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A critical parameter for the implementation of standard high-efficiency photovoltaic absorber 

materials for photoelectrochemical (PEC) water splitting is its proper protection from chemical 

corrosion while remaining transparent and highly conductive. Atomic layer deposited (ALD) 

TiO2 layers fulfill material requirements while conformally protecting the underlying 

photoabsorber. Nanoscale conductivity of ALD TiO2 protective layers on silicon based 

photocathodes has been analyzed, proving that the conduction path is through the columnar 

crystalline structure of TiO2. Deposition temperature has been explored from 100 to 300 ºC, and 

a temperature threshold is found to be mandatory for an efficient charge transfer, as a 

consequence of layer crystallization between 100 and 200 ºC. Completely crystallized TiO2 is 

demonstrated to be mandatory for long term stability, as seen in the 300 h continuous operation 

test. 

 

1. INTRODUCTION 

As society faces the problems derived from global warming, harvesting solar energy and 

storing it into chemical bonds is one of the most promising paths in the so called solar fuels 

economy1 combined with the introduction of renewable energies. Between them, 

photoelectrochemical (PEC) water splitting offers the possibility to directly convert water and 

solar energy into hydrogen and oxygen with competitive efficiencies2. Estimating the actual 

photovoltaic conversion efficiency and the current commercial electrolyzer yield, the direct 

conversion of solar energy into chemical one (solar-to-hydrogen, STH), starts to be competitive 

above 10%3. 
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Although this technology has been known for decades4, still many of the published values 

show conversion efficiencies too low, and only few long term durability tests have been reported 

up to now. Combining efficiency and stability, while being cost effective, is the most relevant 

challenge to overcome.  

During the last years, many works have been focused on understand the capacity of  different 

non expensive metal oxides materials such as TiO2
5, WO3

6, BiVO4
7 or Fe2O3

8
 or oxynitrites such 

as TaOxNy
9 with band gaps large enough to split the water molecule but still able of harvesting a 

significant portion of the solar spectra, all of them being photoanodes due to their n-type 

semiconductor type5,10–13. In parallel, many standard electronic semiconductor materials such as 

Si, GaAs, CdTe or chalcogenides14,15, have also been explored as electrode materials with high 

photon absorption coefficients for tandem configurations16, although with many electrochemical 

stability limitations which have required different protection and surface catalyst coating 

strategies. Many of these semiconductors are well known from the photovoltaic or 

microelectronic industry, being silicon the most commercially developed due to its performance 

and abundance. Nevertheless, silicon, like other standard electronic semiconductors, when 

exposed to acidic electrolytes has a high surface oxidation rate, limiting its long term 

electrochemical performance17,18. To enable silicon to be used as front illuminated photocathode 

for long term hydrogen evolution, transparent, protective and conductive coatings are required19. 

Coatings must be stable in aqueous electrolytes, transparent to solar spectra to maximize photon 

absorption and to have a proper band alignment to facilitate minority carrier injection20–22.  

One of the proposed coating candidates is titanium dioxide (TiO2), as it is known to be stable 

in a wide range of pH23,24. Also, TiO2 has 3 eV band gap for rutile and 3.2 eV for anatase 

crystalline structure, allowing excellent optical transmittance, making TiO2 an excellent 
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 4

candidate as photocathodes protection layer25,26. In the case of photoanodes, ultrathin (2 nm) 

TiO2 has been used to protect them for some hours while conducting by tunneling27 and  

recently, thanks to an electronically “leaky” behavior, over 100 nm thick TiO2 layers were 

reported conductive and stable for over 100 h by the Lewis group even though a large valence 

band offset between the Si and TiO2, attributed to Ti3+ related mid-band states closely aligned 

with the Si valence band 
28–31, although there is some controversy on the conduction 

mechanism32. In the case of photocathodes, it should be taken in account that TiO2 has n-type 

semiconductor electrical characteristics due to oxygen vacancies, with its conduction band 

energetic level almost aligned with the silicon photoabsorber material for an efficient electron 

transport towards the electrolyte interface for hydrogen evolution reaction (HER).In this context, 

other works have deposited TiO2 by sputtering and some via atomic layer deposition (ALD), all 

of them requiring further post-annealing process at least at 400 ºC for relevant stability33 . ALD 

has attracted much attention during the last decade as it allows depositing thin and conformal 

layers with minimal pinholes, and recently this technique has been upgraded to industrial 

production. In spite of these powerful capabilities there are only few studies about the 

characteristics of ALD-grown TiO2 for photocathodic hydrogen evolution34,35. Recently, we have 

demonstrated the feasibility of using ALD for the fabrication of photocathodes using a CIGSe 

chalcopyrite absorber36, where it was proved that, in order to attain a high Solar-to-Hydrogen 

