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�Nature seems to enjoy running on the verge of inconsistency�
(D. Friedan, E. Martinec, S. Shenker)

Introduction

The union of gravity with quantum �eld theory leads to non renormalization issues so, despite of its
impressive success, the Standard Model is surely not the ultimate theory describing the reality at its
very fundamental level. Other hints in this direction also come from the fact that the Standard Model
appears to be, in a certain sense, too �arbitrary� and �unnatural�. It looks like arbitrary because it is not
able to explain the reason why its particular pattern of gauge �elds and multiplets exists and because it
cannot determine the values of the many parameters entering its Lagrangian. The latter have to be �xed
by comparison with experiments and some of them turn out to be unexpectedly much smaller than the
values that one would guess a priori: hence the unnaturalness of the model, which arises as a �ne-tuning
problem. For instance, the Higgs boson is much lighter than the Planck mass MP ∼ 1019 GeV, whereas
one would expect that the large quantum contributions to its mass would inevitably make the latter very
huge (i.e. comparable to the scale at which new physics should emerge) unless there is an incredible
�ne-tuning cancellation between the quadratic radiative corrections and the bare mass.

All the attempts at uni�cation of the interactions of nature have been essentially based on enlarg-
ing the symmetry group of short distance physics. This has brought us to theories characterized by
large non-abelian gauge groups, supersymmetry (which helps with the naturalness issue, by solving the
�ne-tuning problem for the Higgs mass), higher dimensions (that allow to describe several and di�erent
four-dimensional �elds in term of the same higher-dimensional object), etc...
Out of the theories that have been put forward to go beyond the SM, the most promising one seems to be
String Theory, according to which fundamental particles are nothing but di�erent excitations of a one-
dimensional object. This idea leads - in a very natural way - to a theory where the characteristic length
of the string is the only arbitrarily adjustable parameter and where all interactions (gravity inluded) are
uni�ed in a truly elegant formalism which is free from those UV divergences which typically a�ect any
QFT of pointlike particles. From an abstract point of view, string theory represents a radical step in
enlarging the symmetry group of fundamental physics, because it brings the in�nite-dimensional algebra
of two-dimensional conformal transformations into the game. Such vast extension in symmetry is corre-
spondingly followed by tight restrictions on the structure of the theory. Indeed, because of the presence
of several potential anomalies, the consistency of string theory is a non-trivial issue. It requires stringent
constraints on the framework, which lead to the critical dimension (we can say that the superstring is
allowed to live only in a ten-dimensional spacetime), to precise restrictions on the possible gauge groups
(for example, the heterotic superstring is consistent only with E8 × E8 or SO(32) gauge vectors) and to
the spacetime supersymmetry.

So far, no evidence of supersymmetric partners of the SM particles has been found. Thus, there must
be a mechanism that breaks it at a certain energy scale Λb considerably higher than the typical scale ΛSM
of the SM, namely the electroweak one: Λb > ΛSM ∼ 102 GeV. If supersymmetry is really the solution to
the hierarchy problem, the cancellation of the quantum corrections to the Higgs mass requires Λb not to
be too much above ΛSM and it's thus believed that the breaking of supersymmetry should occur around
an energy scale like 102 GeV . Λb . 103 GeV.
From the superstring point of view, the fact that Λb . 103 GeV means that the compacti�cation of the six
extra-dimensions should not be responsible for the breaking of the supersymmetry; otherwise, we would
have Λb ∼ 1/Rc where Rc is the characterisitic length of the internal space, which has to be taken very
small in order for the additional dimensions to be penetrable only at very high energy, that is 1/Rc � 103

GeV. In other words, the six extra dimensions are curled up into special manifolds which don't break
supersymmetry (i.e. they must be Calabi-Yau, if the metric is the only background �eld) and Λb cannot
be tied to the compacti�cation scale. In the context of the superstring, the link between Λb and 1/Rc
appears to be a generic1 problem with tree-level supersymmetry breaking (see [1]) and we are left with
the possibility of breaking supersymmetry by means of loop or non-perturbative e�ects.

1At least in the traditional approach to phenomenology based on the heterotic superstring.

I



In the �nal chapter of this thesis, we will analyze the only known2 example in which supersymmetry
can be spontaneously broken in superstring perturbation theory, despite being unbroken at the tree-level.
We will be able to detect the breaking of the supersymmetry by looking at the mass-splitting that arises
as a one-loop e�ect a�ecting a chiral supermultiplet of the low-energy limit of the SO(32) heterotic su-
perstring compacti�ed in a Calabi-Yau manifold. To be more precise, we will determine - at one loop
level - the ρiρ

∗
i correlation function for a particular complex scalar �eld ρi and we will �nd that a pos-

sible non-vanishing mass term is developed. We will perform the calculation around a vacuum which is
supersymmetric at the tree-level and in which ρi and its superpartner appear massless. Given that the
latter will continue to be massless also perturbatively, the non-vanishing mass term for ρi will precisely
coincide with the craved mass-splitting, which is due to the presence of a non-vanishing D-term.
This model is not interesting from a phenomenological point of view. Nevertheless, it's worth of being
studied, because it lets us have a look at the di�erences between the old literature and the current state of
the art of on-shell string perturbation theory. Indeed, this calculation has been done in various ways in the
old literature (see [2], [3]) where, in order to get a non-vanishing mass term for ρi, they needed to impose
the momentum conservation condition only at the very end of the calculation. Clearly, this sounds like a
trick, because nothing prevents us from imposing the momentum conservation in a previous step of the
computation. We will determine the mass-splitting by following the strategy outlined by A. Sen in 2015
(see [4]), a strategy that doesn't require the momentum conservation condition to be imposed necessarily
at the end. His approach was inspired by some recent advancements that he and his collaborators carried
out in the context of the closed superstring �eld theory/o�-shell superstring scattering amplitudes. We
will not present the heavy formalism underlying such advanced topics; rather, we will help the reader to
understand the structure of that calculation by following a very humble and elementary path, partially
based on the old-fashioned approach to string perturbation theory (indeed we will cite articles like [5],
[6] and [7] several times throughout all the course of the thesis); when big theorems and long proofs will
be required, we will refer to the proper reference.

We will not take any background in string theory for granted. After an informal introduction, we
will devote the second and the third chapter to presenting the quantization of the string; we will do it
for the bosonic string, a theory that we consider as an unrealistic but simple toy model that lets us get
acquaitance with the main ideas of string theory. In the fourth chapter, the most important ingredients
of CFT borrowed by string theory will be given and we will also have our �rst approach to the BRST
formalism, an essential tool that will help us to build up physically meaningful correlation functions.
Then, we will be ready to analyze how the global aspects of the worldsheet enter string perturbation
theory, something that we will describe in the �fth chapter, where particular attention will be paid to the
toroidal worldsheet, given that it will be precisely the worldsheet on which the �nal calculation will be
performed. At this point, the reader should have acquired enough familiarity with string theory, so, in
the sixth chapter we will be more sketchy with the superstring and we will describe in detail only those
features of it that have no analogy in the bosonic theory; here, for example, the basics of the technology
involving the picture changing operators will be presented3. Finally, in the seventh chapter we will study
the spontaneous supersymmetry breaking mechanism for the heterotic SO(32) superstring and we will
explicitly show the di�erence between the way the calculation used to be done in the 80's and the strategy
proposed by Sen.

2At least, the only known example according to the knowledge of E. Witten (see [2]).
3We like to mention that, essentially, there are two possible ways to do superstring perturbation theory. As E. Witten

likes, one could describe the superstring perturbation theory by resorting to the mathematically involved machinery of super-
Riemann surfaces, otherwise one could decide to follow the favourite approach by A. Sen, which consists of integrating out
the odd moduli of the worldsheet and dealing with the picture changing operators in a more intuitive and manifest way
since the beginning of the calculation. We prefer the second option, because it requires less mathematical background and
because it is more direct for computations.
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1 String Theory: an informal introduction

In this section, we are going to introduce the reader to the technical language that will be used in the
following chapters, by presenting some of the fundamental ideas underlying string theory. We will not
delve into computations; rather, we will explain basic concepts on which this fascinating theory is based.
Particular emphasis will be laid on the features of the interactions allowed among extended objects and
on the formalisms used to deal with them.

1.1 p−branes and worldvolume formalisms

Let's consider a p−brane, that is a classical object (relativistic or not) of p space dimensions propagating
in a �at D−dimensional spacetimeM.
Such an object is de�ned to be fundamental if it is not an assembly of lower-dimensional branes which
are bound together by some forces and if it appears to be p−dimensional at any scales. In particular, this
means that a fundamental p−brane has no internal structure and it cannot be described either as a subset
of a higher-dimensional object by forgetting the not-observable dimensions of the latter. As we will see,
p−branes can interact and split into other branes; if the initial p−brane is fundamental, then also the
�nal ones are fundamental. Given that a fundamental object has no internal structure, we can require it
to be homogeneous; this stronger assumption lets us characterize the p−brane only by specifying a scalar
number T , called tension, which can be thought of as the homogeneous energy density of the object.
To completely characterize the dynamics of a fundamental p−brane, we have to describe its history - also
called worldvolume - as a subset ofM - also called target space; using a standard language, we refer to
the worldvolume of a 0−brane (a pointlike particle) as worldline and to that one of a string (a 0−brane)
as worldsheet.
If we are searching for a relativistic theory, time and spatial coordinates must be considered on the
same footing and there are only two formalisms that achieve this within the framework of a lagrangian
formulation. To be more precise, the dynamics of the p−brane can be described in two fashions, which
di�er for the choice of the dynamical variables and for the way they relate the p−brane to the spacetime
M.

Figure 1

The abstract and the embedded worldvolume.

• According to the worldvolume formalism, both space and time positions of the object are dynamical
variables. They are given as functions Xµ(σa) on the worldvolume and the latter is parametrized
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in terms of coordinates σa (a ∈ {0, 1, ..., p}). Usually, Xµ(σa) are sloppily called embeddings of
the worldvolume into the spacetimeM. In the language of di�erential geometry, the worldvolume
of a p−brane is a manifold Wp of real dimension p + 1 de�ned by the atlas of its local charts
{(U(k), φ(k))}k∈{1,2,...} and which is embedded into the spacetime M by means of some functions
iµ (see Figure 1). Then, if P ∈ U(k) is a point of Wp, we de�ne X

µ as

Xµ(σα) = Xµ(σα(k)) ≡ i
µ ◦ φ−1

(k)(σ
α
(k)) , (1.1)

where σα(k) = φ(k)(P ) are the coordinates of P in the kth local chart (U(k), φ(k)); for the sake of
simplicity, we will always drop, as we have just done, the label of the chart and we will write σα

instead of σα(k). We will continue to refer to the abstract manifold Wp as the worldvolume of the

p−brane, whereas its embedded version iµ(Wp) will be called history of the p−brane. Actually, at
the classical level, there is no essential di�erence between the worldvolume and the history of the
fundamental object: the functions Xµ(σα) will be the solutions of the equations of motion and,
thus, we expect iµ to be particularly nice functions which are able to identify the structure of Wp

with that one of iµ(Wp). But, at the quantum level, we have to �sum� all possible histories of the
p−brane, as suggested by the path-integral approach to quantization; a way to do this is to �x
the topology of the abstract worldsheet and to �sum� over all the possible iµ (not only over the
embeddings!) and then, as last step, to let the topology of the worldsheet vary.
Anyway, given a geometric object it is natural to consider its shape and its deformations; hence,
there is a natural action Sp for a fundamental p−brane of tension T which is simply given by the
integration over its worldvolume, that is

Sp ≡ −T
∫
Wp

dV ol = −T
∫
dp+1σ

√
−detγαβ = −T

∫
dp+1σ

√
−det

(
ηµν

∂Xµ

∂σα
∂Xν

∂σβ

)
(1.2)

where γαβ = ηµν
∂Xµ

∂σα
∂Xν

∂σβ
denotes the induced metric on the worldvolume by the Minkowskian

structure ofM.
Not all Xµ(σa) correspond to degrees of freedom of the p−brane, because this description is ap-
parently redundant by contruction. Indeed, a manifold is de�ned up to di�eomorphisms and this
means, in particular, that its description must be invariant under reparametrizations (after all, σa

are merely unphysical labels introduced to have a practical description of the abstract Wp and to
perform computations). Local symmetries must be �xed, so it is understood that, in a worldvolume
description, the action Sp must go with constraints, whose physical meaning become immediately
transparent in the easy case of a 0−brane. Indeed, for a pointlike particle, the tension coincides
with its mass m, so the action (1.2) is nothing but the familiar integration of the proper time s over
the worldline W0:

S0 ≡ −m
∫
W0

ds = −m
∫
dτ

√
−ηµν

∂Xµ

∂τ

∂Xν

∂τ
. (1.3)

From the de�nition of the canonical momentum pµ associated to the position variable Xµ

pµ =
∂L

∂Ẋµ
= m

Ẋµ√
−(Ẋ)2

,

one can see that the dynamics of the action S0 has to be constrained by the on-shell condition

pµpµ +m2 = 0 . (1.4)

So, in the case of the 0−brane, reparametrization redundancy of the worldline has let us consider
the time position X0 of the particle as a dynamical variable on the same footing of the positions
Xi, without quitting the natural requirement that the particle cannot freely move into Minkowski
space: at the very least, it has to follow a timelike direction with (p0)2 ≥ m2.
Turning back to the case of a general p−brane, it is important to know that the action Sp is

2



classically equivalent4 to the action Ŝp de�ned by

Ŝp ≡−
T

2

∫
dp+1σ

√
−dethαβηµνhαβ∂αXµ∂βX

ν +
p− 1

2
T

∫
dp+1σ

√
−dethαβ , (1.5)

where hαβ is a new metric on the worldvolume, which a priori is not dependent on γαβ ; nevertheless,
the equations of motion for hαβ states that, classically, these two metrics are proportional.

The importance of the action Ŝp can be appreciated when one is interested in quantizing the
p−brane, a procedure which is very di�cult to perform with the action Sp because of the square
root appearing in (1.2). This is the reason why in string theory - which is a worldsheet formulation
of fundamental homogeneous strings - one de�nes Ŝp to be the action of the system; this action is
called Polyakov action and in the following will be denoted as SPoly, that is

SPoly ≡ Ŝ1 = −T
2

∫
d2σ
√
−dethαβηµνhαβ∂αXµ∂βX

ν . (1.6)

This action is invariant under local Weyl transformations of the metric hαβ which act on the latter
as

hαβ(σ0, σ1) 7→ e2f(σ0,σ1)hαβ(σ0, σ1), (1.7)

where f is a general real scalar function on the worldsheet. Geometrically speaking, this means
that string theory is not sensitive to a local change of scale which preserves the angles between all
lines; for example, the two worldsheet metrics shown in the Figure 2 are surprisingly viewed, by
the Polyakov string, as equivalent (at the quantum level, these two wordsheets will de�ne the same
physical state). It is not di�cult to imagine that a theory that enjoys such a gauge symmetry is

Figure 2

A Weyl transformation on the worldsheet.

extremely rare and has to go with very stringent requirements in its structure. In particular, the
kind of interactions that we can add to SPoly are strongly limited and familiar terms like∫

dσ0dσ1
√
−dethαβV (Xµ) , V polynomial potential (1.8)

are not allowed because they (explicitly) break the Weyl invariance of the theory; note that, in
particular, we cannot admit a cosmological constant µ on the worldsheet, because it corresponds
to introduce a term like (1.8) with a constant potential V (Xµ).
At the quantum level, Weyl invariance will become even a more stringent requirement, to such a
point that it will lead us to introduce the concept of the critical dimension: the quantum theory of a
string moving in Minkowski spacetimeM is consistent only if the latter has a particular dimension.
As we have already mentioned, in the worldvolume approach, to quantize a system one has to
sum over all possible trajectories (equivalently, over all possible histories) of the string: this is the
so-called �rst quantization of the string, where the basic object of the theory is the trajectory of
the string rather than a function(al) of strings.

4Actually, this is true only for p = 0, 1; for p > 1 the action (1.5) has not enough symmetry to �x all the entries of the
(unphysical) metric hαβ so in this case the worldvolume of the brane will contain inner unphysical degrees of freedom. So,
for p > 1 we have to use more sophisticated actions.

3



• According to the spacetime or �eld formalism, the dynamical variables are chosen to be some
�elds Ψ[Xµ], which are functions (better, functionals) of the spacetime coordinates of the p−brane
for every given p−dimensional shape of the latter. This is the well-known approach to classical
and quantum �eld theory, where both the time coordinate and the spatial coordinates of pointlike
particles are nothing but labels.
By analogy with QFT, we can forecast that the �eld description is particularly suitable when we
have to work with a huge number of p−branes or when the number of the fundametal objects is
not �xed.
When the canonical quantization scheme is performed within the �eld formalism, one obtains the so-
called second quantization of the p−brane. In the case of fundamental strings, the second quantized
theory is called �string �eld theory�, whose consistency has been proven in the last ten years. A
lot of work has still to be done in this subject, but string �eld theory has already obtained its �rst
important success, among which there is the explanation of tachyon condensation.

Sharing the description of the same extended object, these two formalisms are conceptually equivalent.
Instead, they di�er as computational tools, insofar as some calculations are simpler (if at all possible) in
one of them. Sometimes, it is impossible even to address a particular question in one formalism and we
are forced to select the other one. This happens, for example, when we are interested5 in going o�-shell.
If this is the case, it is di�cult to deal with the wordvolume approach, because � as we explained for the
pointlike particle case � the redundant structure of the theory requires us to work on-shell (something
that holds also within string theory, as we will see).

1.2 Why strings?

Among all other fundamental p−brane theories, the theory of fundamental 1-branes occupies a distin-
guished place. Roughly speaking:

• Strings are nicer than pointlike particles. Being extended objects, strings do not su�er from UV di-
vergences. In a QFT of pointlike particles, UV divergences arise because interactions are arbitrarily
localized at a point ofM (in the language of Feynman diagrams, UV divergences appear because
two vertices come together or, equivalently, because the momentum �owing into a loop becomes
in�nite). The point of interaction � de�ned as the locus in spacetime where the number and/or
the nature of the objects change � of two pointlike particles is geometrical, perfectly localized in
spacetime, independent of the Lorentz frame of observation. The geometrical nature of this point
is apparent in Figure 3, where it is clear that both observers (one boosted with respect to the
other one) always agree on which parts of the worldline (there, the Feynman diagram of a cubic
interaction) correspond to one or two particle states. Instead, the spatial extension of the strings
makes their interactions non-local in spacetime; for instance, the two observers of the previous
example, this time will recognize the point of interaction in two di�erent points of spacetime. In
other words, the interactions of strings appear �smeared out� and so, intuitively, there is hope for
getting a theory free of UV divergences.
The action (1.6) de�nes a local �eld theory on the worldsheet: there are no non-local objects at our
disposal that can be attached �around� the �smeared out� region of interaction to specify the nature
of the interaction on the worldsheet. This means that the interaction is determined by the �shape�
of the worldsheet, namely by its topology6. String interactions result from non-trivial topology of
the surface and, as such, they are �maximally smeared out�, because the topology of the worldsheet
appears as a global concept. As we will see, it will turn out that there is only one possible topology
for the worldsheet at a given loop level7 and this is in apparent contrast with the perturbation
theory of pointlike particles, where the number of possible Feynman diagrams grows at each loop
level.
To sum up, the extended nature of strings makes string theory more appealing than a theory of

5It is important to learn how to go o�-shell in a theory, because it is needed for the renormalization.
6We will be interested in compact oriented Riemann surfaces; in this case, it is legitimate to think of �topology� as the

number of handles of the surface.
7This is true only if we are considering closed oriented strings.
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Figure 3

Interactions between pointlike particles and strings. The red and green inertial observers
are the same in both cases. In the pointlike case (on the left), the interaction has a

geometrical nature. On the right, instead, the interaction is non-geometrical.

pointlike particles, both from conceptual (UV �nite behaviour) and practical (drastic reduction of
the possible kind of interactions) points of view.

• Strings are nicer than p−branes with p > 1. In fact, there appear to be both technical and concep-
tual obstacles when ones tries to quantize higher dimensional objects.
For p > 1 the worldvolume action is not Weyl invariant anymore and this makes it hard to quan-
tize. Indeed, one would like to use the action Ŝp, but it hasn't enough local symmetries to gauge
�x all the independent entries of the metric hαβ ; given that we cannot let the abstract worldvolume
(something unphysical) to host inner degrees of freedom, we have to search for a more complex
action and the quantization procedure will end up with getting complicated.
The conceptual issue lays on the deep fact that the quantization of a higher dimensional object leads
to a continuum spectrum, but we need a discrete one, otherwise we can not interpret its excitations
as single particle states.

1.3 Quantization and interactions with the worldsheet: Polyakov's formula-
tion

A fundamental 0−brane (a pointlike particle like theW− boson, the electron or the antineutrino ν̄e of the
Standard Model) is ontologically one and can not be divided; it can decay into other particles but these
can not be considered as components of the �rst one. For example, in the framework of the Standard
Model, it is completely nonsense to say that the electron and the antineutrino coming from the decay of a
W− boson used to be constituents of theW− . It doesn't make sense, because the interaction of pointlike
particles is totally localized in spacetime; this also implies that for each observer there is a glaring notion
of particle, which can be geometrically de�ned as the intersection point between the equal-time surface
of the observer and the worldline of the particle.
This is not the case for the blurred world of strings, because their interactions are not-localized. This is
the most striking physical di�erence between fundamental particles and fundamental strings. A string
can be cut into pieces, but these are nothing but pieces of the original string: they can carry di�erent
quantum numbers like the mass and the spin (and so they appear, in our laboratory, as di�erent particles)
but they cannot aquire new ontological attributes (their tension is the same as that of the original string),
otherwise the string would not be fundamental; at the same time, we can not say that the original string
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used to consist of these two pieces melded together, because it could have been separated at any of its
points.
The upshot is that only the full worldsheet8 Σ carries an ontological attribute and that interactions
among strings can be understood only by looking globally at it. We are then lead to two basilar ideas:

• the information about strings interactions is encoded in the topology of the worldsheet, as we have
already mentioned. In the following chapters, only the oriented closed string will be studied; its
worldsheet is an oriented Riemann surface (a complex manifold of real dimension 2) that, as we
will soon see, can be considered compact. The classi�cation of compact oriented surfaces is well-
known: their topology can be distinguished by specifying the Euler number Ξ, an integer number
that describes their topological structure, regardless of the way they are bent (it is a topological
invariant quantity). For oriented and compact 2−dimensional surfaces, Ξ is given by

Ξ = 2(1− g) (1.9)

where g is the genus of the surface, which simply counts the number of handles of Σ. For example,
a torus has one handle, so its Euler number is zero.

• the local dynamic of the string does not depend on whether there are interactions or not. In a
Lorentz-covariant theory like that one de�ned by SPoly, non-local interaction terms are not allowed
to explicitly appear in the action. So, the action of the free string must already contain, somehow,
interactions. This is in apparent contrast with the case of the pointlike particle, whose free action is

Figure 4

A representation of the decay of the weak boson.

di�erent from the interacting one. Let's consider the decay of the W− boson depicted in Figure 4:
the smooth worldline of the free propagating boson experiences a singular joining at the interaction
point, meaning that �something di�erent from the free propagation� happens there and the nature
of this �something di�erent� must be speci�ed, by adding - to the action of the free particle - the
action of the interaction. Analogously, in (Q)FT, one has to point out the Feynman rule for the
vertex of the corresponding diagram; for the pointlike particle, at every singularity of the worldline
one has to add a covariant object, such as a gamma matrix or the momentum of a particle. In
string theory, instead, worldsheets don't experience any singularities, a symptom of the fact that
string interactions don't need another action9 to be speci�ed.

Both of these features have to be taken into account to perform a meaningful quantization, because
they are direct consequences of the extended nature of the string.
A natural way to incorporate them in the quantized theory is achieved by resorting to the path integral.
Indeed, this is a method which is clearly suitable for describing interactions in string theory, because it
lets us get physical quantities by dealing directly with the worldsheet, which is the unique object which
has an ontological existence.
To be more precise, in this approach, amplitudes are given by summing over all histories (over all

8Given that strings are nicer than any other p−brane, we refer to its worldvolume Wp=1 with a particular symbol:
Σ ≡ Wp=1.

9Actually, this is true at the classical level and �almost� true at the quantum level (see later the introduction of SHE).
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Figure 5

From the left: non-interacting strings, interacting strings at tree level
and the one-loop interaction. The external states are the same for all the pictures.

worldsheets and over all �elds de�ned on them) interpolating between the initial and �nal states; in
the case of the string, the external states are identi�ed with the boundary curves of Σ, as illustrated in
Figure 5, where a free and an interacting worldsheet with the same external states are depicted. In the
path integral approach10, each history Σ is weighted by (~ = c = 1)

e−Scl[Σ] (1.10)

where Scl[Σ] is the classical action for the given worldsheet. So, at this point, we need to specify the most
general action Scl for the classical string. This task is largely simpli�ed by the strict structure imposed
by the gauge redundancies of the classical string, namely reparametrization and Weyl transformations,
which restrict the possible actions to be of the following form:

Scl = SPoly + λSHE = SPoly + λ
1

4π

∫
dσ0dσ1

√
hR, (1.11)

where λ is a real dimensionless parameter and SHE is the usual Hilbert-Einstein action for the metric
hαβ of the worldsheet.
In two dimensions, the Hilbert-Einstein action doesn't carry any dynamical information, essentially be-
cause the metric has three independent entries which locally can be �xed by gauging Weyl invariance and
reparametrization invariance of σ0 and σ1. Indeed, SHE turns out to be a topological term, because, in
the two dimensional case, Gauss-Bonet theorem states that

SHE = Ξ = 2(1− g) , (1.12)

where Ξ and g are the topological invariant quantities de�ned above: for a given worldsheet, SHE is a
constant integer.
At the classical level, we don't have to sum over all the possible worldsheets and only the (g = 0)−topology
(a sphere) contributes; thus, at the classical level, SHE - being a constant- can be forgotten and this is
the reason why the action of string theory is usually de�ned to be SPoly alone. At the quantum level, all
possible g−topologies have to be considered and SHE implies that the worldsheet with g holes must be
weighted by a factor of

e−λΞ = e−2λ(1−g) .

We get that perturbation theory in string theory is a sum of all the contributions coming from all possible
worldsheets Σg of genus g ordered by the string coupling constant

gs ≡ eλ . (1.13)

So, for gs << 1, we have a good perturbative expansion in which the sum over all histories reads as∑
Σg

∫
D[Xµ]D[hαβ ]exp(−Scl[Σg]) =

∑
g≥0

∫
D[Xµ]D[hαβ ]exp

(
− SPoly[Σg]− 2λ(1− g)

)
=

=
∑
g≥0

g2(g−1)
s

∫
D[Xµ]D[hαβ ]exp(−SPoly[Σg]) .

