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SUMMARY

Secretory immunoglobulin A (SIgA) enhances host-
microbiota symbiosis, whereas SIgM remains poorly
understood. We found that gut IgM+ plasma cells
(PCs) were more abundant in humans than mice
and clonally related to a large repertoire of memory
IgM+ B cells disseminated throughout the intestine
but rare in systemic lymphoid organs. In addition to
sharing a gut-specific gene signature with memory
IgA+ B cells, memory IgM+ B cells were related to
some IgA+ clonotypes and switched to IgA in
response to T cell-independent or T cell-dependent
signals. These signals induced abundant IgM which,
together with SIgM from clonally affiliated PCs,
recognized mucus-embedded commensals. Bacte-
ria recognized by human SIgM were dually coated
by SIgA and showed increased richness and diver-
sity compared to IgA-only-coated or uncoated bac-
teria. Thus, SIgM may emerge from pre-existing
memory rather than newly activated naive IgM+ B
cells and could help SIgA to anchor highly diverse
commensal communities to mucus.

INTRODUCTION

Complex commensal communities generally referred to as mi-

crobiota colonize the gut mucosa soon after birth and have a

broad impact on host metabolism, immune system develop-

ment, and gut homeostasis (Kamada et al., 2013). A central
118 Immunity 47, 118–134, July 18, 2017 ª 2017 The Authors. Publis
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element of gut homeostasis is secretory immunoglobulin A

(SIgA), an antibody that promotes symbiotic host-microbiota in-

teractions by binding commensals inhabiting the small intestine

and, to a lesser extent, the large intestine (Bunker et al., 2015;

Kawamoto et al., 2014).

SIgA responses to commensals mostly initiate at gut follicular

sites of antigen entry, including Peyer’s patches. At these sites,

sampling of commensals by microfold cells, macrophages, and

dendritic cells promotes a sustained germinal center (GC) reac-

tion involving cognate interaction of B cells with T cells, followed

by B cell induction of IgM-to-IgA class switching and affinity

maturation through class switch recombination (CSR) and

somatic hypermutation (SHM), respectively (Kawamoto et al.,

2014). High-affinity and IgA-expressing B cells emerging from

GCs upregulate gut-homing receptors and progressively differ-

entiate into IgA-secreting plasma cells (PC-As), which home to

the gut lamina propria (LP) (Macpherson et al., 2008). These

PC-As release polymeric IgA, which translocates across epi-

thelial cells to generate intraluminal SIgA that coats mucus-

embedded commensals (Kubinak and Round, 2016).

The T cell-dependent (TD) pathway is complemented by a

T cell-independent (TI) pathway entailing activation of follicular

and possibly extrafollicular B cells by various cells of the innate

immune system (Tsuji et al., 2008). Complementary TD and TI

responses generate circulating IgA class-switched memory

(ME-A) B cells and cooperatively shape the architecture of the

microbiota during the development of an individual (Planer

et al., 2016). However, the TD pathway may become predomi-

nant over time due to continuous accumulation of ME-A B cells

(Lindner et al., 2012, 2015).

ME-AB cells emerge from gut inductive sites alongwith PC-As

and continuously diversify their B cell receptor repertoire via a

microbiota-stimulated adaptation process involving induction
hed by Elsevier Inc.
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Figure 1. Human PC-Ms Accumulate in the Gut together with ME-M B Cells and Include a Circulating Counterpart Expressing Gut-Homing

Receptors

(A) Flow cytometry (FCM) of IgM and IgA on CD19+CD38hiCD10� PCs from human ileum and colon.

(B) Frequency of PC-Ms among total PCs, assessed by FCM.

(legend continued on next page)

Immunity 47, 118–134, July 18, 2017 119



of SHM and PC-A differentiation in pre-existing GCs (Lindner

et al., 2012).

In addition to PC-As, the gut mucosa contains IgM-secreting

PCs (PC-Ms) that release SIgM into the lumen through the poly-

meric Ig receptor (pIgR) (Macpherson et al., 2008). In mice, SIgM

production increases upon induction of colonic damage to pre-

vent lethal dissemination of commensals (Kirkland et al., 2012).

However, little else is known about the ontogeny, regulation,

and function of SIgM, particularly in humans. A better under-

standing of this mucosal antibody may further elucidate host-

microbiota interactions in health and disease states. Indeed,

primary antibody deficiency patients selectively lacking SIgA

rarely develop inflammatory bowel disease, which is instead

more common and very severe in patients lacking both SIgM

and SIgA (Agarwal and Mayer, 2009).

We found that human PC-Ms coexisted with a large but previ-

ously unrecognized repertoire of gut-specific memory IgM+

(ME-M) B cells that were clonally related to PC-Ms as well as

some ME-A B cells and PC-As. In addition to inducing IgM-to-

IgA CSR, ME-M cells exposed to TD or TI signals secreted

copious IgM that targeted mucus-embedded commensals,

similar to SIgM from PC-Ms. Unlike its murine counterpart,

human SIgM recognized bacteria dually coated by SIgA that

were characterized by increased diversity compared to SIgA-

only-coated or uncoated bacteria. Thus, SIgM may emerge

from pre-existing ME-MB cells rather than newly activated naive

B cells and could help SIgA to anchor highly diverse microbial

communities to gut mucus.

RESULTS

Gut PC-Ms Are More Abundant in Humans than Mice
Gut PC-As have been extensively studied, but little is known

about gut PC-Ms, which account for about 10%–20% of all gut

PCs in humans (Macpherson et al., 2008). Flow cytometry

identified PC-Ms in addition to PC-As in histologically normal

resected tissues from terminal ileum and proximal colon sam-

ples of individuals undergoing right hemicolectomy due tomalig-

nancy, polyps, or angiodysplasia (Figures 1A and S1A). PC-Ms

were consistently more abundant in the ileum compared to the

colon and expressed a phenotype similar to that of class-

switched PCs, which comprised mostly PC-As (Figures 1A–1C

and S1B).

Compared to human gut naive B cells, PC-Ms showed

increased expression of CD138, CCR10, and/or CCR9. Upregu-

lation of these PC-associated molecules was coupled with
(C) FCM of selected surface molecules on naive (N) B cells, PC-Ms, and switche

tensity (MFI).

(D) Immunofluorescence analysis (IFA) of IgM (green), IgA (red), and DNA (blue

magnification, 203. Scale bars, 50 mm.

(E) Number of PC-Ms (top), PC-As (center) per mm2 of LP, and PC-M/PC-A ratio (b

six different tissue samples where at least four high-power microscopic fields we

(F and G) Representative FCM (F) and frequency (G) of b7+CCR9+ cells in human

(H) Representative FCM showing IgM versus IgD staining on CD19+CD38�CD10
(I) Frequency of ME-M B cells from tissues shown in (H).

(J) FCM of IgD, CD24, CD27, and CD148 on naive, ME-M, and ME-SW B cells fr

Data show one representative result (A, F, H) of 12 (B), 8 (G), or 52 (I) experiments

presented asmean ± SEM; two-tailed unpaired Student’s t test (B and E) and one-w

also Figure S1.
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downregulation of HLA-DR, CD20, and the follicle-associated

chemokine receptors CCR7 and CXCR4. Notwithstanding their

resemblance to PC-Ms, class-switched PCs expressed more

CD138, which could reflect a more advanced maturation stage

(Figure 1C and S1B; Nutt et al., 2015).

Quantitative real-time PCRs (qRT-PCRs) further determined

that, compared to human intestinal naive B cells, PC-Ms con-

tained more transcripts for BLIMP-1 and IRF4 (Figure S1C),

two transcription factors required for PC differentiation (Nutt

et al., 2015). In addition, PC-Ms contained more transcripts for

BCL-2 (Figure S1C), an anti-apoptotic protein that may sustain

human PC survival in the intestine (Nair et al., 2016). Of note,

immunofluorescence analysis followed by tissue-based cell

counting demonstrated that, compared to the human ileum LP,

the small intestinal LP from wild-type C57BL/6 mice featured

fewer PC-Ms accumulating intracellular IgM and a lower PC-

M/PC-A ratio (Figures 1D and 1E). Flow cytometry confirmed

that the frequency of PC-Ms was negligible compared to that

of PC-As in the mouse small and large intestines (Figures S1D

and S1E).

Given that PC-As colonize the small intestinal LP from the

circulation through a mechanism involving a4b7 and CCR9

gut-homing receptors (Macpherson et al., 2008), we further veri-

fied whether circulating PC-Ms expressed gut-homing proper-

ties. Compared to PC-As, a larger fraction of circulating PC-Ms

co-expressed b7 and CCR9, whereas PC-G/Es showed little or

no b7 and CCR9 (Figures 1F and 1G). Thus, PC-Ms are relatively

abundant in the human but not mouse small intestine, resemble

gut PC-As, and include a circulating fraction expressing gut-

homing receptors.

