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Abstract

Goal of the work was to study the effect of mixing aerobically pretreated organic municipal
solid wastes (OFMSW) with raw OFMSW in an anaerobic digestion process. The optimum
time of aerobic pretreatment was found to be five days, as this was indicated via biological
activity measurements (oxygen uptake rate, enzymatic activities, temperature). The
aerobically pretreated wastes or a liquid extract from those pretreated wastes were, each
separately, mixed with simulated OFMSW in various experiments. The mixtures were
anaerobically digested for 28 days and 5 different treatments were performed including the
blanks. The methane generation results were fitted to a typical anaerobic model to calculate
theoretical maximum methane potential, maximum methane generation rate and theoretical
lag time. Results indicated that the addition of 5-day aerobically pretreated OFMSW in
solid form to raw OFMSW resulted in a 18% net increase of the methane production. The
Rmax Was also increased by 39% while no significant differences in the lag time of the
methanogenic phase were observed. The addition of the liquid extract that was obtained
from the 5-day pretreated OFMSW did not result in a statistically significant increase of the

net methane production of the raw OFMSW.



1. Introduction

Anaerobic digestion (AD) of organic materials is a treatment technique that aims to
valorize wastes via the generation and exploitation of biogas. In recent years, much effort
has been made in the implementation of anaerobic digestion to treat the Organic Fraction of
Municipal Solid Waste (OFMSW). Therefore, the principal obstacle to the wider spread of
anaerobic digestion technology in solid wastes (as opposed to liquid wastes) is the
relatively low rate of biodegradation, due to this limiting solids (mainly composed of

lignocelluloses) hydrolysis step (Mata-Alvarez et al., 2000).

Biological pretreatment includes both anaerobic and aerobic methods, as well as the
addition of specific enzymes, such as peptidase, carbohydrase and lipase, to the anaerobic
digestion process. Aerobic pretreatment, such as composting, can be an effective method to
obtain a higher hydrolysis of complex substrates due to the higher production of hydrolytic
enzymes, which is induced by the increased specific microbial growth (Ariunbaatar et al.,
2014, Giielfo et al., 2011). Furthermore, hydrolysis step can also be improved through the
increase in the microbial activity per unit of surface area. This effect can be achieved not
only by substrate inoculation, but also by the use of enzymes directly. Therefore, biological
pretreatments include both the use of microorganisms with high ability in degrading a
substrate and the addition of enzymes that support biological reactions within anaerobic
digesters (Cesaro & Belgiorno, 2014). However, an extensive aerobic biodegradation step
can oxidize most of the biodegradable carbon under aerobic conditions, rendering the
remaining organic material a substrate with a relatively low biogas yield, despite the faster
establishment of methanogenesis (Gerassimidou and Komilis, 2013). According to the

results obtained by Brummeler and Koster (1990), a composting pretreatment of OFMSW



resulted in a 19.5% volatile solids (VS) loss. Actually it is not clear in the literature what is
the distinction between the short and long periods of pretreatment that can distinguish
between these two different effects of aerobic pretreatment on the pretreated material (i.e.
a) material with higher biogas yields and a faster establishment of methanogenesis versus
b) semi-stabilized material with a significantly lower biogas yield). An effort to clarify that

distinction had been recently investigated by Gerassimidou and Komilis (2013).

In addition to the above, there is a lack of information on whether an extract
obtained from the aerobically pretreated OFMSW, which is expected to be rich in
hydrolytic enzymes, can also affect biogas production when added to a solid substrate. Both
the mixing of different solid waste substrates and the addition of liquid extracts to raw
OFMSW can be considered co-digestion processes. The co-digestion of OFMSW with
other co-substrates such as vegetable oils, manure or straw for instance has been
demonstrated to significantly enhance biogas production (Ponsa et al., 2011; Abudi et al.,
2016; Tian et al., 2015, Yong et al., 2015). The benefits of the co-digestion process are:
dilution of potential toxic compounds eventually present in any co-substrates involved;
adjustment of moisture content and pH; increased content of biodegradable material;
expanding the range of bacterial strains involved in the process (Mata-Alvarez et al., 2014;
Alvarez et al., 2010). However, the obvious benefits of adding liquid extract, rich in
enzymes, to raw MSW is that smaller anaerobic digesters can be built compared to when

directly adding a solid aerobically pretreated co-substrate.

