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Abstract

In this thesis we present modern techniques needed for the evaluation of one and
multi loop amplitudes, and apply some of them in a complete chain that allows the
evaluation of a Feynman amplitude. In particular the automated evaluation of a 5
point 2 loop Feynman diagram contributing to the process e"e™ — p~pu™~ here is
presented for the first time. Furthermore we investigate the properties of the inte-
gration domain of Feynman integrals in Baikov representation, presenting a new and
general formula for their calculation, highlighting an interesting iterative structure
beneath the Feynman Integrals. Given this key information in such representation,
we found a new parameterization for the Feynman integrals, which needs further
studies in order to be better understood. In this thesis, we firstly review the Unitar-
ity based methods, which stems from the Unitarity of the S matrix. Such methods
uses cuts (i.e. put internal lines on shell) in order to project the amplitude on to its
component. For example, in the Cutkosky rule the amplitude is projected in to its
imaginary part by means of cuts. Another techniques that relies on cut is the Feyn-
man tree theorem, which by means of complex analysis connect loop level amplitude
to tree level one. The most successful approach in such field was the Generalized
Unitarity one. Applying the same idea as in the Cutkosky rule, it lead to major au-
tomation of one loop calculation. Afterwards we present the issues and the tools that
one faces when tackling the calculation of a multiloop Feynman integral, arriving to
the analyze the generalized cut and the IBP reduction on the Baikov representation.
Lastly, present the Adaptive integrand decomposition and an algorithm for the com-
plete automated evaluation of an amplitude. A complete software chain needed to
complete such task is then presented, highlighting our contribution to such software.
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Chapter 1

Introduction

In the beginning, the Universe was in a hot dense state in which the particles compos-
ing it were highly interacting, scattering one against the other at unbelievable high
energies. In order to uncover its great mysteries and knows its laws, such scattering
are reproduced, at lower energies, in many laboratories throughout the world nowa-
days. Studying the data from such experiments, it was found that matter and forces
at microscopic scale behaves differently from the macroscopic scale. Quantum Field
Theory (QFT), which unifies Special Relativity and Quantum Mechanics, represents
the ideal framework to investigate Nature at microscopic level. Nowadays, its explo-
ration has led to the formulation of the Standard Model of Particle Physics (SM),
the best QFT model which describes matter and forces as interacting elementary
particles.

The CERN Large Hadron Collider (LHC) was built to explore its validity at
energy scales ranging from the electroweak (EW) scale 100GeV up to energies of
some TeV and to search for new phenomena and new particles in this energy domain.
The discovery of a Higgs particle at LHC Run 1 in 2012 [1] was a first big achievement
in this enterprise. Since first studies of the properties of this Higgs particle show
good agreement between measurements and SM predictions, the SM is in better
shape than ever to describe all known particle phenomena. Nonetheless there are
still many questions at which the Standard Model cannot answer: for examples, it
doesn’t involves gravity, nor explain what causes the Dark energy. Another open
problem concerns the particle composition of the Dark Matter which, despite having
some good candidate being already theorized, is far from being explained. These
open problems suggest that the Standard Model of particles cannot describe the
whole nature, in fact there should be some physics beyond such model, hidden inside
the fundamental particles.

Nonetheless, in view of the absence of spectacular new-physics signals in LHC
data, this means that any deviation from the SM hides in small and subtle effects.
To extract those differences from data, both experimental analyses and theoretical
predictions have to be performed with the highest possible accuracy, i.e. precision
can be the key to new discoveries.

Within the theoretical framework of the QFT, such predictions stem from the so
called scattering amplitude, an analytical function of the momenta of the involved
particles. Such objects derive frome the S-matrix, a Unitary matrix which encloses
informations about all the possible scattering that could happens. Such amplitude
is very difficult to evaluate, indeed apart from special cases, its exact expression
cannot be found. A more suitable approach is given by the perturbative Quantum
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8 CHAPTER 1. INTRODUCTION

Field Theory: in fact it is possible to expand such amplitude in terms of a small
perturbative parameter and then compute it through successive approximation until
one achieve the required precision of the result.

It is important to remark that the complexity of the calculation needed to eval-
uate perturbatively such amplitude grows exponentially as one addresses processes
with higher number of particles involved or at higher order in the expansion, in
the latter case aiming for results at higher precision. This is due to the fact that
many different but quantummechanically indistinguishable processes contribute to
each scattering amplitude, and at each order of the perturbative expansion many
new such processes appear involving not only real particles, but also virtual one,
appearing as particles exchanged between the physical objects involved in the scat-
tering. Such indistinguishable processes that contributes to Scattering Amplitude
can be intuitively portrayed by means of the so called Feynman diagrams.

Feynman diagrams are pictorial representations of specific scattering processes, in
which occur external and internal legs (the former corresponding to physical particles,
while the latter to virtual one which do not satisfy the on-shell condition). The full
contribution to an n-point amplitude is the sum of all the n-external legs Feynman
diagrams which can be built from the Feynman rules. Contributions to scattering
amplitudes, can be classified in to two different kinds, depending on the diagrams
with which they can be represented:

o tree-level Feynman diagrams, related to the leading order to the total ampli-
tude. This kind of diagrams can be split in two connected subdiagrams by
cutting an internal line;

e |-loop Feynman diagrams, related to | quantum correction of the total ampli-
tudes. Every l-loop Feynman diagrams is an integral in 1 internal momenta,
addressed as loop momenta.

1-loop Feynman amplitudes calculations received a tremendous improvements in
the last twenty years [2, 3, 4, 5]: such efficient automation has its roots in the afore-
mentioned Unitarity of the scattering matrix: STS = 1. This property constraint
the shape of the interaction, leading to a relation between an amplitude and its com-
plex conjugate as stated by the Generalised Optical Theorem. In the perturbative
approach such theorem links together amplitude at different perturbative stages: for
example one loop amplitude are bound to their tree level counterparts. Such theorem
could equivalently be applyed by putting on shell a certan number of virtual parti-
cles inside the diagram, through the Cutkosky rule [6]. Such operation is defined as
cutting such feynman diagrams, leading to its projection on the imaginary part.

What happens at one loop is that through the unitarity based methods, one can
write the amplitude in terms of a set of scalar integrals which are linearly inde-
pendent and universal, i.e. every scattering amplitude can be written in terms of
these integrals. Such set of integrals is called Master Integrals. From these result,
genaralizing the idea of cut as the process of putting on shell an internal line, it
is possible to reconstruct the full analytical dependence of the amplitude from the
master integrals, which are then evaluated.

As a result, the implementation of such unitarity-based methods in automation
algorithms for 1-loop amplitudes calculation had a great impact on collider phe-
nomenology, allowing the study of processes involving an high number of particles.

Nonetheless, thanks to the huge amount of data acquired by LHC, in order to
keep the pace with the experimental predction, for many processes the 1 loop level



of precision isn’t enough anymore and multiloop level precision in the theoretical
predictions are mandatory to understand clearly the information given by the exper-
imental data.

Moving in to the multiloop case, the complexity of the problem enhance greatly:
there the basis of Master Integrals isn’t universal anymore: it depends on the pro-
cess taken in to account and they couldn’t be determined in any other way than
direct calculation. Moreover the generalised Unitarity approach cannot be extended
straightforwardly to this case.

Because of that in this last few years various approaches to face 2-loop correc-
tions were developed, but an efficient evaluation and its automation are still an open
problem: limitations occur even at 2 — 2 2-loop non-planar amplitudes with ei-
ther massive external or internal lines, and 2 — 3 amplitudes represents a cap for
automatic calculations.

Within this work, techniques that allows to overcome the complexity of the cal-
culation appearing at multiloop level are studyed, arriving to a final application at
a 2 — 3 particles at 2 loop calculation that draws an original result.

Calculating a loop-correction of a scattering amplitude through a direct integra-
tion is a prohibitive task, even with the standard techniques of Feynman parameters:
the number of contribution and the complexity of the integral that one has to eval-
uate make the problem too hard to handle.

For these reasons, a different strategy to evaluate this functions is mandatory.
The modern approach to evaluate single Feynman amplitudes is divided in three
steps: firstly one performs the tensor reduction [9] or equivalently the adaptive
integrand decomposition [17] in order to decompose a single Feynman amplitude in
combination of scalar Feynman integrals; at this point it is possible to decompose
scalar Feynman integrals in a basis of Master Integrals; lastly, once reduced to such
minimal basis, one has to evaluate each integral.

The second step is performed thanks to a set of non-trivial relations, within the
dimensional regularization scheme, that derives from the integration-by-parts iden-
tities [12]. These identities, known as IBPs, come from the d-dimensional Gauss’s
divergence theorem and can be exploited to form a linear system of equations that,
once solved, allows to write every integral in function of a set of linearly independent
one.

In this general picture, interesting results are given by the so called Baikov-Lee
representation. In that representation the integrand depends on the volume of the
parallelotope spanned by the momenta taking part in the interaction. Moreover, in
this representation the integration boundaries are determined by the zeroes of such
volume, expressed as the Gram deterinant. This geometrical object hence encodes
crucial information, hidden inside a determinant in a vay that is hard to rea.

A general expression for such boundaries was missing. Studying them during
the work of this thesis allowed to find a deeper, iterative structure that needs fur-
ther studies in order to be fully understood. As an original contribution, a general
expression for the boundaries of such integrals were found. Lastly, through such
information it is possible to link the Baikov representation to the Hyperspherical
coordinates one.

Moreover another application of the cuts draw aattention in the evaluation of
Feynman integrals. Cuts are versatile and appears in many application: hteir appli-
cation within the Feynman Tree theorem, in which they relate amplitudes at different
perturbative level, gained some attention [11]. There, using the cuts it is possible
to write a multiloop amplitude as a sum of tree level one.