(STH) conversion, optimizing charge transfer processes is required. Although some other works 

have also used ALD-grown TiO2, a better understanding on the growth process and evaluation of 

the final TiO2 properties as transparent, protective and conductive layer is needed. The growth of 

TiO2 by ALD is known to produce amorphous or crystalline phases depending on temperature, 

precursors, impurities, substrate material or film thickness37, and hence the charge transfer 
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characteristics from the absorber silicon to the electrolyte through this layer become function of 

its deposition parameters. 

To the best of our knowledge, there are not detailed microscopic analysis about the influence 

of electrical characteristics and deposition conditions of ALD coating layers on the final 

photoelectrochemical characteristics of TiO2 protected photocathodes. Among them, temperature 

is one of the critical factors, being ALD crystallization temperature normally lower than those 

reported for post-annealing processes thanks to surface mobility of intermediate reaction 

species38,39. Reducing process temperature while maintaining optimal properties is highly 

interesting to  decrease fabrication costs and to enable novel photoabsorbing materials sensible to 

temperature40. 

On the other hand, one of the main concerns is relative to the internal interface between silicon 

and the coated layer. Si native oxidation forms a narrow SiOx layer. In previous works, 

controlled SiOx has been used to maximize the photovoltage thanks to the creation of a MIS 

junction41,42, but in our case the photovoltage is created by the buried n+-p silicon junction. To 

avoid SiOx being formed, which in our case would act as a series resistance, a thin metallic 

titanium layer is deposited on the cleaned silicon surface before the TiO2 deposition to inhibit 

ambient or ALD-process42 oxidation of Si, assuming a small light shielding of the metallic film, 

and by HRTEM it is confirmed that no SiOx is formed. TiCl4 has been selected as the precursor 

material thanks to its wide deposition range38 compared to other precursors known for ALD-

TiO2
43.  

In the present study, in order to understand the role of the crystallographic structure on the 

charge transfer across these coated layers and its stability, TiO2 layers have been grown by ALD 

at different deposition temperatures on different silicon based substrates using TiCl4 as 

Page 5 of 34

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

precursor. The growth temperature has been modified from 100ºC to 300ºC and a model is 

presented to explain the charge transfer mechanism across the ALD layer. 

 

2. EXPERIMENTAL 

ALD TiO2 has been grown on n+-p silicon buried junctions and simultaneously on n+ 

degenerately doped silicon, to simulate direct injection in dark conditions.  

n+-Si samples were created by cutting in 1x1 cm2 pieces a degenerately doped silicon wafer 

(0.001 ohm·cm), and 50 nm Al were thermally evaporated as back contact. To prevent the 

formation of any native SiO2 and avoid its potential negative effects, in some of these samples, 5 

nm Ti were thermally evaporated on top of it (Ti/n+-Si). Titanium thickness was controlled by a 

quartz microbalance. 

For the Ti/n+p-Si samples, a 1 cm2 active area was lithographically defined by SiO2 passivation 

on a silicon p-type wafer (0.1-0.5 ohm.cm resistivity). Boron was implanted in the defined front 

surface and activated by rapid thermal annealing, creating a 200 nm n+ region on top of the p-

type substrate. Sample’s front surface was dipped in HF and immediately coated with 5 nm Ti by 

sputtering. As back contact, 1 µm Al/0.5%Cu was sputtered on top of 30 nm Ti to form a proper 

ohmic contact. 

n+-Si, Ti/n+-Si and Ti/n+p-Si samples were sonicated for 5 min in a 1:1:1 isopropanol, acetone 

and DI water cleaning solution, followed by abundant rinsing and further 5 min sonication in DI 

water. Samples were simultaneously introduced in a R200 Picosun Atomic Layer Deposition 

system. TiCl4 was selected as precursor due to its wide temperature stability range. TiCl4 and 

H2O precursors at 19 ºC were used in successive pulses at 8 mbar in N2 flow atmosphere, with 

0.1 s pulses and 10 s purges. Under these conditions, layers have been grown at deposition 
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temperatures of 100, 200 and 300 ºC for 3700 cycles, corresponding to roughly 100 nm layers 

for 200 ºC. Layer thickness was measured by evaluating the reflected spectra with a Sensofar 

interferometer device with ± 0.2 nm error. Finally, platinum was deposited either by thermal 

evaporation (corresponding to 1 nm measured by a quartz microbalance) or 50 µl drop casting of 

6.5 mM H2PtCl6 in isopropanol. Samples were then soldered to a Cu wire using Ag paint and 

epoxy protected leaving the front area exposed. For I-V measurements, 100 nm Au was 

thermally evaporated on TiO2/Ti/n+-Si samples with a circular mask 0.55 cm in diameter.  