Gut PC-Ms Coexist with a Large Repertoire of ME-M
B Cells
Considering that gut PC-As emerge from ME-A B cells diversi-

fying at gut inductive sites (Lindner et al., 2015), we hypothesized

that PC-Ms coexisted with ME-M B cells in the human gut and

followed published gating strategies and comparable isolation

procedures to segregate IgM+IgD�CD27+CD38� ME-M B cells

from IgM+IgDhiCD27�CD38� naive, IgM+IgDloCD27+CD38�

marginal zone (MZ), and IgM�IgD�CD27+CD38� class-switched

memory (ME-SW) B cells (Berkowska et al., 2011; Descatoire

et al., 2014). Of note, MZ B cells are heterogeneous due to pro-

gressive recruitment into GC responses that induce classical

memory traits over time, including antigen-driven selection

(Aranburu et al., 2017; Descatoire et al., 2014; Klein et al.,

1998; Seifert et al., 2015). Nonetheless, MZ B cells exhibit
d PCs (PC-SW) from human ileum. Numbers indicate mean fluorescence in-

) in human ileum and mouse small intestine (SI) lamina propria (LP). Original

ottom) from human ormouse SI assessed following tissue IFA. Data summarize

re analyzed.

circulating PC-Ms, PC-As, and PC-G/Es.
� B cells from different human tissues.

om ileum.

or are from one experiment of at least 3 with similar results (C, D, J). Results are

ay ANOVAwith Tukey’s post hoc test (I). *p < 0.05, **p < 0.01, ***p < 0.001. See
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some properties that make them different from ME-M B cells,

including NOTCH-dependent but GC-independent ontogeny in

addition to IgDlo phenotype (Aranburu et al., 2017; Berkowska

et al., 2011; Descatoire et al., 2014). ME-M B cells were abun-

dant in ileum and colon but rare in blood, spleen, and tonsil

(Figures 1H and 1I). Consistent with the prevailing localization

of PC-Ms in the ileum, ME-M B cells were enriched in the ileum

compared to the colon and showed a phenotype similar to that

of ileal ME-SW B cells and splenic MZ B cells, including

increased expression of the co-stimulatory molecules CD24,

CD27, and CD148 compared to naive B cells (Figures 1H–1J

and S1F).

Next, we dissected the intestinal geography of ME-M B cells

by tissue immunofluorescence. Tissue-based cell counting re-

vealed that ME-M B cells expressing surface IgM but not IgD

were rare in the gut LP and comparably abundant in ILFs with

or without GCs (Figures 2A and 2B). Consistently, gut ME-M B

cells expressed follicle-retaining CCR7 and CXCR4 receptors

as much as gut naive and ME-SW B cells (Figure 2C). However,

kappa-deleting recombination excision circle assays detected

molecular fingerprints of GC proliferation (van Zelm et al.,

2007) in gut ME-M and ME-SW but not naive B cells (Figure 2D).

Given that ME-A B cells upregulate a4b7 and CCR9 gut-hom-

ing receptors as they recirculate from gut follicular inductive sites

to the gut LP (Macpherson et al., 2008; Nair et al., 2016), we

further determined b7 and CCR9 expression by circulating

ME-M B cells. Compared to circulating ME-A B cells and MZ B

cells, a larger fraction of circulating ME-M B cells co-expressed

b7 and CCR9, whereas naive B cells andME-G/E B cells showed

little or no b7 and CCR9 co-expression (Figures 2E and 2F).

We then ascertained whether the gut mucosa generated

ME-M B cells at an early age. Tissue immunofluorescence

analysis identified human intestinal ME-M B cells together with

PC-Ms and PC-As as early as 1.5 months of age (Figure 2G).

Tissue-based cell counting and flow cytometry indicated that

ME-M B cells remained stable over time, whereas PC-Ms

increased through the first ten years of life (Figures S1G and

S1H). Thus, human gut PC-Ms co-exist with a large and stable

repertoire of ME-M B cells that emerge early in life, predomi-

nantly inhabit gut follicles, and include a circulating fraction ex-

pressing gut-homing receptors.

Gut ME-M B Cells Express a Gene Signature Reflecting
Antigen Experience
Human intestinal ME-M B cells were further characterized

through transcriptomics. These studies were preceded by a
Figure 2. Human Gut ME-M B Cells Inhabit Mucosal Follicles, Show

Homing Receptors, and Emerge Early in Life

(A) IFA of IgM (green), IgD (red), and DNA (blue) in human ileum tissue sections. B

603 (right). Scale bars, 50 mm.

(B) Number of IgM+IgD� ME-M B cells from human intestine calculated by coun

tissue samples where at least four microscopic fields were analyzed.

(C) FCM of CCR7 and CXCR4 on naive, ME-M, and ME-SW B cells from human

(D) Replication history analyzed by KREC assay. Dashed line corresponds to pas

(E and F) Representative FCM (E) and frequency (F) of human circulating b7+CCR

(G) IFA of IgM (green), IgD (red), IgA (magenta), and DNA (blue) in intestinal tissu

fication, 103 (top left), 203 (top right), 43 (mid left), 403 (mid right), 103 (bottom

Data are from 1 of at least 3 experiments with similar results (A, C, G), summariz

Results are presented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001 (two-ta
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morphological analysis that confirmed the specificity of our

sorting procedures (Figure 3A).

The global gene expression profile of ME-M B cells was eluci-

dated through cross-comparative strategies involving memory B

cell subsets from gut or spleen, including splenic MZ B cells. In

this approach, eachsubsetwascompared to tissue-specificnaive

B cells. Supervised hierarchical clustering and robust multi-array

average expression analysis indicated that ME-M B cells ex-

pressed a transcriptome distinct from that of naive B cells, but

similar to that of ME-SWB cells, irrespective of the tissue of origin

(Figures 3B and S2A). Venn diagrams further determined that gut

ME-M B cells expressed a common memory B cell signature en-

tailing 215 transcripts, which were also differentially expressed

by gut ME-SW B cells as well as splenic ME-SW and MZ B cells

(FigureS2B). ThiscommonmemoryBcell genesignature included

increased expression of TACI (TNFRSF13B) alongwith decreased

expression of IgD (IGHD), CD72, and the transcriptional suppres-

sors of PCdifferentiation FOXO1, BTLA, andBACH2 (Figures S2C

and S2D; Kurosaki et al., 2015; Nutt et al., 2015). Thus, human gut

ME-MBcellsexpressacommonmemoryBcell genesignature re-

flecting increased propensity to undergo activation, proliferation,

and PC differentiation.

Gut ME-M B Cells Express a Tissue-Specific Gene
Signature
As shown by unsupervised hierarchical gene clustering and prin-

cipal component analysis, gutME-M andME-SWB cells also ex-

pressed a tissue-specific signature. Indeed, these B cells clus-

tered together but away from splenic ME-SW and MZ B cells,

whereas naive B cells grouped together independently of their

tissue of origin (Figures 3B, S2E, and S2F). Pairwise correlations

confirmed that gut ME-M B cells were more robustly affiliated to

gut ME-SW B cells than to splenic MZ B cells (Figure 3C).

Accordingly, volcano plot, Venn diagram, and heatmap dia-

grams coupled with qRT-PCR showed 305 transcripts differen-

tially expressed by gut ME-M and ME-SW B cells but not

splenic ME-SW and MZ B cells compared to naive B cells

(Figures 3D–3F and S3A).

This tissue-specific memory signature included increased

expression of transcripts for (1) activation-induced receptors

such as FcRL4, CD11c (ITGAX), and Siglec-6; (2) IgA

response-related transcription factors such as RUNX2 and

RORA; (3) PC-inducing molecules such as IL-10, IL10RA,

CD70, and the transcription factor ZBTB32; and (4) epithelium-

targeting chemokine receptors such as CCR1, CCR2, and

CCR9 (Figures 3D–3F and S3A; Ehrhardt et al., 2005; Jash
Post-GC Traits, Include a Circulating Counterpart Expressing Gut-

oxes correspond to enlarged right images. Original magnification, 203 (left) or

ting cells/mm2 following tissue IFA. Data summarize results from five different

ileum and colon.

t cell divisions in control GC B cells from human tonsils.

9+ B cells.

es from children. Boxes correspond to enlarged right images. Original magni-

left), and 403 (bottom right). Scale bars, 50 mm.

e 3 experiments (D), or show 1 representative result (E) of 24 experiments (F).

iled unpaired Student’s t test). See also Figure S1.
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et al., 2016; Nair et al., 2016; Rubtsov et al., 2015; Wang et al.,

2012; Watanabe et al., 2010). Finally, Ingenuity’s upstream regu-

lator analysis indicated that, compared to splenic ME-SW and

MZ B cells, gut ME-M and ME-SW B cells expressed functional

gene sets predicting enhanced signaling from IL-2, IL-5, IL-6, IL-

10, IL-15, andGM-CSF pathways (Figure 3G), which are linked to

B cell activation and PC differentiation (Nutt et al., 2015).

