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Abstract

In this thesis we present modern techniques needed for the evaluation of one and
multi loop amplitudes, and apply some of them in a complete chain that allows the
evaluation of a Feynman amplitude. In particular the automated evaluation of a 5
point 2 loop Feynman diagram contributing to the process e−e+ → µ−µ+γ here is
presented for the �rst time. Furthermore we investigate the properties of the inte-
gration domain of Feynman integrals in Baikov representation, presenting a new and
general formula for their calculation, highlighting an interesting iterative structure
beneath the Feynman Integrals. Given this key information in such representation,
we found a new parameterization for the Feynman integrals, which needs further
studies in order to be better understood. In this thesis, we �rstly review the Unitar-
ity based methods, which stems from the Unitarity of the S matrix. Such methods
uses cuts (i.e. put internal lines on shell) in order to project the amplitude on to its
component. For example, in the Cutkosky rule the amplitude is projected in to its
imaginary part by means of cuts. Another techniques that relies on cut is the Feyn-
man tree theorem, which by means of complex analysis connect loop level amplitude
to tree level one. The most successful approach in such �eld was the Generalized
Unitarity one. Applying the same idea as in the Cutkosky rule, it lead to major au-
tomation of one loop calculation. Afterwards we present the issues and the tools that
one faces when tackling the calculation of a multiloop Feynman integral, arriving to
the analyze the generalized cut and the IBP reduction on the Baikov representation.
Lastly, present the Adaptive integrand decomposition and an algorithm for the com-
plete automated evaluation of an amplitude. A complete software chain needed to
complete such task is then presented, highlighting our contribution to such software.
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Chapter 1

Introduction

In the beginning, the Universe was in a hot dense state in which the particles compos-
ing it were highly interacting, scattering one against the other at unbelievable high
energies. In order to uncover its great mysteries and knows its laws, such scattering
are reproduced, at lower energies, in many laboratories throughout the world nowa-
days. Studying the data from such experiments, it was found that matter and forces
at microscopic scale behaves di�erently from the macroscopic scale. Quantum Field
Theory (QFT), which uni�es Special Relativity and Quantum Mechanics, represents
the ideal framework to investigate Nature at microscopic level. Nowadays, its explo-
ration has led to the formulation of the Standard Model of Particle Physics (SM),
the best QFT model which describes matter and forces as interacting elementary
particles.

The CERN Large Hadron Collider (LHC) was built to explore its validity at
energy scales ranging from the electroweak (EW) scale 100GeV up to energies of
some TeV and to search for new phenomena and new particles in this energy domain.
The discovery of a Higgs particle at LHC Run 1 in 2012 [1] was a �rst big achievement
in this enterprise. Since �rst studies of the properties of this Higgs particle show
good agreement between measurements and SM predictions, the SM is in better
shape than ever to describe all known particle phenomena. Nonetheless there are
still many questions at which the Standard Model cannot answer: for examples, it
doesn't involves gravity, nor explain what causes the Dark energy. Another open
problem concerns the particle composition of the Dark Matter which, despite having
some good candidate being already theorized, is far from being explained. These
open problems suggest that the Standard Model of particles cannot describe the
whole nature, in fact there should be some physics beyond such model, hidden inside
the fundamental particles.

Nonetheless, in view of the absence of spectacular new-physics signals in LHC
data, this means that any deviation from the SM hides in small and subtle e�ects.
To extract those di�erences from data, both experimental analyses and theoretical
predictions have to be performed with the highest possible accuracy, i.e. precision
can be the key to new discoveries.

Within the theoretical framework of the QFT, such predictions stem from the so
called scattering amplitude, an analytical function of the momenta of the involved
particles. Such objects derive frome the S -matrix, a Unitary matrix which encloses
informations about all the possible scattering that could happens. Such amplitude
is very di�cult to evaluate, indeed apart from special cases, its exact expression
cannot be found. A more suitable approach is given by the perturbative Quantum
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8 CHAPTER 1. INTRODUCTION

Field Theory: in fact it is possible to expand such amplitude in terms of a small
perturbative parameter and then compute it through successive approximation until
one achieve the required precision of the result.

It is important to remark that the complexity of the calculation needed to eval-
uate perturbatively such amplitude grows exponentially as one addresses processes
with higher number of particles involved or at higher order in the expansion, in
the latter case aiming for results at higher precision. This is due to the fact that
many di�erent but quantummechanically indistinguishable processes contribute to
each scattering amplitude, and at each order of the perturbative expansion many
new such processes appear involving not only real particles, but also virtual one,
appearing as particles exchanged between the physical objects involved in the scat-
tering. Such indistinguishable processes that contributes to Scattering Amplitude
can be intuitively portrayed by means of the so called Feynman diagrams.

Feynman diagrams are pictorial representations of speci�c scattering processes, in
which occur external and internal legs (the former corresponding to physical particles,
while the latter to virtual one which do not satisfy the on-shell condition). The full
contribution to an n-point amplitude is the sum of all the n-external legs Feynman
diagrams which can be built from the Feynman rules. Contributions to scattering
amplitudes, can be classi�ed in to two di�erent kinds, depending on the diagrams
with which they can be represented:

• tree-level Feynman diagrams, related to the leading order to the total ampli-
tude. This kind of diagrams can be split in two connected subdiagrams by
cutting an internal line;

• l-loop Feynman diagrams, related to l quantum correction of the total ampli-
tudes. Every l-loop Feynman diagrams is an integral in l internal momenta,
addressed as loop momenta.

1-loop Feynman amplitudes calculations received a tremendous improvements in
the last twenty years [2, 3, 4, 5]: such e�cient automation has its roots in the afore-
mentioned Unitarity of the scattering matrix: S†S = 1. This property constraint
the shape of the interaction, leading to a relation between an amplitude and its com-
plex conjugate as stated by the Generalised Optical Theorem. In the perturbative
approach such theorem links together amplitude at di�erent perturbative stages: for
example one loop amplitude are bound to their tree level counterparts. Such theorem
could equivalently be applyed by putting on shell a certan number of virtual parti-
cles inside the diagram, through the Cutkosky rule [6]. Such operation is de�ned as
cutting such feynman diagrams, leading to its projection on the imaginary part.

What happens at one loop is that through the unitarity based methods, one can
write the amplitude in terms of a set of scalar integrals which are linearly inde-
pendent and universal, i.e. every scattering amplitude can be written in terms of
these integrals. Such set of integrals is called Master Integrals. From these result,
genaralizing the idea of cut as the process of putting on shell an internal line, it
is possible to reconstruct the full analytical dependence of the amplitude from the
master integrals, which are then evaluated.

As a result, the implementation of such unitarity-based methods in automation
algorithms for 1-loop amplitudes calculation had a great impact on collider phe-
nomenology, allowing the study of processes involving an high number of particles.

Nonetheless, thanks to the huge amount of data acquired by LHC, in order to
keep the pace with the experimental predction, for many processes the 1 loop level
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of precision isn't enough anymore and multiloop level precision in the theoretical
predictions are mandatory to understand clearly the information given by the exper-
imental data.

Moving in to the multiloop case, the complexity of the problem enhance greatly:
there the basis of Master Integrals isn't universal anymore: it depends on the pro-
cess taken in to account and they couldn't be determined in any other way than
direct calculation. Moreover the generalised Unitarity approach cannot be extended
straightforwardly to this case.

Because of that in this last few years various approaches to face 2-loop correc-
tions were developed, but an e�cient evaluation and its automation are still an open
problem: limitations occur even at 2 → 2 2-loop non-planar amplitudes with ei-
ther massive external or internal lines, and 2 → 3 amplitudes represents a cap for
automatic calculations.

Within this work, techniques that allows to overcome the complexity of the cal-
culation appearing at multiloop level are studyed, arriving to a �nal application at
a 2 → 3 particles at 2 loop calculation that draws an original result.

Calculating a loop-correction of a scattering amplitude through a direct integra-
tion is a prohibitive task, even with the standard techniques of Feynman parameters:
the number of contribution and the complexity of the integral that one has to eval-
uate make the problem too hard to handle.

For these reasons, a di�erent strategy to evaluate this functions is mandatory.
The modern approach to evaluate single Feynman amplitudes is divided in three
steps: �rstly one performs the tensor reduction [9] or equivalently the adaptive
integrand decomposition [17] in order to decompose a single Feynman amplitude in
combination of scalar Feynman integrals; at this point it is possible to decompose
scalar Feynman integrals in a basis of Master Integrals; lastly, once reduced to such
minimal basis, one has to evaluate each integral.

The second step is performed thanks to a set of non-trivial relations, within the
dimensional regularization scheme, that derives from the integration-by-parts iden-
tities [12]. These identities, known as IBPs, come from the d-dimensional Gauss's
divergence theorem and can be exploited to form a linear system of equations that,
once solved, allows to write every integral in function of a set of linearly independent
one.

In this general picture, interesting results are given by the so called Baikov-Lee

representation. In that representation the integrand depends on the volume of the
parallelotope spanned by the momenta taking part in the interaction. Moreover, in
this representation the integration boundaries are determined by the zeroes of such
volume, expressed as the Gram deterinant. This geometrical object hence encodes
crucial information, hidden inside a determinant in a vay that is hard to rea.

A general expression for such boundaries was missing. Studying them during
the work of this thesis allowed to �nd a deeper, iterative structure that needs fur-
ther studies in order to be fully understood. As an original contribution, a general
expression for the boundaries of such integrals were found. Lastly, through such
information it is possible to link the Baikov representation to the Hyperspherical
coordinates one.

Moreover another application of the cuts draw aattention in the evaluation of
Feynman integrals. Cuts are versatile and appears in many application: hteir appli-
cation within the Feynman Tree theorem, in which they relate amplitudes at di�erent
perturbative level, gained some attention [11]. There, using the cuts it is possible
to write a multiloop amplitude as a sum of tree level one.
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In parallel to such though analytical studies, many computational tool was de-
veloped in order to apply such methods to the Feynman integrals. Despite the
large number of individual tool already existing, at multiloop level a software that
performs the whole calculation is still missing. We joined an ongoing project that
aims to �ll such missing milestone in the research for fenomenological prediction. In
such project, we contributed to the development of key component of such software,
testing it on a process and bringing a result never obtained before.

This thesis is organised as follows. First of all a brief review of cut-related
techniques for scattering amplitudes is given in chapter 1. In particular the so called
Generalized Optical theorem is introduced which allows to link together amplitude
at di�erent perturbative level. Such technique is intuitively portrayed by means
of the Cutkosky rule: the same result of the Generalized Optical theorem can in
fact be obtained by putting on shell a subset of the amplitude's propagators (such
operation is de�ned as cutting the amplitude taken in to account). Then another
techniqes that link together amplitude at di�erent perturbation level is reviewed: the
Feynman Tree Theorem that, through the use of cut allows to write the amplitude in
terms of tree level ones. Such techniques culminate in to the Generalized Unitarity

approach which, generalizing the use of cuts as projectors, gave a major contribution
to the automation of the evaluation for one loop scattering amplitudes. In the last
section an application of the Feynman Tree theorem to the QED vertex at one loop
is outlined.

In chapter 2 we will review the basic de�nitions and properties of Feynman in-
tegrals in dimensional regularization, with particular attention to the geometrical

aspects. In fact, after reviewing the notorius Integration By Parts identities, thanks
to the Baikov-Lee a closer look to the generic structure of such integrals is given. Fo-
cusing on the integration boundaries in such parametrization, a general formula for
its determination is derived for the �rst time, highlighting a nested, iterative struc-
ture. Thanks to that a parametrization resembling the Hyperspherical coordinates
is found. Further studies are needed in order to understand clearly the possibility
given by this approach to the multiloop Feynman integrals. We close the chapter
by brie�y extends the generalized unitarity approach and the IBPs to the Baikov
representation.

After reviewing the notorious techniques for Feynman amplitude evaluation in
chapter 1 and 2, in chapter 3 we show how it is possible to apply such methods
in order to evaluate a multiloop amplitude. In fact, after reviewing the recently
found Adaptive Integrand Decomposition approach which sobstitute the traditional
tensor decomposition calculation, a complete algorithm for the evaluation of multi-
loop amplitudes is outlined. Of particular interest is its software implementation,
under devolepment. The contribution given during the work of this thesis to such
software is then outlined. Lastly, we present such algorithm applyed to a 5 point
2 loop scattering amplitude for the �rst time. There, we brie�y outline the results
at each intermediate step, arriving �nally to the amplitude written in terms of its
expansion in the dimensional parameter ε, with D = 4− 2ε.



Chapter 2

Unitarity-based methods

In this chapter, we analyze Unitarity based techniques for the evaluation of Feynman
diagrams. The �rst important relation due to Unitarity that ease the calculation of
a component of a Feynman amplitude is given by the Generalized Optical theorem.
Such relation inspired a shortcut to its application: the Cutkosky rule, where for the
�rst time cuts make their appearance. In fact, by imposing the on-shellness to a set of
internal line (i.e. cutting them) one retrieve the same result given by the generalized
optical theorem: the imaginary part of the amplitude. Cuts is found to be very
versatile and appear in many other techniques. Among them, recently the Feynman
tree theorem, outlined in this chapter, has drawn renewed attention. This theorem
states that it is always possible to write a multiloop amplitude as a sum over tree
level diagram integrated over the phase space of the cut propagators. In this thesis,
we present its application at the one loop case. Then we move to the Generalized

Unitarity approach, which brought great results in the evaluation of the one loop
amplitudes, used together with the Passarino-Veltman Tensor decomposition. Lastly,
we showcase an application of the Feynman tree theorem, evaluating the QED vertex
function at one loop.

2.1 Optical Theorem and Cutkosky-Veltman rule

Unitarity arises for the �rst time in Quantum Mechanics. It is a restriction on the
allowed evolution of quantum systems that ensures the sum of probabilities of all
possible outcomes of any event always equals 1, thus is conserved through time.
Conservation of probability in a quantum theory implies that, in the Schrodinger
picture, the norm of a state |Ψ; t〉 is the same at any time t. For example

〈Ψ; 0|Ψ; 0〉 = 〈Ψ; t|Ψ; t〉. (2.1)

Since the operator S(t) regulate the evolution in time of such state through the
relation

|Ψ; t〉 = S(t)|Ψ; 0〉, (2.2)

equation (2.1) can be satis�ed only imposing that the operator S(t) is unitary:

〈Ψ; t|Ψ; t〉 = 〈Ψ; 0|

1︷ ︸︸ ︷
S(t)†S(t) |Ψ; 0〉. (2.3)

This key property is shared also with its counterpart in Quantum Field Theory the S-
matrix, or scattering matrix. In this way, from the very general and natural principle

11



12 CHAPTER 2. UNITARITY-BASED METHODS

that the probability of any possible outcome for a process has to add up to one, it is
possible to infer the following property of the scattering matrix S:

S†S = 1. (2.4)

This put a constraint on the interaction that could take place as will be shown soon.
The non-trivial part of the S-matrix lies in the Transfer matrix T . In order to

highlight this component of the scattering matrix, it is possible to write it in the
following way:

S = 1− iT. (2.5)

Each element of T can be evaluated thanks to the Feynman rules, as they satisfy the
following relation

〈f |T |i〉 = (2π)4δ(4)(pi − pf )M(i→ f) (2.6)

whereM is the Feynman amplitude.
Now substituting the S-matrix written in terms of its non-trivial component inside

the Unitarity constraint one obtains that 1 = S†S = (1 + iT )(1− iT ), and hence

i(T † − T ) = T †T. (2.7)

Starting from this relation it is possible to draw an important property on the Feyn-
man amplitudeM, thanks to equation (2.6). Indeed enclosing the l.h.s. between the
bra 〈f | and the ket |i〉 one obtains the di�erence between two Feynman amplitude
while for what concern the r.h.s. more steps are needed in order to rewrite it in term
ofM.

After enclosing the left hand side between the �nal state and the initial one it
becomes

i(〈f |T †|i〉 − 〈f |T |i〉) = i(〈i|T |f〉∗ − 〈f |T |i〉)
= i(2π)4δ(4)(pf − pi) [M∗(f → i)−M(i→ f)] .

(2.8)

In order to apply equation (2.7) on the right hand side it would be convenient to
have two state vectors between the T matrices, since after inserting 〈f | and |i〉 it
becomes

〈f |T †T |i〉. (2.9)

Using the completeness relation satis�ed by the complete orthogonal basis of the
Hilbert space of the theory this can be done. This relation states that

1 =
∑
x

∫
dΠx|x〉〈x| (2.10)

where x labels all possible single and multi particles states of the theory. The inte-
gration measure dΠx is equal to the phase space of the particles in state |x〉, up to
an overall delta:

dΠx =
∏
j∈x

d3pj
(2π)3

1

2Ej
. (2.11)
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Inserting this completeness relation between the two Transfer matrix in equation
(2.9) one �nds that

〈f |T †T |i〉 =
∑
x

∫
dΠx(2π)4δ(4)(px − pf )M∗(f → x)(2π)4δ(4)(px − pi)M(i→ x).

(2.12)

where px is the sum of all the momenta of the particles appearing in state x, or
explicitly px =

∑
j∈x pj .

After these manipulation equation (2.7) becomes what is called the generalized

Optical Theorem:

i [M∗(f → i)−M(i→ f)] =
∑
x

∫
dΠx(2π)4δ(4)(px − pi)M∗(f → x)M(i→ x)

(2.13)

where in this case
∑

x means that the r.h.s. is summed over all possible intermediate
states.

Moreover, let us stress that, in the case in which |f〉 = |i〉 = |A〉, one obtains the
relation

2iImM∗(A→ A) =
∑
x

∫
dΠx(2π)4δ(4)(px − pi)M∗(A→ x)M(A→ x) (2.14)

that can be portrayed in the following way:

2 Im MA A

( )
=
∑
x

∫
dΠx MA x

( )
Mx A

( )
.

(2.15)

One great feature of this relation is that it links amplitudes at di�erent levels in
perturbation theory. Suppose that the amplitude appearing in the l.h.s. is of order
λ2 (with λ being the coupling constant of the theory), the amplitudes on the r.h.s.
must be of order λ to match it. Hence Unitarity implies that the imaginary part
of a one loop amplitude is linked to tree level amplitudes. A closer look to this key
concept is given in the example below.

Example

Consider a simple theory which has the following Lagrangian:

L = −1

2
φ(� +m2)φ− 1

2
π�π +

λ

2
φπ2 (2.16)

Pictorically, the amplitudeM(φ→ φ) at one loop can be represented as

q

q − p

p p
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where to distinguish between φ and π the former, massive one is represented with
a thick line, while the latter with a thinner one. In this process the only possible
intermediate state, at one loop, is |ππ〉. Thus applying the generalized Optical
theorem one �nds that

2ImM(φ→ φ) =

∫
d3k1

(2π)3(2E1)

d3k2

(2π)3(2E2)
(2π)4δ(4)(k1 + k2 − p)|M(φ→ ππ)|2

(2.17)

.
Diagrammatically it results in

2Im
p p

=

∫
d3k1

(2π)3(2E1)

d3k2

(2π)3(2E2)
(2π)4δ(4)(k1 + k2 − p)

∣∣∣∣∣∣∣∣
p

∣∣∣∣∣∣∣∣
2

(2.18)

Here the connection between the two di�erent level of the scattering is strikingly
clear: a component of the one loop amplitude can be evaluated starting from tree
level ones, which are often way simpler to evaluate.

In order to evaluate that integral, �rstly it is possible to integrate over d3k2, to
get rid of 3 out of the 4 delta functions. After this step, acknowledging that the tree
level amplitude is

iM(φ→ ππ) = = iλ (2.19)

the integral appears to be independent from the angular coordinate. In this case the
integration over the angular variable can be factorized from the rest and performed
easily. Lastly, moving to the center of mass reference frame one arrives to

2ImM(φ→ φ) =
λ2

16π2

∫
d|k|dΩδ(2|k| −M). (2.20)

In the end, performing the integration one arrives to the �nal result

ImM(φ→ φ) =
λ2

16π
. (2.21)

Even though equation (2.14) is very useful, its application may seem not so intu-
itive. A simpler approach to evaluate the imaginary part of a diagram is presented
by Cutkosky in [6]. He noticed that the term dΠxδ

(4)(px − pi) in the r.h.s. of the
generalized optical theorem could be rewritten in a di�erent way. Without loss of
generality consider the case in which the state |x〉 contains l particles. In this case
the term dΠxδ

(4)(px − pi) becomes

dk3
1 · · · dk3

l

(2π)3l2E1 · · · 2El
δ(4)

 l∑
j

kj − pi

 =
dk3

1 · · · dk3
l−1

(2π)3l2E1 · · · 2El
δ

 l∑
j

Ej − E

 , (2.22)
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where E is the total energy of the incoming particles, while the integration over the
momentum kl has been used to simplify the tridimensional component of the delta
function. Now it is possible to introduce l − 1 terms, dk0,j δ(k0,j − Ej), without
changing the result of the integral, since the momenta considered belong to particles
that are already on shell. This leads to

dΠx δ
(4)(px − pi) =

dk4
1 · · · dk4

l−1

(2π)3l

δ (k0,1 − E1) · · · δ
(∑l

j k0,j − E
)

2E1 · · · 2El
. (2.23)

Now the measure of integration contains the ratio between many simple deltas and
its zero. This expression recall a remarkable property of the delta function:

∑
i

δ(x− xi)
f ′(xi)

= δ(f(x)), (2.24)

where the sum is over all the xi such that f(xi) = 0. Using it in equation (2.23)
allows to write the phase space measure in the following way:

dΠx δ
(4)(px − pi) =

dk4
1 · · · dk4

l−1

(2π)3l
θ(k0,1)δ(k2

1 −m2
1) · · · θ(k0,l)δ(k

2
l −m2

l ) (2.25)

with kl = pi − px as a consequence of momentum conservation.
The measure of integration written in this way is exactly the measure of a loop

amplitude like the one appearing on the l.h.s. of the generalized Optical theorem,
moreover the arguments of the deltas are the denominators of propagators that be-
comes intermediate states in the r.h.s. of (2.14). Such results can be generalized and
applied to any amplitude.