Based on the above, the main goal of the experimental work was to investigate the

effect of introducing: 1) OFMSW which was aerobically pretreated over a short period, and



11) enzymatic extract obtained from the same aerobically pretreated OFMSW, in the

anaerobic digestion (AD) process of raw OFMSW.

For this aim, several lab-scale anaerobic digestion experiments were performed to
quantify biogas and methane yields, as explained in section 2. The degradation process of
an 11-day aerobic pretreatment step was followed by measuring the oxygen uptake rate
(OUR) and the enzymatic activities during the process. This was done to quantify the extent
of aerobic degradation as well as the time of the peak biological activity. This aided in
establishing the optimum time of pretreatment. The pretreated material removed at that
optimum time was used as a co-substrate during the anaerobic experiments that followed.
The co-substrates were either the same pretreated material, in its solid form, or a liquid

extract obtained from that aerobically pretreated solid waste.

2. Materials and Methods

2.1. Substrates

Source selected OFMSW was obtained from an industrial composting plant near Barcelona,
Spain. OFMSW was collected already mixed with pruning waste (a bulking material), in a
volumetric ratio 1:1. Simulated OFMSW was prepared by following a recipe that took into
account a typical composition of raw OFMSW as suggested by the Agencia de Residus de
Catalunya (2006). This composition (on a wet weight basis) was: 17% cooked pasta, 7%
bread, 15% salad components, 17% tomatoes, 17% apples, 17% oranges, 7% cooked meat

and 1% napkins.



The inoculum used in the anaerobic digestion experiments was digested OFMSW in
the form of slurry obtained from a full-scale OFMSW anaerobic digester (Barcelona,
Spain). The inoculum had a moisture content of 88.61% =+ 0.53%, (wb), a volatile solids

(VS) content 58.64% + 0.37% (db) and a pH of 8.1.

Aerobically pre-treated OFMSW was obtained from 10 L reactors on the 5th day of
the process performed in the laboratory (with simulated OFMSW). This day was selected
since the material was observed to have the maximum biological and enzymatic activity at
that time (as was observed after having performed 11 day aerobic experiments in the same
reactors). In addition to the solid material, liquid extracts were obtained from the
aerobically pretreated OFMSW to use as a co-substrate, instead of pretreated solid waste.
The extracts refer to the soluble part that was extracted from the corresponding pre-treated
OFMSW samples by orbital shaker at 200 rpm for 20 min. using a ratio of 1 g sample per 5

mL of water. The initial characterization of the materials is shown in Table 1.

2.2. Experimental procedure

At a first place, the fresh OFMSW obtained from a municipal composting plant was
aerobically degraded in lab scale experiments to determine the time that the peak biological
activity (based on the Oxygen Uptake rate, OUR) is achieved. The pretreated OFMSW,
directly in the form of solid, or the liquid extract obtained from that solid, were mixed with
simulated raw OFMSW (S-OFMSW) in the subsequent anaerobic digestion (AD)
experiments. The reason that simulated OFMSW were used is that they can provide a rather
consistent and reproducible material that can overcome the inherent heterogeneity of the

raw OFMSW that commonly leads to a large variance among replicate runs.



The experimental design was developed according to Table 2. As shown in Table 2,
the aerobically pretreated OFMSW and the corresponding pretreated extract were used as
co-substrates with simulated raw OFMSW. Control runs with artificial OFMSW, solid
pretreated OFMSW and the extract from pretreated OFMSW were performed to allow the
comparison between the Biochemical Methane Potential (BMP) of the OFMSW with and
without the use of the selected co-substrates. BMP from raw OFMSW from composting
plant was also determined with the aim to quantify the loss of biogas potential during

aerobic pretreatment.

2.2.1. Aerobic biodegradation experiments

The aerobic degradation experiments were undertaken during 11 days.
Measurements of oxygen consumption, enzymatic activity, fatty acid concentration, protein
concentration and reducing sugars concentration were performed. The aim was to obtain a
complete profile of the aerobic degradation process in order to determine when the
maximum degradation activity would be produced. This period of maximum activity was
selected as the aerobic pretreatment time prior to the anaerobic digestion (AD) experiments.

