Provided by Diposit Digital de Documents de la UAB

Metadata, citation and similar papers at core.ac.uk

Twitter Bot using Neural Networks

Adria Navarro Ramirez
1° July 2018

Abstract— This project aims to be a study of the application of Recurrent Neural Networks in the
Natural Language Processing field. To do this, as a conductor, we are going to develop an application
capable of generate text character per character after being trained with e-books first and with tweets
later. At the end, the application will become a bot of Twitter that will write tweets autonomously, while
an analysis of the texts generated will serve to understand how the Recurrent Neural Networks work

and the possibilities beyond that tool.

Keywords— Recurrent Neural Network, Text Generation, Twitter Bot, Natural Language Processing.

1 INTRODUCTION

FTER some time with low levels of activity, we are
A now living important years in the development
of Artificial Intelligence. There are some new
techniques, and also machine learning engineers are
taking some of the old ones to use them now. But why
now? There are two main reasons to that increment of
investment, papers and results, the new hardware and the
social networks.

Data has always been essential, but in the last years
it is even more important. The Internet created a new
channel of information, but it is the emergence of Social
Networks what has changed the vision of the data, because
it generated a huge increment of the information we can
collect, information that was not important until now.
It does not mean that the usual data or information has
lost its impact, companies and countries are generating
more data than ever, but the opinion of people, their
acts, their migrations, their every-day routines are now
registered on the Social Networks, and doing aggrega-
tions of the data allows us to generate new information.
That was the boost of Artificial Intelligence in the last years.

One of the greatest impact of that new paradigm was the
enormous amount of data we can use. Deep Learning is
useless with small amounts of it, but with tons of data it
can produce amazing results. In that aspect, Social Net-
works are gold mines. For example, Twitter, the Social Net-
work we are going to use in this TFG, generates 500 million

e Contact e-mail: adrian.navarro@e-campus.uab.cat

e Branch of studies: Computacié

o Tutors: Pau Riba (Computer Science), Josep Lladés (Computer Sci-
ence)

e Course 2017/18

tweets per day, and YouTube generates more than 100 hours
of videos every minute.

1.1 The problem

With the new tools that have emerged, there is no reason
to limit the domain of the problems we try to solve to the
old problems, such as the usual regression or classification.
Those problems can be solved in a new way using, for
example, Neural Networks, but there are also new problems
such as Object Detectors in images or music generation.
The amount of possibilities has make the academic area
of Machine Learning really exciting. There is a problem,
though, that is actually one of the first problems that
Artificial Intelligence tried to solve, and that is the Natural
Language Processing. It is a wide topic, with some high
level solutions. We all can think in the new voice assistants,
and understand that their quality depends on their ability
to understand what the customer is asking, and not in a
comfortable text, but in an imperfect and noisy audio.
Here the old paradigm does not work, especially because
we don’t know how to design a solution to understand
language.

For this kind of problem, where we could not find a
way to do it ourselves, Neural Networks have proved to
be extremely useful. It is a simple concept: some numeric
input flows through a path of neurons that perform a simple
operation to end up finding the expected solution. This
approximation to the solution, however, has its limitations.

We are trying to generate text character per character,
meaning that after generate one character, we are going to
repeat the process to generate the next one, forming words
and sentences. If we try to use a Feedforward Neural Net-
work, after specific character such as ’I’, we would always
generate the same character, lets say ’a’, because during the
training, the sequence ’la’ is more usual than any other se-

July of 2018, Escola d’Enginyeria (UAB)

https://core.ac.uk/display/189878172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EE/UAB TFG COMPUTER SCIENCE: TWITTER BOT USING NEURAL NETWORKS

quence of 2 characters starting by ’I’. The objective should
be to use not only the last character ’1’, but the previous one,
and so on, to have some kind of context or memory about
what are we writing as a whole. That way, we could know
that before the last character '’ we wrote another ’1’, and
previous to this one, an ’e’, preceded by 'h’, forming the
string "hell’. Knowing this, the next character would not be

a’, but ’o’, to form the word ’hello’. Feedforward Neural
Networks can not perform those results.