Consistent with these data, gut ME-M and ME-SW B cells ex-

pressed activation traits encompassing upregulation of FcRL4,

CD43, and CD11c combined with downregulation of CD62

ligand expression (Figure 3H). However, compared to gut

ME-SW B cells, gut ME-M B cells also showed enhanced MZ-

like traits (Figure 3I), including increased expression of CD21,

CD35, CD1c, and the adhesion molecule CD66a (Descatoire

et al., 2014; Seifert et al., 2015). Notwithstanding these similar-

ities, supervised gene expression analysis, flow cytometry, and

gene set enrichment analysis (GSEA) indicated that gut ME-M

B cells were distinct from splenic MZ B cells (Figures S3B–

S3E). Indeed, gut ME-M B cells expressed less CD84 (Fig-

ure S3B), a member of the SLAM family highly expressed by

innate-like lymphocytes (Sintes et al., 2010). Furthermore, gut

ME-M B cells expressed more gene products implicated in

IL-2 and IL-6 receptor signaling via STAT proteins, but fewer

gene products implicated in NOTCH signaling (Figures S3C–

S3E). Thus, human gut ME-M B cells express a tissue-specific

memory gene signature reflecting increased immune activation

and PC but not MZ differentiation.

Gut ME-M B Cells Are Clonally Related to PC-Ms
and Some PC-As
We next characterized the Ig heavy chain variable (IGHV) and

joining (IGHJ) gene repertoires of gut ME-M B cells from paired

ileum and colon samples to broadly determine their degree of

similarity and diversity with naive B cells and PC-Ms as well as

class-switched ME-A B cells and PC-As. Pearson’s correlation

coefficient analysis of IGHV gene usage indicated that gut ME

B cell and PC subsets differed from gut naive B cells but hierar-

chically clustered with each other based on the expressed iso-

type, tissue of origin, and cell type (Figures 4A and S4A). The

antigen-driven IGHV gene reconfiguration of gut ME B cell and

PC subsets was further inferred from their negative selection of

IGHV1-18, IGHV1-69, IGHV4-34, and IGHJ6 genes (Figures 4B

and S4A) and positive selection of IGHV3-7, IGHV3-23, and

IGHJ4 genes (Figures S4A and S4B).
Figure 3. Human Gut ME-M B Cells Are Transcriptionally Distinct from

That Includes Multiple Activation Traits

(A) May-Gr€unwald-Giemsa staining of sorted human intestinal cells. Original mag

(B) Dendrogram of unsupervised agglomerative hierarchical cluster analysis and g

naive, ME-M, and ME-SW B cells sorted from human ileum or naive, MZ, and M

(C) Scatterplot depicting robust multi-array average normalized expression.

(D) Venn diagram showing transcripts exclusively differentially expressed by ME

(E) Volcano plot representation of genes differentially expressed by ME-M B cell

(F) qRT-PCR of mRNAs encoding selected genes in B cell population as in (B).

(G) Ingenuity’s upstream regulator comparison analysis showing selected upst

(p value > jlog105j).
(H and I) FCM of selected surface molecules on naive, ME-M, and ME-SW B cel

Data are from one of three experiments with similar results (A, H, I), summarize re

experiments from at least three different donors (F). Mean ± SEM; *p < 0.05; **p

and S3.
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Compared to gut naive B cells, gut ME B cell and PC subsets

expressed mutated IGHV genes encoding antigen-binding vari-

able regions with shorter H-CDR3 average length (Figures 4C,

S4C, and S4D), two additional hallmarks of antigen-driven selec-

tion (Lindner et al., 2012, 2015; Tipton et al., 2015). In addition to

these commonalities, gut ME B cell and PC subsets showed sig-

nificant differences. In particular, ME-M B cells and PC-Ms

featured fewer IGHV gene mutations and shorter H-CDR3

compared to ME-A B cells and PC-As from ileum but not colon

(Figures 4C, S4C, and S4D). Moreover, ME-M B cells expressed

more Ig light chain l (Igl) compared to ME-A B cells from ileum

but not colon (Figure 4D). These differences could reflect the

involvement of ME-M B cells in antigen-driven selection and

differentiation programs distinct from those regulating ME-A

B cells.

We then investigated the dynamics of the inferred gut antibody

repertoire from each donor by collapsing all clones into clonal

families and comparing the resulting ‘‘core repertoire’’ to the

original ‘‘expanded repertoire.’’ Clonal families expressing both

IgM and IgA or inhabiting both ileum and colon were expanded

compared to the core repertoire, whereas clonal families ex-

pressing only IgM or IgA or inhabiting either ileum or colon

were not (Figure S4E). These observations indicate that clonal

expansion is coupled with increased IgM-to-IgA class switching

and intestinal dissemination. We next visualized the ontogenetic

affiliations of gut ME-M B cells with other ME B cell and PC sub-

sets through circos plots. While most of these clonally related

ME-M B cells were linked to PC-Ms inhabiting identical or

distinct gut segments, fewer but large ME-M clonotypes

harboring an increased number of IGHV gene mutations were

linked to ME-A B cells and/or PC-As (Figures 4E, 4F, S5A,

and S5B).

Clonotypic affiliations were further corroborated through

the calculation of theMorisita-Horn overlap index, which ascribes

0 and 1 values to unrelated and identical sequences, respectively

(Lindner et al., 2015). Ileal ME-M clonotypes showed very robust

relatedness with ileal PC-M clonotypes and less robust related-

ness with all other subsets clonotypes (Figures 4G and S5C).

Further dissection of clonal families through lineage tree recon-

struction analysis suggested that some ileal ME-M B cells

generate colonic PC-Ms or ileal ME-A B cells upon re-entering

GC pathways that induced SHM with or without CSR (Figures

4H and 4I). Additional ileal ME-M B cells from ileummay generate

colonic PC-As by entering extra-GC pathways inducing CSR but
Naive B Cells and Express a Tissue-Specific Memory Gene Signature

nifications 1003.

ene expression heatmap diagram displaying genes differentially expressed by

E-SW B cells from human spleen.

-M and ME-SW B cells versus naive B cells from human ileum.

s versus naive B cells from human ileum. Selected genes are highlighted.

ream regulators among cytokine and growth factors differentially expressed

ls from human ileum.

sults from four biological replicates (B–E, G), or summarize three independent

< 0.01; ***p < 0.001 (two-tailed unpaired Student’s t test). See also Figures S2
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not SHM (Figure 4J). Accordingly, tissue immunofluorescence

analysis detected B cells expressing the CSR/SHM-inducing

enzyme AID and the proliferation molecule Ki-67 in both GC

and extra-GC areas from ileum, including ILFs (Figure 4K).

The presence of IgM-to-IgA CSR in some gut ME-M B cells

was confirmed by detecting germline Ia1-Ca1 and Ia2-Ca2 as

well as switch circle Ia1/2-Cm transcripts inME-M but not control

naive B cells from human ileum (Figures 4L and S5D). Ileal IgM+

GC B cells predictably contained Ia1-Ca1 and Ia1/2-Cm,

whereas PC-Ms unexpectedly contained Ia1/2-Cm and Ia2-

Ca2 but lacked Ia1-Ca1 (Figure 4L). These PC-Ms may emerge

from recently activated ME-M clones concomitantly receiving

IgM-to-IgA CSR-inducing signals. Thus, human ME-M B cells

disseminate to both ileum and colon and may differentiate to

PC-Ms and class-switched PC-As by re-entering GCs or pro-

gressing through extra-GC pathways.

GutME-MBCells Secrete IgMandSwitch to IgA uponTD
or TI Stimulation
The differentiation potential of human gut ME-M B cells was

further explored by evaluating their proliferation, CSR and PC

differentiation upon exposure to TD (CD40L and IL-21) or TI

(CpG DNA combined or not with BAFF and APRIL) signals. IL-

10 was supplemented to maximize CSR and PC differentiation

(Macpherson et al., 2008).

As shown by CFSE dilution assays, TD signals induced com-

parable proliferation of gut ME-M and naive B cells, whereas TI

signals induced proliferation of gut ME-M but not naive B cells,

particularly in the presence of BAFF and APRIL (Figures 5A

and 5B). Moreover, ME-M B cells differentiated into proliferating

CD38hiCFSElo plasmablasts in response to either TD or TI sig-

nals, whereas naive B cells did so only in response to TD signals

(Figure 5C). Of note, a sizable fraction of plasmablasts emerging

from activated ME-M but not naive B cells expressed IgA but

lacked IgM (Figure 5D).

Consistent with these data, ME-M B cells secreted copious

IgM and less abundant IgA in response to TD or TI signals,

whereas naive B cells showed weaker IgM and IgA responses

to TD but not TI signals (Figure 5E). We then wondered whether

CSR targeted gut ME-M B cells expressing FcRL4, which de-

fines activated tissue-based memory B cells (Ehrhardt et al.,

2005). Indeed, TD signals generated plasmablasts from both

FcRL4� and FcRL4+ ME-M B cells, but induced IgM-to-IgA

CSR only in FcRL4+ ME-M B cells (Figure 5F). Accordingly, gut
Figure 4. Human Gut ME-M B Cells Express a Post-GC Mutational Pro

(A) Pearson’s correlation coefficient matrix of IGHV gene usage by naive B cells an

colon grouped by hierarchical clustering algorithm according to common gene s

(B and C) Relative mean frequency of IGHJ6 gene usage and mean number of IG

(D) Frequency of Igl-expressing cells calculated by FCM.