The aerobic degradation experiments of the OFMSW were performed in 10 L
custom made sealed stainless steel reactors (20 cm diameter, 36 cm height). These were
filled up with 6 kg of the material and performed in triplicates. The reactors were equipped
with temperature, airflow and oxygen monitoring and online calculation of the specific
oxygen uptake rate (sSOUR). This value was calculated as the difference in oxygen content
of input and output airflow per amount of dry matter present in the reactor, following

Equation 1:



Px60x30

sOUR=F (0.209- yOz) m

(Eq. 1)

where sOUR is the specific oxygen uptake rate (g O, kg! DM h); F, the airflow in the
reactor (L min™); yO,, is the oxygen molar fraction in the exhaust gases (mol O, mol™); P,
the pressure of the system that was assumed constant at 101,325 Pa; 32 is the oxygen
molecular weight; 60 is the conversion factor from minute to hour; R, the ideal gas constant
(8310 Pa L K mol™); T, the temperature at which F is measured (K) and DM, the dry
matter of material placed in the reactor (kg). Total cumulative consumption (ATu) was
determined through the continuous OUR data obtained during the experiments.

The experiments were performed under near-adiabatic conditions with continuous
aeration at a minimum rate of 0.1 L/min. The reactors included a data acquisition system
with a PLC (programmable logic controllers), which allowed data reading every minute.
Particularly, PLC system read the values of oxygen, airflow and temperature, which are
connected to a personal computer, and it enables on-line complete monitoring. The oxygen
was regulated by means of airflow manipulation in the exhaust gas to maintain the system
in favourable aerobic conditions (oxygen content above 12%), as previously described

(Puyuelo et al., 2010).

2.2.2. Anaerobic biodegradation test

Anaerobic batch tests were developed following the procedure described by Ponsa
et al. (2011) and Raposo et al. (2011). Biological methane production (BMP) tests were

performed in 1 L custom-made tubular reactors and lasted 28 d. Every reactor was filled



with the material at inoculum to substrate (ISR) ratios (VS basis) that ranged from 1.85 to
3.27 (Table 2) and at an approximately 90% (wb) initial moisture content. ISR > 2 has
never been reported as inhibitory in AD and has been also suggested as a mandatory ratio
for future standardized AD tests in batch mode (Raposo et al., 2011). Biogas pressure was
measured by a digital manometer (Model SMC ZSE30, Japan). Biogas composition was
measured via gas chromatography, as described in Ponsa et al. (2010), to calculate methane
generation rates. All treatments were prepared in triplicates and incubated at a controlled

temperature of 37°C.

The cumulative production of biogas and methane was calculated by fitting the
modified Gompertz model (Eq. 2) to the experimental cumulative methane production
curves. The SigmaPlot® 12.0 software (Systat Software Inc., California, USA) was used to

obtain the equation parameters, namely P, Ry.x and A (Ponsa et al., 2010).

M =P *xexp {— exp [M “1-t)+ 1]} (Eq. 2)

Where: M is the cumulative BMP (1 [CH4] kg ' [VS]); P is the maximum methane potential
(1 [CH4] kg ' [VS]); t is the time (day); Ruax is the maximum methane production rate (1

[CH4] kg ' [VS] day ') and A the lag phase (day).

Results of BMP experiments were expressed per mass of VS of the substrate. For
the digestion experiments in which pretreated OFMSW was added (in the solid form or as
liquid extract), the result of the BMP test was expressed per mass of VS of simulated

OFMSW. Anaerobic control runs with the pretreated material were performed as well to



allow the calculation of the net BMP of the simulated OFMSW after subtracting the biogas

produced by that pretreated material.

All yields were expressed per mass of VS of simulated OFMSW. That is, from the
gross methane production of the mixture, the corresponding methane productions of the
other additives (inoculum, extract) were subtracted so that to finally calculate the net

methane production of the OFMSW only.

2.3. Analytical Techniques
2.3.1. Basic characterization of substrates

Dry matter (DM), total organic matter (OM) and pH were determined according to the
standard procedures following the Test Methods for the Examination of Composting and

Compost (Puyuelo et al., 2011).

