
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

A visual analytics tool for the incremental evaluation

of search engines

Laureando:

Fabio Giachelle

Relatore:

Prof. Gianmaria Silvello

18 Febbraio 2019

X

ANNO ACCADEMICO 2018/2019

Ai miei nonni, che mi hanno insegnato quali

sono i valori per i quali vale la pena lottare.

Fabio Giachelle

iii

ABSTRACT

I
n the field of information retrieval (IR), it is of fundamental importance the activity

of evaluating the performance of an information retrieval system (IRS), by means

of specific metrics. To consistently assess the performance of an IR system, so that

it can be compared with other systems, it is necessary to choose a document collection

as a reference, for all the IR systems considered. Since a collection can be composed of

millions of documents, the indexing process can sometimes take a long time to index the

entire collection. However, it is possible to index the collection incrementally to several

index percentages, so that for each of them we can calculate the values for the different

evaluation metrics chosen, without having to wait for the entire collection to be indexed.

The values of the evaluation measures obtained at the various index percentages, allow

outlining the performance trend of the retrieval models considered, while the collection of

interest is indexed. In this way, we can collect useful information about the performances of

the retrieval models as the indexing process proceeds, without having to wait for the full

indexed document collection. For this reason, we developed AVIATOR, a software capable of

incrementally indexing a document collection in order to help IR experts to automatically

obtain the values for the evaluation metrics, so that they can be compared dynamically

as the indexing proceeds. To facilitate the evaluation process, AVIATOR provides a web

interface that allows experts to control each stage of the entire process with interactive

charts and many other visual components. AVIATOR allows you to visually compare the

performances of different retrieval models, for each combination of stoplist and stemmer,

as the indexing process advances automatically in the background. In this way, it is possible

to determine which system is the best at each index percentage, according to the several

evaluation metrics chosen. In the version implemented in this thesis, Aviator has been tested

on volumes 4 and 5 of the TIPSTER collection, for a total of over 500 000 indexed documents.

Afterwards, the final validation phase shows that Aviator allows to easily achieve the same

results known in the literature, by means of a simple and intuitive interface.

v

SOMMARIO

N
el settore dell’information retrieval (IR), valutare le performance di un sistema di

reperimento dell’informazione (IRS) è un’attività di fondamentale importanza, che

richiede l’utilizzo di apposite misure di valutazione. Queste misure consentono in

particolare di confrontare le performance di diversi modelli di reperimento dell’informazione,

al fine di stabilire quali di essi risulta il migliore per la collezione di documenti considerata.

Poiché la collezione può essere composta anche da milioni di documenti, il processo di

indicizzazione può richiedere molto tempo prima di poter essere completato. Tuttavia, è

possibile indicizzare la collezione in modo incrementale a varie percentuali (cut-off), così

facendo per ogni cut-off è possibile calcolare i valori per le diverse metriche di valutazione,

senza dover attendere che l’intera collezione sia indicizzata. I valori ottenuti per le mis-

ure di valutazione a vari cut-off, consentono di delineare l’andamento delle performance

dei modelli di reperimento man mano che la collezione di interesse viene indicizzata. In

questa tesi si propone AVIATOR: uno strumento di visual analytics in grado di indicizzare

automaticamente, in modo incrementale, una data collezione di documenti, al fine di facil-

itare il lavoro di un team di esperti di IR nell’attività di valutazione di modelli e sistemi di

reperimento dell’informazione. A tal fine, AVIATOR fornisce un’interfaccia web attraverso la

quale è possibile controllare i risultati relativi alle metriche considerate progressivamente,

attraverso grafici dinamici e interattivi. Inoltre, AVIATOR permette di confrontare visivamente

le performance di differenti modelli di reperimento, per ogni combinazione di stoplist e

stemmer considerata, man mano che il processo di indicizzazione avanza automaticamente

in background. In questo modo è possibile determinare quale sistema risulta il migliore ad

ogni cut-off, secondo un insieme di metriche prestabilito. Per la versione implementata in

questa tesi, AVIATOR è stato testato sui volumi 4 e 5 della collezione TIPSTER, per un totale di

oltre 500.000 documenti indicizzati. Infine, la fase finale di test e valutazione ha evidenziato

che AVIATOR permette di ottenere i risultati noti in letteratura, attraverso un’interfaccia

semplice e intuitiva.

vii

CONTENTS

Page

List of the figures 1

List of the tables 3

1 Introduction 5

1.1 The problem . 5

1.2 Purpose of the thesis . 6

1.3 State of the art . 6

1.4 Proposed solution . 6

1.4.1 Aviator . 7

1.5 Outline . 9

2 Background 11

2.1 Information Retrieval . 11

2.1.1 Introduction . 11

2.1.2 Concepts and definitions . 12

2.2 Indexing . 16

2.3 Incremental indexing . 19

2.4 Retrieval models . 20

2.4.1 Principal retrieval models . 21

2.5 Evaluating information retrieval systems . 27

2.5.1 The Cranfield paradigm . 28

2.5.2 Concepts and definitions . 29

2.6 Visual Analytics . 35

2.6.1 Introduction . 35

2.6.2 Visual Analytics for Information Retrieval 36

2.6.3 Progressive Visual Analytics . 36

ix

CONTENTS

3 Conceptual Framework 39

3.1 Background . 39

3.2 The conceptual framework . 40

3.2.1 Process Overview . 40

3.2.2 Description . 41

3.3 Mockup . 49

3.3.1 Introduction . 49

3.3.2 First UI mockup . 49

3.3.3 Second UI mockup . 50

3.3.4 Third UI mockup . 51

3.3.5 Fourth UI mockup . 52

3.4 Final remarks . 54

4 Backend 55

4.1 Introduction . 55

4.2 High-level architecture . 56

4.3 Apache Solr . 61

4.3.1 Solr functionalities . 61

4.3.2 Aviator and Solr . 65

4.4 Backend functionalities . 69

4.5 Final remarks . 74

5 Frontend 75

5.1 Final remarks . 86

6 Experimental evaluation 87

6.1 Discussion of the experimental results . 105

6.1.1 Topic per topic analysis . 106

6.1.2 Overall analysis . 108

7 Conclusions 109

Bibliography 115

x

LIST OF THE FIGURES

FIGURE Page

1.1 Example of the AVIATOR web interface. 9

2.1 A typical architecture for an information retrieval system. 13

2.2 Indexing and retrieval phases in a typical architecture for an IRS. 14

2.3 IR "U" scheme. 15

2.4 Indexing process overview. 16

2.5 Indexing process: step by step. 17

2.6 Incremental indexing process. 19

2.7 Retrieval model architecture and components. 20

2.8 Example of overlappings in the content of three documents of the collection. . . 21

2.9 Bayes classifier. 24

2.10 Evaluating an Information Retrieval System. 27

2.11 Visual Analytics workflow. 35

2.12 A comparison between batch and progressive visual analytics workflow. 37

3.1 AVIATOR process: step by step. 40

3.2 The document collection  is divided into n buckets of size k. 44

3.3 The incremental indexing process with Stable and Dynamic cores. 48

3.4 First UI mockup. 50

3.5 Second UI mockup. 51

3.6 Third UI mockup. 52

3.7 Fourth UI mockup. 53

4.1 High level architecture: components, interactions. 56

4.2 High level architecture: components, interactions and technologies. 57

4.3 AVIATOR: employed technologies. 60

4.4 Solr dashboard. 62

1

LIST OF THE FIGURES

4.5 Solr dashboard detailed. 63

4.6 Solr core admin interface. 63

4.7 Solr query interface. 64

4.8 Solr managed schema. 66

4.9 AVIATOR web server configuration interface: Server OFF. 71

4.10 AVIATOR web server configuration interface: Server ON. 72

4.11 AVIATOR web server configuration interface: settings menu. 72

4.12 AVIATOR web server configuration interface: manage collections. 73

4.13 AVIATOR web server configuration interface: edit collection properties. 73

5.1 MVC architecture. 76

5.2 AVIATOR web user interface: homepage. 79

5.3 AVIATOR visual analytics UI: topic per topic, measure selection, progress 10%. . 80

5.4 AVIATOR visual analytics UI: topic per topic, IR model selection, progress 30%. . 81

5.5 AVIATOR visual analytics UI: topic per topic, zoom and inspect, progress 30%. . . 82

5.6 AVIATOR visual analytics UI: topic per topic, progress 90%. 83

5.7 AVIATOR visual analytics UI: topic per topic, progress 100%. 84

5.8 AVIATOR visual analytics UI: overall, progress 100%. 85

2

LIST OF THE TABLES

TABLE Page

2.1 Term-document matrix. 23

6.1 Measure: AP; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: BM25. 89

6.2 Measure: AP; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: TF-IDF. 90

6.3 Measure: AP; Stoplist: INDRI; Stemmer: NOSTEM; Model: BM25. 91

6.4 Measure: AP; Stoplist: INDRI; Stemmer: NOSTEM; Model: TF-IDF 92

6.5 Measure: AP; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: BM25. 93

6.6 Measure: AP; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: TF-IDF. 94

6.7 Measure: AP; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: BM25. 95

6.8 Measure: AP; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: TF-IDF. 96

6.9 Measure: nDCG; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: BM25. 97

6.10 Measure: nDCG; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: TF-IDF. . . . 98

6.11 Measure: nDCG; Stoplist: INDRI; Stemmer: NOSTEM; Model: BM25. 99

6.12 Measure: nDCG; Stoplist: INDRI; Stemmer: NOSTEM; Model: TF-IDF. 100

6.13 Measure: nDCG; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: BM25. . . 101

6.14 Measure: nDCG; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: TF-IDF. . . 102

6.15 Measure: nDCG; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: BM25. 103

6.16 Measure: nDCG; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: TF-IDF. 104

6.17 Description of each system S j in terms of stoplist, stemmer and retrieval model. 107

6.18 MAP for each system S j and bucket Bi . 107

6.19 Overall nDCG for each system S j and bucket Bi . 107

3

C
H

A
P

T
E

R

1
INTRODUCTION

E
valuating an IR system is essential to establish the quality of the results returned,

analyse its behaviour and finally improve the effectiveness of the system for satisfying

the expectations of the user. To compare the performances obtained by different

IR systems, it is necessary to adopt standard and shared collections of documents and, at

the same time, a specific set of evaluation metrics. In this way, the reproducibility of the

experimental results is possible. In this context, due to the large number of measures and

parameters to be considered, simplifying and speeding up the analysis process becomes of

primary importance, as well as automating all the activities that do not require the direct

supervision of a team of experts. The evaluation phase of one or more retrieval models

requires that the considered collection has been previously indexed. This is necessary for

querying the IRS and obtain the run files to be evaluated, using the chosen metrics and

according to the related pool or ground truth.

1.1 The problem

When the given document collection is a very large collection (VLC), the indexing process

can take a really long time to complete. For example, on a Dell Latitude E6230, indexing the

document corpus of the TIPSTER collection requires at about three hours for over 528 000

documents. This means that we can not get any information regarding the performances of

a set of retrieval models on the full collection, without waiting until the end of the indexing

process.

5

CHAPTER 1. INTRODUCTION

1.2 Purpose of the thesis

Indexing a document collection is a very time-consuming task, specially when dealing with

VLC. Besides, experiments in IR usually consists of many tests that require reindexing the

document collection. In this context, performing dozens of tests on the whole indexed

collection would take a long time, without potentially obtaining the desired results. In order

to save time, we need to know how the experiments are going, while the indexing process

incrementally proceeds. In this way, if the intermediate results of an experiment do not meet

the expectations, it can be stopped in advance, without having to index the entire collection.

For this reason, the purpose of this thesis is developing a tool that can help IR experts in the

activity of evaluating one or more IRS, in a time efficient way, through a progressive visual

analytics web interface.

1.3 State of the art

Unfortunately, there are no solutions known in the literature to solve the problem as it

stands. Anyway, according to what reported in [1], if we consider some subsets obtained by

uniformly sampling the given document collection, we have that, regardless of the topic, the

expected probability of a document of being relevant in a sample is the same as in the full

collection. Therefore, if in the sample a certain relation between the values of the evaluation

measures is observed, for the different retrieval models, this relation can be projected on the

whole collection with a percentage of reliability that is proportional to the size of the sample

considered.

1.4 Proposed solution

To solve the problem, we can exploit the previous property and calculate the values of the

evaluation measures for each version of the document collection’s incremental index. In

other words, the collection is incrementally indexed at various cut-offs and, for each of them,

the evaluation measures are calculated. The values obtained for the evaluation measures at

the various cut-offs, allow outlining the performance trend of the several IR models while

the collection is being indexed, without having to wait for its full indexing. This strategy is

the basis of the work performed by AVIATOR.

6

1.4. PROPOSED SOLUTION

1.4.1 Aviator

In this thesis, we present AVIATOR, an all-in-one visual analytics tool for the evaluation of

IRS. AVIATOR, through the combined use of an opensource framework for IR and a data

visualisation library, allows the exploration of the evaluation data produced considering all

the possible combinations generated by 4 stoplists, 4 stemmers and 4 models, for a total of 64

different combinations. All the 64 combinations are evaluated with over 20 different metrics.

The document collection chosen includes as a corpus the volumes 4 and 5 of the TIPSTER,

for a total of over 500.000 documents, while the set of 50 topics chosen comes from TREC7

and consider the topics from 351 to 400. The amount of data considered would require a

phase of exploration too long and complicated to be carried out by hand, for this reason,

AVIATOR allows you to automate the entire process of indexing, retrieval and evaluation thus

simplifying the work of IR experts.

1.4.1.1 Backend

AVIATOR can incrementally index a given document collection at various cut-offs. It can also

preprocess the collection to produce a set of buckets in which are arranged the documents

uniformly sampled from the document collection. Besides, AVIATOR provides an exhaustive

set of API to control each phase of the IR workflow: indexing, retrieval and evaluation. In

addition, AVIATOR implements a REST server with which you can manage each IR task using

any web client.

1.4.1.2 Frontend

To help IR experts in evaluating IRS, a user can use the web interface to analyse how the

values, for the evaluation metrics, change during the incremental indexing process. For this

purpose, AVIATOR provides useful dynamic charts that allow inspecting, both in general and

in detail, all the information related to the evaluation phase.

7

CHAPTER 1. INTRODUCTION

1.4.1.3 Features

We can summarise the features provided by AVIATOR as follows:

• Preprocessing of the document collection, to produce a set of buckets made up of

uniformly sampled documents.

• Incremental indexing of the document collection at various cut-off.

• Automatic IR workflow: indexing, retrieval, evaluation.

• A progressive visual analytics platform, for the dynamic exploration of the data regard-

ing the evaluation measures.

• A controller for the Solr open source search platform.

• A controller for the Trec Eval evaluation tool.

• A REST web server which provides an exhaustive set of API to control each phase of

the IR workflow.

From the visual analytics web interface, you can choose:

• The corpus of the document collection.

• The topic file.

• The pool file.

• The stoplist.

• The stemming algorithm, i.e. the stemmer.

• The retrieval model.

You can choose the value for all these options, in the web interface shown in Figure 1.1.

8

1.5. OUTLINE

Figure 1.1: Example of the AVIATOR web interface.

1.5 Outline

The contents of this thesis are structured as follows:

• Background [2]: in this chapter, we explain the IR fundamentals and all the back-

ground notions, that are necessary to understand the whole work developed in this

thesis. In particular, we describe the IR workflow: indexing, retrieval and evaluation

process, with a focus on the incremental indexing process. Besides, we provide knowl-

9

CHAPTER 1. INTRODUCTION

edge related to the field of data visualisation, and then we show how to employ it to

the IR field.

• Conceptual Framework [3]: in this chapter, we explain the specific details regarding

how the proposed software solution works. In other words, we describe, at a conceptual

level, the algorithm strategy and the methodology used to create the time efficient

solution for the discussed problem.

• Backend [4]: in this chapter, we explain how we implemented the conceptual frame-

work for the backend part, in terms of technologies used and provided functionalities.

Besides, we show how to implement the incremental indexing using the Solr open

source search platform. Finally, we show how to implement each phase of the IR

workflow, as a pipeline of synchronized tasks.

• Frontend [5]: in this chapter, we explain how we implemented the Aviator front-end,

in terms of technologies used and provided functionalities. Besides, we show how to

use the AVIATOR visual analytics web interface for evaluating IR systems. In particular,

we show how to perform the exploration of the evaluation data, by means of interactive

charts developed using technologies like JavaScript and the D3.js library.

• Experimental evaluation [6]: in this chapter, we present data and results from tests

done with AVIATOR on the TIPSTER corpus. Moreover, we compare the evaluation

results to identify the best retrieval model, on average, and to quantify the performance

differences between the various IR models.

• Conclusions [7]: in this chapter, we summarize all the work done to solve the initial

problem, discussing the obtained results and the possible future developments.

10

C
H

A
P

T
E

R

2
BACKGROUND

2.1 Information Retrieval

2.1.1 Introduction

N
owadays, the information retrieval (IR) field is often associated with web search

engines, but actually, its history is much longer than the Internet one. Indeed, as

reported in [2], the studies effectuated by information retrieval researchers started

in the 1950s, and the first IR systems were found in commercial applications since the 1960s.

Anyway, the main purpose of the information retrieval field has never changed: retrieve the

information that satisfies the user information needs. This is what an information retrieval

system (IRS) does: it takes the information need of a user, expressed as a query, and returns

documents, hopefully relevant, to satisfy the information need inferred by the query. In IR

the information retrieved for an input query comes from an unstructured source, which

typically is a collection of unstructured data like web pages, documents, images, videos, etc.

This is a significant difference from the database context, in which the data are structured.

This is the reason why IR has become more and more popular in the last two decades, with

the spreading of knowledge allowed by the Internet. The "infinite" knowledge, stored in

the billions of web pages saved in servers distributed worldwide and interconnected by the

Internet, would not be accessible in a time efficient way without search engines. They have

become so essential for satisfying the information needs of billions of users, that nowadays

search engines are considered the primary example of powerful IR systems. As any other

11

CHAPTER 2. BACKGROUND

IRS, the purpose of web search engines is to locate the relevant information that satisfy

the user queries. These usually are made up of a few keywords, while the related results

consist of billions of pages, that are presented to the user as a list sorted according to a

specific criterion of relevance. This one considers not only the content of the page but also

the authoritativeness of the origin website. The increasing usage of IRS in everyday life

motivates the last decade challenge, of the most famous web search engines, in improving

the quality of the search service in terms of efficiency and effectiveness. This, accompanied

by the development of additional but closely related services such as email and cloud, is

what made the fortune of brilliant startups, e.g. Google, that now has become one of the

most successful companies in the world.

2.1.2 Concepts and definitions

As we said, an information retrieval system (IRS) takes the information needs of users,

expressed as queries, and retrieves for them the relevant judged documents for the given

queries. Now we want to define accurately, the specific meaning of each concept as follows:

• Information need: lack of information that a user wants to fill to solve his problem

and then make decisions.

• Document: intended as any form of manifestation of information, a document is any

type of object, that contains useful information to satisfy the user information need.

• Relevance: the property of a document to contain useful information, that are neces-

sary to satisfy the user information need.

Since a document is any type of object in which an IRS can look for useful information, we

have to consider as a document, in addition to simple text documents, also mixed content

documents like web pages and multimedia objects in general such as images, sounds and

videos. In such a various scenario of many different unstructured sources of knowledge, it is

of fundamental importance using a stable architecture framework. For this reason, since the

beginning of the researches in the IR field, the experts have worked to develop an effective

architecture shared by every IRS. A typical IRS architecture is shown in Figure 2.1, where we

can see that a general IRS takes in input a query and a set of documents, in which carry out

the search task. This set of documents constitutes the corpus of the document collection.

Since queries and documents are intended to be any general container of information,

the IRS takes them and converts, both the queries and the documents, into the proper

12

2.1. INFORMATION RETRIEVAL

representation respectively. Once the conversion is done, the IRS can compare queries and

documents using a similarity evaluation criterion. This one is of fundamental importance

because it is used by the retrieval model, to produce the sorted list of results for the given

query. The sorted list of results returned is composed of the subset of relevant judged

documents, retrieved from the initial corpus of the considered document collection. Finally,

the user can assess the quality of the relevant judged documents, to establish if they are,

or not, really relevant for the submitted query. This relevance feedback mechanism is very

important to prove the correctness of the returned results and to improve the performance

of the retrieval model algorithm.

Document
representation

Query
representation

Similarity
evaluation

Relevance
feedback

Information Retrieval System
Documents

User
assessment

Query

Ordered
documents

Figure 2.1: A typical architecture for an information retrieval system.

We can define the retrieval model as the set of constructs, formalised to make possible:

• The representation of the document’s content.

• The query representation.

• The development and implementation of the retrieval algorithms.

13

CHAPTER 2. BACKGROUND

As shown in Figure 2.2, the activities of converting queries and documents into the proper

representation, are parts of the indexing process done by the information retrieval sys-

tem. Besides, the activity of evaluating the similarity between a given query and the set

of documents, from the document collection, is a task that regards instead the retrieval

process. Both indexing and retrieval, are central phases included in the workflow of every IRS.

Figure 2.2: Indexing and retrieval phases in a typical architecture for an IRS.

The main purpose of the indexing process is to create the index, also known as the inverted

index, for the document collection considered. The principal base function of the inverted

index consists of making a link between terms and documents that contain them. The

functioning principle of an inverted index is similar to what does an analytical index for

a book: it tells the reader the pages where he can find the word, or the concept, for which

is looking for. In the same way, the inverted index tells the IRS what documents contain

the term considered or, in other words, indicates where the IRS can find the term in the

document collection. Since the dimension of the inverted index is often comparable with

the document collection size, it is necessary to adopt proper data structures to allow the

efficient management of the queries.

14

2.1. INFORMATION RETRIEVAL

We said that information need is the lack of information that a user wants to fill to solve

his problem and then make decisions. Another way to express the same concept, in brief,

is through the word topic. This one is used mainly in the evaluation contest, it represents

the information need of a user, expressed by means of a query. A general user query is

composed of one or more terms. We use the keyword term instead of word because a term

can also be, for example, an image, a sound or a multimedia object in general. In Figure 2.3

is reported the information retrieval "U" scheme, in which is graphically described the role

of each component in the workflow related to the IR architecture. In the centre of Figure

2.3, we can observe the block Comparison, which evaluates the similarity between a query

and each document from the related document collection. This is possible thanks to a

similarity criterion, which is the key for a good ranking of the returned set of relevant judged

documents.

Digital
Documents

Indexed
DocumentsQuery

Information
Need

IndexingRepresentation

Comparison

Feedback Retrieved
Documents

Retrieval

Indexing

IRS

DocumentsUser

Figure 2.3: IR "U" scheme.

15

CHAPTER 2. BACKGROUND

2.2 Indexing

As reported in [3], the purpose of the indexing process is to represent the document’s

information so that it can be accessed in an efficient fast way. To this end, the indexing

process takes each document from a collection and creates a synthetic representation

of its content, by means of keywords and terms. These terms are summary descriptors

of the information content of each document and, for this reason, are used to build the

index structure. This one, also known as the inverted index, indicates, for each index term,

the documents that contain them. The inverted index is the most frequent type of index,

implemented by information retrieval systems. The word "inverted" in the name suggests

the fact that the index is designed to return the inverted list, or posting list, for each index

term. The posting list is made up of the list of documents containing that index term. In

Figure 2.4 are shown the high-level “building blocks” of the indexing process. These building

blocks are:

• Text Acquisition: the purpose of this phase is to identify the documents of interest

and make them available to be searched later. In simple cases, this consist of using an

existing collection. Sometimes, instead, the text acquisition task involves crawling the

Web to build the collection that will be later indexed.

• Text Transformation: at this stage, the input documents are transformed into index

terms.

• Index Creation: once all the index terms are obtained, the index is created.

Text
Transformation

Text Acquisition Index Creation

Document data store

Index

Documents

Figure 2.4: Indexing process overview.

16

2.2. INDEXING

In Figure 2.5 are reported, with a greater level of detail, the most important phases that

concern the indexing process.

Index

Documents

Lexical
analysis

Stop words
removal

Stemming

Weights
assignment

Terms

Tokens

Keywords

Word stems

Figure 2.5: Indexing process: step by step.

The most important phases reported in Figure 2.5 are:

1. Lexical analysis: this phase consists of parsing and converting the words, of each

document, into tokens. The tokens are the potential descriptors of every document.

This phase is specific for every different language. If the document collection is made

up of multimedia documents, this phase has to be specifically designed according to

the given object type.

2. Stop words removal: the purpose of this phase is to delete the common words from

the input stream of tokens. These common words are often function words, that are

useful for the sentence structure but do not contribute to the information content

of a document. Some examples of function words are: "the", "of", "for" and so on.

17

CHAPTER 2. BACKGROUND

These words are also called stop words, because the indexing process stops when one

of them is met, to decide whether keeping or not keeping it. Since stop words are

common, removing them is useful for reducing the index size.

3. Stemming: also known as "conflation", is the phase in which are pointed out the stems

of the keywords considered. The purpose is to group, all the words with the same stem,

to reduce them to the common shared word, i.e. the stem. For example, if we consider

the three words: "fish", "fishing" and "fisherman" the common stem is "fish", which is

the reference index term for the three words in the index structure. The component

that performs the stemming task is the stemmer. This one uses a stemming algorithm

that is language specific. For this reason, there are different stemmers available in

every IRS, the most popular for the English language is the Porter stemmer.

4. Weights assignment: once the candidate index terms are available, a phase of term

composition can merge two or more single terms that are semantically linked. For

example, the two words "tropical" and "fish" can be considered as a single term

composed of two words: "tropical fish". This is meaningful since the word "tropical"

specify a property of the word "fish". Finally, the weights assignment phase provides a

weight for each index term, that reflects the relative importance of the index term in

each document.

18

2.3. INCREMENTAL INDEXING

2.3 Incremental indexing

The indexing process is a complex task that involves a lot of activities such as stopwords

removal, stemming and weights assignment. This implies that, when the given document

collection is very large (VLC), the indexing process can take hours if not days to fully index

the whole collection. For this reason, we need a method to continue using our IRS while the

indexing process proceeds in background. This method consists of using an incremental

index, capable of adding dynamically new terms to the index when they are found in docu-

ments, as the indexing process advances. In Figure 2.6 is shown, at a high-level of abstraction,

how a general incremental indexing process works.The document collection is divided into

n buckets, where each bucket represents a percentage of the collection. For example, if

n = 10 then the first bucket represents the initial 10% of the document collection, the second

is the first 20% and finally, the n-th bucket corresponds to the 100% of the indexed collection.

Therefore, the incremental indexing process consists of indexing each bucket in order by

increasing percentage. In this way, the user can query the system without having to wait

for the full indexed collection. Obviously, every time a query is submitted only the indexed

documents until then can be retrieved.

Documents

#1

#2

#3

#n

..
.

10% Indexed
percentage

20% 30% 100%Buckets

Figure 2.6: Incremental indexing process.

19

CHAPTER 2. BACKGROUND

2.4 Retrieval models

A retrieval model is a set of rules, constructions and algorithms designed to make possible:

• The representation of the document’s information content.

• The representation of the queries.

• The retrieval task.

The main activity, regarding the retrieval process, is evaluating the similarity between a given

query and the set of documents, from the document collection. Once the similarity has been

evaluated, the list of the relevant judged documents is ready to be proposed to the user. This

list is made by sorting the selected documents, using the relevance score computed by the

similarity evaluation process. The relevance score is strictly related to the document rank:

the higher the score the lower is the rank. For this reason, at the top of the list, there are

the most relevant documents with a high score and a low rank. In Figure 2.7 is shown the

retrieval model architecture and its components.

Query Indexing:

Lexical analysis
Stop words removal
Stemming
Weights assignment

Query

Index
Database

Retrived documents evaluated
by the IRS as relevant

User

Interface

Document
Database

Database of
structured data

IR / DBMS engine

information extraction from indexes and
database of structured data

Figure 2.7: Retrieval model architecture and components.

20

2.4. RETRIEVAL MODELS

2.4.1 Principal retrieval models

There are a lot of different aspects to consider for the retrieval process. For example, if we

consider a general search engine it takes into account the authority of the source, the age

of the document, the language in which is written and so on. For this reason, from the

beginning of the information retrieval field, a lot of different IRS and retrieval model have

been developed. Some of the most famous retrieval models are the boolean model, the

vector space model and the probabilistic model.

2.4.1.1 Boolean model

The boolean model dates back to the 1950s, it was one of the first retrieval models to be used

in industrial systems, search engines and digital libraries. This model owes its name to the

boolean logic (TRUE or FALSE) used for the similarity evaluation task done for each input

query. This means that every time a user submits a query to an IRS that adopts the boolean

model, there are only two possible results for a document: relevant (TRUE) or not relevant

(FALSE). This type of retrieval method is also known as exact-match retrieval, because a

document, to be retrieved, has to exactly match the query, differently it is not considered.

The boolean model also allows the user to write queries using the boolean operators such as

AND, OR and NOT. In Figure 2.8 is reported an example document collection made up of

three documents: D1, D2 and D3 that contain three words: boat, fish and tropical, according

to the plot intersections between the rectangular sets.

fish

tropical

boat

D2

D1

D3

Document collection

Figure 2.8: Example of overlappings in the content of three documents of the collection.

21

CHAPTER 2. BACKGROUND

With reference to Figure 2.8 we list some queries examples as follows:

1. The query: "tropical AND fish" would return just the document D1, because it is the

only document that belongs to the intersection between the two sets: "tropical" and

"fish".

2. The query: "tropical OR fish" would return the documents: D1 and D3 because the

first one it is the only document that belongs to the intersection between the two sets:

"tropical" and "fish" while D3 belongs only to the "tropical" set, so the condition is

satisfied.

3. The query: "tropical AND NOT fish" would return just the document D3 because it is

the only document that belongs to the "tropical" set that does not contain "fish".

4. The query: "tropical AND boat AND NOT fish" would return no documents, because

the only document that contains the word "boat" contains also the word "fish".

It is important to notice that, since a document can be only "relevant" or "not relevant",

there is no sorting criterion to order the list of the relevant judged documents.

2.4.1.2 Vector space model

The vector space model, or just vector model, was proposed by Gerard Salton in [4] and in

the 1970s, it was one of the most important points of reference for the research in the field of

information retrieval. The vector space model implements the term weighting and allows to

realise the sorting of the list of the relevant judged documents. This is a great improvement

if compared to the Boolean model which can only classify documents as "relevant" or "not

relevant". The vector space model represents each document as a vector of t dimensions

where t is the number of index terms:

Di = (di 1,di 2, ...,di j , ...,di t)

where di j is the weight of the j − th term in the i − th document.In the same way, a query Q

is represented by a vector of t weights, where t is the number of index terms:

Q = (q1, q2, ..., q j , ..., qt)

where q j is the weight of the j − th term in the query Q.