(1.14)

10We will always consider a path integral over the Euclidean version of the worldsheet, obtained by the lorentzian one
through a Wick rotation, because it leads to a better de�ned sum over the metrics of the worldsheet.
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This is an asymptotic expansion, just as in QFT.
We can also make contact with QFT by taking the pointlike limit of the string; every worldsheet becomes
a worldline and, pictorially, all the Riemann surfaces that appear in the perturbative expansion can be
interpreted as Feynman diagrams; in particular, this tells us that the number of handles of a Riemann
surface is the string analogue of the number of loops. Whereas in QFT the number of Feyman diagrams
grows factorially with the loop level, in string theory there is only one topological distinct Riemann
surface contributing. In this sense, perturbation theory with strings is considered to be �cheaper� than
that one of QFT.
It is not only a cheaper description, but it also seems more fundamental, because:

• the string coupling gs = eλ is not an independent parameter of string theory, because λ can be
determined by the dynamics of the string moving in a curved background. To be more precise,
λ turns out to be the spacetime expectation value of a massless �eld - the dilaton �eld - whose
quanta can be described as particular excitations of the string. String theory doesn't admit free
parameters (except for α′) and it doesn't leave room for adjusting any dimensionless constant that
enters the theory. This is a remarkable property of string theory which is not shared by any QFT,
whose coupling constants usually cannot be �xed by any inner mechanisms.

Figure 6

Intuitive decomposition of 2-point correlation function at one loop.

• all the possible topologies of the closed worldsheet can be decomposed into various copies of a
particular worldsheet (see Figure 6, for example). This particular worldsheet represents the basic
interaction of closed strings, a process in which a closed string splits into two, or - reversing time
direction- a process in which two closed strings join into one. We can now appreciate the unifying
language of string theory: in closed string theory, not only all particles (graviton, gauge bosons,
fermions,...) are obtained as various states of excitation of the string, but also all interactions
(gravity, gauge, Yukawa, ...) arise from the single process of Figure 7, which - in the pointlike
limit of the string - can be interpreted as a Feynmann diagram of a cubic interaction. Perturbation
theory in closed (bosonic) string theory can thus be interpreted as a perturbation theory of a
(scalar) two-dimensional quantum �eld theory with cubic interaction on the worldsheet11; the latter
is renormalizable, so we guess that string theory is a good candidate for describing a microscopic
(i.e. fundamental) theory of all interactions (gravity included).

1.4 Vertex operators and S-matrix

In order to get this cheap description, compactness of the worldsheet has revealed itself to be an essential
ingredient because it has allowed us to use the classi�cation theorem of the 2−dimensional surfaces
mentioned above.
In string theory, this compactness can be reached by exploiting the state-operator correspondence map,
that will be discussed in section 4.8. Roughly speaking, it consists of replacing the external state of a
string with a vertex operator, namely a local operator on the worldsheet which carries information about
all the quantum numbers of the replaced state. This correspondence can be schematically represented

11Please note that this is true only if the string is propagating on a �at target space. Indeed, if the target space
is characterized by a metric Gµν(X), then the action that generalizes the Polyakov one should be something like∫
d2σGµν(X)∂αXµ∂βX

νηαβ ; the metric Gµν can depend in a complicated way on Xµ and the worldsheet theory is
not cubic in general.
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Figure 7

The basic process of closed strings as a cubic interaction.

as done in Figure 8, where the cross stands for the point where the vertex operator is inserted. The
state-operator correspondence is a tool which naturally appears in string theory, thanks to the gauge
redundancy of the worldsheet description. Indeed, within the framework of a theory which is Weyl and
reparametrization invariant, this correspondence can be understood as a conformal transformation, where
the latter is nothing but a residual gauge transformation that the theory still admits after �xing the gauge
redundancies.
With the introduction of vertex operators, we are outlining another analogy between string theory

Figure 8

We replace the state A of the string with the vertex
operator V(A) on the worldsheet.

and QFT, because external states (that is, on-shell particles) are represented by operators acting on the
classical vacuum |0〉 of the theory. In light of this similarity, it appears natural to de�ne the scattering
amplitude Sj1,...,jn(p1, ..., pn) among n states (labeled by quantum numbers {ji} and spacetime momenta
{pi}, i ∈ {1, ...,m}) as the Polyakov path integral over the worldsheet with the insertions of the vertex
operators Vji(pi) corresponding to the external states, that is

Sj1,...,jn(p1, ..., pn) ≡
∑
g≥0

g2(g−1)
s

∫
D[Xµ]D[hαβ ]e−SPoly[Σg]

m∏
i=i

Vji(pi) . (1.15)

As in QFT, this formula de�nes12 the S−matrix element for m external states, once the latter are taken
to sit at the in�nity of the spacetimeM.

1.5 Quantum gravity and compacti�cations

As we have just mentioned, the Polyakov string admits, among its excitations, the graviton, namely the
hypothetical massless boson of spin 2 that should mediate the force of gravity. Thus, it is common sense
to say that string theory is a theory of �quantum gravity�, because it allows us to explain, in terms of

12The complete formula for the S-matrix will be derived in section 5.4.
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the same fundamental object, the nature of all elementary particles and of all interactions between them,
gravity included.
But, with a theory of quantum gravity, one would like to determine, dynamically, the geometry of the
spacetime, given that the latter is expected to be a classical object consisting of interrelated fundamental
quanta. Obviously, this cannot be achieved in the framework of string theory, because it is a �rst quantized
theory and in the worldvolume formalism such a question cannot even be addressed. In order to describe
the metric of spacetime as an emergent property coming from collaborating strings, one should be able to
do �statistical mechanics with strings�, which is one of the aims of string �eld theory (the second quantized
version of string theory). Instead, in string theory the (�nite) number of strings is �xed (according to
the scattering amplitude that we need to compute) and the geometry ofM is speci�ed a priori; in this
context, the string simply represents a �uctuation (namely: a graviton, an electon, etc.) propagating
with negligible backreaction on this background.
Actually, this is not completely true, because the gauge symmetries of string theory are very demanding;
they are so stringent that, to get a consistent dynamics of a single string in a curved13 background, the
latter must satisfy particular constraints: for example, a void spacetime can host a string only if it is
10−dimensional14 and Ricci-�at. There are a lot of backgrounds that satisfy these requirements. Among
them, we �nd solutions which admit the not-observed six dimensions to be curled up in very tiny compact
manifolds, in such a way that they are penetrable only at very high energy; moreover, these manifolds
have to be very special if we want for important properties of our ten dimensional theory to survive also
in the four dimensional bulk15.
It is a remarkable and signi�cant fact that string theory, albeit being �only� a �rst quantized description,
it is able to give - in the attempt of recovering the daily phenomenology of our 4−dimensional spacetime
- additional and highly non-trivial information about the structure of spacetime and, as such, it is not
only a respectable theory of quantum gravity, but it is a more than respectabe one. Demanding string
theory to uniquely and dynamically determine the background of spacetime is simply asking too much a
theory which has already yielded enough. From this point of view, string theory shoud not be wickedly
criticized; instead, as a scienti�c theory, we should understand to what extent we can trust it. So let's
have a closer look at it!

13The action Sσ of a string moving in a curved background Gµν(X) is obtained, as one would expect, by substituting
the �at metric ηµν appearing in SPoly with the curved one, as dictated by the minimal-coupling principle:

Sσ ≡ −
T

2

∫
d2σ

√
−dethαβGµν(X)hαβ∂αX

µ∂βX
ν . (1.16)

We speci�ed the subscript σ to denote this action only because Sσ de�nes a model that, for historical reasons, is called
non-linear sigma model.

14To be more precise, it has to be 10 dimesnional in the case of the superstring, 26 dimensional if we are considering the
bosonic string.

15We are talking about supersymmetry, a feature of the superstring.
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2 Bosonic String Theory

After discussing the fundamental ideas underlying string theory, in the following chapters we are going
to concisely present the structure of classical and quantum closed string theory. We will use the bosonic
version of string theory as a (non-realistic) toy model that allows us to get acquaintance with the standard
tools/techniques developed to study string theories.

The main references that we used for this chapter are [8] and [9].

2.1 The classical theory

The classical bosonic string theory is the theory on the 2−dimensional worldsheet Σg=0 de�ned by SPoly

SPoly[Xµ, hαβ ; Σ0] =− T

2

∫
Σ0

d2σ
√
−hhαβγαβ =

=− T

2

∫
Σ0

d2σ
√
−hhαβ∂αXµ∂βX

νηµν ,

(2.1)

where h stands for the determinant of the metric hαβ and the tension T is usually expressed as

T =
1

2πα′

α′ ≈ l2s
(2.2)

with ls the characteristic length of the string. We specify that ls is an invariant quantity of the theory
(any observer agrees on its value) that is expected to approximately coincide with the characteristic
length of quantum gravity16, namely the Planck length lp (ls ≈ lp ≈ 10−35m).
This action appears to be the appropriate setting for a fundamental string model of elementary particles,
since it involves only the intrinsic geometry of the string, with no reference to the extrinsic curvature
experienced by the string.
It describes relativistic (homogeneous fundamental) strings: the Poincaré invariance

Xµ 7→ ΛµνX
ν + cµ

hαβ 7→ hαβ

appears as a global symmetry on the worldsheet (the index µ is seen, from the worldsheet, as an inner
one) that gives the usual associated conserved Noether currents in the target space. The gauge structure
of SPoly consists of:

• Reparameterization invariance. If we rede�ne the worldsheet coordinates as σα 7→ σ̃α(σ), the
�elds Xµ transform as worldsheet scalars, whereas hαβ transform as a metric should do. At the
in�nitesimal level, this means

δXµ(σ) = −δσα∂αXµ(σ)

δhαβ(σ) = −∇αδσβ −∇βδσα , (2.3)

where δσα are de�ned by the linear term of the transformation (σ̃α ≈ σα + δσα).

16Actually, in this thesis we are interested in the case in which it is possible to get a well-de�ned perturbation expansion
in gs. It can be shown that gs � 1 implies that ls � lp. This means that the perturbative aspects of string theory are
better understood when it is possible to disentangle stringy physics from strong coupling e�ects of gravity and it maybe
means that quantum gravity phenomena could appear even before reaching lp. It is worth to mention that compacti�cations
could explain the reason why ls � lp, by means of the presence, in our spacetime, of the (relatively big) volume of the
compacti�ed extra-dimensions. See [8] for details.
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• Weyl invariance. As we have already seen in (1.7), Weyl transformations rescale the metric of the
worldsheet by a local factor that we like to express as e2f(σ) (f is a function on the worldsheet).
At the in�nitesimal level, this transformation reads as

δXµ(σ) = 0

δhαβ(σ) = 2f(σ)hαβ(σ) .
(2.4)

The local invariances allow for a convenient gauge choice for the worldsheet metric hαβ , called conformal
gauge. For any point, we can consider the two null-vectors that exist because the metric has Minkowskian
signature; their integral curves give the light-cone coordinates σ+ and σ− and with respect to them we
must have

ds2 = −Ω2(σ+, σ−)dσ+dσ− , (2.5)

for some real function Ω. Now we can use reparametrization invariance to de�ne the coordinates σ0 and
σ1 as

σ± ≡ σ0 ± σ1 . (2.6)

With respect to these new coordinates, the metric takes its conformal gauge form, namely

ds2 = Ω2(σ)(−d2σ0 + d2σ1) . (2.7)

At this point, one could also use Weyl invariance to bring Ω(σ) to 1 and we obtain that, locally, we can
always suppose17 hαβ = ηαβ , that is

ds2 = (−d2σ0 + d2σ1) . (2.8)

One should be aware of an essential fact: the choice of the �at metric for hαβ doesn't �x completely
the gauge redundancies. The residual gauge consists of conformal transformations of the coordinates,
particular di�eomorphisms that can be undone by a Weyl rescaling. From formula (2.5), we understand
that these peculiar transformations are given by the rede�nitions of new coordinates (f± real functions
of only one variable)

σ̃± ≡ f±(σ±) . (2.9)

Indeed, the only e�ect of (2.9) would have been changing the coordinates σ± 7→ σ̃± and changing Ω: up
to a Weyl transformation, we would have ended up again with the �at metric

ds2 = −dσ̃+dσ̃− = −d2σ̃0 + d2σ̃1 ,

where, as before, σ̃0, σ̃1 are de�ned by σ̃± = σ̃0± σ̃1. This means that when we work with the �at metric
(2.8), we have still the freedom to specify what me mean with the coordinates σ0 and σ1, the latter being
de�ned up to a conformal tranformation.
Anyway, with the choice of the �at metric (2.8) (or, more in general, with the conformal metric (2.7)),
the Polyakov action simpli�es tremendously and becomes the theory of D free scalar �elds:

SPoly[Xµ, ηαβ ; Σ0] = − 1

4πα′

∫
d2σ∂αXµ∂αXµ , (2.10)

whose equations of motion are nothing but the free wave ones for the worldsheet scalars Xµ, that is

�Xµ = 0 . (2.11)

At this point, two comments must follow.

1. As always, to obtain the equations of motion for a �eld one has to stationarize the action against
all the possible synchronic variations of that �eld. When one does it with the action (2.10), it has
to be kept in mind that we are considering only closed strings, so all the total derivatives with
respect to σ1 vanish upon integration on Σ0; indeed, Σ0 has the topology of a cylinder and there
are no possible contributions from the spatial boundary term of Σ, because all the �elds respect
the periodicity of σ1 (to be clear, let's de�ne the latter by σ1 ≈ σ1 + 2π). We like to stress this
elementary point, because it is precisely at this level that we are introducing in our model the
information regarding the topology of the string.

17Please note that this argument can be used for showing that gravity is not dynamical in two dimensions, given that, in
two dimensions, SHE and SPoly enjoy the same symmetries. Now it should be clear the reason why SHE contributes as a
topological term when it is added to SPoly in the framework of perturbative string theory.
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2. The equations of motions (2.11) are not enough to specify the dynamics of the Polyakov string.
Indeed, by looking at the original action SPoly[Xµ, hαβ ; Σ0] (see (2.1)) it is apparent that we have
to take into account also the equations of motion for hαβ , that are given by

0 =
δSPoly
δhαβ

[Xµ, hαβ ; Σ0] ∝ Tαβ .

The metric of the worldsheet appears only algebraically in (2.1) (consistently with the fact that it
doesn't carry any dynamical degrees of freedom), so the equations of motion of hαβ are constraints
that have to be imposed on the solutions of the free wave equation (2.11). In the �at gauge, the
stress-energy tensor is

Tαβ = ∂αX · ∂βX −
1

2
ηαβη

ρσ∂ρX · ∂σX , (2.12)

and the constraints read as

T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0

T01 = Ẋ ·X ′ = 0 ,
(2.13)

where we have introduced the standard notation for Ẋ ≡ ∂σ0Xµ and X ′ ≡ ∂σ1Xµ.
The physical meaning of these constraints becomes transparent if we exploit the residual gauge that
has survived after imposing hαβ = ηαβ to relate σ0 to the time coordinate X0 in the Lorentz frame
of our laboratory18, namely

σ0 ≡ X0

R
, (2.14)

where R is a constant that is needed on dimensional grounds (it has the dimension of a length19).
This choice of parameterization of σ0 is called the static gauge because the hypersurface of the
worldsheet de�ned by σ0 = τ ∈ R becomes, once embedded into the target-space, the closed string
that we see in our laboratory at ��xed� time X0 = Rτ . In the static gauge, the equation of motion
(2.11) naturally becomes

�Xi = 0, (2.15)

and the constraints (2.13) can be nicely written in vector notation as

( ~̇X)2 + ( ~X ′)2 = R2

~̇X · ~X ′ = 0 .
(2.16)

So, in our laboratory, we see the string oscillating according to the well-known wave equation...but
with a peculiarity: the physical oscillations must be perpendicular to the string itself, namely they
must be transverse, otherwise the last constraint would be violated.

To �nd the solution to (2.11), it is convenient to rewrite it in terms of the lightcone coordinates σ±

of the worldsheets:
∂+∂−X

µ(σ+, σ−) = 0 . (2.17)

The most general smooth solution to the wave equations (2.11) is locally20

Xµ(σ0, σ1) = Xµ
L(σ+) +Xµ

R(σ−) , (2.18)

18Later we will explain the reason why this is possible. Anyway, we are not entering the details of the static gauge,
because - for us - it is only a nice way to get an idea about the physical meaning of the constraints. We will never use the
static gauge again.

19In our conventions, the scalar �elds Xµ have the dimension of a length (they are the spacetime positions of the string
in our spacetime), whereas σα and hαβ are dimensionless (they respectively are unphysical labels and an auxiliary metric
�eld on the worldsheet).

20A very important detail. As we've already known from classical mechanics, the solution (2.18) is the right one only if
Xµ(σ0, σ1) is de�ned on a simply connected region. If the worldsheet has a non-trivial topology, the decomposition into
right/left movers has to be performed in each local patch. If we choose the conformal gauge in each patch, the transition
functions that let us go from a patch to the other one are conformal transformations. If Xµ

L/R
were tensors under these

transformations, the decomposition of Xµ into right/left movers would be globally de�ned. It will turn out that this is the
case and the notion of right/left movers for Xµ is, thus, global. Note that if Xµ

L/R
are globally de�ned then also Xµ is and

this is consistent with the fact that Xµ is an embedding of all the worldsheet.
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where Xµ
L,R are arbitrary functions on the worldsheet that depend only on one of the lightcone variable

σ±; we use the subscripts L,R because we will call them - for intuitive reasons - left/right movers.
By requiring Xµ(σ0, σ1) to respect the periodicity of σ1 ≈ σ1 + 2π, we can express the most general
solution in terms of the Fourier modes and we end up with

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
α̃µne

−inσ+

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
αµne

−inσ− ,

(2.19)

where we have introduced:

• the real constants xµ and pµ; to see that they can be interpreted as the initial positon and the
momentum of the center of mass of the string, it is enough to get rid of the Fourier modes of the
string (that can be thought of as mechanical oscillations of the string that determine how it appears
in spacetime) by integrating over the periodicity of σ1, that is

1

2π

∫ 2π

0

dσ1Xµ(σ0, σ1) = xµ + α′pµσ0 (2.20)

and to notice that pµ is precisely the Noether charge associate to the spacetime translation symmetry
of SPoly.

• the complex constants α̃µn and αµn; they are the coe�cients of the Fourier modes of the right and
left movers that, because of the reality of Xµ, have to satisfy:

α̃µn = (α̃µ−n)∗

αµn = (αµ−n)∗ .
(2.21)

According to the conformal structure of the Polyakov string, the �elds ∂±X
µ = ∂±X

µ
LR are21, in a

certain sense, more important than the �elds Xµ themselves; so, it is convenient to interpret the
momentum of the centre of mass as the coe�cient of the zero Fourier mode and to de�ne

α̃µ0 ≡
√
α′

2
pµ

αµ0 ≡
√
α′

2
pµ ,

(2.22)

so as to obtain compact formulae for ∂±X
µ, which are

∂±X
µ =

√
α′

2

∑
n∈Z

αµne
−inσ± . (2.23)

As we explained with one of the comments above, to get the Polyakov dynamics we have to impose, on
the solution (2.19), the constraints (2.13) which, in terms of the σ± coordinates, are simply

(∂−X)2 = (∂+X)2 = 0 . (2.24)

These can be easily rewritten as

0 = (∂−X)2 =α′
∑
n∈Z

Lne
−inσ−

0 = (∂+X)2 =α′
∑
n∈Z

Lne
−inσ+

,
(2.25)

21With obvious notation, we de�ne ∂± as the partial derivatives with respect to σ±.

14



where we have introduced the Fourier modes of the constraints Ln and L̃n

Ln ≡
1

2

∑
m

αn−m · αm

L̃n ≡
1

2

∑
m

α̃n−m · α̃m .

(2.26)

What we have just found is a very important lesson: any classical solution of the Polyakov string must
obey an in�nite number of constraints, namely

L̃n = Ln = 0 ∀ n ∈ Z, (2.27)

which implies that αn and αm are somehow able to talk to each other, something that is not at all true at
the level of the solution (2.19) (the same is valid for α̃n and α̃m). They are able to talk to each other in
a �Polyakov way�, because they organize themselves in order to make the worldsheet energy-stress tensor
vanish, which means, in particular, that the physical oscillations of the string are transverse.
By looking at formulae (2.26), one could expect something particular arising from L0 and L̃0 because,
in this case, formulae (2.26) appear to be �symmetric�; indeed, L0 are L̃0 are very special, because they
include the square of the spacetime momentum pµ of the centre of mass, which is interpreted, in the
Minkowskian target spacetime, essentially as the square mass of a particle:

pµpµ = −M2. (2.28)

More explicitly, we have:

0 = L0 =
1

2

∑
m∈Z

α−m · αm =
1

2

(
α′

2
pµpµ +

∑
m∈Z\{0}

α−m · αm
)

=

=
1

2

(
− α′

2
M2 + 2

∑
m>0

α−m · αm
)

,

0 = L̃0 =
1

2

∑
m∈Z

α̃−m · α̃m =
1

2

(
α′

2
pµpµ +

∑
m∈Z\{0}

α̃−m · α̃m
)

=

=
1

2

(
− α′

2
M2 + 2

∑
m>0

α̃−m · α̃m
)

,

(2.29)

from which we can deduce that the e�ective mass of the string22 can be expressed in terms of the excited
oscillator modes as

M2 =
4

α′

∑
n>0

αn · α−n =
4

α′

∑
n>0

α̃n · α̃−n . (2.30)

This formula de�nes the spectrum of the Polyakov theory and it forecasts for the masses of the string to
be either zero or, otherwise, of the order of

M ≈
√
T ≈ 1

ls
. (2.31)

Usually, one (sometimes naively) takes ls to be approximately the Planck length. The Planck mass is
incredibly high above the rest masses of all the elementary particles that we know, so it is believed that
the latter should be massless excitations of the string that acquire their masses by means of a lower-energy
mechanism (Higgs) of quantum �eld theory. This is the reason why we will focus on the massless spectrum
of the Polyakov string. Obviously, it doesn't mean that the massive string spectrum is not important; it
is essential to remove the UV divergences from loop integrals and its existence is thus necessary for the

22Here we are deliberately talking about masses but the reader should be aware that this is a sloppy language, borrowed
from �eld theory. At the classical level, strictly speaking, M is a frequency which can be translated into a mass only at the
quantum level, by means of a multplication with ~.
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consistency of the theory: in string theory, every bit of its rigid structure is needed.
Formula (2.30) states that, at the classical level, the string mass M is a real23 continuous quantity. At
the quantum level, αµn and α̃µn will become operators which are able to create/dissolve a quantum of
excitation of the nth harmonic and, thus, the mass spectrum (2.30) will be discrete, letting us interpret
the quantum string state as a single particle state. Another important feature of the quantum theory is
that the formula (2.30) will get a quantum correction given by a constant shift and, thus, at the quantum
level there is the possibility to obtain particles with imaginary mass, called tachyons, which prevents the
theory from having a time-dependent stable solution. As we will see, these instabilities will be cured by
the superstring, by introducing fermions on the worldsheet. But, as �rst step, we have to understand the
reason why the spectrum receives these quantum corrections.

2.2 The quantum theory

Here we are going to sketch the basics about the quantization of the Polyakov string with the canonical
formalism, only to explain the new features that enter the theory at the quantum level and to get an idea
about the massless spectrum of the bosonic closed string, so as to persuade the reader that string theory
does include gravity.

The most natural (and old) approach with canonical quantization is the covariant quantization, which
is reminiscent of QED's Gupta-Bleuler procedure: in a manifestly Lorentz invariant fashion, we promote
all the �elds Xµ to operators and then we impose the constraints (2.13) on the states of the Fock space.
Tracing the Gubta-Bleuler steps, we promote Xµ's and their conjugate momenta Πµ ≡ 1/(2πα′)Ẋµ to
operator-valued �elds obeying the canonical equal-time commutation relations

[Xµ(σ0, σ1) ,Πν(σ0′, σ1′)] = iδ(σ1 − σ1′)δµν

[Πµ(σ0, σ1) ,Πν(σ0′, σ1′)] = 0

[Xµ(σ0, σ1) , Xν(σ0′, σ1′)] = 0 .

(2.32)

By standard computations we obtain the induced commutation relations for the Fourier modes among
which the non-zero ones are

[x̂µ , p̂ν ] =iδµν

[αµn , α
ν
m] = [α̃µn , α̃

ν
m] =nηµνδn+m,0 ;

(2.33)

We introduced the hat-label above xµ and pµ, to stress the fact that they are operators. We then see
that:

• the initial position x̂µ and the momentum p̂µ of the centre of mass of the string satisfy the Heisenberg
uncertainty principle of a pointlike particle when σ0 = 0 (p̂µ is a conserved quantity and x̂µ doesn't
evolve in time: we are in the Schrödinger picture). This means that:

1. we can interpret the �rst-quantized bosonic string as a �rst-quantized pointlike particle �sur-
rounded� by the oscillations of the string;

2. the quantum state of the center of mass is encoded in a wavefunction with support in the
target-space, which can be decomposed in terms of the eigenfunctions |pµ〉 of the operator p̂µ:

p̂µ |pµ〉 = pµ |pµ〉 .

• up to the rede�nition of the Fourier modes

aµn ≡
αµn√
n
∀ n > 0

(aµn)† ≡
αµ−n√
n
∀ n > 0 ,

(2.34)

23This is true, thanks to the relations (2.21), only for the excitations in the spatial directions. The excitations in the time
direction have imaginary mass and, of course, this is not acceptable. At the quantum level, things are even worse, because
the quantum state corresponding to this kind of excitations will become states with negative norm and the unitarity of the
theory is at risk. As we will see, we can get rid of these excitation by �xing the gauge.
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we can restore the familiar algebra for the harmonic oscillators, namely

[aµn , (aνm)†] = δmnη
µν . (2.35)

We discover that for each nth harmonic (obviously, to talk about harmonic, it must be n > 0)
of the right sector we have a creation ((aµn)† ∝ αµ−n) and an annihilation (aµn ∝ αµn) operator;
these operators carry a spacetime vector index which points out the target space direction in which
the quanta of that harmonic are created/annihilated; so we have an in�nite tower24 of harmonic
oscillators for each spacetime directions. Actually, we are dealing with two of these towers, because
the same considerations are valid also for the left sector.