2.3.2. Enzymatic activity determinations during the aerobic experiments

The amylase enzyme activity was quantified through the release of reducing sugars using
starch as substrate in 50 mM citrate buffer at a concentration of 0.5% as described in
Omemu et al. (2005). 800 pL of corn starch and 200 pL of enzymatic extract were
incubated at 60 °C for 1h. The protease activity was determined using a modified method
described by Alef & Nannipieri (1995). One mL aliquot of enzyme extract was added to 5
mL of casein solution at 2% and was incubated at 50 °C under stirring for 2 h. Furthermore,
enzymatic activity was reported as (U g”' DM), where one unit (U) is the amount of enzyme

10



that in an enzymatic reaction catalyzes the conversion of 1 pmol of substrate per minute.

All analyses were performed at least in duplicate.

2.3.3. Reducing sugars, proteins and fatty acids measurements during the aerobic

experiments

Reducing sugars were determined according to a classic method previously
described (Miller et al., 1960). The results were expressed as mg reducing sugar per mg of
DM. Soluble protein was measured according to the method proposed by Gerhardt et al.
(1994) and reported as a mg of protein per mg of DM. Fatty acids quantification was
determined by extracting a 400 mg sample in 3 mL of n-heptane that were stirred in the
vortex mixer for 30 seconds. The extracts were centrifuged (9.800 xg, 10 min, 4 °C), then
2.5 mL of the recovered organic phase was mixed with 0.5 mL of copper pyridine acetate
solution (50 g L', pH 6.1) and a final stirring of 30s. The absorbance at 715 nm was
measured and a calibration curve was constructed using oleic acid concentrations of 0-10
mM (Hernandez-Rodriguez et al., 2009). Fatty acids quantification was reported as mM per

g of DM.
2.4. Statistical analysis

All measurements and tests were carried out in triplicate and the results were
expressed as means + standard deviation. Tukey’s HSD test was used to compare the means
and to reveal significant differences among samples (at a = 0.05). Statistical analysis was

performed using the package Sigma Plot (Systat Software Inc., San Jose, Cal.).
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3. Results and Discussion
3.1. Aerobic degradation process as a pre-treatment of AD experiments
3.1.1. Evolution of the degradation aerobic process

The temperature profile of triplicates during the process is shown in Figure 1A. The profile
is typical for aerobic degradation processes. A maximum of 72°C was observed on day 5.
Initial moisture of OFMSW (Table 1) was in an appropriate range for the growth of
microorganisms and was kept observed to be kept constant during the process (around

60%).

Oxygen uptake rate and accumulated oxygen during the aerobic degradation of raw
OFMSW is shown in Figure 1B and C respectively. The OUR showed an initial peak
presumably as a consequence of the presence of readily biodegradable compounds at the
beginning of the process (Martinez-Valdez et al.,, 2015). A pronounced decrease was
observed later until the maximum OUR was achieved at around day 5 (3.1 + 0.4 g O, kg™
DM h™). The maximum OUR and the peak of temperature were achieved at the same time,
as 1S common in composting experiments (Puyuelo et al., 2010). The accumulated oxygen
profile showed a short lag phase for all the replicates, with a final value between 363.5 and

491.1 g O, kg DM h' after 11 days of composting.

The pH decreased slightly at the beginning of the process, thereafter increased
progressively until 8.8 on day 5 and remained like this until the end of the process (Figure
2A). This behavior during the process of aerobic degradation has been described as a

consequence of the high initial concentration of organic acids produced during the aerobic
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degradation of the OFMSW. Thereafter, an increase in pH due to mineralization of organic

compounds and ammonia production was observed (Eklind & Kirchmann, 2000).

Reducing sugars observed a maximum at around day 4 and remained constant after
day 7. It is important to note that the initial concentration in OFMSW was higher than in
the pretreated waste (Table 1). This is expected, since, during the aerobic stage,
carbohydrate monomers, proteins and lipid monomers are consumed, since they are soluble
and readily biodegradable. Amylase activity (Figure 2C), which initially had an activity of
2.8 U g' DM, decreased after day 1 to 0.2 U g' DM and, thereafter, increased

progressively up to 2 U g”' DM on day 6.