10 CHAPTER 1. INTRODUCTION

In parallel to such though analytical studies, many computational tool was de-
veloped in order to apply such methods to the Feynman integrals. Despite the
large number of individual tool already existing, at multiloop level a software that
performs the whole calculation is still missing. We joined an ongoing project that
aims to fill such missing milestone in the research for fenomenological prediction. In
such project, we contributed to the development of key component of such software,
testing it on a process and bringing a result never obtained before.

This thesis is organised as follows. First of all a brief review of cut-related
techniques for scattering amplitudes is given in chapter 1. In particular the so called
Generalized Optical theorem is introduced which allows to link together amplitude
at different perturbative level. Such technique is intuitively portrayed by means
of the Cutkosky rule: the same result of the Generalized Optical theorem can in
fact be obtained by putting on shell a subset of the amplitude’s propagators (such
operation is defined as cutting the amplitude taken in to account). Then another
techniqges that link together amplitude at different perturbation level is reviewed: the
Feynman Tree Theorem that, through the use of cut allows to write the amplitude in
terms of tree level ones. Such techniques culminate in to the Generalized Unitarity
approach which, generalizing the use of cuts as projectors, gave a major contribution
to the automation of the evaluation for one loop scattering amplitudes. In the last
section an application of the Feynman Tree theorem to the QED vertex at one loop
is outlined.

In chapter 2 we will review the basic definitions and properties of Feynman in-
tegrals in dimensional regularization, with particular attention to the geometrical
aspects. In fact, after reviewing the notorius Integration By Parts identities, thanks
to the Baikov-Lee a closer look to the generic structure of such integrals is given. Fo-
cusing on the integration boundaries in such parametrization, a general formula for
its determination is derived for the first time, highlighting a nested, iterative struc-
ture. Thanks to that a parametrization resembling the Hyperspherical coordinates
is found. Further studies are needed in order to understand clearly the possibility
given by this approach to the multiloop Feynman integrals. We close the chapter
by briefly extends the generalized unitarity approach and the IBPs to the Baikov
representation.

After reviewing the notorious techniques for Feynman amplitude evaluation in
chapter 1 and 2, in chapter 3 we show how it is possible to apply such methods
in order to evaluate a multiloop amplitude. In fact, after reviewing the recently
found Adaptive Integrand Decomposition approach which sobstitute the traditional
tensor decomposition calculation, a complete algorithm for the evaluation of multi-
loop amplitudes is outlined. Of particular interest is its software implementation,
under devolepment. The contribution given during the work of this thesis to such
software is then outlined. Lastly, we present such algorithm applyed to a 5 point
2 loop scattering amplitude for the first time. There, we briefly outline the results
at each intermediate step, arriving finally to the amplitude written in terms of its
expansion in the dimensional parameter €, with D = 4 — 2e.



Chapter 2

Unitarity-based methods

In this chapter, we analyze Unitarity based techniques for the evaluation of Feynman
diagrams. The first important relation due to Unitarity that ease the calculation of
a component of a Feynman amplitude is given by the Generalized Optical theorem.
Such relation inspired a shortcut to its application: the Cutkosky rule, where for the
first time cuts make their appearance. In fact, by imposing the on-shellness to a set of
internal line (i.e. cutting them) one retrieve the same result given by the generalized
optical theorem: the imaginary part of the amplitude. Cuts is found to be very
versatile and appear in many other techniques. Among them, recently the Feynman
tree theorem, outlined in this chapter, has drawn renewed attention. This theorem
states that it is always possible to write a multiloop amplitude as a sum over tree
level diagram integrated over the phase space of the cut propagators. In this thesis,
we present its application at the one loop case. Then we move to the Generalized
Unitarity approach, which brought great results in the evaluation of the one loop
amplitudes, used together with the Passarino-Veltman Tensor decomposition. Lastly,
we showcase an application of the Feynman tree theorem, evaluating the QED vertex
function at one loop.

2.1 Optical Theorem and Cutkosky-Veltman rule

Unitarity arises for the first time in Quantum Mechanics. It is a restriction on the
allowed evolution of quantum systems that ensures the sum of probabilities of all
possible outcomes of any event always equals 1, thus is conserved through time.
Conservation of probability in a quantum theory implies that, in the Schrodinger
picture, the norm of a state |¥;¢) is the same at any time t. For example

(W;0]W;0) = (W3 ¢[¥;1). (2.1)

Since the operator S(t) regulate the evolution in time of such state through the
relation

(W5 t) = S(8)[¥;0), (2.2)

equation (2.1) can be satisfied only imposing that the operator S(¢) is unitary:

1
——

(W; ¢ W5 t) = (T;01 S(1)TS(¢) [T;0). (2.3)

This key property is shared also with its counterpart in Quantum Field Theory the S-
matriz, or scattering matrix. In this way, from the very general and natural principle

11



12 CHAPTER 2. UNITARITY-BASED METHODS

that the probability of any possible outcome for a process has to add up to one, it is
possible to infer the following property of the scattering matrix S:

STS =1. (2.4)

This put a constraint on the interaction that could take place as will be shown soon.

The non-trivial part of the S-matrix lies in the Transfer matrix T. In order to
highlight this component of the scattering matrix, it is possible to write it in the
following way:

S =1—iT. (2.5)

Each element of T' can be evaluated thanks to the Feynman rules, as they satisfy the
following relation

(fIT1i) = (2m)*6 Y (p; — p) M(i — f) (2.6)

where M is the Feynman amplitude.
Now substituting the S-matrix written in terms of its non-trivial component inside
the Unitarity constraint one obtains that 1 = STS = (1 44T)(1 — T, and hence

(T —T)=T'T. (2.7)

Starting from this relation it is possible to draw an important property on the Feyn-
man amplitude M, thanks to equation (2.6). Indeed enclosing the Lh.s. between the
bra (f| and the ket |i) one obtains the difference between two Feynman amplitude
while for what concern the r.h.s. more steps are needed in order to rewrite it in term
of M.

After enclosing the left hand side between the final state and the initial one it
becomes

i((FIT"i) = (fITi))

i(GT1)™ = (fIT18))

2.8
=i(2m)*8 " (py —pi) IM*(f = §) = M(i = f)]. 25

In order to apply equation (2.7) on the right hand side it would be convenient to
have two state vectors between the T matrices, since after inserting (f| and |i) it
becomes

(fITVTi). (2.9)

Using the completeness relation satisfied by the complete orthogonal basis of the
Hilbert space of the theory this can be done. This relation states that

- Z/dl’[x|x><x| (2.10)

where x labels all possible single and multi particles states of the theory. The inte-
gration measure dIl, is equal to the phase space of the particles in state |x), up to
an overall delta:

dp; 1
dIl, = U 2.11
].‘_‘a[c (27’1’)3 2Ej ( )
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Inserting this completeness relation between the two Transfer matrix in equation
(2.9) one finds that

(FITIT]i) = / AT, (27)*0W (py — pp) M*(f — 2)(27)*6W (pr — pi)M(i — ).
(2.12)

where p, is the sum of all the momenta of the particles appearing in state x, or

explicitly ps = >_,c, pj-
After these manipulation equation (2.7) becomes what is called the generalized
Optical Theorem:

PMA(f =) — M(i— )] = Z/dl’[x(Qw)A‘(S(‘L)(pm —pi)M*(f = 2)M(i — z)
(2.13)

where in this case ) means that the r.h.s. is summed over all possible intermediate
states.

Moreover, let us stress that, in the case in which |f) = |i) = |A), one obtains the
relation

2l M (A A) =3 / AT, (27) 5D (pa — po) M (A — D)M(A — 2)  (2.14)

1)

(2.15)

that can be portrayed in the following way:

ot (4 {ﬁ; 1) -y [ (4 ﬁl)(\ﬁ

One great feature of this relation is that it links amplitudes at different levels in
perturbation theory. Suppose that the amplitude appearing in the L.h.s. is of order
A? (with A being the coupling constant of the theory), the amplitudes on the r.h.s.
must be of order A to match it. Hence Unitarity implies that the imaginary part
of a one loop amplitude is linked to tree level amplitudes. A closer look to this key
concept is given in the example below.

Example
Consider a simple theory which has the following Lagrangian:

L= —%¢(D+m2)¢>— %ﬂ'Dﬂ'-i- %¢W2 (2.16)

Pictorically, the amplitude M(¢ — ¢) at one loop can be represented as
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where to distinguish between ¢ and 7 the former, massive one is represented with
a thick line, while the latter with a thinner one. In this process the only possible
intermediate state, at one loop, is |wm). Thus applying the generalized Optical
theorem one finds that

d3ky d3ks 4
21 = 2m) 6™ (ky + ko — 2

mM(¢ — ¢) / (2%)3(2E1) (277)3(2E2)( 7T) ( 1+ k2 p)|M(¢) — WW)‘

(2.17)
Diagrammatically it results in

- 2

TR Pk dhy 1500 N

2Im o) \ K = / CEEN) (27r)3(2E2)(27T) 0 (k1 + ke — )
(2.18)

Here the connection between the two different level of the scattering is strikingly
clear: a component of the one loop amplitude can be evaluated starting from tree
level ones, which are often way simpler to evaluate.