1.2 State of Art

Nowadays, however, there are different applications that
have some kind of understanding of the language. From an
orthographic corrector to bots that can chat with customers
to solve some of the frequent asked questions or even the
virtual assistants such as Siri, Cortana or Alexa. The al-
gorithms behind them started with some poor autonomous
techniques (f.e. decision trees, where all the possibilities
had to be contemplated by the developer), but now the
Neural Networks have become the most widely tool for
that, or at least, a combination of Neural Networks with old
algorithms.

To overcome the limitations that Neural Networks
present different types of Neural Networks were devel-
oped. One of them has proved to be extremely useful
in the work with sequences of data. It includes text,
which is a model of Natural Language represented as a
sequence of characters or words, but also with spoken
language (audio), music, or other problems where the
sequence should be the input, such as weather predic-
tion. This new type of Neural Network is called Recurrent
Neural Network, and it is based on Markov Hidden Models.

Markov Hidden Models introduced the concept of state.
The current state is a variable that will affect the probabili-
ties of the outputs. The same concept is used in Recurrent
Neural Networks. As we can see in Figure [T} a Recurrent
Neural Network is a Forward Neural Network with a new
component, the state, which will receive the previous state
and modify it depending on the current inputs / outputs and
then, send that result to the next iteration of the RNN exe-
cution. That state will affect the output, in a way that now
the current inputs are not the only data that generates the
output, but the previous iterations that propagate that state.

WH Jﬁ

Unfold

C@) . lhn <

u

@@@

Figure 1: Scheme of a Recurrent Neural Network

Figure [T] shows a Recurrent Neural Network unfolded.
In the right part of the figure we can see three iterations of
the same RNN, with different inputs and outputs, and the
propagation of the state from one iteration to the next one.

Because of this state that propagates in time, RNN simu-
lates memory, and if Forward Neural Networks are equiva-
lent to functions, Recurrent Neural Networks are equivalent
to more complex programs, with variables that change dur-
ing the execution.

So Siri, Cortana, Alexa... All of them are using RNN be-
cause they are the most advanced tool in Natural Language
Processing nowadays.

1.3 Motivation

There are two main reasons that made me take the decision
of start the Twitter Bot using Neural Networks project.
The most important thing is the importance of the Natural
Language Processing, not only in artificial intelligence
but also in the human behaviour. This is a very exciting
area of study, from the way a baby learns to talk to how
different languages affect the way we think or perceive
the reality. There are studies (Learning Features and
Segments from Waveforms: A Statistical Model of Early
Phonological Acquisition, by Ying Lin) that demonstrate
that babies learn to group the sounds into the different
phonemes of their language, and then, they learn the
syllables by understanding that some phonemes make
sequences that appear more often than others. They repeat
the process to understand that some syllables generate
words, and then they learn to associate meaning to the
words. We can actually do the same process with the tools
we already have, even if it is too early to generate the same
results in language understanding, and Recurrent Neural
Networks for Natural Language Processing opens that door.

The second reason is the fact that RNN are really popular
nowadays. They brought a solution to problems that
Forward Neural Networks were not able to solve, and even
if it is not in NLP area, understanding how they work and
being able to use them is a good opportunity for everyone
interested in Deep Learning.

1.4 Objectives

Taking as a reference the reasons that started this project
shown in the previous section, the academic objectives are
to work with and learn about Natural Language Processing
and Recurrent Neural Networks. To achieve this, we are
going to create a text generator, and merging it with the
importance of the Social Networks and all the data that we
can take from them, the text generator will generate tweets
autonomously and publish them on Twitter.

Summarising, the objectives of this TFG are the follow-
ing ones:

e To study one of the general types of NN that have bet-
ter performance nowadays (RNN).

e To approach NLP by using high-performance tools.

e To reach the state of art in autonomous generation of
text.

e To manage the whole life-time of a project.

ADRIAN NAVARRO: TWITTER BOT USING NEURAL NETWORKS

e To create a final product able to show the results of an
academic research.

e To deal with a well known deep learning library

When the project is done, we expect to have similar re-
sults than the ones obtained by Karpathy in his project: [The
Unreasonable Effectiveness of Recurrent Neural Networks,
which was a model to build this one.

1.5 Methodology and planning

The project is, at the end, a TFG, and that entails some time
restrictions and requirements that have to be satisfied.