This shows a di�erent way to evaluate the imaginary part of a diagram called the
Cutkosky rule equivalent to the generalized Optical theorem, which can be performed
in a three steps fashion:

• cut through the diagramM in all the possible way that allows to put all the
cut propagators on shell without violating momentum conservation .

• For each cut propagator, substitute i
p2−m2+iε

→ (−2πi)θ(p0)δ(p2 −m2)

• sum over all possible cut, thus obtaining its imaginary part:

2ImM =
∑
cuts

Mcut (2.26)

Diagrammatically, a cut propagator will be represented as a propagator cut by a
dashed line. Nonetheless cut are directional: due to the presence of θ(p0) they depend
on the direction of the momentum �ow. The direction of the second line on top of
the cut represent the argument of the theta function, without it the representation
of the cut would be ambiguous. When it points in the same direction of the �ow of
the momenta, the argument of the theta function will be the energy of the particle
�owing in the propagator, otherwise it will be minus the energy of such particle.

Here there are di�erent example of cut propagators, to get used to them.
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• scalar

p
= (−2πi)θ(p0)δ(p2 −m2)

p
= (−2πi)θ(−p0)δ(p2 −m2)

(2.27)

• fermion

p
= (−2πi)(/p+m)θ(p0)δ(p2 −m2) (2.28)

• photon

p
= (−2πi)(−gµν)θ(p0)δ(p2) (2.29)

• in general

p
= (−2πi)

∑
pol

w.f.

 θ(p0)δ(p2 −m2)

p
= (−2πi)

∑
pol

w.f.

 θ(−p0)δ(p2 −m2)

(2.30)

Using the new concept of cuts, the calculation of the imaginary part becomes more
intuitive than before. In order to showcase such improvement, below is presented
the example of the self energy of φ used also in the example of application for
the generalized Optical theorem. Instead now the imaginary part of a diagram is
evaluated through the Cutkosky rule.

Example

Applying equation (2.26) to the self energy of the massive scalar φ at one loop,
diagrammatically one obtains:

2 Im =

q

q − p

p p

(2.31)
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which can be written as

2 ImM(φ→ π) = λ2

∫
d4q

(2π)2
θ(q0)δ(q2)θ(p0 − q0)δ((q − p)2) (2.32)

Applying the property of delta functions outlined in (2.24) and following the same
steps performed in the example of application for the Optical theorem one �nds

2 ImM(φ→ π) = λ2

∫
d4q

(2π)22|q|2|q − p|
δ(q0− |q|)δ(p0 − q0 − |q − p|)

=
λ2

16π2

∫
d3q

|q|2
δ(M − 2|q|)

=
λ2

16π2

∫
d|q|dΩδ(M − 2|q|)

(2.33)

which is the result obtained in (2.20) using the generalized Optical theorem, thus
con�rming the validity of he Cutkosky rule.

2.2 Feynman Tree Theorem

In the previous section, thanks to the Unitarity of the S-matrix it was possible to
draw a relation between amplitudes at di�erent level in perturbation theory: for
example, the imaginary part of a one loop diagram has been calculated starting from
tree level ones. Nonetheless, with little more e�ort it is possible to bound more
tightly the amplitude at any level to tree level ones, as stated in [7] and [8]. Such
relation is exploited through studying the concept of prescription, the +iε appearing
in the Feynman propagators.

In order to draw such relation, let's consider the following integral:∫
dx

f(x)

x− x0
(2.34)

It is ill de�ned: it has a singularity on the path of integration, thus it's value isn't
uniquely determined. Nonetheless it is possible to regulate it, by analytical continu-
ation of the variable x in the complex plane. In such way it is possible to deform the
path of integration so that it turns around the singularity avoiding it, or alternatively
the singularity can be moved away from the path of integration. In the latter case
it would be moved by a distance of ε with ε→ 0+. These regularization scheme can
be seen below: on the r.h.s. there is the latter, on the l.h.s. the former.∫

Cε1,2
dx

f(x)

x− x0
=

∫
dx

f(x)

x− x0 ± ε
(2.35)

In this two cases the path of integration in relation to the position of the singularity
is:

x0

εCε1

x0 − iε

x0

Cε2
x0 + iε
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From here on, in order to regulate an integral which has a singularity along the
path of integration, the pole will be shifted away from it.

A remarkable fact is that moving the singularity above the integration path leads
to a di�erent results from moving it below of it. The di�erence is a complete loop
around the pole, hence the value of its residue. This is clear if one compares the two
prescription in integrals along the real axis, obtaining the relation∫

f(x)

x− x0 − iε
=

∫
f(x)

x− x0 + iε
+ 2iπf(x0) (2.36)

which can be written as

1

x− x0 − iε
=

1

x− x0 + iε
+ 2iπδ(x− x0) (2.37)

where the fractions appearing in it are considered as distributions. Portraying each
prescription by the position of its pole and its path of integration, intuitively the
previous equation becomes

x0 + iε

=

x0 − iε

+ 2iπδ(x− x0)

(2.38)

As it is clear by now it is possible to change the prescription with which an integral
over a simple pole is regulated thanks to this relation. Also the Feynman propagator
and the Advenced propagator have simple poles. In particular it is possible to write
the Feynman propagator

GF (q) =
i

q2 + iε
=

i

(q0 + ωq − iε)(q0 − ωq + iε)
(2.39)

and Advanced propagator

GA(q) =
i

q2 − iε sgn(q0)
=

i

(q0 − ωq − iε)(q0 + ωq − iε)
(2.40)

in this way, highlighting its singularity structure which can be represented on the
complex plane as

GA(q)

−ωq + iε ωq + iε

Im(p0)

Re(p0)
GF (q)

−ωq + iε

ωq − iε

Im(p0)

Re(p0)

(2.41)

The analogy with (2.38) is striking: two regulated integrals, with a pole in a dif-
ferent position. It should be possible to build a relation between the two propagators
like the one previously seen. Using equation (2.38) on GA, as it is written in (2.40),
one obtains:
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GA(q) =
i

(q0 + ωq − iε)(q0 − ωq − iε)

=
i

(q0 + ωq − iε)

[
1

(q0 − ωq + iε)
+ 2iπδ(q0 − ωq)

]
= GF (q)− 2πδ(q0 − ωq)

2ωq
= GF (q)− 2πθ(q0)δ(q2)

(2.42)

Arriving to the �nal relation

GA(q) = GF (q)− 2πδ(+)(q2 −m2). (2.43)

Where δ(+)(q2−m2) is θ(q0)δ(q2−m2), hence the case with the positive loop momenta
inside the theta function.

This relation acquire great relevance anytime there is an integration over the
momentum appearing in the denominator. Indeed, in this case∫

Γ
dq0GA(q) = 0 (2.44)

because it is possible to close the contour integration in the lower half plane, obtaining
a closed circuit Γ which has no singularity within it and hence the integral turns out
to be 0. Here there is the path of integration:

Γ =

Im(p0)

Re(p0)
(2.45)

Generalizing this idea to integrals with more denominators, the result doesn't
change since all poles lies on the upper complex half plane, exactly as in the case of
only one propagator. Hence one can write

0 =

∫
dDq

(2π)D
N (q)

∏
i

G
(i)
A (q − p1 − · · · − pi)

=

∫
dDq

(2π)D
N (q)

∏
i

{
G

(i)
F (q − p1 − · · · − pi)− 2πδ(+)((q − p1 − · · · − pi)2 −m2)

}
(2.46)

thanks to (2.43), as stated in [8]. N (q) stands for the numerator of the Feynman
amplitude, which can depends on the loop momenta.
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Expanding the product in the right hand side and isolating the term that contains
only Feynman propagators (which is the amplitude), one obtains

M =M1−cut −M2−cut + · · ·+ (−1)n−1Mn−cut

=
n∑
j

(−1)j−1Mj−cut
(2.47)

in the case of an amplitude with n internal lines. In order to better understand the
relation found here, it is useful to recall the fact that a cut loop amplitude can be
seen as a tree level amplitude, integrated over the phase space of the particles �owing
in the cut propagator, as one can deduce comparing the example of application of the
Optical theorem and the Cutkosky rule. Hence applying this procedure to an l-loop
diagram allows to write it as a sum of at least l − 1 loop diagrams. It is possible
then to apply the procedure to the l − 1 diagram and so on and so on, until one is
able to express any loop diagram as the sum of tree level diagram integrated over
phase space of the particle �owing in the cut propagators. This procedure is called
the Feynman Tree Theorem, getting its name from this interpretation of its result.

Example

In order to showcase the application of this theorem, it will be used to evaluate the
self energy of the scalar φ, presented in the examples outlined before. To perform the
calculation it will be used the dimensional regularization scheme, setting D = 4−2ε.
In this particular scheme the amplitude of the self energy becomes

A = λ2

∫
dDq

(2π)D
1

(q2 + iε)[(q − p)2 + iε]
(2.48)

Firstly, this diagram will be evaluated using the Feynman parameterization, in
order to have a value that allows to check whether the result obtained through the
Feynman tree theorem is correct or no.

Feynman parametrization method

Let's recall this useful parameterization brie�y. It allows to express rational function
in terms of an integral:

1

A1A2 · · ·An
= Γ(n)

∫ 1

0
dx1 · · ·

∫ 1−x1−···−xn−2

0
dxn−1

1

[A1x1 + · · ·+An−1xn−1 +An(1− x1 − · · · − xn)]n

(2.49)

Applying it in our case leads to

A = λ2

∫ 1

0
dx

∫
dDq

(2π)D
1

[(q − px)2 +M2x(1− x)]2
(2.50)

which, shifting the loop momentum, becomes

A = λ2

∫
dDq

(2π)D
1

[q2 +M2x(1− x)]2
(2.51)
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It is possible to evaluate this integral thanks to the Wick rotation and by extending
the solid angle to D dimensions in the following way:

ΩD−1 =
2πD/2

Γ(D/2)
(2.52)

Knowing that, one obtain the general relation:

Ir,m =

∫
dDq

(2πD)

(q2)r

(q2 − C)m
= iCr−m+D

2
(−1)r−m

(4π)
D
2

Γ(r + D
2 )

Γ(D2 )

Γ(m− r − D
2 )

Γ(m)
(2.53)

that allows to rewrite the amplitude as

A = λ2I0,2 (2.54)

with

C = −M2x(1− x) (2.55)

Lastly, integrating over the loop momentum gives

A = iλ2 (−M2)−ε

(4π)2−ε Γ(ε)

∫ 1

0
dx(x(1− x))−ε

= i
λ2(−M2)−ε

(4π)2−ε
Γ(ε)Γ2(1− ε)

Γ(2− 2ε)

(2.56)

Feynman Tree theorem method

Since the amplitude in this case has two denominators, the application of the Feyn-
man tree theorem will generate the following relation:

A = A1 +A2 −A12 (2.57)

with

A1 = λ2

∫
dDq

(2π)D−1
θ(q0)δ(q2)GF (q − p) = λ2

∫
dDq

(2π)D−1
δ(+)(q2)GF (q − p)

A2 = λ2

∫
dDq

(2π)D−1
GF (q)θ(q0 − p0)δ((q − p)2) = λ2

∫
dDq

(2π)D−1
GF (q)δ(+)((q − p)2)

A12 = λ2

∫
dDq

(2π)D−2
θ(q0)θ(q0 − p0)δ(q2)δ((q − p)2) = λ2

∫
dDq

(2π)D−2
δ(+)(q2)δ(+)((q − p)2)

(2.58)

To clarify the notation used, the amplitude Ai has a cut over the propagator of
momentum qi, with q1 = q and q2 = q − p, while A12 represent the double-cut
amplitude. The relation written in equation (2.57) graphically is

= + −

(2.59)
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Cutting over q. In this case the amplitude is

A1 = iλ2

∫
dDq

(2π)D−1

δ(q0 − |q|)
2|q|[(q0 − p0)2 − (q − p)2 + iε]

(2.60)

where q and p are the D − 1 dimensional euclidean component of the respective D
dimensional Minkowskian vector. It can be represented as

q

q − p

p p

Performing some manipulation, it is possible to write the integral as

A1 = iλ2

∫
dDq

2(2π)D−1

δ(q0 − q)
q[(q0 −M)2 − p2 + iε]

= iλ2

∫
dD−1q

2(2π)D−1

1

q[(q −M)2 − q2 + iε]

= iλ2 ΩD−2

2(2π)D−1

∫ +∞

0
dq

qD−3

M2 − 2Mq + iε

(2.61)

Setting D = 4−2ε, using the explicit formula for the multidimensional angular factor
presented in (2.52), and an identity of the gamma function,

Γ(z + 1/2) = 21−2z√πΓ(2z)

Γ(z)
(2.62)

, it is possible to express the prefactor in the following way:

ΩD−2

2(2π)D−1
=

1

(4π)3/2−εΓ(3/2− ε)
=

1

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

(2.63)

Then, substituting |q| = M
2 q
′ leads to

A1 = iλ2 (M2)−ε

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

∫ +∞

0
dq′

q′1−2ε

1− q′ + iε
(2.64)

Notice that ∫ +∞

0
dq′

q′1−2ε

1− q′ + iε
= −

∫ 0

−∞
dq′

q′1−2ε

1− q′
(2.65)

where on the r.h.s. the iε prescription have been dropped since the pole isn't on the
path of integration anymore.

Performing now a change of variables, de�ning q′ = u−1
u , the amplitude takes the

following shape

A1 = iλ2 (−1)−2ε(M2)−ε

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

∫ 1

0
duu2ε−2(1− u)1−2ε (2.66)
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The integral appearing in it is the notorious Euler's beta function. This particular
class of functions are de�ned as:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt (2.67)

Nonetheless the Euler beta function is connected to another, more common, class of
functions (the Gamma functions) by the identity

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(2.68)

turning A1 to

A1 = iλ2 (−1)−2ε(M2)−ε

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

B(2ε, 1− 2ε)

= iλ2 (−1)−2ε(M2)−ε

4π1−ε
Γ(1− 2ε)Γ(2ε)Γ(1− ε)

Γ(2− 2ε)

(2.69)

Cutting over q − p. The second cut amplitude is

A2 = iλ2

∫
dDq

(2π)D−1

δ(q0 − p0 − ωq−p)
2ωq−p(q2 + iε)

(2.70)

and could be represented as

q

q − p

p p

Following the same step done for A1 one arrives to

A2 = iλ2 (M)−2ε

(4π)1−ε
Γ(1− ε)
Γ(2− 2ε)

∫ +∞

0
dq′

q′1−2ε

1 + q′
(2.71)

This time, in order to link the integral appearing in the cut amplitude to the de�nition
of beta function given in (2.68), ones need to de�ne q′ = u

1−u obtaining

A2 = iλ2 (M)−2ε

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

∫ 1

0
duu1−2ε(1− u)2ε−2 (2.72)

�nding that

A2 = (−1)2εA1 (2.73)

Doublecut. Lastly, the double cut is

A12 = λ2

∫
dDq

(2π)D−2

δ(q0 − |q|)δ(q0 − p0 − |q − p|)
4|q||q − p|

(2.74)

and is represented as
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q

q − p

p p

specializing again to the center of mass frame one �nds

A12 = λ2

∫
dDq

(2π)D−2
θ(q0)θ(q0 − p0)δ(q2)δ((q − p)2)

= λ2

∫
dDq

(2π)D−2

δ(q0 − q)δ(q0 −M − q)
4q2

= 0

(2.75)

which is 0 because the two delta function can't be ful�lled at once in the case of
M 6= 0, while for M = 0 it is a scaleless integral, hence is zero in dimensional
regularization.

A remarkable fact is that this double cut is di�erent from the one obtained via
the Cutkosky rule, written in (2.32), having di�erent argument inside the θ function.
This is due to the fact that this two techniques stem from di�erent �rst principle:
the Cutkosky rule comes from the unitarity of the S-matrix, while the Feynman Tree
theorem is obtained via prescription manipulation.

In the end, the total amplitude is obtained by the contribution of the two single
cut:

Atot = A1 +A2 = A1(1 + (−1)2ε) = iA1(−1)ε(eiπε + e−iπε) = −2iA1(−1)ε cos(πε)

= iλ2 (−M2)−ε

(4π)2−ε
Γ(1− 2ε)Γ(2ε)Γ(1− ε)

Γ(2− 2ε)
2 cos(πε)

(2.76)

At this point in order to simplify the expression of the total amplitude it is useful to
recall the Euler re�ection formula for the Gamma functions. It states that

Γ(z)Γ(1− z) =
π

sin(πz)
(2.77)

Using it in the expression of the total amplitude one obtains

Atot = iλ2 (−M2)−ε

(4π)2−ε
Γ(1− ε)
Γ(2− 2ε)

2
π cos(πε)

sin(2πε)

= iλ2 (−M2)−ε

(4π)2−ε
Γ(1− ε)
Γ(2− 2ε)

π

sin(πε)

= iλ2 (−M2)−ε

(4π)2−ε
Γ(ε)Γ2(1− ε)

Γ(2− 2ε)

(2.78)

, matching the results given by the calculation with the Feynman parameters, re-
ported in (2.56).

2.3 Generalized Unitarity

The problem of a systematic approach to the solution of Feynman integrals at one
loop will be addressed in this section.
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Due to the great number of theories that one can build within the framework of
QFT, the number of possible Feynman integrals is countless. Finding relation among
them would simplify greatly the quest of the calculation of the loop correction to a
given process.

2.3.1 Tensor decomposition

A great tool for starting this calculation is given by the Passarino-Veltman tensor
reduction scheme [9]. Through this technique it is possible to separate the Feynman
amplitude from its Dirac and Lorentz component, decomposing it into a set of scalar
integrals. In order to understand how it works, let's write a generic amplitude with
the polarization vector explicit:

M = ε1,α1 · · · εm,αmMα1···αm (2.79)

The Lorentz index appearing on Mα1···αm can come only from the loop momenta.
Hence, de�ning the tensor Qα1···αm = qα1 · · · qαm , without loss of generality we can
write

Mα1···αm = I [Qα1···αm ] ≡
∫
dDq

Qα1···αm

D1 · · ·Dn
(2.80)

where Di are the denominators of the amplitude. Due to the Lorentz structure of the
amplitude, it is possible to write an ansatz for I [Qα1···αm ] in terms of the independent
Lorentz vectors and tensors and of the possible Dirac structures:

I [Qα1···αm ] =
∑
i

ciT
α1···αm
i (2.81)

The type of tensors entering in Ti depends on the number of index. For example

• in the case of 1 Lorentz index, the only possible vectors available are the ex-
ternal momenta pαi .

• in the case of 2 Lorentz index, Ti can be a couple of external momenta, pα1
i p

α2
j ,

or the metric tensor gα1α2 .

• in the case of a tensor with 3 Lorentz index, Ti can be made by Lorentz vectors
only, pα1

i p
α2
j p

α3
k , or by a combination of a Lorentz vector with the metric tensor

gα1α2pα3 for example.

• in the case of 4 Lorentz index, the number of possibilities to build Ti start
to grows. Other than a combination of Lorentz vector, pα1

i p
α2
j p

α3
k p

α4
l and a

combination of Lorentz vectors and metric tensor, gα1α2pα3
k p

α4
l ,it is possible

to build a tensor with four Lorentz index also by combining metric tensors
together, obtaining for example gα1α2gα3α4 .

In order to know the shape of the amplitude with its Lorentz structure factorized,
it is necessary to evaluate all the di�erent ci. To do so, it is useful to perform a
projection by contracting all the indices appearing in both sides of equation (2.81)
with di�erent tensors Tj . In this way it is possible to build a system of equation of
the form

I [Q · Tj ] =
∑
i

ciTi · Tj (2.82)
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running on j that labels all the possible tensors that can be used to contract the
indices appearing in (2.81). Inverting such system it is possible to determine all the
scalar constants, �nding that

ci =
∑
j

bijI [Q · Tj ] (2.83)

Thus, substituting it back in the formula of the amplitude, de�ning Eα1···αm =
ε1,α1 · · · εm,αm , one �nds that

M =
∑
i,j

E · Ti bij I [Q · Tj ] . (2.84)

Q · Tj contains all the possible contraction between the loop momentum and the
tensors Tj . As seen in the examples made before, Tj can contain at most combination
of external momenta and metric tensors, hence it is possible to write the numerator
of the integral in a general form:

Q · Tj =
(
q2
)a∏

i

(q · pi)bi . (2.85)

As shown, through the Passarino-Veltman tensor decomposition it is possible to write
a generic amplitude in function of a set of scalar integrals that has, as numerator,
scalar products between the loop momentum and the external momenta or powers
of the loop momentum.