22

2.4. RETRIEVAL MODELS

So if a collection is made up of n documents and t terms, we can represent it as a matrix

where each row is a document and in each column, there is the weight of the j − th term in

the i − th document.

Ter m1 Ter m2 . . . Ter m j . . . Ter mt

Doc1 d11 d12 . . . d1 j . . . d1t

Doc2 d21 d22 . . . d2 j . . . d2t
...

...
...

...
...

Doci di 1 di 2 . . . di j . . . di t
...

...
...

...
...

Docn dn1 dn2 . . . dn j . . . dnt

Table 2.1: Term-document matrix.

To evaluate the similarity between a document and a query, the vector space model use

the cosine correlation. This measure allows to compute the distance between the vector of

each document and the vector of the considered query. In particular, the cosine correlation

measure computes the cosine of the angle between the vector of each document and the

query one. The mathmatical definition of the cosine correlation similarity follows:

(2.1) Cosi ne(Di ,Q) =

t∑
j=1

(
di j ·q j

)
√

t∑
j=1

di j
2 ·

t∑
j=1

q j
2

To use the equation 2.1 we have to specify the weighting scheme adopted. The most famous

weighting scheme is the t f .i d f , where the term t f stands for "term frequency" while i d f

stands for "inverse document frequency". In particular, the t f term indicates the frequency

of a term in the document Di , so it reflects the importance of a term in a document. Instead,

the i d f term reveals the importance of a term in the document collection. This implies that

if a term is presents in many documents, this would not be a good discriminator for the

documents that contain it, during the retrieval phase.

23

CHAPTER 2. BACKGROUND

2.4.1.3 Probabilistic model

When an IRS returns the list of the relevant judged documents for a query, not all the

documents retrieved are effectively relevant. Indeed, there are many situations in which,

for example, the query is ambiguous and, for this reason, the retrieved documents contain

information that does not satisfy the information needs of the user. So we can reasonably

assume that every time the value for the similarity evaluation measure is computed, each

document has a probability to be considered relevant that is higher if the similarity value is

higher, but it could be not relevant anyway even if the probability of being not relevant is

very low. This is what probabilistic retrieval models try to model, according to the Probability

Ranking Principle [5]. The Probability Ranking Principle states that if an IRS provides, for

each query, a response as a list of ranked documents in order of decreasing probability of

being not useful for the user and these probabilities are as accurate as possible, on the basis

of the data available for this purpose, then the overall effectiveness of the system will be

the best obtainable with that data. So if we can compute the probability of a document of

being relevant or not relevant, we can classify documents just putting them into the set

with the highest probability. According to this reasoning, we can decide that a document D

can be considered relevant if the conditional probability of being relevant is greater than

the one of being not relevant. We can express the same concept through the inequality:

P (R|D) > P (N R|D), where the P (R|D) term is the probability for the document D of being

relevant and P (N R|D) is the probability for the document D of being not relevant. This

approach is also called the Bayes Decision Rule. Consequently, we define as Bayes classifier

every system that decides if a document is relevant, or not relevant, using this rule.

Document

P(R|D)

P(NR|D)

Non-Relevant
Documents

Relevant
Documents

Figure 2.9: Bayes classifier.

24

2.4. RETRIEVAL MODELS

Using the Bayes’ rule we can find a direct relation between P (R|D) and P (D|R) as follows:

(2.2) P (R|D) = P (D|R) ·P (R)

P (D)

Therefore, according to the equation 2.2, we can say that a document is relevant if P (D|R) ·
P (R) > P (D|N R) ·P (N R) or equivalently if the following inequality is met:

(2.3)
P (D|R)

P (D|N R)
> P (N R)

P (R)

Now we need to find a way for estimating P (D|R) and P (D|N R). The answer to this problem

is given by the Binary Independence Model (BIM), proposed by Robertson and Jones in 1976

[6]. The BIM takes its name from two main assumptions:

1. Binary features.

2. Term independence (Naïve Bayes assumption).

The first one indicates that documents are represented by vectors with binary features. For

example, a document D is represented by a vector of t components, where t is the number

of terms: D = (d1,d2, . . . ,dt). Each di is a binary feature that indicates if the term i is present

in the document (di = 1) or not (di = 0). The second assumption, claims that each term can

appear in a document indipendently by the others, this allows to multiply the single term

probabilities together. With these assumptions, we can estimate P (D|R) as follows:

(2.4) P (D|R) =
t∏

i=1
P (di |R)

Now we can rewrite the equation 2.4, using pi as the probability that the term i occurs in a

document from the relevant set. The resulting equation follows:

(2.5) P (D|R) = ∏
i :di=1

pi ·
∏

i :di=0
(1−pi)

In the same way, we can rewrite the equation for P (D|N R) as follows:

25

CHAPTER 2. BACKGROUND

(2.6) P (D|N R) = ∏
i :di=1

si ·
∏

i :di=0
(1− si)

where si represents the probability that the term i occurs in a document from the non-

relevant set. Now we can express the likelihood ratio P (D|R)
P (D|N R) as follows:

(2.7)
P (D|R)

P (D|N R)
= ∏

i :di=1

pi

si
· ∏

i :di=0

(1−pi)

(1− si)

Finally, if we apply the logarithm function to the equation 2.7, the product becomes a sum,

which is the score function for the probabilistic models:

(2.8)
∑

i :di=1
log

pi · (1− si)

si · (1−pi)

The probabilistic models’ score function, expressed in 2.8, is explained in detail in [7].

Some examples of probabilistic retrieval models are:

• BM251: the BM25 model, also known as "Okapi BM25" from the Okapi IR system, is a

retrieval model based on the probabilistic retrieval framework developed by Stephen

E. Robertson and Karen Spärck Jones[8], between the 1970s and 1980s. This one is

considered one of the most successful retrieval model algorithms [9].

• DFR2: the Divergence from Randomness (DFR) model is a generalisation of Harter’s

2-Poisson indexing-model. This model is based on the following idea: "The more the

divergence of the term-frequency within the document from its frequency within the

collection, the more the information carried by the term t in document d". This idea

has been developed in many different variants, that are called DFR models. Some

examples of these models are PL2, InL2 and BB2 [10].

1https://en.wikipedia.org/wiki/Okapi_BM25
2http://terrier.org/docs/v2.2.1/dfr_description.html

26

2.5. EVALUATING INFORMATION RETRIEVAL SYSTEMS

2.5 Evaluating information retrieval systems

The purpose of the evaluation process, as the name suggests, consists of evaluating infor-

mation retrieval systems, to improve them and to have a deeper understanding about their

functioning, limits and strong points. The evaluation process provides useful data that can

be used to make decisions and also to build better IRS. In IR the evaluation process evaluates

the effectiveness of an IRS, measuring how well an IRS retrieves the documents that satisfy

the user information need. Since the evaluation process regards mainly the effectiveness of

an IRS, we need to outline the difference between effectiveness and efficiency. The effec-

tiveness indicates how well the ranked list produced by an IRS, corresponds to the one that

satisfies the information need of the user. The efficiency instead, measures how quickly the

response is provided to the user. In addition, the evaluation process involves many tests that

allow to understand how the system behaves in different contexts and situations. As we can

see in Figure 2.10, the evaluation process is a transversal task, because every part of an IRS

contributes to produce the results that will be evaluated. Besides, it is important to outline

that the evaluation data indicate the performances of IR systems and allow to compare

them. For this purpose, the experiments must be repeatable on the same comparative base.

Otherwise, it is impossible to compare different IR systems.

Figure 2.10: Evaluating an Information Retrieval System.

27

CHAPTER 2. BACKGROUND

2.5.1 The Cranfield paradigm

The Cranfield paradigm is considered a standard for the evaluation of IR systems. As reported

in [11], this paradigm was developed by Cyril Cleverdon, that in 1958 was the librarian of the

College of Aeronautics, which was situated in Cranfield, hence the name of the paradigm.

The birth of this paradigm was due to the necessity of indexing the huge amount of scientific

documents produced after World War II. Make these indexes was very expensive, so the

scientific community started wondering about which indexing system should be used. To

answer this question, the only way was evaluating the efficiency of documentation systems,

by means of experimental results. For these reasons, from 1958 to 1962, the first Cranfield

I was run to test four different manual indexing methods. The results of Cranfield I were

not so good as expected: the analysis did not point out a significant difference between the

indexing system considered. Anyway, Cranfield I it is remembered because it was the first

example of failure analysis. That is a very important practice in IR because allows others

not to make the same mistakes. Afterwards, from 1962 to 1966, Cranfield II was run and,

on this occasion, the concept of test collection, or experimental collection, was introduced

for the first time. After the efforts of Cranfield I and II, the methodologies established since

then, are now reused in evaluation campaigns around the world. The purpose of these

evaluation campaigns is to create new test collections on which evaluating IRS, through the

collaboration of many different academic research groups. Some examples of evaluation

campaigns are:

• TREC3 (Text REtrieval Conference): born in 1992, after the National Institutes of Stan-

dards (NIST) started the TIPSTER program, to evaluate the DARPA (Defense Advanced

Research Projects Agency) system results. Nowadays, it is the evaluation campaign of

reference for the USA.

• CLEF4 (Conference and Labs of Evaluation Forum): started in 2000 after the 1999

TREC track for the evaluation of cross-language IRS, CLEF has been the IR reference

organisation for the European area, since it is focused on European languages.

• NTCIR5 (NII Testbeds and Community for Information access Research): born in 1997,

it is the Japanese counterpart of TREC.

3http://trec.nist.gov/
4http://www.clef-initiative.eu/
5http://research.nii.ac.jp/ntcir/index-en.html

28

2.5. EVALUATING INFORMATION RETRIEVAL SYSTEMS

• FIRE6 (Forum for Information Retrieval Evaluation) started in 2008, it is the South

Asian counterpart for TREC, CLEF and NTCIR.

2.5.2 Concepts and definitions

In this section, we define the basic concepts that are necessary to understand how an IRS

is evaluated and what are the metrics used in the evaluation process. The first concept we

introduce is the definition of test collection. A test collection C = {
D,T,R J

}
is defined as a

triple made of:

1. The corpus of documents D .

2. The set of topics (information needs) T .

3. The set of relevance judgements R J .

An example of a test collection is the CACM7 (Communications of ACM), which is a collection

born with the SMART project in 1982. In the TREC context, we can rewrite the test collection

definition as follows:

C = {
D,T,R J

} −→ C = {
D,T,P

} −→ C = {
D,T,GT

}

Instead of the relevance judgements R J , we place the pool P which is our ground truth GT .

The pool, or ground truth, it is a fundamental part of the evaluation process, since it tells

if a document is relevant or not for the given topic (information need). In this way, we can

compare the ranked list of results returned by an IRS with the pool, to see which relevant

judged documents are really relevant and which are not relevant. After the comparison

with the ground truth, we can estimate the effectiveness of an IRS using a set of evaluation

measures. The pool creation activity is also known as pooling. Since in practice it is impos-

sible to judge every document for every topic, usually the pool is made by judging only a

sample of documents for every topic. The pooling strategy adopted by TREC consists of

judging only the sample of documents that are obtained by experiments, or runs, made by

the participants.

6http://fire.irsi.res.in/fire/2019/home
7http://ir.dcs.gla.ac.uk/resources/test_collections/cacm/

29

CHAPTER 2. BACKGROUND

So now let us formally define all the useful notions, reported in [12], related to the evaluation

process.

Definition 1. Let D = {
d1,d2, . . . ,dn

}
be a set of documents, T = {

t1, t2, . . . , tm
}

a set of topics

and a natural number N ∈N+, a run is defined as a function:

R : T → DN

t 7−→ rt =
(
d1,d2, . . . ,dN

)
such that ∀t ∈ T, ∀ j ,k ∈ [

1, N
] | j 6= k =⇒ rt

[
j
] 6= rt

[
k
]

where rt
[

j
]

it is the j − th element

of rt vector.

Let REL be a finite set of relevance grades and let ¹ be a total order relation on REL such

that
(
REL,¹)

is a totally ordered set, then we can define the ground truth function as follows.

Definition 2. Let D = {
d1,d2, . . . ,dn

}
be a set of documents and T = {

t1, t2, . . . , tm
}

a finite

set of topics, the ground truth function follows:

GT : T ×D → REL(
t ,d

) 7−→ r el

Definition 3. Given a run R(t) = rt , the relevance score of R(t) is the following function:

R̂ : T ×DN → RELN(
t ,rt

) 7−→ r̂t =
(
r el1,r el2, . . . ,r elN

)
where

r̂t
[

j
]=GT

(
t ,rt

[
j
])

30

2.5. EVALUATING INFORMATION RETRIEVAL SYSTEMS

Let W ⊂Z be a totally ordered finite set of integers, REL a finite set of relevance grades and

let RW : REL −→W be a monotonic function which maps every relevance grade
(
r el ∈ REL

)
into a relevance weight

(
w ∈W

)
, we can define RW as follows.

Definition 4. Given a run R(t) = rt , the relevance weight of R(t) is the following function:

R̃ : T ×DN →W N(
t ,rt

) 7−→ r̃t =
(
w1, w2, . . . , wN

)
where

r̃t
[

j
]= RW

(
r̂t

[
j
])

Definition 5. Let D be the set of retrieved documents for a topic t and D∗ the set of relevant

documents for t , we can define the precision (Pr ec) as follows:

Pr ec =
∣∣D∗∩ D

∣∣
|D|

where
∣∣D∗∩ D

∣∣ is the number of relevant documents retrieved, while |D| is the number of

retrieved documents.

The precision is an evaluation measure that represents the ratio between the number of

relevant documents retrieved
∣∣D∗∩ D

∣∣ and the number of retrieved documents |D|. In other

words, it expresses how many relevant documents are retrieved, by an IRS, with respect to

the total number of retrieved documents.

Definition 6. Let D be the set of retrieved documents for a topic t and D∗ the set of relevant

documents for t , we can define the recall (Rec) as follows:

Rec =
∣∣D∗∩ D

∣∣
|D∗|

where
∣∣D∗∩ D

∣∣ is the number of relevant documents retrieved, while
∣∣D∗∣∣ is the number of

relevant documents.

The recall is an evaluation measure that represents the ratio between the number of relevant

documents retrieved
∣∣D∗∩ D

∣∣ and the number of relevant documents
∣∣D∗∣∣. In other words,

it expresses how many relevant documents are retrieved, by an IRS, with respect to the total

number of relevant documents. Besides, the number of relevant documents
∣∣D∗∣∣, for a topic

31

CHAPTER 2. BACKGROUND

t , is also called recall base RBt . It is important to notice that every topic has got a fixed recall

base, according to the pool (ground truth).

Definition 7. Let D = {
d1,d2, . . . ,dn

}
be a finite set of documents, T = {

t1, t2, . . . , tm
}

a finite

set of topics, GT the ground truth defined on D and T and REL a totally ordered set of

relevance judgements, then the recall base function follows:

RB : T →N

t 7−→ RBt =
∣∣∣{d ∈ D |GT (t ,d) Â mi n(REL)

}∣∣∣
The meaning of the symbol Â, in the above relation, is that the recall base function returns

only the documents such that their relevance judgements, in the ground truth, are greater

than the minimum relevance grade in the set REL.

Definition 8. Given a topic t ∈ T , a recall base RBt , REL = {
nr,r

}
and a run rt of size N ∈N+

such that:

∀i ∈ [
1, N

]
, r̃t =

0, if r̃t
[
i
]= nr

1, if r̃t
[
i
]= r

we can define the Average Precision (AP) as follows:

AP = 1

RBt

N∑
k=1

r̃t
[
k
] ∑k

h=1 r̃t
[
h
]

k

The Average Precision is one of the most important evaluation measure in IR. It can only

assume values in the range between 0 and 1. Besides, the Average Precision is a top heavy

measure, this implies that it gives a better score to the runs which have more relevant

documents on the top of the list.

Definition 9. Given a run R and a set of topics T , the Mean Average Precision (MAP) is

defined as follows:

M AP
(
R

)=
∑
t∈T

AP
(
rt

)
|T |

32

2.5. EVALUATING INFORMATION RETRIEVAL SYSTEMS

The Mean Average Precision, like AP, is another important evaluation measure in IR. It is the

mean of the AP measure, computed over all the possible topics of T .

Definition 10. Let R(t) be a run of size N ∈N+, where t ∈ T is a given topic, RBt is the related

recall base and j ∈N+ is a natural number such that 1 ≤ j ≤ N , then the Cumulative Gain

(CG) at cut-off j
(
CG

[
j
])

is defined as follows:

CG
[

j
]= cgrt

[
j
]= j∑

k=1
r̃t

[
k
]

It is important to notice that CG is not a top heavy measure.

Definition 11. Given a run R(t) of size N ∈N+ and a logarithmic base b ∈N+, ∀k ∈ [
1, N

]
the discounted gain is defined as follows:

d g b
rt

[
k
]= (

R
)=

r̃t
[
k
]

, if k < b
r̃t [k]
l ogb k , otherwise.

Definition 12. Let R(t) be a given run, the Discounted Cumulative Gain (DCG) at cut-off j(
DCG

[
j
])

is defined as follows:

DCG
[

j
]= j∑

k=1
d g b

rt

[
k
]

It is important to notice that DCG is a top heavy measure, that can be computed at various

cut-offs. Furthermore, the DCG values are not contained between 0 and 1.

Definition 13. The ideal run I (t) = it is the run that satisfies the following requirements:

t ∈ T,

∣∣∣∣{ j ∈ [
1, N

] |GT (t , it [j]) Â mi n
(
REL

)}∣∣∣∣= RBt(1)

∀t ∈ T,∀ j ,k ∈ [
1, N

] | j < k =⇒ ît [j] º ît [k](2)

Hence, the ideal run corresponds to the best sorting of the ground truth, according to the

relevance judgements. In other words, the ideal run represents the perfect retrieval scenario.

33

CHAPTER 2. BACKGROUND

Definition 14. Let R(t) be a run of size N ∈ N+, where t ∈ T is a given topic, I (t) = it is

the ideal run and j ∈ N+ is a natural number such that 1 ≤ j ≤ N , then the normalized

Cumulative Gain (nCG) at cut-off j
(
nCG

[
j
])

is defined as follows:

nCG
[

j
]= cgrt

[
j
]

cgit

[
j
]

Definition 15. Let R(t) be a given run, where t ∈ T is a given topic and I (t) = it is the ideal

run, then the normalized Discounted Cumulative Gain (nDCG) at cut-off j
(
nDCG

[
j
])

is

defined as follows:

nDCGb [
j
]=

j∑
k=1

d g b
rt

[
k
]

j∑
k=1

d g b
it

[
k
]

It is important to notice that nDCG allows to compare different runs on the same topic and

it assumes values between 0 and 1.

34

2.6. VISUAL ANALYTICS

2.6 Visual Analytics

2.6.1 Introduction

The purpose of visual analytics is to help users in data exploration activities. This kind of

activities is common in every research field and with the advent of big data has become

more and more popular. Indeed in many different domains, experts have to deal with large

datasets of thousands or even millions of data, that are not feasible to be explored without the

aid of appropriate data exploration tools. For example, these instruments are fundamental

for data that comes from medical institutions such as hospitals and clinics. In this context,

mining healthcare data requires long processing time and typically produce, in turn, a lot

of evaluation data. To understand these data usually, analysts have to run many analytics

processes, wait for them to complete and then analyze the results. Figure 2.11 shows the

typical visual analytics workflow, in which data, after a manipulation phase, are displayed in

the user interface.

Manipulation VisualisationData

Figure 2.11: Visual Analytics workflow.

Visual analytics is a paradigm that provides visual components and dynamic charts useful

to help experts in understanding data and results through interactive user interfaces. For

example, the visual analytics tool developed in this thesis, AVIATOR, uses bar charts and

scatter plots to provide two different analyses: "topic per topic" and "overall". Both analyses,

as described in Chapters 3 and 5, are designed to help IR experts explore evaluation data.

Since AVIATOR is a progressive visual analytics tool developed for IR purposes, the following

sections explain the main concepts regarding visual analytics applied to the IR field.

35

CHAPTER 2. BACKGROUND

2.6.2 Visual Analytics for Information Retrieval

Evaluating one or more IR systems is a complex task that involves a lot of components,

parameters and measures. The evaluation process is done using dedicated test collections

usually made during evaluation campaigns. A test collection could be made of millions of

documents, and when this occurs, it is called Very Large Collection (VLC). Indexing all the

documents of a VLC requires a lot of time and resources, but this is necessary if we want

to use it for evaluating one or more IR systems. This implies a lot of effort for IR experts

since they have to index the same collection for each IR system they want to evaluate. In

this context, visual analytics techniques can help IR experts in the evaluation process to

analyze and understand experimental results. To make the evaluation process more effective

and to reduce the user effort, VIRTUE [12] and AVIATOR have been developed. In particular,

the first one is designed to support and improve both performance and failure analyses,

while AVIATOR uses the progressive visual analytics paradigm to make the evaluation process

faster and more intuitive. For this purpose, it provides specific interactive charts by means

IR experts can explore evaluation data and understand experimental results. In general,

many different types of interactive charts can be developed according to the analyses of

interest. For example, VIRTUE provides, for the performance analysis, the "Ranked Result

Distribution Exploration" that allows the user to understand the overall performances of the

systems considered. Another useful analysis is the "Failing Document Identification", which

attempts to identify the documents that contribute the most to improve the performances

of the chosen experiment.

2.6.3 Progressive Visual Analytics

As described in [13], Progressive Visual Analytics (PVA) "produces partial results during

execution". There are several different ways to express the same concept related to PVA,

the most famous are: Progressive Visualization [14], Progressive Analytics [15], Incremental

Visualization [16] and Fine-Grain Visualization [17]. The main feature of the PVA paradigm is

that users do not have to wait for the computation of the entire dataset to visualize data. This

fundamental difference between visual analytics and its progressive version is explained in

detail in [13] and [18]. PVA aims to reduce or eliminate the periods of time in which users

are forced to wait for the end of analytics algorithms, before interacting with the system.

A common alternative approach to PVA is to preprocess all the necessary data, before al-

lowing interactive visualization. In this way, all the possible paths the user can explore are

predetermined, thus there is no waiting time when switching from one configuration to

36

2.6. VISUAL ANALYTICS

another. Unfortunately, this is not possible if there are a lot of different analytic parameters

to consider because the number of possible combinations would explode. Besides, precom-

puting data limits creative explorations. To overcome these problems, the PVA approach

requires analytic algorithms designed specifically to produce meaningful partial results at

each execution round. Figure 2.12, from [13], shows the comparison between the traditional

batch workflow and the progressive visual analytics one. The main difference is that batch

visual analytics workflow forces the user to wait for the analytic process to complete, while

the progressive version displays data as soon as they are available. Besides, the batch visual

analytics workflow is associated with the paradigm of "compute-wait-visualize". Instead,

PVA aims to eliminate the user’s waiting time by means of meaningful partial results that

describe, with the same format of the final results, the current state of the analytics process.

Moreover, analysts can inspect partial results, when they become available, and then interact

with the algorithm to change input parameters or stop analytics jobs that have produced

results that are unlikely to be interesting. In this way, analysts can control analytic processes

through PVA interfaces, that continuously provides useful information about the latest

partial results, thus avoiding the inefficiencies of the "compute-wait-visualize" paradigm.

Select
Dataset

Select
Analytic

Parameters

Run
Analytic

Wait for
Analytic to
Complete

Visualize
Results

Interpret
Results

Batch Visual Analytics Workflow

Select
Dataset

Select
Analytic

Parameters

Run
Analytic

Visualize
Complete
Results

Interpret
Complete
Results

Progressive Visual Analytics Workflow

Interpret
Partial
Results

Visualize
Partial
Results

Figure 2.12: A comparison between batch and progressive visual analytics workflow.

37

C
H

A
P

T
E

R

3
CONCEPTUAL FRAMEWORK

S
ince IR systems are becoming more and more sophisticated, at the same time, eval-

uating them has become a central task of fundamental importance. Unfortunately,

we know that evaluating an IRS on a very large collection (VLC) is a hard task because

it requires a lot of time and computational resources to have the whole collection indexed.

Obviously, in many situations, we can not wait for the full-indexed collection. However,

we can use the incremental indexing method to obtain useful evaluation data, while the

collection is progressively indexed in the background. In this way, we do not have to wait

for the full-indexed collection, we analyze and visualize data when they are available. This

strategy is the basis for the conceptual framework developed and implemented in AVIATOR.

3.1 Background

All the activities performed by AVIATOR are related to a specific test collection of documents.

For this reason, from the Background chapter 2, we recall the notion of test collection

 = {
D,T,R J

}
, which is defined as a triple made up of:

1. The corpus of documents D .

2. The set of topics (information needs) T .

3. The set of relevance judgements R J .

39

CHAPTER 3. CONCEPTUAL FRAMEWORK

Another important concept to know is the definition of the bucket collection= {
B1,B2, . . . ,Bn

}
,

which is a collection of disjoint uniform samples of documents, taken from the test collection

. These concepts are fundamental to understand the conceptual framework implemented

in AVIATOR. We will discuss them in detail in the following section.

3.2 The conceptual framework

3.2.1 Process Overview

The AVIATOR process is composed of four principal phases: preprocessing, incremental

indexing, retrieval and evaluation. This pipeline is more complicated than a general IR

process, which is usually made up of three phases: indexing, retrieval and evaluation. The

reason for this design is that we can not wait for the full-indexed collection to obtain the

evaluation data. Therefore, the standard indexing phase is substituted by the incremental

indexing one. Finally, the preprocessing phase is necessary to generate the bucket collection

 used in the following phases.

Preprocessing

Incremental
Indexing

Retrieval

Evaluation

Output: Preprocessing

Bucket collection
k = Bucket size

Output: Incremental Indexing

Bucket Bi indexed

Output: Retrieval

Run files Rj (t) with the
relevant judged documents,
for each retrieval model

Output: Evaluation

Values, for the evaluation
measures, to show in the
web user interface

Visual
Analytics

Figure 3.1: AVIATOR process: step by step.

40

3.2. THE CONCEPTUAL FRAMEWORK

3.2.2 Description

In Figure 3.1 are illustrated the principal phases that make up the AVIATOR process, which is

described below:

1. Preprocessing: during this phase, the document collection  is divided into n buckets

of the same size k. The bucket size k results from the following relation:

k =
⌊∣∣∣∣

n

⌋
(3.1)

Where
∣∣∣∣ is the corpus size of the document collection  or, in other words, the

number of documents that compose the document collection . The floor function,

applied to the fraction, means that we take an integer lower bound for the bucket size

k. In this way, all the buckets are of the same size k with the exception, eventually, of

the last one Bn , which could contain the documents due to the rest of the division.

At the end of the preprocessing stage, the documents of  are rearranged into the

n buckets of the bucket collection = {
B1,B2, . . . ,Bn

}
. Each bucket Bi is populated

by sampling uniformly the document collection , so that Bi ∩B j = ;, ∀i 6= j . The

uniform sampling is done for having all the buckets with different types of documents

that, consequently, could be relevant for different topics. By doing so, at each stage of

the incremental indexing process, every document has the same probability of being

relevant for any topic. This strategy is described in [1] and we can summarize it as

follows:

=
{

B1,B2, . . . ,Bn

}
Where Bi is the i-th bucket of size k = |Bi | = |B j |, ∀ i 6= j . Each bucket Bi is populated

using the Bucket Populating Algorithm (BPA2), we describe it in the following section.

So let us define some useful notions to understand how it works.

Definition 16. Given a finite set of documents D = {
d1,d2, . . . ,dN

}
, a finite set of topics

T = {
t1, t2, . . . , tm

}
, GT the ground truth defined on D and T and REL = {

nr,r
}

a totally

ordered set of relevance judgements, we defineΦt as the set of the relevant documents

for a given topic t ∈ T as follows:

Φt =
{
d ∈ D |GT (t ,d) Â mi n(REL)

}
Hence, Φt contains all the documents such as GT (t ,d) = r . These documents are

relevant for the topic t according to the ground truth or pool.

41

CHAPTER 3. CONCEPTUAL FRAMEWORK

Definition 17. Given a finite set of documents D = {
d1,d2, . . . ,dN

}
, a finite set of topics

T = {
t1, t2, . . . , tm

}
and the set of relevant documentsΦt for a topic t ∈ T , we defineΩt

as the set of the not relevant documents for a given topic t ∈ T as follows:

Ωt =
{
d ∈ D \Φt

}= {
d ∈ D | d ∉Φt

}
Hence, Ωt contains all the documents such as GT (t ,d) = nr . These documents are

not relevant for the topic t according to the ground truth or pool.

As we said, uniform sampling is used to select documents from the collection , but

we need to do that by ensuring each bucket is always composed both of relevant and

not relevant documents. To assure this distribution, we use the following procedures

and functions.

Algorithm 1 Uniform Sampling Without Replacement (SWR) algorithm

1: procedure SWR()

2: d ← random() . Save in d an element from  selected with uniform probability

3:  ← \
{
d

}
. Remove d from the set 

4: return d

Definition 18. Given the Sampling Without Replacement (SWR1) algorithm, the set

Φt of the relevant documents for a given topic t ∈ T and the set of the not relevant

documents Ωt for the same topic t , we define the sampling without replacement

function s(t) as follows:

s(t) =


SW R(Φt), if

(
random

({
0,1

})= 1∧Φt 6= ;
)
∨Ωt =;

SW R(Ωt), if

(
random

({
0,1

})= 0∧Ωt 6= ;
)
∨Φt =;

Hence, s(t) will return SW R(Φt) in two cases:

a) when the result of random
({

0,1
})

is equal to 1, which occurs with probability

p = 1
2 , andΦt is not empty.

b) whenΩt is empty.

42

3.2. THE CONCEPTUAL FRAMEWORK

Otherwise, s(t) will return SW R(Ωt) in two other cases:

a) when the result of random
({

0,1
})

is equal to 0, which occurs with probability

q = 1
2 , andΩt is not empty.

b) whenΦt is empty.