All the work comprised in the project started on Febru-
ary and will be delivered on July, completing a period of
5 months. The TFG structure includes a first task of study
the subject of the project and then to make a planning of
it. After define the technical tasks that should be done, we
decided to make some of the tasks in parallel (the extraction
of tweets can be authomatic, and the training of the model
allow us to focus on documentation in the meanwhile) but
most of them can not start until the previous one is done.
The reason is the fact that the most important objective of
this project is not the production of an application, but the
study of its behaviour, and there is an analysis planned after
every extraction of results. The Gantt diagram can be found
in the annex, as well as the changes produced to the code
or any material related to this project can be found in the
dossier.

2 DEVELOPMENT

2.1 The environment

To develop this project, we used the programming language
Python, since it is a popular choice and it is also known for
its compatibility with libraries focused on Artificial Intelli-
gence.

We are also using one of the libraries supported by Python.
One of the objectives of this project is to learn to use a pop-
ular library of deep learning, and we have chose Google’s
TensorFlow.

To use the resources available and knowing that deep learn-
ing requires lots of calculations that can be executed in par-
allel using specific hardware, we used the TensorFlow ver-
sion that allows GPU usage.

2.2 Proposed Architecture

The Neural Network developed uses a first layer that
receives inputs. Those inputs need to be numerical values,
and in our case those values come from the characters of
the text we are using. Each character will have a numerical
value associated. The first step that the Neural Network
performs is the transformation of those inputs in a One-Hot
encoding format, in a way that a value is transformed into
an array of n elements, being n the amount of different
characters we are using. All the elements will be 0 except
the one that correspond to the position associated to the
character. In Figure 2] we can see a representation of that

transformation.

Hello

Different characters = [H, e, |, 0]

H=0[1,000
e=[0,1.00
[=00,0.1,0]
[=10,0.1,0]
o=[0,0,01]

Figure 2: Example of One-Hot Spot codification

Then, the input layer sends the inputs to the hidden
layers. Those layers are composed by LSTM (Long Short
Term Memory) cells and GRU (Gated Recurrent Unit)
cells. Each one of those layers (and cells) executes the
multiplication of the inputs and its weights, and adds the
bias. Over that common operation, internally the cells are
keeping the previous state and changing it in each iteration,
modifying it depending on the inputs that the cell receives
and the output that produces. The state is also used to
modify the value generated for the cell.

After the hidden layers have created the new value,
the output layer uses a softmax function over the value
generated. It transforms the value into a new one in the
range [0, 1]. Then the output layer selects the higher value
as a | and the other values as 0, having as a result an array
of n elements where n is the number of characters we are
using, all of them as 0 except one equals to 1. The last step
is to transform that array into a character again, using the
same procedure than the input layer but reversed, so the
position of the number 1 is the identifier of the character
generated.

Finally, the Neural Network uses a softmax cross entropy
function to evaluate the results generated with the labels
during the training o validation phase. This function
measures the distance between the generated character
and the correct one. The Adam optimizer (Adaptive
Moment Estimation, https://arxiv.org/abs/1412.6980)
reduces the mean average of error of that last function.
Adam is a good optimizer for Natural Language Processing
since the problems in that field use to have a sparse gradient.

In Figure 3] we can see a scheme of the Neural Network
unfold with an example of the word "Hello’ treated as an
input sequence. It is important to note that, without the
state, the last two iterations would be exactly the same and
would produce the same output.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://arxiv.org/abs/1412.6980

4 EE/UAB TFG COMPUTER SCIENCE: TWITTER BOT USING NEURAL NETWORKS

Input Input Layer |-I|_ig$:rn Output Layer Qutput

[1, O—sp0
0 1,

H —> ;:%}0 o> e
0, [0,
1 0,

e —> :8:? 1
0] _.O‘* ’/M 0]
[0, [g-

| — ? ;8::’ g
0] \‘O‘_‘ ’/,)Q’)O]
[D,—/'O—/—, [g

r—9 48:‘: o> o
0] \AQ__* /,)Q"’ 1]

Figure 3: Recurrent Neural Network predicting the next
character

2.3 Treatment of data

For this section we are going to suppose that the data that
we are going to use to train the model is already in a txt
file.