The proteolytic activity (Figure 2E) showed a first peak on day 5 reaching 16.4 U g’
' DM. However, an additional increase was observed after day 8 reaching values up to 25.4
U ¢! DM. This was probably due that proteases taking part in nitrogen mineralization by
degrading low molecular weight proteins (Vargas-Garcia et al., 2010). Free fatty acids also
peaked on days 4-6 reaching concentrations up to 400 mM g' DM (Figure 2F). The
increase in the concentration of soluble protein (Figure 2D) and free fatty acids can be
related to the increase of metabolic activity during the aerobic degradation of OFMSW

(Tejada et al., 2009).

Therefore, it can be observed that the maximum concentration of reducing sugars
and the enzymatic activities are in agreement with the maximum OUR achieved. Maximum
enzymatic activity has been related to the maximum metabolic activity, which can be
measured indirectly through the oxygen uptake rates (Puyuelo et al., 2010; Saucedo-

Castafieda et al., 1994).
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3.1.2. Selection of the optimal time to aerobically pre-treat OFMSW before its use in the

anaerobic digestion experiments

As commented, a peak of metabolic activity was reached on the 5" day based on most of
the parameters recorded (OUR and enzymatic activities). Those maximum values and the
days that they were reached are summarized in Table 3. Also an important change in the pH
of OFMSW was observed at day 5. At the beginning, pH was acidic (4.74), but after
pretreatment an increase in pH in the range of 6.35 to 7.29 was achieved, approaching
optimal values for AD. Also, there was not a significant loss in the VS during the aerobic
pre-treatment (Table 1), suggesting that the potential to produce biogas can remain still

high.

It is expected that the readily degradable organics will be practically removed after
5 days of aerobic degradation process. This fact can positively affect the anaerobic
digestion process, since the acid generation during the AD process, commonly attributed to

the presence of readily degradable organics, will be limited.

As a conclusion the 5th day of aerobic degradation of OFMSW was selected as the
appropriate time to remove material from the aerobic process and to use it in the anaerobic
digestion process of S-OFMSW as a co-substrate. In addition to the solid, liquid extracts
where obtained from that 5-day aerobically pretreated OFMSW for use in the AD
experiments. The addition of specific enzymes such as carbohydrase protease and lipase are
expected to enhance the hydrolysis step in anaerobic digestion as previously reported

(Kiran et al., 2015; Lim & Wang, 2013). Based on that notion, Kiran et al. (2015) had
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applied enzymatic pretreatment of food waste with a fungal mash rich in hydrolytic
enzymes that was produced by solid-state fermentation; this enzymatic addition resulted in
2.3 to 3.5 times higher biomethane yield and production rates compared to those without
pretreatment. This was due to the hydrolysis and breakdown of lignocellulosic material in
the aerobic pretreatment step that allowed the faster hydrolysis, and thus faster
decomposition of wastes in the subsequent anaerobic step, without removing much of the
biodegradable carbon. Lim and Wang (2013) reported that the aerobic pretreatment step
resulted in a greater VFA formation due to the enhanced activities of the hydrolytic and

acidogenic bacteria.
3.2. Anaerobic digestion experiments
3.2.1. Methane potential of the OFMSW

Methane production during anaerobic batch test of the different assays, calculated as
explained in section 2.2.2, is shown in Figure 3. The parameters obtained after fitting the
methane production experimental data to the Gompertz model (Eq. 2), methane potential
(P), the maximum rate of methane production (Ry.x) and the lag time (A) are shown in

Table 4.

It is important to highlight that S-OFMSW had a maximum methane potential of
507 NLcua kg'l VS and OFMSW (used in aerobic degradation experiments) of 518 NLcpa4
kg' VS, being both statistically similar (at p<0.05) as shown in Table 4. This result
validates the use of S-OFMSW in the AD assays, indicating that the simulation of OFMSW
was close to reality. On the other hand, the Ry.x of the S-OFMSW and OFMSW were

statistically different at p<0.05, being 75 and 54 NLCH, kg VS d' respectively. This
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difference can be attributed to the potential presence of slowly biodegradable matter in raw
OFMSW that, as commented, was collected already in a mixture with bulking agent that

have a high lignocellulosic content.