Thanks to the commutations relations (2.33), we can build the Fock space of the quantum string. The
vacuum state |0〉 is de�ned by

αµn |0〉 = α̃µn |0〉 = 0 ∀ n > 0 ,

and a generic state is obtained by acting with any number of creation operators on the vacuum (an
example: (α̃ν−1)3αµ−3 |0〉). Being a �rst-quantized theory, the vacuum |0〉 is the vacuum of a single string
and as such, it must carry information about the center of mass of the string; so, to obtain the complete
vacuum of the theory, we have to tensor |0〉 with a wavefunction describing the quantum state of the
center of mass. Given that the latter can always be decomposed in terms of the eigenfunctions |pµ〉, the
simplest choice is to work in momentum representation and de�ne the vacuum |0; pµ〉 of the single string
as

|0; pµ〉 ≡ |0〉 ⊗ |pµ〉 . (2.36)

From the commutation relations (2.33), we can eventually understand the reason why the quantum mass
spectrum is shifted with respect to the classical one. Indeed, the classical constraints Ln = L̃n = 0 have
to be imposed as operator equations on the Hilbert space of the physical states |phys〉, namely we have
to require the vanishing of all of their matrix elements

〈phys'|Ln |phys〉 = 〈phys'|Ln |phys〉 = 0 ,

which are conditions that can be achieved by requiring (L†n = L−n)

Ln |phys〉 = L̃n |phys〉 = 0 ∀ n > 0 . (2.37)

These are well-de�ned equations because, by looking at (2.26) and (2.33), we note that, for n 6= 0,
Ln (L̃n) is a composite operator of commuting α's (α̃'s). But, when n = 0, there is an order ambiguity
a�ecting L0 (L̃0), because this is a composite operator built in terms of the non-commuting modes
αµ−nα

µ
n (α̃µ−nα̃

µ
n). This ambiguity must be taken into account, because di�erent prescriptions will lead to

a di�erent mass spectrum (di�erent L0, L̃0), namely di�erent quantum theories. We require the quantum
operators L0 and L̃0 to be normal ordered in the sense of QFT, with the annihilation operators αin>0

moved to the right, that is

L0 ≡
∞∑
m=1

α−m · αm +
1

2
α2

0 L̃0 ≡
∞∑
m=1

α̃−m · α̃m +
1

2
α̃2

0 , (2.38)

and we take into account other possible prescriptions by introducing the real constants ã and a into the
constraints

(L0 + a) |phys〉 = (L̃0 + ã) |phys〉 = 0 . (2.39)

These constants will shift the mass spectrum of the string, which is now given by

M2 =
4

α′

(
a+

∞∑
m=1

α−m · αm
)

=
4

α′

(
ã+

∞∑
m=1

α̃−m · α̃m
)

. (2.40)

24The harmonic de�nes a frequency, so an energy. We like to think about the nth harmonic �above� the mth one if n > m,
because this means that (aµn)† will create states more massive than those created with (aµm)† .
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As we will see later, L0 − L̃0 can be thought of as the generator ∂σ of the rotation of the closed string.
Any point of the closed string is indistinguishable from another one, so we must require every state of
the string to satisfy

(L0 − L̃0) |phys〉 = 0 .

But, according to

• formula (2.38), the condition (L0 − L̃0) |phys〉 = 0 means that the number N ≡
∑∞
m=1 α−m · αm

of right-moving modes must be equal to the number Ñ =
∑∞
m=1 α̃−m · α̃m of the left-moving ones;

the condition (N − Ñ) |phys〉 = 0 is called level matching condition;

• formula (2.39), the condition (L0 − L̃0) |phys〉 = 0 means that a = ã.

In particular, the quantum theory will require a = ã = −1, which implies an imaginary mass for the
vacuum |0; pµ〉. In the covariant quantisation, these values for a and ã are determined by requiring the
unitarity of the theory. To be more precise, one can show that the ghosts (quantum states of negative
norm arising from the quantization of oscillations in the time direction) decouple from any S-matrix only
if a = ã = −1 and if the dimension D of the target-space is 26; this result is called no-ghost-theorem: if
a = ã = −1, D = 26, then every physical state is of the form

|phys〉 = |physT 〉+ |s〉 ,

such that 〈physT |physT 〉 > 0 and |s〉 decouples from all physical process; in words, the state |phys〉
decomposes into the physical transverse state |physT 〉 plus a pure gauge state |s〉. The proof of this
theorem is not straightforward, because it involves an analysis of the unitarity not only at the tree-level,
but also at the one-loop level; we refer the reader to [10] for further details.

Instead, we are going to �nd the values for a, ã and D in the light-cone quantization, which is the
analogue of the Coulomb �xing procedure of QED. The constraints (2.13) are implemented classically,
before the quantisation, which is now performed only on the space of physically distinct classical solutions.
So, by construction, at the quantum level we will not have any ghosts and we don't have to worry about
unitarity. Instead, the critical values for a, ã and D will be uniquely determined by requiring that Lorentz
invariance will still hold at the quantum level, a requirement that is not trivial, given that, in order to
explicitly solve the constraints, some particular directions in spacetime have to be singled out.
We have already mentioned that, after �xing hαβ to be �at, we still have the freedom of specifying which
coordinates we really mean with the lightcone coordinates σ± of the worldsheet (see (2.9)), because they
are de�ned up to a conformal transformation, namely:

σ̃0 =
1

2

(
σ̃+(σ+) + σ̃−(σ−)

)
σ̃1 =

1

2

(
σ̃+(σ+)− σ̃−(σ−)

)
.

(2.41)

We note that σ̃0 satis�es the free wave equation ∂−∂+σ̃
0 = 0, which is the same equation governing the

dynamics of Xµ(σ0, σ1) (see (2.17)). We can therefore use the residual symmetry to identify σ̃0 with one
of the25 Xµ. For example, we can choose σ̃0 ∝ X0 and this would lead to the static gauge, which we saw
to be very useful to get an idea about the physical meaning of the constraints; but, to explicitly solve the
latter, it is more conveninet to require (look at Figure 9)

σ̃0 ∝ X+ ∝ (X0 +X(D−1)) .

So let's introduce, in the target-space, the light-cone coordinates

X± ≡ 1

2
(X0 ±X(D−1)) and Xi i ∈ 1, ..., D − 2 , (2.42)

25We have presented this �quick and dirty� argument only to give an immediate idea about the lightcone scheme. The
reader should be aware that, in general, imposing the equation of motion before quantisation can hide subtle problems. For
a better understanding of this point, we refer to [11], where light-cone quantisation is introduced without relying on the
equation of motion and just by exploiting local Weyl and reparametrisation invariance.
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Figure 9

An intuitive sketch for the static (on the left) and lightcone (on the right) gauge.

and let's de�ne the so-called lightcone gauge:

σ̃0 =
1

α′p+
(X+(σ0, σ1)− x+) , (2.43)

where x+ is a (real) constant of integration. In this way we have completely speci�ed what we really
mean with σ̃±, because (2.43) implies

X+
L =

1

2
x+ +

1

2
α′p+σ̃+ , X+

R =
1

2
x+ +

1

2
α′p+σ̃− . (2.44)

Given that we have �xed the residual gauge, from now on we will forget about the �tilde� above the
coordinates σ̃±, by relabing them as σ±. We note that the lightcone gauge is valid as long as p+ 6= 0,
namely as long as the string is not in a massless excitation travelling in the XD−1 direction (0 = p+ =
−p− = (1/

√
2)(p0 − pD−1)). This is nothing strange, because we are de�ning σ0 by specifying the

timelike curves of σ0 = τ ∈ R as the intersection of the embedded worldsheet with the null hypersurface
X+ = α′p+τ + x+ in the spacetime (see Figure 9) and, clearly, this cannot always be done.
The advantage of working with the lightcone gauge is that

∂+X
+ = ∂−X

+ =
1

2
α′p+ ,

which is a condition that allows us to readily solve the constraints (∂+X)2 = (∂−X)2 = 0. Indeed, the
latter can be written, in the lightcone coordinates, as

2∂+X
−∂+X

+ =

D−2∑
i=1

∂+X
i∂+X

i

2∂−X
−∂−X

+ =

D−2∑
i=1

∂−X
i∂−X

i ,

(2.45)

and so we immediately get that X− = X−R + X−L can be de�ned, up to integration constants, uniquely
in terms of the other �elds Xi, by solving:

∂+X
−
L = ∂+X

− =
1

2α′p+

D−2∑
i=1

∂+X
i∂+X

i

∂−X
−
R = ∂−X

− =
1

2α′p+

D−2∑
i=1

∂−X
i∂−X

i .

(2.46)
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This means that the Fourier modes p−, α̃−n and α̃−n of the usual decomposition of X−

X−L (σ+) =
1

2
x− +

1

2
α′p−σ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
α̃−n e

−inσ+

X−L (σ−) =
1

2
x− +

1

2
α′p−σ− + i

√
α′

2

∑
n∈Z\{0}

1

n
α̃−n e

−inσ−
(2.47)

are functions of the Fourier modes of Xi (x− is the undetermined integration constant). For example,
one can express α−0 and α̃−0 in terms of the other oscillations and, by using α−0 = α̃−0 =

√
α′/2p− one

reaches the following two expressions

α′p−

2
=

1

2p+

D−2∑
i=1

(
1

2
α′pipi +

∑
n∈Z\{0}

αinα
i
−n

)
α′p−

2
=

1

2p+

D−2∑
i=1

(
1

2
α′pipi +

∑
n∈Z\{0}

α̃inα̃
i
−n

)
,

(2.48)

which can be used to �nd the e�ective mass only in terms of the physical oscillations:

M2 = −pµpµ =2p+p− −
D−2∑
i=1

pipi =

=
4

α′

D−2∑
i=1

∑
n>0

αi−nα
i
n =

4

α′
NT

=
4

α′

D−2∑
i=1

∑
n>0

α̃i−nα̃
i
n =

4

α′
ÑT ,

(2.49)

where we have introduced the quantities NT and ÑT that, in the quantised theory, will become the
number operators for the transverse harmonic oscillators. In analogy to electromagnetism, it's custom
to call the physical modes transverse oscillators26; here they are αin and α̃in for i ∈ {1, ..., D − 2} and
n ∈ Z\{0} and they determine the 2(D− 2) internal27 degrees of freedom. To be more precise: on-shell,
the string can propagate (at maximum) 2(D − 2) degrees of freedom. In fact, the equation of motion
states that the string is described by the 2D functions Xµ

L and Xµ
R, but: 2 of them (X+

L and X+
R ) are

killed by �xing the residual gauge (2.44) and other two of them (X−L and X−R ) are �xed by the constraints
(4.3). Actually, 2(D − 2) are only those on-shell degrees of freedom coming from the oscillations of the
string, we need to add those coming from the dynamics of the centre of mass. The dynamics of the
centre of mass is described in terms of xi, pi, p+, x−, p− and x+, but: x+ can be absorbed in (2.43) by
shifting σ0 and p− (which is the canonical momentum associate to x+) is constrained by (2.48). In other
words, the centre of mass of the string cannot freely move in all the D directions of the target-space (as
in the case of the pointlike particle, the on-shell condition states that it cannot freely travel in the time
direction).
In order to quantize the string in the lightcone gauge, we have to impose the commutation relations as
in (2.33), but this time only on the physical degrees of freedom αin, α̃

i
n, x

i, pi, p+, x−. Of course, the
vacuum state is now de�ned by

p̂µ |0; pµ〉 = pµ |0; pµ〉 αin |0; pµ〉 = α̃in |0; pµ〉 = 0 ∀ n > 0 ,

26Technically, they are not number operators, because of the
√
n that appears in (2.34). For this reason, NT and ÑT are

called level operators.
27We like to stress that this is true - with a little abuse of language - both at the classical and at the quantum level. We

know from classical mechanics that a stationary oscillation of a rope is locally described by inner forces that, on average,
cancel which each others: stationary waves of a rope give information about these inner forces. At the quantum level, the
oscillations αin and α̃in will give information about the inner quantum degrees of freedom, namely the spin (and the mass).
From this point of view, the mass and the spin of the single string can not change because of the background in which the
string is moving, because external forces a�ect only the motion of the centre of mass, without interfering with the inner
mechanics of the string.
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and the Hilbert space built on this vacuum with the creation operators of the physical modes αi−n and α̃
i
−n

is, by construction, positive de�nite. As in the covariant approach, we have to impose the non-trivial
constraints descending from the equation of motion of hαβ (which now read as in (2.48)) as operator
equations on the physical states. When imposing them, we have to introduce constants a and ã (a = ã,
as before) in order to take into account the possibility of di�erent prescriptions for solving the order
ambiguity appearing on the right side of (2.48); so, again, the formula for the square mass will di�er from
the classical one ((2.49)) only by the quantum shift of and we get

M2 =
4

α′
(NT + a) =

4

α′
(ÑT + ã) . (2.50)

Later, with the path integral quantisation, we will be able to derive the value of a = −1 in a rigorous
way, but here we are going to determine it by means of a heuristic approach: �rst, we �show� that a must
be equal to a = (2−D)/24 and, then, we guess the dimension of the target-space must be D = 26.
Let's suppose that the string sits in its quantum vacuum |0; pµ〉 for a well speci�ed momentum pµ. The
centre of mass of the string behaves like a �rst-quantized pointlike particle (see commutation relations
(2.33)) so, if it is required to have a sharp momentum pµ, then it must have an in�nite undeterminacy in
its location. But, delocalizing the centre of mass means also delocalizing the �uctuations that naturally
characterize the vacuum of the string, because it is not possible to change the centre of mass of the
string without moving the string itself. So, we expect that, in this limit, there should be an analogy
between the vacuum of the string (usually thought of as quantum noise on the string) and the vacuum
of QFT (a quantum background noise in the whole spacetime). If we were in the framework of QFT, to
quantize a formula a�ected by ordering ambiguity, we would simply use the normal ordering (annihilation
operators â on the right and creation operators â+ on the left), but let's have a closer look at it. For
example, let's consider the energy E of a scalar in a 4−dimensional spacetime; classically, we would have

(wk =
√
m2 + ~k2)

E =

∫
d3kwk(a+(k)a(k)) .

We have to impose the commutation rule [â(k), â+(p)] = δ3(~k−~p); �rst of all we symmetrize the expression
in the variables, namely

E =
1

2

∫
d3kwk(a+(k)a(k) + a(k)a+(k)) ,

and, then, we turn a(k) and a+(k) into operators, that is

E =

∫
d3kwkâ

+(k)â(k) +
1

2

∫
d3kwk[â(k), â+(k)] =

=

∫
d3kwkâ

+(k)â(k) + δ3(~0)
1

2

∫
d3kwk.

(2.51)

The last term contributes as a constant and, given that only di�erences of energies matter, we can neglect
it and we end up with the well-known normal ordered energy; we stress the fact that we can neglect this
constant term regardless of its �nite or in�nite value (actually it diverges, because wk ∼∞ |~k|), as long as
gravity is not in the game (as in QFT). In string theory, instead, gravity is present and it is not possible
to arbitrarily shift the energy anymore: energy is coupled to the metric and the equations of motion of
the latter are, in general, non-linear. Let's see what happens if we try to quantize formula (2.50) by
following the same steps that we have done for the energy of the scalar �eld.
We start from the expression in (2.50), namely

M2 =
4

α′

D−2∑
i=1

∑
n=1

αi−nα
i
n ,

and, as �rst thing, we have to symmetrize in αi−n and in αin:

M2 =
4

α′

D−2∑
i=1

∑
n=1

1

2
(αi−nα

i
n + αinα

i
−n) .
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Then, we turn αi−n and αin into operators satisfying the proper commutation relations (as we saw in
(2.33), this is [α̂in, α̂

i
−n] = n) and we obtain

M2 =
4

α′

D−2∑
i=1

∑
n=1

(
α̂i−nα̂

i
n +

n

2

)
=

4

α′

(
NT +

D − 2

2

∑
n=1

n

)
. (2.52)

We are tempted to throw away the constant shift given by the contribution
∑
n>0 n, but gravity asks us

to take it into account. We guess that the mass of the vacuum of the string cannot be in�nite, so we
have to isolate the �nite contribution that is naturally hiding inside

∑
n>0 n. As always, if we want to

isolate a �nite term inside an in�nite-valued one, we have to come up with a regularization, that here we
introduce by means of the parameter ε:

∞∑
n=1

n =

∞∑
n=1

lim
ε→0+

ne−εn = −
∞∑
n=1

lim
ε→0+

∂εe
−εn ∗= − lim

ε→0+
∂ε

∞∑
n=1

e−εn =

=− lim
ε→0+

∂ε(1− e−ε)−1 = lim
ε→0+

[
1

ε2
− 1

12
+O(ε)

]
.

(2.53)

We stress that, so far, we haven't performed any dirty tricks, because the steps that we have just done
are all mathematically rigorous 28. This, in particular, means that −1/12 is the �nite contribution that
canonically29 can be associated to

∑
n>0 n. Now we can get rid, by hand30, of the unphysical divergent

part ∼ ε−2 and we can decide to keep only the �nite contribution of (2.53), because the vacuum of a
single string cannot have an in�nite mass. Thus, we are allowed to use

∞∑
n=1

n = − 1

12
.

If we plug this result back into equation (2.52), we �nd that the possible mass of the quantum string can
be written as

M2 =
4

α′

(
NT −

D − 2

24

)
, (2.54)

from which we can read (by comparison with (2.50)) that

a = −D − 2

24
.

28The careful reader could be worried by the fact that we let the limit-operation and the partial derivative commute with
the series (see step labeled by ∗ in (2.53)).
But it is not di�cult to show that we can actually write (here f(ε, n) ≡ −∂εe−εn = ne−εn)

∞∑
n=1

lim
ε→0+

f(ε, n) = lim
ε→0+

∞∑
n=1

f(ε, n)

thanks to the Beppo-Levi theorem.
Moreover, we can also commute ∂ε and

∑∞
n=1 because (q ≡ e−εn)

∞∑
n=1

∂εe
−εn =

∂q

∂ε

∞∑
n=1

∂qq
n =

∂q

∂ε
∂q

∞∑
n=1

qn = ∂ε

∞∑
n=1

e−εn ,

where we have used the well-known fact that we can bring the di�erentiation ∂q outside the series if the latter is uniformly
convergent; indeed, the geometric series

∑∞
n=1 q

n uniformly converges in the open interval −1 < q < 1 and in our case we
have 0 < q < 1 because the limε→0+ is obviously on the left of ∂ε, meaning that we can assume ε > 0 on the right of ∂ε.

29Canonically from the point of view of a mathematician. A physicist would guess that we still have the freedom to
regularize the theory in several ways, because we could get rid of only a part of the in�nite value of 1/ε2, by leaving in the
game a �nite contribution di�erent from −1/12; but it is very nice to see that this cannot be done because of conformal
invariance: look at [12], pag. 46.

30We mention that - with the path integral approach to quantization - we could also get rid of it in a more rigorous way,
see [12]. In general, Weyl invariance is broken upon quantization and we must then include Weyl-noninvariant counterterms
as well. For example, to the classical action SPoly + λSHE we can add a term like µ2

∫
d2σ
√
−h, where µ plays the role

of the cosmological constant of the worldsheet. This counterterm in the bare action then cancels o� the divergence ∼ 1/ε2

arising in the quantum computation of the vacuum energy.
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With formula (2.54), we can now shortly analyse the spectrum of a single free string. We remember
that the states of the closed string have to respect - as we have already mentioned- the level-matching
condition, which means, in light-cone quantisation, that we have to impose NT = ÑT . For:

• NT = ÑT = 0, we obviously get the ground state |0; pµ〉, the state with no oscillators excited. The
mass formula (2.54) gives

M2 = − 1

α′
D − 2

6
. (2.55)

Clearly, if we want to embed the 2−dimensional worldsheet in the target-space, the dimension D
of the latter must be D ≥ 2. We have already seen that the string has 2(D− 2) on-shell oscillating
degrees of freedom, so we have to suppose D > 2 if we want to gain non-trivial information coming
from the extended nature of the string; indeed, for D = 2, there is only one spatial direction and
the string hasn't enough room to show its extended nature: it appears like a massless pointlike
particle travelling in the future of the light-cone (the dynamical variables in D = 2 are only p+ and
x−). But, by assuming D > 2, we immediately see that the vacuum of the string is tachyonic! We
remark that the unstable nature of the ground state in bosonic string theory shouldn't worry the
reader, given that it will be eliminated by the superstring.

• NT = ÑT = 1, we get the �rst excited level of the string; at this level, we �nd the (D − 2)2 states

α̃i−1α
j
−1 |0; pµ〉 ,

where i and j are manifestly vector indices of SO(D − 2) ⊂ SO(1, D − 1).
String theory wants to recognise the nature of the fundamental particles as particular �sounds�
(i.e. vibrational modes) of the strings; for example, here we are facing the problem of giving a
particle interpretation to the states α̃i−1α

j
−1 |0; pµ〉. The target space has been taken �at, so a

single particle is identi�ed as an irreducible representation of the little group, namely the subgroup
of SO(1, D− 1) that leaves the momentum of the particle invariant (SO(D− 1) for a massive one,
SO(D− 2) for a massless one) and that encodes how the internal degrees of freedom of the particle
(spin/helicity) transform. In string theory, the internal degrees of freedom are represented by the
harmonic oscillators α̃in and αin, so we should �nd the connection between the bunch of oscillators
characterizing a particular string level and the little group of the particles present at that level.
The level speci�es the mass of the states so at each level we expect more particles of the same mass,
which can be distinguished by the di�erent transformation properties of their internal degrees of
freedom. For example, at the �rst level, the states α̃i−1α

j
−1 |0; pµ〉 are in the (D− 2)2−dimensional

representation of SO(D − 2) × SO(D − 2) which can be decomposed as the direct sum of three
irreducible representations of SO(D − 2): so the little group of the particles of the �rst level is
SO(D − 2) and they must be massless. In formulae,

α̃i−1α
j
−1 |0; pµ〉 =

(
α̃

(i
−1α

j)
−1 −

1

D − 2
δijα̃k−1α

k
−1

)
|0; pµ〉+

+ α̃
[i
−1α

j]
−1 |0; pµ〉+

+
1

D − 2
δijα̃k−1α

k
−1 |0; pµ〉 .

(2.56)

Respectively, these three representations correspond to

� a massless, transversely polarised spin 2 particle. Obviously, the �rst guess is that this particle
can be identi�ed with the on-shell graviton, given that these characteristics coincide with
those expected from the quantization of the gravitational waves. Actually, to be sure about
this identi�cation one should check that also the interactions of this particle are those expected
from a graviton, but it is not necessary to check it, because, on general ground31, it is possible
to show that any theory of interacting massless spin two particles must be equivalent to general
relativity (plus higher derivative corrections). Thus, we can think of the �rst line on the right
side of (2.56) as an on-shell quantum of the target-space metric.

31See [13] for details.
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� a particle deriving from the quantization of an antisymmetric 2−tensor �eld Bij that must be
present in the target-space. This tensor is called Kalb-Ramond and it has to be thought of as
a �generalized� gauge potential, meaning that the string is �electrically charged� under it. It
was possible to forecast the appearance of this generalized gauge potential only by looking at
the extended nature of the string. We know that the coupling of the electromagnetism with
the pointlike particle is governed by the Lorentz action, which is nothing but the integration
over the worldline of the pullback of the spacetime electromagnetic potential Aµ (which is a
1−form); if we want to build the close analog for the string, we need a �eld which is a 2−form
in the target-space, so its pull-back on the 2−dimensional worldsheet can be integrated over
the worldsheet itself.

� a particle deriving from the quantization of a scalar �eld φ that must be present in the target-
space. This is called dilaton and, as we have already mentioned, it is possible to show that
its constant mode φ0 (namely, its expectation value on the target-space vacuum) determines
the string coupling constant gs = eλ = eφ0 : we can only trust perturbation theory if the
strings involved in the process are localized in regions of the target-space where the zero
modes of the dilaton assumes a negative value. An important question is if string theory
is able to dynamically determine the value of φ0: the bosonic string doesn't, but there do
exist backgrounds (particular compacti�cations) of the superstring in which a potential for
the dilaton �xes its expectation value. Thus we have to thank the dilaton if, in (super)string
theory, we don't need to introduce gs as a �god-given� parameter. On the other hand, having
a massless particle in the game means that long-range forces arise and we have to check if the
latter interfere with gravity. Indeed, in the framework of the non-linear sigma model it can be
shown that the dilaton �eld does interfere with gravity; in this context, if we want to restore
the (strong) equivalence principle of gravity, we have to �nd a way to make the dilaton massive
and, again, such a mechanism does arise in particular compacti�cations of superstring theory.

• NT = ÑT > 1, we obviously get, according to formula (2.50) states that for sure have a mass bigger
than that of the �rst level. So, all the levels above the �rst one describe massive particles, in which
we are not interested.

What we have learnt from the string spectrum is that the quantum string forecasts an unstable vacuum,
three massless particles (the gravion, the dilaton and the �photon� of the Kalb-Ramond �eld) and an
in�nite number of extremely massive particles. Now that we know that the �rst level is massless, we can
impose the massless condition for N = Ñ = 1 in (2.50) and we discover that D must be �xed to be

D = 26 . (2.57)

This is the famous value of the critical dimension for the target-space in bosonic string theory. It can be
rigorously determined, in the context of the light-cone quantisation, by imposing the Lorentz invariance
of the quantum theory, namely by requiring that the quantized version of the Noether charges associated
to Poincare' invariance must satisfy the Poincare' algebra (have a look at [10] for it).

With the canonical quantisation of the string, we hope that we have given the reader a direct and
�mechanical� intuition about the physics of the string. In the next chapter, we are going to use the more
abstract language of the path integral. On the one hand, this approach could appear too formal and far
from the physical intuition developed so far. On the other hand, the path integral - letting us taste a
bit of the deep mathematical structure of string theory - will reveal itself as an essential tool in string
theory, because it will allow us to study scattering process in string theory.
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3 The path-integral quantization

The modern covariant approach to quantisation of the string uses the Faddeev-Popov gauge �xing pro-
cedure to properly deal with the redundant structure of the theory. The key idea is that there is a prize
to pay if ones wants to �x the di�eomorphism and Weyl redundancie, which is the introduction of the
b-c ghost system on the worldsheet. The presence of these two new �elds will explain, in an elementary
way, the reason why the order ambiguity constant a = ã has to be a = −1. Moreover, the b-c system is
essential to build the BRST algebra and to study the loop interactions of strings. Once we will have the
BRST algebra at our disposal, we will discover that the value of the critical dimension D = 26 is �xed
by the requirement for the BRST charge to be nilpotent also at the quantum level.
It will be easier to understand all the implications coming from the presence of the Faddeev-Popov's
ghosts in the game once we will have developed the CFT's tools. For the moment, we are mainly con-
cerned in persuading the reader about the necessity of introducing the b and c �elds.

The main references that we used for this chapter are [8] and [11].