Then, the data (text) will be splitted into sequences of
a length determined by the Neural Network. The length
of the sequences represents the “memory” the Neural
Network has, and it determines how long the hidden
layers are going to send their states in the future iterations.
The longer the length of those sequences, the longer the
character will remain in the Network as a state. Then, all of
these sequences need to be transformed into sequences of
values instead of characters. To do this, we need to know
how many different characters are in our text. This will
determine the length of our vocabulary, and we will fill it
with the characters, associating each one to a numeric value
that will represent its position inside the vocabulary, as an
index. For example, if our text is the string “Hello world!”,
we have 9 characters in our vocabulary: [H, e, 1, 0,, w, 1, d,
!T (Note that the blank space is also a character), and that
vocabulary would be codified as {H:0, e:1, 1:2, 0:3, :4, w:5,
r:6,d:7, !:8}.

Finally, the Neural Network accepts multiple sequences
of text at the same time, called batches. It allows us to do
the training in parallel branches, boosting all the process.

2.4 Generating Results

After the building of the network the treatment of the text
that we use as input and the training, we save our model.
TensorFlow allows us to easily save the graph, a package
of the elements that compose our network, into an external
file, to be able to load it in the future and use it quickly.

When we want to load the model we first build a new
graph, with the same conditions that we had before (number
of layers and cells per layer, for example), but since we
are not going to train it now, we only accept one batch as
the main input. Then we restore the session of TensorFlow
to this new graph, and the trained weights will replace the
new ones that were generated randomly. After that, we
only need to use one character to start the generation of
text, since the model will use the same function it used
during the training to predict the next character, but instead
of comparing it with the true character, we are just keeping
it as the generated text, and use it as the input of the next
iteration.

2.5 Twitter Bot

With all the previous steps we would have a text generator,
but one of our objectives is to embed it into a Twitter Bot,
in a way that it can generate tweets autonomously. It is a
perfect excuse to use the data we can collect from Twitter
and find an application to the text we generate.

There are 3 main branches in the building of the bot:

e Creating the Twitter app. First thing to do is to create
a Twitter account. We need to go to Twitter| and create
an account using a phone number. Once we have it, we
can create our app in [apps.twitter.com. There we can
generate our access tokens and keys, and we are going
to need them to use the app. This app is linked to the
account we used to create it.

o Extracting tweets. Since we are using Python to de-
velop our project, we are also going to use Tweepy,
a library that allows us to connect to the Twitter APIL.
There we need to use the keys and tokens we got in the
previous step to be able to access the app. Once we
have access we can extract the tweets that an user has
published or the tweets that contain a specific string
(f.e. tweets with the hashtag Twitter).

e Publish new tweets. As in the previous step, we need
to use the keys and tokens of our app to be able to
publish a string as a new tweet in the Twitter account
we used linked to the app.

So, having all configurated, we just need to pass the
string generated by the Neural Network to a script that will
access the Twitter app and publish it as a new tweet.

3 TEXT GENERATION

We have now created the structures we need, but to be able
to generate text, we first need to get our data.

For the first tests we are going to use something simpler
than tweets. Tweets have some extra work of treatment
because they contain links, emojis, mentions, hashtags,
they can be retweets... So we will first use a couple of
e-books. In Project Gutenberg we can find lots of free
e-books to download in different formats, in our case, in a

www.twitter.com
https://apps.twitter.com
http://www.gutenberg.org

ADRIAN NAVARRO: TWITTER BOT USING NEURAL NETWORKS

txt file. We are going to use The Count of Montecristo and
Hamlet to train our model. The text is already in a good
format, there is no need of treat it except for the first pages,
that are not a part of the novels, but Project Gutenberg’s
notes.

The evaluation of the results is qualitative. We can use
the loss function to measure the success of the text, to know
how good they are, but at the end we want the algorithm
to generate new text that a person could have written. The
loss function will measure how close the text generated is
to the known text and, the lower the loss, the higher the
similarity to the original text.