It is important to notice, that the two cases of s(t) can not happen together since one

of the two setsΦt ,Ωt is always not empty, otherwise the whole collection  is already

preprocessed, thus s(t) would not be invoked. Now we have the necessary background

to describe the Bucket Populating Algorithm (BPA2) as follows:

Algorithm 2 Bucket Populating Algorithm

1: procedure BPA(D,T,,k)

2: n ←∣∣∣∣ . Set n with the bucket collection size
∣∣∣∣

3: L ← getIDList
(
D

)
. Save in L the document ID list

4: i ← 1 . Initialize the bucket counter

5: while
(
i < n

)
do . Loop over the buckets B1,B2, . . . ,Bn−1

6: c ← 1 . Initialize the topic counter

7: while
(∣∣Bi

∣∣< k
)

do . Loop until the bucket size k is reached

8: d ← s
(
tc

)
. Save in d the document selected for the topic tc

9: l ← d .getID
()

. Save in l the document ID of d

10: Bi ← Bi ∪
{
d

}
. Add d to the bucket Bi

11: L ← L.remove
(
l
)

. Remove l from the ID list L

12: if
(
c <|T |) then . Check if c is lower than the topic set size |T |

13: c ++ .Update the topic counter c

14: else .Otherwise, reset c to 1

15: c ← 1 . Reset the topic counter

16: i ++ .Update the bucket counter i

17: Bn ← L.getDocuments
()

. Save in Bn the documents whose id is left in L

18: return 

43

CHAPTER 3. CONCEPTUAL FRAMEWORK

The Bucket Populating Algorithm (BPA2), as the name suggests, populates each bucket

Bi using the sampling without replacement function s(t). The BPA iterates over the

document ID list L and over the set of topics T . BPA uses L instead of D , to avoid any

alteration for the original document corpus D . As we said, the document selection is

made with the sampling without replacement function s(t), which assures to have in

each bucket a distribution of both relevant and not relevant documents. In this way,

the generated buckets are representative samples of the given document collection .

Figure 3.2: The document collection  is divided into n buckets of size k.

Since indexing a document collection is a task that requires a lot of time to be per-

formed, especially in case of very large collections (VLC), to evaluate IR systems, in a

time efficient way, we can not index the whole collection. However, we can evaluate

data as they become available. For this reason, we use the approach described so far of

dividing the corpus  of the document collection , into the n buckets of , to make

the incremental indexing process as efficient as possible. As illustrated in Figure 3.1,

the AVIATOR process is a cyclical task which loops through three phases: incremental

indexing, retrieval and evaluation. At every iteration i , the Bi bucket is indexed; hence

the documents contained in Bi become available for the retrieval phase. Doing so,

iteration after iteration, the index grows and the performance of the system improves.

44

3.2. THE CONCEPTUAL FRAMEWORK

In this context, the choice of the bucket size k is essential to ensure the performance of

the system. In particular, if the bucket size is too small we have a lot of buckets with just

a few documents, this involves a lot of overhead since we need to index many buckets

before having significant values for the evaluation measures. In the opposite case in-

stead, with k too high, we have a few buckets with a lot of document, in this way we fall

back into the starting problem: collection too big to be indexed in a reasonable time.

To facilitate the testing task, AVIATOR allows the user to choose the number of buckets

n, in which divides the document collection . In this way, using the relation 3.1, k is

uniquely determined. Anyway, we can also fix the bucket size k and then deduce the

number of buckets n. A possible approach is to divide the document collection into

buckets of size equal to the 10% of the collection size. Therefore, if the bucket size k is

greater than a threshold, then k takes the threshold value, otherwise it does not change.

To choose the bucket size k, the following algorithm has been implemented.

Algorithm 3 Bucket size algorithm

1: procedure BUCKETSIZE(,β)

2: threshold ←β . Set the default threshold for the bucket size

3: k ← ||
10 . Set the bucket size k equal to the 10% of

∣∣∣∣
4: if (k > threshold) then . Check if the bucket size k is greater than threshold

5: k ← thr eshol d . . if the condition is true then k takes the threshold value

6: return k

When the size of the document collection corpus
∣∣∣∣ is very large, we cannot divide

it just in ten buckets, because processing each bucket would require many compu-

tational resources and a long time. For this reason, the bucket size algorithm uses a

threshold initialised with β, which is a value chosen by the user. In this way, if the

bucket size k is greater than the threshold, then k is set equal to the threshold value.

The threshold value can be chosen by the user, simply setting β, or can be computed

using the following threshold algorithm.

The algorithm 4, instead, computes the threshold for the bucket size automatically: it

doubles the threshold value until the time for indexing a bucket of that size, becomes

greater than the time threshold τ set by the user. The time threshold τ is useful to

45

CHAPTER 3. CONCEPTUAL FRAMEWORK

Algorithm 4 Threshold algorithm

1: procedure THRESHOLD(β)

2: threshold ←β . Set the threshold with the default value β

3: counter ← 0 . Initialize the iteration counter

4: do

5: counter++ .Update the iteration counter

6: threshold ← 2 · threshold .Doubling the threshold

7: t ← index() . Save in t the time for indexing a bucket of threshold size

8: while (t < τ)

9: if (counter == 1) then . Check if the iteration counter is equal to 1

10: threshold ←β . Restore the initial value for the threshold

11: return threshold

guarantee the real-time performance of the AVIATOR system.

In particular, at the beginning, the threshold for the bucket size is initialized with β,

later the threshold is doubled at each iteration while the loop condition is true. In this

context, the iteration counter is useful because if the loop ends with counter equal to

one, it means that the initial value for the threshold is already the best value, so we

have to restore it.

2. Incremental Indexing: in this stage, the documents belonging to the i-th bucket Bi

to process, are indexed by a batch job after the two phases of stop words removal

and stemming. The incremental indexing process works by means of two indexing

cores: Stable and Dynamic. As the name suggests, the Stable core is the one in which

are consolidated the progress made by the Dynamic core, during the incremental

indexing process. In Figure 3.3, it is shown how the incremental indexing process

works and the roles of both the two cores. In particular, we can see that the Dynamic

core takes in input the documents of the bucket Bi to be indexed, while the Stable core

receives the requests from the user. At the beginning, both the cores are empty and the

requests received by the Stable core can not be satisfied. After, when the Dynamic core

finishes indexing the first bucket, e.g the first 10% of the document collection corpus

, then there is a synchronisation phase between the two core: the index data of the

46

3.2. THE CONCEPTUAL FRAMEWORK

Dynamic core are copied to the Stable one. Since this moment, the Stable core can

reply to the user requests, while the Dynamic core continues to index the documents

of the next bucket in background. It is important to notice, that until the Dynamic

core finishes indexing the next bucket, the progress of this one is not synchronised

with the Stable core. This means that all the user requests received, by the Stable core

before the synchronisation, are resolved with the latest version of the index available

in the Stable core. Finally, when the last bucket Bn is indexed, the document collection

 is full-indexed, the Dynamic core stops and the Stable one is synchronised for the

last time.

3. Retrieval: given a set of topics T , the retrieval process consists of submitting a query,

to the Stable core, for each topic t ∈ T . In particular, the Stable core takes each request

and gives it to the search platform, where it is subjected to the two phases of stop words

removal and then stemming. As we said, the Stable core reply to each request using

the index version available after the last synchronisation phase with the Dynamic core.

When the last bucket Bn is indexed, the Stable core is synchronised for the last time

with the Dynamic core. After that, the index saved in the Stable core contains all the

indexed documents of the collection . For every submitted query, the Stable core

returns, as a response, the sorted list of relevant judged documents. This list is the run

R j (t) generated by the search platform, which is the IR system, for the topic t using

the retrieval model j .

4. Evaluation: In this phase, the evaluation tool receives in input each run R j (t) and

returns the list of the values for all the evaluation measures considered. As shown in

Figure 3.1, these values are passed to the visual analytics web interface, so that they

can be visualised by the user through a set of interactive charts. For this purpose, a lot

of evaluation metrics are available in AVIATOR to be visualised. Some examples are:

average precision (AP), mean average precision (MAP) and the normalised discounted

cumulative gain (nDCG). The advantage, of having an exhaustive set of evaluation

metrics to be displayed, is that we can deduce more useful information to improve the

performance of the IR systems analyzed. This is the reason why the AVIATOR visual

analytics web interface has been implemented.

47

CHAPTER 3. CONCEPTUAL FRAMEWORK

Documents

10%

20%

Dynamic
core

Stable
core

Dynamic
core

Dynamic
core

Dynamic
core

Stable
core

Stable
core

Stable
core

Request

Response

30%

Response

Response

0%

Indexed
percentage

Dynamic
core

Stable
core 100%

Response

Sync

Sync

Sync

Sync

Figure 3.3: The incremental indexing process with Stable and Dynamic cores.

48

3.3. MOCKUP

3.3 Mockup

3.3.1 Introduction

The definition of the term "mockup"1 is: "a scale or full-size model of a design or device,

used for teaching, demonstration, design evaluation, promotion, and other purposes". In

other words, a mockup can be described as a functional representation of the reality of

interest, used to quickly understand how it works. In software engineering and development,

a mockup is often employed to build the front-end interfaces, that are used by the end user,

to control the back-end software functionalities. Mockups are very useful to communicate:

• software design.

• provided functionalities

• interactions between UI components.

To create mockups there is a lot of software available both for desktop and online editing.

In particular, using software for user interface (UI) mockups, you can design the software

interface and see how it will appear in a specific device (e.g. desktop or mobile). Besides,

you can even simulate it, by graphically defining the interaction between UI components,

without having to write a single line of code. This approach follows the "Design with Data"

paradigm, in which the user provides the data to be displayed in the UI and the software

identifies, automatically, the best container component for the type of data provided. In this

section, we describe the mockups realised for the AVIATOR platform.

3.3.2 First UI mockup

In Figure 3.4, is presented the first user interface mockup. As we can see, in the top-left side

of the figure there is the name of the platform underlined, which act as a link to the home

interface. Instead, in the top-right side of the figure, we can see the AVIATOR logo which

provides a popup description when the user interacts with it. The most important part of

this mockup regards the two rectangular boxes in the centre. These ones contain dropdown

menus that allow the user to choose many parameters about the collection (document

corpus, topic file and pool file) and other components of the IR process (stoplist, stemmer,

retrieval model). Finally, the start button launches the process described in Figure 3.1

1https://en.wikipedia.org/wiki/Mockup

49

CHAPTER 3. CONCEPTUAL FRAMEWORK

Figure 3.4: First UI mockup.

3.3.3 Second UI mockup

In Figure 3.5, is presented the second UI mockup. As we can see, the header of the user

interface (platform name, logo and description) is shared by all the different UI mockups.

In particular, this second mockup designs the "topic per topic analysis" done by means of

an interactive scatter plot, in which each point represents a value for a specific evaluation

measure. In the x-axis of the scatterplot is reported the topic, while in the y-axis there is the

measure. The user can inspect each point, thus obtaining the information concerning the

topic-measure pair. Besides, every retrieval model has a different colour, this helps the user

in the exploration of the results. In the example reported in 3.5, we can see the information

regarding the topic 352, which obtains a value, for the average precision (AP) measure, of

0,12. Obviously, we can change the measure just clicking in a dedicated button and the

50

3.3. MOCKUP

scatter plot will be updated with the new data. Besides, we can also follow the progress, for

the incremental indexing process, through the progress bar placed on the right side of the

UI. This one shows the current percentage of indexed documents for the test collection.

Finally, we can use the "Overall" button to switch to the dedicated interface, described in

the third mockup.

Figure 3.5: Second UI mockup.

3.3.4 Third UI mockup

In Figure 3.6, is presented the third UI mockup. As we can see, the interface is similar to the

one of the second mockup. In particular, this third mockup designs the "Overall analysis"

done by means of an interactive bar chart, in which each bar represents a value for a specific

evaluation measure. In the x-axis of the bar chart is reported the retrieval model, while in the

y-axis there is the measure. The user can inspect each bar, thus obtaining the information

concerning the retrieval model-measure pair. As in the previous mockup, every retrieval

51

CHAPTER 3. CONCEPTUAL FRAMEWORK

model has a different colour, this is useful to help users in the data exploration activity. In

the example reported in Figure 3.6, there are four retrieval models, expressed in colours

with: blue, red, yellow and green. In particular, if the user inspects the BM25 retrieval model,

which in the example corresponds to the green colour, we can see a popup that shows the

value for the evaluation measure considered (i.e. MAP). Besides, the progress bar, introduced

in the second mockup, for monitoring the advances in the incremental indexing process, is

included also in this mockup. Finally, we can use, as in the previous mockup, the "Topic per

Topic" button to switch to the dedicated interface, described in the second mockup.

Figure 3.6: Third UI mockup.

3.3.5 Fourth UI mockup

In Figure 3.7, is presented the fourth UI mockup. As we can see, the interface is an improve-

ment of the one presented in the second mockup. This fourth mockup designs the "topic per

topic analysis", integrating new functionalities in the UI proposed in the second mockup.

52

3.3. MOCKUP

In particular, the main feature added is the possibility of customising some retrieval model

parameters. This involves an additional configuration of the search platform, that must

be correctly set by AVIATOR, before the beginning of the retrieval process. In the example

reported in Figure 3.7, there is a checkbox for the BM25 model. This checkbox can be used

by a user for showing/hiding that model in the scatter plot. This feature is similar to one

provided by the "Add Model" button, with a difference: when the checkbox is checked the

user can change also some retrieval model parameters, like k1 for the BM25 model in the

figure. Using the dedicated slider, the user can change the value for k1. Each time the value

changes, a request for a new configuration is sent to the search platform which receives

the request and performs the retrieval task, using the latest configuration requested. Later,

when the evaluation phase is finished, the values are sent to the UI, thus the scatter plot is

updated. The possibility of changing some parameters for a retrieval model is the only thing

not implemented yet in AVIATOR. However, this feature will be realised in the future.

Figure 3.7: Fourth UI mockup.

53

CHAPTER 3. CONCEPTUAL FRAMEWORK

3.4 Final remarks

In this chapter, we present the conceptual framework implemented in AVIATOR. In particular,

we describe the mathematical notions necessary to understand the AVIATOR process. This

one is composed of:

1. Preprocessing: takes the given input collection  and divides it into n buckets Bi of

the bucket collection =
{

B1,B2, . . . ,Bn

}
.

2. Incremental Indexing: indexes the bucket Bi at the i -th iteration.

3. Retrieval: for each topic t ∈ T and retrieval model j , send a query to the IR system,

which returns the list of the retrieved documents ordered by the relevance score, that

is the run R j (t).

4. Evaluation: evaluate each run R j (t) using the ground truth (GT).

Therefore, we discuss the algorithms and the strategies used for the implementation of the

AVIATOR process. Finally, we provide four mockups for the front-end visual analytics web

interface.

54

C
H

A
P

T
E

R

4
BACKEND

4.1 Introduction

S
ince AVIATOR is a full stack application, it is made of many different components

that interact with each other to obtain and visualise useful evaluation data about

IR systems. As every full stack application, AVIATOR has got a back-end for the data

access layer and a front-end for the presentation one. We can define the notions of back-end

and front-end 1 as follows:

• Back-end: indicates all the software parts that exhibit services and application func-

tionalities, e.g. through the Application Programming Interface (API), that usually are

not visible to the end-user. The back-end is strictly related to the data access layer

because the provided functionalities need the input data to generate the expected

outputs.

• Front-end: indicates all the software parts such that a user can interact with, e.g. the

Graphical User Interface (GUI) or, in general, any software interface a user can see and

use to send inputs, e.g. a command line.

In this chapter, we present and describe the AVIATOR back-end. As we said, the back-

end functionalities regard accessing data, that, after some manipulations, are dis-

played to the user interface in the front-end. Since back-end and front-end are tightly

1https://stackoverflow.com/questions/18348612/

55

CHAPTER 4. BACKEND

interconnected, to understand in depth how they work independently, we need to know

how the AVIATOR architecture is organised. For this reason, in the following sections, first

of all, we present the high-level AVIATOR architecture, after that, we describe in detail the

back-end.

4.2 High-level architecture

AVIATOR is a client-server application that allows evaluating, one or more IR systems, on

a given document collection . Since the purpose of this software is to help IR experts

in evaluating IR systems, AVIATOR is strictly connected with the IRS to evaluate. It acts as

a commander: it receives the user commands from the client interface and executes the

dedicated procedures by automatically controlling the IRS for the task specified. In Figure

4.1, is reported the high-level client-server architecture adopted by AVIATOR.

ClientText Server
IR system

Internet
 cloud

User

Figure 4.1: High level architecture: components, interactions.

As we can see, AVIATOR works on a server connected to the Internet, which can be remotely

controlled by a user through a client web. This is a typical client-server architecture: the client

sends a request for a resource or a service over a computer network, e.g. the Internet, and

the server executes the right procedures to obtain the resource to send, as a response, to the

client. According to this architecture, AVIATOR has a dedicated web server that receives the

requests at a specific port and then executes the routine associated with the received request

identifier. AVIATOR works as a wrapper for the IR system to evaluate: it can automatically

control each stage of an IR process (e.g. indexing, retrieval, evaluation) with dedicated

routines for every task to execute. These routines interface directly with the IR system, to

perform the specific job for which are designed. The web server implemented in AVIATOR

use the Representational State Transfer (REST2) architecture, which is an HTTP based web

architecture that is designed for fast performance and to be reliable. Each resource or service

is accessible through a unique Uniform Resource Locator (URL), according to the Uniform

2https://en.wikipedia.org/wiki/Representational_state_transfer

56

4.2. HIGH-LEVEL ARCHITECTURE

Resource Identifiers (URI) standard. Actually, using a REST web interface, we can do more

than accessing resources, we can do any operation like create, read, update, and delete

(CRUD). As shown in Figure 4.1 and 4.2, the IR system used is the Solr 3 search platform. The

reason for this choice is that Solr is open source, stable and reliable since it is part of the

Apache Lucene project. We describe it in detail in the dedicated section 4.3.

ClientText Server
IR system

Internet
 cloud

Client­side Server­side

Technologies

User

Technologies

Figure 4.2: High level architecture: components, interactions and technologies.

In Figure 4.2, we can see both the client-side4 and the server-side5. The first one regards

the user and all the interfaces, i.e. web client, he can use to contact and interact with the

AVIATOR web server situated on the server-side. An example of a client-side component is the

web browser used by the user for connecting to the AVIATOR web interface. The server-side,

instead, regards all the hardware and the software that work for satisfying the user request.

On the server-side, there is the physical server on which operate both the AVIATOR and the

3http://lucene.apache.org/solr/
4https://en.wikipedia.org/wiki/Client-side
5https://en.wikipedia.org/wiki/Server-side

57

CHAPTER 4. BACKEND

Solr platforms. Besides, in Figure 4.2 are reported the technologies employed to develop the

different parts of AVIATOR. These technologies are divided according to the side on which are

used. For example, in the server-side AVIATOR has been developed both in Java programming

language and in Php scripting language. Let us briefly define all the technologies used in the

client-side and the server-side. The technologies used in the client-side are:

• D3.js6: D3.js is a library, written in JavaScript7 programming language, for data visu-

alisation. By means of a powerful combination of visualisation components and a

data-driven approach, this library allows analysing data in a fast and efficient way,

through many different interactive charts. D3.js It is very useful in all the activities

regarding data analysis since the same data can be quickly viewed using a different

chart or visual component. For example, we can use D3 to produce an HTML table

or, we can use the same data to create an interactive SVG bar chart with transitions

and helpful animations. We used this library to develop all the interactive charts of the

visual analytics web interface that makes up the AVIATOR front-end.

• jQuery8: "write less, do more" this is the slogan which present jQuery as a fast library

for writing JavaScript code effectively and efficiently. This small library has become so

popular since everyone knows JavaScript can use it to simplify tasks like document

traversal, DOM manipulation and event handling. Finally, we can use it to make Ajax

calls in a faster and concise way. This is the reason why we used it in AVIATOR. We

used this library for creating all the interactive GUI components such as forms and

input fields. Besides, we used jQuery for handling Ajax calls to the AVIATOR web server,

which is placed on the server-side.

• HTML59: is the fifth version of the Hypertext Markup Language (HTML), which is

the standard markup language for developing web pages and web applications in

general. Since HTML5 defines only the web page structure and its elements as static

content, usually this markup language is combined with Javascript and the Bootstrap

framework, to make web pages dynamic. This is the reason why in Figure 4.2 they are

into the same hexagon. The structure of the AVIATOR web pages is described with the

HTML5, which is the latest version available for this markup language.

6https://d3js.org/
7https://en.wikipedia.org/wiki/JavaScript
8https://jquery.com/
9https://it.wikipedia.org/wiki/HTML5

58

4.2. HIGH-LEVEL ARCHITECTURE

• CSS310: is the third version of the Cascading Style Sheets (CSS), which is a style sheet

language that defines how a document has to be displayed. CSS has been developed

to separate the presentation layer from the content one. In this way, many different

web pages can share the same style, saved in a separate ".css" file. Using CSS, we can

specify, for example, the layout disposition, the colours of every page element and

the dimensions of texts, images and other components. The style of the AVIATOR web

pages is defined using custom CSS3 style sheets, that integrate the standard templates

provided by Bootstrap.

• Bootstrap11: is an open source front-end framework to simplify web development

with HTML, CSS and JavaScript. Bootstrap provides an exhaustive set of templates for

any kind of web components such as buttons, menus and forms. All these components

are realised according to the standards of the World Wide Web Consortium (W3C12).

This means that the Bootstrap components are designed to be correctly visualised

over all the most important browsers and devices, with the responsive grid layout

system. This is the reason why, in the last years, it has become a standard framework

for web development. The standard templates of Bootstrap have been used to develop

the base of the AVIATOR front-end.

The technologies employed for AVIATOR in the server-side are:

• Java13: is one of the most popular object-oriented programming languages. Actually,

according to TIOBE 14, Java is still the most popular programming language used in

2019. Java has become so successful because of its key strengths: simplicity, object-

oriented, robustness, security, portable, threaded, and dynamic. This is the reason

why nowadays Java runs on over 15 billion of different devices and its platform is

the most employed for cloud development. We used Java for creating the AVIATOR

back-end, which mainly consists of the AVIATOR web server. This one handles all the

user requests by invoking the right routine, according to the received request.

10https://it.wikipedia.org/wiki/CSS
11https://getbootstrap.com/
12https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
13https://en.wikipedia.org/wiki/Java_(programming_language)
14https://www.tiobe.com/tiobe-index/

59

CHAPTER 4. BACKEND

Figure 4.3: AVIATOR: employed technologies.

• PHP15: is one of the most popular server-side scripting language specially designed

for web development. In the beginning, PHP was the acronym for "Personal Home

Page", but nowadays it stands for "Hypertext Preprocessor". This change reflects the

close relation with HTML web pages that are the primary example of hypertext. The

word "Hypertext" recalls that PHP is an HTML embedded scripting language: PHP

scripts can be embedded into HTML pages. The purpose of this language is to develop

dynamic pages, such that the content is established according to user inputs and

preferences. The PHP reference site says: "Fast, flexible and pragmatic" these are only

a few reasons for choosing the simplicity with which a blog, or even a popular website,

can be created. We used PHP for creating the dynamic web pages of the AVIATOR

front-end which a user interacts with.

15https://en.wikipedia.org/wiki/PHP

60

4.3. APACHE SOLR

4.3 Apache Solr

Solr is one of the most popular enterprise search platforms and, for this reason, is broadly

employed around the world for IR purposes. It is written on top of Lucene, a Java library for

text searching, which is part of the Apache Software Foundation (ASF). Since it is based on

Lucene16, Solr is an open source project written in Java, part of the ASF too. There are many

valid reasons to choose Solr for searching, but the most interesting features are:

• Full-text search.

• Faceted search.

• Hit highlighting.

• REST API.

• Web admin console interface.

• Support for geospatial search.

• Support for JSON, XML, TXT and many other output formats.

• Support for incremental and distributed indexing.

• Support for a cluster of Solr servers with SolrCloud.

Famous for being fast and scalable, Solr is also used by some famous companies and organi-

zations like Apple, Instagram, Netflix, SourceForge and DuckDuckGo.

4.3.1 Solr functionalities

As we said, Solr provides a lot of useful functionalities but, for using it, we need to know

how to handle and set the searching properties correctly. For this reason, in this section, we

describe the Solr architecture and how it works. One of the most interesting features of Solr

is the web interface that allows administrators to view Solr configuration details, run queries

and analyse document fields; all these activities allow to tune a Solr configuration. In Figure

4.4 is reported the Solr administration dashboard. To access the Solr dashboard, first of all,

we need to run the Solr launcher using the following command for Windows:

bin/solr.cmd start
16https://lucene.apache.org/core/

61

CHAPTER 4. BACKEND

When Solr is started, we just need to go to: http://hostname:8983/solr/, which is the

URL for accessing the Solr dashboard using a client web, e.g. a browser. For accessing Solr in

a local machine, we can specify "localhost" as "hostname". Besides, the default port is 8983,

but we can run Solr also in a different port. To do this on Windows, we have to specify the

desired port when we run the Solr launcher, as follows:

bin/solr.cmd start -p 8080

In the dashboard we can see a lot of useful information such as the Solr version, both the

physical and the JVM memory used, the number of processors available and much other

information about the runtime environment. By default, the JVM memory available is 512

MB, but for our purposes, this limit is too low. For this reason, we raised the limit to 1024

MB. In this way, we can use more Solr core at the same time.

Figure 4.4: Solr dashboard.

We can highlight in red the sections reporting the information discussed so far, as reported

in Figure 4.5. This one shows the information regarding the DELL Latitude E6230 on which

the tests have been done. Looking at the figure below, we could think that 512 MB should be

enough for work, but actually, even if memory usage is optimized when Solr starts, it loads

all the Solr cores available, thus, if the number of cores to load is high, the memory required

is greater than 512 MB. This justifies the new limit of 1024 MB set. On the left side of the

window, there is the Solr menu from which we can view the log files, administrate the Solr

cores and manage the Java properties. If we click in the "Core Admin" voice, indicated by

the red arrow, we can access the Solr core admin interface reported in Figure 4.6.

62

http://hostname:8983/solr/

4.3. APACHE SOLR

Figure 4.5: Solr dashboard detailed.

In Figure 4.6, are reported the information regarding the Solr core indicated by the red arrow,

which is called: "TIPSTER_TERRIER_HUNSPELLSTEM_P100". In the two red boxes, we can

see the information regarding this core, which is the core indexed using the Terrier17 stoplist

and the Hunspell stemming algorithm. The meaning of "P100" is that we index the 100%

of the TIPSTER document corpus. Indeed, in the "Core index info" box we can see that the

number of indexed documents is over 528000, which corresponds to the size of the TIPSTER

corpus.

Figure 4.6: Solr core admin interface.

17http://terrier.org

63

CHAPTER 4. BACKEND

In Figure 4.7 is shown the Solr interface for querying a specific core. On the left side, there

are the input fields that allow specifying which document fields are used for searching in.

Besides, on the same side, there is a field for the query text. On the right side, instead, is

shown the list of the documents retrieved for the submitted query, ordered by the relevance

score. This one depends on the retrieval model chosen, for example in Figure 4.7 the retrieval

model used is the Dirichlet language model. In the following example, the query submitted

to the Solr core "TIPSTER_TERRIER_HUNSPELLSTEM_P100" is "National Park", for which

Solr has found 151265 possible relevant documents. As reported in Figure 4.7, the response

format is JSON18 but many others are available e.g. XML and TXT. Besides, the JSON response

contains an array of JSON object such that each object is a document with the values for

the fields selected on the left side of the interface. In the example, the first two documents

returned for the query "National Park" are identified respectively with "DOCNO": "LA040989-

0218" and "LA052790-0064". In particular, the first one is about the Yellowstone National

Park which matches perfectly with the submitted query.

Figure 4.7: Solr query interface.

18https://www.json.org/

64

4.3. APACHE SOLR

4.3.2 Aviator and Solr

As we said, Solr is the IR system used by AVIATOR both for the incremental indexing and

the retrieval process. To perform these activities AVIATOR has a web server, written in Java,

that receives the requests from the front-end web interface. It parses each request and

then calls the right AVIATOR routine for the service requested. These routines automatically

interact with Solr to satisfy the user request. The interaction between AVIATOR and Solr can

be achieved in different ways, the most commons are by means of :

1. Solr REST APIs: in this way, all the activities related to the retrieval process are done.

For example, to obtain the results for the query "National Park", reported in Fig-

ure 4.7, we can use this URL: http://localhost:8983/solr/TIPSTER_TERRIER_

HUNSPELLSTEM_P100/select?df=TEXT&fl=DOCNO,TEXT,score&q=NationalPark.

2. AVIATOR functions: these are ad-hoc Java functions made for specific tasks, that could

not be done through the Solr REST APIs. These functions are used, for example, for

cloning a Solr core with the related configurations or even to reload the Solr server,

since there is no way to do that using Solr REST APIs in the 7.4 version used for this

thesis.

For every Solr core, there is a dedicated directory in which are saved all the information

concerning the core, such as the configuration files and the compressed index. One of the

most important configuration files is the "managed-schema.xml" or just "schema.xml". This

one is an XML file in which are saved all the settings for the related core, such as the retrieval

model, the stoplist and the stemmer used. An example of this file is reported in Figure 4.3.2,

where we can see:

1. The retrieval model chosen, also known as "similarity retrieval model" or just "similar-

ity", which in the figure example is the Dirichlet language model.

2. The list of stop words used for the indexing process, which is specified in the "stop-

words.txt" file. The same stoplist can be used also for queries.

3. The stemming algorithm, which in the example is the Porter Stemmer, indicated

with "PorterStemFilterFactory". As for the stoplist, even the stemmer can be used for

queries.

4. The "LowerCaseFilterFactory" filter, which converts any uppercase alphabetic charac-

ters in the lowercase equivalent. This is a very common filter that is used both during

the indexing process and for removing uppercase characters from user queries.

65

http://localhost:8983/solr/TIPSTER_TERRIER_HUNSPELLSTEM_P100/select?df=TEXT&fl=DOCNO,TEXT,score&q=National Park
http://localhost:8983/solr/TIPSTER_TERRIER_HUNSPELLSTEM_P100/select?df=TEXT&fl=DOCNO,TEXT,score&q=National Park

CHAPTER 4. BACKEND

<?xml version="1.0" encoding="UTF-8"?>
<!-- Solr managed schema -->
<schema name="default-config" version="1.6">
<!-- START SIMILARITY -->
<similarity class="org.apache.lucene.similarities.LMDirichletSimilarity">
</similarity>
<!-- END SIMILARITY -->
<uniqueKey>id</uniqueKey>
<fieldType name="ancestor_path" class="solr.TextField">
<analyzer type="index">
<tokenizer class="solr.KeywordTokenizerFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="/"/>
</analyzer>
</fieldType>
<fieldType name="text_general" class="solr.TextField">
<!-- START INDEX SETTINGS-->
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
<!-- END INDEX SETTINGS -->
<!-- START QUERY SETTINGS -->
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
<filter class="solr.SynonymGraphFilterFactory" synonyms="synonyms.txt"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
<!-- END QUERY SETTINGS -->
</fieldType>
</schema>

Figure 4.8: Solr managed schema.