In order to further simplify the general possible expression of a given Feynman
amplitude, it is mandatory to better understand its structure in terms of scalar
products and denominators. First of all, in the case of an n particle process at one
loop, the scalar Feynman integral can be written as∫

d4q

(2π)4

N

Dx1
1 · · ·D

xn
n

(2.86)

, hence has n denominators. These denominators can be written, in the Euclidean
space, as

Di = (q + Vi)
2 +m2

i Vi =

i∑
j

pj Vn = 0 (2.87)

Substituting the explicit form of Vi inside the expression of the denominator and
performing the square of the momenta �owing in the corresponding propagator, it is
clear that the denominator can always be written as a combination of scalar products,
since the outcome of such procedure is:

Di = q2 + 2

j∑
i

q · pj +

i∑
j,k

pj · pk +m2
i . (2.88)

Noticing that in an amplitude with n external leg there are n − 1 independent mo-
menta due to the momentum conservation condition (

∑n
i pi = 0), the possible scalar

product that involves the loop momentum in an n point function are

q2, q · pi i = 1, . . . , n− 1 (2.89)
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for a total of n independent scalar product, the same as the number of denominators.
At one loop hence all scalar product are reducible, that means that all scalar products
can be expressed in terms of denominators and external variables (such as p2

i , pi ·
pj ,m

2
i ). For example, using the de�nition of the denominators given in (2.87), it is

possible to write

q · pi =
1

2
(Di −Di−1 + a) (2.90)

with a made of external variables. Going back to equation (2.84), one now notice
that it is possible to write a Feynman amplitude in function of integral with 1 at the
numerator, with their value depending only on their denominators. In particular the
amplitude will be a rational function of scalar products, and it will be a function of
at most 5 independent variable. This is due to the fact that not all the scalar product
are independent. Since the external momenta are 4-dimensional vectors, there will
be at most 4 independent scalar product like q · pi. On top of that, we can write the
D dimensional loop momenta as

qα = qα[4] + µα (2.91)

decomposing it in two orthogonal components: qα[4], the four dimensional one, and
µα, the D − 4 dimensional component. Let us notice that

q2 = q2
[4] + µ2 (2.92)

with qα[4] being dependent on the other 4 dimensional scalar product. In this way, any
Feynman amplitude at one loop, in dimensional regularization, will at most depend
on 5 scalar product (4 that are 4 dimensional, plus one extra dimensional, µ2), and
hence it will depends on at most 5 independent denominators. This property can be
portrayed in a fancy way:

M1−loop =
∑
i

fi +
∑
i

di +
∑
i

ci +
∑
i

bi +
∑
i

ai

(2.93)

2.3.2 Fit on the cut

In order to know the whole Feynman amplitude, it is mandatory to evaluate both
the integral in which we can reduce it (the integral with 1 at the numerator and at
most 5 independent denominators portrayed in equation (2.93), the master integrals)
and determine the coe�cients in front of them. This thesis won't cover how those
integrals are evaluated. Instead an e�cient way to determine all the coe�cients will
be shown.

The �t-on-the-cut approach was proposed in Ref. [10] for one-loop amplitudes.
As the name suggests, this technique uses the idea of cut in order to determine the
coe�cient of the reduction outlined in (2.93). This technique ,in which one put on-
shell certain propagators, was �rstly encountered working with Unitarity. There, we
found that in order to apply the constraint due to the Unitarity of the S-matrix,
it was necessary to cut the diagram taken in to account. As shown in equation
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(2.31), through the Cutkosky rule, the cuts were used to project the amplitude on
its imaginary part.

Here in the same way, the attempt is to use cuts to project the reduced amplitude
on a single contribution in order to extract its coe�cient, in what is called the
Generalize Unitarity approach, since it takes inspiration from the e�ects of Unitarity
of the scattering matrix.

The idea is to use the cut to put propagators on shell, hence applying the following
substitution:

1

D
→ 2π δ(D)

→ 2π
(2.94)

where the generalized cut is portrayed as a straight red line since it hasn't the θ
function in it, di�erently from the cut appearing in the Cutkosky-Veltman rule.

Example

Here, as an example, the double cut of the 1 loop bubble function written in (2.48)
will be calculated. Graphically it is

and its value is

A = λ2

∫
dDq

(2π)D−2
δ(q2)δ((q − p)2) (2.95)

Through the property of the delta function outlined in (2.24) and moving into the
center of mass reference frame one arrives to

A = λ2

∫
dDq

(2π)D−2

δ(q0 − |q|) + δ(q0 + |q|)
2|q|

δ(q0 −M − |q|) + δ(q0 −M + |q|)
2|q|

(2.96)

Integrating over dq0 and factorizing the integration measure leads to

A = λ2

∫
d|q||q|D−4dΩD−2

4(2π)D−2
[δ(−M) + δ(−M − 2|q|) + δ(−M) + δ(2|q| −M)]

=
λ2

4π1−ε
Γ(1− ε)
Γ(2− 2ε)

∫
d|q||q|D−4δ(2|q| −M)

=
λ2(M2)−ε

23−2επ1−ε
Γ(1− ε)
Γ(2− 2ε)

(2.97)

which, in this particular case, is the D dimensional result for the Cutkosky-Veltman
rule, as one can �nd comparing this result to the 4 dimensional one portrayed in
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(2.33). Let's remark that in general, the result of a generalized cut is di�erent from
the Cutkosky-Veltman cut.

When a cut over a denominator appearing in the integral is performed, it's mean-
ing is clear. But what happens when the amplitude has a cut over a denominator
that doesn't appear in it? Take for instance a bubble (two denominators function)
that has 3 cuts over 3 independent denominators. Suppose that our amplitude has
D1 = q2 and D2 = (q − p1)2 as denominators, and one want to cut it over D1, D2

and D3 = (q + p2)2, with p2 linearly independent from p1. To perform the cut one
has to "create" D3. In order to do so, one multiply and divide by it:

A =

∫
dDq

(2π)D−3

1

D1D2
=

∫
dDq

(2π)D−3

D3

D1D2D3
. (2.98)

Performing the triple cut now one obtains

Acut =

∫
dDq

(2π)D−3
δ(D1)δ(D2)δ(D3)D3 = 0 (2.99)

that is clearly null. Pictorially, it could be represented as

= 0 (2.100)

where the red lines stand for the number of cuts that one has to apply to the am-
plitude, they are not meant in the traditional convention used in this thesis. In
this sense the generalized cut acts as a projector. It project an amplitude on to the
diagram that contains denominators that appear in the cut, or more. For instance,
performing a 5 cut on an amplitude, will kill all the integrals with 4 or less denomi-
nators that composes it . Cutting 4 time a one loop amplitude will kill the 3 or less
denominators function, and all the 4 denominators function that doesn't have one of
the cut propagators. In this way, starting from the 5 cut and going down until the
single cut, one can build a triangular system, isolating and then determining all the
coe�cients. Applying this algorithm to (2.93) one obtains, pictorially:
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= fi

=
∑
i

fi + di

=
∑
i

fi +
∑
i

di + ci

=
∑
i

fi +
∑
i

di +
∑
i

ci + bi

=
∑
i

fi +
∑
i

di +
∑
i

ci +
∑
i

bi + ai

(2.101)

, in this way one can determines all the coe�cients appearing in the decomposition
in Master Integrals at one loop.

2.4 Application: 1-Loop 3-point amplitudes QED

In this chapter an application of the Feynman Tree theorem will be presented. The
amplitude considered is the QED three point function at one loop in the massless
spinors limit. The calculation of such amplitude will be computed in two ways: the
�rst time via the well known Feynman parameterization, the second time using the
Feynman tree theorem so that it is possible to check the result obtained in the latter
framework with the one resulting from the former.

The amplitude considered is:

A(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p2, s2)

(q2
1 + iε)(q2

2 + iε)(q2
3 + iε)

(2.102)

and can be represented as the following Feynman diagram:

q3 q2

p2

q1

p1
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2.4.1 Feynman parametrization method

In this example, we will adopt the same notation used in [11], in order to compare
easily the result drawn by the two calculations.

In order to integrate over q1 it is necessary to write q2 and q3 in function of the
former. The relation between the momenta given by the momentum conservation
are

q2 = q1 + p2

q3 = q1 − p1
(2.103)

Substituting them in (2.102) one obtains

A(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
ū(p2)γα(/q1

+ /p2
)/ε(λ)(/q1

− /p1
)γαu(p1)

(q2
1 + iε)((q1 + p2)2 + iε)((q1 − p1)2 + iε)

(2.104)

In order to simplify this expression an identity that contains gamma matrices is
needed:

γαγργβγσγ
α = (4−D)γργβγσ − 2γσγβγρ (2.105)

in D dimensions. On top of that, another useful relation is given by the Dirac
equation that in the massless limits gives ū(p2)/p2

= 0 and /p1
u(p1) = 0. Using them

in the total amplitude leads to

A(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
ū(p2)[(2−D)/q1

/ε/q1
+ 2/p1

/ε/q1
− 2/q1

/ε/p2
+ 2/p1

/ε/p2
]u(p1)

(q2
1 + iε)((q1 + p2)2 + iε)((q1 − p1)2 + iε)

(2.106)

Using the Feynman parameterization in this case, with n = 3, gets to:

Atot = 2e3µ4−D
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫
dDq1

(2π)D
ū(p2)[(2−D)/q1

/ε/q1
+ 2/p1

/ε/q1
− 2/q1

/ε/p2
+ 2/p1

/ε/p2
]u(p1)

((q2
1 − 2q1p1)x1 + (q2

1 + 2q1p2)x2 + q2
1(1− x1 − x2))3

= 2e3µ4−D
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫
dDq1

(2π)D
ū(p2)[(2−D)/q1

/ε/q1
+ 2/p1

/ε/q1
− 2/q1

/ε/p2
+ 2/p1

/ε/p2
]u(p1)

((q1 − p1x1 + p2x2)2 + s12x1x2)3

(2.107)

Then de�ning q1 = q + p1x1 − p2x2 leads to:

Atot = 2e3µ4−D
∫ 1

0
dx1

∫ 1−x1

0
dx2

∫
dDq

(2π)D
N(q, p1, p2)

(q2 + s12x1x2)3
(2.108)

(2.109)

After some algebra the numerator becomes

N(q, p1, p2) =ū(p2){(2−D)/q/ε/q + [(2−D)x1 + 2]/p1
/ε/q − [(2−D)x2 + 2]/q/ε/p2

+ [2− 2x1 − 2x2+

+ (D − 2)x1x2]/p1
/ε/p2
}u(p1)

(2.110)

The total amplitude hence is

Atot =e3µ4−D
∫ 1

0
dx1

∫ 1−x1

0
dx2ū(p2){(2−D)Iρσγρ/εγσ + [(2−D)x1 + 2]Iρ/p1

/εγρ

− [(2−D)x2 + 2]Iργρ/ε/p2
+ [2− 2x1 − 2x2 + (D − 2)x1x2]I/p1

/ε/p2
}u(p1)

(2.111)
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with

Iρσ = 2

∫
dDq

(2π)D
qρqσ

(q2 + s12x1x2)3
(2.112)

Iρ = 2

∫
dDq

(2π)D
qρ

(q2 + s12x1x2)3
(2.113)

I = 2

∫
dDq

(2π)D
1

(q2 + s12x1x2)3
(2.114)

Due to symmetry argument one has that

Iρ = 0 (2.115)

Iρσ = 2
gρσ

D

∫ x1

0
dx1

∫ 1−x1

0
dx2

∫
dDq

(2π)D
q2

(q2 + s12x1x2)3
=
gρσ

D

∫ x1

0
dx1

∫ 1−x1

0
dx2Ig

(2.116)

this simpli�es Atot greatly, leading to:

Atot =e3µ4−D
∫ 1

0
dx1

∫ 1−x1

0
dx2ū(p2)

{
(2−D)

D
Igγρ/εγ

ρ + [2− 2x1 − 2x2 + (D − 2)x1x2] I/p1
/ε/p2

}
u(p1)

=e3µ4−Dū(p2)/εu(p1)

∫ 1

0
dx1

∫ 1−x1

0
dx2

{
(2−D)2

D
Ig − s12[2− 2x1 − 2x2 + (D − 2)x1x2]I

}
(2.117)

where the following identities has been used:

γργβγ
ρ = (2−D)γβ (2.118)

ū(p2)/p1
γβ/p2

u(p1) = −s12ū(p2)γβu(p1) (2.119)

Applying (2.53) to I and Ig and substituting D = 4− 2ε gives

I = 2I0,3 = i
−(−s12x1x2)−1−ε

(4π)2−ε Γ(ε)ε

Ig = 2I1,3 = i
(−s12x1x2)−ε

(4π)2−ε Γ(ε)(2− ε)
(2.120)

The last step needed to evaluate Atot is to compute the integrals over x1 and x2.
These integrals already appeared in another example: they're all Beta function, as



2.4. APPLICATION: 1-LOOP 3-POINT AMPLITUDES QED 33

de�ned in (2.68), thus they can be written as:

∫ 1

0
dx1

∫ 1−x1

0
(x1x2)−ε =

1

1− ε

∫ 1

0
dx1x

−ε
1 (1− x1)1−ε =

1

1− ε
B(1− ε, 2− ε)

=
Γ(−ε)Γ(2− ε)

Γ(3− 2ε)
(−ε− ε2)∫ 1

0
dx1

∫ 1−x1

0
x2(x1x2)−1−ε =

1

1− ε

∫ 1

0
dx1x

−1−ε
1 (1− x1)1−ε =

1

1− ε
B(−ε, 2− ε)

=
Γ(−ε)Γ(2− ε)

Γ(3− 2ε)
2∫ 1

0
dx1

∫ 1−x1

0
x1(x1x2)−1−ε = −1

ε

∫ 1

0
dx1(x1(1− x1))−ε = −1

ε
B(1− ε, 1− ε)

=
Γ(−ε)Γ(2− ε)

Γ(3− 2ε)
2∫ 1

0
dx1

∫ 1−x1

0
(x1x2)−1−ε = −1

ε

∫ 1

0
dx1x

−1−ε
1 (1− x1)−ε = −1

ε
B(−ε, 1− ε)

=
Γ(−ε)Γ(2− ε)

Γ(3− 2ε)

4ε− 2

ε
(2.121)

The total amplitude then turns out to be

Atot = ie3ū(p2)/εu(p1)

(
−s12

µ2

)−ε ΩD−3

2(2π)3−2ε

Γ(ε)Γ(−ε)Γ(1− ε)Γ(2− ε)
Γ(3− 2ε)

{2− ε+ 2ε2}

(2.122)

Expanding it around ε = 0, one obtains the �nal result

Atot =
e3

4
ū(p2, s2)/ε(λ)u(p1, s1)

ΩD−3

(2π)3−2ε{
− 2

ε2
+

1

ε

[
−3 + 2 log

(
−s12

µ2

)]
− 8 + 3 log

(
−s12

µ2

)
− log2

(
−s12

µ2

)
+O(ε)

}
(2.123)

2.4.2 Feynman tree theorem method

Applying the Feynman tree theorem in this case gives the amplitude written in term
of seven cut amplitudes, namely

A = A1 +A3 +A2 −A23 −A13 −A12 +A123 (2.124)

where the convention adopted here is the same as in (2.57). This equation can be
represented as
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= + + +

− − −

+

(2.125)

Single cut amplitudes

Cutting over q1. The �rst one, with the photon propagator brought on shell by
the delta that comes from the Feynman tree theorem, is:

A1(p1, s1, p2, s2, λ) = −e3µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

1

) ū(p2)γα/q2
/ε(λ)/q3

γαu(p1)(
q2

2 + iε
) (
q2

3 + iε
)
(2.126)

which can be represented as

q3 q2

p2

q1

p1

Writing all the loop momenta in function of q1 thanks to equation (2.103) one
obtains

A1(p1, s1, p2, s2, λ) = −e3µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

1

) ū(p2)γα(/q1
+ /p2

)/ε (λ) (/q1
− /p1

)γαu(p1)[
(q1 + p2)2 + iε

] [
(q1 − p1)2 + iε

]
(2.127)

Using (2.105) and the Dirac equation for massless spinors simplify the numerator,
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having it written in the following form

N(q1, p1, p2) = ū(p2)
[
(4−D)(/q1

+ /p2
)/ε(λ)(/q1

− /p1
)− 2(/q1

− /p1
)/ε(λ)(/q1

+ /p2
)
]
u(p1)

= ū(p2)
[
(2−D)/q1

/ε(λ)/q1
− 2/q1

/ε(λ)/p2
+ 2/p1

/ε(λ)/q1
+ 2/p1

/ε(λ)/p2

]
u(p1)

(2.128)

The amplitude then turns out to be a combination of tensor integrals:

A1(p1, s1, p2, s2, λ) = e3ū(p2)
[
(2−D)I(1)

ρσ γ
ρ/ε(λ)γσ − 2I(1)

ρ γρ/ε(λ)/p2
+ 2I(1)

ρ /p1
/ε(λ)γρ+

+2I(1)
/p1
/ε(λ)/p2

]
u(p1)

(2.129)

with

I(1) = −µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

1

) 1

(2q1p2 + iε) (−2q1p1 + iε)

I(1)
ρ = −µ4−D

∫
dDq1

(2π)D
2πδ(+)

(
q2

1

) q1,ρ

(2q1p2 + iε) (−2q1p1 + iε)

I(1)
ρσ = −µ4−D

∫
dDq1

(2π)D
2πδ(+)

(
q2

1

) q1,ρq1,σ

(2q1p2 + iε) (−2q1p1 + iε)

(2.130)

In order to deal with these integrals it is necessary to perform a covariant decompo-
sition using the available momenta p1 and p2:

I(k)
ρ = p1,ρC

(k)
1 + p2,ρC

(k)
2 I(k)

ρσ = C
(k)
00 gρσ +

2∑
i,j

pi,ρpj,σC
(k)
ij (2.131)

Substituting them in A1 and using (2.118) and (2.119) one gets:

A1 = e3ū(p2)/εu(p1)
{

(2−D)2C
(1)
00 − s12

[
(2−D)C

(1)
12 − 2C

(1)
1 + 2C

(1)
2 + 2I(1)

]}
(2.132)

Contracting I(1)
ρσ and I

(1)
ρ with the external momenta or with the metric tensor, one

can evaluate all the di�erent constants:

pρ1I
(1)
ρ = I

(1)
1 =

µ4−D

2

∫
dDq1

(2π)D
2πδ(+)

(
q2

1

) 1

(2q1p2 + iε)

pρ2I
(1)
ρ = I

(1)
2 = −µ

4−D

2

∫
dDq1

(2π)D
2πδ(+)

(
q2

1

) 1

(−2q1p1 + iε)

gρσI(1)
ρσ = I(1)

g = −µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

1

) q2
1

(2q1p2 + iε) (−2q1p1 + iε)
= 0

pρ1p
σ
2I

(1)
ρσ = pρ2p

σ
1I

(1)
ρσ = I

(1)
12 =

µ4−D

4

∫
dDq1

(2π)D
2πδ(+)

(
q2

1

)
(2.133)

Using these informations together with (2.131) leads to

I1 =
s12

2
C

(1)
2 I2 =

s12

2
C

(1)
1

0 = I(1)
g = DC

(1)
00 + s12C

(1)
12

I
(1)
12 =

s12

2
C

(1)
00 +

s2
12

4
C

(1)
12 ,

(2.134)
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knowing that C(1)
12 = C

(1)
21 .

Inverting these relations leads to:

C
(1)
1 =

2

s12
I

(1)
2 C

(1)
2 =

2

s12
I

(1)
1

C
(1)
00 =

1

s12

4

2−D
I

(1)
12 C

(1)
12 = − 4

s2
12

D

2−D
I

(1)
12

(2.135)

Substituting them inside the amplitude gives

A1 = e3ū(p2)/εu(p1)

[
8

s12
I

(1)
12 + 4I

(1)
2 − 4I

(1)
1 − 2s12I

(1)

]
(2.136)

All the integral reported in (2.133) have a common property: performing a change
of variable, de�ning q′µ = αqµ leads to I = αβI, were β is a generic exponent.
This kind of integral are called scaleless and in dimensional regularization they're
equal to zero.
In the end this cut amplitude depends only on integral of this kind so it turns out
to be null.

Cutting over q2. The next amplitude is the one with the cut over the fermionic
propagator of momentum q2. This amplitude is:

A2(p1, s1, p2, s2, λ) = −e3µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

2

) ū(p2, s2)γα/q2
/ε(λ)/q3

γαu(p1, s1)(
q2

1 + iε
) (
q2

3 + iε
)
(2.137)

and can be represented as

q3 q2

p2

q1

p1

The step needed for the evaluation of A2, up to the tensor decomposition, are
almost identical to those shown in the calculation of A1, hence they will be omitted.
After the tensor decomposition the amplitude becomes

A2(p1, s1, p2, s2, λ) = e3ū(p2, s2)/ε(λ)u(p1, s1)

{
8

s12
I

(2)
12 + 2(4−D)I

(2)
2 − 4I

(2)
1

}
(2.138)
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with

I
(2)
1 = −µ4−D

∫
dDq2

(2π)D
2πδ(+)

(
q2

2

) q2p1[
(q2 − p2)2 + iε

] [
(q2 − p1 − p2)2 + iε

]
I

(2)
2 = −µ4−D

∫
dDq2

(2π)D
2πδ(+)

(
q2

2

) q2p2[
(q2 − p2)2 + iε

] [
(q2 − p1 − p2)2 + iε

]
I

(2)
12 = −µ4−D

∫
dDq2

(2π)D
2πδ(+)

(
q2

2

) (q2p1)(q2p2)[
(q2 − p2)2 + iε

] [
(q2 − p1 − p2)2 + iε

]
(2.139)

In particular I(2)
12 = I

(2)
21 and I(2)

g = 0 here too so the relation between the constants
from the tensor decomposition and the integrals are the same as in (2.135).