Surface and cross section morphology was observed with a Zeiss Series Auriga Field Effect 

Scanning Electron Microscope (FESEM). Structural characterization was carried out by X-ray 

diffraction (XRD) in a D8 Advance Bruker equipment with a Cu Kα radiation source working at 

40 kV and 40 mA with a 3 º offset angle. Crystalline domains are calculated following the 

Scherrer equation: D = 0.9 * λ / (β * cos θ), where λ is the X-ray wavelength (1.5406 Å), β is the 

full width of the diffraction line at half maximum (FWHM), and β is the Bragg angle. High 

resolution transmission electron microscopy (HRTEM), high angle annular dark field (HAADF) 

scanning TEM (STEM) and electron energy loss spectroscopy (EELS) spectrum imaging (SI) 

were performed using a TECNAI F20 operated at 200 kV with a point to point resolution of 0.14 

nm. AFM and Conductivity-AFM measures were taken with a Park Systems XE-100 with 

platinum conductive cantilevers. Due to the n+p-Si built-in voltage, only the samples on n+-Si 

substrates were measured by Conductivity-AFM. The photoelectrochemical measurements were 

obtained with a Princeton Applied Research PARSTAT 2273 potentiostat using Ag/AgCl/KCl 

(3M) (E0 = 0.203 VRHE) as reference electrode and platinum mesh as counter electrode. A quartz 

cell with flat faces was used with 100 ml of 0.5 M H2SO4 electrolyte and a 300 W xenon lamp 
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 8

with an AM 1.5G filter under the appropriate distance to receive 100 mW/cm2, calibrated using a 

silicon diode (Gentec-EO, XLPF12-3S-H2-DO).  

The half-cell solar-to-hydrogen efficiency (HC-STH) was calculated from the linear sweep 

voltammograms using the equation HC-STH = |jph| × (ERHE-EH+/H2) / Psun × 100 %, where jph is 

the photocurrent density obtained under an applied bias of ERHE, EH+/H2 is the equilibrium redox 

potential of hydrogen (0 VRHE) and Psun is the power density of the incident solar energy (100 

mW·cm-2). I-V curves were obtained with the potentiostat, connecting the working electrode on 

the back contact and the counter and reference electrodes on the top Au contact. 

Photoelectrochemical fill factor (FF) was defined equivalently as in photovoltaics assuming the 

onset potential as open circuit voltage and the current density at 0 VRHE as short circuit current.  

 

3. RESULTS AND DISCUSSION 

3.1. Electrochemical characterization  

In order to optimize the charge transfer process of a n+p-Si photocathode, it is needed to 

consider that the electron injection will be from the doped n+-Si to the electrocatalyst through the 

protective TiO2 layer. Then, to avoid the resistive effect of the diode under dark conditions, 

degenerately doped n+ 0.001 ohm.cm Si substrates has been used instead of illuminating n+p-Si 

junctions, being some of them protected with Ti.  

n+-Si and Ti/n+-Si substrates with a nominal 100 nm TiO2 grown at different temperatures 

were tested as electrodes for hydrogen evolution using Pt as electrocatalyst in sulfuric acid media 

(0.5 M H2SO4) in a 3 electrodes configuration. The overall current obtained under polarization is 

influenced by the intrinsic conductivity of the TiO2 and possible extra SiO2 interlayer and also 

the surface charge transfer rate, which is assumed to be constant, as the HER deposited catalyst 
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 9

is the same. Thus, any variation in the measured current is attributable to the TiO2 or the 

presence of a resistive SiO2 interlayer. As seen in Figure 1, polarization curves show a clear 

influence of ALD deposition temperature. Regardless of the titanium layer presence, the current 

density reached at the same polarization is higher as the growth temperature increases. 