3.1 Faddeev-Popov gauge �xing: a �rst approach

As usual, the fundamental object in the path-integral approach is given by the partition function Z, here
corresponding to the path integral with no vertex operator insertions

Z =
1

Vdiff×Weyl

∫
D[Xµ]D[hαβ ]e−SPoly[Xµ,hαβ ;Σg ] , (3.1)

where we have divided by the (in�nite) volume of the gauge group so as to take into account the over-
counting due to di�eomorphisms and Weyl redundancies. The combined in�nitesimal version of these
two transformations reads as (see (2.3) and (2.4))

δXµ = −δσα∂αXµ

δhαβ = 2fhαβ −∇αδσβ −∇βδσα =

= (2f −∇γδσγ)hαβ − 2(P1δσ)αβ ,

(3.2)

where we de�ned a di�erential operator P1 that takes vectors into traceless symmetric 2−tensors,

(P1δσ)αβ ≡
1

2
(∇αδσβ +∇βδσα − hαβ∇γδσγ) . (3.3)

Following a standard route, we de�ne the Faddeed-Popov measure ∆FP by

1 = ∆FP (hαβ)

∫
[dζ]δ(hαβ − ĥζαβ) , (3.4)

where

• ĥαβ is a �ducial metric, that is a �xed metric whose form any other metric can assume after a proper
gauge transfomation. We have already seen that in a given patch it is always possible to make any
hαβ conformally �at, so we can take32 ĥαβ = Ω2(σ)δαβ ; obviously, this choice for the �ducial metric
works (at least) locally, but here we are not interested in complications due to non-trivial topologies
of the worldsheet that will be instead analyzed in chapter 5 (to keep things simple, in this section,
one can assume Σg = Σ0);

• ζ is a shorthand for the in�nitesimal version of a combined coordinate-Weyl transformation that
brings hαβ(σ) to hαβ(σ) + δhαβ(σ); here, δhαβ(σ) is given by (5.18) and, following the notation of
(3.4), we will indicate an in�nitesimal gauge transformation ζ as ζ = (f, δσα);

• the delta function is, to be more precise, a delta functional, because it requires hαβ(σ) = ĥζαβ(σ)
for every point;

32We are considering the wick rotated version of the worldsheet: σ0 7→ σ2 ≡ iσ0 and σ1 7→ σ1; with the wick rotation,
the Polyakov action gets an overall minus sign.
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• ∆FP (hαβ) is gauge invariant, that is ∆FP (hαβ) = ∆FP (hζαβ). In fact:

∆−1
FP (hζαβ) =

∫
[Dζ ′]δ(hζαβ − ĥ

ζ′

αβ) =

=

∫
[Dζ ′]δ(hαβ − ĥζ

−1ζ′

αβ )
ζ′′≡ζ−1ζ′

=

=

∫
[Dζ ′′]δ(hαβ − ĥζ

′′

αβ) =

=∆−1
FP (hαβ) .

(3.5)

Note that we used the obvious gauge invariance of the delta function in the second equality and the
hypothetical33 gauge invariance of the measure D[ζ] in the third step (D[ζ ′] = D[ζζ ′′] = D[ζ ′′]).

Inserting (3.4) into the functional integral (3.1), the latter becomes34

Zĥ =
1

Vdiff×Weyl

∫
D[ζ]D[Xµ]D[hαβ ]∆FP (hαβ)δ(hαβ − ĥζαβ)e−SPoly[Xµ,hαβ ;Σ0] . (3.6)

We can carry out the integration over hαβ and rename the dummy variable X 7→ Xζ to obtain

Zĥ =
1

Vdiff×Weyl

∫
D[ζ]D[(Xµ)ζ ]∆FP (ĥζαβ)e−SPoly[(Xµ)ζ ,ĥζαβ ;Σ0] . (3.7)

Now we can use the gauge invariance of ∆−1
FP , D[(Xµ)] and of the action to write

Zĥ =
1

Vdiff×Weyl

∫
D[ζ]D[(Xµ)]∆FP (ĥαβ)e−SPoly[Xµ,ĥαβ ;Σ0] . (3.8)

Now there is nothing, in the integrand, that depends on the gauge parameter ζ so the integral over ζ
gives the volume of the gauge group that perfectly cancels35 the Vdiff×Weyl term in the denominator. So
we �nally get

Zĥ =

∫
D[(Xµ)]∆FP (ĥαβ)e−SPoly[Xµ,ĥαβ ;Σ0] . (3.9)

We are thus left with computing the Faddeev-Popov measure ∆FP (ĥαβ), determined by(
∆FP (ĥαβ)

)−1
=

∫
[dζ]δ(ĥαβ − ĥζαβ) . (3.10)

Again, here we want to keep things simple, so we pretend that exactly for one value of ζ the delta
functional δ(ĥαβ−ĥζαβ) is nonzero. This means that all the nonzero contribution in (3.10) arises when ζ is

the identity and, thus, to compute ∆FP (ĥαβ) it is enough to consider in�nitesimal gauge transformations.
In other words, the integral ∫

D[ζ]

over the gauge group can be equivalently substituted with the integral over the tranformations ζ =
(f, δσα) near the identity, namely with ∫

D[f ]D[δσα] .

33One can suppose that this measure is gauge invariant by an analogy with the Haar measure of �nite-dimensional
Lie groups, but there are no reasons why this analogy has to hold a priori, given that, here, the gauge group is in�nite
dimensional. In fact, it turns out that the measure is in general anomalous and, to remove the anomaly, we are forced to
�x D = 26 (and a = −1). This is the reason why, strictly speaking, all the Fadeev-Popov procedure that we are presenting
has to be performed under the assumption of the criticality condition.

34We add a subscript to Z to explicitly denote the dependece of Z on the choice of the �ducial metric.
35This is not true. As we have already seen in the last chapter, the gauge choice hαβ = ĥαβ = δαβ (more in general, the

conformal gauge choice) doesn't completely �x the gauge, because, locally, we still have the freedom to specify the meaning
of the coordinates by a confromal transformation. We will turn back to this problem in chapter 5, where we will see that
not the whole of Vdiff×Weyl will cancel with the integral over ζ: the volume of the conformal transformations globally
de�ned in Σg will survive in the denominator.
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So, by introducing formula (5.18) into the Dirac functional of (3.10), we have

(
∆FP (ĥαβ)

)−1
=

∫
D[f ]D[δσα]δ

(
− (2f − ∇̂γδσγ)ĥαβ + 2(P̂1δσ)αβ

)
, (3.11)

where we put a hat on the di�erential operators ∇ and P1 because their de�nition depends on a metric
that here is the �ducial one.
To perform the calculation, we go to the analogue of the Fourier space for the Dirac functional, because
the latter admits the following integral representation in terms of a symmetric tensor �eld Bαβ :

δ

(
−(2f − ∇̂γδσγ)hαβ + 2(P̂1δσ)αβ

)
=

=

∫
D[Bαβ ]exp

[
2πi

∫
d2σ
√
ĥBαβ

(
− (2f − ∇̂γδσγ)ĥαβ + 2(P̂1δσ)αβ

)]
.

(3.12)

After plugging this formula into (3.11), it is immediate to see that the in�nitesimal Weyl transformation
f acts as a Lagrange multiplier. In fact, the integration over D[f ] produces a Dirac functional that forces
Bαβ to be traceless, namely

Bαβĥαβ = 0 .

From a practical point of view: in (3.11) we can set f = 0, drop the integral over D[f ] whereas, in (3.12),

we can put a label ′ on Bαβ to remember that B′
αβ

is traceless. Thus we obtain(
∆FP (ĥαβ)

)−1
=

=

∫
D[B′

αβ
]D[δσα]exp

[
2πi

∫
d2σ
√
ĥB′αβ

(
∇̂γδσγ ĥαβ + 2(P̂1δσ)αβ

)]
,

(3.13)

and, using the tracelessness condition of Bαβ , we end up with(
∆FP (ĥαβ)

)−1
=

=

∫
D[B′

αβ
]D[δσα]exp

[
4πi

∫
d2σ
√
ĥB′αβ(P̂1δσ)αβ

]
=

=

∫
D[B′

αβ
]D[δσα]exp

[
4πi

∫
d2σ
√
ĥB′αβ∇̂αδσβ

]
.

(3.14)

The previous manipulations have given us an expression for
(
∆FP (ĥαβ)

)−1
, but, for (3.9), we need

∆FP (ĥαβ). Given that the exponent is quadratic, the integral computes the inverse determinant of the

operator ∇̂α. Both B′αβ and (P̂1δσ)αβ are symmetric traceless tensors, so, to be more precise, we are
computing the inverse determinant of the projection of ∇α onto symmetric, traceless tensors: in this
sense the operator is a �square matrix� and we can talk about its determinant. But, in order to �nd
the determinant from the path integral expression of its inverse, we can simply replace, in the latter,
each bosonic �eld with a corresponding Grassmann ghost �eld which inherits the same transformation
properties. So, in (3.14), we perform the substitutions

δσα 7→ cα

B′αβ 7→ bαβ ,
(3.15)

where cα is a vector �eld and bαβ is a symmetric traceless tensor �eld on the worldsheet. We obtain

∆FP (ĥαβ) =

∫
D[bαβ ]D[cα]e−Sg , (3.16)

where the ghost action Sg, with a convenient normalization for the �elds, can be written as

Sg ≡
1

2π

∫
d2σ
√
ĥbαβ(P̂1c)

αβ =
1

2π

∫
d2σ
√
ĥbαβ∇̂αcβ . (3.17)
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It is not di�cult to see that this action, in the conformal gauge (ĥαβ = Ω2δαβ), reads as

Sg ≡
1

2π

∫
d2z(bzz∇z̄cz + bz̄z̄∇zcz̄) =

1

2π

∫
d2z(bzz∂z̄c

z + bz̄z̄∂zc
z̄) , (3.18)

where we introduced the following notation

z =σ1 + iσ2 z̄ = σ1 − iσ2

d2z =2dσ1dσ2 ,
(3.19)

which appears to be useful, given that the complex coordinates z and z̄ are directly related to the lightcone
coordinates σ± of the Minkowskian version of the worldsheet by

z =σ1 + iσ2 = σ1 + i(iσ0) = −σ+

z̄ =σ1 − iσ2 = σ1 − i(iσ0) = σ− .
(3.20)

The action (3.18) is Weyl invariant, because the conformal factor Ω of the conformal gauge doesn't show
up and this means that both bαβ and cα are neutral under Weyl transformation (in contrast to bαβ and
to cα).

To sum up: the action of bosonic string theory is the di�eomorphism and Weyl invariant action de-
�ned by the sum of the Polyakov action and of the b − c system. These two actions describe the free
�elds Xµ, b and c. Locally, there are no interaction terms in these actions that mix the b− c system with
the Xµ's so, at the classical level, in a given patch, the ghost �elds can be forgotten because they don't
in�uence the dynamics of Xµ. At the quantum level, instead, the b− c ghost system assumes a key role
both for local and global reasons.
Gobally, the gauge �xing does not �x the metric completely and, for topologies with genus g ≥ 1, we are
left with residual modes of the metric, known as moduli, which presence has to be taken into account by
a proper insertion of the b, c ghosts in the worldsheet (see chapter 5). Given that g = 0 is the tree level
worldsheet, this fact �nds a close analogy in QFT, where one has to worry about Faddeev-Popov ghosts
only in loops. In fact, the Faddeev-Popov �elds are Grassmann �elds with integer spin and, so, they
cannot appear as external �elds because of their unphysical spin-statistics; being mathematical objects
that are necessary for consistency, their presence is then evanescent and indetectable and this is the
reason why these �elds are usually called �ghosts�. The reader should not confuse the Faddeev Popov
ghosts with the ghosts met during the covariant canonical quantisation of the string, the latter being
quantum states of the string that cannot have de�nite positive energy and norm. Of course, there should
be a connection between these two kinds of ghosts, because both of them arise from a covariant approach
to the quantisation of a gauge redundant system. Sloppily speaking, we can say that the contribution
coming from the Faddeev-Popov ghosts cancels the contribution coming from the ghosts which would
spoil unitarity36. The reason why it is not so wrong to think about this kind of cancellations among
di�erent ghosts can be found in the BRST-symmetry, the remnant of the local gauge symmetry that
survives after the gauge �xing. Being nilpotent, the Noether charge QB associated to this symmetry
introduces a cohomology on the set of the quantum states of the theory that can be used to distinguish
which states are physical and which are not. With respect to this de�nition of �physical condition�, it
is possible to recover the no-ghost theorem of the old covariant approach to quantisation, as well as the

36For example, if we compute the total order ambiguity constant atot of the gauge-�xed theory, we would �nd that it
consists of three pieces atot = aT + aU + aFP , where aT is the order ambiguity constant aT = −(D − 2)/24 coming from
the 2 ∗ (D − 2) transverse degrees of freedom, aU = −2/24 = −1/12 comes from the 2 ∗ 2 unphysical degrees of freedom
and aFP = +2/24 comes from the Faddeev-Popov ghosts; so we would have

atot = aT + aU + aFP = aT ,

and we would recover the mass-formula (2.50) of the lightcone quantisation. To understand the reason why aFP = 2/24 =
1/12 one should note that the equations of motion of Sg imply that both the b and c �elds can be decomposed, locally,
into left and right movers so we have 2 ∗ 2 degrees of freedom from the Faddeev-Popov ghosts, which is the same number
of degrees of freedom coming from the unphysical modes of X0 and XD−1; but the latter are bosonic variables, whereas
the Faddeev-Popov ghosts are Grassmann ones so they contributes with opposite sign to atot. Following this example, we
like to think that at each loop level the running of the Faddeev-Popov ghosts cancels the running of the other ghosts (the
unphysical oscillations of Xµ).
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same Hilbert space of the lightcone quantisation (see [11]). But, as we will see, the nilpotency of QB
holds at the quantum level only if D = 26; only if we are working under the hypothesis of the critical
condition we can show that ghosts decouple from physical processess: for D 6= 26, unitarity is lost.
Locally, the b− c ghost system is fundamental to preserve the gauge invariance of the gauge �xed theory
at the quantum level.
In this section, we have assumed that the measures D[ζ] and D[Xµ] are separately gauge invariant. The
truth is that they are invariant only under di�eomorphisms, but not under Weyl rescalings (see [6], for
example). We have seen that the gauge invariance of D[ζ] alone is equivalent to the gauge invariance of
∆FP (hαβ), namely to the gauge invariance of the b − c system; thus, we can expect that, at the quan-
tum level, both the b − c and the matter sectors separately su�er from a Weyl anomaly (the traces of
their energy-momentum tensors are nonzero). Later we will �nd that these two Weyl anomalies cancel
if D = 26 (and a = −1) and this is equivalent to the memorable result due to Polyakov: the combined
measure D[hαβ ]D[Xµ] (equivalently, the combined measure D[ζ]D[Xµ]) is not anomalous only for the
critical string. If we want to obtain a gauge-�xed worldsheet that doesn't depend on the gauge chosen to
�x Weyl invariance, we necessarily have to take into account the Faddeev-Popov ghosts and to impose
the criticality condition.

Given the importance of the criticality condition, in the following chapter we are going to analyze
the local aspects of the gauge-�xed worldsheet and its BRST remnant symmetry. The discussion of the
global aspects of the worldsheet will follow immediately after.

29



4 Local aspects

As we have done so far, we are going to pay attention only to one patch of the worldsheet. Nevertheless,
it is important to keep in mind that, in general, the latter will be a manifold that can be described by
several local coordinate systems and the non-trivial information about the nature of the manifold will
be encoded in the transitions functions. The geometry of the 2−dimensional gauge-�xed worldsheet is
very rich thanks to the gauge redundancies of the theory and this translates into very nice transition
functions. In fact, we have seen that we can �x reparametrization invariance to bring, in each local
patch, the worldsheet metric hαβ to the conformal form hαβ = Ω2δαβ . If we denote two local patches
that intersect each other with the subscripts A and B, we have

Ω2
A(σ1

A, σ
2
A)

(
(dσ1

A)2 + (dσ2
A)2

)
= ds2

∣∣∣∣
A

⋂
B

= Ω2
B(σ1

B , σ
2
B)

(
(dσ1

B)2 + (dσ2
B)2

)
,

and, in the overlapping region A
⋂
B, this means

(dσ1
A)2 + (dσ2

A)2 ∝ (dσ1
B)2 + (dσ2

B)2 .

In other words, the transition function between the two patches must be a37 conformal transformation
and this is a peculiar fact characterizing all 2−dimensional Riemannian manifolds. Observe that, if we
denote with A and B the same patch, the transition function between the two patches is nothing but
a reparametrization of the coordinates of the same patch so we get that in each patch we still have the
freedom to perform a conformal transformation. Obviously, if we think (take the A patch, for example)
the conformal factor Ω2

A(σ) to be �xed by the conformal gauge, then the freedom of reparametrizing the
single A patch by a conformal transformation is lost. But it is likewise obvious that we can recover this
freedom by adding into the game the Weyl invariance of the worldsheet! This is the reason why some
authors like to say - with a misleading abuse of language - that conformal transformations (on a given
patch) are di�eomorphisms followed by a compensating Weyl rescaling (see [8], for example); what they
really mean is that we have to thank Weyl invariance if we still have conformal invariance in a patch even
after �xing the metric to a precise conformal gauge form by the Faddeev-Popov procedure.
Weyl redundancy makes the worldsheet of string theory very special among all the 2−dimensional Rie-
mannian manifolds38, because a Weyl transformation really changes the Riemannian structure of the
worldsheet. It lets us bring the metric from the conformal to the �at gauge form in, at least, one patch.
We precise that the Weyl trasformations consist of rescalings of the metric ds2 by a factor e2f where f
is a function which is continuous and globally de�ned on the worldsheet, otherwise the rescaled world-
sheet wouldn't be a Riemannian manifold. In general, Ω2

A(σA) 6= Ω2
B(σB) and, in this case, by a Weyl

rescaling it is possible to bring the metric into the �at form only in one of the two patches; only in the
case of Ω2

A(σA) = Ω2
B(σB) it is possible to bring the metric to the �at form in both patches by a Weyl

transformation.
We also stress that Weyl rescalings don't touch the coordinates so, even after performing a Weyl trans-
formation in each patch, the transition functions will be the conformal transition functions of before.
To sum up:

• One starts with a Riemannian manifold (Σg, ds
2) and �xes reparametrization invariance by choosing

the conformal gauge in each patch. This choice �xes the transition functions among patches to be
conformal transformations.

• Then we remember that in the theory we have also the Weyl redundancy (Σg, ds
2) ∼ (Σg, e

2fds2)
and we �x it by bringing the conformal gauge choice to the �at one at least in one patch.

• For the same reasoning explained around formula (2.9), we could naively guess that we still have
the freedom to specify the meaning of the local coordinates by performing in each local patch a
di�erent conformal transformation. But again we have to remember that the Weyl rescalings are
continuous and globally de�ned, so, after �xing reparametrization and Weyl redundancies, we still

37This holds if we choose coordinate in A and B such that the metric is in conformal form in both patches.
38So special to such a point that, as we will see later, the Euclidean version of the worldsheet is not a Riemannian

manifold, but a complex manifold. A complex manifold doesn't need a metric to be de�ned and, in this sense, the metric
hαβ is completely an auxiliary �eld, not only at the dynamical level, but also from a geometrical point of view.
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have the freedom to perform only those conformal transformations that are globally de�ned on the
whole worldsheet. These transformations form the group of the residual gauge transformations,
which is called conformal killing group (CKG) of the worldsheet.

The main references that we used for this chapter are [8, 11, 12, 14, 15, 7].

4.1 2−dimensional conformal transformations

A conformal transformation is a di�eomorphism σα 7→ σ̃α under which the metric changes only by an
overall factor. If the original metric is the �at Euclidean one, then the transformed metric should be

δαβ 7→ h̃αβ(σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
δγδ = Λ(σ)δαβ .

Obviously we are interested in the 2−dimensional case. Let εα be such that σα 7→ σ̃α = σα + εα +O(ε2).
Then, it is not di�cult to show that this de�nition reduces to

∂αεβ + ∂βεα = ∂γεγδαβ . (4.1)

After introducing the usual complex notation

z = σ1 + iσ2 z̄ = σ1 − iσ2

∂z =
1

2
(∂1 − i∂2) ∂z̄ =

1

2
(∂1 + i∂2)

εz = ε1 + iε2 εz̄ = ε1 − iε2

dzdz̄ = 2dσ1dσ2

gzz̄ =gz̄z =
1

2
gzz = gz̄z̄ = 0 = gzz = gz̄z̄ = 0 gzz̄ = gz̄z = 2

εz =
1

2
(ε1 − iε2) εz̄ =

1

2
(ε1 + iε2) ,

(4.2)

we �nd that, locally, the solution to (4.1) is given by

∂z̄ε
z = 0 = ∂zε

z̄ . (4.3)

Thus, we have simply

ε ≡ εz = εz(z) ε̄ ≡ εz̄ = εz̄(z̄) (4.4)

and the in�nitesimal conformal transformations on the 2−dimensional Euclidean worldsheet are gener-
ated, locally, by all the meromorphic39 functions ε(z) and anti-meromorphic functions ε̄(z̄). As such,
the group of the local conformal transformations is in�nite dimensional, and this is a peculiarity of the
2-dimensional case. This means that the gauge-�xed worldsheet enjoys - locally - a huge number of
symmetries and, so, its mathematical structure is very rigid.
The (anti-)meromorphic generators can be expanded in a Laurent series as

z 7→ z′ = z + ε(z) = z +
∑
n∈Z

εnz
n+1

z̄ 7→ z̄′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄nz̄
n+1

(4.5)

and we see that the algebra of the in�nitesimal conformal transformations is generated by the Witt
generators ln, l̄n, namely by

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ , (4.6)

39Not holomorphic, because the vector �eld ε can have singularities outside the local patch of the worldsheet where we
are solving (4.3).
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which satisfy the Witt Algebra

[lm, ln] = (m− n)lm+n

[l̄m, l̄n] = (m− n)l̄m+n

[lm, l̄n] = 0 .

(4.7)

This is the in�nite dimensional algebra of the 2−dimensional conformal transformations. Locally, it
characterizes the worldsheet40 Σg, regardless of its genus but most of these transformations fail to be
globally de�ned on Σg.
For example, at the tree level (g = 0), the worldsheet is a Riemann-sphere which can be covered, as we
know, by two patches with complex coordinates z, u with transition function uz = −1 in the overlapping
region

S2\{North pole z = 0}\{South pole u = 0} .

In the z patch, the Witt generators are given by (4.6), and they are globally de�ned only for n ≥ −1 (for
n < −1, ln and l̄n are not de�ned at the North pole). In the u patch, instead, the Witt generators are
given by

ln = −zn+1∂z = −
(
−1

u

)n+1
∂u

∂z
∂u = −(−u)−(n+1)u2∂u = (−1)nu1−n∂u

l̄n = −z̄n+1∂z̄ = (−1)nū1−n∂ū ,

(4.8)

and only for n ≤ 1 they are de�ned also at the South pole. Thus, the only Witt generators that are
globally de�ned on the Riemann sphere are:

• l−1 = −∂z: it generates rigid translations z 7→ z + b, b ∈ C;

• l0 = −z∂z: it generates complex dilatations z 7→ az, a ∈ C which consist of real dilatations (for
a ∈ R) and real rotations (for a ∈ iR);

• l1 = z2∂z: it generates the socalled special conformal transformations z 7→ z/(cz + 1), c ∈ C.

The combination of these three transformations gives the most general global conformal di�eomorphism
on the Riemann sphere:

z 7→ az + b

cz + d
, d ∈ C. (4.9)

Being a di�emorphisms, it has to be invertible, so we have to require ad−bc 6= 0; we can rescale a, b, c and
d to obtain ad− bc = 1 without changing the transformation, and we recognize that the set of the di�eo-
morphisms (4.9) is isomorphic to SL(2,C). Actually, after imposing the condition ad−bc = 1, we still have
the freedom to represent the same transformation with both (a, b, c, d) and (−a,−b,−c,−d) so we have
to quotient by a Z2 factor and we obtain PSL(2,C) ≡ SL(2,C)\Z2. Given that we have also the anti-
holomorphic set of transformations, we get that the CKG of the Riemann sphere is PSL(2,C)×PSL(2,C).
The CKG of the sphere is useful to guess the CKG of surfaces with genus g > 0. In fact, any closed
oriented two-dimensional surface can be obtained by adding g handles to the sphere. Higher genus
surfaces are - topologically speaking - more complicated than the sphere and, so, their CKG should
be a proper subgroup of PSL(2,C) × PSL(2,C). For instance, the only conformal transformations
that preserve the periodicity condition z ≈ z + 2πτ of a torus (τ ∈ C) are given by the Witt genera-
tors which act homogeneously on the plane, namely by the translations l1 and l̄1 and the CKG is now
U(1)× U(1) ⊂ PSL(2,C)× PSL(2,C). In the same way, we expect that the CKG(Σg) of a worldsheet
with genus g > 1 should be a proper subgroup of the CKG of the torus, but the latter consists of only
translations, so we guess that there are no conformal transformations globally de�ned on Σg>1. This
reasoning, though heuristic, gives the right CKG's for all Σg; the reader who is not satis�ed with it can
refer to [6].

40Up to conformal anomalies. We will discover that, at the quantum level, the conformal transformations are generated
by the Virasoro generators Ln, L̄n, which are a �generalization� of the ln, l̄n.
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4.2 From the cylinder to the plane

We understood a very important lesson: to study the conformal properties of the worldsheet it is con-
venient to work with complex41 coordinates z and z̄, so, then, we can exploit the results coming from
complex analysis/geometry. From this point of view it is thus natural, as �rst step, to map the worldsheet
Σ0 of the freely moving string to the complex plane and the importance of such a map will become even
clearer later, as being the building block of the state-operator correspondence.
On the Euclidean cylinder parametrized42 by σ1 ∈ [0, 2π[ and σ2 ∈]−∞,+∞[ we can de�ne the complex
coordinates

w ≡ σ2 − iσ1 , w̄ ≡ σ2 + iσ1 (4.10)

and the complex coordinates z, z̄, related to w, w̄ by means of the conformal transformation

z ≡ ew z̄ ≡ ew̄ , (4.11)

which identi�es, being a biholomorphism, the cylinder [0, 2π[×] −∞,+∞[ with C\{0}. One would like
to describe also the string sitting at σ2 = ±∞; according to the map (5.37), we should add the corre-
sponding points z = 0 and z = ∞ to the complex plane and we end up with the compacti�ed complex
plane C ∪ {∞}, namely with the Riemann sphere S2. One should be aware of the fact that the �closed�
cylinder [0, 2π[×[−∞,+∞] is not biholomorphic to S2, so they are di�erent worldsheets (actually, they
cannot even be homeomorphic, given that the Riemann sphere is simply connected and the cylinder is
not). The problem is that the Riemann sphere has �less� information than what the cylinder has, because
all the points of the string sitting at σ2 = −∞ are indiscriminately mapped to the same point, namely
to the origin of the complex plane, so we don't have an injective mapping. The right way to keep track
of this information is to introduce a vertex operator at the North Pole z = 0 of the sphere; in this way
the not-simply-connectedness of the cylinder will be somehow recovered on the sphere: indeed, it will not
anymore be possible to shrink any contour integral around the origin to a point, because of the presence
of the vertex operator at z = 0! Obviously, the same reasoning works also for the South pole and, if we
want to describe the string at σ2 = +∞, we have to add the same vertex operator at u = 0. In other
words, one should think of Σ0 as the �closed� cylinder, or equivalently, as the Riemann sphere with the
vertex operator insertions at the poles.
Clearly, according to (5.37), lines of equal time σ2 are mapped into circles around the origin, σ1−translations
become rotations and time σ2−translations become dilatations. In the quantized theory, this means that:

• the generator of dilatations will take the role of the Hamiltonian,

• time ordering will be replaced by radial ordering and

• equal time commutators will be substituted by equal radius commutators.

This is the core of the so-called radial quantization, according to which products of �elds are only de�ned
if we put them in radial order R[...]; in analogy to the time ordering of QFT, the latter is de�ned as

R[φ1(z1)φ2(z2)] =

{
φ1(z1)φ2(z2) for|z1| > |z2|
φ2(z2)φ1(z1) for|z2| > |z1|

, (4.12)

where, as an example, we have taken two commuting �elds; in the case of anti-commuting �elds, there
will be a minus sign in the second line of the de�nition of R[...].