So we start our test generating text from these two e-
books checking the results at each step. The first one will
be done using The Count of Montecristo, in a network with
3 hidden layers of 100 cells each one. After 5 epochs here
we have an example of the text generated:

Hidden 3
Layers

Cells 100
Epochs 5

a taaatntatnn ae e nean netaanen een e a ea teneeea n
ae ta tneet tttnentttanta t n an tne ae antt at tee taa ann
tett t ttet a ntaaannt an e atin

Results 1: THE COUNT OF MONTECRISTO

We can see that the text makes no sense yet. However,
there is some interesting behaviour: we are generating some
of the most used characters in English, such as ¢, n and
e. We are also having blank spaces in a similar frequency
than the one we could find in a normal text, making the
words have different sizes and none of the words is too long.

At this point, the model needs more epochs to keep learn-
ing, so we are going to repeat the training with 2000 epochs:

Hidden 3
Layers

Cells 100
Epochs 2000

Monte Cristo would have dished that an aristion of his
happy to say he had a study, and to the churqoised a pri-
vate offer month, as if the corblina would be seeked back
its ore into myshischessible and the seat, and a precau-
tion of the picle. He had suppided to barden towards his
power.

“Well,” returned Morrel.
“That means is that have been a place.”

“Yes, you moving to the morning, and who was see, and
you have tell you to say, it is it to that is a murderer,”
said the daughter, “this inside of the cause of any way to
me.” The count was served his heally at the chimney; he
would not half story.

“What deserted!” said Monte Cristo with meeting that
they had no doubt to him a servants; “that is an endure
and so to me as a third. I could not befolence here. Al-
bert, with your favuntarian and carried?”

“Indeed, and I was something made there.”

Results 2: THE COUNT OF MONTECRISTO

Here we have two samples of text. Now we can see
something way more similar to what a human being would
have written. The model has learnt how to join the charac-
ters to create words, and almost all of them are perfectly
correct in English. It has also learn some of the names that
appear in the novel, such as Monte Cristo, Morrel or Albert.
Not only we have the correct size of the words, but also
of the sentences and even the paragraphs, having placed
correctly the punctuation signs. It is also remarkable how
the Neural Network creates dialogues opening and closing
quotes, and, although the sentences barely have sense, we
can appreciate the structure of a novel here, for example
on "Well,” returned Morrel. Note also how it uses third
person in the narration and first person in the dialogues
(text between quotes). And finally, we even have an answer
in the second text, where the first paragraphs ends in a
question mark and the second one, also a dialog, starts with
Indeed.

We have seen how the architecture of the Neural Network
was able to generate decent text, and the number of epochs
determined the success of it. Let’s try to generate some
Shakespeare text now, training the model with Hamlet and
repeating the previous features:

6 EE/UAB TFG COMPUTER SCIENCE: TWITTER BOT USING NEURAL NETWORKS

Hidden 3 Hidden 3
Layers Layers

Cells 100 Cells 100
Epochs 2000 Epochs 6000

HAMLET. O God! Haw, his musidenbous, and my dry
Yee Swaller to hell, As if I, with the King lits do not, and
of such am I hear-laons to this work wi’twrak. For the
lover well sudnt-Kin thought the mother. There’s a spees,
to down our something at a bingty of his fine That, fast,
in this effect of elser’s ears. The pall, as I take her lay,
And in grief destine awh, think it both trick offices; he
trick is bornue of accilate, within the carriages, Let the
braw miss and makes the thoush can. Look nor out of
what were nothing burices hat I will season grave, And
this struck, I without another.

OSRIC. The King, Queen, there hath by the rices there
is not, That indeed, and what is a plots are hour wise of
power was not tell too conceit.

KING. We have no merch, Art fortune, that do you goe?
If a copyidies of enemit finds the choice if it that mark
yet the till this time to you frees’ may call the means, to
writ Thanks.

HAMLET. Why, we sleard, my lord.

HAMLET. I would not berefain one every his mother.
Fetthedtory contracted home, think is no room in the
appluw’d The owherathy and of halus cry, thee, let
the stould tell you these. Your sent, sir, as you heav-
ens, work’d shall the harm in’t, And thou must be your
possies black. It off, be as a lois for most false whee to

play.

Results 3: HAMLET

We have similar results to the Montecristo version. Most
of the words are correct (in old English), but it still makes
sentences that make no sense. The names of the characters
and the general structure is good enough, so it is able to

recreate not only the novel style but also a theatre script.