66

4.3. APACHE SOLR

Since the purpose of this thesis is developing a visual analytics software capable of helping

IR experts in the evaluation of IR systems, we have generated a lot of evaluation data for

each combination of stoplist, stemmer and retrieval model chosen. In other words, given

the document corpus of the TIPSTER collection, for each combination of stoplist, stemmer

and indexing percentage we create a core. The set of stoplist adopted are:

• indri.txt: this is the stoplist file which contains the stop words used by the Indri19 IR

system.

• lucene.txt: this is the default stoplist provided in Solr, inherited by the Apache Lucene

project.

• nostop.txt: this is an empty stoplist, useful for evaluating an IR system which does not

perform the stop words removal phase.

• terrier.txt: this is the stoplist file which contains the stop words used by the Terrier IR

system.

The set of stemming algorithm, or stemmer, adopted are:

• Hunspell Stemmer: this is a dictionary based stemmer that provides support for many

different languages. To work it requires a dictionary file ".dic" and a rule file ".aff" for

each language we want to use.

• Krovetz Stemmer: this is an alternative to the Porter Stemmer, since it is less aggressive

than the Porter Stemmer. The Krovetz Stemmer, also known as KStem, was written

by Bob Krovetz, hence its name. This stemmer is only appropriate for the English

language.

• Porter Stemmer: this is a stemmer coded directly in Java and is not based on Snowball,

even if the results are similar. It is only appropriate for English language text. However,

it has been benchmarked as four times faster than the English Snowball stemmer, so

can provide a performance enhancement.

• No Stemmer: this option is useful for evaluating an IR system which does not perform

the stemming phase.

19https://www.lemurproject.org/indri/

67

CHAPTER 4. BACKEND

The set of retrieval models adopted are:

• BM25: this is a probabilistic model based on the probabilistic retrieval framework

developed by Stephen E. Robertson and Karen Spärck Jones[8], between the 1970s and

1980s. This one is considered one of the most successful retrieval model algorithms

[9]. In the Solr platform, this model is the default retrieval model for cores.

• Boolean: this is the retrieval model based on the boolean logic (TRUE or FALSE). Every

time a user submits a query to an IRS that adopts the boolean model, there are only

two possible results for a document: relevant (TRUE) or not relevant (FALSE). It was

one of the first retrieval models to be adopted, but nowadays there are a lot of retrieval

models that work better.

• Dirichlet Language Model: this is the retrieval model based on the Bayesian smooth-

ing using Dirichlet priors. We chose to include this model in our tests since its perfor-

mances are often comparable with the BM25 ones.

• TF IDF: this is the retrieval model based on the vector space model, proposed by Ger-

ard Salton in [4] and in the 1970s, it was one of the most important points of reference

for the research in the field of information retrieval. The vector space model imple-

ments the term weighting and allows to realise the sorting of the list of the relevant

judged documents. In the Solr platform, this model is called "Classic Similarity" due to

its historical importance, before BM25 it was the default retrieval model for Solr cores.

With 4 different stoplists (included the empty one), 4 stemming algorithms (included the

"No Stemmer"), 4 retrieval models and 10 indexing percentages, the number of Solr core

generated is:

4×4×4×10 = 640 Solr cores

These 640 Solr cores correspond to 230 GB of indexing data, which is more than half the

capacity of a standard SSD of 512 GB.

68

4.4. BACKEND FUNCTIONALITIES

4.4 Backend functionalities

The most important part of the AVIATOR platform is the AVIATOR web server. This one is an

HTTP REST server written in Java using sockets and other classes from the Java’s network

library. The AVIATOR web server receives the requests from the front-end web interface and,

after a parsing phase, it calls the right Java routine for the service requested. A request, to

be accepted by the web server, needs to be formatted using the API schema defined for the

provided REST services. Indeed, the requests that do not respect the API schema defined for

URL are rejected. We can summarise the major AVIATOR services as follows:

• Start, stop and restart the Solr server. These activities can be done just using the

following URLs:

– Start Solr: "http://localhost:3000?command=startsolr"

– Stop Solr: "http://localhost:3000?command=stopsolr"

– Restart Solr: "http://localhost:3000?command=restartsolr"

It is important to notice that the value "localhost" for the hostname is only for testing

purposes. Besides, the default port is 3000 but this value can be chosen using the

AVIATOR configuration interface.

• Preprocessing the document collection: this service regards the creation of the buck-

ets of the bucket collection  as described in the conceptual framework of Chapter 3.

This can be done using the following URL:

"http://localhost:3000?command=preprocessing&collection=TIPSTER"

Where "TIPSTER" is the name of the collection to preprocess.

• Index a collection: this command creates the index for the collection specified in a

Solr core with the same name. The URL for this API service is:

"http://localhost:3000?command=index&collection=TIPSTER"

Where "TIPSTER" is the name of the collection to index.

• Index an entire collection specifying the Solr core to use. This is similar to the previous

command with the only difference that we can specify the Solr core to use by providing

the name. The URL for this API service is:

"http://localhost:3000?command=indexCustomCore&collection=TIPSTER&coreName=

C1"

69

http://localhost:3000?command=startsolr
http://localhost:3000?command=stopsolr
http://localhost:3000?command=restartsolr
http://localhost:3000?command=preprocessing&collection=TIPSTER
http://localhost:3000?command=index&collection=TIPSTER
http://localhost:3000?command=indexCustomCore&collection=TIPSTER&coreName=C1
http://localhost:3000?command=indexCustomCore&collection=TIPSTER&coreName=C1

CHAPTER 4. BACKEND

Where "TIPSTER" is the name of the collection to index and "C1" the name of the Solr

core.

• Create, delete and reload Solr core. These activities can be done just using the follow-

ing URLs:

– Create a new Solr core: "http://localhost:3000?command=createSolrCore&

coreName=TIPSTER"

– Delete an existing Solr core: "http://localhost:3000?command=deleteSolrCore&

coreName=TIPSTER"

– Reload an existing Solr core: "http://localhost:3000?command=reloadSolrCore&

coreName=TIPSTER"

• Set the stoplist for a Solr core. The URL for this API service is:

"http://localhost:3000?command=setStoplist&coreName=TIPSTER&stoplist=

terrier.txt"

In this example URL, "TIPSTER" is the Solr core name and "terrier.txt" is the stoplist

chosen.

• Set the stemmer for a Solr core. The URL for this API service is:

"http://localhost:3000?command=setStemmer&coreName=TIPSTER&stemmerName=

PorterStemFilterFactory"

In this example URL, "TIPSTER" is the Solr core name and "PorterStemFilterFactory"

indicates that the stemming algorithm chosen is the Porter Stemmer.

• Set the similarity for a Solr core. The URL for this API service is:

"http://localhost:3000?command=setSimilaritySchema&coreName=TIPSTER&

similarity=BM25Similarity"

In this example URL, "TIPSTER" is the Solr core name and "BM25Similarity" is the

similarity option for the BM25 retrieval model.

• Create an AVIATOR job. This service creates a new AVIATOR job which performs the

process described in Figure 3.1 of Chapter

refchap:Conceptual Framework. This process starts with the preprocessing of the

selected collection and then continue with the loop composed of three phases: incre-

mental indexing, retrieval and evaluation. The URL for creating a new AVIATOR job is:

"http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=

TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&

70

http://localhost:3000?command=createSolrCore&coreName=TIPSTER
http://localhost:3000?command=createSolrCore&coreName=TIPSTER
http://localhost:3000?command=deleteSolrCore&coreName=TIPSTER
http://localhost:3000?command=deleteSolrCore&coreName=TIPSTER
http://localhost:3000?command=reloadSolrCore&coreName=TIPSTER
http://localhost:3000?command=reloadSolrCore&coreName=TIPSTER
http://localhost:3000?command=setStoplist&coreName=TIPSTER&stoplist=terrier.txt
http://localhost:3000?command=setStoplist&coreName=TIPSTER&stoplist=terrier.txt
http://localhost:3000?command=setStemmer&coreName=TIPSTER&stemmerName=PorterStemFilterFactory
http://localhost:3000?command=setStemmer&coreName=TIPSTER&stemmerName=PorterStemFilterFactory
http://localhost:3000?command=setSimilaritySchema&coreName=TIPSTER&similarity=BM25Similarity
http://localhost:3000?command=setSimilaritySchema&coreName=TIPSTER&similarity=BM25Similarity
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt

4.4. BACKEND FUNCTIONALITIES

stemmer=PorterStemFilterFactory&stoplist=lucene.txt"

Where "TIPSTER" is the name of the document collection, "TIPSTER_351_400" is

the name of the TREC topic file, "QREL_TREC7" is the pool file adopted, "TestJID"

is the job identifier, "ClassicSimilarity" is the option for the TFIDF retrieval model,

"lucene.txt" is the chosen stoplist and "PorterStemFilterFactory" is the option for

Porter Stemmer algorithm.

We can configure the AVIATOR web server using the configuration interface reported in

Figure 4.9. This interface has been developed using Java Swing, which is a library designed

for graphical user interface (GUI). The configuration interface uses a minimalist design

which consists of a dropdown menu for the settings, a central button to start and stop the

AVIATOR web server and a text field for displaying useful information. In particular, in Figure

4.9, this field report the message: "Server is OFF" which indicates that the AVIATOR web

server is not active. But if we press the button in the middle of the GUI the server turns active

on to the specified port. When this occurs the text field shows the message: "Server is ON"

and the button label changes from "Start Server" to "Stop Server". This behaviour is shown

in Figure 4.10.

Figure 4.9: AVIATOR web server configuration interface: Server OFF.

According to Figure 4.11, from the "Settings" menu the parameters we can change are:

• The AVIATOR web server port.

• The collections settings such as name, path and type (TREC, PDF, TXT). In particular,

these parameters can be set using the interfaces reported in Figure 4.12 and 4.13.

• The root directory of Solr.

71

http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt
http://localhost:3000?command=createAviatorJob&collection=TIPSTER&topicFile=TIPSTER_351_400&poolFile=QREL_TREC7&JID=TestJID&similarity=ClassicSimilarity&stemmer=PorterStemFilterFactory&stoplist=lucene.txt

CHAPTER 4. BACKEND

Figure 4.10: AVIATOR web server configuration interface: Server ON.

• The pool files settings, i.e. name and path of each pool file.

• The topic files settings, i.e. name and path of each topic file.

• The root directory of TREC eval, which is the evaluating tool used to evaluate every

run file.

• The workspace directory, which is the directory used by AVIATOR to save its data, e.g.

the preprocessed collection.

Figure 4.11: AVIATOR web server configuration interface: settings menu.

72

4.4. BACKEND FUNCTIONALITIES

The following Figures 4.12 and 4.13 show how we can select a collection and change its

properties, i.e. name, type and root directory.

Figure 4.12: AVIATOR web server configuration interface: manage collections.

Figure 4.13: AVIATOR web server configuration interface: edit collection properties.

73

CHAPTER 4. BACKEND

4.5 Final remarks

In this chapter, we define both the back-end and the front-end notions for a full stack

application. We present the AVIATOR back-end in terms of technologies used and provided

functionalities. Besides, we discuss the AVIATOR client-server architecture: the components,

the interactions and the technologies adopted both for the client-side and the server-side.

Therefore, we describe the Solr search platform, its functionalities and the integration with

AVIATOR. Moreover, we present the back-end configuration tool developed to customize all

the preferences and parameters for the correct functioning of AVIATOR.

74

C
H

A
P

T
E

R

5
FRONTEND

I
n Chapter 4 we defined the notions of back-end and front-end, which are the funda-

mental components of every full-stack application, e.g. AVIATOR. This division, between

back-end and front-end, aims to separate the data access layer from the presentation

one. In particular, we can identify the front-end as the part of a computer system or appli-

cation with which the user interacts directly. Therefore, every user interface is a front-end

part designed for using a specific back-end service. In other words, this means that the

front-end interfaces are designed to fit the provided functions of the back-end. For this

reason, the front-end of an application is usually developed after the back-end. Nowadays,

the separation between data and presentation has become not just a "best practice", it is

a requirement for developing on many platforms such as Android and IOS. In particular,

both Android and IOS require to use a specific design pattern called Model-View-Controller

(MVC). This pattern assigns every object one of these three application roles:

• Model: this type of object is responsible for managing the data structures indepen-

dently from the user interface. A model object might represent the text of an email

message or the account information of a user profile.

• View: this type of object is usually displayed in the front-end interfaces so that the

user can see it. An example of a view object is a scatter plot or a bar chart which both

may refer to the same data model object.

• Controller: A controller object acts as an intermediary between both view and model

objects. A controller object receives the user inputs and coordinates the application’s

75

CHAPTER 5. FRONTEND

tasks to obtain the data to show, using view objects, in the front-end user interface.

Besides, controller objects manage the life cycles of other objects.

The Model-View-Controller (MVC) design pattern architecture is shown in Figure 5.1.

Controller

ModelView

User

User action Update

NotifyUpdate

Figure 5.1: MVC architecture.

The Figure 5.1 shows how an MVC architecture works. First of all, the view receives the

user actions and sends these inputs to the controller. This one executes all the necessary

computation to update the model and, in turns, the view. AVIATOR uses MVC to separate the

data access layer from the presentation one. In particular, all the data that come from the

Solr search platform corresponds to the model, the AVIATOR web server acts as the controller

and the web visual analytics interface represents the view. Besides, all the view objects

belong to the front-end, which is updated by the controller every time data are available. In

this context, the AVIATOR scatter plots and bar charts are view objects and the web server,

with the user’s authorization, update them every time the latest evaluation data are available.

The AVIATOR front-end consists of the web interfaces that allow IR experts to control how

the evaluation measures change, while the incremental indexing process advances in the

background.

76

The technologies used for the front-end development are: D3.js, JavaScript, Bootstrap,

HTML5, CSS3, jQuery and PHP. In particular, D3.js has been used for creating all the AVIATOR

charts such as scatter plots and bar charts. To make all the interactive components of web

pages JavaScript and jQuery have been used. The structure and the style of every web page

have been defined using HTML5, CSS3 and the Bootstrap framework. Besides, PHP has been

used for creating dynamic web pages capable of receiving HTTP requests with both POST

and GET methods, as a result of user inputs.

The Figure 5.1 shows how an MVC architecture works. First of all, the view receives the

user actions and sends these inputs to the controller. This one executes all the necessary

computation to update the model and, in turns, the view. AVIATOR uses MVC to separate

the data access layer from the presentation one. In particular, all the data that come from

the Solr search platform corresponds to the model, the AVIATOR web server acts as the

controller and the web visual analytics interface represents the view. Besides, all the view

objects belong to the front-end, which is updated by the controller every time data are

available. In this context, the AVIATOR scatter plots and bar charts are view objects and the

web server, with the user’s authorisation, update them every time the latest evaluation data

are available. The AVIATOR front-end consists of the web interfaces that allow IR experts

to control how the evaluation measures change, while the incremental indexing process

advances in the background. The technologies used for the front-end development are:

D3.js, JavaScript, Bootstrap, HTML5, CSS3, jQuery and PHP. In particular, D3.js has been

used for creating all the AVIATOR charts such as scatter plots and bar charts. To make all the

interactive components of web pages JavaScript and jQuery have been used. The structure

and the style of every web page have been defined using HTML5, CSS3 and the Bootstrap

framework. Besides, PHP has been used for creating dynamic web pages capable of receiving

HTTP requests with both POST and GET methods, as a result of user inputs. Figure 5.2 shows

the first AVIATOR web interface where a user can choose the parameters for the process

described in Figure 3.1. These parameters are:

• Corpus: This is the corpus of the document collection. For the testing purposes of this

thesis, the TIPSTER corpus has been chosen. The version used in this thesis consists

of the disks 4 and 5 of the TREC TIPSTER project, without Congressional Record. In

general, the AVIATOR platform works with any text document corpus, for example,

we can provide as input a collection of TXT, PDF, HTML and XML too. Obviously,

for evaluating it over a set of topics, contained in a topic file, we need to provide an

appropriate pool file. Since for every TREC document collection, there are both a topic

and a pool files available we chose the TIPSTER corpus to simplify the whole process

77

CHAPTER 5. FRONTEND

and to obtain comparable evaluation results.

• Topics: The user can choose the set of topics used for the evaluation process. The

default set available is the TREC7 one, which contains the topics from 351 to the 400,

for a total of 50 topics.

• Pool file: The user can choose the pool file used for the evaluation process. The default

pool file available is the TREC7 one, which is combined with the TREC7 topic file.

• Stoplist: This is the list of stop words that are removed during the indexing process.

The user can choose one of the four stoplists available:

– Indri: this is the stoplist file which contains the stop words used by the Indri IR

system.

– Lucene: this is the default stoplist provided in Solr, inherited by the Apache

Lucene project.

– No Stoplist: this is an empty stoplist, useful for evaluating an IR system without

performing the stop words removal phase.

– Terrier: this is the stoplist file which contains the stop words used by the Terrier

IR system.

• Stemmer: this is the stemming algorithm used during the indexing process. The user

can choose one of the four stemmers available:

– Krovetz Stemmer: this is an alternative to the Porter Stemmer available only for

the English language. When it is necessary a less aggressive stemmer this is a

good choice.

– Porter Stemmer: this is one of the most famous stemming algorithms. It is very

fast but, unfortunately, it is available only for the English language.

– Hunspell Stemmer: this is a dictionary based stemmer available in many lan-

guages. For working it requires a dictionary and a set of stemming rules, provided

by two separated text files.

– No Stemmer: using this option the user can choose to not perform the stemming

phase.

78

• Retrieval model: this is the retrieval model, also known as "similarity", used for the

retrieval task. The user can choose one of the four retrieval models available:

– BM25

– Boolean

– Dirichlet Language Model

– TF IDF

In Figure 5.2, we can see that when the mouse pointer goes hover the AVIATOR logo, a short

description of the system appears. Besides, a user can start a new AVIATOR job, by pressing

the "Start" button.

Figure 5.2: AVIATOR web user interface: homepage.

79

CHAPTER 5. FRONTEND

Figure 5.3 shows the AVIATOR visual analytics interface during the topic per topic analysis.

This kind of analysis allows IR experts to see the values, of a chosen evaluation measure, for

every topic t ∈ T . This is possible by means of a scatter plot in which every point represents

the value, for the considered evaluation measure, obtained by a retrieval model for a specific

topic. To easily distinguish the corresponding retrieval model of each point, a different

colour and symbol are assigned to each retrieval model. The user can change the evaluation

measure using the dedicated dropdown menu. An exhaustive set of measures is available

for data exploration, e.g. Average Precision (AP), Mean Average Precision (MAP) and many

others.

Figure 5.3: AVIATOR visual analytics UI: topic per topic, measure selection, progress 10%.

80

Figure 5.4 shows the topic per topic analysis with a focus on the retrieval models selection.

The interface provides a checkbox for each retrieval model, the user can check the selected

models and plot them using the dedicated button. On the right side of the user interface, we

can see the progress bar and its value, i.e. 30%, for the incremental indexing process. The

progress bar indicates the percentage of documents indexed from the document collection.

This value is accompanied by the exact number of indexed documents, e.g. 160669. On the

top of the user interface, there is a light grey box in which are summarised all the information

regarding the evaluation data represented in the scatter plot: document corpus, topic file,

pool file, stoplist, stemmer, retrieval models and the evaluation measure adopted.

Figure 5.4: AVIATOR visual analytics UI: topic per topic, IR model selection, progress 30%.

81

CHAPTER 5. FRONTEND

Figure 5.5 shows the key functions available in the scatter plot provided for the topic per

topic analysis. These functions are:

• Inspect: when the mouse pointer goes over a chart point a window appears with the

related evaluation data for that point. In particular, we can see the retrieval model, the

topic and the value for the considered evaluation measure.

• Zoom: this functionality is very useful for exploring the evaluation data, specially

when the scatter plot contains many points. Indeed, inspecting a specific point is not

an easy task if a lot of other points surround it, but using the zoom functionality, we

can easily do that.

• Pan: this functionality allows IR experts to move on the entire plot space, thus making

easy the point inspection activity.

Figure 5.5: AVIATOR visual analytics UI: topic per topic, zoom and inspect, progress 30%.

82

Figure 5.6 shows the upgrade window that appears when a new index version is available.

In particular, in the example of the figure below, we can see that the current progress for

the incremental indexing process is 90%, which corresponds to 475110 indexed documents.

The upgrade window, of Figure 5.6, tells the user that the 100% of the document collection

has been indexed, so the charts can be updated. The user can choose whether to update

the charts or not: by clicking on the "Ok" button, the charts will be updated, otherwise

not. However, if the user does not want to update the charts immediately, he can press the

"Esc" button and keep working on the current index version. Later, after a timeout, the same

message for the upgrade window will appear, reminding the user about the pending index

update. In Figure 5.7 we can see the result of the upgrade confirmation.

Figure 5.6: AVIATOR visual analytics UI: topic per topic, progress 90%.

83

CHAPTER 5. FRONTEND

Figure 5.7 shows the AVIATOR visual analytics interface, for the topic per topic analysis, with

the whole document collection indexed. Indeed, the progress bar shows that the 100% of the

document collection has been indexed, which corresponds to 528128 indexed documents.

Observing the scatter plot, we can see that the best retrieval model, according to the Average

precision (AP) measure, is the BM25. Another remarkable retrieval model is the Dirichlet

Language Model, whose results are comparable with the BM25 ones. Besides, also the TFIDF

model obtains good results, but lower than the two previous models. Hence, the model that

gets the worst results is the Boolean model since its similarity criterion does not order the

documents retrieved by a relevance score.

Since now, we presented the results only for the topic per topic analysis, but AVIATOR provides

also the overall one. To switch to this analysis, the user can simply click on the related tab

and the overall chart will appear. This chart is shown in Figure 5.8.

Figure 5.7: AVIATOR visual analytics UI: topic per topic, progress 100%.

84

Figure 5.8 shows the AVIATOR visual analytics interface, for the overall analysis. This kind

of analysis is useful to understand, on average, what are the performances of the retrieval

models considered. For this reason, the topic information disappears and the scatter plot

is substituted by a bar chart. This one, on the x-axis, has got the list of the retrieval model

considered and, on the y-axis, there are the values obtained by each retrieval model, for

the measure considered. In the example of Figure 5.8, the evaluation measure is the Mean

Average Precision (MAP). As we can see, the overall analysis reflects the same considerations

made before. BM25 and Dirichlet Language Model obtain almost the same MAP value, then

follows the TFIDF model and the last one is the Boolean.

Figure 5.8: AVIATOR visual analytics UI: overall, progress 100%.

85

CHAPTER 5. FRONTEND

5.1 Final remarks

In this chapter, we explain how we implemented the AVIATOR front-end, in terms of tech-

nologies used and provided functionalities. In particular, the Model-View-Controller(MVC)

architecture is explained, since it is used by AVIATOR to separate the data access layer from

the presentation one. Besides, we show how to use the AVIATOR visual analytics web inter-

face for evaluating IR systems. In particular, we show how to perform the exploration of the

evaluation data, by means of interactive charts developed using technologies like JavaScript

and the D3.js library. Moreover, we show that through the AVIATOR web interface we can use

all the back-end services since they are provided as REST APIs.

86

C
H

A
P

T
E

R

6
EXPERIMENTAL EVALUATION

I
n this chapter, we present the results obtained from the AVIATOR testing phase. We

tested AVIATOR on 64 different combinations given by 4 stoplists, 4 stemming algo-

rithms and 4 retrieval models. Each of these 64 different combinations was studied

considering 10 index percentages, which gives 64×10 = 640 different Solr cores. The compo-

nents used, for our testing purposes, are reported as follows:

• Document corpus: the document corpus chosen is the TIPSTER. In particular, for this

thesis, we used the disks 4 and 5 of the TREC TIPSTER project.

• Topic file: the set of topics chosen comes from TREC7, which contains the topics from

351 to 400, for a total of 50 topics.

• Pool file: the pool file adopted, comes from TREC7 too.

• Stoplist: the stoplists chosen are:

– Indri: this is the stoplist file which contains the stop words used by the Indri IR

system.

– Lucene: this is the default stoplist provided in Solr, inherited by the Apache

Lucene project.

– No Stoplist: this is an empty stoplist, useful for evaluating an IR system without

performing the stop words removal phase.

87

CHAPTER 6. EXPERIMENTAL EVALUATION

– Terrier: this is the stoplist file which contains the stop words used by the Terrier

IR system.

• Stemmer: the stemming algorithms chosen are:

– Krovetz Stemmer: this is an alternative to the Porter Stemmer available only for

the English language. When it is necessary a less aggressive stemmer, this is a

good choice.

– Porter Stemmer: this is one of the most famous stemming algorithms. It is very

fast but, unfortunately, it is available only for the English language.

– Hunspell Stemmer: this is a dictionary based stemmer available in many lan-

guages. For working it requires a dictionary and a set of stemming rules, provided

by two separated text files.

– No Stemmer: using this option the user can choose not to perform the stemming

phase.

• Retrieval model: the retrieval models chosen are:

– BM25

– Boolean

– Dirichlet Language Model

– TF-IDF

The 640 Solr cores, thus generated, correspond to 230 GB of memory on a disk. In this

context, the amount of evaluation data produced is very high. For this reason, we decided to

report in this chapter only a subset of the evaluation data generated by AVIATOR. In particular,

we chose to include in this chapter only the evaluation data related to the combinations

given by 2 stoplists (Indri and No Stoplist), 2 stemmers (Porter Stemmer and No Stemmer), 2

retrieval models (BM25 and TF-IDF) and 2 evaluation measures (Average Precision (AP) and

normalised Discounted Cumulative Gain (nDCG)), for a total of: 2×2×2×2 = 16 different

combinations. These combinations are described by the following sixteen tables, which

show the values for the considered evaluation measures for each topic and bucket. Each of

the fifty topics considered corresponds to a row in the table, while the columns are related

to the n buckets Bi of the bucket collection  = {
B1,B2 . . . ,Bn

}
. In particular, the values

reported under the Bi column, are obtained from the indexed documents of the buckets

from B1 to Bi . Furthermore, the MAP and the overall nDCG values, reported on top of each

table, refer to the whole collection indexed.

88

BM25 - Average Precision (AP) values w.r.t. MAP = 0.1585

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0051 0.1111 0.1731 0.1676 0.1885 0.2311 0.3152 0.3379 0.3545 0.3776
t352 0.0059 0.0081 0.0067 0.0061 0.0130 0.0191 0.0217 0.0206 0.0231 0.0263
t353 0.0322 0.0458 0.0569 0.0493 0.0466 0.0721 0.0879 0.1403 0.1508 0.1844
t354 0.0083 0.0154 0.0216 0.0230 0.0307 0.0397 0.0459 0.0532 0.0532 0.0533
t355 0.0655 0.0793 0.0565 0.0535 0.0519 0.0568 0.1028 0.0994 0.0933 0.0911
t356 0.0000 0.0000 0.0045 0.0104 0.0098 0.0095 0.0095 0.0077 0.0060 0.0050
t357 0.0142 0.0646 0.0721 0.1057 0.1264 0.1934 0.2471 0.2782 0.2807 0.2784
t358 0.0860 0.0782 0.0813 0.0970 0.1027 0.1010 0.0970 0.0914 0.1208 0.1820
t359 0.0003 0.0002 0.0001 0.0107 0.0097 0.0080 0.0070 0.0085 0.0090 0.0105
t360 0.0318 0.0449 0.0716 0.0811 0.0836 0.0888 0.0895 0.1538 0.1741 0.1886
t361 0.0000 0.0000 0.0000 0.0000 0.0556 0.0556 0.0556 0.2130 0.2130 0.2794
t362 0.0032 0.0103 0.0103 0.0071 0.0276 0.0360 0.0571 0.0551 0.0657 0.0672
t363 0.0636 0.0188 0.0146 0.0125 0.0130 0.0142 0.0111 0.0104 0.0120 0.0074
t364 0.0571 0.1110 0.1444 0.1314 0.1767 0.2837 0.2952 0.3690 0.4625 0.5008
t365 0.0786 0.1971 0.2707 0.3536 0.4769 0.4722 0.4641 0.5148 0.6428 0.6541
t366 0.0226 0.0501 0.0862 0.1584 0.2047 0.2223 0.2139 0.1951 0.2385 0.2693
t367 0.0115 0.0398 0.0343 0.0319 0.0317 0.0516 0.0566 0.0654 0.0628 0.0636
t368 0.0255 0.0413 0.0794 0.1196 0.1516 0.1521 0.1469 0.1453 0.2412 0.3477
t369 0.0385 0.0085 0.0182 0.0822 0.0641 0.0502 0.0471 0.0278 0.1148 0.2679
t370 0.0094 0.0092 0.0070 0.0102 0.0130 0.0129 0.0114 0.0129 0.0142 0.0139
t371 0.0028 0.0013 0.0009 0.0014 0.0011 0.0008 0.0011 0.0015 0.0013 0.0008
t372 0.0446 0.0485 0.0682 0.0625 0.0809 0.0805 0.0860 0.0849 0.1288 0.1150
t373 0.0020 0.0502 0.0778 0.2350 0.2160 0.2241 0.2694 0.2626 0.2234 0.2204
t374 0.0203 0.0312 0.0561 0.0637 0.0945 0.1062 0.1266 0.1343 0.1481 0.1847
t375 0.0009 0.0316 0.0590 0.0710 0.0897 0.1065 0.1692 0.1793 0.1971 0.1889
t376 0.0073 0.0042 0.0034 0.0047 0.0060 0.0096 0.0157 0.0176 0.0223 0.0253
t377 0.0256 0.1670 0.1427 0.1393 0.1518 0.1835 0.1935 0.2396 0.2794 0.2882
t378 0.0003 0.0010 0.0026 0.0042 0.0040 0.0043 0.0043 0.0046 0.0050 0.0053
t379 0.0083 0.0045 0.0032 0.0054 0.0055 0.0046 0.0042 0.0035 0.0029 0.0352
t380 0.0286 0.0143 0.0119 0.0102 0.0102 0.0102 0.0090 0.0085 0.1053 0.1855
t381 0.0008 0.0008 0.0012 0.0019 0.0015 0.0033 0.0040 0.0078 0.0074 0.0507
t382 0.0909 0.2007 0.3019 0.2780 0.3534 0.4057 0.4412 0.5023 0.5026 0.5580
t383 0.0011 0.0022 0.0030 0.0122 0.0119 0.0129 0.0136 0.0151 0.0161 0.0154
t384 0.0263 0.0292 0.0518 0.0608 0.0775 0.1394 0.1525 0.1487 0.1782 0.2067
t385 0.0192 0.0623 0.1041 0.1359 0.1508 0.1953 0.2118 0.2894 0.3030 0.2989
t386 0.0000 0.0144 0.0090 0.0085 0.0135 0.0113 0.0116 0.0387 0.0379 0.0276
t387 0.0149 0.0123 0.0541 0.0599 0.0607 0.0785 0.1030 0.1321 0.1364 0.1326
t388 0.0006 0.0050 0.0380 0.0316 0.0327 0.0291 0.0247 0.0224 0.0287 0.0264
t389 0.0056 0.0062 0.0105 0.0124 0.0141 0.0135 0.0138 0.0131 0.0180 0.0205
t390 0.0016 0.0120 0.0064 0.0300 0.0297 0.0292 0.0326 0.0359 0.0610 0.0838
t391 0.0005 0.0006 0.0013 0.0038 0.0062 0.0060 0.0075 0.0072 0.0085 0.0080
t392 0.0474 0.1454 0.1595 0.1917 0.2455 0.3223 0.3200 0.3653 0.4085 0.4373
t393 0.0102 0.0062 0.0058 0.0044 0.0043 0.0029 0.0105 0.0097 0.0246 0.0323
t394 0.0598 0.0299 0.0185 0.0149 0.0184 0.0212 0.0205 0.0193 0.0243 0.0219
t395 0.0105 0.0195 0.0269 0.0380 0.0539 0.0714 0.0803 0.0926 0.0993 0.1040
t396 0.0010 0.0407 0.0741 0.1413 0.1763 0.2222 0.2377 0.2396 0.2379 0.2718
t397 0.0000 0.0006 0.0009 0.0006 0.0071 0.0059 0.0055 0.0132 0.0128 0.0106
t398 0.0001 0.0006 0.0010 0.0008 0.0010 0.0016 0.0020 0.0017 0.0022 0.0020
t399 0.0278 0.0376 0.0326 0.0417 0.0439 0.0668 0.0638 0.0734 0.0807 0.1095
t400 0.0185 0.0575 0.1224 0.1753 0.2127 0.2542 0.2809 0.2974 0.3335 0.3896

Table 6.1: Measure: AP; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: BM25.