41A note for the careful reader. In order to use the results coming from complex analysis/geometry, we deal with z and
z̄ as they were independent coordinates. Strictly speaking, this means that we're really extending the worldsheet from R2

to C2. However, after computations one should remember that we're really sitting on the real slice R2 ⊂ C2 de�ned by
z̄ = z∗. To streamline our discussion, sometimes we will focus only on z, leaving understood that we should do the analogue
construction for z̄.

42Because of the periodicity condition, the cylinder needs at least two charts to be covered. These charts can be chosen
such that their transition functions is only an innocent translation, so we can pretend to have only one �global� chart, as
long as the functions de�ned on it respect the periodicity of the cylinder. Note, for example, that the functions z(w) and
z̄(w̄) that we are going to introduce respect the periodicity of w ≈ w + 2π.
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4.3 Conformal Field Theory

A conformal �eld theory (CFT) is a theory invariant under the group of in�nitesimal conformal transfor-
mations, as the gauge-�xed Polyakov theory de�ned on a local patch of the worldsheet.
One can de�ne a CFT even without an action, but let's introduce it by means of the lagrangian perspec-
tive, whose logic is reminescent of that one of QFT:

• the classical theory is given by an action S[φi] invariant under in�nitesimal conformal transforma-
tions;

• the basic objects of the theory are the �elds Oi(x). We specify that, in the context of conformal
�eld theories, we call ��elds� any local expression written in terms of the φi(x) appearing in the
action and of their derivatives;

• the quantum theory is de�ned by the correlation functions

〈R
[
O1(x1)...On(xn)

]
〉 =

1

Z

∫ ∏
i

D[φi]e
−S[φi]O1(x1)...On(xn) ;

• the equations involving the local �elds will always be thought of as operator equations in the
quantum theory, namely as equations which are valid only if inserted into the path integral, where
also other operators can be present, as long as the latter are �far� from the operators of the equations.
To be more precise, let's consider a formula like (g is an operator-valued function)

O1(x1)O2(x2) = g
(
O1(x1),O2(x2)

)
;

this will be a shorthand for

〈O1(x1)O2(x2)...〉 = 〈g
(
O1(x1),O2(x2)

)
...〉 ,

where we denoted with ... the hypothetical presence of other operators Oi(xi) which have to be
inserted at distances bigger than |x1 − x2|; in the radial quantization, these operators cannot be
inserted in the annulus whose boundary are given by the circles of radii given by the radial positions
of O1 and O2.

In the case a classical action was missing, one can de�ne a CFT as a �complete set� of local �elds Oi
with correlation functions given as maps from the space of operators to C whose forms are constrained
by conformal invariance. It turns out that the requirement of conformal invariance is so stringent that,
in principle, all correlation functions can be computed in terms of a �nite amount of input data43; this
can be done because, in a CFT, there is a natural notion of �complete set� of operators - the notion of
quasi-primary �elds, which doesn't exist in a general QFT - and because the �product� (the OPEs) of two
such quasi primary �elds has remarkable properties. We are going to introduce these concepts directly
in the setting of a 2−dimensional CFT de�ned on the Riemann sphere S2 = C∪{∞}, given that it is the
case of our interest.

4.4 Primary and quasi-primary �elds

We have already seen that, on S2, the complex dilatations z 7→ λz (z̄ 7→ λ̄z̄) have an important role,
because they are related to the σ1 and σ2 translations on the cylinder, namely with rotations and time
translations. It is thus natural to label44 the �elds Φ(z, z̄) de�ned on S2 according to their transformation
properties under dilatations. If a �eld transforms as

Φ(z, z̄) 7→ Φ′(z′, z̄′) = λ−hλ̄−h̄Φ(z, z̄) ,

then we say that it has conformal dimensions (h, h̄). It is intuitive that h+ h̄ and h− h̄ are, respectively,
the eigenvalues of Φ under real dilatations and real rotations on S2 (see [8]) and, so, ∆ ≡ h + h̄ and

43See later: the input needed is what we will call structure constants of the theory.
44This is reminiscent of our approach to QFT, where one labels �elds according to the mass and spin.
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s ≡ h− h̄ play the role of the scaling dimension and spin of the �eld Φ. The reader should also keep in
mind that a unitary CFT is characterized by h, h̄ ≥ 0 (the conformal dimensions vanish only in the case
of Φ proportional to the identity operator).
A primary �eld Φ(z, z̄) is a �eld that transforms as a tensor under conformal transformations, namely:

z 7→ z′ ≡ f(z)

z̄ 7→ z̄′ ≡ f̄(z̄)

Φ(z, z̄) 7→ Φ′(z′, z̄′) =

(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄
Φ(z, z̄) ;

(4.13)

at the in�nitesimal level, this de�nition reduces to

z 7→ z′ ≡ f(z) = z + ε(z) +O(ε2)

z̄ 7→ z̄′ ≡ f̄(z̄) = z̄ + ε̄(z̄) +O(ε2)

δε,ε̄Φ(z, z̄) = −(h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄)Φ(z, z̄) .

(4.14)

A quasi-primary �eld satis�es (4.13) only when the conformal transformation is globally de�ned on S2,
that is when (f, f̄) ∈ PSL(2,C)× PSL(2,C).
We have seen, in the last chapters, that the closed string theory consists of the right sector (�elds
depending only on the σ− coordinate), and the left one (�elds depending only on σ+); the coordinates
w, w̄ coincide with w = iσ− and w̄ = iσ+ so the conformal map to the cylinder preserves the notion of
�right� and �left� movers, because z (z̄) depends only on w (w̄). It makes then sense to introduce proper
names for �elds that, on the plane, depend only on z or only on z̄; these are respectively called chiral
and antichiral �elds and correspond to left and right moving �elds on the cylinder. On the cylinder, a
right-moving �eld Φ(σ−) can always be expanded as

Φ(σ−) =
∑
n∈Z

φne
−inσ− , (4.15)

namely as

Φ(w) =
∑
n∈Z

φne
−nw ; (4.16)

if it is primary, then, after the conformal map to the complex plane, it becomes the chiral �eld

Φplane(z) =
∑
n∈Z

φnz
−n−h , (4.17)

where we have added the subscript �plane� instead of putting the ′ as we did in (4.13). So we have learnt
that the modes φn for a chiral primary �eld Φ(z) of conformal dimension h can be simply obtained as

φn =
1

2πi

∮
Φ(z)zn+h−1 . (4.18)

4.5 OPEs

In a QFT, the operator product expansion (OPE) is de�ned as an approximative expansion of two oper-
ators Oi(xi) and Oj(xj) valid in the limit xi − xj → 0 and in a certain neighbourhood of the locations
of the operators:

Oi(xi)Oj(xj) =
∑
k

Ckij(|xi − xj |)Ok(xk) . (4.19)

In a CFT, the structure of the OPE is constrained by the requirement of conformal invariance to such
a point that the functional dependence of Ckij(|xi − xj |) is completely �xed. Moreover, the OPE is an

exact expression45 and the OPE of two quasi-primary �elds involves only other quasi-primary �elds and

45Namely, a convergent series whose radius of convergence is given by the distance to the next �eld insertion.
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their derivatives (the so-called descendant �elds).
For example, in the case of the 2−dimensional CFT it is possible to show46 that the OPE of two chiral
quasi-primary �elds φi(z), φj(w) can be written as

φi(z)φj(w) =
∑
k,n≥0

Skij
anijk
n!

1

(z − w)hi+hj−hk−n
∂nφk(w)

anijk =

(
2hk + n− 1

n

)−1(
hk + hi − hj + n− 1

n

)
,

(4.20)

where the sum over k runs only over the quasi-primary �elds and the complex constants Skij are called
structure constants. Even though it is not important for what we are going to study later, the reader
should be aware about an essential fact: it is possible, by successive applications of the OPEs, to reduce
all higher order correlations functions to the correlators (4.20), so the structure constants is all what we
need to solve the theory.
Now that we understood the advantages of working with the OPEs in a CFT, we show how to compute
them. We will start by focusing on the OPEs between the energy momentum tensor and any other
conformal �eld.

4.6 Conformal Ward-Takahashi identities

We need to borrow47 a general result from QFT, namely the Ward-Takahashi indentity ; this computes
the variation δOi of an operator under a tranformation of the �elds φ 7→ φ+ εδφ in terms of the integral
of the divergence of the Noether current that one would obtain at the classical level by taking ε constant.
So let's supose that, at the classical level, the action S[φ] is invariant under a global tranformation
φ 7→ φ + εδφ and let the associated Noether current be Jα. Then, at the quantum level, the following
equation is valid as an operator equation:

− 1

2π

∫
B(x1)

dx ∂αJ
α(x)O1(x1)... = δO1(x1)... , (4.21)

where we denoted with B(x1) a region that contains the location x1 of the operator O1, but that doesn't
include any other hypothetical operators present in �...�.
In the case of a 2−dimensional QFT, we can use Stoke's theorem and introduce the complex coordinates
z = x1 + ix2, z̄ = x1 − ix2 to rewrite this equation as

δO(w, w̄) = − 1

2πi

∮
∂B(x1)

(
dz Jz(z, z̄)− dz̄ Jz̄(z, z̄)

)
O(w, w̄) , (4.22)

where

Jz =
1

2
(J1 − iJ2) , Jz̄ =

1

2
(J1 + iJ2) , (4.23)

because indices are raised and lowered as in (4.2).
Now we want to apply the Ward-Takahashi identity to the conformal symmetry of a 2−dimensional CFT,
so we need to �nd the Noether current associated to conformal invariance.
We start by applying Noether's theorem to translations and dilatations and we obtain that the energy-
momentum tensor has to be conserved and it has to be traceless, that is

∂αT
αβ = 0 , Tαα = 0 .

Let's rewrite these equations with the complex coordinates. The tracelessness condition becomes

Tzz̄ = 0 (4.24)

46See [16] for the proof.
47See [8] for a derivation and for details.
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and the conservation condition now reads as

∂z̄Tzz = 0 , ∂zTz̄z̄ = 0 . (4.25)

In other words, the energy-momentum tensor splits into a chiral and into an anti-chiral part:

Tzz ≡ T (z) , Tz̄z̄ ≡ T̄ (z̄) , (4.26)

and now it is not di�cult to guess that the Noether currents for the conformal transformations

z 7→ z + εv(z) = z + ε(z)

z̄ 7→ z̄ + ε̄v̄(z̄) = z̄ + ε̄(z̄)
(4.27)

are given by the couple

Jz = ε(z)T (z) Jz̄ = ε̄(z̄)T̄ (z̄) . (4.28)

After pluggig these currents back into (4.22), we get the conformal Ward-Takahashi identity :

δε,ε̄O(w, w̄) = − 1

2πi

∮
Cw

(
dz ε(z)T (z) + dz̄ ε̄(z̄)T̄ (z̄)

)
O(w, w̄) , (4.29)

where both the contour integrals around w and w̄ are counter-clockwise in z and in z̄; remember that
the Ward-Takahashi identities are operator equations, so, here, both T (z)O(w, w̄) and T̄ (z̄)O(w, w̄) are
taken radially ordered, namely |z| > |w| and |z̄| > |w̄|.
So we have learnt that the way an operator O changes under an in�nitesimal conformal transformation
is encoded in it OPE with the energy-momentum tensors T (z), T̄ (z̄).
If we specialize this formula to a primary �eld φ(w, w̄) of dimension (h, h̄), we can be more precise; indeed
we can substitute the left side of (4.29) with the last line of (4.14) to obtain

δε,ε̄Φ(w, w̄) = −(h∂wε(w) + ε(w)∂w + h̄∂w̄ ε̄(w̄) + ε̄(w̄)∂w̄)Φ(w, w̄) =

= − 1

2πi

∮
Cw

(
dz ε(z)T (z) + dz̄ ε̄(z̄)T̄ (z̄)

)
φ(w, w̄) ,

(4.30)

and by using the standard formulae

ε(w)∂wφ(w, w̄) =

∮
Cw

dz
1

2πi

ε(z)

z − w
∂wφ(w, w̄)

∂wε(w)φ(w, w̄) =

∮
Cw

dz
1

2πi

ε(z)

(z − w)2
φ(w, w̄) ,

(4.31)

we end up with the very important formulae for the OPEs between a primary �eld and the energy-
momentum tensor, namely

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) +O(1)

T̄ (z̄)φ(w, w̄) =
h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄) +O(1) .

(4.32)

4.7 The Virasoro generators

Given the importance of the energy-momentum tensor in a CFT, the most natural question is to ask what
happens if we take φ(w, w̄) to be T (w) or T̄ (w̄) in formulae (4.32). The energy-momentum tensor Tαβ
has for sure scaling dimension ∆[Tαβ ] = h+ h̄ = 2 because after integrating it over the space direction we
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obtain the conserved energy of the system. T (w) is chiral and T̄ (w̄) anti-chiral, so we understand that
the �rst one has conformal dimensions (h, h̄) = (2, 0) and the latter has (h, h̄) = (0, 2). So we must have

T (z)T (w) = ...+
2

(z − w)2
T (w) +

1

z − w
∂wT (w) +O(1)

T̄ (z̄)T̄ (w̄) = ...+
2

(z̄ − w̄)2
T̄ (w̄) +

1

z̄ − w̄
∂w̄T̄ (w̄) +O(1) ,

(4.33)

where we denoted with the dots the hypothetical presence of terms of higher singular behaviour. Ob-
viously, this hypothetical term must have the same scaling dimension of the product of two energy-
momentum tensors, so any operators that appear on the right-hand-side must be of the form

On
(z − w)n

,

with ∆[On] = 4−n. But, there are no operators with negative conformal dimensions in a unitary theory
so the most singular term has to be a constant that multiplies (z − w)−4 and we write

T (z)T (w) =
c/2

(z − w)4
+

h

(z − w)2
T (w) +

1

z − w
∂wT (w) +O(1)

T̄ (z̄)T̄ (w̄) =
c̄/2

(z̄ − w̄)4
+

h̄

(z̄ − w̄)2
T̄ (w̄) +

1

z̄ − w̄
∂w̄T̄ (w̄) +O(1) ,

(4.34)

where we didn't include terms proportional to (z − w)−3 because the stress energy momentum tensor is
bosonic and, so, in a radial ordered equation we must have T (z)T (w) = T (w)T (z). The constants c and
c̄ are called central charges and, roughly speaking, they somehow count the number of degrees of freedom
in the CFT48; so, if we want to have a theory that describes the same number of degrees of freedom both
in the chiral and anti-chiral sector49, we have to require c = c̄.
By comparing (4.34) with (4.32), we discover that the the energy-momentum tensor is a primary �eld
only if c = c̄ = 0. Here we introduced the charges by hand; one way to compute them is to determine
the commutator relations among the modes Ln of the energy-momentum tensor, because the information
contained in the OPE of two operators is equivalent to the commutator relations among their modes.
Indeed, let a(z) and b(z) be two �elds of our CFT, and let

A =

∮
C0

dz a(z) , B =

∮
C0

dz b(z)

be their contours integrals around 0 ∈ C, with C0 oriented counterclockwisely. Then, if we remember
about the omnipresent radial ordering, it is not di�cult to show the validity of the following two equations
as operatorial ones:

[A, b(z)]± =

∮
Cz

dw a(w)b(z)

[A,B]± =

∮
C0

dz

∮
Cz

dw a(w)b(z) ,

(4.35)

where we denoted with [·, ·]+ the anticommutator, that has to be used when both �elds are Grassmann
odd and with [·, ·]− the anticommutator (that has to be used in all other cases). These formulae are
extremely useful in CFT, because they relate OPEs to commutation relations and allow us to translate
into operator language the dynamical or symmetry information contained in the OPEs.
If we de�ne the modes Ln of T (z) as in (4.18), namely as

Ln =
1

2πi

∮
T (z)zn+2−1 =

1

2πi

∮
T (z)zn+1 , (4.36)

48For example, the central charge of a system consisting of D free-bosons is precisely D. We will see that the central
charge represents an anomalous behaviour of the conformal theory, so, to be more precise, it counts the anomalous degrees
of freedom of the quantum theory.

49Which is the case for closed string theory, because of the level matching condition.
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then we can insert the OPE (4.34) into (4.35) to get that the Virasoro Generators Ln satisfy

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 . (4.37)

The set of these commutations relations de�ne the so-called Virasoro algebra, which is precisely the unique
central extension of the Witt algebra.
We can expand ε(z) and ε̄(z̄) appearing in (4.29) into their Laurent series as we have done in (4.5);
then, it is not di�cult to read from equation (4.29) (one has only to apply (4.35)) that Ln, L̄n are - at
the quantum level - the generators for the conformal transformation δz ∼ zn+1, δz̄ ∼ z̄n+1. In other
words, the Virasoro generators are the �quantum version� of the Witt generators and, by comparing their
algebras, we can understand that the central charges are due to a pure quantum e�ect: if c, c̄ 6= 0, then
the conformal algebra is anomalous.
To be more precise, it is possible to show that for a 2−dimensional CFT, the conformal anomaly is given
by the expectation value of the trace of the energy-momentum tensor (that, in complex coordinates, is
Tzz̄). In fact, whereas at the classical level we have, thanks to dilatation invariance, that

Tzz̄ = 0 ,

at the quantum level we instead have (see [11] for a proof)

〈Tzz̄〉 = − c

12
R , (4.38)

where we denoted with R the Ricci scalar of the worldsheet. This formula is saying that the curvature
and the charges are somehow connected to the breaking of the dilatation invariance at the quantum level.
This is intuitive for the curvature, because a non-vanishing one implies the notion of a typical length scale
in the theory. Instead, it is not intuitive for the central charge; but also c does de�ne a length scale in the
theory, because it turns out (see again [11]) that c 6= 0 is equivalent to the presence of a vacuum-energy
on the cylinder.
The formula (4.38) is interesting, because on the right side there is no dependence on the states that
we used to sandwich Tzz̄ on the left. According to this formula, it is not important to know the (�nite)
energies of these states: the conformal anomaly is the same at all energies. Indeed, from a practical point
of view, the conformal anomaly is completely50 due to the normal ordering prescription that we have
to specify at the quantum level to remove short distance divergences; obvioulsy, at very short distances
all the �nite energy states look basically the same, so it makes sense that there is no dependence on the
state on the right side of (4.38).
In QFT, the normal order : φiφj : is usually de�ned as moving all creation operators to the left. In the
setting of a 2−dimensional CFT, one can rigorously prove (see [16]) that this notion of normal ordering
is equivalent to picking out the non-singular term in the radially ordered OPE, that is

: φi(z)φj(w) :≡ R[φi(z)φj(w)]− singular terms . (4.39)

Clearly, 〈: φi(z)φj(w) :〉 = 0, and this is essential to prove Wick's theorem for two �elds, which is

R[φi(z)φj(w)] ≡ 〈φi(z)φj(w)〉+ : φi(z)φj(w) : . (4.40)

As in a general QFT, one can inductively use the Wick theorem for two �elds to relate radial-ordered
and normal-ordered products of more than two �elds by replacing any pair of them by their two-point
correlator.
In the literature it is common not to write the normal order symbol, by giving it as understood. The
reader should be aware that every composite operator that involves �elds whose OPEs are singular has
always to be taken in its normal ordered form, otherwise it is not well-de�ned51.

50As we have seen for the string, the quantum anomaly a, ã a�ecting L0, L̃0 arose because of the ordering prescription
that we introduced.

51For instance, see the T (z) ∼ ∂X∂X and the eikX(z) ∼
∑
nX

n operators that will appear later in the CFT of the single

boson; the OPEs ∂X∂X and X(z)X(z) contain singular terms, so T (z) and eikX(z) have to be considered in their normal
ordered version.
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4.8 State-operator correspondence

As always, the �rst step to buid the Hilbert space of the theory is to de�ne the vacuum state. For a
2−dimensional CFT on S2, we distinguish between the in-vacuum |0〉 and the out-vacuum 〈0| respectively,
corresponding to the vacuum at σ2 = −∞ and at σ2 = +∞.
Given that we have already subtracted the in�nities that naturally arise in the quantum theory by taking
all �elds in their normal ordered form, we require the vacuum to give well-de�ned states under the action
of the energy-momentum tensor operator.
Regularity of T (z) =

∑
n z
−n−2Ln at σ2 = −∞, i.e. at z = 0, implies that

Ln |0〉 = 0 ∀n ≥ −1 , (4.41)

and regularity at σ2 = +∞, i.e. at z =∞ (better, at u = −1/z = 0) imposes

〈0|Ln = 0 ∀n ≤ 1 . (4.42)

By looking at these two conditions we understand that the only Virasoro generators that annihilate both
|0〉 and 〈0| are L−1, L0 and L1. Obviously, analogous relations hold for the anti-chiral sector and we get
that the vacuum of a 2−dimensional CFT is invariant only under PSL(2,C)× PSL(2,C).
Then, we can associate a state to every quasi-primary52 �eld Φ(z, z̄) by postulating that also the action
of Φ(z, z̄) on the vacuum is regular at σ2 = ±∞. For a chiral �eld φ(z) =

∑
n φnz

−n−h of conformal
dimension h, this implies

φn |0〉 = 0 ∀n ≥ 1− h
〈0|φn = 0 ∀n ≤ h− 1 ,

(4.43)

where we used the intuitive53 de�nition of the hermitian conjugate for a mode, that is (φn)† = φ−n.
We can now de�ne the in-state and out-state as

|φin〉 =φ−h |0〉 = lim
z→0

φ(z) |0〉 = φ(0) |0〉

〈φout| = 〈0|φh .
(4.44)

In these two formulae is encoded the operator-state correspondence: thanks to the conformal map between
the cylinder and the complex plane, we can bring the entire spatial slice σ2 = −∞ to the point z = 0
and, thus, in the path integral54 the information about the state corresponding to a �eld con�guration in
the remote past is represented by a local operator inserted at the origin of the plane. This is a peculiarity
of CFT that doesn't happen in a general QFT.

4.9 Highest weight states

As usual, we are interested in the transformation properties of the states of our theory. Thanks to the
operator correspondence map, we can focus on the transformation properties of the �elds.
With the help of the formulae (4.35), the OPE between the energy-momentum tensor and a chiral primary
�eld φ(w) becomes

[Lm, φ(z)] = zm(z∂z + (m+ 1)h)φ(z) , [Lm, φn] = ((h− 1)m− n)φm+n . (4.45)

These results can be used to determine the action of the Virasoro generators on the primary state
|φ〉 = φ(0) |0〉:

L0 |φ〉 = h |φ〉
Ln |φ〉 = 0 ∀n > 0

L0(L−n |φ〉) = (n+ h)(L−n |φ〉) ∀n > 0 ;

(4.46)

52In order to talk about the values of φ(z) at both z = 0 and u = 0, we need a globally de�ned �eld on the sphere.
53To de�ne the Hilbert space it is not enough to specify its states; also a scalar product is needed. De�ning the scalar

product is equivalent to de�ne the hermitian conjugation. It turns out that the right de�nition for the hermitian conjugation

is Φ†(z, z̄) = z̄−2hz−2h̄Φ(1/z̄, 1/z), see [15] for details. For the modes, this means Φ†m,n = Φ−m,−n, as one would intuitively
guess.

54A clear reference for understanding this is [8].
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therefore we recognize Ln and L−n as lowering and raising operator with respect to the eigenstates of
L0. The states corresponding to the primary �elds, namely the states of the theory satisfying (4.46), are
called highest weight states. These states are very important, because they are the building block of the
Hilbert space of the 2−dimensional CFT. Indeed, the complete Hilbert space is obtained by acting with
L−n on all highest weight states φj , where the j−subscript labels the primary �elds. One usually calls
Verma module Vhj the subspace of the Hilbert space spanned

55 by the set of all the states of the form

|φk1...km
j 〉 = L−k1

...L−km |φj〉 , ki > 0 (4.47)

of conformal weight h = hj +
∑m
i ki.

By means of the operator-state correspondence one can de�ne a conformal �eld associated to a state in
the Verma module Vhj and it turns out that it is not primary; instead, the �eld that creates the state

|φk1...km
j 〉 from the PSL(2,C)× PSL(2,C) invariant vacuum is called descendant �eld φk1...km

j (z).

With these concepts we consider our introduction to CFT as concluded. Now we are going to show a
short application of these abstract ideas to bosonic string theory. We have already seen that the gauge-
�xed Poyakov action consists of the matter sector (D free bosonic �elds with a second-order Lagrangian)
and of the ghost sector (a couple of anticommuting �elds de�ning a �rst-order Lagrangian). So, we are
going to focus on the CFT of a single free boson and on the CFT de�ned by a �rst-order Lagrangian.

4.10 A single free boson on the sphere

The action of a single free boson on the sphere is

S =
1

2πα′

∫
dzdz̄∂X(z, z̄)∂̄X(z, z̄) , (4.48)

which gives immediately the classical equation of motion ∂∂̄X(z, z̄) = 0. It is important to check that
this equation holds also at the quantum level as an operator equation inside the path integral, because,
in that case, we can still use the essential decomposition X(z, z̄) = X(z) + X̄(z̄). But we simply have

0 =
1

Z

∫
D[X]

δ

δX
e−S = − 1

Z

∫
D[X]

δS

δX
e−S =

1

πα′
〈∂∂̄X(z, z̄)〉 , (4.49)

and the classical equation of motion does hold as an operator equation.
With a similar trick, we can compute

0 =

∫
D[X]

δ

δX

(
e−SX(z′, z̄′)

)
=

=

∫
D[X]e−S

(
δ(2)(z − z′, z̄ − z̄′) +

1

πα′
∂z∂z̄X(z, z̄)X(z′, z̄′)

)
,

(4.50)

namely

〈∂z∂z̄X(z, z̄)X(z′, z̄′)〉 = −πα′〈δ(2)(z − z′, z̄ − z̄′)〉 , (4.51)

which can be integrated56 to

〈X(z, z̄)X(w, w̄)〉 = −α
′

2
log(|z − w|2) . (4.53)

Correspondigly, the chiral correlators are

〈X(z)X(w)〉 = −α
′

2
log(z − w) , 〈X̄(z̄)X̄(w̄)〉 = −α

′

2
log(z̄ − w̄) . (4.54)

55It is possible to show that for k1 ≥ k2 ≥ ... ≥ km the states |φk1...km
j 〉 are linearly independent.

56Remember that

∂z
1

z̄
= ∂z̄

1

z
= 2πδ(2)(z, z̄) (4.52)

.
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Taking the derivatives of equations (4.54), we get the 2−point functions for the �elds ∂X and ∂̄X̄, which
are

〈∂X(z)∂X(w)〉 = −α
′

2

1

(z − w)2
, 〈∂̄X̄(z̄)∂̄X̄(w̄)〉 = −α

′

2

1

(z̄ − w̄)2
. (4.55)

The �elds ∂X, ∂̄X̄ are important, because the energy-momentum tensor can be written in terms of them,
i.e.