So now we are going to produce a text with the same
architecture for the Neural Network, still Hamlet for the
training, but we are increasing the number of epochs from

2000 to 6000:

HAMLET. Gentremen! A good freel’, And I'll so same
his head That will the play’s show hither must not of his
son it.

HORATIO. Not do, my lord?

HAMLET. I a twell, you well. S you an attends to you the
habit between her come to my peoind A well you falls
and eyes.

QUEEN. He world in.
POLONIUS. My lord, I have seen the contreft, yet your

craye come. A cannonit word look acceit that I see any
worth, fer ginds; comes percomen.

Results 4: HAMLET

Increasing the number of epochs did not improve the
results because the architecture or the data limited the
quality of the text generated. But now we know we can
generate text, so let’s try to replicate the same quality with
tweets and try to improve them.

While the text of the e-books was easy to use, the tweets
extracted using the Tweepy script through the Twitter app
were not. We first need to clean the tweets, remove the
links and the emojis that difficult the codification and add
complexity to the text. We are also getting just unique
tweets, since the retweets would add the same text multiple
times and we have no interest on it. So after cleaning the
tweets to format the text, we are also adding two characters
to each tweet. Those characters are C and N (will not
appear in English tweets) and will determine the start and
the end of the tweet. That way the character we are going
to send to the model to start the text will be C, and the
tweet will end when the Neural Network generates N. So
there will be no bias when we start the text with a specific
character and we will know when to stop the tweet, instead
of finishing at 140 characters in the middle of a word.

The tweets extracted contained some words related to the
FIFA World Cup of Russia 2018, since it is a popular topic
right now. Some of the words used to do the search and the
extraction of the tweets were FIFA, football, Russia2018,
Messi or Cristiano.

So here we can see the results that the Neural Network
produced after being trained with the tweets, having 3 hid-
den layers, 100 cells per layer and 2000 epochs:

ADRIAN NAVARRO: TWITTER BOT USING NEURAL NETWORKS

Hidden 3 Hidden 3
Layers Layers

Cells 100 Cells 1000
Epochs 2000 Epochs 50

@markchets] @Sheuraaled @Colandan_hea @ Sports-
Magust Spain is a player. And what a great to take better
today! It’s the field feeling.

Nigeria today against Sweden.That’s why Germany are
best in the world.Thanks to Toni kross.Well done Ger-
many.

@Kayden_Kross Argentina should be the only game to

the best.

@FIFAWorldCup @Budweiser @woodyinho Toni kross
made free kick

Watching Iniesta was martial aftern ‘
’ #Wedlic #FifaWorldCup2018 #ridger #Russia2018 ‘
[Tliked a @ YouTube video \

Results 5: TWEETS

We have the same quality in the tweets. We can see the
same pattern: correct words, names (Iniesta, Spain or men-
tions such as @YouTube) and size, but sentences with no
meaning, except, perhaps, the last tweet [liked a @ YouTube
video, which is the text that appears by default when some-
one shares a YouTube video on Twitter. Our next step will
be to increase the amount of cells per layer, so from 100
we are going to reach 700, and we are going to reduce the
number of epochs from 2000 to 25, since more cells require
more time to train:

Hidden 3
Layers

Cells 700
Epochs 25

World Cup madness all against Iniesta. #Russia2018

The mom magician carearos stepping up his goal against
Nigeria

Messi hasn’t give the best in this world have step denthed
at it is the best midfielder of the days of the match

Rojo save yout it will be the goving to talk about his stil

but to talk about to put him a Russian state.

Results 6: TWEETS

We are keeping good results and we have even improved
the weak point of our text: the sentences. Now they have
higher quality, the text makes more sense, although they
are still not as good as the original tweets. Let’s see what
happens if we increase even more the number of cells and
the epochs:

@zmanbrianzane I get your then but you look at the
centre midfield becousers of blessing about Bristiano
Ronaldo’s Penalty Miss Against Iran

But FIFA Rule 18 article 26 section 6 states that thy shall
not award more than a penalty to an African team at the
World Cup of the defenders.

Results 7: TWEETS

Now the sentences make sense, but it is due to overfit-
ting. The model has become really good at copying the
original tweets, and then the text make sense and the loss
was really low. The objective of the project is to be able to
create new text, not replicate the old one, so for us this is
now not an option.