(E and F) Circos plots depicting clonal relationships and IGHV gene mutations.

(G) Morisita-Horn index showing clonal repertoire overlap between ME-M B cells

(H–J) Lineage tree reconstruction of inferred clonal families (colored circles) and th

numbers indicate mutations accumulated along the lineage tree.

(K) IFA of ILFs from human ileum stained for AID (green), Ki-67 (red), and DNA (blue

(top) or 403 (bottom). Scale bars, 50 mm.

(L) PCR of switch circle Ia-Cm transcripts (SCTs) as well as germline Im-Cm, Ia-Ca

from human ileum.

Data are from 1 representative donor (E, F, H–L) or summarize results from 4 differ

test and one-way ANOVA with Tukey’s post hoc test). See also Figures S4 and S
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FcRL4+ but not FcRL4� ME-M B cells contained transcripts for

the CSR (and SHM)-inducing enzyme AID (Figure 5G). Thus,

human gut ME-M B cells proliferate and generate PC-Ms in

response to TD or TI signals, which further induce IgM-to-IgA

CSR in the FcRL4+ fraction of ME-M B cells.

Gut ME-M B Cells and PC-Ms Release IgM
to Mucus-Embedded Commensals
We next developed an EBV-based protocol to determine

whether human gut ME-M B cells produced IgM to autologous

mucus-embedded bacteria (Figure 6A). Initial ELISAs showed

that IgM from ileal ME-MBcells recognized commensal antigens

such as phosphorylcholine, b-glucan, laminarin, galactose-

a-1,3-galactose, and capsular polysaccharides, whereas IgM

from ileal naive B cells did not (Figures 6B and S6A). Further

flow cytometry assays showed that IgM from ileal ME-M B cells

recognized mucus-embedded commensals more efficiently

than IgM from ileal naive B cells did (Figure 6C).

We then quantified binding of PC-derived SIgM to mucus-

embedded microbiota from paired human ileum and colon sam-

ples (Figures 6D, S6B, and S6C). Initial ELISAs detected free

SIgM in mucus, though in lesser amounts than free SIgA (Fig-

ure 6E). Most mucus samples included significant SIgA+SIgM+,

SIgA+SIgM�, and SIgA�SIgM� but negligible SIgA�SIgM+

microbiota fractions (Figure 6F). The frequency of these fractions

was variable among individuals and between ileum and colon

from the same individual. Consistent with the virtual lack of

PC-Ms in the murine gut and published results (Bunker et al.,

2015), the microbiota from the small and large intestines of

wild-type mice included IgA�SIgM� and SIgA+SIgM� but not

SIgA+SIgM+ bacterial fractions (Figure 6G). Enhancing gut

microbiota complexity by housing mice outside the specific

pathogen-free (SPF) barrier increased neither SIgA+SIgM+

bacteria nor PC-Ms nor PC-As, but did increase SIgA+SIgM�

bacteria (Figures S6D and S6E). Thus, human gut ME-M B cells

recognize commensals as clonally related PC-Ms do. These

latter generate homeostatic SIgM responses that target SIgA-

coated bacteria in humans but not wild-type mice.

SIgM fromGut PC-MsBindsHighly DiverseCommensals
Dually Coated by SIgA
We next devised a strategy to profile mucus-embedded

bacteria from human ileum or colon by 16S ribosomal RNA

(rRNA) gene sequencing and found inter-individual variability
file and Clonally Relate to Gut PC-Ms and Some PC-As

d paired ME-M B cells, ME-A B cells, PC-Ms, and PC-As from human ileum or

et usage. Circle size and color saturation indicate correlation strength.

HV gene mutations per 100 bp in gut B cell and PC subsets as in (A).

from human ileum and all other B cell subsets as in (A).

eir inferred germline (GL) and intermediate precursors (gray circles). Edges and

). Insets correspond to boxed areas inmain images. Original magnification, 203

1, and Ia-Ca2 transcripts (GTs) in naive, ME-M, and IgM+ GC B cells or PC-Ms

ent donors (A–D, G). Error bars, SD; *p < 0.05, **p < 0.01, ***p < 0.001 (Welch’s t

5.
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at phylum and genus levels (Figures S7A–S7C). Differences in

bacterial composition between ileum and colon from the

same donor were less pronounced than between donors, as

shown by unsupervised hierarchical clustering (Figure S7C).

Rarefaction plots calculating Faith’s phylogenetic diversity

and Shannon index confirmed that phylogenetic richness and

species diversity varied among donors but not between tissues

(Figures S7D and S7E).

To comparatively profile SIgA+SIgM+, SIgA+SIgM�, and SIgA�

SIgM� fractions of mucus-embedded bacteria in a com-

prehensive and unbiased manner, we combined SIgM/A-based

sorting with 16S rRNA gene sequencing (Figure 7A). The compo-

sition of each fraction varied at both phylum and genus levels,

though all fractions showed more Bacteroidetes and Firmicutes

than Proteobacteria and Actinobacteria (Figures 7B and 7C).

Also, phylogenetic richness and microbial species diversity var-

ied among fractions, with an overall decrease from SIgA+SIgM+

to SIgA+SIgM� and SIgA�SIgM� fractions (Figure 7D). This

finding correlated with differences in phylum composition,

including proportionally fewer Bacteroidetes but more Firmi-

cutes in SIgA+SIgM+ compared to SIgA+SIgM� and SIgA�SIgM�

fractions (Figure 7E).

To identify microbial species accounting for the above

phylum differences at the operational taxonomic unit (OTU)

level, we used a log-based enrichment index (Figure 7F). A

hierarchical clustering algorithm applied to a conservative

selection of OTU-based enrichment indexes showed that

SIgA+SIgM+ and SIgA+SIgM� fractions grouped together,

separately from the SIgA�SIgM� fraction (Figure 7F). Of twelve

OTUs showing a significantly different enrichment index, seven

Lachnospiraceae and Ruminococcaceae were enriched in

SIgA+SIgM+ compared to SIgA�SIgM� bacteria (Figures 7F

and S7F).

Accordingly, flow cytometry-based coating assays deter-

mined that IgM from EBV-transformed gut ME-M B cell lines

strongly bound Firmicutes such as Bacillus cereus, Rosebu-

ria intestinalis (belonging to Lachnospiraceae), and Rutheni-

bacterium lactatiformans (belonging to Ruminococcaceae).

In addition, IgM showed elevated binding to Bacteroidetes

such as Bacteroides vulgatus, but little or no binding to

other Bacteroidetes or Proteobacteria such as Bacteroides

fragilis, Bacteroides thetaiotamicron, and Escherichia coli

(Figure S7G). Thus, human SIgM may cooperate with

SIgA to implement mucus retention of diverse microbial

communities, including Firmicutes with putative beneficial

functions.
Figure 5. HumanGutME-MBCells Undergo Proliferation, PCDifferenti

Signals

(A and B) FCM of CFSE dilution profiles (A) and GeoMean (% of max) of CFSE sta

indicated. Ctrl, medium alone.

(C) FCM of CFSE and CD38 on naive (top) and ME-M (bottom) B cells from hum

CD38hiCFSElo PCs.

(D) FCM of IgM and IgA on CD38hiCFSElo plasmablasts emerging upon stimulati

(E) ELISA of IgM and IgA secreted by naive (N) and ME-M B cells from human ile

(F) FCM of CD38, CD27, IgM, and IgA on sorted FcRL4� (left) or FcRL4+ (right) M

CD40L, IL-21, and IL-10.

(G) qRT-PCR analysis of mRNA encoding AID (AICDA) in naive, FcRL4� ME-M, a

Data represent one representative experiment of twowith similar results (A–D, F) o

mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed unpaired Student’s t
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DISCUSSION

We have shown that human gut PC-Ms were clonally related to a

large and previously unrecognized repertoire of ME-M B cells

that predominantly inhabited gut-associated follicles. Besides

undergoing IgM-to-IgA CSR in response to TD or TI signals,

gut ME-M B cells secreted abundant IgM, which, along with

SIgM, recognized mucus-embedded commensals. Of note,

SIgM-coated bacteria were dually targeted by SIgA and showed

increased diversity and distinct composition compared to un-

coated or SIgA-only-coated bacteria. Thus, SIgM may help

SIgA to anchor non-redundant microbial communities to mucus.

The key role of SIgA in gut homeostasis can be inferred from

the emergence of dysbiosis in mice lacking B cells, IgA, AID, or

pIgR (Kubinak and Round, 2016). In addition to dysbiosis, pa-

tients with antibody deficiency can develop gut inflammation,

including inflammatory bowel disease (Agarwal and Mayer,

2009). This complication is more frequent in common variable

immunodeficiency cases with combined SIgM and SIgA deple-

tion (Agarwal and Mayer, 2009), suggesting that human gut

homeostasis requires microbiota targeting by both SIgM and

SIgA. Accordingly, we found that PC-Ms accumulated in the

human but not mouse gut mucosa and further demonstrated

that SIgM coated human but not mouse gut bacteria in combina-

tion with SIgA.