T (z) = − 1

α′
: ∂X(z)∂X(z) : T̄ (z̄) = − 1

α′
: ∂X̄(z̄)∂X̄(z̄) : . (4.56)

Now we can compute the OPE between the energy-momentum tensor and all the �elds of our theory. We
discover that

• X and X̄ have dimensions (0, 0). In fact

T (z)X(w) =R
[
− 1

α′
: ∂X(z)∂X(z) : X(w)

]
=

=− 2

α′
∂X(z)∂X(z)X(w) + ... = ∂X(z)

1

z − w
+ ... =

=
∂X(w)

z − w
+ ...

(4.57)

• the �elds ∂X and ∂̄X̄ are primary �elds of conformal dimensions (1, 0) and (0, 1), because

T (z)∂X(w) =
∂X(w)

(z − w)2
+
∂∂X(w)

(z − w)
+ ... (4.58)

• the descendant �elds (n > 1) ∂nX and ∂̄nX̄ are �elds of conformal dimensions (n, 0) and (0, n).
They are not primaries, as it is not di�cult to check for ∂2X, by taking the derivative ∂w of (4.58);

• the energy-momentum tensor is indeed quasi-primary of conformal dimension (2, 0):

T (z)T (w) =
1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ ... (4.59)

So we have learnt that:

• the �elds ∂X and ∂̄X̄ are the fundamental57 �elds in the game: being primaries, they are the �elds
from which the Hilbert space of theory can be built. Note that, on the complex plane, these �elds
take the following form

∂X(z) = −i
√
α′

2

∑
n∈Z

αn
zn+1

∂̄X̄(z̄) = −i
√
α′

2

∑
n∈Z

αn
z̄n+1

,

(4.60)

with α0 = α̃0 =
√

α′

2 p̂ and

αn = i

√
2

α′

∮
C0

dz

2πi
zn∂X(z)

α̃n = i

√
2

α′

∮
C0

dz̄

2πi
z̄n∂X̄(z̄) ,

(4.61)

where the last two expressions are valid for all n ∈ Z.
57The �elds X and X̄ are not fundamental, because their correlation functions scale in a logaritmic way, see (4.54);

conformal �eld theories are scale invariant, and this requires correlation functions of conformal �elds to behave as power
laws.
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• the central charges for one free integer-moded real boson are c = c̄ = 1.

We conclude this section by saying that there is another very important primary �eld in this CFT, which
is given by the (normal ordered, of course) exponential of the X, X̄ �elds; here its useful OPEs are:

∂X(z) : eikX(w) : = −iα
′k

2
: eikX(w) :

1

z − w
+ ...

T (z) : eikX(w) : =
α′k2/4

(z − w)2
: eikX(w) : +

∂w
(z − w)

: eikX(w) : +...

: eik1X(z) :: eik2X(w) : = (z − w)α
′(k1k2) : ei(k1+k2)X(w)(1 +O(z − w)) : ,

(4.62)

and, in particular, from the second line we get that : eikX(z,z̄) : is a primary �eld of conformal dimensions
(h, h̄) = (α′k2/4, α′k2/4).

4.11 First-order Lagrangians

In complex coordinates, the b− c ghost action reads as

Sg =
1

2π

∫
d2z(bzz∂z̄c

z + bz̄z̄∂zc
z̄) , (4.63)

where cz(z) is a worldsheet vector so it has h = −1 and, correspondingly, bzz(z) has dimension h = 2.
As we have done for the single boson, we can show that the equations of motion are valid as operator
equations; given that the equations of motion impose on the chiral and anti-chiral sectors to be indepen-
dent, it is enough to analyze only one of them. Thus, by following the approach of [7], we decide to study
the chiral part of a theory that is sligthly more general:

S =
1

2π

∫
d2zb∂̄c , (4.64)

where c(z) and b(z) have conformal dimensions h = 1 − λ and h = λ. The statistics of b and c is
parametrized by ε: ε = 1 if they are Grassmann odd and ε = −1 if they are Grassmann even.
The importance of this �rst-order lagrangian relies on the fact that for λ = 2, ε = 1 it describes the
b − c theory of (4.63) (the conformal ghost system) whereas, for λ = 3/2, ε = −1 it describes the
�superconformal ghost system�. The latter will appear in the context of the superstring, where we will
have more gauge redundancie to �x and this will lead us to introduce another couple of conjugate �elds,
which are bosonic �elds with half-integer spin and which form the so-called β − γ system.
The equations of motion are easily found to be

∂̄b = 0 i.e. b = b(z)

∂̄c = 0 i.e. c = c(z) ,
(4.65)

and the propagator is

〈c(z)b(w)〉 =
1

z − w
. (4.66)

The basic OPEs are

c(z)b(w) =
1

z − w
+ ... , b(z)c(w) =

ε

z − w
+ ... , (4.67)

where, as usual, the dots denote the presence of regular terms; the b(z)b(w) and c(z)c(w) products are
non-singular.
Following (4.17), we decompose the b and c �elds into the mode expansions

b(z) =
∑

n∈a−λ+Z
z−n−λbn , b†n = εb−n

c(z) =
∑

n∈a+λ+Z
z−n−1+λcn , c†n = c−n ,

(4.68)
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where we introduced the constant a for reasons that will become clear in the superstring. Indeed, for
the case of half-integer λ, there are two sectors: the Ramond one (R), which is speci�ed by a = 0,
and the Neveu-Schwarz (NS) characterized by a = 1/2. Anyway, the OPEs (4.67) are equivalent to the
(anti)commutator relations

[cm, bn]ε = δm+n,0 . (4.69)

As we explained in (4.43), the modes have to act in the following way on the PSL(2,C) invariant vacuum:

bn |0〉 = 0 ∀n ≥ 1− λ
cn |0〉 = 0 ∀n ≥ λ . (4.70)

The energy-momentum tensor is

T =− λ : b∂c : +(1− λ) : (∂b)c : =

=
1

2

(
: (∂b)c : − : b∂c :

)
+

1

2
εQ∂(: bc :) ,

(4.71)

where we introduced the quantity

Q ≡ ε(1− 2λ) , (4.72)

which will aquire the meaning of a background charge soon.
From the energy-momentum tensor, we can �nd the Virasoro generators as in (4.36):

Ln =
∑
m

(m− (1− λ)n) : bn−mcm : . (4.73)

The OPEs of the �elds in the game with the energy momentum tensor are:

T (z)b(w) =
λb(w)

(z − w)2
+

∂b(w)

(z − w)
+ ...

T (z)c(w) =
(1− λ)c(w)

(z − w)2
+

∂c(w)

(z − w)
+ ...

T (z)T (w) =
ε(1− 3Q2)/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ ... ,

(4.74)

and we �nd that the b, c �elds are primaries of the expected dimensions h = λ, h = 1 − λ and that the
central charge of the system is

c = ε(1− 3Q2) . (4.75)

Actually, there is another important �eld in the game, the Noether current j(z) associated to the following
U(1) symmetry of the action (4.64):

c(z) 7→ eiαc(z) b(z) 7→ e−iαb(z) α ∈ R. (4.76)

By applying the Noether theorem we �nd

j(z) = − : b(z)c(z) : , (4.77)

whose OPE with the energy-momentum tensor is

T (z)j(w) =
Q

(z − w)3
+

j(w)

(z − w)2
+
∂j(w)

z − w
+ ... .

(4.78)
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This means that the number current j(z) is a primary �eld of conformal dimension h = 1 only in the
case of vanishing Q, i.e. when b and c have the same conformal dimension h = 1/2.
We can decompose j as usual as

j(z) =
∑
n

z−n−1jn , (4.79)

with

jn =
∑
m

ε : cn−mbm : , [jm, jn] = εmδm+n , (4.80)

where the commutation relations come from the OPE

j(z)j(w) =
ε

(z − w)2
+ .... . (4.81)

The other OPEs which involve the number current are

j(z)b(w) =
−b(w)

z − w
+ ... , j(z)c(w) =

c(w)

z − w
+ ... , (4.82)

which re�ect the fact that b and c have U(1) charges −1 and +1, as we see from (4.76), because the
conserved Noether charge associated58 to the current j(z) is nothing but Nj ≡

∮
C0

dz
2πij(z).

To understand the meaning of the quantity Q, we begin with rewriting the OPE (4.78) in the form of
the corresponding commutators

[Ln, jm] =
1

2
Qn(n+ 1)δn+m,0 −mjm+n , (4.83)

and we see that j(z) transforms covariantly under translations (L−1) and under dilatations (L0), but
not under special conformal transformations (L+1), i.e. the number current is not a quasi-primary �eld.
Then, we note that the Hermiticity conditions (4.68) easily give j†n = −j−n for n 6= 0. Instead, the case

n = 0 is delicate because of normal ordering ambiguities and, to �nd j†0, we can alternatively exploit the
anomalous commutators (4.83):

(j0)† =(−[L−1, j1])† = [L†−1, j
†
1] = [L1,−j−1] = −[L1, j−1] =

=− (Q+ j0) .
(4.84)

The relation j†0 = −j0 − Q has striking consequences on the operator expectation values of the theory.
Indeed, if Op is an operator with U(1) charge p, i.e. [j0, Op] = pOp and |q〉 is a state with U(1) charge q,
we �nd that

p〈q′|Op|q〉 =〈q′|[j0, Op]|q〉 = 〈j†0q′|Op|q〉 − 〈q′|Opq|q〉 =

=(−q′ −Q− q)〈q′|Op|q〉 ,
(4.85)

which means that

p+ q + q′ +Q 6= 0 =⇒ 〈q′|Op|q〉 = 0 ; (4.86)

we then normalize the states such that

〈−q −Q|q〉 = 1 (4.87)

and this makes the meaning of Q as a background charge apparent. By passing from the classical to
the quantum level, the background charge Q appears because of the normal ordering prescription (which
a�ects j0). This is the same mechanism that makes the central charge c emerge; we know that the central
charge is an anomaly in the theory (it signals the breaking of the dilatation invariance) and we wonder

58As always, the conserved quantity is simply given by the integration of the conserved current over the spatial directions
of the theory. In the radial quantization, the spatial slices are given by the circles centered in z = 0.
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whether the background charge Q is also an anomaly. We can already guess that the answer is yes, by
looking at the relation (4.75). The precise statement is that Q is an anomaly which a�ects the classical
conservation of the number current, because it is possible to show59 that

∇zjz(z) =
1

4
QR , (4.88)

where R, as usual, is the Ricci scalar of the worldsheet.

Bosonization of the �rst order Lagrangian systems The number current is extremely useful not
only because its anomalous nature constrains the theory to satisfy (4.86), but also because it lets us
bosonize the system, giving us the opportunity to equivalently describe the latter in terms of a bosonic
conformal �eld theory. We are going to present the bosonization here60, even though it will become useful
only in the context of the superstring; at a �rst reading, this paragraph can be omitted.
The key idea is that the number current characterized by the OPE (4.81), namely by

j(z)j(w) =
ε

(z − w)2
+ ... , (4.89)

is all what we need to de�ne a new energy-momentum tensor Tj(z) which satis�es the expected OPE
(4.78) with j, which is

Tj(z)j(w) =
Q

(z − w)3
+

j(w)

(z − w)2
+
∂j(w)

z − w
+ ... .

(4.90)

In fact, if we de�ne

Tj(z) ≡ ε
(
− 1

2
(j(z))2 − 1

2
Q∂zjz(z)

)
, (4.91)

then it is not di�cult to recover (4.90) and this means that Q still assumes the meaning of a background
charge. Note that in this approach we are considering j as a general �eld satisfying (4.89), in our mind
there is not necessarily the �eld j given in terms of the b and c �elds as in (4.77). This is the crux: we
want to �nd another set of �elds that equivalently describe the same CFT as the b and c �elds.
If we compute the OPE of the new energy-momentum tensor Tj with itself, we �nd

Tj(z)Tj(w) =
(1− 3εQ2)/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ ... , (4.92)

and, thus, the new central charge cj is now cj = (1− 3εQ2).
If we continue to call c = ε(1 − 3Q2) the central charge characterizing the theory of the b, c �elds, we
immediately note that

c =cj if ε = +1 (Fermi statistics for b, c �elds)

c =cj − 2 if ε = −1 (Bose statistics for b, c �elds) .
(4.93)

The current j and its stress energy momentum tensor Tj completely characterize the Fermi theory,
because, in this case, we have c = cj and, so, we can identify T and Tj .
Instead, in the case of Bose statistics, there is a �residual� central charge c−2 given by

c−2 ≡ c− cj = −2 ;

it is natural to think about it as the e�ect of a third energy-momentum tensor T−2 which commutes with
j and Tj and which satis�es

T = Tj + T−2 . (4.94)

59See [17].
60We are going to closely follow the approach of [7], where the usufulness of the bosonization of the b, c system was

discussed for the �rst time.
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By looking at formula (4.75), we see that we can take T−2 to be the energy-momentum tensor associated
to an auxiliary linear Fermi system with λ−2 = 1 and Q−2 = −1, consisting of a �eld η(z) of conformal
dimension h = 1 and of a �eld ξ(z) of conformal dimension h = 0. In other words, to bosonize the b, c
system, only the �eld j is needeed in the case of Fermi statistics, but we have to add the �elds η, ξ in the
case b, c were commuting �elds.
In any case, to bosonize the b, c system, we recognize that if we impose

j(z) = ε∂zφ(z)

〈φ(z)φ(w)〉 ∼ ε log(z − w) ,
(4.95)

namely if we impose for j to be the conserved current associated to the translation invariance of a free
boson φ, then we do recover (4.89). This suggests that we should be able to express the b, c CFT in terms
of the CFT of a single boson φ61. The action that describes the bosonized current (4.95) is

Sφ = − 1

4π

∫
d2z
√
h
(
ε∂zφ∂z̄φ+

1

2
QRφ

)
, (4.96)

where we added also the term with Q in order to reproduce the anomalous behaviour of j = ε∂zφ; indeed,
formula (4.88) is recovered simply by the equation of motion of the action SQ.
The last step needed to complete the bosonization of the b, c system is to �nd, within the theory deter-
mined by this new action, primary �elds that can correspond to the old b, c �elds.
We see that the primary �eld : eqφ(z) : satis�es

: ek1φ(z,z̄) :: ek2φ(w,w̄) : = (z − w)ε(k1k2) : e(k1+k2)φ(w,w̄)(1 +O(z − w)) : , (4.97)

and, so, in the case of Fermi statistics for b, c, namely for ε = 1, we get

: eφ(z,z̄) :: e−φ(w,w̄) : ∼ 1

z − w
∼ c(z)b(w)

: e−φ(z,z̄) :: eφ(w,w̄) : ∼ 1

w − z
∼ b(w)c(z) ,

(4.98)

which are precisely the OPE of (4.67). Thus, for the anticommuting b, c �elds we guess the correspondence

c(z)←→: eφ(z) : b(z)←→: e−φ(z) : .

In the case of commuting b, c �elds, this guess is clearly wrong, because the OPE among : eφ(z,z̄) : and
: e−φ(w,w̄) : has odd powers of (z − w), meaning that these �elds behave as Grassmann odd �elds; to
cook up commuting b, c �elds, the �elds e±φ(z) have to be combined with other fermionic �elds. We guess
that the fermionic �elds needed are precisely those coming from the T−2's theory, namely η(z) and ξ(z).
Indeed, from

c(z)←→: eφ(z) : η(z) b(z)←→: e−φ(z) : ∂ξ(z) ,

we recover the OPEs of (4.67) in the case of Bose statistics (ε = −1).
In order to have a proper identi�cation among conformal �elds, it is not enough to recover the right OPEs
among �elds; one has also to check that their conformal properties do match.
The conformal dimensions and the charge of : eqφ(z) : are determined by

T (z) : eqφ(w) : =
εq(q +Q)/2

(z − w)2
: eqφ(w) : +

∂w : eqφ(w) :

z − w
+ ... .

j(z) : eqφ(w) : =
q

z − w
: eqφ(z) : +... ;

(4.99)

and the charges of the η, ξ �elds are clearly vanishing, because they do not depend on the �eld φ. With
this information it is not di�cult to check that our guesses (both of them, for both statistics) identify
the b, c �elds with conformal �elds of the same conformal dimension and charge.
To sum up:

61This guess turns out to be completely true only in case b, c are anti-commuting. See later.
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1. in case of Fermi statistics (ε = 1), the �elds b, c themselves can be bosonized simply as the ex-
ponential of φ(z) where the bosonic �eld φ(z, z̄) = φ(z) + φ̄(z̄) is described by the action (4.96),
namely

b(z) =: e−φ(z) : , c(z) =: eφ(z) :

φ(z)φ(w) ∼ log(z − w) ;
(4.100)

2. in case of Bose statistics (ε = −1), the �bosonization� of the b, c �elds needs also the introduction
of T−2 - namely the introduction of the η and ξ �elds - in the system and we have

b(z) =: e−φ(z) : ∂ξ(z) , c(z) =: eφ(z) : η(z)

φ(z)φ(w) ∼ − log(z − w) ;

η(z)ξ(w) ∼ ξ(z)η(w) ∼ 1

z − w
.

(4.101)

4.12 The critical dimension from the CFT perspective

The starting point of string theory is the Polyakov action SPoly[Xµ, hαβ ], which enjoys both local Weyl
and di�eomorphism invariance on the worldsheet. The Faddeev-Popov procedure allows us to gauge �x
the theory; in particular, we can do it locally so as to obtain a CFT on each patch.
The gauge �xed action consists of D copies of the free-boson-CFT (one for each Xµ) and of the b, c−ghost
CFT; these theories don't talk with each other, so their central charges sum together and we get that the
total central charge ctot of the system is given by

ctot ≡ c(D free bosons) + c(bc) = Dc(1 free boson) + ε(1− 3Q2) = D − 26 , (4.102)

where we used the fact that the bc−ghost system is a �rst-order Lagrangian system characterized by
ε = 1, λ = 2 (so Q = −3).
From the perspective of the conformal �eld theory de�ned on each patch, a non-vanishing central charge
is not a problem, given that the conformal transformations are here seen as global symmetries. From
the perspective of the Polyakov action, a non-vanishing central charge really is a big problem, because it
means that the Weyl invariance is anomalous. Indeed, from the relation

〈Tzz̄〉 = −c
tot

12
R , (4.103)

we see that, if ctot 6= 0, then we are able to distinguish which gauge choice has been selected for �xing the
Weyl invariance, because the Ricci scalar of the worldsheet does transform under a general Weyl trans-
formation. For ctot 6= 0 we have an observable (the expectation value of the energy-momentum tensor)
that depends on which conformal gauge choice we used and our quantum theory is not Weyl invariant.
This is not acceptable, because Weyl transformations are not symmetries, but gauge redundancies of the
theory; so, if we want to obtain a quantum theory that has the same degrees as freedom of the classical
one, gauge transformations cannot be anomalous. This leads us to impose the vanishing of the central
charge

ctot = D − 26
!
= 0 , (4.104)

and we then recover that the quantum bosonic string de�nes a consistent theory only if it is moving in a
26−dimensional spacetime.
Here we can appreciate the importance of the presence of the b, c−ghost system because it is the latter
that precisely �xes the central charge of the matter sector. On the other hand, the presence of �elds
with the wrong spin-statistics (like b and c, which are anticommuting �elds with integer spin) raises the
question of the physical state condition. But from the path integral quantization of gauge theories in
QFT, we already know how to deal with this problem: the physical state condition is implemented by
analyzing the BRST symmetry of the system.
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4.13 BRST quantization

Here we are going to brie�y introduce the basics about the BRST quantization in the Polyakov string.
By following the approach of [17] we want to give the reader an operative introduction to the BRST
quantization; for further details, [11] is a good reference.

We observe that, after �xing the �at gauge by means of the Faddeev Popov method, the gauge �xed
action Sf

Sf ≡ SPoly[Xµ, ĥαβ ; Σ0] + Sg =
1

2πα′

∫
d2z
(
∂X · ∂̄X + α′b∂̄c+ α′b̄∂c̄

)
(4.105)

enjoys a global, fermionic, residual symmetry. Let ε be a constant Grassmann odd parameter; then this
symmetry is generated by the transformation (let's focus on the chiral part, the antichiral one is analogue)

δεX
µ(z) = iε∂Xµ(z)c(z)

δεc(z) = iεc(z)∂c(z)

δεb(z) = iεT tot(z) ,

(4.106)

where we denoted with T tot the total energy-momentum tensor, T tot = TX +T bc. This transformation is
called BRST symmetry ; its associated Noether charge is called BRST charge QB , so we can also rewrite
(4.106) as

δεX
µ(z) = ε[QB , ∂X

µ(z)]

δεc(z) = ε{QB , c(z)}
δεb(z) = ε{QB , b(z)} .

(4.107)

One can compute the Noether current jB associated to the BRST symmetry to �nd that

jB(z) =: c(z)

[
TX(z) +

1

2
T bc(z)

]
: (4.108)

and this means that the QB satisfying (4.107) is given by (here T tot = TX + T bc)

QB =

∮
dz

2πi
c(z)

[
T tot(z)− : ∂(c(z)b(z)) :

]
=∮

dz

2πi
: c(z)

[
TX(z) +

1

2
T bc(z)

]
: =

=
∑
m∈Z

: c−m

(
LXm +

1

2
Lbcm

)
:

LXn =

+∞∑
m=−∞

(
1

2
: αn−m · αm :

)

Lbcn =

+∞∑
m=−∞

(
(n+m) : bn−mcm :

)
,

(4.109)

from which we can see that

Q†B = QB . (4.110)

Another important feature of the BRST charge is that it must be nilpotent, i.e. it has to satisfy

Q2
B = 0 . (4.111)

But, in the quantum theory, the evaluation of Q2
B = 1

2{QB , QB} is complicated by the normal ordering
and one would �nd

Q2
B =

1

2
{QB , QB} =

1

2

+∞∑
m,n=−∞

(
[Ltotm , Ltotn ]− (m− n)Ltotm+n

)
c−mc−n , (4.112)
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which implies that Q2
B = 0 if and only if the total anomaly of the matter-plus-ghost system vanishes

(compare (4.112) with (4.37)). In other words, consistency of the BRST symmetry is equivalent to the
abscence of the total Weyl anomaly and, so, to the critical dimension condition.
Actually, now we can gain another interpretation of the reason why we need the critical dimension in
string theory. As always, we can add a total derivative to the Noether current of a symmetry without
a�ecting the (physical) value of the associated charge. To the de�nition (4.108) of jB , we add, by hand,
the total derivative 3

2∂
2c to obtain62

jB(z) ≡: c(z)

[
TX(z) +

1

2
T bc(z)

]
: +

3

2
∂2c(z) ; (4.113)

with this de�nition, the OPE of the BRST-current with the total energy-momentum tensor of the system
is

T tot(z)jB(w) =
ctot/2

(z − w)4
c(w) +

jB(w)

(z − w)2
+
∂jB(w)

z − w
+ ... , (4.114)

from which we can see that jB is a tensor if and only if the critical dimension condition D = 26 is
satis�ed. But we must require for jB to be a tensor under conformal transformations, because the latter
are the transition functions from one patch to the other one. In fact, if jB didn't transform well under
such transformations, it would imply that the de�nition of QB depends on the patch and, with it, also
the meaning of the physical state condition de�ned by QB ! Said another way: if QB de�nes the notion of
physical state and if we want for this notion not to depend on the local features of the worldsheet, then
we have to impose the vanishing of the total central charge of the system.
The reason why the BRST symmetry can be used to de�ne the notion of physical state is implicit in the
de�nition of the BRST transformation: it is a remnant of the local gauge symmetry63. Physical states
must be gauge invariant, so it is natural to ask for them to be also QB invariant. Then, a necessary
condition for a state to be physical is

QB |phys〉 = 0 , (4.115)

namely it has to be Q-closed.
Classically, the Virasoro constraints (LXn = 0) have to be imposed by hand as the equation of motion of
the worldsheet's metric hαβ ; in the modern approach to quantization, locally we �x the gauge by �xing
the metric and the remnant of the gauge symmetry gives at the quantum level the constraint (4.115),
which has to be thought of as the gauge-�xed analogue of the Virasoro constraints.
Obviously, if a state automatically satis�es (4.115), then it cannot be physical, because, in that case,
formula (4.115) wouldn't impose any constraints. Because of the nilpotency of QB , there exist a lot of
states which trivially satisfy (4.115); they are given by

|χ〉 = QB |ψ〉 for |ψ〉 arbitrary (4.116)

and they are called null states, because they are orthogonal to all physical states and to themselves64;
indeed

〈phys|χ〉 =〈phys|QB |ψ〉 = 〈Q†Bphys|ψ〉 = 〈QBphys|ψ〉 = 0

|| |χ〉 ||2 = 〈χ|χ〉 =〈ψ|Q2
B |ψ〉 = 0 .

(4.117)

This means that we can add a null state to a physical state |phys〉, without changing the (physical) values
of 〈phys'|phys〉. In other words, to de�ne the Hilbert space containing the physical states of our theory,

62The formula (4.108) de�nes jB only up to a total derivative which must be of dimension one and ghost number one.
The most general form is then

jB(z) =: c(z)

[
TX(z) +

1

2
T bc(z)

]
: +k∂2c(z) ,

and requiring jB to be a conformal �eld of conformal dimension h = 1 we get k = 3/2. One can show that the total derivative
that we have just added has no e�ect on �at correlation functions, but it ensures the conservation of the BRST-current on
curved worldsheets. So, jB(z) has to be de�ned as in (4.113).

63As it can be understood by looking at (4.106): the BRST transformation of Xµ is just the conformal transformation
with (real bosonic) parameter iεc.