A particular parameterization makes the integration easier to be made, hence it
will be brie�y introduced now.

Firstly notice that for every cut amplitude there is a momentum brought on-
shell by the delta function. Hence, knowing that the calculation are performed in
the massless limit, it is possible to write the momentum in the following form:

qi = |qi| (1, sin (θi)eT , cos (θi)) (2.140)

with θi being the angle between the three momentum qi and the z axis. Moreover the
modulus of the momentum can be written in function of a dimensionless parameter
ξi multiplied for

√
s12
2 .

Then, changing the parameterization of the angle, thus setting:

cos (θi) = 1− 2vi (2.141)

allows to express the on-shell momentum as follows:

qi =

√
s12

2
ξi

(
1, 2
√
vi(1− vi)eT , 1− 2vi

)T
(2.142)

where ξi ∈ [0,∞[, vi ∈ [0, 1] and eT is a unit vector in the transverse direction.
As expect q2

i = 0 and

|qi| = qi,0 =

√
s12

2
ξi (2.143)

With this new parameterization the integration over the solid angle changes. Re-
membering that

dΩD−2 = (sin (θi))
D−3dθiΩD−3 (2.144)

one can write

dΩD−2 = ΩD−32D−3(vi(1− vi))
D−4
2 dvi. (2.145)

With p1 pointing in the positive z direction and p2 = −p1, the scalar product
between the loop momenta and the external momenta becomes:

2qip1 = s12ξivi 2qip2 = s12ξi(1− vi) (2.146)
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Starting from I
(2)
1 one integrates over dq0, �nding:

I
(2)
1 = −µ4−D

∫
d|q2||q2|D−3dΩD−2

2(2π)D−1

q2p1

(−2q2p2 + iε)(s12 − 2q2p1 − 2q2p2 + iε)

= µ4−D s
D
2
−2

12

2D(2π)D−1

∫
dξ2

ξD−3
2

1− ξ2 + iε
dΩD−2

v2

1− v2

=

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε

∫
dξ2

ξ1−2ε
2

1− ξ2 + iε
dv2(v2(1− v2))−ε

v2

1− v2

(2.147)

Now there are two integrals that must be evaluated:

∫ ∞
0

dξ2
ξ1−2ε

2

1− ξ2 + iε
(2.148)∫ 1

0
dv2(v2(1− v2))−ε

v2

1− v2
(2.149)

Again, those integrals belong to the family of the Euler's Beta function de�ned in
(2.68), even if they're quite di�erent from each others.

As one can notice, the integral over v is:

∫ 1

0
dv2v

1−ε
2 (1− v)−1−ε = B(2− ε,−ε) (2.150)

while the integral over ξ has already been faced, in the application of the Feynman
Tree theorem on the two point function, in equation (2.65), and its value is

∫ ∞
0

dξ2
ξ1−2ε

2

1− ξ2 + iε
= −(−1)−2εB(1− 2ε, 2ε) (2.151)

After this calculation I(2)
1 becomes

I
(2)
1 = −

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε
(−1)−2εB(1− 2ε, 2ε)B(2− ε,−ε) (2.152)

Using (2.77) together with (2.68) leads to:

I
(2)
1 = −

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε
(−1)−2ε π

sin (2πε)

Γ(2− ε)Γ(−ε)
Γ(2− 2ε)

(2.153)

As it will be shown, also the other cut amplitudes depend on a combination of
Gamma functions, so for a simpler evaluation of (2.102) it is helpful to write them
in function of a common term:

I
(2)
1 =

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε
(−1)−2ε π

sin (2πε)

Γ(2− ε)Γ(−ε)
Γ(3− 2ε)

(2ε− 2) (2.154)



2.4. APPLICATION: 1-LOOP 3-POINT AMPLITUDES QED 39

Analogously one can calculate I(2)
2 :

I
(2)
2 = −µ4−D

∫
d|q2||q2|D−3dΩD−2

2(2π)D−1

q2p2

(−q2p2 + iε)(s12 − 2q2p1 − 2q2p2 + iε)

=

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε

∫
dξ2

ξ1−2ε
2

1− ξ2 + iε
dv2(v2(1− v2))−ε

= −
(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε
(−1)−2εB(1− 2ε, 2ε)B(1− ε, 1− ε)

=

(
s12

µ2

)−ε ΩD−3

8(2π)3−2ε
(−1)−2ε π

sin (2πε)

Γ(2− ε)Γ(−ε)
Γ(3− 2ε)

(2ε)

(2.155)

and I(2)
12 :

I
(2)
12 = −µ4−D

∫
d|q2||q2|D−3dΩD−2

2(2π)D−1

(q2p1)(q2p2)

(−2q2p2 + iε)(s12 − 2q2p1 − 2q2p2 + iε)

=

(
s12

µ2

)−ε s12ΩD−3

16(2π)3−2ε

∫
dξ2

ξ2−2ε
2

1− ξ2 + iε
dv2(v2(1− v2))−εv2

= −
(
s12

µ2

)−ε s12ΩD−3

16(2π)3−2ε
(−1)−2εB(1− 2ε, 2ε)B(2− ε, 1− ε)

=

(
s12

µ2

)−ε s12ΩD−3

16(2π)3−2ε
(−1)−2ε π

sin (2πε)

Γ(2− ε)Γ(−ε)
Γ(3− 2ε)

(ε)

(2.156)

using the same change of variable performed in (2.151) to evaluate the integral over
ξ2.
Substituting these results back in (2.138) leads to:

A2(p1, s1, p2, s2, λ) =e3ū(p2, s2)/ε(λ)u(p1, s1)

(
s12

µ2

)−ε ΩD−3

2(2π)3−2ε

π(−1)−2ε

sin(2πε)

Γ(2− ε)Γ(−ε)
Γ(3− 2ε){

2− ε+ 2ε2
}

(2.157)

Cutting over q3. The last single cut amplitude missing is A3:

A3(p1, s1, p2, s2, λ) = −e3µ4−D
∫

dDq1

(2π)D
2πδ(+)(q2

3)
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p1, s1)

(q2
1 + iε)(q2

2 + iε)
(2.158)

and can be represented as

q3
q2

p2

q1

p1
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Repeating the same steps done for A2 (the relations written in (2.135) are valid
here too) one obtains:

A3(p1, s1, p2, s2, λ) = e3ū(p2, s2)/ε(λ)u(p1, s1)

{
8

s12
I

(3)
12 − 2(4−D)I

(3)
1 + 4I

(3)
2

}
(2.159)

(2.160)

which is pretty similar to (2.138). Here the integrals are:

I
(3)
1 = −µ4−D

∫
dDq3

(2π)D
2πδ(+)(q2

3)
(q3p1)[

(q3 + p1)2 + iε
] [

(q3 + p1 + p2)2 + iε
]

I
(3)
2 = −µ4−D

∫
dDq3

(2π)D
2πδ(+)(q2

3)
(q3p2)[

(q3 + p1)2 + iε
] [

(q3 + p1 + p2)2 + iε
]

I
(3)
12 = −µ4−D

∫
dDq3

(2π)D
2πδ(+)(q2

3)
(q3p1)(q3p2)[

(q3 + p1)2 + iε
] [

(q3 + p1 + p2)2 + iε
]

(2.161)

Applying the parameterization outlined in (2.142) one is able to evaluate the integral
written above. Starting from the �rst, one has that

I
(3)
1 = −

(
s12

µ

)−ε ΩD−3

8(2π)3−2ε

∫
dξ3

ξ1−2ε
3

1 + ξ3
dv3(v3(1− v3))−ε (2.162)

The integral over v3 is the same as in (2.155), while the integral over ξ3 is linked to
the one appearing in A2: de�ning ξ3 = −ξ2 it becomes∫ +∞

0
dξ3

ξ1−2ε
3

1 + ξ3
= (−1)1−2ε

∫ 0

−∞
dξ2

ξ1−2ε
2

1− ξ2
= (−1)−2ε

∫ +∞

0
dξ2

ξ1−2ε
2

1− ξ2
(2.163)

which is the same integral appearing in (2.148) multiplied by a factor (−1)−2ε, so

I
(3)
1 = −(−1)−2εI

(2)
2 (2.164)

The next one is:

I
(3)
2 = −

(
s12

µ

)−ε ΩD−3

8(2π)3−2ε

∫
dξ3

ξ1−2ε
3

1 + ξ3
dv3(v3(1− v3))−ε

1− v
v

(2.165)

Observing that, by substituting 1− v3 = v2 , one gets∫ 1

0
dv3(v3(1− v3))−ε

1− v3

v3
=

∫ 1

0
dv2(v2(1− v2))−ε

v2

1− v2
(2.166)

it is possible draw a relation between integrals:

I
(3)
2 = −(−1)−2εI

(2)
1 (2.167)

The next one reads

I(3) = −
(
s12

µ

)−ε s12ΩD−3

16(2π)3−2ε

∫
dξ3

ξ2−2ε
3

1 + ξ3
dv3(v3(1− v3))−ε(1− v3) (2.168)
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By performing the same substitution over v and following the same procedure done
in (2.163), one �nds that

I(3) = (−1)−2εI(2) (2.169)

Substituting every I back into the cut amplitude A3 leads to

A3(p1, s1, p2, s2, λ) =(−1)−2εA2(p1, s1, p2, s2, λ)

=e3ū(p2, s2)/ε(λ)u(p1, s1)

(
s12

µ2

)−ε ΩD−3

2(2π)3−2ε

π

sin(2πε)

Γ(2− ε)Γ(−ε)
Γ(3− 2ε){

2− ε+ 2ε2
}

(2.170)

Using (2.62) to match the result outlined in [11] one gets that

Γ(2− ε)Γ(−ε)
Γ(3− 2ε)

=
1

2

Γ(1− ε)Γ(−ε)
Γ(2− 2ε)

=

√
π

4
4−ε

Γ(−ε)
Γ(3/2− ε)

(2.171)

and hence

A3(p1, s1, p2, s2, λ) =e3ū(p2, s2)/ε(λ)u(p1, s1)

(
s12

µ2

)−ε ΩD−3

2(2π)3−2ε

π

sin(2πε)

√
π

4
4−ε

Γ(−ε)
Γ(3/2− ε){

2− ε+ 2ε2
}

(2.172)

Double cut Amplitudes

The next amplitudes are the double cut.

Cutting over q2 and q3. The �rst that will be evaluated is:

A23(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
2πδ(+)(q2

2)2πδ(+)(q2
3)
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p1, s1)

(q2
1 + iε)

(2.173)

and can be represented as

q3 q2

p2

q1

p1

Shifting the integration variable to q3, integrating over dq3,0 and using (2.142)
leads to:

A23(p1, s1, p2, s2, λ) = e3µ4−D
∫
dq3,0d|q3||q3|D−2

(2π)D−2
δ(+)

(
(q3 + p1 + p2)2

) δ(q3,0 − |q3|)
2q3,0

N(q3)

[(q3 + p1)2 + iε]

=
e3

2(D−1)(2π)D−2

(
s12

µ2

)−ε ∫
dξ3dΩD−2δ

(+)(s12(1 + ξ3))N(ξ3, v3)
ξD−4

3

v3
= 0

(2.174)

since ξ3 is integrated over ξ3 ∈ [0,+∞[ and in this range the argument of the delta
function is di�erent from zero.
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Cutting over q1 and q3. Proceeding with the calculation, the next amplitude is:

A13(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
3)
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p1, s1)

(q2
2 + iε)

(2.175)

and can be represented as

q3
q2

p2

q1

p1

Shifting the integration to q3, this integral decomposes to

A13(p1, s1, p2, s2, λ) = e3ū(p2, s2)/ε(λ)u(p1, s1)

{
8

s12
I

(13)
12 − 2(4−D)I

(13)
1 + 4I

(13)
2

}
(2.176)

with

I
(13)
1 =µ4−D

∫
dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
3)

q3p1

(q2
2 + iε)

I
(13)
2 =µ4−D

∫
dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
3)

q3p2

(q2
2 + iε)

I
(13)
12 =µ4−D

∫
dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
3)

(q3p1)(q3p2)

(q2
2 + iε)

(2.177)

Calculating the �rst one gets:

I
(13)
1 (p1, s1, p2, s2, λ) = e3µ4−D

∫
dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
3)

q3p1

(q2
2 + iε)

= e3µ4−D s
D/2−3
12

4(2π)D−2
ΩD−3

∫
dξ3dv3θ(ξ3 + 1)δ(ξ3)

ξD−2
3

1 + ξ3
(v3(1− v3))

D−6
2 v3 = 0

(2.178)

Because of the δ (ξ) together with the the fact that the integrand depends on ξD−2
3 .

I
(13)
2 and I(13)

12 are null for the same reason, so A13 = 0.

Cutting over q1 and q2. The last double cut amplitude is:

A12(p1, s1, p2, s2, λ) = e3µ4−D
∫

dDq1

(2π)D
2πδ(+)(q2

1)2πδ(+)(q2
2)
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p1, s1)

(q2
3 + iε)

= e3µ4−D s
D/2−3
12

4(2π)D−2
ΩD−3

∫
dξ2dv2θ(ξ2 + 1)δ(ξ2)ξD−4

2 (v2(1− v2))
D−6
2 N(ξ2, v2)

(2.179)

,represented as
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q3 q2

p2

q1

p1

and for the same argument of A13, turns out to be null.

Triple cut Amplitude

Lastly, the triple cut:

A123(p1, s1, p2, s2, λ) = −e3µ4−D
∫

dDq1

(2π)D
2πδ(+)

(
q2

1

)
2πδ(+)

(
q2

2

)
2πδ(+)

(
q2

3

)
ū(p2, s2)γα/q2

/ε(λ)/q3
γαu(p1, s1)

(2.180)

and can be represented as

q3 q2

p2

q1

p1

which turns out to be 0. In fact shifting the integration over q3 and using the
on-shell parameterization one gets a combination of θ(ξ − 1)δ(ξv)δ(ξ(1− v)) in the
integrand, which is always null.

Conclusions

Now that all terms appearing in equation (2.124) are known, it is �nally possible to
evaluate the total amplitude. Since the only non vanishing contribution come from
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A2 and A3, the total amplitude is

A(p1, s1, p2, s2, λ) =A2 +A3 = A2 + (−1)−2εA2

= e3ū(p2, s2)/ε(λ)u(p1, s1)

(
s12

µ2

)−ε ΩD−3

2(2π)3−2ε

Γ(2− ε)Γ(−ε)
Γ(3− 2ε){

2− ε+ 2ε2
} π(−1)−2ε

sin(2πε)
[1 + (−1)−2ε]

= e3ū(p2, s2)/ε(λ)u(p1, s1)

(
s12

µ2

)−ε ΩD−3

2(2π)3−2ε

Γ(2− ε)Γ(−ε)
Γ(3− 2ε){

2− ε+ 2ε2
} π(−1)−ε

sin(πε)

= e3ū(p2, s2)/ε(λ)u(p1, s1)

(
−s12

µ2

)−ε ΩD−3

2(2π)3−2ε

Γ(ε)Γ(1− ε)Γ(2− ε)Γ(−ε)
Γ(3− 2ε){

2− ε+ 2ε2
}

=
e3

4
ū(p2, s2)/ε(λ)u(p1, s1)

ΩD−3

(2π)3−2ε

(2.181)

Lastly, expanding in ε = 0, one obtains

A(p1, s1, p2, s2, λ) =

{
− 2

ε2
+

1

ε

[
−3 + 2 log

(
−s12

µ2

)]
− 8 + 3 log

(
−s12

µ2

)
− log2

(
−s12

µ2

)
+O(ε)

}
(2.182)

wich is the same result obtained using the Feynman parametrization, outlined in
(2.123), as obtained in [11].



Chapter 3

Multiloop Feynman Integrals

In this chapter, after de�ning Feynman Integrals at multiloop level, we outline some
powerful relation that allows major simpli�cation in the evaluation of a scattering
amplitude. Among such relation, the integration by parts identities are the most
powerful. After this introduction, a general parameterization for the Feynman in-
tegrals and its properties are presented. Such parameterization is called the Baikov
representation. Its peculiarity, is how key information of the amplitude is encoded
within its integrand: the Gram determinant, which has a beautiful and intuitive
geometric interpretation: it is proportional to the volume spanned by the momenta
appearing in the scattering amplitude. An underestimate aspects of such parame-
terization, are its integration boundaries. Nonetheless they're of crucial importance
for example in the IBPs derivation. After a deep look at such component of the
amplitude we analyze a parameterization deriving from the Baikov representation,
which is connected to the Hyperspherical coordinates. At last, we review the noto-
rious technique of generalized Unitarity and IBPs in the Baikov representation with
denominators as variables, outlining its advantage.

3.1 De�nition

In dimensional regularization, hence in a d-dimensional space-time, we de�ne a l-loop
Feynman integral with n external legs and t internal propagators as the integral

Id(l,n)
x1,...,xt [N ] =

∫ l∏
i=1

dDqi
(2π)D

N (qj)

Dx1
1 · · ·D

xt
t

(3.1)

with N (qj) a generic tensor numerator that may depend on the loop momenta,
while the denominators Di are, extending to multiloop the one loop de�nition given
in (2.87),

Di = l2i +m2
i (3.2)

where

lαi =
∑
j

αijq
α
j +

∑
j

βijp
α
j (3.3)

with pαj being the external momenta while α and β are incidence matrices which
entries take values in (0,±1). From here on the normalization factor of (2π)D will

45
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be omitted. After applying the tensor the composition outlined in 2.3.1 in this
multiloop case, one obtains that the starting integral can be written as a rational
function of the scalar product as in the single loop case. Nonetheless, the relation
between scalar product and loop momenta here are quite di�erent. The number of
scalar product now is much greater than n: for each loop momenta we have n − 1
scalar product like qi · pj , on top of that we have to add the scalar product between
loop momenta. In the end the total number is

nSP ≡ r = l(n− 1) +
l(l + 1)

2
=
l(2n+ l − 1)

2
(3.4)

Consider for instance a theory that has only 3 legged vertices. In this case a tree
level diagram will have in total I = n− 3 internal lines, and hence the same number
of propagators (n is the number of external legs). A vertex has n = 3 and I = 0 as
expected. Adding a loop (i. e. connecting 2 points on some lines) increases I by 3.
So, I for n-legged l-loop diagrams is

I = 3l + n− 3 (3.5)

leading to

r − I =
(l − 1)(l + 2n− 6)

2
(3.6)

As expected, in the one loop case nSP − I = 0, hence there are as many scalar
products as denominators. But what happens if one goes to 2 loop? The di�erence
between scalar products and denominators become

r − I|l=2 = n− 2 (3.7)

Thanks to this example one sees that at multi loop level the correspondence between
denominators and scalar products no longer exist and there could be Feynman inte-
grals that, after the tensor reduction and further simpli�cation cannot be cast in to
the form presented in equation (2.93). This is due to the presence of scalar products
that cannot be reduced, so called irreducible scalar products(i.e. ISP's). In general
a multiloop scalar integral can be cast into

Id(l,n)(x1, . . . , xt, y1, . . . , ya) =

∫ l∏
i=1

dDqi
(2π)D

Sy11 · · ·S
ya
a

Dx1
1 · · ·D

xt
t

(3.8)

where Si are the ISP. Di�erently for what happen at one loop, in this case not all the
scalar product can be written in terms of the denominators of the diagram. Because
of this, equation (3.8) can be considered as the general formula for the scalar integrals
composing the amplitude after the tensor decomposition and the integrand reduction.
An alternative way to represent a generic integral at multi loop level is to de�ne a
set of irreducible numerators (linear functions of the scalar products) Dm, . . . , Dr

to add to the set of denominators such that all the scalar products appearing in
the Feynman amplitude can be reduced into a combination of {D1, . . . , Dr}. In the
amplitude becomes

Id(l,n)(x1, . . . , xr) =

∫ l∏
i=1

dDqi
(2π)D

1

Dx1
1 · · ·D

xt
t D

xt+1

t+1 · · ·D
xr
r

(3.9)



3.2. LORENTZ INVARIANCE IDENTITIES 47

where this time the powers xt+1, . . . , xr are negative.
The object de�ned at (3.9) is usually referred to as integral families. In principle,

we can allow the powers xi to assume any integer value. It useful to introduce some
additional terminology:

• We de�ne a topology (or sector) as an integral of the type (3.9) which corre-
sponds to a graph, i.e. which has the ISPs raised to a negative power.

• Given a topology, its subtopologies correspond to integrals where some denom-
inators are raised to zero power. The graph of a subtopology can be obtained
from the one of the â��parent â�� topology by pinching (i.e. removing) the
corresponding loop propagators.

Any integral family contains, obviously, in�nitely many di�erent integrals, each
one corresponding to a particular integer tuple {x1, . . . , xr}. However, only a �-
nite number of such integrals is actually independent, due to the existence of linear
relations between Feynman integrals which are a direct consequence of the invari-
ance of eq. (3.9) under Lorentz transformations and re-parametrization of the loop
momenta.

3.2 Lorentz invariance identities

It is clear that the �rst and the last step can be performed at higher loop too, but
what kind of relation can be built between integrals at this perturbative level? A key
role in this step is played by symmetries. For example, we know that the integrals
de�ned in (3.9) are Lorentz scalar, i.e. they are invariant under rotation of the
external momenta

pαi → pαi + δωαβpiβ, (3.10)

with δωαβ an antisymmetric tensor (δωαβ = −δωβα). Imposing the invariance of
Id(l,n)(x1, . . . , xnSP ) under this transformation one obtains the identity

0 =
n∑
i=1

δωαβ
(
pβi

∂

∂pαi

)
Id(l,n)(x1, . . . , xnSP )

=

n∑
i=1

(
p

[β
i

∂

∂p
α]
i

)
Id(l,n)(x1, . . . , xnSP )

(3.11)

where the antisymmetry and arbitrariness of δω where used in order to draw such
relation.