In order to evaluate that integral, firstly it is possible to integrate over d3ks, to
get rid of 3 out of the 4 delta functions. After this step, acknowledging that the tree
level amplitude is

s

iM(p—mm) = ====<_  =iA (2.19)

N
N

the integral appears to be independent from the angular coordinate. In this case the
integration over the angular variable can be factorized from the rest and performed
easily. Lastly, moving to the center of mass reference frame one arrives to

)\2
1672

oMM (¢ — ¢) = /d|kdm(2|ky — M). (2.20)

In the end, performing the integration one arrives to the final result

2
TM(6 — ¢) = . (2.21)

167
|
Even though equation (2.14) is very useful, its application may seem not so intu-
itive. A simpler approach to evaluate the imaginary part of a diagram is presented
by Cutkosky in [6]. He noticed that the term dIT,6(p, — p;) in the r.h.s. of the
generalized optical theorem could be rewritten in a different way. Without loss of
generality consider the case in which the state |x) contains [ particles. In this case

the term dIT,6(*) (pz — pi) becomes

ada (o s, (<
(2m)32E; - - - 2E; o zj:kj Thi) = (2m)3I12F; - - - 2, 0 zj:EJ’ -E|, (222
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where FE is the total energy of the incoming particles, while the integration over the
momentum k; has been used to simplify the tridimensional component of the delta
function. Now it is possible to introduce I — 1 terms, dko; d(ko; — E;), without
changing the result of the integral, since the momenta considered belong to particles
that are already on shell. This leads to

dkt - dkt 6 (koq — E1)---6 (Zé koj — E>

4

(2.23)

Now the measure of integration contains the ratio between many simple deltas and
its zero. This expression recall a remarkable property of the delta function:

6(r —m;) .
55 ot 224

i

where the sum is over all the z; such that f(z;) = 0. Using it in equation (2.23)
allows to write the phase space measure in the following way:

dk} - dkt ., o
T end 0(ko,1)0(ki —m7) -+ 0(koy)o(k; —my)  (2.25)

with k; = p; — p, as a consequence of momentum conservation.

dIt, 6@ (p, — pi) =

The measure of integration written in this way is exactly the measure of a loop
amplitude like the one appearing on the Lh.s. of the generalized Optical theorem,
moreover the arguments of the deltas are the denominators of propagators that be-
comes intermediate states in the r.h.s. of (2.14). Such results can be generalized and
applied to any amplitude.

This shows a different way to evaluate the imaginary part of a diagram called the
Cutkosky rule equivalent to the generalized Optical theorem, which can be performed
in a three steps fashion:

e cut through the diagram M in all the possible way that allows to put all the
cut propagators on shell without violating momentum conservation .

e For each cut propagator, substitute — (—271)0(po)d(p? — m?)

i
p2—m2+ie

e sum over all possible cut, thus obtaining its imaginary part:

2AmM = > Meus (2.26)

cuts

Diagrammatically, a cut propagator will be represented as a propagator cut by a
dashed line. Nonetheless cut are directional: due to the presence of 6(pg) they depend
on the direction of the momentum flow. The direction of the second line on top of
the cut represent the argument of the theta function, without it the representation
of the cut would be ambiguous. When it points in the same direction of the flow of
the momenta, the argument of the theta function will be the energy of the particle
flowing in the propagator, otherwise it will be minus the energy of such particle.

Here there are different example of cut propagators, to get used to them.
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e scalar
o[
®==== oot - — (—27ri)0(p0)5(p2 - m2)
- (2.27)
p
o-c-cf--i-e=(—2m0)0(—po)d(p? — m?)
e fermion
o
— o = (—2mi)(p + m)0(po)d(p* — m?) (2.28)
e photon

P
= (=2mi)(=¢"")0(po)d(p*) (2.29)

e in general

o
— e = (—2mi) wa 0(po)d(p? — m?)
pol
- (2.30)
2N
—2m1) wa 0(—po)d(p* —m?)
pol

Using the new concept of cuts, the calculation of the imaginary part becomes more
intuitive than before. In order to showcase such improvement, below is presented
the example of the self energy of ¢ used also in the example of application for
the generalized Optical theorem. Instead now the imaginary part of a diagram is
evaluated through the Cutkosky rule.

Example

Applying equation (2.26) to the self energy of the massive scalar ¢ at one loop,
diagrammatically one obtains:

3
// AN p / AN p
/ \’- —_— \’- —
2Tm - | = - , (2.31)
\ / \ /
T &\:/
qa-T7p
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which can be written as
d4q
(2m)?

Applying the property of delta functions outlined in (2.24) and following the same
steps performed in the example of application for the Optical theorem one finds

2mm«¢—wﬂ=A{/ 0(a0)6(®)0(p0 — 0)6((a —p)?)  (2.32)

dq
2 ImM —>7r:)\2/ §(q0 — |g))é(po — qo — |q —
A2 d3q
= 162 Wé(M— 2|ql) (2.33)
)\2
~ 1o [ a8 —20q)

which is the result obtained in (2.20) using the generalized Optical theorem, thus
confirming the validity of he Cutkosky rule. |

2.2 Feynman Tree Theorem

In the previous section, thanks to the Unitarity of the S-matrix it was possible to
draw a relation between amplitudes at different level in perturbation theory: for
example, the imaginary part of a one loop diagram has been calculated starting from
tree level ones. Nonetheless, with little more effort it is possible to bound more
tightly the amplitude at any level to tree level ones, as stated in [7] and [8]. Such
relation is exploited through studying the concept of prescription, the 4+ic appearing
in the Feynman propagators.
In order to draw such relation, let’s consider the following integral:

/da:f(x) (2.34)

Tr — X

It is ill defined: it has a singularity on the path of integration, thus it’s value isn’t
uniquely determined. Nonetheless it is possible to regulate it, by analytical continu-
ation of the variable x in the complex plane. In such way it is possible to deform the
path of integration so that it turns around the singularity avoiding it, or alternatively
the singularity can be moved away from the path of integration. In the latter case
it would be moved by a distance of € with € — 0". These regularization scheme can
be seen below: on the r.h.s. there is the latter, on the L.h.s. the former.

/C FARACOR :/da:f(x) (2.35)

<, T —To r—x9te

In this two cases the path of integration in relation to the position of the singularity
is:
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From here on, in order to regulate an integral which has a singularity along the
path of integration, the pole will be shifted away from it.

A remarkable fact is that moving the singularity above the integration path leads
to a different results from moving it below of it. The difference is a complete loop
around the pole, hence the value of its residue. This is clear if one compares the two
prescription in integrals along the real axis, obtaining the relation

/ f(=) :/ F@) L oir (o) (2.36)

T — T — 1€ T — xg + i€

which can be written as

1 1
= 2imd(x — 2.
T — Tg— 1€ :z—:c0+ie+ imd(w — o) (2.37)

where the fractions appearing in it are considered as distributions. Portraying each
prescription by the position of its pole and its path of integration, intuitively the
previous equation becomes

:Zio—i-ié'

= -- - 4 2imd(x — xp)

(2.38)

As it is clear by now it is possible to change the prescription with which an integral
over a simple pole is regulated thanks to this relation. Also the Feynman propagator
and the Advenced propagator have simple poles. In particular it is possible to write
the Feynman propagator

i i
G = = 2.39
r(0) @ +ie (g0 +wg —ie)(go — wq + i€) (2:39)
and Advanced propagator
i i
Galq) = (2.40)

—¢? —idesgn(qo) (g0 — wg — i€)(qo + wq — ic)

in this way, highlighting its singularity structure which can be represented on the
complex plane as

Im(po) Im(po)
—wqg + i wq + i —wqg + i

Galq) Gr(q)
Re(po) Re(po) :

Wq — 1€

(2.41)

The analogy with (2.38) is striking: two regulated integrals, with a pole in a dif-
ferent position. It should be possible to build a relation between the two propagators
like the one previously seen. Using equation (2.38) on G 4, as it is written in (2.40),
one obtains:
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1

Gala) = (g0 + wq — i€)(q0 — wq — i€)
R ireme== REU RS BECED
= Gr(g) — M?wqq) = Gr(q) — 2m0(40)é(¢°)
Arriving to the final relation
Galg) = Grlg) — 2m8D(g? — m?). (2.43)

Where §(H) (¢2—m?) is 8(qo)5(g>—m?), hence the case with the positive loop momenta
inside the theta function.

This relation acquire great relevance anytime there is an integration over the
momentum appearing in the denominator. Indeed, in this case

/F dgo G a(g) = 0 (2.44)

because it is possible to close the contour integration in the lower half plane, obtaining
a closed circuit I' which has no singularity within it and hence the integral turns out
to be 0. Here there is the path of integration:

Im(po)

Re(po) * ¢
= > (2.45)

Generalizing this idea to integrals with more denominators, the result doesn’t
change since all poles lies on the upper complex half plane, exactly as in the case of
only one propagator. Hence one can write

ar
0=/ qN HG (@—p1—-—pi)

=/(2W)¢’D @TT{62 = — =) =205 (=i = = =)}
Z (2.46)

thanks to (2.43), as stated in [8]. N (g) stands for the numerator of the Feynman
amplitude, which can depends on the loop momenta.
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Expanding the product in the right hand side and isolating the term that contains
only Feynman propagators (which is the amplitude), one obtains

M= lecut - M2fcut +---+ (—1)71_1,/\/[”,6“15

_ Z”:(_l)j_le_wt (2.47)
J

in the case of an amplitude with n internal lines. In order to better understand the
relation found here, it is useful to recall the fact that a cut loop amplitude can be
seen as a tree level amplitude, integrated over the phase space of the particles flowing
in the cut propagator, as one can deduce comparing the example of application of the
Optical theorem and the Cutkosky rule. Hence applying this procedure to an [-loop
diagram allows to write it as a sum of at least [ — 1 loop diagrams. It is possible
then to apply the procedure to the [ — 1 diagram and so on and so on, until one is
able to express any loop diagram as the sum of tree level diagram integrated over
phase space of the particle flowing in the cut propagators. This procedure is called
the Feynman Tree Theorem, getting its name from this interpretation of its result.

