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Background

Most psychiatric and neurodevelopmental disorders (PNDD) 
have a strong heritable component.1 Twin studies have proved 
that neurodevelopmental disorders, such as attention deficit 
hyperactivity disorder (ADHD),2 autism spectrum disorders 
(ASD),2 as well as psychiatric conditions like Schizophrenia3 
(SCZ) and Bipolar Disorder4 (BD) have an important genetic 
background. Nevertheless, until very recently, causal genes have 

only been found in the context of Intellectual Disability (ID). 
Classical genetic studies have failed to identify genes with high 
penetrance in PNDD, thus indicating that the genetic background 
of these disorders is highly heterogeneous.

Recent developments in DNA analysis and sequencing, such 
as next-generation sequencing, SNP arrays, exome sequencing or 
analysis of copy number variations (CNVs),5,6 allow to study the 
whole genome of large cohorts of affected individuals, enabling 
the analysis of CNS disorders with highly heterogeneous genetic 
etiology. Several of these studies have focused on PNDDs, 
uncovering new genes with potential roles in these disorders. 
Interestingly, many of the genes identified are involved in synaptic 
physiology,7 pointing towards synaptic dysfunction as an important 
contributing factor in many of these disorders.

Although numerous psychiatric conditions have traditionally 
been ascribed to unbalances in monoaminergic systems, it is also 
accepted that alterations in the glutamatergic system are involved 
in these disorders. In particular, an important group of genes 
expressed at the synapse identified in the context of PNDDs 
encode for glutamate receptor subunits. Glutamate receptors 
(GluRs) mediate excitatory synaptic transmission and plasticity in 
the brain.8 GluRs comprise three families of ionotropic receptors: 
AMPA (α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid), NMDA (N-methyl-D-Aspartate) and Kainate; as well as 
three groups of metabotropic receptors (mGluRs I-III). Ionotropic 
receptors are found as tetramers of various subunits: 4 GRIA genes 
code for AMPA subunits, 7 GRIN genes code for NMDA subunits 
and 5 GRIK genes code for Kainate subunits.8 Finally, metabotropic 
receptors, which are G-protein coupled receptors, are coded by 
8 GRM genes.9 Functionally, ionotropic GluRs are specialized 
on different aspects of synaptic transmission. While NMDA 
receptors act as coincident detectors of postsynaptic membrane 
depolarization and glutamate release, AMPA receptors mediate 
fast transmission in excitatory synapses. Kainate receptors also 
participate in synaptic transmission and plasticity. On the other 
hand, metabotropic receptors modulate excitatory signaling.8,9

In this review we discuss recently identified mutations in 
GluR subunits in the context of PNDDs, including large genomic 
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Alterations in glutamatergic neurotransmission have long 
been associated with psychiatric and neurodevelopmental 
disorders (PNDD), but only recent advances in high-throughput 
DNA sequencing have allowed interrogation of the prevalence 
of mutations in glutamate receptors (GluR) among afflicted 
individuals. In this review we discuss recent work describing 
GluR mutations in the context of PNDDs. Although there are 
no strict relationships between receptor subunit or type 
and disease, some interesting preliminary conclusions have 
arisen. Mutations in genes coding for ionotropic glutamate 
receptor subunits, which are central to synaptic transmission 
and plasticity, are mostly associated with intellectual disability 
and autism spectrum disorders. In contrast, mutations of 
metabotropic GluRs, having a role on modulating neural 
transmission, are preferentially associated with psychiatric 
disorders. Also, the prevalence of mutations among GluRs is 
highly heterogeneous, suggesting a critical role of certain 
subunits in PNDD pathophysiology. The emerging bias 
between GluR subtypes and specific PNDDs may have clinical 
implications.
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rearrangements directly affecting these genes or point mutations 
predicted to be deleterious. Linkage and association studies of 
natural variation, such as SNPs or microsatellites, have not been 
included in this work as these have a less direct implication in 
disease.

Mutations in AMPA Receptor Subunits

Of all four genes coding for AMPA receptor subunits,8 only 
mutations in GRIA2 and GRIA3 have been related with PNDDs 
(Table 1). Alterations in these two genes have been associated with 
some cases of ASD,10,11 but have mainly been found concomitant 
with ID.

Although chromosomal deletions encompassing GRIA2 had 
been described for individuals with mental and developmental 
retardation (see ref. 12 for review), only recent studies have identified 
specific mutations in GRIA2 in the context of ID,12,13 suggesting 
that GRIA2 haploinsufficiency might cause ID.