If we train the model with tweets and the Neural Network
has 10 hidden layers instead of 3 we get the following type
of tweet:

Hidden 10
Layers

Cells 100
Epochs 800

Coool Nannna aaaCnacclNa

Results 8: TWEETS

All the generated tweets are similar to this last one.
Increasing the number of layers use to be useful if we need
to increase the level of abstraction of a Neural Network.
In computer vision’s Object Detection problem, multiple
layers are used because each layer can be focused on
different characteristics of the image, such as vertical lines
or corners. In our case we have enough level of abstraction
and increasing the layers only increases the number of
epochs we need to reach the same results.

3.1 The best model

So, which is the best model we trained? The Neural
Network with 3 hidden layers and 1000 cells per layer
obtained the best results, but it was just copying the training
data. Since the objective is to be able to generate new
text, it is better to have worse text if it is original. For that
reason, the best model is the last one we used with the
e-books, and the first we used with the tweets: 3 layers,
100 cells per layer and about 2000 epochs to train.

Now that we have chosen a model, we just need to
embed it in the Twitter bot and execute it to generate new

8 EE/UAB TFG COMPUTER SCIENCE: TWITTER BOT USING NEURAL NETWORKS

tweets and publish them.

The Twitter account used in this project is @BotTfg.

4 CONCLUSIONS AND FUTURE WORK

During the realisation of this project we have tried to solve
a problem in Natural Language Processing: the generation
of text. We have seen what Recurrent Neural Networks
are and why they are the best option nowadays to try
to solve that problem. We have used the facilities that
a Social Network offers to extract data. We also build
different architectures of a Recurrent Neural Network using
a popular library. We generated and evaluated the text that
those architectures produced to understand how the model
works, which limitations it has and how to improve the
results.

The generation of text is a subject that is still being
investigated. We have succeed in our objectives, but the
quality of the text generated may be not as good as we
expected. Why? There are several things that we could
improve to have better text, such as the quality and amount
of the input data. But the main reason is the difference
between building words and building sentences. Both are
sequences of characters, but while we want the model
to use exactly the words that already exist (we do not
want it to create new words because they will probably be
wrong), we want it to generate sentences that were not in
the training data. Generating completely new sentences
and making them make sense is, in our project, the same
concept than producing new words. If we would generate
text word per word instead of character per character we
would not need to learn the words, but how to put them
together in sentences, and the resulting text would be
probably better, but the sentences would be still simple.
We could improve it which larger datasets, so the model
would end up learning the concept of the structure of the
language (putting an adjective before a noun, for example),
but to reach the highest level of text generation we should
need to stop generating in a blind way, without knowing the
meaning of the words, sentences and expressions. To reach
the highest level we should merge other fields like object
detection and audio treatment to our model, allowing it to
associate images to words or replace the text by the voice,
and also simulating basic needs or desires as we have. The
model then could learn the name of an object we show to a
camera, and learn to talk (or write) to satisfy the simulation
of basic needs, just as a baby learns the concept of food
because he is hungry and can see the things that satisfy that
need, associate it to the word and generate a sentence to
ask for food when he is hungry again, and not randomly.

The future work, then, should not be focused on im-
proving this artificial learning of the language, this is good
enough, but to merge the different fields that emulates the
human intelligence into one new, more general, area of
study.

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[12]

[14]

Official website
https://www.tensorflow.org/

of TensorFlow

Official website of Python https://www.python.org/

Official website of
http://www.nvidia.es/page/home.html

NVIDIA

Python Programming Tutorials, Harrison (Sent-
dex). https://pythonprogramming.net/rnn-tensorflow-
python-machine-learning-tutorial/

Build A Tweet Bot With Python, waleadesina,
https://scotch.io/tutorials/build-a-tweet-bot-with-
python

Official documentation site of Tweepy,
http://docs.tweepy.org/en/v3.5.0/cursor _tutorial.html
Mining Twitter Data with Python (Part
1: Collecting data), Marco Bonzanini,

https://marcobonzanini.com/2015/03/02/mining-
twitter-data-with-python-part-1/

Siraj Raval’s Youtube channel, Raval.
https://www.youtube.com/channel/

UCWN3xxRkmTPmbKwhtOFuES A/featured

Siraj

The Trump Deep BS Quote RNN Generator, Killian’s
Blog. http://killianlevacher.github.io/
blog/posts/post-2016-03-01/post.html