Example

In order to showcase the application of this theorem, it will be used to evaluate the
self energy of the scalar ¢, presented in the examples outlined before. To perform the
calculation it will be used the dimensional regularization scheme, setting D = 4 — 2e.
In this particular scheme the amplitude of the self energy becomes

_ )2 dPq 1
A=A / (2m)P (¢ + ie)[(q — p)? + ic] (2.48)

Firstly, this diagram will be evaluated using the Feynman parameterization, in
order to have a value that allows to check whether the result obtained through the
Feynman tree theorem is correct or no.

Feynman parametrization method

Let’s recall this useful parameterization briefly. It allows to express rational function
in terms of an integral:

1 1 l1-z1——xp_2 1
. —— dry - Ay
AIAZ"‘An (n)/() . /0 . 1[Alxl +"'+An71z7171 +An(1_ml _"'_afn)]n
(2.49)

Applying it in our case leads to

_ 2 ! . dPq 1
A=) /0 d / (27—[-)D [(q — p$)2 + M2$(1 — :L,)]z (250)

which, shifting the loop momentum, becomes

dPq 1
A= [ oo = 231
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It is possible to evaluate this integral thanks to the Wick rotation and by extending
the solid angle to D dimensions in the following way:

QDlZ]iZiZ; (2.52)
Knowing that, one obtain the general relation:
Lm:/’ﬂh (@) :“ywwgkﬂ“mfw+%5ﬂm—r—§)(Zm)
: (27P) (¢* = )™ ums  T(H) (m)
that allows to rewrite the amplitude as
A= X1y, (2.54)
with
C=-M*x(1-2) (2.55)
Lastly, integrating over the loop momentum gives
A—z)\Q e/dsv (1—x2))°¢
(2.56)

( ) L(e)I2(1 —¢)
(4m)2—¢ I'(2 — 2¢)

=1

Feynman Tree theorem method

Since the amplitude in this case has two denominators, the application of the Feyn-
man tree theorem will generate the following relation:

A=A+ Ay — Ao (257)
with
A :AQ/C’Dq(ﬂ(q ()Gl —) =3 [ P45l —p)
1 (2m) =R J @mP= "
D
Ay = N2 / (;l)qGF( 0(d0 — po)5((q — p)?) = A° / (;l)qGF( 169 (g - p)?)
Apg = N2 / (2;’)520@0)9(% — p0)(@)5((g - p)?) = N2 / (2;525<+><q2>5<+><<q o)

(2.58)

To clarify the notation used, the amplitude A; has a cut over the propagator of
momentum ¢;, with ¢; = ¢ and ¢o = ¢ — p, while A5 represent the double-cut
amplitude. The relation written in equation (2.57) graphically is
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Cutting over q. In this case the amplitude is

_ e [ 4% d(qo0 — |ql)
A= | e T T TP T (2:60)

where g and p are the D — 1 dimensional euclidean component of the respective D
dimensional Minkowskian vector. It can be represented as

Performing some manipulation, it is possible to write the integral as

= d’q (g0 — q)
A= z)\2/ 2(27T)D—1 Q[(QO _ M)Q “ 2y ifs}
_; d”q 1
= z)\z/ 2(2m)P=1 q[(q — M)? — @2 + ic] (2.61)

_ i)\2 Qp_s /+oo J qD—3
ToenDbT ), M2 oMg e

Setting D = 4—2¢, using the explicit formula for the multidimensional angular factor
presented in (2.52), and an identity of the gamma function,

_ I'(2z)
T(z+1/2) =22 2.62
(- 1/2) =27 VA (262)
, it is possible to express the prefactor in the following way:
Qpo 1 1 T(1—e (2.63)
202m)P=1  (4n)3/2-<1(3/2 —¢)  Am'=c (2 — 2¢) '
Then, substituting |g| = 2L¢’ leads to
MZ)—E F(l _ 6) +oo q11—2€
Ay =ixe!d / dg ————— 2.64
LT e 2 =20 Jy T 1—q e (264)
Notice that
+o00 /11—2¢ 0 /11—2¢
q 14
df ———— = — d 2.65
/0 T ¢+ie /ooql—q’ (2.65)

where on the r.h.s. the i¢ prescription have been dropped since the pole isn’t on the
path of integration anymore.

Performing now a change of variables, defining ¢’ = “T_l, the amplitude takes the
following shape

_1\—2e¢ 2\—¢€ —c 1
A e 1)4771(]\64 ) FF((;_ 23) /0 duu® (1 — u)t > (2.66)
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The integral appearing in it is the notorious Euler’s beta function. This particular
class of functions are defined as:

Btuy)ziélﬂ_%l—tw_%ﬁ (2.67)

Nonetheless the Euler beta function is connected to another, more common, class of
functions (the Gamma functions) by the identity

Blo.y) llm (2.68)
turning A; to
) T
Ay =i\ dyl—c (2 — 2¢) B(2e1-29) (2.69)

(—=1)72¢(M?)=¢T(1 — 26)T'(26)T(1 — ¢)

— i)\2
= A 4grl—e I'(2 — 2¢)

Cutting over ¢ — p. The second cut amplitude is

. dPq  6(qo — po — wg—p)
Ay — i)\2 P 2.70
= [ G e 270

and could be represented as

Following the same step done for A; one arrives to

. M)—Qe F(l _ 6) +o00 q/1—2€
Ay = /\2( / dq’ 2.71
25 Uit —20 Jy, “1+¢ (2.71)

This time, in order to link the integral appearing in the cut amplitude to the definition

of beta function given in (2.68), ones need to define ¢’ = -~ obtaining

(M) T(1—¢) (! _ _
Ao = 2( 1-—2¢ 1— 2e—2 2.72
2 = N F(2—26)/0 dunw™(1 —u) (2.72)
finding that

Ay = (—1)%*4, (2.73)

Doublecut. Lastly, the double cut is

dPq  6(q0 — |al)d(qo — po — lg — pl)
A :AQ/ 2.74
12 (2m)D-2 dlqla—p 274)

and is represented as



24 CHAPTER 2. UNITARITY-BASED METHODS

p
— \
- [

\ !

specializing again to the center of mass frame one finds

D
Ai = 2 / (2;‘5)[()1_29(%)9(% — p0)3(¢A)8((q — p)?)

_ /\2/ d”q  8(q0 — ¢)d(q0 — M — q)
(27T)D_2 4(]2

(2.75)

=0

which is 0 because the two delta function can’t be fulfilled at once in the case of
M # 0, while for M = 0 it is a scaleless integral, hence is zero in dimensional
regularization.

A remarkable fact is that this double cut is different from the one obtained via
the Cutkosky rule, written in (2.32), having different argument inside the 6 function.
This is due to the fact that this two techniques stem from different first principle:
the Cutkosky rule comes from the unitarity of the S-matrix, while the Feynman Tree
theorem is obtained via prescription manipulation.

In the end, the total amplitude is obtained by the contribution of the two single
cut:

Apor = A1+ A2 = A1 (1 + (—1)26) = iA1(—=1)%(e™ + e7"™) = —2iA;(—1)° cos(me)
(=M?)=¢T(1 —26)['(2)I(1 — ¢)

_ )
=ix’ (4m)2—< T2 - 2¢)

2 cos(me)
(2.76)

At this point in order to simplify the expression of the total amplitude it is useful to
recall the Euler reflection formula for the Gamma functions. It states that
T

Fz)I'(1—-=2) = Sn(r7) (2.77)

Using it in the expression of the total amplitude one obtains
(=M?)=¢ T(1 — €) _7cos(me)
(4m)2=¢ T'(2 —2¢)  sin(2me)
~MAHT(1—¢) 7
(4m)2=¢ T'(2 — 2¢) sin(me)
(=M T(r*(1 —¢)
(4m)2=¢  T'(2 — 2e)

Aot = ZAQ

x|

(2.78)

= i)2

, matching the results given by the calculation with the Feynman parameters, re-
ported in (2.56). |

2.3 Generalized Unitarity

The problem of a systematic approach to the solution of Feynman integrals at one
loop will be addressed in this section.
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Due to the great number of theories that one can build within the framework of
QFT, the number of possible Feynman integrals is countless. Finding relation among
them would simplify greatly the quest of the calculation of the loop correction to a
given process.