GRIA3 was first identified as a candidate gene for X-linked 
ID in 1999, in a female with a balanced translocation directly 
involving this gene.14 Since then, several other GRIA3 mutations 
have been associated with ID, including complete15,16 or partial 
duplications,17,18 mutations on its 5'UTR19 and a whole gene 
deletion.20 Interestingly, both duplications and deletions of GRIA3, 
translate into a diminished or absent synthesis of GluA3 protein. 
Partial duplications would cause either reduced GRIA3 transcripts 
or aberrant protein levels ultimately contributing to ID. Missense 
GRIA3 variants20 have also been found linked to ID and, with the 
exception of the G833R mutation (see Table 1) these individuals 
express GRIA3 at normal levels. Nevertheless, when functionally 
tested GluA3 variants displayed altered channel function either in 
homomeric combination or in heteromers with normal GluA2.20

GluA3 is normally present at synapses together with GluA2 
contributing to the normal cycling of AMPA receptors.8 From the 
studied individuals with ID, it can be inferred that the lack of GluA3 
is not crucial for neuronal viability. In fact, synaptic targeting and 
function of these receptors are not significantly altered in GluA3 
KO mice.21 Remarkably, long-term potentiation (LTP), widely 
thought to be the cellular basis of learning processes,22 is abnormal 
in these animals. Nevertheless, in humans, the lack of GluA3 could 
impair normal neuronal wiring or stabilization of activated synapses 
during development.

AMPA receptor auxiliary subunits, TARPs and CNIHs,23 
control receptor function by modulating channel trafficking and 
kinetics. It is interesting to note that a mutation affecting CACNG2 
(TARP γ-2) has been described in an individual with moderate 
ID.24 This mutation caused a decreased association with AMPA 
subunits, altering the receptor trafficking and reducing mEPSCs in 
hippocampal neurons. Finally, CNIH2 deletion has also been found 
in a boy with mild ID.25 Thus, it is noteworthy that malfunctions of 
AMPA receptor auxiliary can also be associated with ID.

Mutations in NMDA Receptor Subunits

NMDA subtype of ionotropic GluRs play a pivotal role in 
neuronal communication. These receptors are composed of two 

obligatory subunits (GluN1) and two variable ones, which consist 
of either GluN2(A-D) or GluN3(A,B).26 Of the variable subunits, 
GluN2B expression starts very early in development and is critical 
for synaptogenesis and neuronal survival in cortical brain areas, 
thus making it a candidate factor in neurodevelopmental disorders. 
Indeed, GRIN2B is the most frequently mutated GRIN gene (see 
Table 1) in PNDDs, being mainly related to ID.27-30 Specific 
GRIN2B gain-of-function mutations have also been associated with 
ASD, supporting the hypothesis of an imbalance between excitatory 
and inhibitory neurotransmission in ASD etiology,31,32 as well as in 
West Syndrome with severe developmental delay.27 GRIN2A gene 
codes for GluN2A subunit, which is broadly expressed in adult 
brain. GRIN2A de novo mutations30 and microdeletions33 have 
also been associated with ID, indicating the viability of GluN2A 
haploinsufficiency. A different group of GRIN2A mutations have 
also been associated with ASD.34,35 Likewise, a rare GRIN2A 
de novo mutation was recently associated with schizophrenia,31 
although the role of GluN subunits with SCZ is under debate.36 
Although less frequently, mutations in GRIN1 gene, the obligatory 
NMDA receptor subunit, have also been identified. A mutation 
in GRIN1 has been found to cause non-syndromic intellectual 
disability (NSID), an observation functionally validated using 
cellular models.24

Interestingly, regarding GRIN2C, GRIN3A and GRIN3B, only 
rare truncating mutations affecting both healthy individuals and 
ASD/SZ patients31 have been reported. In contrast, no truncating 
mutations were found in GRIN1, GRIN2A, GRIN2B and 
GRIN2D genes, suggesting a more critical function of these genes 
during neurodevelopment and the lethality of the putative loss-of-
function. Taken together, these recent reports suggest that de novo 
mutations of NMDA receptor subunits are frequently associated 
with ID, although some specific mutations are also associated with 
psychiatric diseases.

Mutations in Kainate Receptor Subunits

Previous classic genetic association studies suggested linkages 
to mood disorders for some of the kainate receptor-encoding 
genes, mainly GRIK2 and GRIK3 (see ref. 37 for review). More 
recently, CNVs in GRIK2 were found enriched in, but not 
exclusive of, children with ID, indicating limited pathogenic 
burden.38 Interestingly, a complex loss-of-function mutation in 
GRIK2 was found to co-segregate with NSID.39 This GRIK2 
mutation involves various deletions and inversions spanning exons 
7 to 11, resulting in loss of the first ligand-binding domain, the 
adjacent transmembrane domain, and the putative pore loop of 
GluK2. Moreover, GluK2 mutants showed complete absence of 
currents despite normal cell surface expression. This study strongly 
indicates that loss of GluK2 protein can cause severe-to-moderate 
cognitive impairment in humans.

A GRIK4 variant with an insertion-deletion in the 3'UTR 
region (which results in increased GluK4 levels) was found to 
confer protection against bipolar disorder.40 Moreover, this GRIK4 
variant increased hippocampal activation during face processing,41 
suggesting a link between kainate receptor-mediated excitation in 
the hippocampus and Bipolar Disorder.
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So far, the subfamily of kainate glutamate receptors is the 
one for which less mutations have been identified in the context 
of PNDDs. However, collectively taken, these results support 
the notion that mutations leading to up- or down-regulation of 
kainate subunits can cause learning disabilities and modulate 
mood disorders.