89

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - Average Precision (AP) values w.r.t. MAP = 0.0868

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0076 0.0351 0.0828 0.0740 0.0723 0.0834 0.0972 0.1005 0.0987 0.1061
t352 0.0003 0.0016 0.0011 0.0009 0.0010 0.0011 0.0010 0.0009 0.0010 0.0012
t353 0.0116 0.0118 0.0140 0.0227 0.0171 0.0237 0.0361 0.0513 0.0508 0.0712
t354 0.0078 0.0109 0.0144 0.0151 0.0200 0.0295 0.0352 0.0457 0.0452 0.0457
t355 0.0142 0.0186 0.0157 0.0112 0.0086 0.0129 0.0336 0.0347 0.0318 0.0299
t356 0.0000 0.0000 0.0002 0.0006 0.0005 0.0005 0.0005 0.0004 0.0002 0.0002
t357 0.0047 0.0216 0.0217 0.0371 0.0409 0.0620 0.0805 0.0966 0.0931 0.0917
t358 0.0545 0.0436 0.0442 0.0357 0.0315 0.0262 0.0246 0.0118 0.0352 0.0429
t359 0.0002 0.0004 0.0003 0.0371 0.0341 0.0253 0.0299 0.0315 0.0173 0.0161
t360 0.0442 0.0534 0.0807 0.0919 0.0989 0.1233 0.1335 0.1823 0.2070 0.2249
t361 0.0000 0.0000 0.0000 0.0000 0.0370 0.0370 0.0370 0.1093 0.0796 0.1009
t362 0.0012 0.0017 0.0021 0.0010 0.0036 0.0045 0.0051 0.0049 0.0069 0.0092
t363 0.0054 0.0105 0.0073 0.0104 0.0331 0.0338 0.0317 0.0237 0.0396 0.0378
t364 0.0571 0.1119 0.1742 0.1303 0.1660 0.2780 0.2927 0.3670 0.4326 0.4657
t365 0.0345 0.0856 0.1212 0.1283 0.2199 0.2177 0.2124 0.2123 0.2769 0.2706
t366 0.0093 0.0188 0.0268 0.0321 0.0335 0.0354 0.0314 0.0272 0.0361 0.0507
t367 0.0118 0.0365 0.0343 0.0322 0.0325 0.0520 0.0623 0.0697 0.0664 0.0672
t368 0.0339 0.0466 0.0759 0.0977 0.1056 0.1024 0.0926 0.0872 0.1831 0.2280
t369 0.0385 0.0085 0.0182 0.0822 0.0592 0.0471 0.0445 0.0270 0.1142 0.2632
t370 0.0031 0.0038 0.0030 0.0042 0.0060 0.0051 0.0036 0.0024 0.0039 0.0037
t371 0.0007 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.0002 0.0002 0.0002
t372 0.0120 0.0135 0.0130 0.0141 0.0180 0.0169 0.0198 0.0166 0.0239 0.0235
t373 0.0034 0.0078 0.0188 0.1025 0.1019 0.1048 0.1383 0.1357 0.1339 0.1297
t374 0.0141 0.0254 0.0447 0.0494 0.0692 0.0831 0.0963 0.0963 0.1049 0.1206
t375 0.0002 0.0204 0.0362 0.0417 0.0524 0.0596 0.1026 0.1201 0.1243 0.1187
t376 0.0009 0.0005 0.0003 0.0003 0.0004 0.0010 0.0013 0.0018 0.0016 0.0012
t377 0.0256 0.0947 0.0903 0.0879 0.0867 0.1103 0.1095 0.0984 0.1013 0.1101
t378 0.0001 0.0002 0.0004 0.0007 0.0005 0.0007 0.0005 0.0005 0.0006 0.0007
t379 0.0062 0.0034 0.0024 0.0040 0.0048 0.0039 0.0035 0.0031 0.0025 0.0658
t380 0.0048 0.0022 0.0017 0.0013 0.0012 0.0013 0.0009 0.0007 0.0227 0.0291
t381 0.0004 0.0004 0.0004 0.0009 0.0006 0.0010 0.0025 0.0061 0.0054 0.0102
t382 0.0909 0.1522 0.1807 0.1664 0.2321 0.2661 0.2359 0.2647 0.2632 0.2867
t383 0.0015 0.0016 0.0040 0.0092 0.0099 0.0105 0.0092 0.0095 0.0092 0.0098
t384 0.0264 0.0271 0.0361 0.0429 0.0775 0.1234 0.1268 0.1304 0.1424 0.1554
t385 0.0091 0.0144 0.0246 0.0250 0.0341 0.0502 0.0536 0.0808 0.0914 0.0874
t386 0.0000 0.0030 0.0020 0.0016 0.0034 0.0030 0.0024 0.0096 0.0098 0.0087
t387 0.0123 0.0085 0.0364 0.0381 0.0376 0.0484 0.0652 0.0783 0.0797 0.0779
t388 0.0005 0.0009 0.0381 0.0367 0.0427 0.0379 0.0357 0.0355 0.0383 0.0258
t389 0.0010 0.0005 0.0010 0.0010 0.0016 0.0016 0.0018 0.0015 0.0017 0.0026
t390 0.0011 0.0020 0.0021 0.0131 0.0098 0.0084 0.0059 0.0075 0.0158 0.0304
t391 0.0005 0.0005 0.0011 0.0032 0.0044 0.0039 0.0046 0.0042 0.0046 0.0045
t392 0.0389 0.1289 0.1363 0.1634 0.2114 0.2980 0.2970 0.3348 0.3694 0.3659
t393 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0147 0.0290
t394 0.0021 0.0009 0.0005 0.0004 0.0010 0.0009 0.0009 0.0006 0.0005 0.0005
t395 0.0076 0.0191 0.0227 0.0294 0.0402 0.0536 0.0582 0.0669 0.0709 0.0727
t396 0.0002 0.0203 0.0395 0.0841 0.0927 0.1227 0.1235 0.1176 0.1180 0.1457
t397 0.0000 0.0453 0.0244 0.0202 0.0427 0.0416 0.0350 0.0270 0.0416 0.0511
t398 0.0001 0.0002 0.0005 0.0004 0.0004 0.0010 0.0021 0.0018 0.0019 0.0017
t399 0.0098 0.0181 0.0122 0.0112 0.0221 0.0228 0.0221 0.0245 0.0249 0.0243
t400 0.0082 0.0254 0.0620 0.0877 0.1025 0.1295 0.1355 0.1597 0.1911 0.2252

Table 6.2: Measure: AP; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: TF-IDF.

90

BM25 - Average Precision (AP) values w.r.t. MAP = 0.1553

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0013 0.0607 0.1260 0.1242 0.1471 0.1881 0.2430 0.2635 0.2722 0.2959
t352 0.0061 0.0082 0.0067 0.0063 0.0130 0.0192 0.0218 0.0207 0.0231 0.0263
t353 0.0497 0.0664 0.0706 0.0543 0.0505 0.0784 0.1019 0.1533 0.1610 0.2023
t354 0.0105 0.0085 0.0115 0.0145 0.0215 0.0321 0.0430 0.0578 0.0615 0.0635
t355 0.0625 0.0772 0.0518 0.0408 0.0357 0.0397 0.0722 0.0737 0.0711 0.0703
t356 0.0000 0.0000 0.0053 0.0128 0.0119 0.0115 0.0112 0.0091 0.0069 0.0056
t357 0.0162 0.0603 0.0693 0.1090 0.1363 0.1991 0.2634 0.2996 0.3002 0.2953
t358 0.0529 0.0435 0.0428 0.0583 0.0648 0.0622 0.0601 0.0536 0.0621 0.1040
t359 0.0006 0.0005 0.0002 0.0403 0.0419 0.0229 0.0226 0.0197 0.0169 0.0168
t360 0.0503 0.0877 0.1249 0.1424 0.1632 0.1753 0.2095 0.3249 0.3707 0.4106
t361 0.0000 0.0000 0.0000 0.0000 0.0556 0.0556 0.0556 0.1963 0.1852 0.2513
t362 0.0035 0.0108 0.0096 0.0086 0.0259 0.0435 0.0691 0.0658 0.0848 0.0903
t363 0.0329 0.0550 0.0529 0.0378 0.0410 0.0376 0.0302 0.0286 0.0406 0.0311
t364 0.0571 0.1244 0.1552 0.1377 0.1825 0.2956 0.3350 0.4178 0.5098 0.5512
t365 0.0786 0.1971 0.2758 0.3623 0.4850 0.4819 0.4724 0.5316 0.6557 0.6728
t366 0.0224 0.0501 0.0835 0.1480 0.1851 0.2022 0.1943 0.1712 0.2155 0.2463
t367 0.0115 0.0415 0.0351 0.0324 0.0320 0.0520 0.0570 0.0658 0.0631 0.0639
t368 0.0289 0.0432 0.0896 0.1289 0.1596 0.1645 0.1584 0.1577 0.2386 0.3672
t369 0.0385 0.0085 0.0182 0.0822 0.0641 0.0502 0.0471 0.0278 0.1148 0.2679
t370 0.0077 0.0095 0.0064 0.0094 0.0111 0.0104 0.0106 0.0120 0.0121 0.0111
t371 0.0033 0.0016 0.0011 0.0016 0.0012 0.0009 0.0013 0.0017 0.0015 0.0009
t372 0.0258 0.0292 0.0483 0.0468 0.0617 0.0611 0.0630 0.0622 0.0922 0.0894
t373 0.0051 0.0606 0.0878 0.2861 0.2475 0.2578 0.2949 0.2857 0.2879 0.2897
t374 0.0229 0.0420 0.0763 0.0843 0.1318 0.1475 0.1676 0.1817 0.1925 0.2340
t375 0.0009 0.0317 0.0592 0.0711 0.0902 0.1070 0.1697 0.1803 0.1987 0.1903
t376 0.0089 0.0051 0.0043 0.0058 0.0074 0.0118 0.0193 0.0223 0.0277 0.0306
t377 0.0256 0.0732 0.0652 0.0616 0.0605 0.0776 0.0730 0.1184 0.1418 0.1350
t378 0.0003 0.0010 0.0026 0.0040 0.0040 0.0045 0.0046 0.0045 0.0049 0.0056
t379 0.0625 0.0625 0.0625 0.1250 0.1250 0.1250 0.1250 0.1250 0.1562 0.2677
t380 0.0476 0.0238 0.0204 0.0159 0.0159 0.0169 0.0138 0.0137 0.0795 0.1472
t381 0.0012 0.0006 0.0009 0.0010 0.0009 0.0013 0.0026 0.0084 0.0078 0.0523
t382 0.0909 0.1727 0.2535 0.2269 0.3186 0.3747 0.3779 0.3739 0.3719 0.4248
t383 0.0007 0.0018 0.0026 0.0074 0.0063 0.0069 0.0079 0.0110 0.0131 0.0128
t384 0.0264 0.0299 0.0518 0.0613 0.0796 0.1410 0.1557 0.1548 0.1949 0.2240
t385 0.0217 0.0568 0.0920 0.1227 0.1439 0.1775 0.1887 0.2477 0.2524 0.2506
t386 0.0000 0.0115 0.0095 0.0093 0.0097 0.0081 0.0083 0.0236 0.0214 0.0202
t387 0.0202 0.0167 0.0608 0.0628 0.0633 0.0802 0.1013 0.1301 0.1349 0.1321
t388 0.0027 0.0100 0.0426 0.0394 0.0666 0.0642 0.0640 0.0575 0.0853 0.0776
t389 0.0003 0.0007 0.0060 0.0046 0.0049 0.0034 0.0032 0.0029 0.0028 0.0044
t390 0.0003 0.0083 0.0099 0.0316 0.0318 0.0321 0.0392 0.0468 0.0617 0.0824
t391 0.0005 0.0006 0.0013 0.0038 0.0062 0.0060 0.0075 0.0072 0.0085 0.0080
t392 0.0161 0.0499 0.0598 0.0606 0.0926 0.1146 0.1116 0.1244 0.1346 0.1299
t393 0.0223 0.0124 0.0116 0.0103 0.0102 0.0093 0.0135 0.0159 0.0351 0.0512
t394 0.0826 0.0425 0.0381 0.0323 0.0523 0.0490 0.0425 0.0406 0.0360 0.0264
t395 0.0105 0.0194 0.0268 0.0381 0.0538 0.0713 0.0801 0.0925 0.0992 0.1039
t396 0.0016 0.0448 0.0769 0.1469 0.1807 0.2299 0.2449 0.2475 0.2457 0.2733
t397 0.0000 0.0000 0.0000 0.0000 0.0009 0.0007 0.0005 0.0013 0.0020 0.0093
t398 0.0001 0.0002 0.0001 0.0001 0.0002 0.0007 0.0005 0.0005 0.0008 0.0009
t399 0.0296 0.0276 0.0358 0.0325 0.0346 0.0540 0.0497 0.0556 0.0564 0.0829
t400 0.0177 0.0561 0.1128 0.1579 0.1965 0.2342 0.2586 0.2828 0.3133 0.3642

Table 6.3: Measure: AP; Stoplist: INDRI; Stemmer: NOSTEM; Model: BM25.

91

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - Average Precision (AP) values w.r.t. MAP = 0.0863

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0072 0.0214 0.0506 0.0485 0.0465 0.0532 0.0599 0.0641 0.0641 0.0671
t352 0.0003 0.0016 0.0011 0.0009 0.0010 0.0011 0.0010 0.0009 0.0010 0.0012
t353 0.0068 0.0073 0.0078 0.0236 0.0187 0.0236 0.0331 0.0527 0.0516 0.0717
t354 0.0062 0.0054 0.0077 0.0083 0.0123 0.0189 0.0295 0.0451 0.0470 0.0479
t355 0.0170 0.0288 0.0213 0.0165 0.0127 0.0160 0.0360 0.0327 0.0305 0.0291
t356 0.0000 0.0000 0.0002 0.0007 0.0006 0.0005 0.0005 0.0004 0.0002 0.0002
t357 0.0089 0.0326 0.0340 0.0568 0.0734 0.1142 0.1578 0.1834 0.1811 0.1826
t358 0.0316 0.0212 0.0225 0.0256 0.0274 0.0238 0.0229 0.0150 0.0208 0.0425
t359 0.0002 0.0005 0.0001 0.0096 0.0081 0.0050 0.0054 0.0060 0.0049 0.0045
t360 0.0417 0.0587 0.0997 0.1115 0.1227 0.1334 0.1539 0.2115 0.2393 0.2651
t361 0.0000 0.0000 0.0000 0.0000 0.0370 0.0370 0.0370 0.0898 0.0675 0.0814
t362 0.0011 0.0013 0.0010 0.0008 0.0032 0.0050 0.0061 0.0063 0.0087 0.0102
t363 0.0114 0.0225 0.0155 0.0215 0.0878 0.0873 0.0846 0.0846 0.1326 0.1275
t364 0.0571 0.1264 0.1880 0.1378 0.1735 0.2917 0.3332 0.4183 0.4816 0.5193
t365 0.0348 0.0858 0.1264 0.1334 0.2153 0.2112 0.2055 0.2038 0.2719 0.2694
t366 0.0096 0.0174 0.0256 0.0294 0.0314 0.0343 0.0306 0.0263 0.0352 0.0568
t367 0.0118 0.0372 0.0347 0.0325 0.0327 0.0523 0.0627 0.0700 0.0668 0.0676
t368 0.0322 0.0467 0.0839 0.1149 0.1280 0.1326 0.1250 0.1239 0.2073 0.3007
t369 0.0385 0.0085 0.0182 0.0822 0.0592 0.0471 0.0445 0.0270 0.1142 0.2632
t370 0.0031 0.0039 0.0030 0.0037 0.0055 0.0047 0.0039 0.0030 0.0038 0.0041
t371 0.0009 0.0004 0.0003 0.0005 0.0004 0.0003 0.0006 0.0005 0.0004 0.0005
t372 0.0211 0.0122 0.0151 0.0119 0.0141 0.0131 0.0137 0.0126 0.0172 0.0181
t373 0.0061 0.0091 0.0099 0.0791 0.0816 0.0782 0.1085 0.1063 0.1067 0.1050
t374 0.0169 0.0340 0.0589 0.0621 0.0845 0.1029 0.1162 0.1196 0.1257 0.1477
t375 0.0002 0.0173 0.0334 0.0388 0.0487 0.0559 0.1001 0.1194 0.1215 0.1171
t376 0.0012 0.0006 0.0003 0.0004 0.0006 0.0012 0.0016 0.0023 0.0022 0.0019
t377 0.0256 0.0596 0.0565 0.0467 0.0457 0.0477 0.0441 0.0526 0.0580 0.0564
t378 0.0001 0.0002 0.0004 0.0006 0.0004 0.0006 0.0005 0.0005 0.0005 0.0006
t379 0.0625 0.0625 0.0625 0.1250 0.1250 0.1250 0.1250 0.1250 0.1562 0.2833
t380 0.0060 0.0026 0.0022 0.0017 0.0015 0.0016 0.0014 0.0009 0.0046 0.0067
t381 0.0006 0.0002 0.0003 0.0004 0.0001 0.0002 0.0026 0.0137 0.0103 0.0161
t382 0.0909 0.1407 0.1518 0.1494 0.2223 0.2540 0.2141 0.2071 0.2037 0.2239
t383 0.0008 0.0014 0.0033 0.0057 0.0048 0.0059 0.0061 0.0076 0.0076 0.0071
t384 0.0248 0.0268 0.0328 0.0396 0.0751 0.1181 0.1224 0.1263 0.1497 0.1595
t385 0.0060 0.0108 0.0170 0.0175 0.0243 0.0292 0.0302 0.0403 0.0390 0.0383
t386 0.0000 0.0018 0.0012 0.0009 0.0012 0.0010 0.0005 0.0032 0.0038 0.0029
t387 0.0130 0.0087 0.0379 0.0382 0.0383 0.0480 0.0611 0.0761 0.0776 0.0752
t388 0.0014 0.0031 0.0423 0.0388 0.0607 0.0606 0.0608 0.0607 0.0764 0.0480
t389 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0005 0.0004 0.0003 0.0007
t390 0.0003 0.0010 0.0014 0.0041 0.0044 0.0044 0.0044 0.0043 0.0054 0.0192
t391 0.0005 0.0005 0.0011 0.0032 0.0044 0.0039 0.0046 0.0042 0.0046 0.0045
t392 0.0148 0.0496 0.0510 0.0514 0.0865 0.1075 0.1044 0.1152 0.1252 0.1106
t393 0.0011 0.0006 0.0004 0.0002 0.0001 0.0001 0.0003 0.0003 0.0146 0.0289
t394 0.0166 0.0064 0.0050 0.0045 0.0049 0.0042 0.0028 0.0030 0.0019 0.0017
t395 0.0076 0.0190 0.0227 0.0293 0.0400 0.0536 0.0578 0.0668 0.0707 0.0728
t396 0.0003 0.0208 0.0407 0.0814 0.0845 0.1129 0.1136 0.1097 0.1083 0.1305
t397 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0010 0.0021
t398 0.0001 0.0001 0.0001 0.0000 0.0001 0.0006 0.0004 0.0003 0.0004 0.0004
t399 0.0031 0.0035 0.0036 0.0039 0.0090 0.0101 0.0094 0.0095 0.0094 0.0116
t400 0.0091 0.0252 0.0615 0.0864 0.0982 0.1270 0.1327 0.1559 0.1803 0.2103

Table 6.4: Measure: AP; Stoplist: INDRI; Stemmer: NOSTEM; Model: TF-IDF

92

BM25 - Average Precision (AP) values w.r.t. MAP = 0.1631

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0033 0.0995 0.1668 0.1614 0.1819 0.2229 0.3047 0.3289 0.3419 0.3643
t352 0.0062 0.0083 0.0065 0.0060 0.0125 0.0193 0.0217 0.0204 0.0235 0.0266
t353 0.0340 0.0475 0.0564 0.0476 0.0452 0.0708 0.0867 0.1383 0.1495 0.1838
t354 0.0090 0.0166 0.0237 0.0257 0.0339 0.0443 0.0520 0.0602 0.0601 0.0609
t355 0.0751 0.0965 0.0688 0.0666 0.0633 0.0612 0.1109 0.1055 0.1012 0.0985
t356 0.0000 0.0000 0.0059 0.0124 0.0116 0.0116 0.0111 0.0093 0.0072 0.0059
t357 0.0148 0.0614 0.0687 0.1019 0.1226 0.1899 0.2461 0.2827 0.2851 0.2840
t358 0.0882 0.0778 0.0836 0.0975 0.1040 0.1020 0.0989 0.0946 0.1241 0.1814
t359 0.0003 0.0001 0.0001 0.0107 0.0102 0.0084 0.0079 0.0093 0.0106 0.0121
t360 0.0326 0.0438 0.0749 0.0843 0.0859 0.0959 0.0965 0.1635 0.1829 0.1979
t361 0.0000 0.0000 0.0000 0.0000 0.0556 0.0556 0.0556 0.2130 0.2130 0.2690
t362 0.0032 0.0124 0.0118 0.0093 0.0258 0.0424 0.0573 0.0531 0.0638 0.0651
t363 0.0636 0.0192 0.0150 0.0128 0.0128 0.0133 0.0104 0.0100 0.0121 0.0073
t364 0.0571 0.1150 0.1369 0.1204 0.1603 0.2690 0.2856 0.3624 0.4465 0.4841
t365 0.0786 0.2019 0.2733 0.3558 0.4828 0.4792 0.4574 0.5162 0.6442 0.6571
t366 0.0430 0.0860 0.1545 0.2546 0.3432 0.3711 0.3853 0.3569 0.3893 0.4310
t367 0.0121 0.0393 0.0342 0.0314 0.0313 0.0522 0.0574 0.0663 0.0634 0.0643
t368 0.0267 0.0412 0.0827 0.1202 0.1510 0.1497 0.1442 0.1423 0.2373 0.3382
t369 0.0385 0.0070 0.0172 0.0913 0.0682 0.0527 0.0491 0.0286 0.1164 0.2685
t370 0.0099 0.0113 0.0073 0.0120 0.0162 0.0150 0.0144 0.0162 0.0191 0.0185
t371 0.0028 0.0000 0.0000 0.0004 0.0002 0.0002 0.0004 0.0007 0.0007 0.0003
t372 0.0440 0.0476 0.0677 0.0742 0.0943 0.0931 0.0973 0.0965 0.1324 0.1226
t373 0.0022 0.0553 0.0959 0.2792 0.2599 0.2722 0.3099 0.3051 0.3073 0.2959
t374 0.0203 0.0315 0.0570 0.0633 0.0929 0.1027 0.1210 0.1301 0.1453 0.1795
t375 0.0008 0.0313 0.0606 0.0721 0.0903 0.1046 0.1592 0.1704 0.1847 0.1784
t376 0.0076 0.0042 0.0031 0.0048 0.0062 0.0100 0.0148 0.0167 0.0214 0.0242
t377 0.0256 0.1631 0.1417 0.1402 0.1480 0.1807 0.1864 0.2260 0.2704 0.2826
t378 0.0003 0.0009 0.0023 0.0036 0.0035 0.0036 0.0038 0.0036 0.0039 0.0044
t379 0.0089 0.0048 0.0033 0.0054 0.0058 0.0049 0.0044 0.0037 0.0031 0.0667
t380 0.0286 0.0143 0.0119 0.0102 0.0102 0.0101 0.0090 0.0084 0.1039 0.2053
t381 0.0009 0.0007 0.0012 0.0020 0.0015 0.0037 0.0043 0.0075 0.0070 0.0513
t382 0.0909 0.1890 0.2933 0.2715 0.3486 0.3985 0.4357 0.4968 0.5022 0.5537
t383 0.0012 0.0023 0.0034 0.0119 0.0117 0.0127 0.0130 0.0138 0.0144 0.0135
t384 0.0263 0.0290 0.0515 0.0610 0.0768 0.1366 0.1494 0.1476 0.1773 0.2036
t385 0.0195 0.0629 0.1036 0.1344 0.1469 0.1898 0.2014 0.2814 0.2960 0.2917
t386 0.0000 0.0152 0.0088 0.0094 0.0160 0.0137 0.0141 0.0667 0.0651 0.0380
t387 0.0188 0.0159 0.0587 0.0636 0.0632 0.0811 0.1056 0.1333 0.1373 0.1334
t388 0.0007 0.0050 0.0381 0.0304 0.0307 0.0267 0.0219 0.0199 0.0238 0.0241
t389 0.0055 0.0061 0.0095 0.0110 0.0133 0.0129 0.0137 0.0128 0.0174 0.0202
t390 0.0016 0.0116 0.0062 0.0285 0.0286 0.0278 0.0307 0.0340 0.0588 0.0819
t391 0.0005 0.0005 0.0009 0.0036 0.0053 0.0053 0.0059 0.0061 0.0067 0.0072
t392 0.0462 0.1398 0.1575 0.1879 0.2421 0.3188 0.3172 0.3621 0.4041 0.4254
t393 0.0079 0.0047 0.0044 0.0035 0.0034 0.0024 0.0051 0.0059 0.0191 0.0286
t394 0.0598 0.0299 0.0228 0.0173 0.0222 0.0251 0.0245 0.0234 0.0269 0.0252
t395 0.0102 0.0200 0.0276 0.0388 0.0547 0.0722 0.0797 0.0914 0.0959 0.1009
t396 0.0025 0.0454 0.0776 0.1461 0.1807 0.2299 0.2451 0.2473 0.2523 0.2857
t397 0.0000 0.0006 0.0009 0.0006 0.0080 0.0064 0.0060 0.0137 0.0130 0.0109
t398 0.0001 0.0006 0.0009 0.0008 0.0010 0.0016 0.0021 0.0017 0.0023 0.0020
t399 0.0278 0.0386 0.0322 0.0373 0.0402 0.0612 0.0558 0.0639 0.0699 0.0983
t400 0.0160 0.0560 0.1199 0.1729 0.2108 0.2511 0.2760 0.2922 0.3275 0.3829

Table 6.5: Measure: AP; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: BM25.