2.3.1 Tensor decomposition

A great tool for starting this calculation is given by the Passarino-Veltman tensor
reduction scheme [9]. Through this technique it is possible to separate the Feynman
amplitude from its Dirac and Lorentz component, decomposing it into a set of scalar
integrals. In order to understand how it works, let’s write a generic amplitude with
the polarization vector explicit:

M =€10, " €man MTTI™ (2.79)

The Lorentz index appearing on M™% can come only from the loop momenta.
Hence, defining the tensor Q' %m = g™ ... q¢%" without loss of generality we can
write

Qal---am

QL Qm I a1 Qm = dD
M (@ ] / DD

(2.80)
where D; are the denominators of the amplitude. Due to the Lorentz structure of the
amplitude, it is possible to write an ansatz for I [Q“!""*™] in terms of the independent
Lorentz vectors and tensors and of the possible Dirac structures:

1@ = Y e 28

i
The type of tensors entering in 7; depends on the number of index. For example

e in the case of 1 Lorentz index, the only possible vectors available are the ex-
ternal momenta pg*.

e in the case of 2 Lorentz index, T; can be a couple of external momenta, p; p}”,

or the metric tensor g*1“2.

e in the case of a tensor with 3 Lorentz index, T; can be made by Lorentz vectors

only, p; ' pj*py?*, or by a combination of a Lorentz vector with the metric tensor

123 for example.

e in the case of 4 Lorentz index, the number of possibilities to build 7T; start
to grows. Other than a combination of Lorentz vector, pj' pi?p®p;™* and a
combination of Lorentz vectors and metric tensor, g*'*?p;p;* it is possible
to build a tensor with four Lorentz index also by combining metric tensors

together, obtaining for example g*142g*3®4,

In order to know the shape of the amplitude with its Lorentz structure factorized,
it is necessary to evaluate all the different ¢;. To do so, it is useful to perform a
projection by contracting all the indices appearing in both sides of equation (2.81)
with different tensors 7). In this way it is possible to build a system of equation of
the form

1Q T = > eTi-T; (2.82)
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running on j that labels all the possible tensors that can be used to contract the
indices appearing in (2.81). Inverting such system it is possible to determine all the
scalar constants, finding that

i = Z bi; 1 [Q - T}] (2.83)

Thus, substituting it back in the formula of the amplitude, defining &,,..q,, =
€1,01 " * * €m,am, ONe finds that

M= "E-Tib; 1[Q Tj]. (2.84)

ihj
() - T contains all the possible contraction between the loop momentum and the
tensors T)j. As seen in the examples made before, T} can contain at most combination

of external momenta and metric tensors, hence it is possible to write the numerator
of the integral in a general form:

Q-T; = (QQ)GH(Q‘I%)?- (2.85)

)

As shown, through the Passarino-Veltman tensor decomposition it is possible to write
a generic amplitude in function of a set of scalar integrals that has, as numerator,
scalar products between the loop momentum and the external momenta or powers
of the loop momentum.

In order to further simplify the general possible expression of a given Feynman
amplitude, it is mandatory to better understand its structure in terms of scalar
products and denominators. First of all, in the case of an n particle process at one
loop, the scalar Feynman integral can be written as

dq N

, hence has n denominators. These denominators can be written, in the Euclidean

space, as
Di=(q+Vi’+m; Vi=>p; Va=0 (2.87)
J

Substituting the explicit form of V; inside the expression of the denominator and
performing the square of the momenta flowing in the corresponding propagator, it is
clear that the denominator can always be written as a combination of scalar products,
since the outcome of such procedure is:

i %
Di=q*+2> q-pj+ Y pj-pe+m;. (2.88)
7 7.k

Noticing that in an amplitude with n external leg there are n — 1 independent mo-
menta due to the momentum conservation condition (3" p; = 0), the possible scalar
product that involves the loop momentum in an n point function are

Aqp i=1,...n—1 (2.89)
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for a total of n independent scalar product, the same as the number of denominators.
At one loop hence all scalar product are reducible, that means that all scalar products
can be expressed in terms of denominators and external variables (such as p?,pi .
pj,m?). For example, using the definition of the denominators given in (2.87), it is
possible to write

1
q-pi= §(Di —Di_1+a) (2.90)

with a made of external variables. Going back to equation (2.84), one now notice
that it is possible to write a Feynman amplitude in function of integral with 1 at the
numerator, with their value depending only on their denominators. In particular the
amplitude will be a rational function of scalar products, and it will be a function of
at most 5 independent variable. This is due to the fact that not all the scalar product
are independent. Since the external momenta are 4-dimensional vectors, there will
be at most 4 independent scalar product like ¢ - p;. On top of that, we can write the
D dimensional loop momenta as

q* = qpy + p” (2.91)
decomposing it in two orthogonal components: qa}, the four dimensional one, and
u, the D — 4 dimensional component. Let us notice that

¢ = gy + 1° (2.92)
with q[j] being dependent on the other 4 dimensional scalar product. In this way, any
Feynman amplitude at one loop, in dimensional regularization, will at most depend
on 5 scalar product (4 that are 4 dimensional, plus one extra dimensional, x?), and
hence it will depends on at most 5 independent denominators. This property can be
portrayed in a fancy way:

i:‘;;flﬁ/+;dz +Xi:CiA+;bi{}+zi:ai Q

(2.93)

2.3.2 Fit on the cut

In order to know the whole Feynman amplitude, it is mandatory to evaluate both
the integral in which we can reduce it (the integral with 1 at the numerator and at
most 5 independent denominators portrayed in equation (2.93), the master integrals)
and determine the coefficients in front of them. This thesis won’t cover how those
integrals are evaluated. Instead an efficient way to determine all the coefficients will
be shown.

The fit-on-the-cut approach was proposed in Ref. [10] for one-loop amplitudes.
As the name suggests, this technique uses the idea of cut in order to determine the
coefficient of the reduction outlined in (2.93). This technique ,in which one put on-
shell certain propagators, was firstly encountered working with Unitarity. There, we
found that in order to apply the constraint due to the Unitarity of the S-matrix,
it was necessary to cut the diagram taken in to account. As shown in equation
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(2.31), through the Cutkosky rule, the cuts were used to project the amplitude on
its imaginary part.

Here in the same way, the attempt is to use cuts to project the reduced amplitude
on a single contribution in order to extract its coefficient, in what is called the
Generalize Unitarity approach, since it takes inspiration from the effects of Unitarity
of the scattering matrix.

The idea is to use the cut to put propagators on shell, hence applying the following
substitution:

ol =

(2.94)

where the generalized cut is portrayed as a straight red line since it hasn’t the 6
function in it, differently from the cut appearing in the Cutkosky-Veltman rule.

Example

Here, as an example, the double cut of the 1 loop bubble function written in (2.48)
will be calculated. Graphically it is

and its value is

D
A= N2 / (27‘;,3_26@2)5(@ ) (2.95)

Through the property of the delta function outlined in (2.24) and moving into the
center of mass reference frame one arrives to

A A2/ d”q (g0 — lal) + (g0 + lal) 5(g0 — M — |g|) + 5(q0 — M +q|)
(2m)P—2 2|q] 2|q]

(2.96)

Integrating over dgg and factorizing the integration measure leads to

D—4
A=x / dmf(‘zw)pdg’” [6(=M) + (=M — 2|ql) + 5(—M) + 5(2]q| — M)]

B A2 T(1—e) D4

- oy dallal”lal - 21
(M2~ T(1—¢)

- 2372l (2 — 2¢)

(2.97)

which, in this particular case, is the D dimensional result for the Cutkosky-Veltman
rule, as one can find comparing this result to the 4 dimensional one portrayed in
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(2.33). Let’s remark that in general, the result of a generalized cut is different from
the Cutkosky-Veltman cut. |

When a cut over a denominator appearing in the integral is performed, it’s mean-
ing is clear. But what happens when the amplitude has a cut over a denominator
that doesn’t appear in it? Take for instance a bubble (two denominators function)
that has 3 cuts over 3 independent denominators. Suppose that our amplitude has
D; = ¢* and Dy = (q — p1)? as denominators, and one want to cut it over Dy, Do
and D3 = (q + p2)?, with po linearly independent from p;. To perform the cut one
has to "create" Ds. In order to do so, one multiply and divide by it:

A—/ g 1 —/ g Ds (2.98)
) 2mP3DiDy ) (2m)P=3 D1DyDs’ '

Performing the triple cut now one obtains

D
A= [ (27‘35_36<D1>6<D2>6<D3>D3:o (2.99)

that is clearly null. Pictorially, it could be represented as

=0 (2.100)

where the red lines stand for the number of cuts that one has to apply to the am-
plitude, they are not meant in the traditional convention used in this thesis. In
this sense the generalized cut acts as a projector. It project an amplitude on to the
diagram that contains denominators that appear in the cut, or more. For instance,
performing a 5 cut on an amplitude, will kill all the integrals with 4 or less denomi-
nators that composes it . Cutting 4 time a one loop amplitude will kill the 3 or less
denominators function, and all the 4 denominators function that doesn’t have one of
the cut propagators. In this way, starting from the 5 cut and going down until the
single cut, one can build a triangular system, isolating and then determining all the
coefficients. Applying this algorithm to (2.93) one obtains, pictorially:



30 CHAPTER 2. UNITARITY-BASED METHODS

.

(2.101)

, in this way one can determines all the coefficients appearing in the decomposition
in Master Integrals at one loop.

2.4 Application: 1-Loop 3-point amplitudes QED

In this chapter an application of the Feynman Tree theorem will be presented. The
amplitude considered is the QED three point function at one loop in the massless
spinors limit. The calculation of such amplitude will be computed in two ways: the
first time via the well known Feynman parameterization, the second time using the
Feynman tree theorem so that it is possible to check the result obtained in the latter
framework with the one resulting from the former.

The amplitude considered is:

dPq; u(p2,s2)vad,f (N, u(p2, s2)
A y 91y P2, 7)\ =e? 4_D/ 2 3
(pl 51,P2, 52 ) el (27T)D (q%-i—i&)(q%—&-i&?)(q%—i—ia)

and can be represented as the following Feynman diagram:

(2.102)

q1
b1 /p2
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2.4.1 Feynman parametrization method

In this example, we will adopt the same notation used in [11], in order to compare
easily the result drawn by the two calculations.