If one contracts eq. (3.11) with all possible antisymmetric tensors built from
external momenta, like p[α

i p
β]
j it is possible to get (n−1)(n−2)/2 Lorentz invariance

identities between Feynman integrals. This is because applying the derivation over
the external momenta, eq. (3.11) turns in to a vanishing linear combination of
integrals that, after the simpli�cation of the reducible scalar product, becomes a
linear identity between di�erent integrals of the type (3.9).
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3.3 Integration-by-parts identities

Another fundamental symmetry of the integrals Id(l,n)(x1, . . . , xnr), is the invariance
under shift of loop momenta of the type

qαi → qαi + δbijk
α
j (3.12)

where kj ∈ {q1, · · · , ql, p1, · · · , pn} and δbij is again an in�nitesimal parameter.
This symmetry generate a great number of identities that go under the name of
Integration-by-Part-Identities or IBP, as shown in [12]. An alternative, intuitive
way to derive those relation is given by the D dimensional Gauss theorem. In fact,
since our integrals are dimensionally regularized and D is treated as a continuous pa-
rameter, one can assume that the integral (3.9) is well de�ned and hence convergent.
In order to have such properties, the integrand must vanish rapidly enough a the
boundary of the manifold spanned by the loop momenta. A consequence to this fact
is that when integrating by parts Id(l,n)(x1, . . . , xnSP ), no boundary terms is gener-
ate. Alternatively the integral of the total derivative of any Feynman integrand, in
D dimensions, must vanish,∫ l∏

i=1

dDqi
(2π)D

∂

∂qαj

(
vα

Dx1
1 · · ·D

xr
r

)
= 0 (3.13)

where vα is a vector such that v ∈ {q1, · · · , ql, p11, · · · , pn}. Choosing to di�erentiate
over any loop momenta and by changing the vector vα over all its possible values it
is possible to produce l(l + n− 1) IBPs for each integral

Example

In order to better understand the power of such tool, and to gain con�dence in using
it, we will apply it in a couple of case.

IBPs for the Tadpole topology

Let's start with the simplest integral of the kind (3.9), the one with only one denom-
inator: the tadpole

∫
dDq

(2π)D
1

k2 +m2
=

∫
dDq

(2π)D
1

D0
=

q

(3.14)

As a convention, the integral will be portrayed as a graph which has momentum
conservation applied at each vertex, and its internal line will correspond to its de-
nominators. If an internal line has dots over it, it means that the denominator
corresponding to that line is raised to the power a− 1, with a being the number of
dots appearing over it.

In this case, deriving with respect to the loop momenta, one obtains ∂µD0 = 2qµ.
Hence choosing vµ = qµ, in the IBP equation (3.13) the following IBP:

0 =

∫
dDq

(2π)D
∂µ

(
qµ

D0

)
=

∫
dDq

(2π)D

(
D

D0
− 2

q2

D2
0

)
=

∫
dDq

(2π)D

(
D − 2

D0
+

2m2

D2
0

)
(3.15)
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In the end the relation found is∫
dDq

(2π)D
1

D2
0

= −D − 2

2m2

∫
dDq

(2π)D
1

D0
(3.16)

and can be portrayed as

= −D − 2

2m2
(3.17)

IBPs for the Bubble topology

Now let's derive an IBP in a more interesting case. Let's take now an integral with
two denominators, we have:∫

dDq

(2π)D
1

D1D2
with D1 = q2, D2 = (q − p)2 +m2 = q2 − 2q · p (3.18)

where we used the fact that p2 = −m2 in the Euclidean space. This integral can be
represented in this new convention as

q

q − p

p p

In this case, deriving with respect to the integration momenta, one obtains ∂µD1 =
2qµ, ∂µD2 = qmu

2 − 2pmu. Choosing vµ = qµ in this case too, leads to the following
IBP:

0 =

∫
dDq

(2π)D
∂µ

(
qµ

D1D2

)
=

∫
dDq

(2π)D

(
D

D1D2
− 2q2

D2
1D2

− 2q2 − 2q · p
D1D2

2

)
=

∫
dDq

(2π)D

(
D

D1D2
− 2

D1

D2
1D2

− D1 +D2

D1D2
2

)
=

∫
dDq

(2π)D
D − 3

D1D2
−
∫

dDq

(2π)D
1

D2

(3.19)

Through a shift in the loop momentum one can write∫
dDq

(2π)D
1

(q − p)2 +m2
=

∫
dDq

(2π)D
1

q2 +m2
=

∫
dDq

(2π)D
1

D0
(3.20)

And hence arrives to the �nal relation∫
dDq

(2π)D
1

D1D2
=

1

D − 3

∫
dDq

(2π)D
1

D2
0

(3.21)

that can be drawn as

=
1

D − 3
(3.22)
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Now, substituting the IBP (3.17) found for the tadpole example, one arrives to the
�nal relation ∫

dDq

(2π)D
1

D1D2
= −D − 2

D − 3

1

2m2

∫
dDq

(2π)D
1

D0
(3.23)

that can be portrayed in a very intuitive way:

= −D − 2

D − 3

1

2m2
(3.24)

Thanks to the IBP we were able to write an integral that has 2 denominators
in function of one with 1 denominator, simplifying greatly the calculation. This
simple, but clear example, show the power of such a tool with which is possible to
�nd relation between di�erent Feynman integrals, in order to reduce the problem of
the evaluation of an amplitude into the evaluation of a small set of master integrals.

3.4 Baikov representation

It is possible to write the Feynman integral that appears in eq. (3.9) as an integral
in the scalar products that contain the loop momenta. Recalling that l the number
of loop and n the number of external legs with n − 1 independent momenta and
de�ning m = l + n − 1 as the total number of independent momenta, it is possible
to cast the integration measure in the following form:

dDq1 · · · dDql = dm−1q1||d
D−m+1q1⊥ · · · dm−lql||dD−m+lql⊥ (3.25)

where qi|| lies in the space spanned by {qi+1 . . . ql, p1 . . . pn−1}, while qi⊥ lies in the
orthogonal space. To better explain this factorization of the integration measure, it
is represented in the Figure below

span(q1, · · · , pn−1)

qi
q⊥i

q
‖
i

Introducing k = (q1 . . . ql, p1 . . . pn−1), where for i ≤ l we have that ki = qi while
for i > l, we have ki = pi−l we can de�ne

G(q1, . . . , ql, p1, . . . , pn−1) = det(ki · kj) = det(sij) (3.26)
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which is the determinant of the Gram matrix G(q1, . . . , ql, p1, . . . , pn−1), the matrix
that takes as entries the scalar product between all the momenta appearing in the
amplitude:

G =

 s11 · · · s1m
...

. . .
...

sm1 · · · smm

 (3.27)

An intuitive way to understand what the Gram determinant is is given by the fact
that G1/2 corresponds to the volume of the parallelotope spanned by the vectors
q1, . . . , ql, p1, . . . , pn−1.

Then, by geometric considerations, the volume elements dm−iqi|| are

dm−iqi|| =
dsi,i+1dsi,i+2 · · · dsi,m

G1/2(qi, qi+1, . . . , ql, p1, . . . , pn − 1)
(3.28)

in which the denominators are Gram determinants, hence they corresponds to the
volumes of the parallelogram formed by the momenta (qi, qi+1, . . . , ql, p1, . . . , pn−1).

For the orthogonal component instead the measure becomes

dD−m+iqi⊥ = ΩD−m+i−1|qi⊥|D−m+i−1d|qi⊥| =
1

2
ΩD−r+i−1(|qi⊥|)D−m+i−2dq2

i⊥

(3.29)

where |qi⊥| is the height of the parallelogram with the base formed by qi, qi+1, . . . , ql, p1, . . . , pn−1.
|qi⊥| can also be written as the volume of the whole parallelogram divided by the
area of its base, thus replacing dq2

i⊥ with dsii we arrive to

dD−m+iqi⊥ =
1

2
ΩD−m+i−1

(
G(qi + 1, qi+2, . . . , ql, p1, . . . , pn−1)

G(qi+1, qi+2, . . . , ql, p1, . . . , pn−1)

)D−m+i−2
2

dsii

(3.30)

After all these considerations, putting everything back together leads to∫
D

l∏
1

dDqi
(2π)D

1

Dx1
1 · · ·D

xr
r

=
1

(2π)D
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2

∫
D

l∏
i=1

r∏
j≥i

dsijG(q1, q2, . . . , ql, p1, . . . , pn−1)
D−m−1

2
1

Dx1
1 · · ·D

xr
r

(3.31)

with D beeing the region of integration. D can be rather complicate, nevertheless
as thoroughly proven in [13] it's boundaries are determined by the brunch cat of
the integrand. Due to the fact that it has the Gram determinant raised to a non
integer power, this condition can be translated as the Gram determinant vanishes at
its boundaries.

Examples

Bubble amplitude

To showcase the validity of this parameterization, let's apply it to the case of the
bubble amplitude with massless propagators. Namely to the graph
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q

q − p

p p

which represents the integral∫
dDq

(2π)D
1

q2(q − p)2
(3.32)

The bubble integral corresponds to the case in which l = 1, n = 2,m = 2 in
(3.31). Applying that formula to this case leads to

I =
1

(2π)D
π3/2−ε

Γ(3/2− ε)
[G(p)]−1+ε

∫
ds11

s11

∫
ds12

s11 + p2 − 2s12
[G(q, p)]1/2−ε (3.33)

The variables appearing in such integral are s11 = q2 and s12 = q · p = |q||p| cos θ
with θ ∈ [0, π]. This makes the integration variable range between s11 ∈ [0,+∞] and
s12 ∈ [−

√
s11p2,

√
s11p2], that correspond to the condition of obvious positiveness

of s11 and to the fact that G vanishes at the boundaries.
BeingG1/2 the volume spanned by the momenta p and q, let's remark the fact that

the condition that determines the integration boundaries is equivalent to imposing
that such volume collapses into a lower dimensional volume. This is due to the fact
that G is zero when at least a couple of the momenta that composes its scalar product
are linearly dependent. In this case, graphically:

G1/2(q, p)

p

q

G1/2(q, p) = 0 ⇔
q

q p

q

q, p

(3.34)

As one notice, the Gram determinant approach zero as the vectors that composes
it approach one another, becoming linearly dependent. This, as the Figure above
show, happens when θ = 0, π.

The integral then becomes

I =
1

(2π)D
π3/2−ε

Γ(3/2− ε)
(p2)−1+ε

∫ +∞

0

ds11

s11

∫ √s11p2
−
√
s11p2

ds12

s11 + p2 − 2s12

(
s11p

2 − s2
12

)1/2−ε
(3.35)

It is useful to turn the integration boundaries on ds12 to 0 and 1, hence we perform
some change of variables, inverting the condition that s12 =

√
s11p2(2u − 1) and
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then rescaling ds11

I =
1

(2π)D
22−2επ3/2−ε

Γ(3/2− ε)

∫ +∞

0
dx1

s−ε11

(
√
s11 +

√
p2)2

∫ 1

0
du

[
1− 4

√
s11p2

(
√
s11 +

√
p2)2

u

]−1

(u(1− u))1/2−ε

=
1

(2π)D
22−2επ3/2−ε

Γ(3/2− ε)
(p2)−ε

∫ +∞

0
dv

v−ε

(1 +
√
v)2

∫ 1

0
du

[
1− 4

√
v

(1 +
√
v)2

u

]−1

(u(1− u))1/2−ε.

(3.36)

It could resemble quite a di�cult integration to perform, however the integral over
du can be written in terms of the integral representation of the Hypergeometric
function, the analytic continuation of the Gaussian Hypergeometric series:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
ub−1(1− u)c−a−1(1− zu)−a (3.37)

valid for <(c) > <(b) > 0.
Our integral then becomes∫ 1

0
du(u(1− u))1/2−ε

[
1− 4

√
v

(1 +
√
v)2

u

]−1

=
Γ2(3/2− ε)
Γ(3− 2ε)

2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)
(3.38)

obtaining:

I =
22−2επ3/2−ε

(2π)D
Γ(3/2− ε)
Γ(3− 2ε)

(p2)−ε
∫ +∞

0
dv

v−ε

(1 +
√
v)2 2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)
=

1

(2π)D
π2−ε

Γ(2− 2ε)
(p2)−ε

∫ +∞

0
dv

v−ε

(1 +
√
v)2 2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)
(3.39)

where the property of the Gamma function presented in (2.62) has been used.
Luckily, Hypergeometric functions satisfy a plethora of useful identities that can
greatly simplify the calculation, as for example, the following:

2F1

(
a, b; 2b;

4z

(1 + z)2

)
= (1 + z)2a

2F1

(
a, a− b+

1

2
; b+

1

2
; z2

)
(3.40)

valid for |z| < 1.
The Hypergeometric function in (3.39) would have z =

√
v, but v ∈ [0,+∞[ so

this property isn't suitable for our integral as it is right now.In order to proceed with
the calculation it is useful to split our integral in two:

I =
1

(2π)D
π2−ε

Γ(2− 2ε)
(p2)−ε

[∫ 1

0
+

∫ +∞

1

] [
dv

v−ε

(1 +
√
v)2 2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)]
= I1 + I2

(3.41)

where I1 is the integral between 0 and 1, while I2 cover the remaining value of v.
Now it is possible to apply the (3.40), starting from the �rst one gets:

I1 =
(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ 1

0
dv

v−ε

(1 +
√
v)2 2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)
=

(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ 1

0
dvv−ε 2F1 (1, ε; 2− ε; ; v) .

(3.42)
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For the second integral, it is mandatory to set v′ = 1/v in order to apply (3.40),
obtaining

I2 =
(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ +∞

1
dv

v−ε

(1 +
√
v)2 2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v

(1 +
√
v)2

)
=

(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ 1

0

dv′

v′2
1

v′−ε
v′

(1 +
√
v′)2

2F1

(
1,

3

2
− ε; 3− 2ε;

4
√
v′

(1 +
√
v′)2

)

=
(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ 1

0
dv′ v′−1+ε

2F1

(
1, ε; 2− ε; v′

)
.

(3.43)

Summing everything back and setting v′ = v in I2 leads to

I = I1 + I2 =
(p2)−ε

(4π)2−εΓ(2− 2ε)

∫ 1

0
dv
(
v−ε + v−1+ε

)
2F1 (1, ε; 2− ε; v) (3.44)

This is what is called the generalized Hypergeometric function, which is de�ned in
his integral representation as:

3F2(a1, a2, a3; b1, b2; z) =
Γ(b2)

Γ(a3)Γ(b2 − a3)

∫ 1

0
dvva3−1(1− v)b2−a3−1

2F1(a1, a2; b1, vz).

(3.45)

So in the end our integral reduces to

I =
(p2)−ε

(4π)2−εΓ(2− 2ε)

[
Γ(1− ε)
Γ(2− ε) 3F2(1, ε, 1− ε; 2− ε, 2− ε; 1) +

Γ(ε)

Γ(1 + ε)
3F2(1, ε, ε; 2− ε, 1 + ε; 1)

]
=

(p2)−ε

(4π)2−εΓ(2− 2ε)

[
1

1− ε 3F2(1, ε, 1− ε; 2− ε, 2− ε; 1) +
1

ε
3F2(1, ε, ε; 2− ε, 1 + ε; 1)

]
.

(3.46)

Using the fact that

3F2(a1, a2, a3; b1, 1 + a3; 1) =
Γ(b1)Γ(1− a2)Γ(1 + a3)Γ(a1 − a3)

Γ(a1)Γ(1− a2 + a3)Γ(b1 − a3)

+
Γ(b1)Γ(1− a2)Γ(1 + a3)Γ(a3 − a1)

Γ(a3)Γ(1 + a1 − a2)Γ(1− a1 + a3)Γ(b1 − a1)

3F2(a1, a1 − a3, 1 + a1 − b1; 1 + a1 − a2, 1 + a1 − a3; 1),

(3.47)

applied on the �rst generalized Hypergeometric function, one gets

1

1− ε 3F2(1, ε, 1− ε; 2− ε, 2− ε; 1) =
1

1− ε
Γ(2− ε)Γ(1− ε)Γ(2− ε)Γ(ε)

Γ(1)Γ(2− 2ε)Γ(1)

+
1− ε

Γ(1− ε)Γ(2− ε)Γ(−ε)Γ(2− ε)
Γ3(1− ε)Γ(2− ε) 3F2(1, ε, ε; 2− ε, 1 + ε; 1)

=
Γ(2− ε)Γ2(1− ε)Γ(ε)

Γ(2− 2ε)
− 1

ε
3F2(1, ε, ε; 2− ε, 1 + ε; 1)

(3.48)

Given this result, this integral �nally becomes

I =
(p2)−ε

(4π)2−ε
Γ(ε)Γ2(1− ε)

Γ(2− 2ε)

=
(−M2)−ε

(4π)2−ε
Γ(ε)Γ2(1− ε)

Γ(2− 2ε)

(3.49)
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which is exactly the amplitude one obtains using the Feynman parametrization out-
lined in (2.56) up to a phase factor as expected. This di�erence is due to the fact
that we're operating in Euclidean space as stated in [13]

Integration domain in the 3 point function

In this example we will take a closer look to the integration domain in the Baikov
representation. The integral taken in to account is

I =

∫
dDq

(2π)D
1

q2(q − p1)2(q + p2)2
(3.50)

which can be represented as

q3 q2

p2

q1

p1

where q2 = q + p2 while q3 = q − p1.
Applying (3.31) in this case leads to

I =
π1−ε

Γ(1− ε)
[G(p1, p2)]−1/2+ε

(2π)D

∫
ds11

s11

∫
ds12

s11 − 2s12 + s22

∫
ds13

[G(q, p1, p2)]−ε

s11 + 2s13 + s33

(3.51)

As stated before, any couple of vectors contained in the Gram determinant that
becomes linearly dependent make the Gram determinant null. This property gives
a powerful insight on how it is possible to �x the integration boundaries of all the
scalar products variables.

s11 is bounded by its positivity condition as in the case of the bubble. s12 by
imposing that the vectors that builds it becomes parallel at the integration bound-
aries (s12 ∈ [−

√
s11p2

1,
√
s11p2

1], hence through detG(q, p1) = 0, setting the minor of
G(q, p1, p2) containing q and p1 equal to 0.

At this point one has to �nd the integration boundaries for s13 at �xed s11 and
s12, or at �xed modulus of q and at �xed angle θ12, between q and p1.

We know that

s13 =
√
s11s33 cos(θ13) (3.52)

nonetheless it's di�cult to determine the dependence of s13 in function of s12, it is
in fact a lot easier to do it graphically. At �xed θ12, q can only rotate around p1

hence it lies on a cone around the external momentum as shown in Figure 3.1 on the
following page.
In this �gure the external momenta are depicted with a thicker line and the value
of q corresponding to the maximum and minimum value of θ13 (and hence of s13)
are drawn in red.
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Figure 3.1: Possible value of θ23

As one can notice, those values took place when the three momenta lies in a com-
mon plane, hence again when they are linearly dependent (satisfying the condition
detG(q, p1, p2) = 0 as stated before). Solving the latter gives

s13 =
s12s23 ±

√
G(q, p1)G(p1, p2)

s22
(3.53)

,the integration boundaries for s13. In the end the amplitude can be written as

I =
π1−ε

Γ(1− ε)
[G(p1, p2)]−1/2+ε

(2π)D

∫ +∞

0
ds11

∫
G(q,p1)≥0

ds12

∫
G(q,p1,p2)≥0

ds13 [G(q, p1, p2)]−ε F (s11, s12, s13)

(3.54)

where F is, in this case

F−1 = s11 (s11 + s22 − 2s12) (s11 + s33 + 2s13) (3.55)

3.4.1 Integration Boundaries

Looking back at the previous example, one �nds that an iterative structure starts
to arise. In fact, one can start by �xing all the boundaries of sii by their positivity
condition, and then �xes the boundaries of sij with i 6= j by G(q, · · · , pn−1) ≥ 0,
proceeds with the remaining scalar products, setting greater and greater minors of
the Gram determinant to 0 until one arrives to impose this condition on the Gram
determinant built with all the momenta appearing in the amplitude to , in order to
determine the boundaries for the last scalar product. In this way one can determine
the whole integration domain. This idea leads to the following expression, with the
integration domain written explicitly:
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∫
dDq1 . . . d

DqlF =
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2

∫ +∞

0
ds11 · · ·

∫ +∞

0
dsll∫

G(q1,p1)≥0
ds1,l+1 · · ·

∫
G(q1,p1,...,pn−1)≥0

ds1m · · ·
∫
G(ql,p1,...,pn−1)≥0

dslm∫
G(q1,q2,p1,...,pn−1)≥0

ds12 · · ·
∫
G(q1,ql,p1,...,pn−1)≥0

ds1l∫
G(q1,q2,q3,...,pn−1)≥0

ds23 · · ·
∫
G(q1,...,ql,p1,...,pn−1)≥0

dsl−1,l

(3.56)

alternatively we can write it as a multiplication of productoria

∫
dDq1 . . . d

DqlF =
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2

l∏
i=1

[∫ +∞

0
dsii

] l∏
i=1

n−1∏
j=1

[∫
G(qi,p1,...,pj)≥0

dsi,l+j

]
L∏
i=1

[∫
G(q1,qi,p1,...,pn−1)≥0

ds1i

]
L∏
i=1

l∏
j=i+1

[∫
G(q1,...,qi,qj ,p1,...,pn−1)≥0

dsij

]
F

(3.57)

The advantage of using this formula is that the 0 of a generic Gram determinant
is known. Looking at the boundaries determined in (3.53) one notice that they have
a rather lucky shape. This is not due to luck alone. In fact using Laplace's formula
to expand the determinant one �nds

G(q1, q2, . . . , qL, p1, . . . , pE) =(sij)
2a+ sijbij + cij (3.58)

whith

aij =
1

2

∂2G

∂s2
ij

bij =
∂G

∂sij

∣∣∣∣
sij=0

cij = G|sij=0

(3.59)

hence to evaluate explicitly the integration boundaries one needs to solve a second
order equation, obtaining1

G = 0 ⇒ sij =
bij ±

√
GiiG

j
j

Gijij
(3.60)

1The structure of the zeroes in (3.60), used in (3.57), was originally conjectured by us, and late
proven together with R. Sameshima (PhD student at New York City College of Technology)
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with

Gji = det



s11 · · · s1,j−1 s1,j+1 · · · s1M
...