64In particular, they are zero norm states.
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we have to divide the set of the Q-closed states by the set of the null states - which are also called, for
reasons that are apparent in (4.116), Q-exact states. We denote this Hilbert space as HB :

HB ≡
closed states

exact states
. (4.118)

The physical states of the theory are given by the equivalence classes just de�ned; one can show (see [11])
that every non-trivial equivalence class has a representative which essentially is given by a highest weight
state of the Virasoro algebra with L0 eigenvalue +1, so we recover the correct constraints de�ning the
Hilbert space of the old covariant approach to quantization. To be more precise, every equivalence class
has a representative |V〉 of the form

|V〉 = φ(0) |0〉X ⊗ c1 |0〉bc = φ(0) |0〉X ⊗ c(0) |0〉bc = |φ〉 ⊗ |c〉 , (4.119)

where |0〉X and |0〉bc are respectively the PSL(2,C) invariant vacua of the matter and of the ghost CFTs
and |φ〉 is a highest weight state of the Virasoro algebra of the matter sector with LX0 eigenvalue +1 (or
eigenvalue 0, in the only case |φ〉 = |0〉X). By requiring the state of the form (4.119) to be QB invariant,
we �nd that

0 = QB |V〉 = QB
(
|φ〉 ⊗ c1 |0〉bc

)
=

+∞∑
n=0

c−n(LXn − δn,0)
(
|φ〉 ⊗ c1 |0〉bc

)
, (4.120)

where the term −δn,0 arises because of the c ghost appearing in (4.119): in the language of the BRST
quantization, the normal ordering constant a for LX0 is �xed to be a = −1 by the presence of the ghost c
in (4.119).
Formula (4.119) suggests to take, as the vacuum for the ghost sector, the state |c〉 instead of |0〉bc; to
understand the reason why this is the case, we have to turn back to the de�nition of the PSL(2,C)
vacuum of the ghost CFT.
As explained in (4.43), the PSL(2,C) vacuum |0〉bc is de�ned by

bn |0〉bc = 0 for n ≥ −1

cn |0〉bc = 0 for n ≥ 2 .
(4.121)

This means that |0〉bc, although a highest weight state of the Virasoro algebra, is not a highest weight
state for the b, c algebra, i.e. it is not annihilated by all the negative frequency modes of b and c since

c(0) |0〉bc =c1 |0〉bc 6= 0

c(0)∂c(0) |0〉bc =c1c0 |0〉bc 6= 0 .
(4.122)

These two states are degenerate with respect to the ghost energy

Lbc0 =

+∞∑
m≥1

m
(
b−mcm + c−mbm

)
− 1 , (4.123)

and later we will see that there are no other states with the same energy of these two. It is not |0〉bc the
lowest energy state of the Hilbert space of b − c's CFT; the two states of (4.122) are the lowest energy
states, because they are such that only positive frequency states propagate forward in time (outward
from the origin):

bn |ψ〉 = 0 for n ≥ 1

cn |ψ〉 = 0 for n ≥ 1 ,
(4.124)

where here we denoted with |ψ〉 anyone of the states (4.122). In other words, it is only with respect to
the state |ψ〉 that we recover the interpretation of annihilation operators for the bn's and cn's with n > 0
and, thus, the ground state of the ghost sector is |ψ〉. For |ψ〉 = |c〉 we have

bn |c〉 = bn(c1 |0〉bc) = 0 for n ≥ 0

cn |c〉 = cn(c1 |0〉bc) = 0 for n ≥ 1 ,
(4.125)
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whereas, for |ψ〉 = |c∂c〉 we get

bn |c∂c〉 = bn(c1c0 |0〉bc) = 0 for n ≥ 1

cn |c∂c〉 = cn(c1c0 |0〉bc) = 0 for n ≥ 0 ,
(4.126)

and we notice that we can distinguish the states |c〉 and |c∂c〉 by looking at the zero modes of the b and
c �elds: the �rst one is annihilated by b0 and the second one by c0.
This is nothing strange. The zero modes b0 and c0 don't appear in the expression (4.123) and so they
commute with the Hamiltonian of the b− c ghost system. This means that the algebra

b20 = 0 c20 = 0 {b0, c0} = 1 (4.127)

can be used to de�ne degenerate states for every energy level of the b− c CFT. Indeed, it is not di�cult
so show that we cannot represent this algebra with only one state, and we need at least two of them. Let
|↑〉 and |↓〉 be the states de�ning the representation of the b0 − c0 algebra, i.e.

c0 |↑〉 = α |↑〉 , b0 |↓〉 = β |↓〉 for some α, β ∈ C ;

because of the �rst two relations of (4.127), we get α = β = 0 and we have to check whether the third
relation of (4.127) is consistent or not with these conditions. With {b0, c0} = 1 we immediately �nd that
〈↓ | ↓〉 = 〈↑ | ↑〉 = 0. But if the algebra is represented with only one state, namely if |↓〉 = |↑〉, then

|↓〉 = |↑〉 = (c0b0 + b0c0) |↓〉 = 0 (4.128)

and thus with only one state it is not possible to implement the b0 − c0 algebra (4.127).
Instead, if |↓〉 6= |↑〉, then we obtain

c0 |↑〉 = 0 , b0 |↓〉 = 0

b0 |↑〉 = γ |↓〉 , c0 |↓〉 = δ |↑〉 for γ, δ ∈ C ,
(4.129)

where the equations of the last line come from the relations b20 = c20 = 0. Now we can apply the third
property of (4.127) and we simply obtain that γδ = 1, because

|↓〉 = (b0c0 + c0b0) |↓〉 = b0c0 |↓〉 = γδ |↓〉 .

For example, we can choose

|↑〉 ≡ c0c1 |0〉bc = − |c∂c〉
|↓〉 ≡ c1 |0〉bc = |c〉 ,

(4.130)

and the algebra (4.129) is satis�ed with γ = δ = 1. We are left with the possibility of rescaling both
c0c1 |0〉bc and c1 |0〉bc with the same constant, but we can �x this freedom by normalizing the non-vanishing
value of 〈↑ | ↓〉 to be 1 and we will always work with

〈↑ | ↓〉 = 〈0|bc c−1c0c1 |0〉bc ≡ 1 . (4.131)

We have thus found that the algebra of the zero modes of the b, c ghost system is responsible for the
double degeneracy of each energy level of the system. In particular, the ground state of the b, c CFT can
be described both with |↑〉 = − |c∂c〉 and with |↓〉 = |c〉.
Instead, when the b − c CFT is thought of as part of string theory, this degeneracy of states doesn't
survive because there is the QB charge in the game. If we require the ground state of the string

|0〉tot = |0〉X ⊗ |ψ〉 , |ψ〉 ∈ {|c〉 , |c∂c〉}

to be BRST-closed, we should �nd the right Virasoro constraints; as we saw in (4.120), this can be done
for |ψ〉 = |c〉. Instead, for |ψ〉 = |c∂c〉, we wouldn't �nd the Virasoro constraints; indeed, by looking at
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the BRST transformations of the various �elds:

[QB , X
µ(z)] = c(z)∂Xµ(z)

[QB , T
tot(z)] =

1

12
(D − 26)∂3c(z)

{QB , c(z)} = c(z)∂c(z)

{QB , b(z)} = T tot(z)

[QB , j(z)] = −jB(z)

(4.132)

we can see that T tot, jB and c∂c are BRST-exact operators. In particular, this means that |c∂c〉 is a
null state and, thus, it cannot be the representative state de�ning the equivalence class of a non-trivial
physical state: requiring for it to be BRST-closed wouldn't give us any physical information.

The upshot is that the physical states of the closed bosonic string theory are de�ned - up to BRST-
exact states - by the conditions

QB |phys〉 =0

bn |phys〉 =0 for n ≥ 0

b̄n |phys〉 =0 for n ≥ 0

cn |phys〉 =0 for n ≥ 1

c̄n |phys〉 =0 for n ≥ 1 .

(4.133)

We saw that these requirements give the right Virasoro constraints on the matter sectors; we now note
that they also give the level matching condition. In fact, {QB , b(z)} = T tot(z) is equivalent to

{QB , bn} = Ltotn for n ∈ Z (4.134)

and this implies that(
LX0 − L̄X0

)
|phys〉 =

(
Ltot0 − L̄tot0

)
|phys〉 = {QB , b0 − b̄0} |phys〉 = 0 , (4.135)

because of the relations (4.133). We like to mention that the Hilbert space de�ned by (4.133) and (4.118)
doesn't contain the unphysical oscillators of Xµ and the unphysical b, c oscillations. Essentially, the
condition of QB invariance removes one set of unphysical Xµ oscillators and one set of ghost oscillators,
whereas the equivalence relation removes the other set of unphysical Xµ oscillators and the other set of
ghost oscillators; for more details, we refer to [11], where it is also shown that the Hilbert space de�ned
by (4.133) contains only positive norm states and that the conditions (4.133) allow us to immediately
recover the spectrum of the string that we have already studied in the light-cone quantization. Hence the
equivalence of the Hilbert space given by the BRST quantization to that one coming from the canonical
quantization.

4.14 Vertex operators

The operators V(z, z̄) that create the states (4.133) from the PSL(2,C) vacuum |0〉tot = |0〉X ⊗ |0〉bc of
the theory can be always chosen, modulo a BRST-exact operator, to be of the form (see (4.119))

V(z, z̄) = c(z)c̄(z̄)φ(z, z̄) , (4.136)

where φ(z, z̄) is a primary operator of the matter CFT of conformal dimension h = h̄ = 1 that is called
a vertex operator ; the operator V(z, z̄) has vanishing conformal dimensions and it is called a �xed vertex
operator.
An important example of a vertex operator is the primary �eld : eik·X(z,z̄) : which acts on the vacuum to
create the state

|k〉 = lim
z,z̄→0

: eik·X(z,z̄) : |0〉X , h = h̄ =
α′

4
k2 . (4.137)
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In order for it to be a vertex operator, we have to impose h = h̄ = 1 and this gives the mass-shell
condition for the lowest-lying state (the tachyon). This is nothing strange, because we saw in (2.36) that
the vacuum for the oscillations of the string has to be tensored with the eigenvector |pµ〉 of the momentum
operator of the centre of mass, and we can show that the above de�ned |k〉 is precisely the momentum
eigenstate with momentum kµ of the centre of mass operator:√

α′

2
p̂µ |k〉 =αµ0 |k〉 = lim

z,z̄→0
αµ0 : eik·X(z,z̄) : |0〉X =

= lim
z,z̄→0

[
αµ0 , : eik·X(z,z̄) :

]
|0〉X =

= lim
z,z̄→0

√
2

α′
i

∮
Cz

dw

2πi
∂Xµ(w) : eik·X(z,z̄) : |0〉X =

= lim
z,z̄→0

√
2

α′
i

∮
Cz

dw

2πi

(
− i

2
α′kµ

1

w − z

)
: eik·X(z,z̄) : |0〉X =

=

√
α′

2
kµ |k〉 ,

(4.138)

where we used formula (4.61) and the OPE appearing in the �rst line of (4.62). Thus, if we want to
describe a string (its quantum vacuum) propagating with momentum pµ, we have to insert : eik·X(z,z̄) :
at the origin z = z̄ = 0 of the complex plane, with kµ = pµ.
If we want to describe also the quantum excitations of the string, : eik·X(z,z̄) : alone is not enough. For
instance, the states of the �rst level are created with momentum kµ and polarization tensor ξµν by the
following vertex operator:

|k, ξ〉 = lim
z,z̄→0

ξµν : ∂Xµ(z)∂̄X̄ν(z̄)eik·X(z,z̄) : |0〉X . (4.139)

One can easily compute the OPE of this operator with the energy-momentum tensor of the matter sector
to �nd that it is primary if and only if kµξµν = 0, and so we have just recovered the transversality
constraint of momentum and polarization for massless particles. The masslessness condition arises by
demanding the conformal dimensions h = h̄ = 1 + α′

4 k
2 of this vertex operator to be 1.

The reader should notice again that in the discussion of these two examples, all the physical information
(e.g. the transversality constraint and the on-shellness condition) come from the fact that we have to
require the vertex operator φ of formula (4.136) to be a primary operator of dimensions h = h̄ = 1; we
didn't need to work with the ghost insertions cc̄ and, thus, we wonder whether it is possible to rewrite the
operator de�ning the physical state without involving them. As we have already mentioned, a physical
state must be gauge invariant so the corresponding operator must have vanishing conformal dimensions.
Obviously, this is the case for V, because the cc̄ contribution has conformal dimensions h = h̄ = −1 and if
we want to remove the latter, we have to replace it with an object of the same conformal dimensions. But
this object cannot be a conformal operator of the matter sector, because the X-theory is a unitary CFT
(it consists of operators of non negative conformal dimensions); thus, the only object that can replace
the ghosts cc̄ is the measure dzdz̄ and we end up with

V =

∫
Σ

dzdz̄φ(z, z̄) , (4.140)

which is the gauge �xed version of the integrated vertex operator :

V =

∫
Σ

√
h2dσ1dσ2φ(σ1, σ2) . (4.141)

One of the advantages of rewriting the vertex operators in their integrated form is that we can immediately
see that the vertex operator φ(z, z̄) is de�ned up to total derivatives:

φ(z, z̄) ∼ φ(z, z̄) + dφ′(z, z̄) , (4.142)

where φ′(z, z̄) is another operator.
Obviously, this is due to the fact that the state |V〉 of formula (4.119) is only a representative of its
equivalence class

|V〉 ∼ |V〉+QB |V ′〉 . (4.143)
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By looking at formulae (6.61) and (6.62), we can appreciate the close similarity between our BRST-charge
and the di�erential d, seen as cohomological operators.
Given that derivatives of �elds are examples of descendant �elds, we guess that de�ning physical states up
to BRST-exact states is translated, by the operator-state correspondence, into the following equivalence
relation of operators

φ(z, z̄) ∼ φ(z, z̄) + descendant �elds , φ(z, z̄) primary �eld of h = h̄ = 1 .

For further details, we refer to [17]; adding a QB exact state to a physical one doesn't change the ampli-
tudes involving the latter and, correspondingly, we can show that descendant �elds don't contribute to
the amplitudes.

We like to conclude this section by stressing the fact that the fundamental version of the vertex
operator is the �xed one, because it derives from the state-operator correspondence. Indeed, the cc̄
insertions appearing in (4.136) cannot be neglected because they give the right information about the
ghost charge of the vacuum, which has to be taken into account, if we want to obtain non-vanishing
amplitudes. For example, the presence of cc̄ has led us to formula (4.131), from which we can read o�
that the physical vacuum of closed string theory at the tree level has ghost charge 6:

〈0tot|c̄−1c̄0c̄1c−1c0c1 |0tot〉 6= 0 . (4.144)

In the next chapter, we will see the geometric interpretation of this result and we will see in which sense
the integrated version of the vertex operator is useful.
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5 Global aspects

The Faddeev-Popov gauge �xing procedure presented in chapter 3 didn't take into account the compli-
cations due to the global aspects of the worldsheet. There are gauge transformations (those ones which
belong to the CKG) that are not �xed by the choice of the metric and there are metrics that are not
gauge (i.e. conformally) equivalent to one another (because there are the moduli in the game, parameters
that specify the complex structure of the worldsheet).
Later on, we will be interested in calculating an amplitude at one loop, so now we are going to introduce
the concept of the moduli parameters by focusing our attention to the case of the toroidal worldsheet Σ1.

The main references used for this chapter are [11, 6, 18].

5.1 The moduli space of the torus

As a topological space, the torus is constructed by introducing the following equivalence relations in the
z−complex plane (z = σ1 + iσ2):

z ∼=z + 2π

z ∼=z + 2πτ ,
(5.1)

so that one can think of the torus as the cylinder of circumference 2π and length 2πτ2 with the ends
rotated by an angle of 2πτ1 and then sewn together. The region inside the parallelogram of Figure 10
is called fundamental domain of the torus and the complex number τ = τ1 + iτ2 is called Teichmüller
parameter.
By means of this construction, it is clear that one can always turn this topolological space into a �at Rie-

Figure 10

A fundamental region for the torus parametrized by z.

mannian manifold, because the �at Euclidean metric de�ned on the z−complex plane naturally induces
the �at metric on the quotient space de�ned by the relations (5.1), the latter becoming the transition
functions on the overlap regions. It is common, in the physics literature (see [11] for example), to cover
the torus only with a single coordinate patch which is a little larger than the fundamental region; then,
the periodicity conditions (5.1) are precisely the transition functions on the overlap between the opposite
edges of the patch. Clearly, such a patch cannot be a chart in the mathematical sense of the word,
because it is not injective; the torus is a compact topological space, it cannot be covered with only one
chart. For the moment65, the important thing is that the transition functions of the torus are nothing
but translations, as in (5.1): the latter are isometries of the �at Euclidean metric, so it is really possible
to equip the torus with the �at Euclidean metric.

65At the end of this chapter, the torus will be covered with two coordinate patches (z and u): they will be two cylinders
with transition functions corresponding to the periodicity condition in the second line of (5.1), namely z ∼= u and z ∼= u+2πτ .
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In the previous chapters, we showed that it is always possible - locally - to bring the metric of the
worldsheet into the �at form by means of the combined action of di�eomorphisms and Weyl transforma-
tions. Now we have just seen that, on the torus, this can be achieved globally...but we have to be careful,
here. To be more precise, we have just shown that it is always possible to globally reach the �at metric
on a torus of a given Teichmüller parameter τ (equivalently, on a given torus de�ned by the periodicity
conditions/transition functions (5.1)). But, in the path integral approach to quantization, we have to
sum over all the possible metrics that we can introduce on the same worldsheet66. Then it is intuitive
that, in order to perform the path integral over the metrics of the torus, we have to �nd a way to remove
the τ dependence of the periodicity conditions (5.1), so as to obtain similar transition functions for all
the tori. This can be easily done by de�ning a new coordinate z′ by

z = Re z′ + τ Im z′ , (5.2)

so that the periodicity conditions now read as

z′ ∼=z′ + 2π

z′ ∼=z′ + 2πi .
(5.3)

Please note that, with this choice of coordinates, the �at metric ds2 = dzdz̄ becomes τ−dependent,
namely

ds2 = dzdz̄ = |dRe z′ + τd Im z′|2 . (5.4)

This is very interesting. We can say that, by means of the combined action of Weyl and di�eomorphism
transformations, we can always reach one of the following two equivalent descriptions of the globally �at
torus.

• One can work with the metric ds2 = dzdz̄ and hide the τ−dependence in the transition func-
tions/periodicity conditions. The prize that we have to pay if we want to work with the simple
ds2 = dzdz̄ is to admit that we are working with a family of tori whose fundamental regions are
parametrized by τ . We can assume τ2 > 0, because in (5.1) we can take τ and −τ without changing
the torus67. The upper complex plane Im τ > 0 is called Teichmüller space and it represents the
family of our tori.

• One can �x the fundamental region of the torus to [0, 2π]× [0, 2πi] (as illustrated in Figure 11) and
work with a τ−dependent metric ds2 = |dRe z′ + τd Im z′|2.

Figure 11

A fundamental region for the torus parametrized by z′.

In the path integral approach it is convenient to adopt the second description, according to which the
integration over the metrics should reduce - after locally �xing the �at metric (5.4) - to two ordinary

66Soon it will be clear in which sense two worldsheets can be considered equivalent.
67One can also see from (5.4) that τ and τ̄ de�ne the same metric.
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integrals, over the real and imaginary part (τ1 and τ2) of the Teichmüller parameter. On the other hand,
we will exploit the other description to understand over which integration domain we have to integrate
τ1 and τ2 and now we explain how we are able to get this information.
To perform the integration over the metrics, we would like to identify a gauge slice on the space Gg of all
the possible metrics on a given worldsheet of genus g, namely a choice of one con�guration from each set of
(di�eomorphism×Weyl)-inequivalent metrics (see Figure 12). Clearly, as �rst step, we have to understand

Figure 12

A schematic representation of the space of all the possible metrics of Σg.
You can move along the gauge orbits by performing a di�×Weyl transformation.

You can move along the gauge slice by changing the moduli of the metric.

when two metrics on the same worldsheets can be considered (di�eomorphism×Weyl)-inequivalent. As
we know, from a local point of view, this question is trivial. From a global perspective, instead, it is
di�cult to answer. Fortunately, we can resort to a very natural 1 : 1 correspondence between a Riemann
surface (namely a complex manifolds of real dimension 2) and Riemannian manifolds of the same (real)
dimension de�ned up to (di�eomorphism×Weyl) transformations. Of course, a Riemannian manifold is
already de�ned up to di�eomorphisms, so we reformulate the correspondence as

Riemannian manifolds mod Weyl
1:1←→ Riemann surfaces , (5.5)

where we left as understood that the Weyl transformations over the Riemannian manifold are globally
de�ned and that both the Riemannian manifold and the Riemann surface are oriented 2−real dimensional
manifolds.

Proof. Let's start with a (2−dimensional, real and oriented) Riemannian manifold (M,ds2) and
let's suppose for it to be covered with N coordinate patches. From our discussion of conformal
gauge, we know that we can �nd in each coordinate patch a coordinate zm (m ∈ {1, ..., N}) such
that ds2 ∝ dzmdz̄m. In the overlapping region between the mth and nth patches, we then have
dzmdz̄m ∝ dzndz̄n and the transition function must be holomorphic or antiholomorphic. But an
antiholomorphic transition function would change the orientation of the manifold and this is not
possible, because the latter is, by hypothesis, oriented. Now we could perform aWeyl transformation
on ds2: given that the Weyl rescaling doesn't touch the coordinates, we would recover the same set
of holomorphic transition functions and thus the same Riemann surface.
Let's start with a 2−real dimensional, oriented complex manifold M and let's suppose for it to
be covered with N coordinate patches. The transition functions are, by de�nition of a complex
manifold, holomorphc functions on the overlapping regions of neighbourhood patches68. To turn

68A complex manifold is de�ned by functions which must be holomorphic on the overlapping regions, not necessarily
everywhere. Take, for example, the Riemann sphere S2. It can be covered with the u and z patches that we have already
mentioned and the transition function can be taken to be u = −1/z. Naively, one would say that this is not a holomorphic
function, because it consists of a negative power of the coordinate z. But we have to remember that this transition function
is de�ned only in the intersection of the z and u patches, which is the sphere without the South pole z =∞ and the North
pole z = 0; in this region it is indeed holomorphic, because ∂z̄(1/z) = 0.
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M into a Riemannian manifold, we have to introduce a metric on it. But we can always de�ne the
�at metric dzmdz̄m on each patch and then, to obtain a globally de�ned and continuous metric, we
can use the partition of unity. If we call ds2 the metric that we have just built, we have to show
that both (M,ds) and (M, e2fds) come from the same complex manifoldM . But this is clear, since
a Weyl transformation doesn't touch the transition functions among patches.

We want to persuade the reader about the identi�cation (5.5), by sketching another proof, which
is more intuitive; on the other hand, it requires a little of familiarity with the notion of complex
manifold, so we will be more sloppy69. In the two dimensional case, saying that a manifold has
holomorphic transition functions is equivalent to say that it can be equipped with a complex struc-
ture J , namely with a (1,1)-tensor that squares to the identity I and that, in particular, can be
locally thought70 of as a �rotation of 90◦� on each tangent space of the manifold, in the precise
sense that it acts on the tangent space basis vectors ∂σ1 and ∂σ2 according to

J
( ∂

∂σ1

)
=

∂

∂σ2

J
( ∂

∂σ2

)
=− ∂

∂σ1
.

(5.6)

These equations imply that, up to a constant, one can write Jαβ ∼
√
hεγβh

αγ , where we have
introduced the square root of the determinant of the metric in order to transform the ε−object into
a tensor and we have then raised one index so as to obtain a tensor that maps vectors into vectors.
The constant is �xed by the J2 = −I condition and we get

Jαβ =
√
hhαγεγβ . (5.7)

We immediately note that the complex structure is automatically Weyl-invariant (in two dimen-
sions), so we are essentially done, the rest of the proof being obvious.

Now that we have the identi�cation (5.5) at our disposal, we immediately understand that, for our
purpose, two tori have to be considered the same if and only if they are the same complex manifold,
namely if they are biholomorphic. We could tackle this problem in a rigorous mathematical way and we
would discover that two Teichmüller parameters τ and τ̂ de�ne biholomorphic tori if and only if they are
related by a PSL(2;C) transformation, namely by the transformation

τ =
aτ + b

cτ + d
(5.8)

for some integer numbers a, b, c, d ∈ Z such that ad − bc = 1. In fact, if we start with the torus de�ned
by formulae (5.4) and (5.3), that is with the torus

z′ =σ′1 + iσ′2

z′ ∼=z′ + 2π

z′ ∼=z′ + 2πi

ds2 =|dRe z′ + τd Im z′|2 = |dσ′1 + τdσ′2|2 ,

(5.9)

then we can de�ne the coordinates (
σ̂1

σ̂2

)
=

(
a b
c d

)−1(
σ′

1

σ′
2

)
(5.10)

and we will obtain the torus

ẑ =σ̂1 + iσ̂2

ẑ ∼=ẑ + 2π

ẑ ∼=ẑ + 2πi

ds2 =|dRe ẑ + τ̂ d Im ẑ|2 = |σ̂1 + τ̂ σ̂2|2 ,

(5.11)

69We refer to [19] for all the mathematical details regarding complex manifolds.
70We like to depict the complex structure as a �rotation of 90◦� because in this way it is more natural to think about

a similarity between the notions of complex structure and metric. But it should be clear that a complex manifold doesn't
need a metric to be de�ned, so it makes no sense to talk about length and angles.
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which is clearly the same complex torus, only written in di�erent coordinates.
The transformation (5.10) is a large coordinate transformation, namely a di�eomorphism of the torus
that cannot be obtained from the identity by successive in�nitesimal transformations; indeed, the curve
A in the coordinates z′ (see Figure 11) maps to a curve in the ẑ coordinate that runs a times in the Â
direction and −c times in the B̂ direction: in order to turn the torus characterized by τ into the torus
de�ned by τ̂ , we have to cut the torus to a cylinder, to properly twist it and to sew together again its
ends. These large coordinate transformations are called modular group and they are generated by the
repeated application of the following two transformations:

T : τ 7→ τ + 1 S : τ 7→ −1/τ . (5.12)

In order not to overcount the same complex structure, in the path integral we must integrate τ over
the moduli space of the torus, which is the Teichmüller space mod the action of the modular group
PSL(2,C). We usually represent the moduli space as a particular subset of the Teichmüller space, the
so-called fundamental region of the moduli space. For example, in Figure 13 we depict two possible choice
(F0 and F1) for the fundamental region, where the lines I and I ′ are identi�ed, as the arcs II and II ′

(or the arcs III and III ′) are. In this thesis, we like to work with the fundamental region F0, and this
means that the integral over the metrics of the torus will reduce, after locally �xing the gauge, to an
integral over the τ in the region

−1

2
≤ Re τ ≤ 1

2
|τ | ≥ 1 , (5.13)

which has to be thought of as open only at Im τ → +∞, because it is rolled up according to the
identi�cation I-I ′ and II-II ′.

Figure 13

The regions F0 and F1 are two possible representations of the moduli space of the torus.
In this thesis we will always use F0, whose unique boundary is at τ2 = +∞.

5.2 Moduli and conformal killing vectors

After discussing the concrete example for the torus, we want to discuss the appearence of the moduli
space of the worldsheet in scattering amplitudes from a more general and abstract way, which requires a
mathematical language that will be useful in the next section.
The path integral wants us to sum over the space Gg of all the possible metrics which can be introduced
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on the worldsheet of genus g. After taking into account the di�×Weyl redundancie, we are left with the
moduli spaceMg

Mg ≡
Gg

di�× Weyl
, (5.14)

where we have to be careful and remember that in the game there are both global and in�nitesimal di�eo-
morphisms. Indeed, as we have seen for the torus, the redundancy group consisting of di�eomorphisms
in general is not connected and we will refer to its connected component containing the identity as di�0.
Then, the modular group MG is nothing but the quotient

MG ≡ di�

di�0
(5.15)

and we can rewrite the moduli space as

Mg =
Gg

di�0× Weyl

di�0

di�
=
Tg
MG

, (5.16)

where we denoted with

Tg ≡
Gg

di�0× Weyl
(5.17)

the Teichmüller space of the worldsheet of genus g.
We like to stress again that in the Faddeev-Popov procedure presented in section 3, we considered only
the in�nitesimal di�eomorphisms, namely the di�0 transformations. There we wrote the in�nitesimal
variation of the metric under the combined action of di�0×Weyl as

δhαβ = −2(P1δσ)αβ + (2f −∇γδσγ)hαβ , (5.18)

where the operator P1 is given by

(P1δσ)αβ ≡
1

2
(∇αδσβ +∇βδσα − hαβ∇γδσγ) . (5.19)

At the in�nitesimal level, changes in the moduli correspond to variations δ′hαβ of the metric that cannot
be reached by diff0 ×Weyl; equivalently, by changing the moduli we obtain those variations δ′hαβ that
are orthogonal71 to all variations given by formula (5.18):

0 =

∫
Σg

dσ1dσ2
√
hδ′hαβ

[
− 2(P1δσ)αβ + (2f −∇γδσγ)hαβ

]
=

=

∫
Σg

dσ1dσ2
√
h
[
− 2(PT1 δ

′h)αδσ
α + δ′hαβh

αβ(2f −∇γδσγ)
]

,

(5.20)

where we introduced the transpose operator PT1 which72 maps traceless symmetric tensors tαβ to vectors
via (P 1

T t)α = −∇βtαβ .
In order for (5.20) to vanish for every f and δσ, we need

hαβδ′hαβ = 0

(PT1 δ
′h)α = 0 ;

(5.21)

the �rst condition says that δ′hαβ is traceless so the second equation is well-de�ned (PT1 acts on traceless
tensors) and for every solution of the second equation there will be a modulus. Obviously, we are interested

71Orthogonal with respect to the scalar product (δhαβ and δ′hγδ are in�nitesimal variations of the same metric)

(δhαβ , δ
′hγδ) =

∫
Σg

dσ1dσ2
√
hhαγhβδδhαβδ

′hγδ ,

which induces the norm on Gg used to de�ne the integration measure D[hαβ ]; refer to [6] for the details regarding the
geometrical aspects of string perturbation theory.