93

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - Average Precision (AP) values w.r.t. MAP = 0.0811

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0040 0.0300 0.0721 0.0636 0.0611 0.0685 0.0792 0.0805 0.0798 0.0844
t352 0.0003 0.0007 0.0005 0.0005 0.0005 0.0006 0.0005 0.0004 0.0005 0.0006
t353 0.0084 0.0085 0.0084 0.0190 0.0132 0.0185 0.0273 0.0436 0.0429 0.0605
t354 0.0083 0.0113 0.0147 0.0158 0.0203 0.0288 0.0384 0.0486 0.0478 0.0490
t355 0.0179 0.0204 0.0173 0.0128 0.0099 0.0143 0.0281 0.0284 0.0263 0.0242
t356 0.0000 0.0000 0.0003 0.0009 0.0008 0.0007 0.0007 0.0005 0.0005 0.0004
t357 0.0041 0.0175 0.0175 0.0312 0.0346 0.0531 0.0709 0.0859 0.0827 0.0803
t358 0.0502 0.0298 0.0294 0.0284 0.0270 0.0237 0.0233 0.0149 0.0391 0.0541
t359 0.0001 0.0003 0.0001 0.0445 0.0433 0.0424 0.0417 0.0429 0.0170 0.0178
t360 0.0369 0.0465 0.0688 0.0758 0.0796 0.1048 0.1128 0.1545 0.1772 0.1940
t361 0.0000 0.0000 0.0000 0.0000 0.0370 0.0370 0.0370 0.1111 0.0756 0.0920
t362 0.0012 0.0019 0.0023 0.0011 0.0036 0.0043 0.0045 0.0040 0.0059 0.0081
t363 0.0062 0.0107 0.0076 0.0104 0.0271 0.0274 0.0230 0.0189 0.0374 0.0338
t364 0.0571 0.1150 0.1651 0.1284 0.1590 0.2667 0.2804 0.3590 0.4201 0.4526
t365 0.0177 0.0676 0.1030 0.1107 0.1957 0.1937 0.1874 0.1849 0.2390 0.2270
t366 0.0135 0.0299 0.0411 0.0534 0.0569 0.0589 0.0553 0.0509 0.0594 0.0678
t367 0.0073 0.0319 0.0316 0.0308 0.0325 0.0521 0.0625 0.0702 0.0672 0.0682
t368 0.0338 0.0464 0.0737 0.0930 0.0950 0.0907 0.0817 0.0777 0.1685 0.2030
t369 0.0385 0.0070 0.0180 0.0848 0.0643 0.0512 0.0462 0.0280 0.1146 0.2636
t370 0.0035 0.0044 0.0036 0.0044 0.0065 0.0057 0.0047 0.0034 0.0048 0.0046
t371 0.0007 0.0004 0.0002 0.0004 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002
t372 0.0070 0.0082 0.0096 0.0113 0.0142 0.0135 0.0157 0.0130 0.0192 0.0190
t373 0.0034 0.0109 0.0421 0.1204 0.1126 0.1138 0.1450 0.1425 0.1378 0.1351
t374 0.0137 0.0249 0.0439 0.0460 0.0622 0.0750 0.0859 0.0871 0.0946 0.1104
t375 0.0002 0.0160 0.0288 0.0343 0.0416 0.0471 0.0859 0.1028 0.1055 0.1019
t376 0.0008 0.0003 0.0002 0.0003 0.0003 0.0007 0.0009 0.0012 0.0012 0.0009
t377 0.0256 0.0928 0.0891 0.0870 0.0857 0.1026 0.1020 0.0894 0.1010 0.1067
t378 0.0001 0.0001 0.0003 0.0006 0.0004 0.0005 0.0004 0.0003 0.0003 0.0002
t379 0.0069 0.0037 0.0026 0.0043 0.0050 0.0041 0.0037 0.0032 0.0030 0.0659
t380 0.0057 0.0000 0.0000 0.0000 0.0000 0.0012 0.0011 0.0008 0.0166 0.0229
t381 0.0004 0.0004 0.0003 0.0009 0.0006 0.0010 0.0024 0.0055 0.0051 0.0087
t382 0.0909 0.1191 0.1620 0.1453 0.2054 0.2430 0.2152 0.2458 0.2409 0.2611
t383 0.0017 0.0019 0.0040 0.0087 0.0089 0.0094 0.0081 0.0084 0.0082 0.0085
t384 0.0245 0.0263 0.0325 0.0396 0.0717 0.1084 0.1115 0.1153 0.1361 0.1383
t385 0.0075 0.0115 0.0201 0.0214 0.0279 0.0391 0.0433 0.0699 0.0783 0.0751
t386 0.0000 0.0032 0.0021 0.0023 0.0042 0.0036 0.0032 0.0090 0.0090 0.0080
t387 0.0155 0.0109 0.0414 0.0401 0.0399 0.0499 0.0669 0.0793 0.0800 0.0773
t388 0.0006 0.0010 0.0317 0.0304 0.0359 0.0330 0.0308 0.0298 0.0305 0.0297
t389 0.0009 0.0005 0.0009 0.0009 0.0015 0.0016 0.0017 0.0016 0.0017 0.0025
t390 0.0011 0.0017 0.0019 0.0138 0.0101 0.0089 0.0061 0.0081 0.0167 0.0303
t391 0.0004 0.0005 0.0008 0.0026 0.0034 0.0034 0.0037 0.0035 0.0035 0.0037
t392 0.0436 0.1307 0.1429 0.1670 0.2119 0.2945 0.2936 0.3283 0.3631 0.3503
t393 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0143 0.0237
t394 0.0020 0.0009 0.0005 0.0004 0.0010 0.0009 0.0009 0.0008 0.0007 0.0005
t395 0.0073 0.0155 0.0192 0.0252 0.0353 0.0483 0.0538 0.0620 0.0651 0.0656
t396 0.0003 0.0206 0.0450 0.0877 0.1027 0.1346 0.1360 0.1290 0.1307 0.1554
t397 0.0000 0.0427 0.0166 0.0167 0.0380 0.0356 0.0328 0.0244 0.0479 0.0553
t398 0.0001 0.0002 0.0005 0.0004 0.0004 0.0011 0.0023 0.0021 0.0021 0.0020
t399 0.0099 0.0167 0.0112 0.0101 0.0209 0.0224 0.0215 0.0233 0.0229 0.0232
t400 0.0062 0.0224 0.0535 0.0742 0.0848 0.1073 0.1125 0.1365 0.1611 0.1863

Table 6.6: Measure: AP; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: TF-IDF.

94

BM25 - Average Precision (AP) values w.r.t. MAP = 0.1533

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0012 0.0580 0.1222 0.1184 0.1418 0.1812 0.2307 0.2506 0.2536 0.2741
t352 0.0063 0.0083 0.0067 0.0060 0.0127 0.0193 0.0217 0.0205 0.0235 0.0266
t353 0.0478 0.0619 0.0663 0.0477 0.0459 0.0716 0.0907 0.1394 0.1464 0.1912
t354 0.0117 0.0089 0.0124 0.0156 0.0229 0.0354 0.0471 0.0628 0.0666 0.0681
t355 0.0654 0.0904 0.0562 0.0473 0.0432 0.0441 0.0773 0.0773 0.0754 0.0745
t356 0.0000 0.0000 0.0084 0.0166 0.0152 0.0152 0.0144 0.0116 0.0084 0.0067
t357 0.0153 0.0572 0.0640 0.1035 0.1309 0.1923 0.2588 0.2945 0.2946 0.2893
t358 0.0562 0.0435 0.0432 0.0558 0.0636 0.0606 0.0592 0.0520 0.0613 0.1012
t359 0.0005 0.0005 0.0002 0.0160 0.0177 0.0108 0.0095 0.0118 0.0146 0.0155
t360 0.0488 0.0836 0.1209 0.1414 0.1625 0.1746 0.2043 0.3135 0.3568 0.3841
t361 0.0000 0.0000 0.0000 0.0000 0.0556 0.0556 0.0556 0.1963 0.1852 0.2487
t362 0.0036 0.0129 0.0111 0.0100 0.0260 0.0458 0.0649 0.0615 0.0731 0.0783
t363 0.0329 0.0565 0.0533 0.0406 0.0434 0.0406 0.0326 0.0307 0.0436 0.0332
t364 0.0571 0.1347 0.1527 0.1290 0.1690 0.2832 0.3252 0.4109 0.4923 0.5337
t365 0.0786 0.2019 0.2885 0.3733 0.4965 0.4923 0.4678 0.5383 0.6619 0.6746
t366 0.0237 0.0530 0.0871 0.1457 0.1873 0.2039 0.1982 0.1775 0.2208 0.2531
t367 0.0121 0.0412 0.0351 0.0318 0.0317 0.0525 0.0578 0.0668 0.0638 0.0646
t368 0.0289 0.0427 0.0916 0.1249 0.1582 0.1613 0.1571 0.1568 0.2382 0.3600
t369 0.0385 0.0070 0.0172 0.0913 0.0682 0.0527 0.0491 0.0286 0.1164 0.2685
t370 0.0092 0.0115 0.0068 0.0095 0.0122 0.0118 0.0124 0.0141 0.0162 0.0156
t371 0.0033 0.0000 0.0000 0.0004 0.0002 0.0002 0.0014 0.0018 0.0016 0.0009
t372 0.0309 0.0341 0.0515 0.0485 0.0699 0.0696 0.0703 0.0687 0.0966 0.0939
t373 0.0052 0.0607 0.1048 0.3219 0.2885 0.2968 0.3334 0.3260 0.3247 0.3207
t374 0.0228 0.0395 0.0736 0.0811 0.1264 0.1421 0.1614 0.1747 0.1865 0.2223
t375 0.0008 0.0315 0.0609 0.0723 0.0904 0.1045 0.1626 0.1734 0.1879 0.1796
t376 0.0105 0.0053 0.0040 0.0058 0.0076 0.0120 0.0187 0.0208 0.0254 0.0288
t377 0.0256 0.0730 0.0651 0.0615 0.0605 0.0776 0.0729 0.1172 0.1417 0.1355
t378 0.0003 0.0009 0.0023 0.0035 0.0035 0.0037 0.0039 0.0037 0.0041 0.0047
t379 0.0625 0.0625 0.0625 0.1250 0.1250 0.1250 0.1250 0.1250 0.1562 0.2833
t380 0.0476 0.0238 0.0238 0.0179 0.0238 0.0247 0.0186 0.0185 0.0813 0.1678
t381 0.0013 0.0006 0.0009 0.0011 0.0008 0.0014 0.0026 0.0081 0.0080 0.0352
t382 0.0909 0.1709 0.2622 0.2325 0.3072 0.3657 0.3682 0.3671 0.3645 0.4119
t383 0.0007 0.0018 0.0025 0.0069 0.0059 0.0065 0.0073 0.0104 0.0122 0.0119
t384 0.0265 0.0299 0.0485 0.0558 0.0745 0.1337 0.1468 0.1474 0.1899 0.2191
t385 0.0205 0.0512 0.0852 0.1173 0.1350 0.1672 0.1731 0.2332 0.2441 0.2417
t386 0.0000 0.0097 0.0082 0.0081 0.0084 0.0071 0.0071 0.0238 0.0196 0.0181
t387 0.0232 0.0198 0.0665 0.0683 0.0676 0.0852 0.1039 0.1327 0.1366 0.1337
t388 0.0022 0.0081 0.0471 0.0454 0.0702 0.0682 0.0634 0.0564 0.0777 0.0710
t389 0.0003 0.0007 0.0061 0.0034 0.0036 0.0028 0.0028 0.0025 0.0024 0.0043
t390 0.0002 0.0083 0.0101 0.0331 0.0336 0.0338 0.0409 0.0484 0.0637 0.0816
t391 0.0005 0.0005 0.0009 0.0035 0.0053 0.0053 0.0059 0.0061 0.0067 0.0072
t392 0.0161 0.0475 0.0535 0.0540 0.0881 0.1083 0.1057 0.1177 0.1276 0.1239
t393 0.0221 0.0116 0.0110 0.0097 0.0097 0.0090 0.0114 0.0135 0.0314 0.0462
t394 0.0786 0.0401 0.0455 0.0416 0.0610 0.0527 0.0436 0.0422 0.0374 0.0258
t395 0.0101 0.0199 0.0272 0.0387 0.0545 0.0721 0.0795 0.0913 0.0958 0.1008
t396 0.0050 0.0511 0.0822 0.1530 0.1843 0.2361 0.2529 0.2545 0.2581 0.2888
t397 0.0000 0.0000 0.0000 0.0000 0.0008 0.0006 0.0005 0.0012 0.0019 0.0095
t398 0.0001 0.0002 0.0001 0.0001 0.0001 0.0007 0.0006 0.0005 0.0009 0.0008
t399 0.0296 0.0276 0.0358 0.0282 0.0315 0.0503 0.0454 0.0501 0.0486 0.0740
t400 0.0165 0.0550 0.1095 0.1560 0.1947 0.2324 0.2540 0.2802 0.3076 0.3598

Table 6.7: Measure: AP; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: BM25.

95

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - Average Precision (AP) values w.r.t. MAP = 0.0791

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0044 0.0150 0.0445 0.0412 0.0408 0.0445 0.0501 0.0517 0.0528 0.0554
t352 0.0003 0.0007 0.0005 0.0005 0.0005 0.0006 0.0005 0.0004 0.0005 0.0006
t353 0.0058 0.0059 0.0057 0.0210 0.0169 0.0209 0.0288 0.0467 0.0456 0.0606
t354 0.0074 0.0071 0.0098 0.0110 0.0155 0.0223 0.0364 0.0537 0.0551 0.0568
t355 0.0231 0.0307 0.0226 0.0171 0.0130 0.0168 0.0353 0.0325 0.0303 0.0288
t356 0.0000 0.0000 0.0003 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0004
t357 0.0086 0.0325 0.0316 0.0540 0.0688 0.1099 0.1538 0.1767 0.1729 0.1737
t358 0.0374 0.0222 0.0248 0.0265 0.0281 0.0240 0.0232 0.0156 0.0221 0.0432
t359 0.0001 0.0003 0.0000 0.0054 0.0049 0.0039 0.0040 0.0047 0.0042 0.0042
t360 0.0385 0.0502 0.0855 0.0939 0.1005 0.1095 0.1266 0.1714 0.1898 0.1933
t361 0.0000 0.0000 0.0000 0.0000 0.0370 0.0370 0.0370 0.0817 0.0574 0.0688
t362 0.0011 0.0015 0.0014 0.0008 0.0032 0.0047 0.0054 0.0054 0.0078 0.0092
t363 0.0088 0.0208 0.0148 0.0212 0.0558 0.0550 0.0529 0.0536 0.1034 0.0977
t364 0.0571 0.1347 0.1835 0.1381 0.1700 0.2833 0.3253 0.4120 0.4692 0.5068
t365 0.0131 0.0677 0.1118 0.1201 0.1943 0.1915 0.1840 0.1844 0.2444 0.2306
t366 0.0102 0.0247 0.0317 0.0360 0.0378 0.0393 0.0356 0.0311 0.0370 0.0508
t367 0.0073 0.0324 0.0319 0.0310 0.0327 0.0523 0.0628 0.0705 0.0675 0.0685
t368 0.0301 0.0437 0.0798 0.1068 0.1147 0.1188 0.1104 0.1095 0.1938 0.2744
t369 0.0385 0.0070 0.0180 0.0848 0.0643 0.0512 0.0462 0.0280 0.1146 0.2636
t370 0.0042 0.0054 0.0047 0.0056 0.0077 0.0066 0.0061 0.0050 0.0059 0.0064
t371 0.0009 0.0005 0.0003 0.0005 0.0004 0.0003 0.0006 0.0005 0.0005 0.0005
t372 0.0110 0.0087 0.0107 0.0092 0.0111 0.0104 0.0104 0.0091 0.0126 0.0139
t373 0.0076 0.0141 0.0147 0.0845 0.0879 0.0828 0.1056 0.1025 0.1028 0.1011
t374 0.0162 0.0305 0.0548 0.0555 0.0742 0.0902 0.1018 0.1036 0.1096 0.1298
t375 0.0002 0.0160 0.0283 0.0339 0.0403 0.0467 0.0842 0.0988 0.1015 0.0978
t376 0.0009 0.0005 0.0003 0.0003 0.0004 0.0009 0.0013 0.0014 0.0014 0.0012
t377 0.0256 0.0465 0.0435 0.0368 0.0349 0.0367 0.0361 0.0436 0.0487 0.0495
t378 0.0001 0.0001 0.0003 0.0006 0.0003 0.0005 0.0003 0.0003 0.0003 0.0002
t379 0.0625 0.0625 0.0625 0.1250 0.1250 0.1250 0.1250 0.1250 0.1562 0.2833
t380 0.0065 0.0032 0.0026 0.0020 0.0018 0.0018 0.0013 0.0011 0.0040 0.0065
t381 0.0006 0.0002 0.0003 0.0005 0.0001 0.0005 0.0021 0.0098 0.0091 0.0136
t382 0.0909 0.1079 0.1353 0.1304 0.1925 0.2351 0.1957 0.1954 0.1928 0.2098
t383 0.0007 0.0014 0.0032 0.0053 0.0047 0.0054 0.0056 0.0069 0.0071 0.0070
t384 0.0240 0.0264 0.0309 0.0376 0.0700 0.1052 0.1081 0.1124 0.1345 0.1430
t385 0.0047 0.0093 0.0140 0.0137 0.0193 0.0235 0.0262 0.0359 0.0321 0.0303
t386 0.0000 0.0004 0.0003 0.0002 0.0004 0.0002 0.0001 0.0024 0.0008 0.0005
t387 0.0168 0.0114 0.0429 0.0412 0.0399 0.0493 0.0641 0.0731 0.0746 0.0732
t388 0.0015 0.0029 0.0413 0.0383 0.0613 0.0610 0.0610 0.0601 0.0718 0.0461
t389 0.0001 0.0002 0.0002 0.0002 0.0004 0.0004 0.0004 0.0003 0.0003 0.0006
t390 0.0002 0.0010 0.0010 0.0056 0.0044 0.0044 0.0042 0.0054 0.0067 0.0190
t391 0.0004 0.0005 0.0008 0.0026 0.0034 0.0034 0.0037 0.0035 0.0035 0.0037
t392 0.0148 0.0453 0.0473 0.0483 0.0819 0.1010 0.0965 0.1082 0.1173 0.1048
t393 0.0010 0.0005 0.0003 0.0001 0.0001 0.0001 0.0002 0.0002 0.0143 0.0284
t394 0.0215 0.0058 0.0044 0.0034 0.0032 0.0028 0.0022 0.0021 0.0015 0.0013
t395 0.0072 0.0155 0.0188 0.0252 0.0352 0.0483 0.0538 0.0618 0.0651 0.0659
t396 0.0003 0.0207 0.0429 0.0821 0.0908 0.1237 0.1227 0.1175 0.1160 0.1385
t397 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0011 0.0072
t398 0.0001 0.0001 0.0001 0.0000 0.0001 0.0006 0.0004 0.0004 0.0005 0.0005
t399 0.0031 0.0038 0.0038 0.0039 0.0140 0.0104 0.0095 0.0144 0.0140 0.0110
t400 0.0066 0.0215 0.0538 0.0741 0.0820 0.1057 0.1079 0.1288 0.1539 0.1728

Table 6.8: Measure: AP; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: TF-IDF.

96

BM25 - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.3908

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0451 0.2875 0.3747 0.3702 0.4022 0.4465 0.5362 0.5726 0.6087 0.6362
t352 0.0553 0.0658 0.0611 0.0570 0.0870 0.0992 0.1051 0.1037 0.1170 0.1236
t353 0.1154 0.1453 0.1727 0.1833 0.1898 0.2440 0.2737 0.3642 0.3809 0.4434
t354 0.0814 0.1220 0.1524 0.1694 0.1986 0.2366 0.2721 0.2915 0.2959 0.2987
t355 0.2318 0.2780 0.2481 0.2358 0.2249 0.2927 0.4121 0.4237 0.3936 0.3909
t356 0.0000 0.0000 0.0414 0.0773 0.0757 0.0752 0.0752 0.0702 0.0653 0.0619
t357 0.0909 0.1933 0.2233 0.2858 0.3258 0.4398 0.5326 0.5643 0.5632 0.5597
t358 0.2588 0.2571 0.2604 0.3119 0.3347 0.3331 0.3294 0.3144 0.3717 0.4781
t359 0.0170 0.0150 0.0138 0.0968 0.1175 0.1118 0.1082 0.1352 0.1477 0.1628
t360 0.1434 0.1896 0.2544 0.2838 0.3058 0.3359 0.3560 0.5153 0.5480 0.5763
t361 0.0000 0.0000 0.0000 0.0000 0.1483 0.1483 0.1483 0.3670 0.3670 0.4916
t362 0.0606 0.1061 0.1325 0.1211 0.2071 0.2442 0.2749 0.3016 0.3068 0.3039
t363 0.1875 0.1398 0.1282 0.1711 0.2025 0.2200 0.1956 0.2069 0.2415 0.1810
t364 0.1608 0.2670 0.3153 0.3154 0.3747 0.4988 0.5413 0.6339 0.7598 0.8089
t365 0.2032 0.3732 0.4569 0.5505 0.6516 0.6620 0.6586 0.7396 0.8562 0.8720
t366 0.1122 0.1883 0.2773 0.3953 0.4715 0.4905 0.4953 0.4806 0.5531 0.5951
t367 0.0682 0.1442 0.1499 0.1532 0.1659 0.2290 0.2579 0.2931 0.2931 0.3018
t368 0.1095 0.1613 0.2441 0.3151 0.3700 0.3849 0.3800 0.3850 0.4980 0.6050
t369 0.1178 0.0562 0.0995 0.2480 0.2236 0.2008 0.1970 0.1619 0.3443 0.5818
t370 0.0751 0.0851 0.0820 0.1051 0.1163 0.1178 0.1149 0.1230 0.1313 0.1291
t371 0.0353 0.0287 0.0260 0.0608 0.0577 0.0408 0.0583 0.0746 0.0733 0.0548
t372 0.1474 0.1836 0.2186 0.2311 0.2654 0.2647 0.2898 0.2883 0.3839 0.3865
t373 0.0256 0.1940 0.2604 0.4703 0.4835 0.4999 0.5485 0.5448 0.5313 0.5386
t374 0.1146 0.1619 0.2335 0.2504 0.3185 0.3708 0.4092 0.4340 0.4670 0.5304
t375 0.0267 0.1695 0.2535 0.2786 0.3132 0.3515 0.4241 0.4375 0.4778 0.4675
t376 0.0693 0.0681 0.0736 0.0956 0.1125 0.1420 0.1799 0.1799 0.1933 0.2075
t377 0.0917 0.3508 0.3447 0.3452 0.3784 0.4236 0.4716 0.5491 0.6296 0.6546
t378 0.0197 0.0350 0.0616 0.0816 0.0894 0.0948 0.0989 0.1082 0.1134 0.1104
t379 0.0936 0.0795 0.0735 0.1145 0.1294 0.1103 0.1083 0.1050 0.0868 0.1886
t380 0.1063 0.0795 0.0743 0.0704 0.0704 0.1005 0.0969 0.0949 0.3258 0.4745
t381 0.0438 0.0535 0.0662 0.0825 0.0792 0.0914 0.0952 0.1310 0.1293 0.2648
t382 0.2179 0.3995 0.5196 0.5056 0.5971 0.6581 0.6906 0.7522 0.7678 0.8240
t383 0.0505 0.0642 0.0762 0.1261 0.1287 0.1246 0.1259 0.1259 0.1212 0.1176
t384 0.1152 0.1505 0.2065 0.2543 0.3294 0.4838 0.5232 0.5482 0.6160 0.6611
t385 0.1010 0.2295 0.3120 0.3597 0.4043 0.4824 0.5154 0.5838 0.6124 0.6207
t386 0.0000 0.1036 0.0889 0.0872 0.1154 0.1094 0.1253 0.1893 0.2036 0.1811
t387 0.1188 0.1234 0.2495 0.2890 0.3105 0.3714 0.4503 0.5515 0.5692 0.5656
t388 0.0239 0.0611 0.1679 0.1656 0.1771 0.1690 0.1611 0.1650 0.1910 0.1858
t389 0.0507 0.0571 0.0774 0.0885 0.1136 0.1231 0.1237 0.1247 0.1376 0.1478
t390 0.0507 0.1230 0.1019 0.1758 0.1752 0.1739 0.1785 0.1801 0.2347 0.2571
t391 0.0304 0.0362 0.0542 0.0914 0.1224 0.1219 0.1361 0.1349 0.1479 0.1412
t392 0.1740 0.3465 0.3850 0.4396 0.5284 0.6241 0.6372 0.7077 0.7654 0.8203
t393 0.0654 0.0445 0.0434 0.0382 0.0378 0.0322 0.0661 0.0702 0.1255 0.1514
t394 0.1955 0.1193 0.1172 0.1082 0.1678 0.2210 0.2188 0.2154 0.2416 0.2366
t395 0.0882 0.1379 0.1633 0.2063 0.2648 0.3199 0.3445 0.3738 0.3924 0.4079
t396 0.0253 0.1686 0.2270 0.3123 0.3537 0.4153 0.4315 0.4416 0.4499 0.4837
t397 0.0000 0.0313 0.0444 0.0421 0.1069 0.1127 0.1216 0.1349 0.1341 0.1281
t398 0.0093 0.0222 0.0351 0.0338 0.0390 0.0551 0.0633 0.0579 0.0699 0.0657
t399 0.1162 0.1597 0.1499 0.1820 0.1786 0.2217 0.2204 0.2397 0.2562 0.3027
t400 0.0910 0.1991 0.3151 0.4016 0.4679 0.5576 0.6050 0.6573 0.7024 0.7605

Table 6.9: Measure: nDCG; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: BM25.

97

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.2975

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0532 0.1731 0.2912 0.2796 0.2951 0.3149 0.3633 0.3821 0.4106 0.4320
t352 0.0194 0.0272 0.0249 0.0190 0.0293 0.0275 0.0271 0.0262 0.0292 0.0327
t353 0.0804 0.0940 0.1110 0.1500 0.1364 0.1767 0.2072 0.2779 0.2814 0.3175
t354 0.0792 0.0950 0.1101 0.1190 0.1420 0.1805 0.2080 0.2389 0.2410 0.2460
t355 0.1247 0.1546 0.1547 0.1496 0.1331 0.1906 0.2717 0.2963 0.2754 0.2712
t356 0.0000 0.0000 0.0183 0.0392 0.0383 0.0378 0.0374 0.0360 0.0197 0.0191
t357 0.0593 0.1276 0.1437 0.1978 0.2169 0.2756 0.3346 0.3699 0.3592 0.3617
t358 0.2185 0.2106 0.1938 0.1853 0.1899 0.1762 0.1723 0.1140 0.2037 0.2466
t359 0.0147 0.0383 0.0359 0.1613 0.1710 0.1400 0.1648 0.1816 0.1477 0.1678
t360 0.1591 0.2131 0.2769 0.3146 0.3370 0.3822 0.4105 0.5345 0.5646 0.5760
t361 0.0000 0.0000 0.0000 0.0000 0.1175 0.1175 0.1175 0.2629 0.2310 0.3094
t362 0.0485 0.0689 0.0939 0.0625 0.0887 0.1099 0.1209 0.1199 0.1443 0.1679
t363 0.0639 0.1163 0.1063 0.1474 0.2396 0.2568 0.2360 0.2330 0.3131 0.3093
t364 0.1608 0.2678 0.3701 0.3185 0.3680 0.4968 0.5409 0.6345 0.7086 0.7557
t365 0.1415 0.2783 0.3502 0.3919 0.4977 0.5050 0.4900 0.5286 0.6038 0.5995
t366 0.0759 0.1052 0.1491 0.2033 0.2242 0.2363 0.2247 0.2171 0.2404 0.2862
t367 0.0688 0.1385 0.1506 0.1581 0.1692 0.2291 0.2657 0.2978 0.2971 0.3058
t368 0.1227 0.1671 0.2372 0.2851 0.3234 0.3348 0.3248 0.3254 0.4572 0.5448
t369 0.1178 0.0562 0.0995 0.2480 0.2176 0.1967 0.1935 0.1605 0.3437 0.5781
t370 0.0529 0.0707 0.0691 0.0818 0.0905 0.0815 0.0646 0.0545 0.0620 0.0664
t371 0.0243 0.0211 0.0195 0.0353 0.0339 0.0333 0.0336 0.0331 0.0325 0.0329
t372 0.0766 0.0993 0.1042 0.1209 0.1440 0.1411 0.1565 0.1413 0.1935 0.1993
t373 0.0309 0.0811 0.1351 0.3364 0.3475 0.3524 0.3963 0.3931 0.3809 0.3767
t374 0.0978 0.1450 0.1988 0.2170 0.2784 0.3211 0.3526 0.3571 0.3800 0.4149
t375 0.0203 0.1411 0.1961 0.1987 0.2237 0.2348 0.3179 0.3481 0.3695 0.3589
t376 0.0333 0.0293 0.0226 0.0273 0.0322 0.0540 0.0642 0.0727 0.0673 0.0568
t377 0.0917 0.2899 0.2938 0.2904 0.2974 0.3470 0.3834 0.3779 0.4118 0.4489
t378 0.0112 0.0179 0.0244 0.0403 0.0340 0.0444 0.0385 0.0380 0.0425 0.0478
t379 0.0851 0.0738 0.0684 0.1067 0.1240 0.1053 0.1033 0.1008 0.0828 0.2453
t380 0.0555 0.0453 0.0429 0.0406 0.0395 0.0660 0.0374 0.0358 0.1584 0.2084
t381 0.0381 0.0390 0.0380 0.0443 0.0311 0.0456 0.0662 0.1149 0.1012 0.1383
t382 0.2179 0.3511 0.3879 0.3778 0.4520 0.5052 0.5005 0.5484 0.5471 0.5926
t383 0.0548 0.0524 0.0860 0.1211 0.1319 0.1365 0.1297 0.1246 0.1229 0.1233
t384 0.1159 0.1456 0.1811 0.2253 0.3330 0.4776 0.5088 0.5336 0.5703 0.6050
t385 0.0717 0.1175 0.1647 0.1913 0.2363 0.2941 0.3084 0.3586 0.3788 0.3850
t386 0.0000 0.0677 0.0619 0.0594 0.0827 0.0807 0.0642 0.0921 0.1235 0.1337
t387 0.1130 0.1112 0.2213 0.2493 0.2584 0.3122 0.3857 0.4407 0.4464 0.4443
t388 0.0222 0.0336 0.1652 0.1618 0.1894 0.1810 0.1843 0.1910 0.2212 0.1964
t389 0.0238 0.0238 0.0329 0.0383 0.0518 0.0516 0.0556 0.0515 0.0578 0.0678
t390 0.0442 0.0703 0.0681 0.1229 0.1243 0.0990 0.0926 0.0982 0.1328 0.1783
t391 0.0299 0.0357 0.0500 0.0921 0.1072 0.1003 0.1105 0.1060 0.1095 0.1088
t392 0.1510 0.3155 0.3412 0.3920 0.4846 0.6112 0.6247 0.6926 0.7473 0.7707
t393 0.0147 0.0072 0.0068 0.0000 0.0000 0.0000 0.0100 0.0162 0.0844 0.1226
t394 0.0645 0.0413 0.0227 0.0216 0.0571 0.0560 0.0555 0.0388 0.0380 0.0374
t395 0.0806 0.1468 0.1648 0.2032 0.2533 0.2929 0.3087 0.3425 0.3572 0.3655
t396 0.0179 0.1216 0.1809 0.2728 0.2919 0.3515 0.3533 0.3561 0.3638 0.4019
t397 0.0000 0.1522 0.1205 0.1239 0.2172 0.2242 0.2234 0.2077 0.2662 0.3376
t398 0.0090 0.0183 0.0310 0.0298 0.0298 0.0422 0.0583 0.0499 0.0540 0.0498
t399 0.0719 0.1148 0.1134 0.1197 0.1569 0.1730 0.1761 0.1944 0.2037 0.2067
t400 0.0700 0.1580 0.2616 0.3349 0.3820 0.4563 0.4868 0.5412 0.5909 0.6255

Table 6.10: Measure: nDCG; Stoplist: INDRI; Stemmer: PORTERSTEM; Model: TF-IDF.