. . .
...

...
...

si−1,1 · · · si−1,j−1 si−1,j+1 · · · si−1,M

si+1,1 · · · si+1,j−1 si+1,j+1 · · · si+1,M
...

...
...

. . .
...

sM1 · · · sM,j−1 sM,j+1 · · · sMM


(3.61)

the determinant of the Gram matrix without the i-th row and j-th column. This
result generalize the one obtained in (3.53). By the direct calculation in some case
one �nds for example:

G(q, p1, p2) = 0 ⇒ s13 =
b13 ±

√
G(q, p1)G(p1, p2)

G(p2)

G(q, p1, p2, p3) = 0 ⇒ s14 =
b14 ±

√
G(q, p1, p2)G(p1, p2, p3)

G(p1, p2)

G((q, p1, p2, p3, p4) = 0 ⇒ s15 =
b15 ±

√
G(q, p1, p2, p3)G(p1, p2, p3, p4)

G(p1, p2, p3)

(3.62)

where

b13 = s12s23

b14 = s12s24s33 + s13s22s34 − s13s23s24 − s12s23s34

b15 = −s13s24s25s34 + s12s25s
2
34 + s13s

2
24s35 − s12s24s34s35 + s13s23s25s44

− s12s25s33s44 − s13s22s35s44 + s12s23s35s44 − s13s23s44s45 + s12s24s33s45

+ s13s22s34s45 − s12s23s34s45 + s14s24s25s33 − s14s23s25s34 − s14s23s24s35

+ s14s22s34s35 + s14s
2
23s45 − s14s22s33s45

which are consistent to (3.60).
A proof to (3.60) will be given in the next section.

Proof

The strategy adopted to demonstrate the relation (3.60) will be to prove it �rst for
s12, and then to generalize this result to any scalar product. That being said, let's
prove that

G = (s12)2a+ s12b12 + c12 = 0 ⇒ s12 =
b12 ±

√
G1

1G
2
2

G12
12

(3.63)

Using the formula for the zeroes of a second grade polynomial on G one get

s12 =
b±
√

∆12

G12
12

(3.64)

with

∆ = b2 − 4ac (3.65)
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where the subscription is omitted in order to do the calculation with a lighter nota-
tion.

As we know from (3.59), the parameters can be written as derivatives of G. In
light of the fact that the derivative of a matrix can be calculated in the following
way:

d

dt
A(t) =

m∑
i=1

(
A1 · · · d

dtAi · · · Am
)

(3.66)

(3.67)

with A an m × m matrix while Ai are the di�erent column of the latter, one can
write a, b, c as:

a = det


0 1 0 · · · 0
1 0 0 · · · 0
0 0 s33 · · · s3m
...

...
...

. . .
...

0 0 sm3 smm

 = det


0 1 0 · · · 0
1 0 0 · · · 0
0 0
...

... G12
12

0 0

 (3.68)

b = det


0 0 s13 · · · s1m

1 0 0 · · · 0
0 s23 s33 · · · s3m
...

...
...

. . .
...

0 sm2 sm3 smm

 = det


0 0 s13 · · · s1m

1 0 0 · · · 0
0 s23
...

... G12
12

0 sm2

 (3.69)

(3.70)

c = det


s11 0 s13 · · · s1m

0 s22 s23 · · · s2m

s13 s23 s33 · · · s3m
...

...
...

. . .
...

sm1 sm2 sm3 smm

 = det


s11 0 s13 · · · s1m

0 s22 s23 · · · s2m

s13 s23
...

... G12
12

sm1 sm2

 (3.71)

where the bold character is used to distinguish the matrix itself (example: Gij
ij is the

gram matrix without a set of rows and columns) from its determinant (exemple: Gijij
is the determinant of a minor of the gram matrix).

In order to proceed with the calculation the following relation

det

(
A B
C D

)
= det(A−BD−1C) detD (3.72)

is mandatory. In order to derive it, some small manipulation must be made. Let us
de�ne

X =

(
A B
C D

)
(3.73)

and

Y =

(
1 −BD−1

0 1

)
(3.74)
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In this case Z becomes

Z = Y X =

(
A−BD−1C 0

C D

)
(3.75)

Knowing that

det

(
A 0
C D

)
= detAdetD (3.76)

it is possible to evaluate detZ, obtaining

detZ = det(A−BD−1C) detD (3.77)

thus

detX = detZ = det(A−BD−1C) detD (3.78)

Now using (3.72) to evaluate the di�erent determinant appearing in (3.68) one
gets

a =G12
12 det

[(
0 1
1 0

)
−
(

0 0
0 0

)]
= −G12

12

b =G12
12 det

(0 0
1 0

)
−
(
s13 · · · s1M

0 · · · 0

)(
G12

12

)−1

0 s23
...

...
0 s2m




= G12
12 det

[(
0 0
1 0

)
−
(

0 t12

0 0

)]
= G12

12t12

c =G12
12 det

(s11 0
0 s22

)
−
(
s13 · · · s1m

s23 · · · s2m

)
(G12

12)−1

 s13 s23
...

...
s1M s2m




= G12
12 det

[(
s11 0
0 s22

)
−
(
t11 t12

t12 t22

)]
= G12

12 det

(
s11 − t11 −t12

−t12 s22 − t22

)
= G12

12[(s11 − t11)(s22 − t22)− t212]

(3.79)

where

tji = tij =
(
si3 · · · siM

)
(G12

12)−1

 sj3
...
sjm

 (3.80)

Substituting these explicit relation in ∆ ones obtain

∆ =
(
G12

12

)2
t212 −

(
G12

12

)2
[(s11 − t11)(s22 − t22)− t212]

=
(
G12

12

)2
(s11 − t11)(s22 − t22)

=G12
12

s22 −
(
s23 · · · s2m

)
(G12

12)−1

 s23
...

s2M


G12

12

s11 −
(
s13 · · · s1m

)
(G12

12)−1

 s13
...

s1M




=G1
1G

2
2

(3.81)
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where in the second last step we used (3.72) backward to rebuild our block matrix.
This proves the validity of (3.59) using s12 as variable, because substituting the
values of ∆ found in (3.81) one �nds that

G = 0 ⇒ s12 =
b12 ±

√
G1

1G
2
2

G12
12

(3.82)

Let's recall the de�nition of the Gram determinant appearing in the result:

G1
1 = det


s22 s23 · · · s2m

s23
... G12

12

s2M

 = det

 s22 · · · s2m
...

. . .
...

s2M · · · smm



G2
2 = det


s11 s13 · · · s2m

s13
... G12

12

s2M

 = det


s11 s13 · · · s2m

s13 s33 · · · s3m
...

...
. . .

...
s2m s3m · · · sm


(3.83)

Generalization. It is possible to extend this result to the case with sij a general
o� diagonal term of the Gram matrix.

In that case the parameter of the equation obtained by imposing G = 0 are

aij = det


0 1 0 · · · 0
1 0 0 · · · 0
0 0
...

... Gij
ij

0 0

 (3.84)

bij = det


0 0 vi[i,j]
1 0 · · · 0
0
... (vj[ij])

T Gij
ij

0

 (3.85)

cij = det


sii 0 vi[i,j]
0 sjj vj[i,j]

(vi[i,j])
T (vj[ij])

T Gij
ij

 (3.86)

(3.87)

where

vk[i] = det
(
sk1 · · · sk,i−1 sk,i+1 · · · sk,m

)
(3.88)

(3.89)

Then, following the procedure outlined for s12 one can extend the previous result to
any sij with i 6= j, thus proving that in

G = 0 ⇒ sij =
bij ±

√
∆ij

Gijij
(3.90)
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∆ij is always of the form

∆ij = GiiG
j
j (3.91)

as stated in eq. (3.59)

3.4.2 Hypersferical parametrization

From the form of the integral appearing in (3.57) it is possible to modify the inte-
gration boundaries so that the integration will be performed over an Hypersphere in
the one loop case, that can be extended to the multiloop case. In fact, shifting the
integration boundaries the Gram determinants changes shape. This is due to the
fact that the integration boundaries and the zero of the determinant are deeply con-
nect. Hence changing the boundaries make the Gram determinant become a di�erent
polynomial that still is zero on the boundaries.

With that in mind, a transformation that shift the domain of integration to
[−1,+1] let the Gram determinant becomes a polynomial that is zero at +1 and −1,
for example 1−u2. This is in fact the case: it is possible to rewrite the Baikov repre-
sentation outlined in (3.31) in a parameterization such that one get the integration
measure to be

C

∫ +∞

0
ds11s

1−ε
11

t∏
i=1

(∫ 1

−1
dai(1− a2

i )
(2−i)/2−ε

)
= C

∫ +∞

0
ds11s

D−2
2

11

t∏
i=1

(∫ 1

−1
dai(1− a2

i )
D−2−i

2

)
(3.92)

with t the number of denominators appearing in the integral. This parameterization
recall the integration in polar coordinates in d dimensions, which is∫ +∞

0
dqqD−1

d−2∏
i=1

(∫ π

0
dθi sind−1−i(θi)

)∫ 2π

0
dθd−1 (3.93)

or, provided that cos(θi) = ai,∫ +∞

0
dqD−1

d−2∏
i=1

(∫ +1

−1
dai(1− a2

i )
(d−2−i)/2

)∫ 2π

0
dθd−1. (3.94)

Below, various examples are provided.

1-loop Examples

3 point function. We intend to take a deeper glance to the function treated in
the example 3.4, wich can be represented as

q3 q2

p2

q1

p1
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Given the integral in the Baikov representation with explicit boundaries outlined
in (3.54), in order to turn the integration domain to [−1,+1] some manipulation is
needed. In that case, starting from the amplitude written above and changing the
integration variable s13 to u through the relation

s13 =
s12s23

s22
+ u

√
G(q, p1)G(p1, p2)

s22
(3.95)

one �nds

I =
π1−ε

Γ(1− ε)
[G(p1)]−1+ε

(2π)D

∫ +∞

0
ds11

∫ √s11s22
−√s11s22

ds12 [G(q, p1)]1/2−ε
∫ 1

−1
du(1− u2)−εF (s11, s12, u)

(3.96)

De�ning now

s12 = v
√
s11s22 (3.97)

the integration �nally turns to

I =
π1−ε

Γ(1− ε)
1

(2π)D

∫ +∞

0
ds11s

1−ε
11

∫ 1

−1
dv(1− v2)1/2−ε

∫ 1

−1
du(1− u2)−εF (s11, v, u)

(3.98)

where now F turned in a much more complicated expression:

F−1 =
s11

s22
(s11 + s22 − 2v

√
s11s22)

(
s11s22 + s22s33 + 2v s23

√
s11s22 + 2u

√
1− v2

√
s11s22G(p1, p2)

)
(3.99)

4 point function. In this example the diagram with 4 external legs will be con-
sidered. It can be represented as

which corresponds to the integral

I =

∫
dDq

(2π)D
1

q2(q + p1)2(q − p2)2(q + p1 + p3)2
(3.100)

Applying the Baikov parameterization in this case gives

I =
π1/2−ε

Γ(1/2− ε)
[G(p1, p2, p3)]ε

∫
ds11

s11

∫
ds12

s11 + s22 + 2s12∫
ds13

s11 + s33 − 2s13

∫
ds14

[G(q, p1, p2, p3)]−1/2−ε

s11 + s22 + s44 + 2s24 + 2s12 + 2s14

(3.101)
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Following the same framework applied to the Triangle case, one can determine the
integration boundaries for s11, s12 and s13, while for s14it is mandatory to �nd the
zeros of G(q, p1, p2). Using the formula (3.59) one �nds

s14 =
b14 ±

√
G(q, p1, p2)G(p1, p2, p3)

G(p1, p2)
(3.102)

The integral, with the integration boundaries speci�ed, hence becomes

I =
π1/2−ε

Γ(1/2− ε)
[G(p1, p2, p3)]ε

∫ +∞

0

ds11

s11

∫
G(q,p1)≥0

ds12

s11 + s22 + 2s12∫
G(q,p1,p2)≥0

ds13

s11 + s33 − 2s13

∫
G(q1,p1,p2,p3)≥0

ds14
[G(q, p1, p2, p3)]−1/2−ε

s11 + s22 + s44 + s24 + 2s12 + 2s14

(3.103)

In order to change the integration domain of s14 to [−1,+1] it is important to de�ne
s14 in function of t,

s14 =
s12s24s33 + s13s22s34 − s13s23s24 − s12s23s34

G(p1, p2)
+ t

√
G(q, p1, p2)G(p1, p2, p3)

G(p1, p2)
(3.104)

In that way the integral becomes

I =
π1/2−ε

Γ(1/2− ε)
[G(p1p2)]−1/2+ε

∫ +∞

0
ds11

∫
G(q,p1)≥0

ds12∫
G(q,p1,p2)≥0

ds13G(q, p1, p2)−ε
∫ 1

−1
dt(1− t2)−1/2−εF (s11, s12, s13, t)

(3.105)

Performing now the change of variables outlined in (3.97) and in (3.95), we arrive to
the �nal form of the integral:

I =
π1/2−ε

Γ(1/2− ε)

∫ +∞

0
ds11s

1−ε
11

∫ 1

−1
dv(1− v2)1/2−ε

∫ 1

−1
du(1− u2)−ε

∫ 1

−1
dt(1− t2)−1/2−εF (s11, v, u, t)

(3.106)

with F that contains all the information about the denominators appearing in the
integrals.

As shown in these example, the iterative structure of this integral arises clearly,
since to obtain the box in this new parameterization it was necessary to use the same
transformation used for the triangle. This parameterization can be extended easily
into the multiloop case too. Below, an example of it in the case of a 2-loop 2 point
function.

2-loop Examples

Sunrise. The amplitude in which we're interested is

I =

∫
dDq2

(2π)D

∫
dDq1

(2π)D
1

q2
1(q1 + q2 + p)2q2

2

. (3.107)

Such amplitude can be portrayed as the following Feynman diagram:
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q1

q2

q1 + q2 + pp p

Using (3.31), it is possible to rewrite it in function of the scalar products, ob-
taining:

I =
1

(2π)3D

πD−3/2

Γ(1− ε)Γ(3/2− ε)
[G(p)]−1+ε

∫ +∞

0
ds11

∫ +∞

0
ds22

∫
G(q1,p)≥0

ds13

∫
G(q2,p)≥0

ds23∫
G(q1,q2,p)≥0

ds12 [G(q1, q2, p)]
−ε F (s11, s12, s13)

(3.108)

with

F−1 = s11 s22 (s11 + s22 + s33 + 2s12 + 2s13 + 2s23) (3.109)

where we choose to �x the integration boundaries starting from the scalar products
between the loop momenta and the external one.

In order to change the integration domain to [−1,+1] we need to de�ne

s12 =
s12s23

s33
+ t

√
G(q1, p)G(q2, p)

s33
(3.110)

turning the integral to

I =
1

(2π)3D

πD−3/2

Γ(1− ε)Γ(3/2− ε)
[G(p)]−2+ε

∫ +∞

0
ds11

∫ +∞

0
ds22

∫
G(q1,p)≥0

ds13 [G(q1, p)]
1/2−ε

∫
G(q2,p)≥0

ds23 [G(q2, p)]
1/2−ε

∫ 1

−1
dt(1− t2)−εF (s11, s22, t, s13, s23)

(3.111)

Lastly, performing some other change of variables over s13 and s23 one arrives to

I =
1

(2π)3D

πD−3/2

Γ(1− ε)Γ(3/2− ε)

∫ +∞

0
ds11s

1−ε
11

∫ +∞

0
ds22s

1−ε
22

∫ 1

−1
dv(1− v2)1/2−ε

∫ 1

−1
du(1− u2)1/2−ε

∫ 1

−1
dt(1− t2)−εF (s11, s22, v, u, t)

(3.112)

with

F−1 =
s11s22

s33

(
s11s33 + s22s33 + s2

33 + 2v s33
√
s11s33 + 2u s33

√
s22s33 + 2v u s33

√
s11s22

+2t
√

1− v2
√

1− u2
√
s11s22s33

)
(3.113)

This parameterization can be applied in a generic case, hence it is very versa-
tile. Further studies will be performed on it, in order to understand its application
together with the generalized cut and/or the IBP approach.
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3.4.3 Denominators as variables

Thanks to the auxiliary numerators de�ned in (3.9), there is the same numbers of
denominators as there is of scalar products. Moreover, naming the formers as xa, it
exist a a linear transformation Aija such that we can write

xa =
l∑

i=1

m∑
j=i

Aija sij +m2
a (3.114)

Note that we are working in the euclidean prescription.
It happens that Aija isn't always invertible: at one loop the number of scalar products
and denominators are the same, but at more loop it is not granted because we can
have irreducible scalar products. In that case we should introduce new variables xa,
or new denominators, that depend on them and write them with a positive exponent.
In the end, Aija can always become invertible (considering ij as a single index span-
ning from 1 to r, as done by the index a). Hence we can write:

sij =

r∑
a=1

Aaij(xa −m2
a) (3.115)

Given the above relation, we can perform a change of variable integrating now over
the denominator, not only the scalar product.
In the end , considering the general case where

F (q1, . . . , ql, p1, . . . , pn−1) =
1

xα1
1 · · ·x

αr
r

(3.116)

our amplitude becomes

I =
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2 detAaij

∫ ∏N
a=1 dxa

xα1
1 · · ·x

αr
r
P (x1 −m2

1, . . . , xr −m2
r)

D−m−1
2

(3.117)

with P (x1 − m2
1, . . . , xr − m2

r) being the Gram determinant written in function of
the denominators and the couple (ij) in the detAaij considered as a single index.

3.4.4 Cuts in Baikov representation

Settin the denominators as integration variables becomes pretty useful when one is
trying to evaluate a generalized cut diagram. In fact in this case the delta has a
simple zero, while in the representation with momenta as variables things are a little
more complicate as shown in the example 2.3.2.

Formally, cutting a propagator and hence putting it on shell, is performed by de-
forming the contour of integration around the pole appearing for xj = 0. Explicitly:

Cutj [I] =
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2 detAaij∫ N∏
a=1
i 6=j

dxa

∮
xj=0

dxj
P (x1 −m2

1, . . . , xr −m2
r)

D−m−1
2

xα1
1 · · ·x

αr
r

(3.118)
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From this equation one can see that, if the denominator is raised to power 1, the
action of cutting the amplitude turns out to be

Cutj [I] =
πDl/2−l(l−1)/4−l(n−1)/2∏l

i=1 Γ(D−m+i
2 )

G(p1, . . . , pn−1)
−D+n

2 detAaij

∫ N∏
a=1
i 6=j

dxa
P (x1 −m2

1, . . . , xr −m2
r)

D−m−1
2

xα1
1 · · ·xj−1xj+1 · · ·xαr

r

∣∣∣∣∣∣∣
xj=0

(3.119)

and hence reconstruct the classic generalized Unitarity substitution rule:

1

xj
→ 2πiδ(xj) (3.120)

Example: double cut of a Bubble

Here this new parameterization will be applied to the case of the bubble amplitude
already discussed thoroughly in the previous chapter, precisely in example 2.3.2.
Namely, we want to evaluate

First of all, let's apply the parameterization outlined in (3.117) to the integral
with two denominators. From (3.35), setting

x1 = q2

x2 = (q − p)2
(3.121)

one can evaluate the Gram determinant in these new variables, and also determine
the matrix of change of variables:

det(Aaij) = det

(
1 1/2
0 −1/2

)
=

1

2

P (x1 −m2
1, . . . , xN −m2

N ) = det

(
x1

x1−x2+p2

2
x1−x2+p2

2 p2

)
= x1p

2 − (x1 − x2 + p2)2

4

(3.122)

leading to the �nal form of our integral:

I =
λ2

(2π)D
π3/2−ε

Γ(3/2− ε)
1

2(p2)1−ε

∫ +∞

0

dx1

x1

∫ x1+p2+2
√
x1p2

x1+p2−2
√
x1p2

dx2

x2

(
x1p

2 − (x1 − x2 + p2)2

4

)1/2−ε

(3.123)

Now applying the cut one obtains

I = − λ2

(2π)D−2

π3/2−ε

Γ(3/2− ε)
1

2(p2)1−ε

∫
dx1dx2δ(x1)δ(x2)

(
x1p

2 − (x1 − x2 + p2)2

4

)1/2−ε

(3.124)
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which is easily evaluated:

I =− λ2

(2π)D−2

π3/2−ε

Γ(3/2− ε)
(−p2)−ε

22−2ε

= −λ
2(M2)−ε

23−2ε

Γ(1− ε)
Γ(2− 2ε)

(3.125)

which is consistent with the result obtained in (2.97) up to a phase, which is expected
since we're working in the Euclidean.