Remarkably, human gut PC-Ms established extensive clonal

relationships with a large repertoire of gut ME-M B cells that

were rare in systemic or mucosal extra-intestinal lymphoid or-

gans, including spleen and tonsils. The prominent gut tropism

of ME-M B cells was further indicated by studies showing robust

a4b7 and CCR9 co-expression on a large fraction of circulating

ME-M B cells and PC-Ms. Of note, a4b7 and CCR9 induction

mostly occurs in lymphoid structures from the small intestine

and promotes migration of gut ME-A B cells and immature

PC-As to the small intestinal LP (Macpherson et al., 2008).

Accordingly, gut ME-M B cells predominantly inhabited Peyer’s

patches and ILFs from the small intestinal mucosa, whereas

PC-Ms mostly accumulated in the small intestinal LP. Similar

to PC-As, gut ME-M B cells and PC-Ms became detectable as

early as 1.5months after birth. While PC-Ms further accumulated

over the first 10 years of life, ME-M B cells remained numerically

stable over time. These results suggest that SIgMmay shape the

microbiota of a developing individual in cooperation with SIgA

(Planer et al., 2016).

Our identification of clonally related ME-M B cells and PC-Ms

in the human gut extends evidence from mouse systemic
ation, IgMSecretion, and IgAClass Switching in Response to TD or TI

ining (B) in naive (N) and ME-M B cells from human ileum cultured for 5 days as

an ileum cultured as in (A) and (B). Numbers indicate percent of newly formed

on as in (A) and (B).

um cultured for 5–7 days as in (A) and (B).

E-M B cells from human ileum cultured for 5 days with medium alone (ctrl) or

nd FcRL4+ ME-M B cells from human ileum.

r summarize at least three different experiments (E, G). Results are presented as

test).
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immunization models indicating that humoral memory is not

merely comprised ofME-G andME-A B cells, but further extends

to ME-M B cells (Dogan et al., 2009; Kurosaki et al., 2015; Pape

et al., 2011). Besides expressing canonical memory molecules

such as CD24, CD27, and CD148, human gut ME-M B cells

featured post-GC expression of mutated IGHV genes and nega-

tive selection of IGHV1-69, IGHV4-34, and IGHJ6 genes, which

encode antibodies enriched in self-reactivity (Tipton et al.,

2015). Furthermore, some ME-M B cells showed clonal proper-

ties consistent with re-entry into GC pathways promoting SHM

in addition to PC-M differentiation.

Diversification of human gut PC-Ms from pre-existing memory

specificities echoes works showing homeostatic or immuniza-

tion-induced diversification of gut ME-A B cells in GCs from

Peyer’s patches (Bemark et al., 2016; Lindner et al., 2012,

2015). In addition to PC-Ms, human gut ME-M B cells generated

some ME-A B cells and PC-As by entering either GC pathways

coupled with SHM and CSR or GC-independent pathways pro-

moting CSR but not SHM. This conclusion was supported by

lineage tree reconstruction analysis of high-throughput IGHV

gene sequencing data, detection of AID in activated FcRL4+

gut ME-M B cells responsive to IgM-to-IgA CSR-inducing sig-

nals, identification of IgM-to-IgA CSR in unfractioned ME-M B

cells, and detection of AID in B cells from both GC and extra-

GC areas.

In mice, systemic ME-G and ME-M B cells were thought to

rapidly induce PC-Gs or a secondary GC reaction upon re-expo-

sure to antigen, respectively (Dogan et al., 2009; Pape et al.,

2011). This view has been modified by mouse studies indicating

that systemic ME-M B cells can rapidly differentiate into IgG

class-switched plasmablasts in response to TI or TD signals

(Krishnamurty et al., 2016; Zuccarino-Catania et al., 2014).

Accordingly, human intestinal ME-MB cells progressed along in-

tertwined GC-dependent and GC-independent pathways that

promoted IgM-to-IgA CSR in addition to PC differentiation.

Compared to gut naive B cells, which showed weaker and TD-

biased antibody responses, gut ME-M B cells comparably

induced plasmablasts secreting IgM or IgA in response to either

TD or TI signals. Of note, similar signals activate rotavirus-spe-

cific gut ME-M B cells (Narváez et al., 2012). Local TD and TI

cues could further imprint ME-M B cells with a tissue-specific

memory signature similar to that described in tonsillar ME-G/A

B cells (Ehrhardt et al., 2005). This signature included CD11c,

Siglec-6, CCR9, IL-10, IL-10Ra, and RORa upregulation, which

reflects non-inflammatory activation and mucosal homing.

Gut ME-M B cells also expressed a common memory signa-

ture shared with gut and splenic ME-SW B cells. This signature
Figure 6. Human IgM from Gut ME-M B Cells and SIgM from Gut PC-M
Coated by SIgA

(A) Strategy used to test reactivity of IgM secreted by human ME-M B cells and

(B) ELISA measuring reactivity for phosphorylcholine (PCh) and b-glucan of IgM

(C) Reactivity of IgM from naive (N) or ME-M B cells to SYTO BC+ mucus-embed

(D) Experimental strategy used to measure free and microbiota-bound SIgM and

(E) ELISA of free SIgM (blue) and SIgA (red) in mucus samples.

(F and G) FCM of SIgA and SIgM bound to viable SYTO BC+ microbiota from hum

lumen of wild-type C57BL/6 mice housed under SPF conditions (G).

Data summarize at least 3 (B, C, bottom graph), 12 (E), or 20 (F, G, right graphs) exp

cytogram and profiles; F, G left cytograms). Two-tailed paired Student’s t test (C, E

as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S6.
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included FcRL4 and TACI upregulation, which suggests in-

creased activation by TI signals from TLR ligands and BAFF or

APRIL (He et al., 2010; Sohn et al., 2011), as well as CD72,

FOXO1, BACH2, and BTLA4 downregulation, which reflects

increased propensity to undergo proliferation and PC differenti-

ation (Kurosaki et al., 2015). Similar to splenic MZ B cells, gut

ME-M B cells expressed more CD1c, CD21, CD35, and CD66a

compared to gut ME-SW B cells, a finding reminiscent of recent

studies suggesting that splenicMZB cells originate from gut pre-

cursors (Vossenk€amper et al., 2013). However, the global tran-

scriptome of gut ME-M B cells clustered separately from that

of splenic MZ B cells. Compared to these latter, gut ME-M B

cell expressed less CD84, more gene products linked to PC-

inducing IL-2 and IL-6 signaling, and fewer gene products linked

to NOTCH signaling, which is required for MZ B cell differentia-

tion (Descatoire et al., 2014).

Besides establishing affiliations with IgM+ and IgA+ clono-

types, ME-M B cells formed a core repertoire of clonally orga-

nized families that emerged early in life and did not show age-

dependent accumulation. Thus, ME-M B cells may form a stable

but functionally plastic pool of ‘‘immune sentinels’’ within sites of

antigen entry, such as ILFs. These sites contained two parallel

repertoires of unswitched ME-M and naive B cells expressing

follicle-targeting CCR7 and CXCR4 receptors. As indicated by

their unique phenotypic, molecular, transcriptional, and func-

tional traits, these B cell subsets may offer unique solutions to

different problems. While ME-M B cells may initiate quickly

developing SIgM and SIgA responses to rapidly match transient

changes of the microbiota, naive B cells may induce de novo

SIgM and SIgA responses to counter more durable microbial

perturbations. Consistent with their involvement in the homeo-

static control of commensals, ME-M B cells produced IgM

to mucus-embedded bacteria as SIgM from clonally related

PC-Ms did.

The presence of homeostatic SIgM responses in humans but

not mice may reflect the lower complexity of the mouse gut

microbiota (Kamada et al., 2013). However, neither PC-Ms nor

SIgM-coated bacteria increased in non-SPF mice harboring a

more complex microbiota, suggesting that B cell-intrinsic differ-

ences also play a role. Accordingly, ME-M B cells from orally

immunized mice have been shown to colonize the spleen and

bone marrow but not gut follicles (Bemark et al., 2016). Remark-

ably, SIgM coated a fraction of the human microbiota that was

also targeted by SIgA. Compared to uncoated or SIgA-only-

coated bacteria, bacteria dually coated by SIgM and SIgA

showed increased diversity, a parameter linked to gut homeo-

stasis (Kamada et al., 2013). By activating complement (Kirkland
s Target Mucus-Embedded Commensals, Including Bacteria Dually

control naive (N) B cells from human ileum. LCL, lymphoblastoid cell line.

secreted by EBV-transformed naive or ME-M B cells from human ileum.

ded microbiota.