3.2.2.  Methane potential after co-substrate addition

According to Table 4, if S-OFMSW is co-digested with the solid aerobically pre-
treated OFMSW (50%), the maximum methane potential (expressed per kg VS of S-
OFMSW basis) is increased by 19% (see Table 4). No such significant increase was,
however, observed when the extract from the aerobically pretreated OFMSW was used as
co-substrate. It is reminded that the aim to use liquid extract from pre-treated OFMSW was
to use it as an enzymatic cocktail in digestion experiments replacing the solid material.
Since extracellular enzymes carry out the hydrolysis, some authors have investigated the
direct addition of hydrolytic enzyme to enhance this stage for anaerobic digestion.
Pleissner et al. (2014) and Kim et al. (2006) indicated that there was enhancements in the
hydrolysis step due to the addition of the enzymes during anaerobic digestion. In addition,
Gerassimidou et al. (2013) showed that a short term (8 day) aerobic pretreatment of
OFMSW increased biogas potential compared to untreated OFMSW and led to a faster
establishment of the methanogenic phase. However, when this kind of pretreatment is
realized, the selection of appropriate enzymes and sizeable enzyme activity is fundamental
to achieve significant results (Cesaro & Belgiorno, 2014; Kondusamy & Kalamdhad,

2014).
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Although no improvement was observed after adding the liquid extract, the increase
of the maximum production rate (Rmax) by almost 40% after the use of the pretreated solid
clearly indicated an improvement of the hydrolytic phase. Accordingly, an incomplete
enzyme extraction from the pre-treated solid can explain the fact that this improvement was
not observed when the extract was used directly (see Table 4). Also, this improvement
could be due to a synergistic effect observed in an anaerobic co-digestion process (Mata-
Avarez et al., 2014). Sawatdeenarunat et al. (2015) stated that the co-digestion of
carbohydrate-rich lignocellulosic biomass with other waste has significant implications in
balancing the C/N ratio. The establishment and maintenance of an appropriate C/N ratio
was one of the key factors surrounding a successful co-digestion. Vasmara et al. (2015)
found a positive correlation between CH4 accumulation daily rate and straw enzymatic
digestibility. In co-digestion with pig slurry, straw pre-treated with Ceriporiopsis
subvermispora for 10 weeks, showed an accumulation daily rate of 17.4 mL d' g VS,
significantly higher (17%) than that of the control. In addition, the time to reach the
maximum CHy production was shortened on average from 34 to 21 days in co-digestion

with pig slurry, in comparison with pre-treated mono-digested wheat straw.
3.3. Combination of aerobic and anaerobic treatment for OFMSW

As commented in the introduction, despite the benefits of aerobic pre-treatment
prior to anaerobic digestion, one has to consider the potential loss of biogas yield due to the
loss of organic carbon during the aerobic pretreatment step. Due to the aerobic degradation,
the biogas production of the pre-treated OFMSW was 18% lower than that generated with
raw OFMSW. It could be an important loss of biogas potential, but it is important to note

that only one fraction of the OFMSW will be pre-treated before AD. So, when the
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anaerobic co-digestion was performed using S-OFMSW with pre-treated OFMSW in a
ratio 1:1 (w/w), there was an increase in the methane potential of the S-OFMSW only by
approximately 20% in both the real data and the model estimates, compared to the S-
OFMSW alone, and the maximum methane production rate also increased by 39%. This is
probably attributed to reasons related to co-digestion effects, such as the improvement of
the balance of nutrients and the positive synergisms established in the digestion medium
(Mata-Alvarez et al., 2014; Abudi et al., 2016; Yong et al., 2015). In these sense, it seems
to be a good a compromise to direct one part of the OFMSW to aerobic pre-treatment for
later use in the co-digestion of raw OFMSW. Thus, the combination of aerobic and
anaerobic treatments could be an effective mode to apply the benefits of a short aerobic
pre-treatment. More experiments will be required to optimize the ratio in the co-digestion

of aerobically pre-treatment OFMSW versus OFMSW.

4. Conclusions

* The duration of 5 days was found to be the optimum time to aerobically pretreat the
OFMSW prior to co-digesting it with raw OFMSW. At that time, the maximum
enzymatic activity and maximum oxygen uptake rate were recorded.

* The addition of 5-day aerobically pretreated OFMSW in solid form to raw OFMSW
resulted in a 20% net increase of the methane production compared to raw
OFMSW. The Ry,.x was also increased by 39% while no significant differences in
the lag time of the methanogenic phase were observed.