Mutations in Metabotropic Receptor Subunits

Currently, a limited number of papers report deleterious 
mutations related to PNDDs in GRMs (see Table 1). Of these, 
two perform GRM1 exon sequencing in SCZ and BD,42,43 another 
sequenced the GRM3 gene in a cohort of individuals with BD44 
and one perform a genome-wide copy number variation (CNV) 
association study45 on attention deficit hyperactivity disorder 
(ADHD). Finally, a mutation in the Kozak’s sequence of GRM3 
assocaited with SCZ has also been reported .46

It is important to highlight that, as it happens with genes 
giving susceptibility to psychiatric diseases,1 none of the reported 
mutations supports for a causal role in disease. In most cases, 
GRMs mutations are observed in both cases and controls. Quite 
surprisingly, this is even the case for whole gene deletions or 
duplications.45 The small number of mutations identified for GRMs 
make it still difficult to conjecture on their relevance to disease.

Nevertheless, a striking observation can be made: there is 
no report implicating GRM mutations in neurodevelopmental 
disorders such as ID or ASD. Despite the extensive literature on 
the role of these receptors, especially GRM1 and GRM5, in Fragile 
X-Syndrome and ASD,47,48 deleterious mutations on GRMs have so 
far been found only in the context of psychiatric disorders, such as 
SCZ, BD or ADHD.

Closing Remarks

Recently developed DNA analysis tools are allowing for the 
rapid uncovering of GluRs mutations in the context of PNDDs. 
This can be seen by the exponential increase in the number of 
papers reporting GluR mutations in most recent years. Based on 
this, we expect that new GluR mutations will be identified in the 
future, hopefully allowing for a better understanding of GluR 
etiological contribution to PNDDs. Although the number of 
studies reporting GluR mutations in PNDD is so far restricted, 
some initial conclusions can be drawn. These will need to be 
examined in the light of future studies.

In the first place, mutations of subunits of some receptor 
subtypes are related to certain disease types but not to others. In 
this regard, mutations in AMPA subunits have only been found in 
the context of ID and ASD, both neurodevelopmental disorders. 
Similarly, mutations in genes coding for AMPAR auxiliary proteins 
are also related with ID. Along these lines, mutations in NMDA 
subunits are mostly linked to ID and ASD. In stark contrast, 
mutations in metabotropic receptors are only related to psychiatric 
disorders. Accordingly, the data available would suggest that 
mutations in ionotropic glutamate receptors predispose towards 
neurodevelopmental disorders, while mutations in metabotropic 

receptors would predispose towards psychiatric disorders. One can 
also draw a parallel between the extent of mental disability and the 
contribution to neurotransmission of the affected receptor type. 
Thus, loss-of-function mutations in AMPA and NMDA subunits 
are frequently found in patients with ID. This is consistent with 
their important role in neuronal development, fast transmission, 
and synaptic plasticity. On the other hand, the abundance of GRM 
mutations in individuals with psychiatric disorders is consistent 
with the more modulatory role of mGluRs. The occurrence of ID 
in carriers of a mutant GluK2 suggests that tuning of neuronal 
network activity by kainate receptors can have profound effects on 
cognitive abilities.

Secondly, mutation rates amongst GluR are very heterogeneous 
in PNDDs. Indeed, while some genes accumulate many potential 
deleterious mutations, no mutations have been found in others. 
Amongst AMPA subunits, for instance, GRIA1 and GRIA4 have 
not been found mutated in the context of PNDD, while twelve 
different mutations have been described for GRIA3. Similarly, 
few mutations are found in GRIN1 as compared to GRIN2A or 
GRIN2B. Remarkably, the spectrum of mutations in NMDA 
subunits concentrates in particular coding regions, namely, the 
extracellular and pore-forming domains. This observation suggests 
that impaired ion selectivity and conductance of NMDA receptors 
is closely linked to developmental defects, while the role of its 
intracellular tail might have a less critical role in disease. There 
are several potential explanations as to why some GluR genes 
do not appear mutated in relation to disease; they might play 
indispensable biological functions, thus leading to lethality even 
in heterozygosity, or other molecules could compensate for their 
dysfunction.

Interestingly, we do not see an increased number of mutations 
in GluR subunits expressed early in development, which a priori, 
should be more relevant to neurodevelopmental disorders. For 
instance, a similar number of mutations has been found for 
GRIN2B, which starts to be expressed early in development, 
and for GRIN2A, that is expressed post-natally.49 In contrast, no 
mutations have been described for GRIA4, also highly expressed 
during development.50 Nevertheless, this observation should be 
taken cautiously as mutations in developmental genes could cause 
lethality and also because gene expression data, mostly obtained 
from rodent species, might not be completely valid for humans.

Although the etiopathology of PNDDs is complex and 
multigenic, a growing set of genetic and functional evidences 
indicate the contribution of glutamate receptors in these damaging 
disorders. The following years will be crucial to understand whether 
the different receptor subunits are associated with certain PNDDs 
or not, as well as their interaction with genetic background and 
environmental factors.
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