SIgA from human gut mucus.

an ileum or colon mucus (F) or from small intestine (SI) and large intestine (LI)

eriments in addition to showing results from one representative experiment (C,

) and one-way ANOVAwith Tukey’s post hoc test (F, G). Results are presented
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et al., 2012), SIgM may constrain the growth of common com-

mensals, thereby helping SIgA to optimize microbiota diversity

(Kubinak and Round, 2016). Accordingly, SIgA deficiency

causes dysbiosis and inflammatory bowel disease when com-

bined with SIgM deficiency, as in patients with common variable

immunodeficiency (Agarwal and Mayer, 2009).

Compared to uncoated bacteria, bacteria dually coated by

SIgM and SIgA as well as bacteria coated by SIgA alone were

enriched in Firmicutes, including Lachnospiraceae and Rumino-

coccaceae. By degrading dietary polysaccharides into short-

chain fatty acids with immunoregulatory and SIgA-inducing

functions (Arpaia et al., 2013; Kim et al., 2016), these commen-

sals may enhance protection against obesity and infection (Bid-

dle et al., 2013; Cho et al., 2012; Petrof et al., 2013). Should this

be the case, PC-Ms and clonally related PC-As may maximize

gut retention of non-redundant microbial consortia through a

mechanism involving mucus interaction with the pIgR-derived

secretory fragment of SIgM and SIgA (Macpherson et al.,

2008). This dual anchoring strategy may have evolved to pre-

serve microbiota homeostasis under common pathological con-

ditions selectively depleting SIgA. Similar to a large fraction of

gut IgA (Benckert et al., 2011), gut IgM showed evidence of poly-

reactivity, because it targeted common microbial products and

some Bacteroidetes such as Bacteroides vulgatus in addition

to Firmicutes. In summary, SIgM may emerge from pre-existing

memory rather than newly activated naive IgM+ B cells and could

help SIgA to select, control, and retain highly diverse and puta-

tively beneficial commensal communities within gut mucus.
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Deposited Data
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index.jsp

limmaGUI (Wettenhall and Smyth, 2004) https://www.bioconductor.org/packages/

release/bioc/html/limmaGUI.html

pRESTO (Vander Heiden et al., 2014) https://presto.readthedocs.io

IgBLAST (Ye et al., 2013) https://www.ncbi.nlm.nih.gov/igblast/

Change-O (Gupta et al., 2015) https://changeo.readthedocs.io

R package N/A http://www.R-project.org/

IgTree Software (Barak et al., 2008) http://immsilico2.lnx.biu.ac.il/

Software.html

QUIIME (Caporaso et al., 2010) http://qiime.org/

Prism v.6.0 GraphPad www.graphpad.com

Ingenuity Pathway Analysis QIAGEN https://www.qiagenbioinformatics.com/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrea

Cerutti (acerutti@imim.es).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tissue and Blood Specimens
Histologically normal tissue samples from terminal ileum and ascending colon were obtained from 50 patients undergoing right

hemicolectomy due to colonic tumors, unresectable polyps or angiodysplasia. The age of these patients ranged from 28 to 89 years

(mean 68.8 years) and the male/female ratio was 1:1.2. Peripheral mononuclear cells were isolated from buffy coats and splenocytes

from histologically normal spleens from deceased organ donors or individuals undergoing post-traumatic splenectomy. Tonsils were

obtained from adult patients with follicular hyperplasia. The use of blood and tissue samples was approved by the Ethical Committee

for Clinical Investigation of the Institut Hospital del Mar d’ InvestigacionsMèdiques (CEIC-IMIM 2011/4494/I). Fresh tissue andmucus

samples and formalin-fixed and paraffin-embedded tissue sections were collected from the Mar Biobanc tissue repository with

patient-signed informed consent. All tissue samples were assigned coded identifiers and relevant clinical information remained

concealed.

Mice
Female C57BL/6 mice (Charles River Laboratories) were bred in-house in the animal facility of the Barcelona Biomedical Research

Park under specific pathogen free (SPF) or conventional housing conditions. All mice were used at 8-12 weeks of age. Mice were

euthanized by cervical dislocation and animal procedures were approved by the Ethic Committee of the Barcelona Biomedical

Research Park and performed according to Spanish and European legislations.

METHOD DETAILS

Sample Processing
For the isolation of mononuclear cells from human intestinal samples, mucosa and submucosa were dissected from muscularis

externa and cut into 2-to-3-mm pieces. These pieces were first washed in calcium and magnesium-free Hanks’ balanced salt

solution (HBSS) before incubation at 37�C for 20 min in HBSS containing 5mM Dithiothreitol (DTT) and 1 mM Ethylenediaminetetra-

acetic acid (EDTA). The tissue pieces were transferred into a falcon tube with 30ml of HBSS and shaken vigorously for 10 s twice. The

supernatant, containing the intra-epithelial lymphocytes fraction, was discarded. The remaining fraction was digested by incubation

for 40 min at 37�C with stirring in a solution of HBSS containing 1 mg/ml collagenase IV (Thermo Fisher), 50ng/ml DNase (New

England Biolabs) and 0.5% human serum (Sigma). Lamina propria (LP) suspensions were passed through a 70-mm filter, washed,

and resuspended in RPMI 1640 medium (Thermo Fisher) with 10% fetal bovine serum (FBS). To isolate murine LP lymphocytes,

upon excision of PPs, small intestine (SI) and large intestine (LI) segments were opened longitudinally and cut into 5-mm pieces.

These pieces were subsequently processed following the same procedure used for human intestinal samples. Human splenocytes

and tonsillar mononuclear cells were obtained from fresh samples by enzymatic digestion of the tissue for 40min at 37�C in a solution

of HBSS containing 1mg/ml collagenase IV (Thermo Fisher), 50ng/ml DNase (New England Biolabs) and 0.5%human serum (Sigma),

followed by separation on a Ficoll-Hypaque gradient (GE Healthcare). Peripheral blood mononuclear cells (PBMCs) were obtained

from heparinized blood samples by separation on Ficoll-Hypaque gradient.

Flow Cytometry
Cells were incubated at 4�C with Fc-blocking reagent (Miltenyi Biotec) before the addition of the appropriate ‘cocktails’ of fluoro-

chrome-labeled monoclonal antibodies (mAbs). Dead cells were excluded through the use of 4’-6’-diamidine-20-phenylindole
(DAPI) (Sigma). Cells were acquired with LSR Fortessa (BD Biosciences) and data were further analyzed with FlowJo V10 software

(TreeStar).

Cell Sorting
For cell sorting, cell suspension were incubated at 4�C with Fc-blocking reagent (Miltenyi Biotec) and stained for 30min with the

following monoclonal antibodies: anti-CD45 AF700 (clone: HI30), anti-CD19 PE-Cy7 (clone: HIB19), anti-CD38APC-Cy7 (clone:

HIT2), anti-CD10 PE (clone: HI10a), anti-IgM BV605 (clone: MHM-88) (all from Biolegend), anti-CD27 PerCpCy5.5 (clone: M-T271)

(BD Biosciences), and anti-IgD FITC (Southern). CD45+CD19+CD38dullCD10�IgD2+ IgM+CD27� naive B cells, CD45+CD19+CD38dull

CD10�IgD+IgM2+CD27+ MZ B cells, CD45+CD19+CD38intCD10+IgD-IgM+CD27+ GC-M, CD45+CD19+CD38dullCD10�IgD�IgM+

CD27+ ME-M B cells, CD45+CD19+ CD38dullCD10� IgD�IgM�CD27+ ME-SW B cells, CD45+CD19+CD38intCD10+IgD�CD27+ GC

B cells, CD45+CD19+CD382+CD10�IgD�IgM+CD27+ PC-M and CD45+CD19+CD382+CD10� IgD�IgM+CD27+ switched PC were

sorted with a FACSAria II (BD Biosciences) after exclusion of dead cells through DAPI staining. For sorting of FCRL4+ and FCRL4-

ME-M, anti-FCRL4 APC (clone: 413D12) was added to the ‘cocktails’. The purity of cells sorted this way was consistently > 95%.
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Cell Cultures
Human sorted intestinal naive and ME-M B cells (1 3 105/well) were seeded in 96-well U-bottomed plates (Thermo Fisher) and

cultured for 6-7 days in complete RPMI 1640 medium (Thermo Fisher) supplemented with 10% FBS, penicillin and streptomycin

(10 U/ml) with or without 200 ng/ml megaCD40L (Enzo Life Science), 50 ng/ml IL-10 (Peprotech), 500 ng/ml IL-21 (Peprotech),

1 mg/ml CpG ODN-2006 (Invivogen), 500 ng/ml BAFF (Alexis) and 100 ng/ml Mega APRIL (Alexis).

Proliferation Assay
Cell proliferation was assessed with carboxyfluorescein succinimidyl ester (CFSE) using CellTrace CFSE Cell Proliferation Kit

(Thermo Fisher). Briefly, sorted lymphocytes were resuspended at 1x106 cell/ml in PBS supplemented with 5% FBS and incubated

with 1.25mM CFSE solution for 5 min at room temperature (RT). Stained cells were extensively washed and cultured for 6-7 days in

complete RPMI 1640 medium supplemented or not with specific stimuli. Cell division was assessed by measuring the decrease in

CFSE fluorescence via flow cytometry.