3.4.5 Integration by parts identities in Baikov representation

As seen before, the condition for the validity of the integration by parts identities,
outlined in (3.13), that the integrand vanishes at the boundaries of the domain of
integration. This is exactly the property of the integrand in the Baikov represen-
tation, since the Gram determinant vanishes at the boundaries of integration. This
led to the formulation of such identities in this parametrization too, as formulated
in [14]. Analogously to the original formulation of the IBP, these identities revolves
around ∫

D
dx1 · · · dxr

N∑
i

d

dxi

ci(x)P (x)
D−h

2

xα1
1 · · ·x

αr
r

= 0 (3.126)

where P (x) is the Baikov polynomial in the denominators variables, ci(x) are arbi-
trary polynomials of the denominators x1, · · · , xr, h = m−1 and D is the domain of
integration. From here on we will omit such domain, nonetheless it's role is crucial in
such identities since they're veri�ed because the shape of D grant that P (x)|∂D = 0.

Applying the derivative to the integrand one obtains the relation∫
dx1 · · · dxr

r∑
i

(
∂ci(x)

∂xi
+
D − h

2

ci(x)

P (x)

∂P (x)

∂xi
− αi

ci(x)

xi

)
P (x)

D−h
2

xα1
1 · · ·x

αr
r

= 0

(3.127)

Still, it's not the IBP we're searching of. This identity relates among the other terms
the integral

D − 2− h
2

∫
dx1 · · · dxr

N∑
i

(
∂P (x)

∂xi
ci(x)

)
P (x)

D−2−h
2

xα1
1 · · ·x

αr
r

(3.128)

which can be interpreted as an amplitude in D − 2 dimensions. Such relation, that
links amplitude in di�erent dimensions, is not what we're interested in. In order to
overcome this problem it is necessary to put a constraint to the ci used in the IBP.
Such polynomials must satisfy what is called a syzygy equation:

r∑
i

ci(x)
∂P (x)

∂xi
= bP (x) (3.129)

Substituting it in (3.127) one obtain useful identities:∫
dx1 · · · dxr

r∑
i

(
∂ci(x)

∂xi
+
D − h

2
b− αi

ci(x)

xi

)
P (x)

D−h
2

xα1
1 · · ·x

αr
r

= 0 (3.130)



3.4. BAIKOV REPRESENTATION 69

Moreover sometimes it would be convenient to have IBPs that relate integrals with
the same total power at the denominators. This can be done imposing the second
syzygy equation

ci(x) = bixi (3.131)

Thanks to this condition the third terms in the identity doesn't add any power to
the denominators, hence obtaining the result we were looking for. Such particular
type of IBP algorithm has recentrly received a software adaptation, found in [15, 16]
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Chapter 4

Automatic evaluation of 2-loop

Amplitudes

Great tools for the automatic evaluation of the scattering amplitudes were presented
in previous chapters. Among them, remarkable ones are the Generalized Unitarity
approach, that together with the tensor and the integrand decomposition gave a huge
boost on the calculation of one loop amplitude, and the IBPs reduction technique,
which is the best way to reduce the number of integrals appearing during the cal-
culation of the amplitude. In this chapter we �rstly outline the Adaptive integrand

approach, where adaptive means that such techniques depends on which integral is
used, it adapts to the problem. Such powerful techniques, recalling the integrand
reduction already encountered in the one loop case, is a promising alternative to the
Tensor decomposition, as shown by the example at which it's been applied. After
introducing this new token, the puzzle is �nally complete: it is possible automatize
the calculation, starting from the process and arriving directly at the Laurent ex-
pansion. How it can be done is �rstly described from an algorithm based point of
view, afterwards a possible implementation is used, outlining the contribution given
during the work of this thesis, in order to carry out the evaluation of a 2→ 3 process
in QED.

4.1 Adaptive integrand decomposition

A viable approach to the calculation of multiloop scattering amplitudes, is given by
the decomposition of the integrand in independent contribution. In the one loop case
this type of decomposition is performed almost e�ortlessly thanks to the generalized
Unitarity approach. Nonetheless, as stated before, this approach can't be trasposed
immediately on the multiloop level due to the presence of Irreducible Scalar Products.
The higher complexity of the problem takled needs a new approach to the subject.
The Adaptive Integrand Decomposition [17, 18] sheds new light on the problem,
tackling it with a new approach.

4.1.1 Parallel and orthogonal space

As outlined in the chapter 3.4, the Baikov representation is very versatile and in
some cases its uses simplify the calculation as seen for example in the generalized
cut approach. Using it together with the parameterization in which the loop mo-
menta is split in two orthogonal component, as seen in (2.91), leads to some major

71
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simpli�cation
In general one can write a multiloop Feynman amplitude as

Id(l,n)[N ] =

∫ l∏
i

dDqi
(2π)D

N (qi)∏
j Dj

(4.1)

with

Dj = l2j +m2
j with lαi =

∑
j

αijq
α
j +

∑
j

βijp
α
j (4.2)

where pαj are the external momenta while α and β are incidence matrices which
entries take values in (0,±1), recalling the de�nition of the denominators given in
(2.87).

Generalizing the idea of splitting the loop momenta in to a 4-dimensional com-
ponent and extra dimensional component outlined in (2.91) to the multiloop case,
one has that

qαi = qα[4]i + µαi qi · qj = q[4]i · q[4]j + µij (µij = µi · µj). (4.3)

Substituting such decomposition in the expression for a multiloop denominator (4.2),
one obtains that

Di = l2 +m2
i = l2[4]i +

∑
j,k

αijαikµjk +m2
i (4.4)

where

lα[4]i =
∑
j

αijq
α
[4]j +

∑
j

βijp
α
j (4.5)

With this choice of parameterization for the loop momenta both the numerator and
the denominators will depend on the scalar products µij and the components of q[4]i

with respect to a four-dimensional basis of vectors {eαi }, such that qα[4]i =
∑

j xije
α
j .

It is then possible to apply the Baikov parameterization seen in section 3.4 to the
extra dimensional component of the integration measure, writing a generic multiloop
integral as

Id(l,n)[N ] = Ω
(l)
d

∫ l∏
i=1

d4q[4]i

∫ ∏
1≤i≤j≤l

dµijG(µij)
d−5−l

2
N (q[4]i, µij)∏
j Dj(q[4]i, µij)

(4.6)

with G(µij the Gram determinant as de�ned in (3.26), hence G(µij) = det(µi · µj .
The prefactor Ω

(l)
d is the result of the angular integration over the angular directions.

In the same sense, it is always possible to split the loop momenta in to orthogonal
components, choosing directions that one prefers in order to perform the splitting.
A more convenient choice of directions for this procedure is found to be along the
space parallel to the external momenta and the space orthogonal to them. This
parameterization in the case of n ≥ 5 external leg coincides with the previous case,
while in the other cases is di�erent, but nonetheless ease the calculation of the
integral.

Remarkably, the choice of the splitting depends on the amplitude taken in to
account (more precisely, on its number of external legs), so this parameterization
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changes times to times. It adapts to the integral to which is applied, getting its
name (Adaptive Integrand Decomposition) from this key feature.

De�ning d‖ as the dimension of the space spanned by the external momenta, one
�nds that it is possible to choose 4d‖ of the vectors that belongs to the basis {eαi }
to lie into the subspace orthogonal to the external kinematics, i.e. such that

ei · pj = 0 for i > d‖,∀j (4.7)

and

ei · ej = δij . (4.8)

In this way the loop momenta can be written in its d = d‖ + d⊥ component as

qαi = qα‖ + λαi . (4.9)

where

qα‖ =

d‖∑
j=1

xije
α
j λαi =

4∑
j=d‖+1

xije
α
j + µαi (4.10)

with q‖ that lies in the d‖ space, while λi belongs in the orthogonal d⊥ dimensional
one. This parameterization has a very useful feature: all the denominators become
independent from the single orthogonal component of the transverse loop momenta,
they only depend on the scalar products between them. In fact the denominators
appear as

Di = l2‖i +
∑
j,k

αijαikλjk +m2
i (4.11)

with

lα‖i =
∑
j

αijq
α
‖j +

∑
j

βijp
α
j (4.12)

and

λjk =

4∑
l=d‖+1

xjlxlk + µjk (4.13)

In this way the integral becomes

Id(l,n)[N ] = Ω
(l)
d

∫ l∏
i=1

dn−1q‖i

∫ ∏
1≤i≤j

dλijG(λij)
d⊥−1−l

2
N (q‖i, λij ,Θ⊥)∏
j Dj(q‖i, λij)

(4.14)

where Θ⊥ parametrizes the integral over the single orthogonal component λi that lies
in the four dimensional space. Remarkably, it is possible always possible to integrate
away the Θ⊥, obtaining a simpli�ed integral.
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4.1.2 Polinomial division

Another powerful tool in the integrand decomposition is the integrand reduction via
multivariate polynomial division.

As stated in 2.3.1, at one loop it is possible to write the integrand of an amplitude
as a rational function of the scalar products. This statement can be extended easyly
to the multiloop level too. This gives the idea that the integrand of a multiloop
process can be written as a rational function in certain variables that we will call
zi. At this point a suitable approach is to perform the polynomial division until
we're left with irreducible polynomals in the zi variables, i.e. polynomials that are
no longer divisible for denominators appearing in the integrand.

One can write the tensor integral of a multiloop amplitude as

I
d(l,n)
i1,...,ia

[N ] =

∫
dDq1

(2π)D
· · · d

Dql
(2π)D

Ii1,...,ia , Ii1,...,ia ≡
Ni1,...,ia
Di1 · · ·Dia

, (4.15)

Through the polynomial division it is possible to write the numerator as a quotient
Qi1,...,ia , that depends on the denominators, plus a remainder ∆i1,...,ia that is :

Ni1,...,ia = Qi1,...,ia + ∆i1,...,ia

=
a∑
k=1

Ni1,...,ik−1,ik+1,...,iaDk + ∆i1,...,ia

(4.16)

In this way it is possible to reduce the integrand, in fact substituting (4.16) back
into Ii1,...,ia one �nds that

Ii1,...,ia =
a∑
k=1

Ii1,...,ik−1,ik+1,...,ia +
∆i1,...,ia

Di1 · · ·Dia

. (4.17)

Iterating such procedure on the resulting Ii1,...,ik−1,ik+1,...,ia it is possible to write the
integrand as a combination of irreducible remainder, arriving to the �nal form

Ii1,...,ia ≡
Ni1,...,ia

Di1 · · ·Dia

=
a∑
k=1

∑
{j1···jk}

∆j1···jk
Dj1 · · ·Djk

(4.18)

In order to understand such procedure from a deeper mathematical point of view,
let us introduce the concept of ideal. De�ning P [zi] as the ring of all polynomials in
the zi variables, every set of indices i1, . . . , ia de�nes the ideal

Ii1...ia ≡ 〈Di1 , . . . , Dia〉 =

{
a∑
k=1

hk(zi)Dik(zi) : hk(zi) ∈ P [zi]

}
(4.19)

With that de�nition in mind, the goal of the integrand reduction can be expressed as
to write the integrand as a contribution of irreducible polynomials ∆j1···jk , i.e. poly-
nomials which contain no contribution belonging in the corresponding ideal Ij1···jk .

Depending on the choice of variables zi the picture presented in this section can
signi�cantly simplify. A particular convenient choice of variables turns out to be
the one presented in eq. (4.9). In this way using the Adaptive Integrand Decompo-
sition together with the polynomial division method greatly simplify the Feynman
amplitude.

This approach has been tested and found trustworthy in many two loop cases,
reported in Figure ?? and ??, making a crucial step forward in the evaluation of two
loop amplitudes.
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Figure 4.1: Examples in which the Adaptive integrand decomposition has been suc-
cessfully applyed:8,7,6, and 5 external legs cases

4.2 A complete chain for Amplitude evaluation

In the last years many techniques have been developed in order to tackle the problem
of the evaluation of two loop amplitudes. Since at multi loop level a unique basis of
Master Integrals doesn't exist due to the presence of the Irreducible Scalar Products,
the generalized Unitarity approach that brought great improvement in the one loop
case cannot be used straightforwardly at this level. Since the huge number of integrals
that contribute at a two loop process, the direct evaluation of them is unpracticable.
A better philosophy is to reduce as much as possible the number of Master Integrals
that one has to evaluate. In this mindset, thanks to the tool reported in this thesis,
it is possible to outline a general algorithm for the evaluation of any amplitude,
with particular interest in the two loop case. The algorithm, reported in Figure 4.3,
consists in 4 steps.

Firstly one has to generate all the Feynman diagrams that can contribute to the
process taken in to account, obtaining the amplitude written as a combination of
tensor integrals

M =
∑
i

Ii. (4.20)

In order to apply the IBP algorithm e�ciently, it is crucial to write the amplitude
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Figure 4.2: Examples in which the Adaptive integrand decomposition ha been suc-
cessfully applyed:4,3,2 and 1 external legs cases

as a combination of scalar integral reduced as much as possible. This task can
be completed thanks to the Adaptive Integrand decomposition outlined in Section
4.1, substituting the classic tensor decomposition. After this step, the integral that
contribute to the amplitudes as written in equation (4.20) becomes

Ii =

∫
dq1 · · · dql

a∑
k=1

∑
{j1···jk}

∆j1···jk
Dj1 · · ·Djk

(4.21)

with ∫
dq1 · · · dql

∆j1···jk
Dj1 · · ·Djk

= cj1···jk

∫
dq1 · · · dql

S1 · · ·Sm
Dj1 · · ·Djk

(4.22)

with Sr being an irreducible scalar product. Since any further algebraic simpli�cation
is impossible, in order to reduce the number of Master Integrals it is mandatory to
use IBPs to minimize the number of direct calculation. In this way the amplitude
can be written as

M =
∑
i

ciI
IM
i (4.23)

with IIMi being the minimal basis of Mater Integrals that are needed for that process.
After this steps, one can proceed to the direct evaluation of the remaining integrals,
or if such integrals are already evaluated, one can take their value from the literature.
In this way, starting from the de�nition of the process needed, it is possible to arrive
to the Amplitude written as a Laurent expansion around ε, where the dimensional
parameter is de�ned such that the relation D = 4− ε is satis�ed. Thus arriving to

M =
∑
i

biε
i (4.24)

This could resemble a great achievement, noneheless the complexity of the calculation
in the intermediate steps is not to be underestimated. In fact many software that
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Process speci�cation
and number of loops

Amplitude generation

M =
∑
i

Ii , Ii =

∫
Ni∏
j Dj

Integrand reduction

Ii =

∫ ] of den∑
k=i

∑
{j1,··· ,jk}

∆j1,··· ,jk
Dj1 · · ·Djk

IBP reduction

M =
∑
i

ciI
M.I.
i

M.I. evaluation

M =
∑
i

biε
i

Figure 4.3: Flow chart of the algorithm for the evaluation of scattering amplitude
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are able to perform these single steps has been developed. Citing some remarkable
example, for the amplitude generation software such as FeynArts [19] together
with FeynCalc [20, 21], QGRAF are well known and widely used. For the IBP
reduction, suitable tools are Reduze [22], FIRE [23], Kira [24], Azurite [15],
while for the direct evaluation one can use software such as SecDec [25] or FIESTA
[26]. Lastly, a code that performs the Adaptive Integrand Decomposition is under
development [27]. Despite the large number of individual tools already existing, a
software that perform the whole calculation is still missing.

During this work of thesis important contribution towards the completion of such
goal has been given. Such contribution are part of a wider project already underway.
Connecting tools as pictured in Figure 4.5, a complete chain for the evaluation of
Master Integrals is under development.

Inside such project, during this work of thesis the step of the numerical evaluation
of analytical Master Integrals and of interfacing the IBP reduction performed by
Reduze1 and the numerical evaluation done by SecDec has been perfected

4.2.1 Interface between Reduze and SecDec

After performing the integrand reduction using Aida, a great tool to perform the
IBP reduction is given by the software Reduze. Using the Laporta algorithm [28] it
can generate and solve the integration by parts identities. In order to simplify such
calculation, it relates di�erent integrals, keeping track of such manipulation with an
internal notation.

Even though this step simplify the calculation, it has the drawback of giving a
hard to read output. In order to translate such output in to a readable format for
the evaluation of the MIs, one has to undergo a couple of steps.

Firstly, it is mandatory to extract the information about the denominators present
in the integrals before the IBP reduction. Such information can be extracted from
the output of the previous step, namely in the output �le of Aid, that we will call
"�le.output.m". Then, it is necessary to combine this information together with the
information that allows to translate the output of Reduze that is stored inside an
internal �le, called "crossing.yaml", and �nally one can translate the Master Inte-
grals list given in output from Reduze in to a format readable by SecDec. This
process is depicted into Figure 4.6.

1Starting from what was done with Reduze, Kira was added to the complete chain afterwards
thanks to the work of R. Sameshima (PhD student at New York City College of Technology)
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User's
choice:

Integrand reduc-
tion through AIDA

Amplitude generation
through FeynCalc

Process speci�cation
and number of loops

Reduze Kira

Known M.I.?

SecDec analytical M.I.

My work

M.I. evaluation

My work

IBP reduction

No

Yes

Figure 4.4: Flowchart of...example

Figure 4.5: Possible structure from a software point of view
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MasterIntegral.mma

crossing.yaml

Reduze �le otput.m

AIDA

Interface

SecDec

Figure 4.6: Flowchart of the interface between Reduze and Secdec

4.2.2 Evaluation of available Master Integrals

When possible, the use of Master Integral already present in literature would greatly
ease the calculation needed for the complete evaluation of an amplitude. Unfortu-
nately, often such integrals are written as a combination of special function, pre-
venting their immediate numerical evaluation. It is mandatory then that an e�cient
software that performs the complete calculation of a Feynman amplitude for a pro-
cess has to have the possibility of extract such information from what is already there
in the literature.

During this work of thesis a code for the numerical evaluation of already known
Master Integral has been developed, with the aim of join such step to the complete
chain, with further work in the future.

Such code uses the software GiNac to evaluate the integrals. We used it on the
set of integrals given by Papadopoulos [29]. Its internal operation are depicted in
Figure 4.7.
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Analytical
M.I.

I(GPL) =
∑
i

bi(GPL)εi GINAC

I =
∑
i

biε
i

numerical GPL

Figure 4.7: Flowchart of the evaluation of analytic MIs

The Mater Integral for the �ve point function at two loop, given by Papadopoulos
are given in terms of Generalised PolyLogarithm, or GPLs for short. After reading
such expression, a list of all the GPLs appearing in the MI is extracted and passed to
GiNac which evaluates it. In return, the list of values of the respective GPLs is given
as output by the algebraic manipulation software, so that the GPLs appearing in the
expression of the Master Integral can be substituted with their value, as pictured in
the example reported in Figure 4.8.

Analytical
M.I., I1

I1(GPL) =
0.75

ε
+ 1.95613− 1.5GPL[{1, 75}, 1]

GINAC

I1 =
0.75

ε
+ 3.22708

GPL[{1, 75}, 1]

-0.84729

Figure 4.8: Esempio di funzionamento dell'interfaccia

4.3 Application: e+e− → µ+µ−γ scattering at 2-loop

The evaluation of 5 point functions at two loop is a hot topic in the scienti�c com-
munity, as proved by the recent results given in [30, 31, 32]. Hence an interesting
test for the validity of the complete chain could be the evaluation of such processes.

The complexity of the problem in this case makes the analytical path towards the
result impracticable, hence the application of the complete chain has been done nu-
merically, choosing a phase space in which evaluate the process. A feasible objective
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in the time given for the work of this thesis, was the QED process e−e+ → µ−µ+γ,
of which its tree level amplitude is depicted below:

e−

e+

µ−

µ+

γ

p5

p1

p2 p3

p4

The software setup used for such calculation is depicted in Figure 4.9.

Process spec-
i�cation and

number of loops

FeynArt and
FeynCalc

AIDA

Kira

SecDec

Figure 4.9: Flowchart of the setup used for the evaluation of the 5 point process
e+e− → µ+µ−γ

4.3.1 Amplitude generation: FeynCalc+FeynArts

The �rst step encountered in the evaluation of the amplitude for such process was
the generation of the integral and its translation in to a readable format. The former
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was executed thanks to Feynarts. In fact, de�ning the process, the number of
loop requested and in which theory one wants to compute it, Feynarts is able to
generate all the Feynman integrals that contributes to it.

Other than that, the phase space point was also speci�ed. We evaluated the pro-
cess in the massless limit, hence imposing that p2

i = 0, while �xing the 5 independent
mandelstam variables to

2p1 · p2 = s12 = −4

2p2 · p3 = s23 = −6

2p3 · p4 = s34 = −10

2p4 · p5 = s45 = −14

2p5 · p1 = s51 = −22

(4.25)

In this step, 120 di�erent diagrams were generated. In principle, one would have

M =
∑
i

Ii , Ii =

∫
Ni∏
j Dj

(4.26)

, instead from that list, we chose one diagram to apply the complete chain software:

µ−

γ

µ+e+

e−

p5

p3

p4

p2

p1

In order to obtain an input readable by Aida it was contracted with complex conju-
gate of the tree level one, presented at the beginning of the section, thus evaluating
an interference term that involves the diagram pictured above. Thanks to Feyn-
Calc it was �nally translated in to an input readable by Aida and printed in a
temporary �le.