In order to integrate over q; it is necessary to write g2 and g3 in function of the
former. The relation between the momenta given by the momentum conservation
are

Q2 = q1+ p2
43 =41 —Pp1

(2.103)

Substituting them in (2.102) one obtains

p [ dPq  u(P2)va(d, +py)¢(N)(d, — p,) v ulpr)
A(p17515p27525 )‘) - 63H4 / (27.[.)D (q% + Zs)((qi _|_pz)2 + Zg)l((ql ipl)2 + Z€)
(2.104)

In order to simplify this expression an identity that contains gamma matrices is
needed:

YaVp V8V V" = (4 = D)Vp8Ye — 276787 (2.105)

in D dimensions. On top of that, another useful relation is given by the Dirac
equation that in the massless limits gives u(p2)p, = 0 and p u(p1) = 0. Using them
in the total amplitude leads to

dPqy w(p2)[(2 — D)g, ¢d, +2p,¢d, — 24, ¢P, + 2p, P, lu(p1)
Alprysrpz s, ) = ' D/ (2m)P (¢F +i€)z(q;+ pz); +17?6)((q1 —2191)2 4:75)2
(2.106)

Using the Feynman parameterization in this case, with n = 3, gets to:

_ 5.3,4-D - xl qu1 u(p2)[(2 — D), ¢d, +2p,¢d, — 24, #P, + 29, /9, ]u(p1)
Arot = 26y / dml/ / D ((¢? —2q1p 9011 +1(q% + 12(]1;?2)952 —1&- q§(1 — :;1 —23:2))3

)
— 9634~ D/ . /1 L 2/ qu1 u(p2 )[(2(1())g1¢g1+2p1¢g12g1¢p2+2p1¢p2]u(p1)

q1 — p1x1 + pax2)? + s12w122)3

(2.107)

Then defining ¢ = ¢ + p1z1 — pax2 leads to:

1—x1 N
Agor = 26314~ D/ dxl/ d@/ L (4,1, p2) (2.108)

(g% + s12z122)3

(2.109)

After some algebra the numerator becomes

N(g;p1,p2) =u(p2){(2 = D)gd¢d + [(2 — D)z1 + 2Jp, ¢ — [(2 — D)z + 2lggp, + [2 — 221 — 2z2+

+ (D = 2)z122]p, P, fu(p1)
(2.110)

The total amplitude hence is

1 11—z
Agoy =€°p*~ D/ dwl/ dzatu(p2){(2 = D)I”7pfve + [(2 — D)1 + 2]17p, ¢,
0

—[(2 = D)xa + 2|IPy,fp, + [2 — 221 — 229 + (D — 2)z122)Ip, ¢, }u(p1)
(2.111)
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with

177 — 2/ d7q il (2.112)
(2m)P (g% + s1w119)3

dPq q
IP =2 2.113
/ (2m)P (g% + s192172)3 ( )

dPq 1
I=2 2114
/ (27T)D (q2 + 812.T1:L‘2)3 ( )

Due to symmetry argument one has that

I’ =0 (2.115)
gpa/ /1 T1 / dD q2 gpa/ /1 x1

177 = d d d dxaly

o 72 ] @m)P (¢ + snaw1za)? . i

(2.116)

this simplifies A4y greatly, leading to:

Atot :CSH4_D /1 dzy /1 h dr2u(p2) { @ Z)D)Ig%}ﬁp +[2 = 221 — 229 + (D — 2) 2172) Ip1¢p2} u(p1)

1— 11 (2 _ D)2
Sut~Pa a(p2)fu(pr) / dxl/ { Iy — s12[2 — 221 — 2m0 + (D — 2)351352]]}

(2.117)
where the following identities has been used:
787" = (2 — D)yp (2.118)
u(p2)p,vep,upr) = —s12u(p2)vsu(p1) (2.119)
Applying (2.53) to I and I, and substituting D = 4 — 2¢ gives
_(_ —1—e
I= 2[0’3 =1 ( 8(1233)121’_26) F(e)e
m (2.120)

I, =23 = z(‘?::’;lfi)r(e)(z — )

The last step needed to evaluate Ay, is to compute the integrals over x1 and zo.
These integrals already appeared in another example: they’re all Beta function, as
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defined in (2.68), thus they can be written as:

1 1-z, 1 1 1
[rdon [ @ = = [Canara o) = B0 -2
_ LEIl'2 = ¢ >
= TTaoz )
1 — 1 1 1
/ dxl/ zo(z10) ¢ = ] / driey (1 —xp) e = B(—¢€,2 —¢)
0 0 — € Jo 1—c¢
_D(=e'(2—¢)
 T(3-2¢)
1 e 1 M 1
/ dxl/ z1(z10) ¢ = —/ dri(z1(1 —21)) *=—-B(l —€,1—¢)
0 0 € Jo

_ I(—e)I'(2 —¢)
T(3 — 2¢)

1 11—z 1 1 1
/ dxl/ (z129) 1€ = —/ dxle1_6(1 —x1) “=—-B(—¢,1—¢)
0 0 0 €

_ D(=e)(2—€)de -2
 T(3-2¢) €

(2.121)

The total amplitude then turns out to be

Atot = Z.6371(202)75U(pl) (_5212>_ 2(;2:)5326 F(E)F(_ep)g(l_;:))r(z —©) {2—€e+ 262}

(2.122)

Expanding it around e = 0, one obtains the final result

2.4.2 Feynman tree theorem method

Applying the Feynman tree theorem in this case gives the amplitude written in term
of seven cut amplitudes, namely

A=A+ A3+ Ay — Aoz — A13 — A1 + A1os (2.124)

where the convention adopted here is the same as in (2.57). This equation can be
represented as
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Y'Y
Y-Y

o (4

(2.125)

Single cut amplitudes

Cutting over g;. The first one, with the photon propagator brought on shell by
the delta that comes from the Feynman tree theorem, is:

dDQ1

Ay (p1,51,p2, 52, \) = _63M4—D/ (27r)D27T5(+) (@) U(p2)Yadyf (AN d, v u(pr)

(43 + ie) (¢ + ie)

(2.126)

which can be represented as

Writing all the loop momenta in function of ¢; thanks to equation (2.103) one
obtains

(2m)P

o [ 2 a(p2)e N (g, — p )" u(p)
AL (p1, 51, pa, 59, ) = —e3 =P d”q 95 (42 (P2)vald, +P,)¢ (N (4, — P,
1(p1, 51,02, 52, A) K / (ql) [<q1 +p2)2+z'5} {((h —p1)2+i5}

(2.127)

Using (2.105) and the Dirac equation for massless spinors simplify the numerator,
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having it written in the following form
N(qi,p1.p2) = ilp2) |(4= D)(d, + P,){N(, = p,) =204, = p)fN, + ;)] ulp1)

—(p2) (2 = D), #(N g, — 24, § NP, + 2,604, + 2§ Oy | ulp)
(2.128)

The amplitude then turns out to be a combination of tensor integrals:
A(p1,s1.p2.52, %) = €(pa) [ (2= D)LY AN = 21174V, + 21, ()77 +

+210p ¢V, | ulp)

(2.129)
with
dPq 1
J (S0 4D/ Lo 50+ : .
a (2m)P (Q1) (2q1p2 + ig) (—2q1p1 + i€)
1) = 4D / P15 (¢2) i, , (2.130)
P (2m)P (2q1p2 + ig) (—2q1p1 + i€)
_ dPq 41,0910
I(l):—4D/ 2715+ P41, .
w =1 | e ) i) (o )

In order to deal with these integrals it is necessary to perform a covariant decompo-
sition using the available momenta p; and po:

I/gk) = pl,pcfk) + p27pcék) I( 00 900 + sz pPsj, UC(k (2.131)

Substituting them in A; and using (2.118) and (2.119) one gets:

Ay = ¥a(ps) fulpy) {(2 — D)2V — 15 [(2 = D)oY — 20D 420V + 2I<1>} }
(2.132)

Contracting [ ,(,l})and 1 él) with the external momenta or with the metric tensor, one
can evaluate all the different constants:

4-D
pr() _ ) _ K /dql +) 1
Pily g 2 (2m)P 2o (ai) (2q1p2 + i€)
4-D D
pr() — (H — K /dql () L
P2l l 2 (2m)P 2mdt") (a7) (—2q1p1 + ie)
d"q a
prp() — () — _4=D / Loms+) ! =0
P == et ) G
4- D
o _ M d C]l
(2.133)
Using these informations together with (2.131) leads to
s s
n=-30y) =20
0=1I{ = DY) + 51201 (2.134)

1 812 s
1{2) = (go) + 32 052)7
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knowing that C’g) = Cg).
Inverting these relations leads to:

2 2
CF) _ 57[2(1) Cél) _ ?IP
12 12
2.1
cv_ Lt 4 0 oy 4 D o (2.135)
00 S12 2D 12 12 5%2 2D 12
Substituting them inside the amplitude gives
8
Ay = e¥u(pa)gulpy) | — 1y + 415 — 4 — 251,10 (2.136)

512

All the integral reported in (2.133) have a common property: performing a change
of variable, defining qL = agqy, leads to I = aPI, were 3 is a generic exponent.

This kind of integral are called scaleless and in dimensional regularization they’re
equal to zero.

In the end this cut amplitude depends only on integral of this kind so it turns out
to be null.

Cutting over gz. The next amplitude is the one with the cut over the fermionic
propagator of momentum ¢o. This amplitude is:

dPq w(p2; 52)Yald, ¢ (N g7 u(p1, 51)
As(pr1, s1,p2, 52, \) = —€3 4—D/ 2ms(H) (42 2 3
stz s Y : (2m)P (%) (4t +ic) (a3 + ie)
(2.137)

and can be represented as

The step needed for the evaluation of As, up to the tensor decomposition, are
almost identical to those shown in the calculation of Ay, hence they will be omitted.
After the tensor decomposition the amplitude becomes

8
Aa(p1, 51, D2, 52, ) = €°U(p2, s2)¢(Nu(p1, s1) {

51{3) +2(4 - D) — 419}

(2.138)
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with
(2) sp [ d°¢ (+) (2 42p1
_[1 = —H (27T)D27T6 (QQ) = 2 T 2 T
(g2 —p2)” +ie| (g2 —p1 —p2)” +ie
D
@ _ a4 [ 47 2 q2p2
I = —p /W%(s(ﬂ (63) ~ T > 7 (2.139)
(q2 —p2)” +ie| (g2 —p1 —p2)” +ie
D
2 - d”q2 (92p1)(q2p2)
(g2 —p2)” +ie| (g2 — p1 — p2)” + e
In particular Ig) = é?) and Ig(,z) = 0 here too so the relation between the constants

from the tensor decomposition and the integrals are the same as in (2.135).

