posed.
Indeed, it is well known that the minimizer x; if it exists, must be unique. Let xn
be a sequence satisfying f(xn)! f(x): Setting x := xn; y := x and � = � := 1

2
in (10), we get

0 � kxn � xk �

s
2




�
f(xn) + f(x)� 2f

�
1

2
(xn + x)

��
�

r
2



(f(xn)� f(x))! 0;

which shows that xn ! x.

For more examples and references about Tykhonov well-posedness, see [5, 6].

Theorem 13 Let T : X � X� be maximal monotone and
g : X�X� ! R[f+1g be a Tykhonov well-posed function satisfying (7). Then
GT;g is a gap function for MIP.

Proof. Note that GT;g(x) � 0 for all x 2 X since g is non-negative. Moreover,
if GT;g(x) = 0 for some x 2 X then there exist (wn; w�n) � gph T such that
g(wn � x;w�n) �! 0. Since g is Tykhonov well-posed, from (7) it follows that
wn �! x and w�n �! 0. Since gph T is closed, we deduce that (x; 0) 2 gph T;
that is, 0 2 T (x). Conversely, if 0 2 T (x) then, using that (x; 0) 2 gph T and
(7), we obtain 0 � GT;g(x) � g(0; 0) = 0, concluding the proof.

Remark: For x and g as in Theorem (13), if there exist (w;w�) 2 gph T
such that g(w� x;w�) = 0, then GT;g(x) = 0 and hence x is a solution to MIP.

Corollary 14 Let T : X � X� be maximal monotone and
g : X �X� ! R [ f+1g be a nonnegative Tykhonov well-posed TBC-function.
Then GT;g is a gap function for MIP.

Proof. Combine Theorem 13 with Proposition 4.
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