Generation of EBV-Transformed B Cells
For the generation of EBV-transformed B cell lines, sorted B cells were seeded at 5 3 104 cells/well in 96 U-bottom plates (Thermo

Fisher) in complete RPMI 1640 medium (Thermo Fisher) medium containing 2.5 mg/ml CpG ODN-2006 (Invivogen) and 30% super-

natant from the EBV-producing marmoset B cell line B95-8 (ECACC). Proliferating cells were maintained in culture for 2-3 weeks and

then frozen. Culture supernatants containing polyclonal immunoglobulins were stored at �80�C.

ELISA
Total and antigen-specific IgM and IgA from culture supernatants were detected by home-made ELISA. Briefly, 96 well ELISA plates

(Thermo Fisher) were coated over night with goat anti-human Ig-UNLB (Southern Biotech) at 1ug/ml. To measure Ab-reactivity to

specific antigens, ELISA plates were coated with either b-D-glucan (50 mg/ml; Sigma) or capsular polysaccharides (1 mg/ml;

ATCC), Gal-a1,3-gal-HSA (3 atom spacer) (10 mg/ml; Dextra Laboratories), laminarin (50 mg/ml, Sigma) or L-a-Phosphatidylcholine

(0.5 mg/ml; Bioresearch Technologies). For total Ig, serial dilutions of cell culture supernatants were added for 2 hr. for antigen-spe-

cific Ig, supernatants were used at 20 mg/ml Ig concentration and three 1:10 dilutions in PBS. All ELISAs were developed using HRP-

labeled goat anti-human IgM (0.2 mg/ml; cappel) or IgA Fc Ab (0.25 mg/ml; Southern Biotech) and TMB substrate reagent set (BD

Bioscience). OD450wasmeasured and Ab-reactivity was calculated after subtraction of background (OD450 of culture supernatants

on PBS coated plates).

Immunofluorescence Analysis
Formalin-fixed paraffin-embedded human tissue sections 3-mm in thickness were treated in xylene, a decreasing alcohol gradient

and distilled water to achieve de-waxing and rehydration of the tissue. Heat induced epitope retrieval was performed for 15 min

in citrate buffer (pH 6) or Tris-EDTA buffer (pH 9). After epitope retrieval, tissue sections were permeabilized with 0.2% Triton

X-100 in PBS, blocked with 5% bovine serum albumin and 5% Fc receptor blocking (Miltenyi Biotec) and stained with various

combinations of antibodies to specific antigens. Biotinylated antibodies were detected with streptavidin–Alexa Fluor conjugates.

Nuclear DNA was visualized with DAPI and coverslips applied with FluorSave reagent (Merck Millipore). Images were acquired either

with a Leica TCS SP5Upright confocal microscope (Leica) or a Nikon Eclipse Ni-Emicroscope (Nikon) andwere further analyzedwith

ImageJ software.

Giemsa Staining
Cytospins were performed from sorted intestinal population at 800 rpm for 5 min using a Cytospin 4 apparatus (Thermo Fisher).

Approximately 5,000 cells per subset were dried overnight on albumin-coated slides and stained with Giemsa Stain Kit (Jenner-

Wright) (Agilent).

RNA Extraction and Reverse Transcription
Total cellular RNA was isolated with the RNeasy Micro kit (QIAGEN) by following the manufacturer’s protocol. Approximately 2 ng of

RNA with were reversed transcribed into cDNA using TaqMan� Reverse Transcription Reagents and Random hexamers (Thermo

Fisher).

Quantitative Real Time and Standard PCR
Quantitative real time PCR (qRT-PCR) were performed in 384-well plates containing Power Sybr Green PCR Master Mix (Thermo

Fisher) and specific primer pairs (Table S1) and analyzed on QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher).

Gene expression was normalized to that of the gene encoding b-actin (ACTB) for each sample and results were presented as relative

expression (RE) compared to naive B cells. For the analysis of germline Im-Cm, Ia-Ca1 and Ia-Ca2 transcripts, PCRs were carried out

using specific primers (Table S2) in a 50 mLPCR volumewith AmpliTaqGold PCRMastermix (Thermo Fisher). Nested PCR analysis of

Ia-Cm circle transcript was carried out using two sets of specific primer pairs (Table S2) and the following cycling conditions. In the

first PCR round, external primers were used in an initial denaturing step at 95�C for 9min followed by 30 cycles comprised of 94�C for

30 s, 60�C for 1min and 72�C for 10min. In the second RT-PCR round, internal primers were used in an initial denaturing step at 95�C
Immunity 47, 118–134.e1–e8, July 18, 2017 e5



for 9 min followed by 25 cycles comprised of 94�C for 30 s, 60�C for 1 min and 72�C for 10 min. PCR products were subjected to

Sanger sequencing for confirmation.

KREC Assay
Genomic DNA was isolated from sorted B cell subsets with QIAamp DNAMini Kit (QIAGEN). The replication history of B cell subsets

was determined using the k-deleting recombination excision circle (KREC) assay as described previously (van Zelm et al., 2007). This

assay is based on a quantification of coding joints and signal joints of an Igk-deleting rearrangement (intron RSS-Kde) by qRT-PCR.

The DCT between the signal joint and the coding joint exactly represents the number of cell divisions a B cell has undergone. The

previously established control cell line U698 DB01 (van Zelm et al., 2007) contains 1 coding and 1 signal joint per genome and

was used to correct for minor differences in efficiency of both real-time quantitative-PCR assays.

Global Transcriptome Analysis
Total cellular RNA was isolated with the RNeasy Micro kit (QIAGEN) from sorted B cell subsets by following the manufacturer’s

protocol. RNA integrity was assessed using Agilent 2100 Bioanalyzer (Agilent). Only samples with high integrity (RNA integrity number

R 7) were used for transcriptome analysis. Amplification, labeling and hybridizations were performed according to protocol

Ovation� Pico WTA System V2 and Encore Biotin Module (NuGEN) and then hybridized to GeneChip Human Gene 2.0 ST Array

(Affymetrix) in a GeneChip Hybridization Oven 640. Washing and scanning were performed using the Expression Wash, Stain and

Scan Kit (Affymetrix) and the Affymetrix GeneChip System including GeneChip Fluidics Station 450 and GeneChip Scanner 3000

7G. After quality control, raw data were background corrected, quantile-normalized and summarized to a gene-level using the robust

multi-chip average (RMA) system. For the detection of differentially expressed genes, a linear model was fitted to the data and

empirical Bayes moderated statistics were calculated using the limma package from Bioconductor (Wettenhall and Smyth, 2004).

Adjustment of p values was performed by the determination of false discovery rates (FDR) using the Benjamini-Hochberg procedure.

Genes with an adjusted p value less than 0.05 and with an absolute fold change value above 1.5 were selected as significant. Spear-

man’s rank correlation was used to study correlation between normalized gene expressions of the different comparisons. Analyses

were performed with R and standard packages. Comparison Upstream Regulator Analysis with Ingenuity Pathway Analysis (Ingenu-

ity Systems, www.ingenuity.com) and GSEA from the Molecular Signature Database (MSigDB) (Subramanian et al., 2005) were used

to identify similarities and differences among samples.

Next Generation Sequencing of Ig Gene Repertoires
Aliquots of cDNA products from sorted B cells (Table S3) were mixed with high performance liquid chromatography-purified primers

specific for VH1-VH6 framework region 1 (50 nM) and primers specific for Ca or Cm (250 nM) containing corresponding Illumina

Nextera sequencing tags (Table S4) in a PCR volume of 25 mL (4 mL template cDNA) with High Fidelity Platinum PCR Supermix

(Thermo Fisher). Amplification was performed using the following conditions. An initial step of 95�C for 5 min was followed by

35 cycles including 95�C for 30 s, 58�C for 30 s, and 72�C for 30 s, supplemented with a final extension step of 72�C for 5 min.