4.3.2 Integrand reduction: Aida

Aida then took it and reduced such integral by means of the Adaptive integrand
decomposition. As an output, one obtains the diagram written in terms of fraction
that has at the numerator irreducible polynomials. In this case there was 639 of
such integrands, starting from the amplitude pictured above. Here there is a little
example of the output, representing integrals (that contains the reduced integrands)
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by their topology:

I =

∫ 8∑
k=i

∑
{j1,··· ,jk}

∆j1,··· ,jk
Dj1 · · ·Djk

=− 124928 + 62464D

33
− 56672 + 33856D − 2760D2

33
+ . . .

(4.27)

4.3.3 IBPs reduction: Kira

From the output of Aida, the topology of the problem was extracted, obtaining the
following integral:

I [d][{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11} =∫
dDq1d

Dq2
1

Dx1
1 Dx2

2 Dx3
3 Dx4

4 Dx5
5 Dx6

6 Dx7
7 Dx8

8 Sx91 Sx102 Sx113

(4.28)

where Si are the ISPs, in fact x9, x10, x11 are typically negative. In this particular
case, the diagram had the following list of denominators and ISPs:

D1 = q2
1

D2 = q2
2

D3 = (q1 + q2)2

D4 = (q2 + p2)2

D5 = (q2 + p2 + p3)2

D6 = (q2 + p2 + p3 + p4)2

D7 = (q2 + p2 + p3 + p4 + p5)2

D8 = (q1 − p2 − p3 − p4 − p5)2

S1 = q1 · p3

S2 = q1 · p4

S3 = q1 · p5

(4.29)

In this step, the huge number of 639 integrals were reduced in to 28 Master Integrals,
being a crucial simpli�cation if one aim to evaluate an amplitude. After the IBP
reduction the amplitude was written in the form

M =
28∑
i=1

ciI
MI
i (4.30)

The topologies of such Master Integrals are depicted in Figure 4.10.

4.3.4 MIs evaluation: SecDec

Lastly, the output of Kira was collected and translated into a language readable
by SecDec, which returns the Master Integrals written as an expansion around
D = 4− 2ε, namely

M =
∑
i

biε
i. (4.31)

The result of such calculation are outlined in the Tables 4.1 and 4.2.
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Figure 4.10: Topologies of the master integrals appearing in the decomposition of
the 2-loop 5-leg integral family of Section 4.3.3

4.3.5 Result

After performing the steps reported above, all the results were collectedand substi-
tuted back into the output of Aida, resulting at last in

I =
13.4435

ε4
− 75.9369

ε3
+

280.556

ε2
+

1.9349 · 109

ε
− 3.2168 · 108 (4.32)
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graph I [d]-integral I
[d=4−2ε]
(s12=−4,s23=−6,s34=−10,s45=−14,s51=−22)

I [d][{0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0}] 3.5
ε + 0.23609 + 20.93819ε

I [d][{0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0}] 1
ε + 2.57298 + 9.29018ε

I [d][{1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0}] 5.5
ε − 4.60084 + 34.81470ε− 28.2164ε2 + 158.170ε3

I [d][{1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}] 1.5
ε + 2.64307 + 11.29871ε

I [d][{0, 0, 1, 1, 0, 1, 0, 1, 00, 0}] 0.5
ε2
− 0.37980

ε + 3.29937− 3.36067ε+ 15.4036ε2

I [d][{0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0}] 0.5
ε2
− 1.16826

ε + 5.43729− 9.95395ε

I [d][{0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0}] 0.5
ε2

+ 0.13102
ε + 1.40115 + 1.42641ε

I [d][{1, 0, 1, 0, 1, 0, 1, 0, 00, 0}] 0.5
ε2
− 0.71627

ε + 3.62518− 5.63423ε+ 18.1484ε2

I [d][{1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0}] 0.5
ε2

+ 0.5364
ε + 4.36029 + 5.09703ε+ 25.52848ε2

I [d][{1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0}] 0.5
ε2
− 0.37980

ε + 1.61438− 0.26682ε+ 3.23000ε2

I [d][{0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0}] −0.1
ε3

+ 0.40961
ε2
− 0.61849

ε + 1.37594− 2.4683ε

I [d][{0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0}] 0.081205
ε2

− 0.28532
ε + 0.63034

I [d][{0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0}] 0.06570
ε2
− 0.15884

ε + 0.49844

I [d][{0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0}] −0.16667
ε3

+ 0.38875
ε2
− 0.52154

ε + 1.92108

I [d][{1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0}] −0.1123
ε2
− 0.58269

ε − 1.45504

Table 4.1: Values of the MIs for the process e+e− → µ+µ−γ
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graph I [d]-integral I
[d=4−2ε]
(s12=−4,s23=−6,s34=−10,s45=−14,s51=−22)

I [d][{1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0}] −0.07143
ε3

+ 0.3489
ε2
− 0.69302

ε + 1.41019− 2.63516ε

I [d][{1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0}]

I [d][{1,−1, 1, 1, 0, 1, 0, 1, 0, 0, 0}]

0.4169
ε − 0.83657 + 0.20589ε

−0.5
ε2

+ 0.27947
ε + 0.2491− 3.16215ε

I [d][{1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0}] 0.15272
ε2
− 0.43336

ε + 0.84943− 2.43561ε

I [d][{1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0}] −0.25383
ε2

+ 0.78731
ε − 1.42448

I [d][{1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0}] 0.12528
ε2
− 0.20079

ε + 0.67472− 1.91593ε

I [d][{1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0}] −0.1
ε3

+ 0.32488
ε2
− 0.57686

ε + 1.58360− 2.1124ε

I [d][{0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}]

I [d][{−1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}]

0.03333
ε3
− 0.07235

ε2
+ 0.07949

ε + 0.22502

0.1
ε3
− 0.09421

ε2
+ 0.05847

ε − 0.14308

I [d][{1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0}]

I [d][{1,−1, 1, 1, 1, 1, 0, 1, 0, 0, 0}]

−0.01059
ε3

+ 0.08118
ε2
− 0.17178

ε + 0.22502

0.06355
ε3
− 0.5145

ε2
+ 1.43464

ε − 2.76172

I [d][{1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0}]

I [d][{1,−1, 1, 1, 1, 1, 1, 0, 0, 0, 0}]

0.01429
ε3
− 0.07359

ε2
+ 0.09566

ε − 0.16079 + 0.20589ε

−0.2
ε3

+ 0.78933
ε2
− 1.32655

ε + 2.34087− 3.91084ε

Table 4.2: Values of the MIs for the process e+e− → µ+µ−γ
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4.4 Analytic expressions from functional reconstruction

Let us stress the fact that computing the amplitude for such process numerically can
become a key result for the analytical evaluation of the latter.

Multiple numerical evaluations of a function in fact can provide useful information
about its structure. In the case of rational functions, not only some properties but
the entire analytic expression can be obtained by sampling repeatedly on di�erent
phase-space points. A detailed discussion of this topic, called functional reconstruc-
tion, is far beyond the scope of this thesis; we refer the interested reader to [33] and
[34]. Scattering amplitudes over Finite Fields and multivariate functional reconstruc-
tion). In this section we will �rst brie�y present the general idea behind functional
reconstruction, then we will report some results obtained applying this technique to
the coe�cients multiplying the master integrals in the loop-level expansion, which
happen to be rational functions.

4.4.1 A simple example: univariate polynomials

Consider as an example one of the simplest possible rational functions, i.e. a poly-
nomial in only one variable, lets say of degree two:

P(x) = x2 − 5x+ 3 (4.33)

We want to guess eq.4.33 starting from something like
P(3) = −3

P(5) = 3

P(7) = 17
...

(4.34)

If we knew the degree d of P in advance we could simply build and solve a system
of d+ 1 equations of the form

P(x) = n0 + n1x+ n2x
2

∣∣∣∣
x=xi

(4.35)

with xi = 3, 5, 7. However, since in general one does not know the degree d, an-
other method must be used. The task at hand can be solved rewriting the polynomial
in an alternative representation due to Newton:

P(x) =
R∑
i=0

ai

i−1∏
j=0

(x− yj)

= a0 + (x− y0)

(
a1 + (x− y1)

(
a2 + (x− y2)(· · ·+ (x− yR−1)aR))

)) (4.36)

where the ai depend on the yi, and the latter can be chosen arbitrarily. The
values of the coe�cients ai can then be immediately extracted performing a smart
sampling on x. Baring in mind the second line of eq.4.36 we have:

choose y0 = 3⇒


P(3) = a0 + (3− 3)(· · · )

= a0

⇓
a0 = −3
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choose y1 = 5⇒


P(5) = −3 + (5− 3)(a1 + (5− 5)(· · · ))

= −3 + (5− 3)a1

⇓
a1 = 3

choose y2 = 7⇒


P(7) = −3 + (7− 3)(3 + (7− 5)(a2 + (7− 7)(· · · )))

= −3 + (7− 3)(3 + (7− 5)a2)

⇓
a2 = 1

One can see that ai = 0 for any yi when i > 2, thus the �nal expression we �nd
is

P(x) = −3 + (x− 3)(3 + (x− 5)(1)) (4.37)

which, upon expansion of all the products, is none other than eq.4.33.

4.4.2 Univariate rational functions

In a similar fashion, for a proper rational function i.e. a ratio of two polynomials

R(x) =
n0 + n1x+ n2x

2 + · · ·+ nRx
R

d0 + d1x+ d2x2 + · · ·+ dR′xR
′ (4.38)

one can use the so called Thiele interpolation formula, which is an alternative
representation of 4.38:

R(x) = a0 +
x− y0

a1 +
x− y1

a2 +
x− y2

...

aN−1 +
x− yN−1

aN

= a0 + (x− y0)

(
a1 + (x− y1)

(
(x− y2)

(
· · ·+ x− yN−1

aN

)−1
)−1

)−1

(4.39)

Again, at the cost of introducing a set of arbitrary constants yi, the computation
of the coe�cients ai is reduced to a systematic evaluation of R on the chosen yi.
The analytic expression of the ai is computed recursively and is given by

a0 = R(y0)

a1 = (R(y1)− a0)−1(y1 − y0)

...

ar =

((
(R(yN )− a0)−1(yN − y0)− a1

)−1
(yN − y1)− · · · − aN−1

)−1

(yN − yN−1)

(4.40)

In a very similar way, through multiple nested applications of the univariate
algorithm [34], it is possible to obtain the analytic expression of the multivariate
rational functions. In particular, since the coe�cients multiplying the master integrals
in the loop expansion happen to be rational functions, we can apply these techniques
to them.
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4.5 Application to integration by parts identities

In this section we are going to present some results obtained by applying functional
reconstruction techniques to the coe�cients multiplying the master integrals in a
loop-level expansion. In the tables we are going to list the analytic expressions of the
coe�cients along with the number of numerical evaluations which where necessary to
compute them. Such reconstructions are performed by means of routines developed
in [35]

4.5.1 One loop: box topology

The integral's topology taken in to account in this example is the following:

I[{1, 1, 1, 1}] =

∫
dDq

1

q2(q + p1)2(q + p1 + p2)2(q + p1 + p2 + p3)2
(4.41)

and can be depicted as

Through the use of Reduze it was possible to reduce the integral I[{2, 1, 1, 1}]
in terms of easier integrals, thanks to the IBPs. Such reduction lead to an identity
of the form

I[{2, 1, 1, 1}] = b1I[{1, 1, 1, 1}] + b2I[{0, 1, 0, 1}] (4.42)

In the table, the coe�cients are presented together with the number of numerical
samples one has to perform in order to reconstruct such relation analytically.

Coe�cient Number of evaluations Analytic expression
b1 7 −d−5

s

b2 44 4(d−5)(d−3)
(d−6)s(s+t)2

(4.43)

Table 4.3: Table of the analytic coe�cients for the IBPs reported in equation (4.42)

4.5.2 Two loops: ladder topology

Moving to a more interesting case, let's address a two loop case. In particular the
ladder topology:
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which is characterized by the following set of denominators and ISPs:

D1 = q2
1

D2 = q2
2

D3 = (q1 + 12)2

D4 = (q1 + p1)2

D5 = (q1 + p1 + p2)2

D6 = (q1 + q2 + p1 + p2)2

D7 = (q1 + q2 + p1 + p2 + p3)2

D8 = (q2 + p2)2

D9 = (q2 + p3)2

(4.44)

obtaining an IBP of the form

I[{1, 1, 1, 1, 2, 1, 1,−1,−1}] = c1I[{1, 1, 1, 1, 1, 1, 1,−1, 0}]+c2I[{1, 1, 1, 1, 1, 1, 1, 0, 0}]
+ c3I[{0, 1, 1, 1, 1, 0, 1, 0, 0}] + c4I[{1, 1, 0, 1, 1, 0, 1, 0, 0}] + c5I[{1, 0, 1, 0, 1, 1, 0, 0, 0}]
+c6I[{0, 1, 1, 1, 0, 1, 0, 0, 0}]+c7I[{0, 1, 1, 0, 1, 0, 0, 0, 0}]+c8I[{0, 1, 1, 0, 1, 0, 0, 0, 0}]

(4.45)

The result of the reconstruction of such IBP is reported in 4.4

4.5.3 One loop: pentagon

Taking in to account an example closer to the amplitude evaluated in Section 4.3
we address the reconstruction of a �ve point one loop topology. This example also
provide information on the di�erence in the reconstruction of an IBP in an higher
loop cases vs. a case with higher external leg number.
The topology taken in to account is

with the following denominators:

D1 = q2

D2 = (q + p1)2

D3 = (q + p1 + p2)2

D4 = (q + p1 + p2 + p3)2

D5 = (q + p1 + p2 + p3 + P4)2

(4.46)

The IBP reconstructed is of the form
I[{1, 2, 1, 1, 1}] =d1I[{1, 1, 1, 1, 1}] + d2I[{0, 1, 1, 1, 1}] + d3I[{1, 0, 1, 1, 1}] + d4I[{1, 1, 0, 1, 1}]

+ d5I[{1, 1, 1, 0, 1}] + d6I[{1, 1, 1, 1, 0}] + d7I[{0, 0, 1, 0, 1}] + d8I[{0, 1, 0, 0, 1}]
+ d9I[{0, 1, 0, 1, 0}] + d10I[{1, 0, 0, 1, 0}] + d11I[{1, 0, 1, 0, 0}]

(4.47)

The results for its reconstruction are outlined in Table 4.5.
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Coe�cient Number of evaluations Analytic expression

c1 3 −3
2(d− 4)

c2 11 1
2(d− 4)(s+ t)

c3 63 −3t(3d3s+3d3t−40d2s−38d2t+177ds+157dt−258s−210t)
(d−6)(d−3)s2(s+t)

c4 33 −3(3d2s+3d2t−28ds−20dt+60s+28t)
2(d−4)s(s+t)

c5 31
2(6d2s+2d2t−41ds−16dt+71s+30t)

(d−4)s3

c6 68 −3(3d−10)(d3s+d3t−17d2s−15d2t+91ds+71dt−154s−106t)
(d−6)(d−4)2s2(s+t)

c7 123
3(3d−10)(3d−8)(3d3s+6d3t−42d2s−76d2t+194ds+314dt−292s−420t)

2(d−6)(d−4)3s2(s+t)2

c8 127 −3(3d−10)(3d−8)(2d5s+2d5t−47d4s−45d4t+430d3s+392d3t−1925d2s−1661d2t+4236ds+3444dt−3684s−2820t)
(d−6)2(d−4)3(d−3)s3(s+t)

(4.48)

Table 4.4: Table of the analytic coe�cients for the IBPs reported in equation (4.45), together with the number of numerical samples provided
in order to reconstruct such relations.
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Coe�cient Number of evaluations Analytic expression

d1 208 − (d−6)(2s212+s15s12+s23s12−s34s12−3s45s12+s245−s15s34−s23s45)
s12(s12+s23−s45)(s12−s34−s45)

d2 72 4(d−5)s45
s12(−s12−s23+s45)(−s12+s34+s45)

d3 84 4(d−5)(s12+s15−s45)
s12(s12+s23−s45)(s12−s34−s45)

d4 84 4(d−5)(s15−s23+s45)
s12(s12+s23−s45)(−s12+s34+s45)

d5 82 4(d−5)(s23+s34−s45)
s12(s12+s23−s45)(−s12+s34+s45)

d6 74 − 4(d−5)s15
s12(s12+s23−s45)(s12−s34−s45)

d7 173 64(d−5)(d−3)
(d−6)s12s34(s12+s23−s45)(s12−s34−s45)

d8 149 − 64(d−5)(d−3)
(d−6)s212(s12+s23−s45)(s12−s34−s45)

d9 275 − 64(d−5)(d−3)
(d−6)s12(s12+s23−s45)(s12−s34−s45)2

d10 467 64(d−5)(d−3)
(d−6)s12(s15−s23−s34)(s12+s23−s45)(s12−s34−s45)

d11 275 64(d−5)(d−3)
(d−6)s12(s12+s23−s45)2(s12−s34−s45)

(4.49)

Table 4.5: Table of the analytic coe�cients for the IBPs reported in equation (4.47), together with the number of numerical samples provided
in order to reconstruct such relations.
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Conclusions

In this work we presented in detail all the techniques needed to perform the of a
scattering amplitude, both at 1 and multiloop level, discussing their application in
a 2 loop case.
We started by introducing the Unitarity based approach, starting from their root: the
Unitarity of the S matrix and its consequences, from which the generalized Optical

theorem stems. After describing with an example such interesting relation between
amplitudes at di�erent perturbative levels, we described an e�cient shortcut that
allows to arrive at the same results of the Optical theorem: the Cutkosky rule. By
means of on shell methods it is in fact possible to evaluate the imaginary part of
an amplitude into a straightforward way: putting on shell all the possible subset
of the internal lines (i.e. cutting them) the amplitude is projected on to its imagi-
nary component, thus showing the power of Unitarity based methods. After a brief
example to outline the validity of such procedure, we reviewed another technique
that revolves around the cut. In fact, by means of complex analysis and contour
deformation, it is possible to draw a relation between the Feynman propagator and
its Advanced counterpart. This relation is of crucial importance when dealing with
integration over the momenta appearing in the denominator. In fact in this case the
latter turns out to be zero, releasing a powerful identity which allows to write an
arbitrary l loop amplitude in function of tree level amplitude, integrated over the
phase space of the internal leg putted on shell. Such tree level amplitudes can be
seen as cut amplitude, thus showcasing once more the great power that lies inside
the Unitarity based techniques.
Such techniques culminated in to the generalized Unitarity approach, applied at one
loop level. In such framework, by means of tensor decomposition and integrand
reduction the amplitude is cast in to a combination of 5 universal Master Integrals.
Such result is valid for any amplitude at one loop. After that, inspired by the
Unitarity based technique of the Cutkosky rule, in which the amplitude is projected
in to its imaginary component through the use of cuts, it is possible to evaluate in
an easy way the coe�cient in front of all Master Integrals, thus determining the
expansion. Such technique lead to major breakthrough in the automation of one
loop amplitudes calculations.
Unfortunately, such framework cannot be applied straightforwardly to the multiloop
level. In fact after de�ning a Feynman integrals we showcase how, due to the presence
of a higher number of internal line, at this perturbation level scalar products which
cannot be written in terms of denominators appears, i.e. the Irreducible Scalar

Products. Such object are the greatest speed bump in the automation of multiloop
calculation. We then outline a di�erent strategy in order to evaluate such amplitude.
A core step in this framework is the reduction of the number of integral that one has
to evaluate to obtain the total value of the amplitude. We presented the integration by

parts identities which are a set of identities due to the symmetry of the integral under
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rede�nition of the loop momenta. After showcasing an example of application of such
reduction, we present a promising parameterization that highlight the geometrical
properties of Feynman amplitude: the Baikov representation. Such parametrization
is obtained by performing a change of variables, from loop momenta to the scalar
products involving them. In such a way, the integrand becomes proportional to the
Gram determinant, which is deeply related to a volume, in this case the volume
spanned by the momenta �owing in the amplitude. We then propose some example
in order to reach a deeper understanding of this mathematical object, discovering an
unexpected iterative structure that revolves around the boundaries of such integrals
in this parameterization. Thanks to that, we were able to �nd a new parameterization
of the scattering amplitude of which very little is known. It is our hope that such
parameterization hides useful properties which will be studied in the future.
After that we presented the application of the well known IBP reduction and Unitar-
ity cut approach, from a di�erent point of view. They are in fact applied in together
with the Baikov representation, showcasing the strength of such a parameterization.
Lastly, after presenting the Adaptive integrand decomposition, a promising alterna-
tive to the tensor reduction method, we focus on the computational aspects of the
evaluation of the Feynman amplitude. After developing a discrete knowledge of such
techniques in fact it is mandatory to apply them through the usage of a software.
With that in mind, we contributed to the development of a complete chain for the
evaluation of the multiloop amplitude, based on tools that uses techniques studied
in this work of thesis.
Lastly, a �rst test for such chain was completed, evaluating the amplitude of the
process e−e+ → µ−µ+γ at two loop in QED. In future, feasible objective could be
the evaluation of process like pp→ HH or pp→ Hjj at two loop in QCD, the latter
in the heavy top e�ective theory.
This is meant to be a starting point for a deeper research in scattering amplitudes,
both on the analytical and computational point of view.
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