A particular parameterization makes the integration easier to be made, hence it
will be briefly introduced now.

Firstly notice that for every cut amplitude there is a momentum brought on-
shell by the delta function. Hence, knowing that the calculation are performed in
the massless limit, it is possible to write the momentum in the following form:

g = |q;| (1,sin (6;)er, cos (0;)) (2.140)
with 6; being the angle between the three momentum g; and the z axis. Moreover the

modulus of the momentum can be written in function of a dimensionless parameter

& multiplied for @

Then, changing the parameterization of the angle, thus setting:
cos (6;) =1—2u; (2.141)

allows to express the on-shell momentum as follows:

T
g = V;”& (1,2\/%(1 —vi)eT,l—Qvi) (2.142)

where & € [0,00[, v; € [0,1] and er is a unit vector in the transverse direction.
As expect ¢2 = 0 and

\/;B& (2.143)

la;| = gio =

With this new parameterization the integration over the solid angle changes. Re-
membering that

dQp_o = (sin (6;))P~3d6;Q2p_3 (2.144)

one can write
dQp_s = Qp_32P3(0;(1 — v;)) T du;. (2.145)
With p; pointing in the positive z direction and py, = —p;, the scalar product

between the loop momenta and the external momenta becomes:

2¢;p1 = 512605 2q;p2 = 812&'(1 — 'Ui) (2.146)
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(2)

Starting from I;”’ one integrates over dqp, finding:

7 _ 4—D/d|Q2|‘I2|D_3dQD—2 q2p1
! 2(2m)P-1 ( 2g2p2 + i€)(s12 — 2q2p1 — 2q2p2 + i€)

2D27rD1 21—5 +zs~: D21—v2

,u
s —€ Q 1—2¢ v
(”) o [ de (a1 — )

1— V9
(2.147)
Now there are two integrals that must be evaluated:
00 1 2¢

d _ 2.148
/0 &2 1-— 52 + i€ ( )

1 "
/ dvg(vg(l — 1)2))7€ (2.149)

0 1-— (%)

Again, those integrals belong to the family of the Euler’s Beta function defined in
(2.68), even if they’re quite different from each others.

As one can notice, the integral over v is:

1
/ dvavy (1 —v) ™17 = B(2 — ¢, —¢) (2.150)
0

while the integral over £ has already been faced, in the application of the Feynman
Tree theorem on the two point function, in equation (2.65), and its value is

(e’ 1—2¢
dég—>2 = (—1)"%B(1 —2¢,2 2.151
| de e =~ B - 2020 (2151)

After this calculation I 9) becomes

(2)—— Sﬁ _6£_ —2¢ o o _
Il o (u2> 8(271-)3*26( 1) B(l 26726)3(2 €, 5) (2152)

Using (2.77) together with (2.68) leads to:

s — Qp_ T I'(2—¢e)'(—e¢
11(2) - (;22) W(_D%sin (27e) (r(2 —) 2(6) : (2.153)

As it will be shown, also the other cut amplitudes depend on a combination of
Gamma functions, so for a simpler evaluation of (2.102) it is helpful to write them
in function of a common term:

(2) [ S12 ¢ QD_g — 92 m F(2 - G)F(—e)
L™= (;ﬂ) s Y Gn@mg T@o2g 27D (215
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(2),

Analogously one can calculate I

72 _ _M4—D/d"J2H‘b’D3dQD—2 q2p2
2 2(2m)b-1 ( q2p2 +i€)(s12 — 2q2p1 — 2q2p2 + i€)

~(22) " s [ -y
- ,I_,L2 27'['3 2¢ 21_ U2 U2 U2

512\~ Qp_3 —2
= (,u2> W(—l) B(1 —2¢,2¢)B(1 —¢,1 —¢)

<812>_6 Qp_3 (—1) 2" L2 —e)l'(—¢) 9

2 ) 8(2m)see (@) T@-20 29
(2.155)
and 1(2)
@ a—p [ dlasllga|P3dQp s (q2p1)(g2p2)
Il2 - D—1 . 3
2(2m) (—2gop2 +ig)(s12 — 2q2p1 — 2q2p2 + ic)

—€ 2 2e
512 512Qp—3 .
_ (/ﬂ) i 26/ o dunfoa(1 — )

s12)\ © s12Qp-3 —2
_ <u2> Toanrz (") B - 2620B2 - 1)

(512 s12Qp- 9e ™  T(2—-¢I(—¢)
() e s G e

(2.156)

using the same change of variable performed in (2.151) to evaluate the integral over

&
Substituting these results back in (2.138) leads to:

Op_3 w(=1)72¢T(2 — e)['(—e)
27)372¢ sin(2me)  T'(3 — 2¢)

s —€
Aalpr o1 pavsa N =l sl on) (25) 5

{2 — €+ 262}
(2.157)

Cutting over g3. The last single cut amplitude missing is As:

_ dPq u(p2, 52)Yald, ¢ (N d, v u(p1, s1)
o) = D [ L0 e £
3(P1, 81, P2, 52, A) e (2m)D (4) (¢7 +ie)(q5 + ie)
(2.158)
and can be represented as
q1
<7
ply\ /P2
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Repeating the same steps done for Ay (the relations written in (2.135) are valid
here to0o) one obtains:

8
As(p1, 51, D2, 82, ) = €°U(pz, s2)¢(Nu(p1, s1) {512[1(3) —2(4 - D)Ifg) + 4153)}

(2.159)
(2.160)
which is pretty similar to (2.138). Here the integrals are:
_ d”q qsp
11(3):_M4D/(2)325()( 2y . ._(_31) —
T (g3 +p1)” +ie| (g3 +p1+p2)° +ie
3 d”q3 (g3p2)
f§)=—u4D/(2>25(+)()- ST S 7 (2.161)
T (g3 +p1)” +ie| (g3 +p1+p2)” +ic
3 - d”q3 q3p1)(g3p2
I£2):_,U'4 D/(2 ) or 5( )( ?2))_ 5 (._ _)( ) 5 —
i (g3 +p1)” +ie| |(g3+p1+p2)” +ie

Applying the parameterization outlined in (2.142) one is able to evaluate the integral
written above. Starting from the first, one has that

[ (2" Qo 12€d ¢ 2.162
1 == 7 27r3 2¢ 531+£ v3(v3(1 —w3))~ (2.162)
The integral over vz is the same as in (2.155), while the integral over &3 is linked to
the one appearing in Ay: defining {5 = —&; it becomes
+o00 1—2¢ 1o 0 1—2¢ 9 +oo 1—2¢
dés 22 :—1—f/d 2 :—1—6/ dés 2.163
/0 STET Y B R A
which is the same integral appearing in (2.148) multiplied by a factor (—1)72¢, so
¥ = (=12 (2.164)
The next one is:
—€ 1—2¢
QD,3 5 _ 1—w
P = (22 /d dvs(vs(1 — v3)) ¢ 2.165
2 . S2n) % 531 > v3(vs(1 —v3)) ™ — ( )
Observing that, by substituting 1 — vz = vy , one gets
1 1
1 — -
/ dU3(1)3(1 —1)3))76 s :/ dvg(vg(l —1)2))76 v2 (2.166)
0 V3 0 1 — V2
it is possible draw a relation between integrals:
Y = —(—1)~%1? (2.167)

The next one reads

10 = (2) " sulny G (o1 — v0)) (1 2.168
\u 16(27)3 2 531+§ v3(v3(l —v3))" (1 —v3) (2.168)
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By performing the same substitution over v and following the same procedure done
in (2.163), one finds that

1) = (=1)721® (2.169)
Substituting every I back into the cut amplitude As leads to
As(p1, 51,p2, 82, A) =(—1)"* Az (p1, 51, p2, 52, A)

s  Qp_ T I'(2—-e)'(—e
=e*U(p2, s2)f(Nu(p, 51) (;ﬁ) 2(2:)3326 sin(27e) (r(3 2 2(6) !

{2 —€e+ 262}
(2.170)
Using (2.62) to match the result outlined in [11] one gets that
F'2-¢l(-e) 1T'(1—¢l'(—¢) _ ﬁél* '(—e) (2.171)

F(3—-2) 2 T(2-2e) 4 [(3/2—¢)

and hence

S12>6 Qp-_3 T VT, U(=¢)
2(2m)3-2¢ sin(27me) 4 I'(3/2 —¢)

Az(p1, 51,2, 52, \) =€3(p2, s2)¢ (N u(pr, 51) (M2
{2 —c+ 262}
(2.172)
Double cut Amplitudes

The next amplitudes are the double cut.

Cutting over g2 and q3. The first that will be evaluated is:

D u(pa, o A o )
Agg(p1,81,p2,82,)\) _ 63M47D/ d“q 27T5(+)(Q§)27T5(+)(q§)u(p2 52)7. ?251)513;7 U(pl 51)
qy + i€

(2m)P

(2.173)

and can be represented as

Shifting the integration variable to g3, integrating over dgzo and using (2.142)
leads to:

8(q30 — lasl) N(g3)

2¢3,0 [(g3 +p1)? + ig]
K D—4

3 —e
~ 20-D(2m)D2 (%2) / dg3dQp—20) (s12(1 + f:a))N(&a,vs)fS — =0
(2.174)

since &3 is integrated over &3 € [0, +oo[ and in this range the argument of the delta
function is different from zero.