Products were purified with miniElute PCR purification Kit (QIAGEN) and Nextera indices were added via PCRwith the following con-

ditions: 72�C for 3min, 98�C for 30 s, 5 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for 3min. Ampure XP beads (Beckman Coulter

Genomics) were used for purification of the PCR products, which were subsequently pooled and denatured. Single-strand products

were paired-end sequenced on a MiSeq (Illumina) with the 500 Cycle v2 Kit (2 3 250 bp). In total, 4,898,226 IGHV gene sequences

from four donors were obtained through next generation sequencing (Table S3). Paired-end raw sequencing reads were processed

into donor-specific Ig gene sequences and grouped in clonal families using a bioinformatics pipeline based on pRESTO, IgBLAST

and Change-O (Gupta et al., 2015; Vander Heiden et al., 2014; Ye et al., 2013). First, raw reads with a Phred score lower than 20

were filtered out, and primers for CH and VH genes were masked. Next, corresponding paired-end reads were aligned and merged

together (minimum overlap of 6 nucleotides) and annotated with donor, cell type and isotype origin. Finally, donor-specific Ig subsets

were combined (prior to VDJ annotation) to estimate donor-specific clonal families. VDJ calling and assignment were performed us-

ing the default parameters for IgBLAST and querying the latest downloaded human IGH IMGT database from February 2016. Donor-

specific clonal groups were inferred using a distance-based clustering method implemented in Change-O. Sequences with the same

VH and JH annotation, identical H-CDR3 region length and Hamming distance higher than 85% were considered to belong to the

same clonal group or family. Finally, germline sequences for each clone were reconstructed using the annotated VDJ information

as implemented in Change-O. Donor-specific clonal groups were represented through RCircos plots to visualize the relationships

between B cell subsets at clonal level. Morisita-Horn Index estimates were calculated using the divo R package. In both analyses,

a rarefied sample of 10,000 clones per subset was used to account for possible sample size biases between donors, tissues and cell

types. MHI bootstrap estimates were calculated by resampling 1,000 times a subsample of 10,000 clones for each tissue, cell type

and donor. VH and JH gene usage was estimated for each donor and B cell subset, with bars representing average values among

donors. SHM levels were estimated by averaging the number ofmutations compared to the inferred germline sequence of each clone

belonging to a given B cell subset and donor. Donor-specific clonally related B cell lineage trees were reconstructed and plotted

using IgTree Software (Barak et al., 2008).
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Mucus Collection and Processing
Mucus was obtained by scrapping off the epithelial surface of macroscopically unaffected fresh tissue samples from terminal ileum

and ascending colon of patients undergoing right hemicolectomy. Intestinal contents frommurine SI and LI segments were removed

by running forceps along a given intestinal segment and placed in a 1.5mL Eppendorf tube on ice. Aliquots of microbial samples from

mucus or intestinal contents were weighed and resuspended at 0.1 mg/mL in PBS with protease inhibitors from SIGMAFAST Prote-

ase Inhibitor Tablets (Sigma). Samples were homogenized by vigorously vortexing for 5 min and then centrifuged at 400 g for 5min to

pellet large debris. The supernatant was filtered through a sterile 70 mm cell strainer and centrifuged at 8000 g for 5 min to pellet

microbes. At this stage, supernatants were saved and frozen at �80�C for the analysis of free SIgM and Sig and microbial pellets

were used for bacterial flow cytometry and FACSorting.

Bacterial Flow Cytometry and FACSorting
To measure endogenous SIgM and SIgA bound to intestinal bacteria, microbial pellets were resuspended in PBS 5% FBS and incu-

bated for 30 min on ice with the following combination of antibodies: anti-human IgM APC (clone: SA-DA4) (Southern Biotech) and

anti-human IgA PE (Miltenyi Biotec). Finally, bacterial samples were washed and resuspended in PBS with SYTO BC (Thermo Fisher)

for 15 min on ice to perform FCM analysis. To measure reactivity of IgM from EBV-transformed B cells against intestinal microbiota,

endogenous bacteria-bound SIgs were stripped following incubation for 3 min in an acidic sodium citrate buffer (40 mM sodium

citrate and 140 mMNaCl, pH 3.0). Then, microbes were quickly spun down to remove the buffer and PBS was added for pH neutral-

ization. These samples were incubated with supernatants from EBV-transformed B cells (at 50 mg/ml total IgM) for 30 min on ice.

After washing, microbial pellets were resuspended in MACS 5% FBS and incubated for 30 min on ice with anti-human IgM APC

(clone: SA-DA4) (Southern Biotech). Finally, samples were washed and resuspended in PBS with SYTO BC (Thermo Fisher) for

15 min on ice for FCM analysis. To measure reactivity of IgM from EBV-transformed B cells against specific bacterial species

(Escherichia coli, Bacillus cereus, Bacteroides vulgatus, Bacteroides fragilis, Bacteroides thetaiotaomicron-all from ATCC and

Ruthenibacterium lactatiformans and Roseburia intestinalis from DSMZ), 105 to 106 heat inactivated bacteria (65�C for 20 min)

were incubated for 15 min at RT with graded amounts of IgM from EBV-transformed ME-M B cell lines (from 0.18 to 15 mg/ml total

IgM). After washing, microbial pellets were resuspended in PBS and incubated for 15min with anti-human IgM APC (clone: SA-DA4)

(Southern Biotech) in the presence of SYTO BC (Thermo Fisher). Contamination was minimized by passing all buffers and media

through sterile 0.22-mm filters before use. In all settings, bacterial FCM was performed using a FORTESSA Cytometer (BD Bio-

sceince) with low forward scatter (FSC) and side scatter (SSC) thresholds to allow bacterial detection. FSC and SSC were set to

a Log scale and samples were gated FSC+SSC+SYTO BC+ and then assessed for IgA and IgM staining. Microbial samples were

sorted using a FACSAria II (BD Biosciences) instrument. Threshold settings were set to the minimal allowable voltage for SSC

and 50,000 events were collected from SIgA�SIgM�, SIgA+SIgM� or SIgA+SIgM+ fractions gates as shown in Figure 7A. Each frac-

tion (typically 50 mL) was stored at�20�C before performing PCR and sequencing of bacterial 16S rRNA genes. Multiple precautions

were taken to minimize potential contamination of FACSorted fractions, including collecting samples from the flow cytometer droplet

stream (sheath fluid) immediately before each sorting to allow assessment of any potential contaminants in fluid lines.

Bacterial 16S rRNA Gene Analysis
DNA was extracted from unsorted mucus samples using PureLink Microbiome DNA Purification Kit (Thermo Fisher) following the

manufacturer’s instructions and amplicons of V3-V4 regions of 16S rRNA genes were generated as described below. 16S rRNA

amplicons from FACSorted bacteria were generated by adding 2.5 mL of each bacterial fraction directly to Platinum� PCR SuperMix

High Fidelity (Thermo Fisher) containing PCR primers that target 16S V3 and V4 region (Table S4) in triplicate 20cml reactions. 16S

rRNA analysis was performed on samples collected from the flow cytometer droplet stream before every sort (sheath fluid), which

permitted the identification of sequences that did not originate from the sorted sample. The following PCR conditions were used:

an initial denaturation step at 95c�C for 10cmin was followed by 35 cycles that included 95c�C for 30csec, 55c�C for 30csec, and

72�C for 30 s, with an ending step of 72c�C for 5cmin. Triplicate reactions were pooled and subjected to 1% agarose gel electro-

phoresis to verify the presence of a PCR product (these gels also contained negative control reactions). Pooled amplicons were

purified with AMPure XP magnetic beads (Agencourt) and subjected to multiplexed sequencing (paired-end 250 nucleotide reads)

on aMiSeq instrument (Illumina) with the 500 Cycle V2 Kit (23 250 bp). Paired-end reads were filtered (Phred > 19) andmerged using

the fastq-join algorithm. De-multiplexed reads were clustered into operational taxonomic units (OTUs) with a 97% identity sequence

using the gg_13_5 release from Greengenes database as well as the default open reference QUIIME pipeline for Ilumina reads

(Caporaso et al., 2010). Similar to FACSorted fractions, sheath fluid samples were sequenced and processed to identify putative

contaminant OTUs. A comparison against ‘‘high-biomass’’ samples (mucus) was performed to pick the most frequent contaminant

OTU found in the sheath fluid but not in ‘‘high-biomass’’ samples. This reference contaminant OTU was then used to proportionally

remove all the other contaminant OTUs found in either sheath fluid or FACSorted samples. Finally, an ‘abundance-filtered dataset’

was generated by selecting OTUs that were detected at > 0.1% relative abundance in each sample. This OTU table was then

rarefied to the minimum sample’s depth (27529 reads). Rarefied alpha diversity plots for Shannon Index and Phylogenetic Diversity

(PD_whole_tree) were generated using default QIIME scripts. A log-transformed Enrichment Index (EI) was calculated for each OTU

and sample according to the formula shown in Figure 7F. Only OTUs present in input samples at least 3 times and at a frequency

higher than 0.1% were used to build the final EI distributions. The heatmap plot was generated using mean values from EI distribu-

tions. OTUs and fractions were then grouped through a hierarchical clustering algorithm.
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Quantification and Statistical Analysis
Differences between means from independent groups were assessed using Prism 5.03 software (GraphPad) and R studio. For com-

parison of two groups, P values were determined by unpaired two-tailed Student’s t test, unless otherwise indicated. For comparison

of more than two groups, significant values were calculates via one-way ANOVA with Tukey’s post hoc test. p values < 0.05 were

considered significant. P values are indicated on plots and in figure legends. (* p < 0.05, ** p < 0.01, *** p < 0.001).

DATA AND SOFTWARE AVAILABILITY

The Gene Expression Omnibus accession number for the global gene transcriptional analysis reported in this paper is GEO:

GSE89282. Sequencing data are publicly available under BioProject accession number BioProject: PRJNA355402.
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