98

BM25 - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.3781

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0290 0.2215 0.3224 0.3112 0.3487 0.3958 0.4759 0.4955 0.5276 0.5496
t352 0.0558 0.0685 0.0613 0.0575 0.0895 0.0994 0.1077 0.1038 0.1171 0.1236
t353 0.1499 0.1862 0.1961 0.1919 0.1952 0.2522 0.3027 0.3839 0.4038 0.4577
t354 0.0740 0.0794 0.0999 0.1209 0.1499 0.1817 0.2234 0.2587 0.2673 0.2783
t355 0.2095 0.2565 0.2255 0.2131 0.2050 0.2507 0.3299 0.3639 0.3603 0.3590
t356 0.0000 0.0000 0.0440 0.0833 0.0811 0.0804 0.0798 0.0743 0.0680 0.0638
t357 0.0973 0.1885 0.2223 0.2889 0.3329 0.4287 0.5231 0.5712 0.5740 0.5739
t358 0.1903 0.1844 0.1847 0.2368 0.2517 0.2491 0.2468 0.2354 0.2694 0.3452
t359 0.0190 0.0406 0.0152 0.1703 0.1991 0.1532 0.1521 0.1691 0.1731 0.1939
t360 0.1670 0.2263 0.2952 0.3147 0.3444 0.3740 0.4311 0.5741 0.6218 0.6512
t361 0.0000 0.0000 0.0000 0.0000 0.1483 0.1483 0.1483 0.3567 0.3495 0.4410
t362 0.0525 0.0984 0.1219 0.1176 0.1787 0.2280 0.2846 0.3105 0.3456 0.3401
t363 0.1295 0.2027 0.1988 0.2272 0.2835 0.2912 0.2770 0.2880 0.3539 0.3047
t364 0.1608 0.2779 0.3214 0.3192 0.3778 0.5039 0.5583 0.6527 0.7772 0.8267
t365 0.2032 0.3732 0.4592 0.5540 0.6542 0.6654 0.6615 0.7457 0.8605 0.8783
t366 0.1063 0.1832 0.2703 0.3802 0.4372 0.4614 0.4664 0.4538 0.5280 0.5663
t367 0.0682 0.1460 0.1509 0.1538 0.1663 0.2293 0.2583 0.2934 0.2934 0.3021
t368 0.1143 0.1481 0.2374 0.2966 0.3352 0.3473 0.3435 0.3431 0.4395 0.5870
t369 0.1178 0.0562 0.0995 0.2480 0.2236 0.2008 0.1970 0.1619 0.3443 0.5818
t370 0.0679 0.0881 0.0779 0.0955 0.1074 0.1077 0.1111 0.1224 0.1250 0.1199
t371 0.0371 0.0302 0.0274 0.0625 0.0593 0.0422 0.0599 0.0765 0.0750 0.0561
t372 0.1134 0.1390 0.1887 0.2145 0.2287 0.2277 0.2409 0.2397 0.3118 0.3080
t373 0.0469 0.2112 0.2816 0.5232 0.5043 0.5221 0.5644 0.5597 0.5954 0.6043
t374 0.1177 0.1798 0.2584 0.2809 0.3616 0.4121 0.4506 0.4812 0.5105 0.5668
t375 0.0267 0.1696 0.2537 0.2787 0.3137 0.3519 0.4245 0.4380 0.4786 0.4736
t376 0.0751 0.0718 0.0777 0.1047 0.1220 0.1529 0.1928 0.2024 0.2204 0.2256
t377 0.0917 0.2422 0.2307 0.2247 0.2213 0.2552 0.2778 0.3704 0.4536 0.4292
t378 0.0199 0.0350 0.0617 0.0762 0.0893 0.0998 0.1038 0.1034 0.1088 0.1157
t379 0.1638 0.1638 0.1638 0.2671 0.2671 0.2671 0.2671 0.2671 0.3254 0.4826
t380 0.1374 0.0979 0.0916 0.0827 0.0827 0.1163 0.1093 0.1084 0.2896 0.4246
t381 0.0470 0.0413 0.0534 0.0645 0.0625 0.0768 0.0969 0.1317 0.1296 0.2659
t382 0.2179 0.3784 0.4898 0.4703 0.5777 0.6421 0.6600 0.6913 0.7050 0.7635
t383 0.0358 0.0627 0.0763 0.1192 0.1062 0.1146 0.1124 0.1194 0.1345 0.1352
t384 0.1156 0.1519 0.2067 0.2545 0.3315 0.4853 0.5261 0.5534 0.6352 0.6840
t385 0.1141 0.2183 0.2903 0.3485 0.3980 0.4707 0.5046 0.5707 0.5739 0.5784
t386 0.0000 0.0933 0.0866 0.0853 0.1013 0.0822 0.0965 0.1500 0.1616 0.1872
t387 0.1325 0.1420 0.2691 0.2984 0.3241 0.3796 0.4550 0.5467 0.5646 0.5663
t388 0.0433 0.0925 0.1764 0.1890 0.2580 0.2628 0.2710 0.2628 0.3307 0.3356
t389 0.0190 0.0331 0.0639 0.0557 0.0663 0.0651 0.0563 0.0551 0.0546 0.0663
t390 0.0161 0.0754 0.1003 0.1557 0.1541 0.1548 0.1530 0.1660 0.2008 0.2439
t391 0.0304 0.0362 0.0542 0.0914 0.1224 0.1219 0.1361 0.1349 0.1479 0.1412
t392 0.0778 0.1635 0.2036 0.2150 0.2751 0.3119 0.3098 0.3379 0.3696 0.3745
t393 0.0987 0.0703 0.0683 0.0651 0.0648 0.0622 0.0804 0.0932 0.1487 0.1837
t394 0.2348 0.1469 0.1775 0.1676 0.2174 0.2277 0.2156 0.2128 0.1882 0.1533
t395 0.0881 0.1378 0.1632 0.2090 0.2648 0.3198 0.3444 0.3737 0.3923 0.4078
t396 0.0285 0.1761 0.2314 0.3238 0.3645 0.4271 0.4362 0.4467 0.4549 0.4855
t397 0.0000 0.0000 0.0000 0.0000 0.0220 0.0202 0.0188 0.0362 0.0521 0.1182
t398 0.0100 0.0104 0.0135 0.0093 0.0176 0.0330 0.0281 0.0276 0.0400 0.0433
t399 0.1066 0.1154 0.1359 0.1370 0.1381 0.1636 0.1555 0.1661 0.1777 0.2226
t400 0.0909 0.1951 0.3042 0.3830 0.4432 0.5200 0.5635 0.6231 0.6667 0.7154

Table 6.11: Measure: nDCG; Stoplist: INDRI; Stemmer: NOSTEM; Model: BM25.

99

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.2813

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0507 0.1342 0.2228 0.2192 0.2420 0.2677 0.3017 0.2999 0.3233 0.3419
t352 0.0195 0.0273 0.0248 0.0190 0.0293 0.0301 0.0271 0.0263 0.0293 0.0327
t353 0.0658 0.0836 0.0912 0.1668 0.1483 0.1862 0.2147 0.2990 0.3016 0.3411
t354 0.0586 0.0674 0.0816 0.0952 0.1163 0.1376 0.1836 0.2259 0.2341 0.2380
t355 0.1148 0.1730 0.1697 0.1663 0.1553 0.2013 0.2682 0.2811 0.2694 0.2661
t356 0.0000 0.0000 0.0185 0.0397 0.0386 0.0382 0.0375 0.0364 0.0198 0.0192
t357 0.0752 0.1539 0.1721 0.2201 0.2609 0.3307 0.4068 0.4526 0.4515 0.4584
t358 0.1629 0.1509 0.1448 0.1667 0.1844 0.1764 0.1748 0.1499 0.1767 0.2515
t359 0.0147 0.0487 0.0121 0.0901 0.0980 0.0768 0.0903 0.1039 0.0989 0.1080
t360 0.1580 0.2116 0.2826 0.2900 0.3079 0.3405 0.3894 0.4988 0.5281 0.5572
t361 0.0000 0.0000 0.0000 0.0000 0.1175 0.1175 0.1175 0.2451 0.2195 0.2905
t362 0.0392 0.0583 0.0547 0.0526 0.0871 0.1121 0.1324 0.1415 0.1577 0.1619
t363 0.0818 0.1439 0.1277 0.1566 0.3473 0.3628 0.3579 0.3736 0.4939 0.4710
t364 0.1608 0.2793 0.3779 0.3230 0.3719 0.5026 0.5581 0.6544 0.7268 0.7750
t365 0.1421 0.2787 0.3550 0.3968 0.4957 0.5016 0.4867 0.5242 0.6019 0.5997
t366 0.0775 0.1049 0.1489 0.1911 0.2173 0.2265 0.2243 0.2165 0.2437 0.3102
t367 0.0688 0.1391 0.1510 0.1584 0.1694 0.2293 0.2660 0.2979 0.2974 0.3061
t368 0.1210 0.1530 0.2316 0.2862 0.3134 0.3252 0.3198 0.3191 0.4236 0.5589
t369 0.1178 0.0562 0.0995 0.2480 0.2176 0.1967 0.1935 0.1605 0.3437 0.5781
t370 0.0502 0.0686 0.0665 0.0769 0.0910 0.0855 0.0794 0.0753 0.0778 0.0800
t371 0.0258 0.0223 0.0207 0.0373 0.0356 0.0350 0.0514 0.0505 0.0497 0.0505
t372 0.0918 0.0772 0.0950 0.1011 0.1141 0.1110 0.1287 0.1254 0.1584 0.1665
t373 0.0397 0.0952 0.1171 0.3082 0.3334 0.3271 0.3733 0.3693 0.3798 0.3669
t374 0.1066 0.1697 0.2413 0.2576 0.3104 0.3635 0.3935 0.4034 0.4183 0.4689
t375 0.0203 0.1405 0.1925 0.1949 0.2197 0.2308 0.3163 0.3483 0.3670 0.3582
t376 0.0394 0.0303 0.0233 0.0281 0.0378 0.0594 0.0701 0.0834 0.0786 0.0729
t377 0.0917 0.2237 0.2165 0.2008 0.1973 0.2126 0.2341 0.2792 0.3336 0.3325
t378 0.0111 0.0179 0.0292 0.0397 0.0286 0.0390 0.0379 0.0374 0.0420 0.0423
t379 0.1638 0.1638 0.1638 0.2671 0.2671 0.2671 0.2671 0.2671 0.3254 0.4939
t380 0.0592 0.0475 0.0453 0.0431 0.0415 0.0685 0.0668 0.0375 0.0856 0.1216
t381 0.0405 0.0252 0.0362 0.0472 0.0234 0.0249 0.0527 0.1252 0.0928 0.1315
t382 0.2179 0.3419 0.3676 0.3646 0.4454 0.4985 0.4852 0.5113 0.4958 0.5402
t383 0.0359 0.0596 0.0863 0.1012 0.0883 0.1011 0.1016 0.1109 0.1098 0.1113
t384 0.1124 0.1448 0.1748 0.2187 0.3292 0.4716 0.5035 0.5286 0.5893 0.6193
t385 0.0646 0.1110 0.1393 0.1590 0.2015 0.2425 0.2532 0.2836 0.2810 0.2937
t386 0.0000 0.0601 0.0557 0.0392 0.0683 0.0665 0.0359 0.0682 0.0999 0.0813
t387 0.1148 0.1122 0.2240 0.2498 0.2693 0.3125 0.3763 0.4388 0.4402 0.4281
t388 0.0366 0.0681 0.1914 0.2012 0.2522 0.2596 0.2678 0.2820 0.3367 0.2917
t389 0.0131 0.0201 0.0156 0.0187 0.0278 0.0307 0.0310 0.0275 0.0242 0.0313
t390 0.0201 0.0442 0.0624 0.0678 0.0727 0.0728 0.0726 0.0723 0.0842 0.1335
t391 0.0299 0.0357 0.0500 0.0921 0.1072 0.1003 0.1105 0.1060 0.1095 0.1088
t392 0.0726 0.1641 0.1778 0.1884 0.2672 0.3055 0.3032 0.3295 0.3611 0.3400
t393 0.0305 0.0199 0.0183 0.0094 0.0090 0.0088 0.0167 0.0232 0.0900 0.1280
t394 0.0942 0.0669 0.0794 0.0765 0.0952 0.0920 0.0697 0.0856 0.0493 0.0482
t395 0.0805 0.1467 0.1648 0.2032 0.2530 0.2930 0.3059 0.3425 0.3570 0.3656
t396 0.0186 0.1303 0.1771 0.2633 0.2903 0.3422 0.3504 0.3545 0.3535 0.3877
t397 0.0000 0.0000 0.0000 0.0000 0.0143 0.0138 0.0134 0.0132 0.0343 0.0540
t398 0.0097 0.0093 0.0088 0.0084 0.0119 0.0253 0.0202 0.0199 0.0237 0.0235
t399 0.0437 0.0638 0.0729 0.0865 0.1094 0.1086 0.1061 0.1108 0.1146 0.1419
t400 0.0724 0.1537 0.2609 0.3297 0.3558 0.4321 0.4625 0.5149 0.5529 0.5844

Table 6.12: Measure: nDCG; Stoplist: INDRI; Stemmer: NOSTEM; Model: TF-IDF.

100

BM25 - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.3951

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0385 0.2777 0.3705 0.3656 0.3974 0.4413 0.5309 0.5673 0.6021 0.6217
t352 0.0535 0.0636 0.0558 0.0566 0.0816 0.0996 0.1053 0.1036 0.1177 0.1242
t353 0.1187 0.1477 0.1724 0.1783 0.1865 0.2415 0.2713 0.3543 0.3756 0.4427
t354 0.0830 0.1229 0.1542 0.1740 0.2077 0.2452 0.2826 0.3085 0.3092 0.3141
t355 0.2424 0.2956 0.2615 0.2502 0.2458 0.2913 0.4210 0.4311 0.4183 0.4072
t356 0.0000 0.0000 0.0456 0.0808 0.0789 0.0789 0.0781 0.0737 0.0680 0.0640
t357 0.0920 0.1901 0.2200 0.2835 0.3258 0.4382 0.5260 0.5726 0.5735 0.5764
t358 0.2608 0.2567 0.2717 0.3210 0.3441 0.3422 0.3393 0.3256 0.3825 0.4769
t359 0.0163 0.0143 0.0133 0.0960 0.1185 0.1126 0.1109 0.1380 0.1532 0.1679
t360 0.1442 0.1891 0.2610 0.2898 0.3115 0.3464 0.3661 0.5279 0.5566 0.5822
t361 0.0000 0.0000 0.0000 0.0000 0.1483 0.1483 0.1483 0.3670 0.3670 0.4848
t362 0.0607 0.1125 0.1374 0.1287 0.1992 0.2596 0.2961 0.3103 0.3191 0.3127
t363 0.1877 0.1408 0.1294 0.1723 0.2023 0.2179 0.1937 0.2059 0.2418 0.1808
t364 0.1608 0.2704 0.3089 0.2968 0.3501 0.4882 0.5331 0.6274 0.7430 0.7917
t365 0.2032 0.3757 0.4573 0.5506 0.6532 0.6630 0.6551 0.7384 0.8662 0.8826
t366 0.1489 0.2334 0.3482 0.4745 0.5730 0.6039 0.6289 0.6259 0.6719 0.7186
t367 0.0695 0.1432 0.1499 0.1512 0.1635 0.2312 0.2600 0.2953 0.2949 0.3037
t368 0.1116 0.1612 0.2479 0.3158 0.3697 0.3837 0.3786 0.3768 0.4898 0.5937
t369 0.1178 0.0521 0.0988 0.2586 0.2285 0.2042 0.1998 0.1633 0.3463 0.5824
t370 0.0756 0.0915 0.0801 0.1078 0.1232 0.1226 0.1195 0.1258 0.1415 0.1368
t371 0.0353 0.0000 0.0000 0.0360 0.0188 0.0185 0.0364 0.0532 0.0523 0.0344
t372 0.1464 0.1824 0.2262 0.2703 0.3009 0.2838 0.2996 0.2983 0.3854 0.3928
t373 0.0262 0.2012 0.2829 0.5065 0.5197 0.5386 0.5744 0.5717 0.5962 0.5978
t374 0.1145 0.1622 0.2340 0.2444 0.3140 0.3564 0.3959 0.4249 0.4587 0.5168
t375 0.0256 0.1740 0.2579 0.2774 0.3145 0.3502 0.4121 0.4268 0.4599 0.4500
t376 0.0697 0.0678 0.0638 0.0959 0.1128 0.1470 0.1722 0.1740 0.1875 0.2058
t377 0.0917 0.3476 0.3436 0.3456 0.3741 0.4198 0.4645 0.5329 0.6157 0.6527
t378 0.0192 0.0341 0.0559 0.0749 0.0873 0.0876 0.0966 0.0958 0.1009 0.1027
t379 0.0952 0.0808 0.0741 0.1146 0.1310 0.1120 0.1100 0.1066 0.0880 0.2500
t380 0.1063 0.0795 0.0743 0.0704 0.0704 0.0998 0.0964 0.0944 0.3235 0.4890
t381 0.0441 0.0420 0.0660 0.0832 0.0797 0.1032 0.0962 0.1308 0.1289 0.2659
t382 0.2179 0.3914 0.5152 0.5022 0.5951 0.6553 0.6887 0.7505 0.7684 0.8233
t383 0.0508 0.0614 0.0842 0.1186 0.1280 0.1269 0.1243 0.1195 0.1170 0.1139
t384 0.1153 0.1500 0.2063 0.2545 0.3286 0.4815 0.5205 0.5466 0.6149 0.6584
t385 0.1013 0.2294 0.3106 0.3631 0.4012 0.4790 0.5192 0.5850 0.6140 0.6171
t386 0.0000 0.1048 0.0879 0.1062 0.1364 0.1307 0.1463 0.2624 0.2749 0.2335
t387 0.1271 0.1324 0.2558 0.2941 0.3094 0.3755 0.4585 0.5537 0.5712 0.5674
t388 0.0243 0.0612 0.1680 0.1564 0.1647 0.1639 0.1555 0.1596 0.1676 0.1809
t389 0.0504 0.0569 0.0749 0.0849 0.1085 0.1158 0.1230 0.1183 0.1335 0.1468
t390 0.0505 0.1219 0.0978 0.1687 0.1765 0.1707 0.1676 0.1693 0.2249 0.2523
t391 0.0299 0.0355 0.0439 0.0927 0.1139 0.1165 0.1207 0.1261 0.1300 0.1360
t392 0.1729 0.3415 0.3841 0.4376 0.5280 0.6230 0.6363 0.7066 0.7640 0.8070
t393 0.0576 0.0395 0.0383 0.0348 0.0344 0.0304 0.0469 0.0566 0.1149 0.1397
t394 0.1958 0.1194 0.1265 0.1136 0.1773 0.2305 0.2287 0.2251 0.2484 0.2445
t395 0.0876 0.1415 0.1728 0.2116 0.2702 0.3157 0.3431 0.3737 0.3810 0.3993
t396 0.0328 0.1762 0.2318 0.3166 0.3572 0.4200 0.4360 0.4464 0.4577 0.4906
t397 0.0000 0.0317 0.0445 0.0422 0.1100 0.1148 0.1231 0.1357 0.1231 0.1177
t398 0.0091 0.0223 0.0350 0.0337 0.0390 0.0553 0.0638 0.0585 0.0706 0.0627
t399 0.1161 0.1610 0.1496 0.1725 0.1749 0.2175 0.2161 0.2298 0.2454 0.2925
t400 0.0869 0.1978 0.3133 0.4001 0.4668 0.5558 0.5986 0.6508 0.6920 0.7500

Table 6.13: Measure: nDCG; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: BM25.

101

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.2899

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0410 0.1644 0.2785 0.2671 0.2722 0.2971 0.3428 0.3521 0.3669 0.3865
t352 0.0185 0.0220 0.0160 0.0159 0.0212 0.0264 0.0231 0.0225 0.0249 0.0281
t353 0.0712 0.0832 0.0912 0.1387 0.1275 0.1662 0.1896 0.2644 0.2674 0.2984
t354 0.0842 0.0977 0.1147 0.1285 0.1510 0.1824 0.2227 0.2480 0.2488 0.2559
t355 0.1334 0.1579 0.1665 0.1537 0.1445 0.1940 0.2681 0.2764 0.2721 0.2673
t356 0.0000 0.0000 0.0210 0.0420 0.0406 0.0404 0.0397 0.0382 0.0374 0.0366
t357 0.0575 0.1215 0.1349 0.1881 0.2090 0.2630 0.3216 0.3574 0.3550 0.3519
t358 0.1987 0.1668 0.1545 0.1682 0.1800 0.1735 0.1740 0.1255 0.2252 0.2901
t359 0.0137 0.0374 0.0240 0.1759 0.1978 0.1845 0.1833 0.2000 0.1361 0.1619
t360 0.1509 0.2019 0.2660 0.2999 0.3200 0.3602 0.3966 0.5209 0.5503 0.5626
t361 0.0000 0.0000 0.0000 0.0000 0.1175 0.1175 0.1175 0.2720 0.2268 0.2971
t362 0.0490 0.0708 0.0958 0.0636 0.0971 0.1093 0.1179 0.1073 0.1320 0.1561
t363 0.0664 0.1173 0.1075 0.1476 0.2108 0.2272 0.2164 0.2212 0.3062 0.2834
t364 0.1608 0.2704 0.3627 0.3173 0.3631 0.4906 0.5339 0.6303 0.7030 0.7498
t365 0.0989 0.2549 0.3325 0.3741 0.4816 0.4889 0.4732 0.5014 0.5848 0.5750
t366 0.0933 0.1483 0.1924 0.2449 0.2783 0.2766 0.2720 0.2661 0.2908 0.3146
t367 0.0502 0.1294 0.1447 0.1547 0.1709 0.2313 0.2686 0.3011 0.3009 0.3098
t368 0.1222 0.1664 0.2352 0.2810 0.3136 0.3234 0.3135 0.3153 0.4469 0.5081
t369 0.1178 0.0521 0.0999 0.2457 0.2203 0.2003 0.1925 0.1612 0.3436 0.5783
t370 0.0520 0.0703 0.0690 0.0803 0.0940 0.0902 0.0863 0.0762 0.0827 0.0844
t371 0.0247 0.0215 0.0198 0.0359 0.0344 0.0337 0.0339 0.0333 0.0327 0.0324
t372 0.0613 0.0830 0.0939 0.1132 0.1351 0.1330 0.1535 0.1315 0.1819 0.1811
t373 0.0309 0.0898 0.2043 0.3681 0.3822 0.3804 0.4306 0.4173 0.3908 0.3758
t374 0.0969 0.1448 0.1952 0.2084 0.2648 0.3072 0.3324 0.3401 0.3645 0.4050
t375 0.0199 0.1268 0.1723 0.1873 0.1978 0.2177 0.2963 0.3335 0.3530 0.3445
t376 0.0322 0.0236 0.0218 0.0262 0.0312 0.0477 0.0527 0.0560 0.0603 0.0496
t377 0.0917 0.2874 0.2919 0.2888 0.2952 0.3394 0.3665 0.3693 0.4117 0.4459
t378 0.0111 0.0126 0.0239 0.0393 0.0330 0.0382 0.0372 0.0319 0.0315 0.0263
t379 0.0873 0.0753 0.0695 0.1082 0.1256 0.1069 0.1049 0.1020 0.1004 0.2462
t380 0.0585 0.0000 0.0000 0.0000 0.0000 0.0396 0.0387 0.0371 0.1464 0.1956
t381 0.0385 0.0388 0.0376 0.0444 0.0310 0.0455 0.0655 0.1017 0.1002 0.1346
t382 0.2179 0.2948 0.3645 0.3513 0.4232 0.4777 0.4741 0.5160 0.5104 0.5540
t383 0.0589 0.0638 0.0860 0.1164 0.1291 0.1335 0.1235 0.1115 0.1105 0.1105
t384 0.1118 0.1435 0.1741 0.2189 0.3248 0.4615 0.4925 0.5170 0.5768 0.5874
t385 0.0679 0.1103 0.1544 0.1821 0.2218 0.2632 0.2823 0.3459 0.3641 0.3707
t386 0.0000 0.0675 0.0615 0.0769 0.1013 0.0847 0.0827 0.0903 0.1211 0.1317
t387 0.1207 0.1194 0.2293 0.2481 0.2676 0.3158 0.3849 0.4473 0.4521 0.4444
t388 0.0234 0.0335 0.1546 0.1512 0.1782 0.1724 0.1680 0.1655 0.1828 0.1824
t389 0.0233 0.0235 0.0351 0.0375 0.0538 0.0565 0.0579 0.0568 0.0625 0.0695
t390 0.0442 0.0622 0.0604 0.1138 0.1110 0.0932 0.0826 0.0963 0.1352 0.1749
t391 0.0294 0.0350 0.0428 0.0836 0.0919 0.0945 0.0980 0.0971 0.0945 0.1003
t392 0.1692 0.3294 0.3665 0.4154 0.5006 0.6101 0.6237 0.6899 0.7449 0.7455
t393 0.0143 0.0070 0.0066 0.0000 0.0000 0.0000 0.0075 0.0074 0.0750 0.1054
t394 0.0639 0.0412 0.0227 0.0217 0.0571 0.0561 0.0554 0.0545 0.0535 0.0370
t395 0.0800 0.1340 0.1551 0.1882 0.2377 0.2778 0.2971 0.3327 0.3443 0.3467
t396 0.0188 0.1293 0.1818 0.2623 0.2999 0.3601 0.3758 0.3716 0.3803 0.4150
t397 0.0000 0.1477 0.1011 0.1137 0.2019 0.2080 0.2154 0.2005 0.2850 0.3384
t398 0.0088 0.0182 0.0313 0.0300 0.0299 0.0428 0.0529 0.0482 0.0521 0.0515
t399 0.0720 0.1123 0.1115 0.1176 0.1587 0.1719 0.1745 0.1918 0.1909 0.2081
t400 0.0643 0.1516 0.2516 0.3215 0.3660 0.4345 0.4676 0.5276 0.5531 0.5885

Table 6.14: Measure: nDCG; Stoplist: NOSTOP; Stemmer: PORTERSTEM; Model: TF-IDF.

102

BM25 - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.3757

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0286 0.2176 0.3113 0.2989 0.3452 0.3919 0.4690 0.4886 0.5175 0.5380
t352 0.0538 0.0638 0.0586 0.0567 0.0819 0.0997 0.1054 0.1037 0.1177 0.1241
t353 0.1483 0.1783 0.1909 0.1779 0.1852 0.2352 0.2685 0.3612 0.3822 0.4518
t354 0.0754 0.0798 0.1005 0.1255 0.1539 0.1917 0.2294 0.2667 0.2773 0.2839
t355 0.2133 0.2738 0.2318 0.2282 0.2221 0.2609 0.3453 0.3698 0.3671 0.3657
t356 0.0000 0.0000 0.0525 0.0895 0.0865 0.0865 0.0853 0.0789 0.0713 0.0663
t357 0.0947 0.1811 0.2082 0.2796 0.3252 0.4167 0.5192 0.5692 0.5692 0.5670
t358 0.1925 0.1811 0.1829 0.2316 0.2479 0.2448 0.2435 0.2331 0.2687 0.3343
t359 0.0184 0.0404 0.0148 0.1119 0.1407 0.1211 0.1171 0.1467 0.1764 0.1987
t360 0.1655 0.2235 0.2928 0.3220 0.3552 0.3848 0.4253 0.5699 0.6100 0.6386
t361 0.0000 0.0000 0.0000 0.0000 0.1483 0.1483 0.1483 0.3567 0.3495 0.4396
t362 0.0530 0.1047 0.1265 0.1223 0.1788 0.2328 0.2702 0.3034 0.3278 0.3128
t363 0.1295 0.2047 0.1996 0.2315 0.2873 0.2974 0.2820 0.2927 0.3592 0.3098
t364 0.1608 0.2854 0.3177 0.3019 0.3546 0.4942 0.5500 0.6460 0.7599 0.8092
t365 0.2032 0.3757 0.4646 0.5580 0.6578 0.6675 0.6588 0.7461 0.8722 0.8885
t366 0.1081 0.1832 0.2748 0.3812 0.4462 0.4702 0.4765 0.4669 0.5335 0.5763
t367 0.0695 0.1453 0.1509 0.1518 0.1640 0.2316 0.2605 0.2957 0.2952 0.3040
t368 0.1143 0.1475 0.2393 0.2937 0.3344 0.3449 0.3423 0.3421 0.4393 0.5837
t369 0.1178 0.0521 0.0988 0.2586 0.2285 0.2042 0.1998 0.1633 0.3463 0.5824
t370 0.0718 0.0906 0.0760 0.0915 0.1084 0.1112 0.1136 0.1246 0.1375 0.1347
t371 0.0371 0.0000 0.0000 0.0368 0.0194 0.0190 0.0605 0.0771 0.0755 0.0564
t372 0.1224 0.1485 0.1946 0.2260 0.2721 0.2788 0.2820 0.2570 0.3238 0.3125
t373 0.0480 0.2113 0.3009 0.5431 0.5362 0.5522 0.5872 0.5836 0.6178 0.6224
t374 0.1174 0.1750 0.2541 0.2738 0.3562 0.4041 0.4398 0.4677 0.4950 0.5442
t375 0.0259 0.1743 0.2582 0.2776 0.3147 0.3502 0.4199 0.4286 0.4619 0.4508
t376 0.0799 0.0724 0.0680 0.1003 0.1226 0.1536 0.1946 0.1876 0.1997 0.2184
t377 0.0917 0.2418 0.2304 0.2245 0.2211 0.2550 0.2774 0.3690 0.4448 0.4300
t378 0.0194 0.0341 0.0512 0.0747 0.0874 0.0879 0.0968 0.0960 0.1014 0.1082
t379 0.1638 0.1638 0.1638 0.2671 0.2671 0.2671 0.2671 0.2671 0.3254 0.4939
t380 0.1374 0.0979 0.0979 0.0867 0.0979 0.1307 0.1186 0.1179 0.2902 0.4443
t381 0.0472 0.0413 0.0536 0.0649 0.0519 0.0777 0.0975 0.1526 0.1622 0.2583
t382 0.2179 0.3771 0.4956 0.4743 0.5685 0.6364 0.6539 0.6868 0.7000 0.7563
t383 0.0358 0.0625 0.0760 0.1143 0.1017 0.1098 0.1073 0.1146 0.1288 0.1361
t384 0.1157 0.1519 0.2014 0.2458 0.3232 0.4746 0.5138 0.5421 0.6292 0.6788
t385 0.1116 0.2087 0.2826 0.3435 0.3916 0.4637 0.4991 0.5632 0.5748 0.5740
t386 0.0000 0.0887 0.0833 0.0819 0.0977 0.0795 0.0790 0.1521 0.1586 0.1835
t387 0.1385 0.1436 0.2759 0.3053 0.3300 0.3858 0.4586 0.5552 0.5678 0.5694
t388 0.0410 0.0873 0.1838 0.1976 0.2614 0.2666 0.2690 0.2600 0.3198 0.3263
t389 0.0188 0.0307 0.0614 0.0533 0.0608 0.0619 0.0596 0.0526 0.0550 0.0676
t390 0.0159 0.0750 0.1008 0.1461 0.1561 0.1530 0.1547 0.1675 0.2062 0.2355
t391 0.0299 0.0355 0.0439 0.0896 0.1139 0.1165 0.1207 0.1261 0.1300 0.1360
t392 0.0778 0.1571 0.1845 0.1954 0.2696 0.3066 0.3047 0.3318 0.3633 0.3690
t393 0.0981 0.0684 0.0667 0.0636 0.0633 0.0613 0.0754 0.0874 0.1435 0.1779
t394 0.2300 0.1434 0.1945 0.1872 0.2363 0.2370 0.2199 0.2177 0.1926 0.1518
t395 0.0875 0.1414 0.1672 0.2115 0.2701 0.3155 0.3430 0.3736 0.3809 0.3992
t396 0.0422 0.1847 0.2375 0.3287 0.3743 0.4308 0.4406 0.4506 0.4613 0.4928
t397 0.0000 0.0000 0.0000 0.0000 0.0209 0.0197 0.0188 0.0357 0.0518 0.1187
t398 0.0099 0.0104 0.0134 0.0093 0.0134 0.0295 0.0283 0.0278 0.0403 0.0399
t399 0.1066 0.1151 0.1356 0.1325 0.1363 0.1620 0.1522 0.1574 0.1666 0.2170
t400 0.0894 0.1941 0.2982 0.3765 0.4409 0.5176 0.5598 0.6251 0.6559 0.7053

Table 6.15: Measure: nDCG; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: BM25.