Comparing the results obtained with both substrates, n+-Si and Ti/n+-Si, it can be observed that, 

under the same experimental conditions, higher current densities were obtained in samples where 

the TiO2 layer was grown on Ti/n+-Si. On bare n+-Si, the presence of a native SiO2 layer is 

expected, introducing significant resistance to the system, lowering the obtained electrochemical 

current. This native layer can be thus avoided with the metallic 5 nm Ti layer. 

 

Figure 1. Polarization curves of TiO2 layers grown at different temperatures on Ti/n+-Si 

substrates (solid lines) and n+-Si (dotted lines) ranging from 100 to 300 ºC. 1 nm Pt was 

evaporated on top as HER catalyst. Measurements were made in 0.5 M H2SO4 with Ag/AgCl as 

reference electrode and Pt as counter in 3 electrodes configuration with no illumination. 
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 10

 

3.2. Morphological and structural characterization 

No visible pinholes have been detected by direct analysis of the SEM images of the TiO2 

layers grown by ALD (Figure 2 a-c) on Ti/n+-Si substrates. Increasing temperature from 100 to 

300 ºC shows remarkable variation in the film topography, which is proven by XRD to 

correspond to TiO2 crystalline growth, starting between 100 and 200 ºC and presenting anatase 

structure. The deposition temperature range was set up to 300 ºC to obtain complete layer 

crystallization on all substrates. 

 

Figure 2. SEM images of TiO2 layers grown by 3700 ALD cycles of TiCl4 and H2O on Ti/n+-Si 

substrates at a) 100 ºC, b) 200 ºC and c) 300 ºC. d) XRD patterns of TiO2 layers grown on Ti/n+-

Si substrates at 100 ºC, 200 ºC and 300 ºC. 
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 11

 

For ALD layers deposited on Ti/n+-Si substrates, XRD shows that at 100 ºC amorphous layers 

are grown, while anatase TiO2 is obtained at 200 and 300 ºC (Figure 2.d). This is in agreement 

with electrochemical charge transfer shown in Figure 1, with amorphous layers inhibiting charge 

transfer, meanwhile crystallization enables current flow, and more stable TiO2 phases further 

reduce electrical resistance. Preferential growth direction with the 25.5 º peak is shown at 200 ºC 

but not at 300 ºC, as higher nucleation rate inhibits preferential directions to develop44. This 

phase transition is in accordance with other studies38.  

Samples without the intermediate Ti layer (where Si was exposed to air, creating a native SiO2 

layer) show the same behavior but shifted to higher temperatures (Figure S.2 a-c), with 300 ºC 

grown samples still showing preferential growth directions (Figure S.3).  

Crystal nucleation is favored as temperature increases, starting at a temperature higher than 

100 ºC as seen in SEM. At 200 ºC, grains ranging 180 nm in diameter can be seen on n+-Si 

substrates, whereas less than 20 nm diameter ones can be seen at 300 ºC on Ti/n+-Si, with a 

higher grain density and size dispersion due to increased nucleation and competiveness. Higher 

thermal energy enhances nucleation kinetics by overcoming its activation energy, favoring 

nucleation in front of growth and resulting in more and smaller grains. Increasing temperature is 

also expected to improve atomic order in the crystal structure. From XRD data and using the 

Scherrer equation, the mean size of the crystalline domains has been calculated. Sizes of 33.2 nm 

for 200 ºC and 25.9 nm at 300 ºC on n+-Si, and 26.3 and 22.2 nm for 200 and 300 ºC on Ti/n+-Si 

substrates have been obtained. Calculated crystallite size suggests that multiple crystallographic 

domains are present in the same observable grain. Crystal size is reduced when deposition 

temperature increases, as it is expected for higher nucleation.  
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 12

Layer thickness is also dependent on the crystallographic phase. As can be seen in the cross 

section SEM image (Figure 3), grains are thicker than the amorphous layer. We should expect 

thinner layers where they crystalize into more compact phases, as far as the amount of precursor 

is kept constant. However, anatase phase is more favorable to OH- adsorption, and higher 

superficial OH- density increases the growth per cycle by a higher ALD reactivity, thus 

generating thicker layers where there is a crystallized zone43. 