Creating A Text Generator Using Recurrent Neu-

ral Network, Chun’s Machine Learning Page.
https://chunml.github.io/ChunML.github.io/project/Creating-
Text-Generator-Using-Recurrent-Neural-Network/

Training an RNN to generate Trump
Tweets, David Merrick. |https://www.david-
merrick.com/2017/06/12/training-an-rnn-to-generate-
trump-tweets/

The Unreasonable Effectiveness of Re-
current Neural Networks, Andrej Karpa-
thy. http://karpathy.github.10/2015/05/21/rn-

effectiveness/

Yet another text generation project, JC Testud.
https://towardsdatascience.com/yet-another-text-
generation-project-5¢cfb59b26255

Learning Features and Segments from Waveforms:
A Statistical Model of Early Phonological Acqui-
sition, by Ying Li. University of California, 2005.
http://phonetics.linguistics.ucla.edu/research/YLinp¢ss.pdf

Vanilla Char-RNN using TensorFlow, by vinhkhuc.
https://gist.github.com/vinhkhuc/7ec5bf797308279dc587

Creating A Text Generator Using Recurrent Neu-

ral Network, by Trung Tran. November 14, 2016.
https://chunml.github.io/ChunML.github.io/project/Creating-
Text-Generator-Using-Recurrent-Neural-Network/

www.twitter.com\@BotTfg
https://www.tensorflow.org/
https://www.python.org/
http://www.nvidia.es/page/home.html
https://pythonprogramming.net/rnn-tensorflow-python-machine-learning-tutorial/
https://pythonprogramming.net/rnn-tensorflow-python-machine-learning-tutorial/
https://scotch.io/tutorials/build-a-tweet-bot-with-python
https://scotch.io/tutorials/build-a-tweet-bot-with-python
http://docs.tweepy.org/en/v3.5.0/cursor_tutorial.html
https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/
https://marcobonzanini.com/2015/03/02/mining-twitter-data-with-python-part-1/
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A/featured
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A/featured
http://killianlevacher.github.io/blog/posts/post-2016-03-01/post.html
http://killianlevacher.github.io/blog/posts/post-2016-03-01/post.html
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://www.david-merrick.com/2017/06/12/training-an-rnn-to-generate-trump-tweets/
https://www.david-merrick.com/2017/06/12/training-an-rnn-to-generate-trump-tweets/
https://www.david-merrick.com/2017/06/12/training-an-rnn-to-generate-trump-tweets/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://towardsdatascience.com/yet-another-text-generation-project-5cfb59b26255
https://towardsdatascience.com/yet-another-text-generation-project-5cfb59b26255
http://phonetics.linguistics.ucla.edu/research/YLin_Diss.pdf
https://gist.github.com/vinhkhuc/7ec5bf797308279dc587
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/
https://chunml.github.io/ChunML.github.io/project/Creating-Text-Generator-Using-Recurrent-Neural-Network/

ADRIAN NAVARRO: TWITTER BOT USING NEURAL NETWORKS

ANNEX

A.1 Original Gantt diagram of the planning of the project

ACTTTT START DUEATION FERIODS
1 2 3 g L] 7 8] o 11 = 1= 14 15 15 iy 1=

E —
pr—y : N

Clean e-books: -] 1 -

tweets .

collector 5 1

Collect twests 3 2 -

Design RNNs 5 1 -

Train RMN= 5 z -

Generate text 7 1 .

Test quality 7 2 -

Analyze results 8 1 .

Olean tweets z i .

Train RNNs a z -
= E
tweets 1o 1

Test quality 10 z -
Analyse results 1 1 -

Do the Twitter .
ot iz i

i =
codification iz 2

oodifiation 13 z -

Adapt RNNs t .
—— u : [
Generate

wests 15 i

Terqmiy : ==
Analyse results 17 1 -
Finish

documentation

and

	Introduction
	The problem
	State of Art
	Motivation
	Objectives
	Methodology and planning

	Development
	The environment
	Proposed Architecture
	Treatment of data
	Generating Results
	Twitter Bot

	Text Generation
	The best model

	Conclusions and future work
	Original Gantt diagram of the planning of the project

