H₂ sensor based on tapered optical fiber coated with MnO₂ nanostructures

ABSTRACT

A novel hydrogen (H₂) sensor was developed using optical fiber coated with manganese dioxide (MnO₂) nanostructures. Optical multimode fiber (MMF) of 125 µm in diameter as the transducing platform was tapered to 20 µm to enhance the evanescent field of the light propagates in the fiber core. The tapered fiber was coated with MnO₂ nanograins synthesised via chemical bath deposition (CBD) process. Catalytic Palladium (Pd) was sputtered onto the MnO₂ layer to improve the H₂detection. The sensing layer was characterized through Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD) and Raman Spectroscopy to verify the properties of MnO₂. Two sets of sensors consist of as-prepared MnO₂ and 200 °C annealed MnO₂ were tested towards H₂ gas. The tapered optical fiber coated with Pd/MnO₂ nanograins was found to be sensitive towards H₂with different concentrations in synthetic air at 240 °C operating temperature. The annealed sensor showed higher response and sensitivity as compared to the as-prepared sensors when measured in the visible to near infra-red optical wavelength range. The absorbance response of the annealed Pd/MnO2 on fiber has increased to 65% as compared to 20% for the as-prepared Pd/MnO₂ upon exposure to 1% H₂in synthetic air.

Keyword: Hydrogen sensor; Tapered optical fiber; Optical sensor; Absorbance response; Manganese dioxide nanostructures; Chemical bath deposition