 

Figure 3. Cross section SEM image of a 3700 cycles TiO2 layer on n+-Si grown at 200 ºC 

As seen in the HRTEM cross section (Figure 4) of a processed Ti/n+p-Si sample, a native 3.5 

nm TiOx overlayer is formed on metallic Ti when exposed to air. This layer seems to enhance 

nucleation and so, due to growth competition amongst different grains, reduction of crystallite 

size by crystal overlapping takes place. Lower lattice mismatch is the cause of enhanced 

nucleation on TiO2/Ti substrates compared to SiO2/Si, leading to crystallization temperature 
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reduction, as TiO2 is known to start growing in amorphous phase for the initial ALD cycles38. By 

AFM it was discarded to be caused by higher substrate rugosity (Figure S.4). 

 

 

Figure 4. HRTEM images of a Ti/n+p-Si substrate a) prior to ALD deposition b) with 3700 ALD 

cycles of TiO2 grown at 200 ºC. c) Reciprocal space phase filtered HRTEM image composition. 

Crystals starting on the native TiO2 and propagating vertically in a columnar configuration can 

be seen. 

 

From the HRTEM image of TiO2 on Ti/n+p-Si, it is confirmed that the presented ALD crystal 

has anatase crystallographic phase (Figure 4). The observed metallic Ti on silicon is 5 nm thick, 

and its native TiO2 layer is 3.5 nm. Ti presents polycrystalline structure with preferential {10-10} 

planes parallel to the (001) Si substrate. The native layer is amorphous, as the 200 ºC annealing 

caused by the ALD deposition process is not enough to crystallize it. EELS TEM imaging 

(Figure S.5) confirms progressive reduction of the oxygen content in the native layer, with 5 nm 

metallic Ti remaining after ambient exposition during laboratory manipulation and processing, 
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proving it is thick enough to act as oxidation barrier avoiding oxygen diffusion towards the Si 

photoabsorber. This 5 nm Ti layer is expected to partially block light from reaching the Si, and 

thus significantly reducing the photon to current conversion efficiency.  

It is important to note that the bottom part of the ALD layer was crystalline, meaning nucleated 

crystals not only propagate upwards, but also laterally45. The substoichiometry of the native 

oxide layer must prevent its recrystallization. Reciprocal space phase filtered HRTEM presents 

columnar epitaxial growth from the base to the top of the ALD layer (Figure 4).  

 

3.3. Solid state electrical characterization 

A conductivity AFM was used to visualize the conduction path across the TiO2 layer, similarly 

to the measurements performed by Wang’s group on hematite46.  From the topography image of 

a sample grown at 200 ºC on bare n+-Si substrates (Figure 5.a), we can see that successive ALD 

deposition formed isolated grains, as seen in SEM (Figure 3). From conductive measurements 

(Figure 5.b), it is perfectly seen that the whole grain structure is the path for the current flow, 

with similar current intensities at a fixed voltage. Comparing topography and conductivity AFM 

measurements, and as suggested by Scherrer equation, multiple crystallite boundaries can be 

seen in each grain as more resistive regions. No current is detected from the amorphous regions, 

as atomic disorder gives significantly reduced electron mobility and larger resistance than 

crystalline TiO2. From a sample grown at 300 ºC on Ti/n+-Si (Figure 5.c,d), where no amorphous 

phase is present, similar current intensity is detected from all grains. Also, grain boundaries are 

much less conductive.  

Columnar grain growth together with conductivity through the crystalline grains is the key for 

a good electrical transport from the photoabsorbing material to the catalyst to perform the 
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hydrogen evolution reaction. No grain boundaries are seen by HRTEM in the vertical direction, 

being those one of the main electron mobility barriers for polycrystalline conductive materials. 

Increasing deposition temperature increases the number of grain boundaries in the lateral but not 

in the vertical direction, and also enhances crystallographic order, a parameter for higher electron 

mobility. This is in accordance with obtaining higher conductivity in the samples grown at 

higher temperature.  

 

Figure 5. AFM and c-AFM images of TiO2 ALD layers on an n+-Si substrate. a) Height map of a 

sample grown at 200 ºC, b) current intensity image of the same sample. c) Height map of a 

sample grown at 300 ºC and d) its current intensity map. 
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 16

To deeply analyze and quantify the conduction across ALD-grown TiO2 layers on Ti/n+-Si, 