103

CHAPTER 6. EXPERIMENTAL EVALUATION

TF-IDF - normalised Discounted Cumulative Gain (nDCG) values w.r.t. Overall nDCG = 0.2724

Topic
Bucket

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

t351 0.0413 0.1213 0.2139 0.2081 0.2319 0.2462 0.2713 0.2812 0.3057 0.3169
t352 0.0186 0.0221 0.0160 0.0159 0.0212 0.0265 0.0257 0.0226 0.0251 0.0281
t353 0.0629 0.0783 0.0824 0.1607 0.1432 0.1799 0.2064 0.2790 0.2816 0.3122
t354 0.0649 0.0762 0.0929 0.1118 0.1344 0.1558 0.2034 0.2476 0.2520 0.2614
t355 0.1312 0.1773 0.1729 0.1682 0.1563 0.2110 0.2749 0.2885 0.2764 0.2732
t356 0.0000 0.0000 0.0211 0.0423 0.0414 0.0406 0.0401 0.0389 0.0376 0.0368
t357 0.0747 0.1604 0.1735 0.2259 0.2578 0.3321 0.4122 0.4545 0.4505 0.4551
t358 0.1800 0.1540 0.1503 0.1684 0.1856 0.1769 0.1756 0.1518 0.1803 0.2566
t359 0.0135 0.0364 0.0115 0.0656 0.0764 0.0725 0.0844 0.0985 0.1066 0.1168
t360 0.1509 0.1995 0.2568 0.2636 0.2829 0.3081 0.3601 0.4556 0.4799 0.4853
t361 0.0000 0.0000 0.0000 0.0000 0.1175 0.1175 0.1175 0.2328 0.2052 0.2741
t362 0.0395 0.0596 0.0744 0.0535 0.0949 0.1106 0.1292 0.1370 0.1542 0.1583
t363 0.0751 0.1382 0.1247 0.1740 0.3022 0.3167 0.3125 0.3291 0.4518 0.4129
t364 0.1608 0.2854 0.3730 0.3230 0.3689 0.4977 0.5535 0.6511 0.7213 0.7692
t365 0.0865 0.2552 0.3413 0.3835 0.4808 0.4874 0.4707 0.5011 0.5979 0.5773
t366 0.0792 0.1247 0.1682 0.2146 0.2448 0.2518 0.2495 0.2324 0.2598 0.2976
t367 0.0502 0.1299 0.1450 0.1550 0.1712 0.2315 0.2689 0.3013 0.3011 0.3100
t368 0.1171 0.1491 0.2280 0.2797 0.3029 0.3144 0.3079 0.3071 0.4160 0.5460
t369 0.1178 0.0521 0.0999 0.2457 0.2203 0.2003 0.1925 0.1612 0.3436 0.5783
t370 0.0550 0.0734 0.0764 0.0831 0.1013 0.0954 0.0937 0.0881 0.0956 0.1010
t371 0.0264 0.0225 0.0208 0.0377 0.0360 0.0353 0.0517 0.0508 0.0499 0.0499
t372 0.0633 0.0666 0.0822 0.0936 0.1066 0.1042 0.1196 0.1152 0.1456 0.1558
t373 0.0441 0.1105 0.1331 0.3171 0.3432 0.3352 0.3740 0.3691 0.3796 0.3763
t374 0.1046 0.1609 0.2303 0.2421 0.2902 0.3346 0.3614 0.3701 0.3878 0.4379
t375 0.0199 0.1269 0.1718 0.1868 0.1965 0.2227 0.2936 0.3277 0.3471 0.3386
t376 0.0331 0.0292 0.0224 0.0269 0.0318 0.0530 0.0674 0.0617 0.0613 0.0602
t377 0.0917 0.2048 0.1976 0.1850 0.1800 0.1948 0.2201 0.2637 0.3094 0.3199
t378 0.0111 0.0126 0.0238 0.0388 0.0279 0.0378 0.0319 0.0315 0.0311 0.0211
t379 0.1638 0.1638 0.1638 0.2671 0.2671 0.2671 0.2671 0.2671 0.3254 0.4939
t380 0.0608 0.0498 0.0471 0.0447 0.0434 0.0696 0.0404 0.0388 0.0829 0.1198
t381 0.0410 0.0254 0.0372 0.0482 0.0241 0.0481 0.0504 0.0914 0.0895 0.1265
t382 0.2179 0.2846 0.3432 0.3384 0.4138 0.4740 0.4525 0.4836 0.4814 0.5238
t383 0.0359 0.0595 0.0853 0.0996 0.0940 0.0958 0.0960 0.1084 0.1113 0.1167
t384 0.1106 0.1436 0.1706 0.2148 0.3222 0.4577 0.4882 0.5131 0.5752 0.6037
t385 0.0595 0.1013 0.1269 0.1454 0.1862 0.2306 0.2442 0.2813 0.2699 0.2663
t386 0.0000 0.0335 0.0318 0.0305 0.0460 0.0302 0.0150 0.0619 0.0520 0.0356
t387 0.1231 0.1205 0.2315 0.2596 0.2675 0.3104 0.3861 0.4216 0.4275 0.4259
t388 0.0375 0.0671 0.1897 0.1998 0.2522 0.2592 0.2669 0.2718 0.3151 0.2790
t389 0.0130 0.0233 0.0152 0.0182 0.0272 0.0269 0.0302 0.0268 0.0235 0.0303
t390 0.0152 0.0438 0.0506 0.0738 0.0730 0.0729 0.0685 0.0732 0.0860 0.1264
t391 0.0294 0.0350 0.0428 0.0836 0.0919 0.0945 0.0980 0.0971 0.0945 0.1003
t392 0.0726 0.1535 0.1722 0.1834 0.2629 0.3002 0.2959 0.3231 0.3541 0.3348
t393 0.0296 0.0191 0.0175 0.0090 0.0087 0.0085 0.0157 0.0219 0.0806 0.1127
t394 0.1205 0.0649 0.0768 0.0721 0.0720 0.0698 0.0664 0.0659 0.0468 0.0455
t395 0.0800 0.1339 0.1496 0.1882 0.2376 0.2778 0.2970 0.3326 0.3442 0.3470
t396 0.0194 0.1305 0.1871 0.2640 0.2959 0.3507 0.3577 0.3613 0.3603 0.3939
t397 0.0000 0.0000 0.0000 0.0000 0.0143 0.0139 0.0135 0.0133 0.0348 0.0878
t398 0.0095 0.0093 0.0088 0.0083 0.0118 0.0293 0.0207 0.0206 0.0281 0.0277
t399 0.0439 0.0652 0.0738 0.0867 0.1272 0.1143 0.1068 0.1285 0.1274 0.1369
t400 0.0644 0.1467 0.2520 0.3142 0.3419 0.4147 0.4348 0.4840 0.5284 0.5570

Table 6.16: Measure: nDCG; Stoplist: NOSTOP; Stemmer: NOSTEM; Model: TF-IDF.

104

6.1. DISCUSSION OF THE EXPERIMENTAL RESULTS

6.1 Discussion of the experimental results

From the experimental results reported in this chapter, we can say with no doubt that the

BM25 retrieval model is better than TF-IDF, according to the evaluation measures considered.

In particular, the previous sixteen tables regards only two evaluation measures: Average

Precision (AP) and normalised Discounted Cumulative Gain (nDCG). Despite these are

different measures, they provide the same information:

1. Both BM25 and TF-IDF achieve better performances if the Porter Stemmer algorithm

is used. Indeed, the best evaluation values obtained are:

• BM25:

– MAP: 0.1631, which is obtained for the couple: (No stoplist, Porter Stemmer).

– Overall nDCG: 0.3951, which is obtained for the couple: (No stoplist, Porter

Stemmer).

• TF-IDF:

– MAP: 0.0868, which is obtained for the couple: (Indri stoplist, Porter Stem-

mer).

– Overall nDCG: 0.2975, which is obtained for the couple: (No stoplist, Porter

Stemmer).

2. The worst results for both BM25 and TF-IDF, are obtained for the couple: (No stoplist,

No stemmer). Indeed, stoplists help to reduce the noise produced by functional words,

such as articles and conjunctions, which usually are considered stop words, since they

do not add any information content. When these words are not removed, the index

size increases and, at the same time, the IR system performance decreases. In practice

the values obtained are:

• BM25:

– MAP: 0.1533.

– Overall nDCG: 0.3757.

• TF-IDF:

– MAP: 0.0791.

– Overall nDCG: 0.2724.

105

CHAPTER 6. EXPERIMENTAL EVALUATION

Besides, from the comparison between BM25 and TF-IDF, we can say that BM25 is better

than TF-IDF not only in terms of MAP and nDCG but for all the evaluation measures available

in AVIATOR. Moreover, from the comparison of all the retrieval models considered (BM25,

TF-IDF, Dirichlet Language Model and Boolean) we can claim that BM25 and Dirichlet

achieve the best performances for the retrieval process. After these models, between TF-IDF

and Boolean the better is TF-IDF.

6.1.1 Topic per topic analysis

The sixteen tables, from 6.1 to 6.16, shows the values of AP and nDCG, obtained for each

topic by the IR systems described in table 6.17. From the evaluation data of these tables, the

following considerations can be drawn:

1. The topics for which the systems obtain low values of AP or nDCG in the first buckets,

i.e. B1,B2,B3, typically will get low values also for B10 (which corresponds to the whole

indexed collection). This information is useful to understand how the system could

evolve as the incremental indexing process advances. In other words, we can make a

prediction about the final values of the evaluation measures, for the considered topic.

For example, if we consider the topic t356, we can see in table 6.5 that this topic gets

low values of AP in the first three buckets
(
B1,B2,B3

)
and then the same occurs for

bucket B10. Besides, if the evaluation data regarding the first three buckets present low

values for many different topics, the system may not use an effective configuration, so

we can stop the AVIATOR job and try a different configuration. However, we have to

keep in mind that this consideration is true in general, but some exceptions may occur.

Indeed, if we consider the topic t361, from the same table 6.5, it gets zero of AP in the

first three buckets, but in bucket B10 it gets 0.269 which is a good result. To reduce the

prediction error, a possible solution consists of indexing all the buckets from B1 to B5

at least. Actually, the value obtained for bucket B5 is, in general, not so far from the

one achieved for bucket B10. This again implies that we can estimate the final value of

a measure, without having to index the whole document collection.

2. The topics for which the systems obtain high values of AP or nDCG in the first three

buckets typically will get high values also for B10. For example, if we consider the topic

t365 in table 6.5, this topic gets high values of AP in the first three buckets
(
B1,B2,B3

)
and then the same occurs for bucket B10.

106

6.1. DISCUSSION OF THE EXPERIMENTAL RESULTS

System Description
S1

(
Indri, Porter stemmer, BM25

)
S2

(
Indri, Porter stemmer, TFIDF

)
S3

(
Indri, No stemmer, BM25

)
S4

(
Indri, No stemmer, TFIDF

)
S5

(
No stoplist, Porter stemmer, BM25

)
S6

(
No stoplist, Porter stemmer, TFIDF

)
S7

(
No stoplist, No stemmer, BM25

)
S8

(
No stoplist, No stemmer, TFIDF

)
Table 6.17: Description of each system S j in terms of stoplist, stemmer and retrieval model.

System
Measure

M AP1 M AP2 M AP3 M AP4 M AP5 M AP6 M AP7 M AP8 M AP9 M AP10

S1
0.0207(
-87%

) 0.0394(
-75%

) 0.0532(
-66%

) 0.0670(
-58%

) 0.0810(
-49%

) 0.0959(
-39%

) 0.1060(
-33%

) 0.1212(
-24%

) 0.1394(
-12%

) 0.1585(
0%

)
S2

0.0124(
-86%

) 0.0232(
-73%

) 0.0314(
-64%

) 0.0376(
-57%

) 0.0465(
-46%

) 0.0561(
-35%

) 0.0595(
-31%

) 0.0664(
-24%

) 0.0766(
-12%

) 0.0868(
0%

)
S3

0.0216(
-86%

) 0.0369(
-76%

) 0.0511(
-67%

) 0.0660(
-58%

) 0.0805(
-48%

) 0.0938(
-40%

) 0.1034(
-33%

) 0.1174(
-24%

) 0.1345(
-13%

) 0.1553(
0%

)
S4

0.0130(
-85%

) 0.0209(
-76%

) 0.0291(
-66%

) 0.0356(
-59%

) 0.0452(
-48%

) 0.0532(
-38%

) 0.0575(
-33%

) 0.0642(
-26%

) 0.0743(
-14%

) 0.0863(
0%

)
S5

0.0215(
-87%

) 0.0402(
-75%

) 0.0550(
-66%

) 0.0702(
-57%

) 0.0847(
-48%

) 0.0997(
-39%

) 0.1093(
-33%

) 0.1252(
-23%

) 0.1436(
-12%

) 0.1631(
0%

)
S6

0.0117(
-86%

) 0.0213(
-74%

) 0.0296(
-64%

) 0.0360(
-56%

) 0.0439(
-46%

) 0.0530(
-35%

) 0.0559(
-31%

) 0.0626(
-23%

) 0.0721(
-11%

) 0.0811(
0%

)
S7

0.0218(
-86%

) 0.0372(
-76%

) 0.0519(
-66%

) 0.0664(
-57%

) 0.0807(
-47%

) 0.0940(
-39%

) 0.1024(
-33%

) 0.1167(
-24%

) 0.1331(
-13%

) 0.1533(
0%

)
S8

0.0124(
-84%

) 0.0192(
-76%

) 0.0273(
-65%

) 0.0335(
-58%

) 0.0417(
-47%

) 0.0494(
-38%

) 0.0531(
-33%

) 0.0592(
-25%

) 0.0686(
-13%

) 0.0791(
0%

)
Table 6.18: MAP for each system S j and bucket Bi .

System
Measure

nDCG1 nDCG2 nDCG3 nDCG4 nDCG5 nDCG6 nDCG7 nDCG8 nDCG9 nDCG10

S1
0.0886(
-77%

) 0.1411(
-64%

) 0.1742(
-55%

) 0.2087(
-47%

) 0.2422(
-38%

) 0.2736(
-30%

) 0.2957(
-24%

) 0.3250(
-17%

) 0.3599(
-8%

) 0.3908(
0%

)
S2

0.0680(
-77%

) 0.1094(
-63%

) 0.1358(
-54%

) 0.1621(
-46%

) 0.1890(
-36%

) 0.2131(
-28%

) 0.2272(
-24%

) 0.2458(
-17%

) 0.2714(
-9%

) 0.2975(
0%

)
S3

0.0870(
-77%

) 0.1341(
-65%

) 0.1681(
-56%

) 0.2028(
-46%

) 0.2334(
-38%

) 0.2608(
-31%

) 0.2818(
-25%

) 0.3101(
-18%

) 0.3459(
-9%

) 0.3781(
0%

)
S4

0.0667(
-76%

) 0.1020(
-64%

) 0.1268(
-55%

) 0.1513(
-46%

) 0.1777(
-37%

) 0.1992(
-29%

) 0.2141(
-24%

) 0.2346(
-17%

) 0.2571(
-9%

) 0.2813(
0%

)
S5

0.0897(
-77%

) 0.1417(
-64%

) 0.1761(
-55%

) 0.2115(
-46%

) 0.2450(
-38%

) 0.2771(
-30%

) 0.2983(
-25%

) 0.3285(
-17%

) 0.3630(
-8%

) 0.3951(
0%

)
S6

0.0664(
-77%

) 0.1052(
-64%

) 0.1326(
-54%

) 0.1591(
-45%

) 0.1859(
-36%

) 0.2089(
-28%

) 0.2236(
-23%

) 0.2416(
-17%

) 0.2673(
-8%

) 0.2899(
0%

)
S7

0.0875(
-77%

) 0.1333(
-65%

) 0.1674(
-55%

) 0.2009(
-47%

) 0.2326(
-38%

) 0.2608(
-31%

) 0.2802(
-25%

) 0.3091(
-18%

) 0.3440(
-8%

) 0.3757(
0%

)
S8

0.0652(
-76%

) 0.0980(
-64%

) 0.1236(
-55%

) 0.1484(
-46%

) 0.1726(
-37%

) 0.1941(
-29%

) 0.2076(
-24%

) 0.2267(
-17%

) 0.2499(
-8%

) 0.2724(
0%

)
Table 6.19: Overall nDCG for each system S j and bucket Bi .

107

CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.2 Overall analysis

The two tables 6.18 and 6.19, report the values of MAP and overall nDCG, obtained for

the IR systems described in table 6.17, by averaging over all the fifty topics considered.

Besides, below each value is reported the GAP% between the value obtained for the bucket

Bi and the one related to bucket B10. From the evaluation data of these tables, the following

considerations can be drawn:

1. The GAP% for the values obtained at bucket B5, which corresponds to half document

collection indexed, is lower than 50% for every system Si considered. This implies that

we can index just half of the document collection to obtain a GAP% of less than 50% of

the final value, related to bucket B10. It is important to notice that this consideration is

true for all the systems considered, no matter the stoplist, stemmer and retrieval model

used. In this way, IR experts can estimate the final value of a measure, without having

to index the whole document collection. The GAP% between the value v for bucket Bi

and the reference value vr , which is the final value for bucket B10, is computed with

the following relation:

GAP% =
∣∣∣∣v − vr

vr

∣∣∣∣×100

According to the relation above, if v = vr we get v − vr = 0 =⇒ GAP% = 0%. This is the

reason why, for bucket B10 the tables indicate GAP% = 0%.

2. The previous consideration is valid both for MAP and overall nDCG. In particular, we

have a GAP% for the values obtained at bucket B5 that is lower than 50% for the MAP

measure while, for the same bucket, we have a GAP% lower than 40% for the overall

nDCG measure. Besides, this observation is true for all the systems considered.

108

C
H

A
P

T
E

R

7
CONCLUSIONS

T
he information retrieval (IR) field has a long history which dates back to the 1950s

when indexing large collections of scientific material was a very important problem

to solve. Nowadays, IR is often associated with web search engines since they have

become the primary source of knowledge used in everyday life. Despite the significant evolu-

tion of this field over the last 20 years, the main purpose of IR has never changed: retrieve the

information that satisfies the user information needs. This is what an information retrieval

system (IRS) does: it takes the information need of a user, expressed as a query, and returns

documents, hopefully relevant, to satisfy the information need inferred by the query. To

continuously improve the effectiveness and the efficiency of IR systems in meeting the

information needs of users, they have become more and more complex. For this reason, a lot

of metrics have been developed, also known as evaluation measures, which make it possible

to evaluate and compare the performances of different IR systems. Besides, the evaluation

measures, in general, do not have the same scale. For example, if we consider the Average

Precision (AP) and the Discounted Cumulative Gain (DCG), the first one is always between

0 and 1 while the second is not. However, what is fundamental for evaluation measures is

that they must be comparable for different IR systems. To be comparable, these measures

require that each system adopts the same test collection  made of:

1. The document collection corpus D .

2. The set of topics (information needs) T .

3. The set of relevance judgements R J , which corresponds to the ground truth or pool.

109

CHAPTER 7. CONCLUSIONS

The document collection chosen for the testing phase of the software developed in this

thesis is the TIPSTER, a collection of over 528 000 documents, created at NIST. Besides, the

set of topics T considered, consists of fifty topics, from 351 to 400, chosen from TREC7.

This is the same evaluation campaign from which comes the pool file. The purpose of the

evaluation process, as the name suggests, consists of evaluating IR systems, to improve

them and to have a deeper understanding of their functioning, limits and strong points. In

particular, the evaluation process evaluates the effectiveness of an IR system, measuring

how well an IR system retrieves the documents that satisfy the user information need. As

we said, to compare different IR systems or retrieval models, we need to adopt the same

test collection. This one could contain millions of documents, and when this occurs, it is

called Very Large Collection (VLC). Indexing all the documents of a VLC requires a lot of

time and resources, but this is necessary if we want to use it for evaluating one or more

IR systems. Besides, IR experiments often require to reindex the same collection many

times, e.g. for testing different stemming algorithms or stoplists. This implies a lot of effort

and time for IR experts since they have to wait for the end of the indexing process, which

coincides with the whole indexed collection. For this reason, the purpose of this thesis was

the development of a visual analytics tool to make the evaluation process faster and more

intuitive. The software developed for solving this problem is called AVIATOR. AVIATOR allows

IR experts to evaluate one or more IR systems, in a time efficient way, through a progressive

visual analytics web interface. To save time AVIATOR does not index the entire collection

at once, instead, it uses the incremental indexing strategy, as described in Chapter 3. In

this way AVIATOR, during the preprocessing phase, divides the document collection  into

n buckets Bi of the bucket collection  = {
B1,B2, . . . ,Bn

}
and then at the i -th iteration of

the loop: "Incremental Indexing", "Retrieval", "Evaluation", the documents of the bucket

Bi are added to the index. Doing so, at each iteration, we evaluate IR systems not on the

whole collection, but just on the latest version of the index available. As the incremental

indexing process advances more and more documents are indexed and the values, for the

evaluation measures, are closer to those calculated on the full index. This is very useful

for IR experts since they know how the experiments are going, while the indexing process

incrementally proceeds. In this way, if the intermediate results of an experiment do not meet

the expectations, it can be stopped in advance, without having to index the entire collection.

Using the progressive visual analytics interface provided by AVIATOR, IR experts can control

each stage of the entire process with interactive charts and many other visual components.

In particular, AVIATOR allows the user to visually compare the performance of the different

retrieval models, for each combination of stoplist and stemmer, as the indexing process

110

advances automatically. In this way, it is possible to determine which system is the best,

at each index percentage, according to the chosen evaluation measure. AVIATOR is a full

stack application and it consists of a back-end and a front-end. The back-end is described

in Chapter 4, where we show the client-server architecture adopted by AVIATOR and the

technologies used to develop it. In particular, the back-end consists of an HTTP web server,

written in Java, that acts as a wrapper for internal functionalities, e.g. the preprocessing

function, and for the Solr search platform, which is the IR system adopted. The AVIATOR

web server receives the user requests from the web interface at specific URLs, according

to the URI-scheme defined for the REST APIs. Every time a valid request reaches the web

server, it invokes the routine dedicated for the specific service requested. AVIATOR can be

configured through a dedicated configuration tool, described in Chapter 4, from which a

user can customise all the settings. The front-end, instead, is described in Chapter 5, where

we show the Model-View-Controller architecture adopted by AVIATOR to separate the data

access layer from the presentation one. In particular, the front-end consists of a web visual

analytics interface, from which IR experts can control each stage of the AVIATOR process.

Moreover, while the incremental indexing process advances in the background, the user can

check in real-time the latest evaluation data available through interactive charts, i.e. scatter

plots for the topic per topic analysis and bar charts for the overall one. The AVIATOR testing

phase has been performed on the disks 4 and 5 of the TIPSTER document collection. In

particular, we examined all the possible combinations generated by four different stoplists

(including no stoplist at all), four stemming algorithms (including no stemming) and four

retrieval models. This corresponds to a total of: 4×4×4 = 64 possible combinations. Besides,

we evaluated each combination at ten different indexing percentages, so the number of Solr

core generated is: 64×10 = 640. In particular, these 640 Solr cores correspond to 230 GB of

indexing data. From the analysis of the values for the considered evaluation measures, we

can say that the two retrieval models that obtain the best results are: BM25 and Dirichlet

Language Model. After these two models, the better between TFIDF and Boolean is TFIDF.

Future work

Using the AVIATOR version implemented for this thesis, IR experts can save a lot of time

during the evaluation activities. However, evaluating an IR system is a complex task that

involves many different measures and components. For this reason, despite the current

version of AVIATOR provides already a lot of useful functionalities, many others can be added.

111

CHAPTER 7. CONCLUSIONS

Hence, a lot of improvements can be included in the future versions of AVIATOR, the major

are:

• The possibility of customising some retrieval model parameters such as k1 for the

BM25 retrieval model. The final result of this improvement can be visualised in the

example of Figure 3.7 reported in Chapter 3. The figure shows a slider for the BM25

model, that can be used to select the value for k1 and update the scatter plot with the

new values for the evaluation measure considered, during the topic per topic analysis.

• The possibility of choosing the values for the probabilities p and q , described in Chap-

ter 3. These probabilities regulate how the sampling is done during the preprocessing

phase. By default, we have p = q = 1
2 , which gives balanced buckets with both relevant

and not relevant documents. Giving the user the possibility of changing these values

means that AVIATOR can be tuned according to the given document collection.

• The introduction of statistical and numerical analysis as a support for the visual

analytics one. The statistical analysis is useful to estimate the gap between the values

obtained for the evaluation measures at each percentage of the incremental indexing

process, and the ones related to the whole document collection indexed.

112

RINGRAZIAMENTI

Ringrazio di cuore la mia famiglia, per avermi dato l’opportunità di intraprendere questo

percorso di studi e per avermi sempre sostenuto e spronato ad arrivare sino alla fine.

Ringrazio il mio relatore, Prof. Gianmaria Silvello, per la disponibilità e la pazienza con cui

mi ha sempre seguito durante tutto il lavoro di tesi.

Ringrazio i miei compagni dell’università per tutti i momenti di gioia e di difficoltà passati

assieme. Grazie per avermi accompagnato in questa lunga avventura, da cui ho imparato

che nessun ostacolo è insormontabile quando si è uniti e insieme.

Ringrazio tutti i miei amici per avermi regalato il loro tempo, la loro fiducia e l’entusiasmo

con cui andare avanti.

Sarò sempre grato ai miei nonni, per i loro saggi consigli e per avermi insegnato i valori per i

quali vale la pena lottare.

“Remember to look up at the stars

and not down at your feet. Try to

make sense of what you see and

wonder about what makes the

universe exist. Be curious. And

however difficult life may seem,

there is always something you can

do and succeed at.

It matters that you don’t just give

up.”

Stephen Hawking

113

BIBLIOGRAPHY

[1] D. Hawking and S. Robertson, “On collection size and retrieval effectiveness,” Informa-

tion Retrieval, vol. 6, no. 1, pp. 99–150, 2003.

[2] M. Sanderson and W. Bruce Croft, “The history of information retrieval research,”

Proceedings of The IEEE - PIEEE, vol. 100, pp. 1444–1451, 05 2012.

[3] W. Croft, D. Metzler, and T. Strohman, Search Engines: Information Retrieval in Practice.

Alternative Etext Formats, Addison-Wesley, 2010.

[4] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”

Commun. ACM, vol. 18, pp. 613–620, Nov. 1975.

[5] S. Robertson, “The probability ranking principle in IR,” Journal of Documentation,

vol. 33, no. 4, pp. 294–304, 1977.

[6] S. E. Robertson and K. S. Jones, “Relevance weighting of search terms,” Journal of the

American Society for Information Science, vol. 27, no. 3, pp. 129–146, 1976.

[7] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[8] K. S. Jones, S. Walker, and S. Robertson, “A probabilistic model of information retrieval:

development and comparative experiments: Part 1,” Information Processing & Man-

agement, vol. 36, no. 6, pp. 779 – 808, 2000.

[9] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and

beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389, Apr. 2009.

[10] G. Amati and C. J. Van Rijsbergen, “Probabilistic models of information retrieval based

on measuring the divergence from randomness,” ACM Trans. Inf. Syst., vol. 20,

pp. 357–389, Oct. 2002.

115

BIBLIOGRAPHY

[11] D. Harman, Information Retrieval Evaluation.

Morgan & Claypool Publishers, 1st ed., 2011.

[12] M. Angelini, N. Ferro, G. Santucci, and G. Silvello, “VIRTUE: A visual tool for information

retrieval performance evaluation and failure analysis,” Journal of Visual Languages

& Computing, vol. 25, pp. 394–413, aug 2014.

[13] C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics: User-driven visual

exploration of in-progress analytics,” IEEE Transactions on Visualization and Com-

puter Graphics, vol. 20, pp. 1653–1662, Dec 2014.

[14] S. Frey, F. Sadlo, K. Ma, and T. Ertl, “Interactive progressive visualization with space-time

error control,” IEEE Transactions on Visualization and Computer Graphics, vol. 20,

pp. 2397–2406, Dec 2014.

[15] J.-D. Fekete and R. Primet, “Progressive analytics: A computation paradigm for ex-

ploratory data analysis,” 2016.

[16] D. Fisher, I. Popov, S. Drucker, and m. schraefel, “Trust me, i’m partially right: Incre-

mental visualization lets analysts explore large datasets faster,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, (New York,

NY, USA), pp. 1673–1682, ACM, 2012.

[17] D. Song and E. Golin, “Fine-grain visualization algorithms in dataflow environments,”

in Proceedings of the 4th Conference on Visualization ’93, VIS ’93, (Washington, DC,

USA), pp. 126–133, IEEE Computer Society, 1993.

[18] M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz, “A review and characterization

of progressive visual analytics,” Informatics, vol. 5, no. 3, 2018.

116

	List of the figures
	List of the tables
	Introduction
	The problem
	Purpose of the thesis
	State of the art
	Proposed solution
	Aviator

	Outline

	Background
	Information Retrieval
	Introduction
	Concepts and definitions

	Indexing
	Incremental indexing
	Retrieval models
	Principal retrieval models

	Evaluating information retrieval systems
	The Cranfield paradigm
	Concepts and definitions

	Visual Analytics
	Introduction
	Visual Analytics for Information Retrieval
	Progressive Visual Analytics

	Conceptual Framework
	Background
	The conceptual framework
	Process Overview
	Description

	Mockup
	Introduction
	First UI mockup
	Second UI mockup
	Third UI mockup
	Fourth UI mockup

	Final remarks

	Backend
	Introduction
	High-level architecture
	Apache Solr
	Solr functionalities
	Aviator and Solr

	Backend functionalities
	Final remarks

	Frontend
	Final remarks

	Experimental evaluation
	Discussion of the experimental results
	Topic per topic analysis
	Overall analysis

	Conclusions
	Bibliography