3 4-D / dQ3,od|Q3HQ3|D726(+)

Ag3(p1,51,p2,52,A) = €’ (2r)D-2 (g3 +p1+p2)?)
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Cutting over g1 and g3. Proceeding with the calculation, the next amplitude is:

b [ d°q a(p2, 52)Yad, £ (N g7 u(pr, 51)
— 34D [ AL o s(H) (2 (+H) (2 2 3
A13(p1,51,p2,52,A) = €’ /(%)DQWS (q1)2m6 " (q3) (q§+z's)

(2.175)

and can be represented as

Shifting the integration to g3, this integral decomposes to

8
Ais(p1, s1,p2, 82, \) = €*U(pa, s2)¢(N)u(p1, s1) {Sulg?’) —2(4 - D)Iflg) + 4]513)}

(2.176)
with
703) :M4—D/ d”q 28 (g2) 20 ) (g2) —22P1
1 (2m)P (a3 +ie)
D
13) _ 4D [ 470 o <4y, 2\ o(+).2y_ 43P2
L = 2o 27md 2.177
2 . /(QTr)D T (gp)2m (q3)(q§+is) ( )
D
(13) _ 4-p [ 4741 o (1), 2v0 s(+) 2y (@3P1)(g3D2)
I = 276 276 ——
12 K /(270,3 T (q1)2m (43) (q%—i—is)
Calculating the first one gets:
p [ dPq q3p
I (p1, 51, p2, 82, 0) = €3 D/ (27T)1D2ﬂ6(+)(q%)2ﬂ-6(+)(q§)ﬁ
R S desdvd(E + 16(69) S (ug(1 — 1)) v = 0
=e’u 4(2m)D-2 D-3 Eadvs0(&3 + 1) (f3)1+€3 (v3(1 — v3)) vy =
(2.178)

Because of the 6 (£) together with the the fact that the integrand depends on 5572.

1513) and 11%3) are null for the same reason, so A1z = 0.

Cutting over q1 and g2. The last double cut amplitude is:

u(p2, 52)Vaflyf (N7 ulp1, s1)

D
A1a(p1, 51,2, 52, A) = 63%14_]3/MZM(H(Q%)?MH)(Q%)
(2m)P

(q3 +ie)
. sD/%3 D-6
= 83.U4_D4(21;.)D72 QD—3/d§2d029(52 +1)0(€)& (va(1 — v2)) 7 N(&,v2)
(2.179)

,represented as
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q1

and for the same argument of A;s, turns out to be null.

Triple cut Amplitude

Lastly, the triple cut:

P ,
Boms™ (¢7) 2m6) (g3) 206 (¢3) a2, s2)vatly (N7 ulpr, 51)

A123(p1, 51,2, 52, A) = 763M4_D/ (2m)P
(2.180)

and can be represented as

which turns out to be 0. In fact shifting the integration over ¢3 and using the
on-shell parameterization one gets a combination of (¢ — 1)d(£v)6(&(1 — v)) in the
integrand, which is always null.

Conclusions

Now that all terms appearing in equation (2.124) are known, it is finally possible to
evaluate the total amplitude. Since the only non vanishing contribution come from
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Ay and Agz, the total amplitude is

A(pla S1, P2, S2, >‘) :AQ + A3 = A2 + (_1)726142

=m0t () g
m(—1)7% o
{2-e+2¢%} m[l +(=1)7*]

Qp_3 D(2-el(—e¢)
2(2m)3-2¢  T'(3 — 2¢)

= *u(pa, s2)¢(Nu(p1, 51) (2122) .

{2-ct22) 7;5;(175
= *u(pa, s2) ¢ (Nu(p1, 51) <:212> ng)ige Hera ;(211(22;) (=
{2 —€e+ 262}

63 QD,3

= Zﬂ(m’ s2)¢(Mu(p1, Sl)m
(2.181)
Lastly, expanding in € = 0, one obtains

2 1 - - -
A(p1, s1,p2, 82, ) = {76—2+E {73+2log( :212)} 78+310g< :212> flog2< :212> +O(e)}

(2.182)

wich is the same result obtained using the Feynman parametrization, outlined in
(2.123), as obtained in [11].



Chapter 3

Multiloop Feynman Integrals

In this chapter, after defining Feynman Integrals at multiloop level, we outline some
powerful relation that allows major simplification in the evaluation of a scattering
amplitude. Among such relation, the integrotion by parts identities are the most
powerful. After this introduction, a general parameterization for the Feynman in-
tegrals and its properties are presented. Such parameterization is called the Baikov
representation. Its peculiarity, is how key information of the amplitude is encoded
within its integrand: the Gram determinant, which has a beautiful and intuitive
geometric interpretation: it is proportional to the volume spanned by the momenta
appearing in the scattering amplitude. An underestimate aspects of such parame-
terization, are its integration boundaries. Nonetheless they’re of crucial importance
for example in the IBPs derivation. After a deep look at such component of the
amplitude we analyze a parameterization deriving from the Baikov representation,
which is connected to the Hyperspherical coordinates. At last, we review the noto-
rious technique of generalized Unitarity and IBPs in the Baikov representation with
denominators as variables, outlining its advantage.

3.1 Definition

In dimensional regularization, hence in a d-dimensional space-time, we define a I-loop
Feynman integral with n external legs and ¢ internal propagators as the integral

dPq;  N(qj)
d(l,n)
le’ N = /H 2D T ]Dfﬁ (3.1)

with M (g;) a generic tensor numerator that may depend on the loop momenta,
while the denominators D; are, extending to multiloop the one loop definition given
n (2.87),

Dy = 2 4+ m? (3.2)
where

=il + ) Bips (3.3)
J J

with p7' being the external momenta while a and S are incidence matrices which
entries take values in (0,%+1). From here on the normalization factor of (27)” will

45
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be omitted. After applying the tensor the composition outlined in 2.3.1 in this
multiloop case, one obtains that the starting integral can be written as a rational
function of the scalar product as in the single loop case. Nonetheless, the relation
between scalar product and loop momenta here are quite different. The number of
scalar product now is much greater than n: for each loop momenta we have n — 1
scalar product like g; - p;, on top of that we have to add the scalar product between
loop momenta. In the end the total number is
(l+1) I2n+1-1)

=r= -1 = 4
ngp=r=1In-1)+ 5 5 (3.4)

Consider for instance a theory that has only 3 legged vertices. In this case a tree
level diagram will have in total I = n — 3 internal lines, and hence the same number
of propagators (n is the number of external legs). A vertex has n =3 and I =0 as
expected. Adding a loop (i. e. connecting 2 points on some lines) increases I by 3.
So, I for n-legged 1-loop diagrams is

I=3l4+n-3 (3.5)
leading to

(1—1)(I+ 2n — 6)
2

r—1=

(3.6)

As expected, in the one loop case ngp — I = 0, hence there are as many scalar
products as denominators. But what happens if one goes to 2 loop? The difference
between scalar products and denominators become

r—1I|,_y=n—-2 (3.7)

Thanks to this example one sees that at multi loop level the correspondence between
denominators and scalar products no longer exist and there could be Feynman inte-
grals that, after the tensor reduction and further simplification cannot be cast in to
the form presented in equation (2.93). This is due to the presence of scalar products
that cannot be reduced, so called irreducible scalar products(i.e. ISP’s). In general
a multiloop scalar integral can be cast into

l
qu, Syl . Sya
Id(lm)(':rl’"'7mt7y17"'7ya) = /H (27T)ZD Dlml l)axt (38)
i=1 1 t

where S; are the ISP. Differently for what happen at one loop, in this case not all the
scalar product can be written in terms of the denominators of the diagram. Because
of this, equation (3.8) can be considered as the general formula for the scalar integrals
composing the amplitude after the tensor decomposition and the integrand reduction.
An alternative way to represent a generic integral at multi loop level is to define a

set of irreducible numerators (linear functions of the scalar products) Dy,,..., D,
to add to the set of denominators such that all the scalar products appearing in
the Feynman amplitude can be reduced into a combination of {Dy, ..., D,}. In the

amplitude becomes

: dPyg; 1
19 (g x,) = / : 3.9
(w1, , Tr) 11;[1 (27T)D Dfl thDfril ... D¥r (3.9)
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where this time the powers i1, ..., x, are negative.

The object defined at (3.9) is usually referred to as integral families. In principle,
we can allow the powers x; to assume any integer value. It useful to introduce some
additional terminology:

e We define a topology (or sector) as an integral of the type (3.9) which corre-
sponds to a graph, i.e. which has the ISPs raised to a negative power.

e Given a topology, its subtopologies correspond to integrals where some denom-
inators are raised to zero power. The graph of a subtopology can be obtained
from the one of the 4AIJparent aAl topology by pinching (i.e. removing) the
corresponding loop propagators.

Any integral family contains, obviously, infinitely many different integrals, each
one corresponding to a particular integer tuple {z1,...,x,}. However, only a fi-
nite number of such integrals is actually independent, due to the existence of linear
relations between Feynman integrals which are a direct consequence of the invari-
ance of eq. (3.9) under Lorentz transformations and re-parametrization of the loop
momenta.

3.2 Lorentz invariance identities

It is clear that the first and the last step can be performed at higher loop too, but
what kind of relation can be 