* On the other hand, the addition of the liquid extract that was obtained from the 5-
day pretreated OFMSW did not result in a statistically significant increase of the net

methane production of the raw OFMSW.
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Conclusively, it appears that it is better to mix pretreated solid waste with raw OFMSW
rather than mixing the liquid extract obtained from those pretreated waste. This,
however, inevitably leads to the use of larger digesters compared to if only the liquid

extract had been used.
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Table 1. Characterization of materials used in the experiments

. . . Moisture VS Reducing sugars

Biological Material pH (% wh) (% db) (mg g'l DM)
OFMSW 561  61=+2¢ 74+ 1° 552+£24°
S-OFMSW 4.74 79 + 2° 97 +1° 90.8 + 0.6%
Pretreated OFMSW in solid form 6.35 514 3¢ 73 4 4 2.0+ 03¢
after 5d
Liquid extract of pre-treated a b b
OFMSW after 5d 6.35 96+0.03 72+0.4 26.0+1.3
Inoculum 729  89+05°  59+04° n.d

db: dry basis; wb: wet basis; VS: volatile solids; n.d: not determined, DM: dry matter,
OFMSW: Organic fraction of municipal solid waste, S-OFMSW: Simulated OFMSW.
Different letters indicate statistically different means at p < 0.05.

Table 2. Experimental design of anaerobic experiments

Substrates and mixtures

ISR (2 VS inocutum/g VS substrate)

Control AD experiments

AD experiments

S-OFMSW

Aerobically pre-treated OFMSW
after 5 days (solid)

Aerobically pretreated OFMSW after
5 days (liquid extract)

S-OFMSW + aerobically pre-treated
OFMSW after 5 days (solid)

S-OFMSW + aerobically pre-treated
OFMSW after 5 days (liquid extract)

3.27
1.85

591

2.37

2.11

All runs were performed in triplicate; ISR: Inoculum to substrate ratio (on a VS basis).
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Table 3. Maximum values of all parameters

obtained during the aerobic degradation

experiments.
Parameter Units Maximum value Day
reached
OUR mg O, g’ DM h’! 3.1+04 5
Cumulative oxygen uptake mg O, g' DM 427 + 64 -
Temperature °C 72+ 1 5
Reducing sugar mg g' DM 31.2+4.8 4
Amylase activity Ug' DM 24+0.8 6
Protease activity Ug' DM 164+73 From day 5
Protein concentration mg g' DM 33+0.3 5
Fatty acid concentration mMol ¢! DM 395+ 73 6

Table 4. Actual methane production (Pre) after 30 d and calculated maximum methane
potential (P), maximum methane production rate (Ryax) and lag phase (1) estimated
by the fitting of the Gompertz model to the data.

Preal l)model Rmax )\-
Test (NL CH, kg’ VS | (NL CH, kg VS (NL CH, kg VS
of SSOFMSW) | of S-OFMSW) of S-OFMSW day™) (day)
Control AD
experiments
S-OFMSW 518 +1.5" 510+ 2° 74 + 3P 0.65+0.112
OFMSW 524 + 30° 522 +27° 53+ 1° 0.86 +0.122
Pre-treated OFMSW 430 + 33° 413 + 35° 42+ 64 1.05 + 0.3
AD experiments
S-OFMSW +
aé?ﬂéi‘%ﬁgifjf 568 + 17" 538 + 14 55+ 2° 0.2+041°
(liquid extract)
S-OFMSW +
ag?ﬂgi‘;}igﬁgg?;f 620 + 16 602 + 14 103 + 4° 0.54 + 0.14°
(solid material)

Different letters indicate statistically different means at p < 0.05. For the OFMSW control experiment, the
results are expressed in NLCH, kg™ VS of OFMSW.
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Figure 1. Evolution of aerobic biodegradation process of the raw OFMSW in a 10 L reactor
(results are from triplicates); top: temperature profile; middle: oxygen uptake rate
(OUR) profile and bottom: cumulative oxygen uptake.
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Figure 2. Evolution of different parameters during the aerobic degradation of OFMSW a)
pH; b) reducing sugars; ¢) amylase activity; d) total protein, e) protease activity and
f) free fatty acids. Error bars represent the standard deviation of triplicates.
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Figure 3. Net cumulative methane production during the anaerobic digestion experiments
(results are expressed per mass of VS of S-OFMSW or OFMSW included in the
mixture). The solid curved line represents the Gompertz model fit.
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