100 nm of Au were deposited by thermal evaporation to form a top, highly conductive and 

defined contact (Figure 6.a). As seen in Figure 6.b, a nonlinear behavior and higher currents for 

negative polarization can be distinguished, meaning that our system presents a rectifying 

behavior: a Schottky barrier junction, formed between the TiO2 and the Au top contact. The 

degenerately doped n+-Si/Ti junction and the progressive interface between Ti and TiO2 (due to 

the oxygen chemical affinity of Ti) form ohmic-like contacts, injecting electrons from the n+-Si 

conduction band into the TiO2 conduction band47.   The conductivity increment with higher ALD 

growth temperatures is clearly shown, presenting the same trend determined by previous 

electrochemical measurements (Figure. 1).  
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 17

 

Figure 6. a) Scheme of the stack. b) I-V c) log-log curves of the Au top-contacted TiO2 layers 

grown at 100 ºC (black), 200 ºC (red) and 300 ºC (blue). Numbered arrows show the direction of 

the polarization curve in b) and the slope in c) is indicated for each different segment of the log-

log graph. Measurements were recorded at 50 mV/s. 
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 18

Samples grown at 200 and 300 ºC present a reversible switch between a high resistivity (HR) 

and a low resistivity (LR) state. Anatase-crystallized TiO2 is known to behave as n-type 

semiconductor due to oxygen vacancies, regarded to be fully ionized even at room temperatures, 

giving free electrons to act as charge carriers. These changes while cycling have been explained 

by some papers during the last decade 47–51,  and are attributed to ionic diffusion of the oxygen 

atoms due to polarization, leaving extra free charges (oxygen vacancies) which enhance the 

electronic conductivity47. Current flow through defects on the crystallographic structure can 

create local heating, enhancing ionic diffusion, and forming highly conductive paths or 

filaments, giving the LR state. Reversing the polarization returns the oxygen ions, destroying the 

filaments, and resetting the sample to the HR state. The sample grown at 300 ºC has an almost 

immediate change in the resistivity state, while the sample fabricated at 200 ºC has a more 

progressive one. This difference could be justified by the poor crystallographic quality at 200 ºC, 

lowering the ionic mobility together with a general lower conductivity, which gives less local 

heating.  

From the log-log plot (Figure 6.c), an ohmic dependence (I α V) is observed for all samples on 

small polarization potentials. Further increasing the potential, slope increases for all samples. 

This behavior fits to a space charge limited (SCL) conduction mechanism (I α V2)52 together 

with the Au/TiO2 Schottky Barrier junction. For polarization values inside the ohmic regime, we 

can measure resistances from 221 Ω·cm2 for the sample grown at 100 ºC, to 41 and 21 Ω·cm2 for 

200 and 300 ºC-grown samples. If we measure the potential drop in the layer at 5 mA/cm2, we 

obtain 430 mV for 100 ºC, 213 and 151 mV for HR and LR states at 200 ºC, and 118 and 112 

mV for HR and LR at 300 ºC.  

3.4. Photoelectrochemical characterization 
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ALD-grown TiO2 layers were used to protect n+p-Si substrates having a thin ~5 nm Ti layer 

(Ti/n+p-Si) at deposition temperatures of 100, 200 and 300 ºC. When exposed to AM 1.5G 

illumination, the p-n junction properly separates the electron-hole pairs, giving an onset voltage 

around 0.6 V vs RHE (Figure 7). More than 100 mV/dec potential losses should be expected by 

the electrochemical kinetics of hydrogen evolution, even when using platinum as catalyst53. 

 

Figure 7. a) polarization curves and b) HC-STH calculations of TiO2 layers grown at different 

temperatures on Ti/n+p-Si substrates ranging from 100 to 300 ºC. 1 nm Pt was evaporated on top 

as HER catalyst. Measurements under 1 sun AM 1.5G illumination in 0.5 M H2SO4 with 

Ag/AgCl as reference and Pt as counter electrode in 3 electrodes configuration.  

 

The layer growth temperature influences significantly the sample’s efficiency. Samples grown 

at 100 ºC show a highly resistive response (with a fill factor (FF) of 0.26), meanwhile FF is 

significantly improved when increasing growth temperature. At 200 ºC, which corresponds to 

samples with polycrystalline anatase layers combined with amorphous regions, a FF of 0.66 is 
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 20

obtained. At 300 ºC, the slope of the j-V curve is slightly increased, together with the FF, up to 

0.73 (Table 1).  

 

Table 1. Photogenerated current densities and voltages under 1-sun illumination of the samples 

grown at different temperatures. 

Growth 

temperature (ºC) 

j at 0VRHE 

(mA/cm
2
) 

VONSET 

(VRHE)  

Fill Factor 

 

HC-STH 

(%) 

100 1.9 0.59 0.26 0.25 

200 20.6 0.63 0.66 7.60 

300 20.3 0.64 0.73 8.10 

 

 

This enhancement in the saturation slope is directly related to growth temperature via 

reduction of the deposited layer resistivity. With such improvement, a half-cell solar-to-hydrogen 

conversion efficiency (HC-STH) of up to 8.1 % can be reached. The effect of TiO2 layers with 

different resistivity on silicon photocathodes band diagrams is schematically represented in 

Scheme 1. For high resistive layers, the voltage drop across the protective layer causes a 

decrease in the fill factor. For the more crystalline and less resistive layer, the lower voltage drop 

allows an optimum electron transfer. Then, the main factors contributing to the FF characteristics 

of the polarization curve are the buried p-n junction and the platinum HER overpotential.  
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Scheme 1. Charge transfer model in working conditions with a) high resistance and b) low 

resistance TiO2 layer. 

 

Long term stability experiments were performed under 1 sun AM 1.5G illumination at 0.3 

VRHE in 0.5 M H2SO4 with n+p-Si photocathodes protected with either an almost-completely 

crystalline TiO2 layer and a fully crystalline one.  
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Figure 8. a) Top and b) cross section SEM images of an almost-crystalline TiO2 layer after a 

stability test, where dissolution of the amorphous region between crystals can be seen. c) Cross 

section of a fully crystallized layer after 300 h stability in 0.5 M H2SO4, with no visible 

dissolution. d) Current measurement of the fully-crystalline TiO2 sample for 300 h at 0.3 VRHE 

under 1 sun AM 1.5G illumination. 

 

After examining the almost-completely crystalline TiO2 layer by SEM (Fig. 8a,b), we can 

clearly see how the top view is similar to as-grown layers (Figure 2.b), with darker zones 

between the crystals. Cross section SEM image evidences that those gaps are missing TiO2. At 

reductive potentials and using an acidic electrolyte (0.5 M H2SO4), the amorphous TiO2 phase 
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has dissolved, but not the anatase crystals, leaving inversed conical structures only attached to 

the Si by the tip. Also, silicon is not attacked, and SiO2 is known to form, protecting the silicon 

from further oxidation but electrically passivating the surface. Fully crystalline TiO2 layers 

present no visible dissolution, showing compact columnar crystals by cross section SEM, 

proving that the stability of TiO2 shown in its Pourbaix diagram23 is only attributable to the 

crystalline anatase TiO2 crystal phase. This shows the need to use crystallized ALD layers, 

together with the conductivity improvement with temperature previously shown. 

A stability measurement of a photocathode protected with a fully crystalline TiO2 layer was 

performed for over 300 h, as shown in Figure 8.a. The sample maintained 90 % of the initial 

photocurrent without significant changes in the Fill Factor, as seen in Figure S.6. This slight 

current reduction over time has been attributed by other authors to the loss of not properly 

attached platinum catalyst25,33. To best of our knowledge, there are no reports presenting several 

days stability of TiO2-protected photocathodes fabricated at lower than 400 ºC. 

4. CONCLUSIONS 

In conclusion, we have demonstrated that the ALD growth temperature has a fundamental role 

on the charge transfer across protective TiO2 coatings for front illuminated silicon photocathodes 

due to reduced resistivity with increasing deposition temperature. A minimum growth 

temperature is required for an efficient charge transfer, as a consequence of layer crystallization 

between 100 and 200 ºC.  

From conductive AFM images, we have proven that the conduction path is through the 

crystalline structure of TiO2; and that amorphous layers and grain boundaries are highly resistive. 

Conduction across the protective layer can be increased by using higher deposition temperatures 

with more stable TiO2 phases and reducing defects and charge traps, obtaining higher fill factors 
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up to 0.73. The thin titanium layer used to protect silicon from oxidation has an important role 

also in enhancing the TiO2 nucleation and crystallization although reducing light transmission. 

The formation of a TiOx layer contributes to the nucleation of the TiO2 ALD layer enhancing 

crystal density. The negative formation of a resistive SiOx layer is avoided. Also, fully 

crystallized TiO2 is demonstrated to be mandatory for long term stability, as seen in the 300 h 

continuous operation test.  

Future studies should be addressed into achieving higher crystallization at lower temperatures, 

to implement ALD grown TiO2 as protective, conductive and transparent layers for 

photoabsorbing materials sensible to temperature processes.  
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