72See [17] for details.
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in understanding how many moduli exist for a given worldsheet and we have to �nd the number of
independent globally de�ned zero modes for the operator PT1 . This is a highly non-trivial mathematical
question, and the best that we can do is, on general ground, to appeal to an index theorem73, which gives
the di�erence between the number of the globally de�ned zero modes of the operator and its adjoint (here
the transpose) in terms of a topological invariant of the manifold (like the Euler number Ξ, for example).
To be more precise, we can resort to the Riemann-Roch theorem which, in our case, reduces to

dimRKerP1 − dimRKerP
T
1 = 3Ξ = 6(1− g) . (5.22)

So, if we are interested in �nding dimRKerP
T
1 , we can equivalently determine the number of independent

globally de�ned zero modes for the operator P1...which are something that we have already met because,
as we are now going to show, they are nothing but the transformations of the CKG! Indeed, we have
already explained that, after locally �xing the gauge in each patch (take the conformal one, for example),
we still have the residual freedom of reparametrizing the worldsheet by conformal transformations that
are globally de�ned on it. The CKG's transformations are the globally de�ned di�eomorphisms that can
be �undone� by a global Weyl rescaling. They embody the residual freedom that we have of parametrizing
the worldsheet after �xing the gauge so, in mathematical terms, they correspond to the transformations
that correspond to a vanishing combined variation of the metric (5.18):

0 = δhαβ = −2(P1δσ)αβ + (2f −∇γδσγ)hαβ . (5.23)

The trace of this equation uniquely speci�es f (remember: P1 maps to traceless tensors) and we learn
which is the precise Weyl rescaling that is able to undo the transformation. The term (f −∇γδσγ) must
vanish and (5.23) then states that the transformations of the CKG are precisely those satisfying74

0 = (P1δσ)αβ . (5.24)

With the description of the CKGs for di�erent worldsheets that we gave at the beginning of the last
chapter, we can write

dimRKerP1 =


6, for g = 0 Riemann sphere

2, for g = 1 Riemann torus

0, for g > 1 Higher genus Riemann surfaces

(5.25)

and, by using the Riemann-Roch theorem we �nally obtain that the number of moduli is

dimRKerP
T
1 =


0, for g = 0 Riemann sphere

2, for g = 1 Riemann torus

6(g − 1), for g > 1 Higher genus Riemann surfaces

. (5.26)

Clearly, the last formula should also give, according to (5.16), the real dimension of the Teichmüller
space; indeed, it is possible to show that, for g > 1, the Teichmüller space is a complex manifold of real
dimension 6(g − 1) topologically equivalent to (R+ × R)3(g−1). The moduli space is obtained by taking
the quotient of the Teichmüller space as explained by (5.16); in general, the modular group MG acts
holomorphically on the Teichmüller space, but with �xed points and, thus, the moduli space will have
the structure of an orbifold. See [6] for details in this directions; for us it is enough to know that, locally,
the moduli space has the structure of a manifold of the dimension given by formula (5.26).
So far, we have discussed only the moduli associated to the metric. When there are vertex operators
appearing in the path integral it is useful to treat their positions on the same footing as the moduli
from the metric, as we will show later. In general, a vertex operator can be inserted at any point of the
worldsheet Σg, so the Teichmüller space and the moduli space at topology g with n vertex operators are

73Refer always to [6], for more details about the mathematical aspects of what we are presenting.
74For the distrustful reader: in the conformal gauge and with the complex notation, we have that 0 = (P1δσ)αβ becomes

∂̄δz = ∂δz̄ = 0 and the identi�cation among the (globally de�ned) zero modes of P1 and CKG's transformations reduces to
a tautology.
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then

Tg,n ≡
Gg × Σng

di�0× Weyl

Mg,n =
Tg,n
MG

.

(5.27)

We are now ready to discuss the complete Faddeev-Popov procedure for string theory. We will follow
the same steps done in section 3 but, this time, we will not neglect the complications coming from the
presence of the CKG and the moduli in the game. In particular, the b− c ghost system will reveal all its
importance, because it will let us de�ne the proper measure on the moduli space.

5.3 Faddeev-Popov gauge �xing: the complete approach

The Polyakov path integral for the S-matrix with n external states is

Sj1...jn(k1, ..., kn) =

+∞∑
g≥0

g2(g−1)
s

∫
D[Xµ]D[hαβ ]

Vdi�×Weyl
e−SPoly[Xµ,hαβ ;Σg]

n∏
i=1

∫
d2σi

√
h(σi)φji,ki(σi) (5.28)

where we introduced the vertex operators in their integrated form because we cannot let a physical
quantity like the S-matrix depend on unphysical parameters like the positions of the vertex operators on
the worldsheet.
In gauge-�xing, the integral over the metrics becomes an integral over the gauge group and over the
moduli

D[hαβ ]→ D[ζ]dρt ,

where we denoted with ζ the combined action of di�×Weyl, with t the real moduli of the worldsheet and
with ρ ≡ dimRKerP

T
1 the number of them.

We have to remember that we have still to �x the transformations of the CKG, and we do it by �xing
the positions of κ ≡ dimCKerP1 vertex operators:

d2n → d2n−κ ;

for example, on the torus we can �x the position of one vertex operator. Clearly, here we are assuming
that in the S-matrix there are at least κ vertex operators. If there are not enough vertex operators to
�x the whole CKG, we can divide the S-matrix by the volume of the un�xed subgroup. Please note
that if the volume of this subgroup is in�nite, then the S-matrix vanishes. For example, the CKG of
the Riemann sphere is PSL(2,C), which has an in�nite volume, given that SL(2,C) is a non compact
Lie group. Thus, the oriented closed string 0-point, 1-point and 2-point functions vanish at tree-level,
and this means that there is no vacuum energy, no tadpole and, respectively, no mass renormalisation at
tree-level.
In the last chapter we will be interested in computing a mass term at one loop-level, so here we study
the case in which we have enough vertex operators to �x the whole of the CKG. We will denote with the
hat the κ positions of the vertex operators that we are able to �x ( σαi → σ̂αi ) in analogy with the hat by

which we denote the gauge choice for the metric (hαβ → ĥαβ).
The Fadeev-Popov measure is de�ned by

1 = ∆FP (hαβ , σ)

∫
F

dρt

∫
Di�×Weyl

D[ζ]δ(hαβ − ĥαβ(t)ζ)
∏

(α,i)∈Ω

δ(σαi − σ̂
ζα
i ) , (5.29)

where Ω denotes the set of the �xed coordinates and F is a fundamental region of the moduli space.
Note that in this formula we stressed the fact that we are considering the worldsheet as the manifold
without moduli dependence inside the transition functions and with the Teichmüller parameters explicitly
appearing in the metric (at one loop, for example, the torus that we have in our mind is that one de�ne
by (5.9)).
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We can insert the expression (5.29) into the S-matrix and, after following the steps that we did in chapter
3, the latter will become

Sj1...jn(k1, ..., kn) =

+∞∑
g≥0

g2(g−1)
s

∫
F

dρt∆FP (ĥαβ , σ̂)

∫
D[Xµ]

∏
(a,i)6∈Ω

∫
dσai × e−SPoly[Xµ,ĥαβ ;Σg]×

×
n∏
i=1

√
ĥ(σi)φji,ki(σi) ,

(5.30)

and we are left with evaluating the Faddeev-Popov measure. As we did in chapter 3, we expand
∆FP (hαβ , σ) around the particular pair (ζ, t) that makes the delta functional nonzero.
The general metric variation consists of a local symmetry variation and of a change in the moduli,

δhαβ =

ρ∑
k=1

δtk∂tk ĥαβ − 2(P̂1δσ)αβ + (2f − ∇̂γδσγ)ĥαβ (5.31)

and we compute the inverse of the Faddeev-Popov determinant as

∆FP (ĥαβ , σ̂)−1 =nR

∫
dρδtD[f ]D[δσα]δ(δhαβ)

∏
(α,i)∈Ω

δ(δσα(σ̂i)) =

=nR

∫
dρδtdκχD[β′αβ ]D[δσα]exp

(
2πi(β′, 2P̂1δσ − δtk∂tk ĝ) + 2πi

∑
(α,i)∈Ω

χαiδσ
α(σ̂i)

)
,

(5.32)

where we have written the delta functions and functionals respectively as integrals over χαi and βαβ and
we have also integrated out D[f ] to obtain the traceless constraint on β′αβ ; the inner product among β′

and 2P̂1δσ − δtk∂tk ĝ is the natural one for traceless symmetric tensors (T 1, T 2) of rank 2: (T 1, T 2) ≡∫
d2σ
√
h(T 1)αβT 2

αβ . We have also taken into account the possibility that the Dirac deltas could be

nonzero at nR di�erent points; these must be related by a residual discrete75 group symmetry so we
consider only one of these points and we multiply by nR.
Now we invert the integral (5.32) by replacing all bosonic variables with Grassmann odd �elds:

δσα → cα

β′αβ → bαβ

χαi → ηαi

δtk → ξk ,

(5.33)

and, with convenient normalization for the �elds, we can arrive at

∆FP (ĥαβ , σ̂) =
1

nR

∫
D[bαβ ]D[cα]dρξdκηexp

[
− 1

4π
(b, 2P̂1c− ξk∂kĥ) +

∑
(α,i)∈Ω

ηαic
α(σ̂i)

]
=

=
1

nR

∫
D[bαβ ]D[cα]e−Sg

ρ∏
k=1

1

4π
(b, ∂kĥ)

∏
(α,i)∈Ω

cα(σ̂αi ) ,

(5.34)

75For example, in the case of the torus we can �x the metric to the form (5.9). We still have the freedom to perform
a CKG's transformation, because a rigid U(1) × U(1) translation leaves the metric and the periodicity conditions of (5.9)
invariant. We can �x this freedom by �xing the position of a vertex operator on the worldsheet. At this point we are
left only with the freedom of changing z′ of formula (5.9) by z′ → −z′. Thus, for the torus, the residual discrete group
symmetry is Z2 and nR = 2.
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which is the proper integration measure for integration on moduli space.
Finally, we get the full expression for the S-matrix:

Sj1...jn(k1, ..., kn) =

+∞∑
g≥0

g2(g−1)
s

∫
F

dρt

nR

∫
D[Xµ]D[bαβ ]D[cα]e−SPoly[Xµ,ĥαβ ;Σg]−Sg ×

×
∏

(α,i)6∈Ω

∫
dσαi

ρ∏
k=1

1

4π
(b, ∂kĥ)

∏
(α,i)∈Ω

cα(σ̂i)

n∏
i=1

√
ĥφji,ki(σi) .

(5.35)

Even though it would be an instructive thing to do (see [11] and [6]), we don't check the BRST-invariance
and the independence of the gauge choice of this formula, because the Faddeev-Popov procedure guaran-
tees these properties for the gauge-�xed amplitude. What we want to stress is that the formula (5.35) is
very fundamental, because it depends essentially only on the geometry of the worldsheet. It can be easily
extended to all bosonic string theories (closed, open, oriented, not oriented) and SPoly can be replaced
by a general c = c̃ = 26 matter theory; the measure on moduli space is always given by formula (5.34), so
we can use formula (5.35) also for di�erent bosonic string theories, which are characterized by di�erent
vertex operators, namely by a di�erent spectrum.
We summarize what we have learnt in this chapter by stating that we can always work locally and the
complications caused by the moduli and the CKG are taken into account by the ghost insertions:

• for each �xed coordinate,
∫
dσαi is replaced by cα(σ̂i); in particular, if we are able to completely �x

the position of a vertex operator φji,ki , then this replacement, in the �at gauge and with complex
coordinates, reads as ∫

dzdz̄φji,ki(zi, z̄i)→ c(ẑi)c̄(ˆ̄zi)φji,ki(ẑi, ˆ̄zi) ,

and we see that the replacement precisely consists of substituting the integrated vertex operator
with its �xed form.

• for each modulus tk we have to introdue a b ghost by means of 1
4π (b, ∂kĥ).

We mention that these ghost insertions are precisely those that we need to avoid a vanishing result.
Indeed, we have to remember that there is the U(1) anomaly in the b − c sector which, locally, is given
by (see (4.88) and remember that Q = ε(1− 2λ) = −3)

∇zjz(z) =
1

4
QR = −3

4
R ; (5.36)

it is possible to integrate this expression to obtain its global version, namely

Nc −Nb = −Q
2

Ξ = 3(1− g) , (5.37)

where we denoted with Nc, Nb the number of zero76 modes of c and b which are globally de�ned on the
worldsheet of genus g.
All the dependence of (5.35) on the zero modes of b and c is hidden in ∆FP (better, in the cα(σ̂i) and

in the (b, ∂kĥ) insertions) because e−Sg = 1 when the action Sg eats a ghost's zero mode77. So, in
the formula (5.35) we have Nc = κ and Nb = ρ zero modes: Riemann-Roch theorem guarantees that
the constraint (5.37) is respected and the U(1) anomaly does not force our S-matrix to necessarily vanish.

76Note that the situation is very similar to the U(1) anomaly in gauge theory, where the integral of the anomalous
divergence of the chiral U(1) current gives the di�erence between the number of massless left- and right-handed fermions,
which are the zero modes of the chiral Dirac operator. The role of the Dirac operator is played by P1, PT1 , since the equation
of motions of b and c are P1c = 0 and PT1 b = 0.

77Look at (3.17): the action Sg [b, c] can be written as

Sg [b, c] =
1

2π
(b, P1c) =

1

2π
(PT1 b, c) .
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5.4 S-matrix

In the last chapter we derived the form of the S-matrix by considering the worldsheet with all its moduli
dependence encoded in the metric. As we know, we can equivalently describe the worldsheet with a
moduli independent metric and with moduli dependent transition functions and now we are going to
recast the result (5.35) from this point of view, which is more convenient for practical purposes. Let's

consider coordinates zm in each patch such that the moduli dependent metric ĥ(t) is Weyl equivalent to

dzmdz̄m; our goal is to rewrite the terms (b, ∂kĥ(t)) in such a way that they depend only on the transition
functions of the worldsheet.
We start by de�ning the so-called Beltrami di�erential as

µβkα ≡
1

2
ĥβγ(t)∂kĥαγ(t) (5.38)

so that the b insertions read as

1

4π
(b, ∂kĥ) =

1

2π

∫
d2z(bzzµ

z
kz̄ + bz̄z̄µ

z̄
kz) =

1

2π
(b, µk) . (5.39)

Note that if the metric ĥ(t) is Weyl-equivalent to dzmdz̄m, then the metric ĥ(t+ δt) is equivalent to

dzmdz̄m + δtk
(
µz̄mkzmdzmdzm + µzmkz̄mdz̄mdz̄m

)
. (5.40)

We could also say that after a change δt in the moduli there will be new transition functions and, thus,
new coordinates in the mth patch:

z′m = zm + δtkvzmk (zm, z̄m)

vzmk ≡ dz′m
dtk

,
(5.41)

where we denoted with vzmk a vector that is de�ned only in the mth patch. The metric dz′mdz̄
′
m must

be Weyl equivalent to the metric (5.40) because they correspond to metrics with the same value for the
moduli; from

dz′mdz̄
′
m ∝ dzmdz̄m + δtk

(
µz̄mkzmdzmdzm + µzmkz̄mdz̄mdz̄m

)
, (5.42)

we thus arrive at the in�nitesimal version of Beltrami's equation, which is the crux:

µz̄mkzm = ∂zmv
z̄m
k µzmkz̄m = ∂z̄mv

zm
k . (5.43)

The generators vzmk (vz̄mk ) contain a holomorphic (antiholomorphic) part which is not determined by the
equation (5.43) and which correspond - as we already know - to the freedom to make holomorpic (anti-
holomorphic) reparametrizations within each patch. If we want to change the moduli of the worldsheet,
the Beltrami di�erentials must be non-vanishing and this means, according to Beltrami's equations, that
vzmk (vz̄mk ) must not be holomorphic (antiholomorphic).
We can now integrate by parts the b−insertions of formula (5.39) to obtain

1

2π
(b, µk) =

1

2πi

∑
m

∮
Cm

(
dzmv

zm
k bzmzm − dz̄mv

z̄m
k bz̄mz̄m

)
, (5.44)

with the contour Cm counterclockwisely oriented in the mth patch.
If ϕmn was the transition function between the mth and nth patches (zm = ϕmn(zn)) then, after the
variation δt of the moduli we will have

z′m =zm + δtkvzmk

z′n =zn + δtkvznk
z′m =ϕ′mn(z′n) ;

(5.45)

66



which, in the overlapping region, can be combined together to get

ϕ′mn(z′n) =z′m = zm + δtkvzmk = ϕmn(zn) + δtkvzmk =

=ϕmn(z′n − δtkv
zn
k ) + δtkvzmk =

=ϕmn(z′n)− ∂ϕmn
∂zn

vznk δtk + δtkvzmk ;

(5.46)

so, we have

∂ϕmn
∂tk

= vzmk −
∂ϕmn
∂zn

vznk , (5.47)

which can be introduced into (5.44) to �nally get the expression of the b−insertions in terms of the
transition functions of the complex manifold:

1

2π
(b, µk) =

1

2πi

∑
(mn)

∮
Cmn

(
dzm

∂ϕmn
∂tk

bzmzm − dz̄m
∂ϕ̄mn
∂tk

bz̄mz̄m

)
, (5.48)

where the Cmn contour is running in the overlapping region between the mth and the nth patches, coun-
terclockwise from the point of view of the mth patch.

The formula (5.48) is very useful for computations. Here, we want to take advantage of it in order to
reach a more elegant formulation of our S-matrix, where we treat the moduli coming from the location
of a vertex operator on the same footing as the moduli coming from the metric. Actually, it is not only
a matter of reaching a more elegant formulation; the reader should note that the insertion of a vertex
operator modi�es the complex structure of the worldsheet, because it brings new moduli into the game.
Let zv be the position of the vertex operator in a coordinate frame z. We introduce a new coordinate
system z′ around the vertex operator such that the latter sits at z′ = 0. For example, we can imagine to
cut, in the z−patch, a small disk of radius ε > 0 around z = zv and then we cover the hole with a disk of
radius ε′ (just a little bigger than ε) where we use the coordinate z′; then we sew together the disk with
the rest of the worldsheet by using the transition function

z = z′ + zv , (5.49)

which is obviously holomorphic in the overlapping region, namely in the annular region between the circles
of radii ε and ε′. The transition function (5.49) suggests to treat the position of the vertex operator as
a modulus and, according to formula (5.48) applied to the 2 moduli zv and z̄v, we have to add, in the
S-matrix, the following two ghost insertions:∫

C

dz′

2πi
bz′z′

∫
C

dz̄′

−2πi
bz̄′z̄′ = b−1b̄−1 , (5.50)

where C is any not shrinkable contour running counterclockwise in the annulus (in the overlapping region
between the coordinates z and z′).
Now we can rewrite the full expression (5.35) for the S-matrix in a very compact form:

Sj1...jn(k1, ..., kn) =

+∞∑
g≥0

g2(g−1)
s

∫
F×Σ2n−κ

g

dmt

nR

〈
m∏
k=1

Bk

n∏
i=1

Vji,ki

〉
, (5.51)

where we introduced Bk which is the shorthand for the b−insertions of formula (5.48): Bk ≡ 1
2π (b, µk).

The upshot is that we can insert the vertex operators in their �xed versions Vji,ki(z, z̄) = c(z)c̄(z̄)φji,ki(z, z̄)
and treat the coordinates of the vertex operators as moduli of the surface: this is the reason why in (5.51)
we have considered the integration over the positions of the vertex operators which are not �xed by the
CKG as an integration over the moduli space, which is now m−dimensional, with m given by

m ≡ µ+ 2n− κ = 6(g − 1) + 2n = 2(3g + n− 3) . (5.52)
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Clearly, if we have to integrate over the positions of 2n − κ vertex operators, then the latter have to
appear in (5.51) in their integrated form, even though we introduced them in their �xed version. Indeed,
the b−insertions that we add according to (5.50) remove the cc̄ contributions from the �xed version:

b−1b̄−1Vji,ki(zi, z̄i) =

∮
C(zi)

dw

2πi
b(w)

∮
C(z̄i)

dw̄

2πi
b̄(w̄)c(zi)c̄(z̄i)φji,ki(zi, z̄i) = φji,ki(zi, z̄i) . (5.53)

The reader should appreciate again the elegance of formula (5.51), where all vertex operators appear in
their fundamental versions, namely in their �xed forms c(zi)c̄(z̄i)φji,ki(zi, z̄i), which are BRST-invariant
because they directly come from the state-operator correspondence. The integrated form φji,ki(zi, z̄i) is
not BRST-invariant and it shouldn't be considered fundamental; nevertheless, it is not di�cult to show
that, under a BRST transformation, we have

[QB , φji,ki(zi, z̄i)] =
∂

∂zi

(
c(zi)φji,ki(zi, z̄i)

)
[Q̄B , φji,ki(zi, z̄i)] =

∂

∂z̄i

(
c̄(z̄i)φji,ki(zi, z̄i)

)
,

(5.54)

and, thus, we can still have integrated vertex operators in the S-matrix, provided that we integrate their
positions over the (compact) worldsheet.

5.5 The torus again: an exercise

In the last paragraph, we have used formula (5.48) to understand the kind of b-insertions that are
associated to the moduli coming from the positions of the vertex operators. Here, we exploit it to �nd
the ghost insertions corresponding to the metric moduli and, to be more concrete, we will do this exercise
in the case of the torus.
First of all, we have to cover the torus with τ -depending charts, so as to apply formula (5.48) in a
straightforward way. We use the minimal number of charts, namely two (one chart is not enough,
because of compactness) and we decide for them to cover cylindrical open subsets of the torus, as we are
going to explain.
As usual, let z be a complex coordinate in which the torus is described by the identi�cation

z ∼=z + 2π

z ∼=z + 2πτ .
(5.55)

Let b be a positive constant such that 0 < b < 2πτ2; then, as a fundamental region for the torus, we can
choose the following portion of the complex plane (see Figure 14)

Figure 14

This is the fundamental region for the torus that will be used in this thesis.

−b ≤ Im z < 2πτ2 − b − 1

2
+
τ1
τ2

Im z ≤ Re z < +
1

2
+
τ1
τ2

Im z . (5.56)
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Let a be a positive constant such that 0 < a < 2πτ2 − b and let's call Ca the circle on the torus that,
on the fundamental region, corresponds to Im z = a. We also call C−b the circle on the torus that, on
the fundamental region, corresponds to Im z = −b (or, equivalently, to Im z = 2πτ2− b). Clearly, Ca and
C−b are the ends of two cylinders, that we like to name as D− and D+ and that are respectively de�ned
as those parts of the fundamental region satisfying Im z < a and Im z > a. If we slightly extend both
D− and D+ such that their intersections contain both the circles Ca and C−b then we can consider, as
charts, the coordinates u− (u+) on D− (D+) de�ned by

u− =z + b on D−

u+ =2πτ − b− z on D+ ;
(5.57)

in few words (look at the arrows in Figure 15): u− parametrizes the points of D− by starting from
the bottom of the fundamental region (the circle Im z = −b) and by going up towards Ca, whereas u+

parametrizes the points of D+ by starting from the top of the fundamental region (the circle Im z =
2πτ2 − b) and by going down towards Ca. Clearly, the transition functions between these two charts are

u− = u+ along the intersection containing C−b

u− = 2πτ − u+ along the intersection containing Ca .
(5.58)

Figure 15

Illustration of the u± charts.

We see that the only transition function that depends on the modulus is that one de�ned on Ca, to
which the following ghost insertion is associated

bτ =
1

2πi

∮
Ca

du−
∂u−
∂τ

bu−,u− =
1

2πi

∮
Ca

du−2πbu−,u− =

=
1

2πi

∮
Ca

dz2πb(z) ,

(5.59)

where the integration contour Ca is oriented so that the region D+ lies to its right. Note that in the last

step we exploited the facts that the b-ghost is a conformal tensor (of dimension (2,0) ) and that du−
dz = 1.

Analogously, the modulus τ̄ appears in the transition function ū− = 2πτ̄ − ū+ and we have the insertion
(look again at formula (5.48))

b̄τ̄ = − 1

2πi

∮
Ca

dū−
∂ū−
∂τ̄

bū−,ū− = − 1

2πi

∮
Ca

dū−2πbū−,ū− =

=
1

2πi

∮
C̄a

dz̄2πb̄(z̄) ,

(5.60)
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where, in the last step, we absorbed the overall sign by changing the orientation of the contour integral
(Ca → C̄a).

Figure 16

A representation of the u± charts on the torus.

A little heads-up Clearly, in order to get the right expressions for bτ and b̄τ̄ , we must use two charts,
as we have seen; but, after obtaining bτ and b̄τ̄ , one would like to work with only one chart, so as to make
life easier. This can be achieved by taking the formal limit in which a→ 2πτ2 − b: Ca approaches C−b,
the area of the cylinder D+ becomes �negligible� and we can use the coordinate u− in a wider region. In
this limit, D− corresponds to the torus deprived78 of C−b, that we call Dl

−; C−b is a zero-measure set
of the torus, so it is completely irrelevant to the S-matrix elements. Once we have taken into account
the information coming from the moduli by means of the corresponding b-insertions, we can equivalently
work with this limit-case cylinder Dl

− instead of working on the torus. This is what we will do in the last
chapter, where we will work with the fundamental region

−b < Im z < 2πτ2 − b − 1

2
+
τ1
τ2

Im z ≤ Re z < +
1

2
+
τ1
τ2

Im z , (5.61)

which di�ers from that one de�ned in (5.56) only because now C−b is missing. In this fundamental region
we can equivalently use z or u−; for example, in the last chapter we will use the �rst one. We want
to stress the fact that a Lebesgue-zero-measure set can be neglected from an integration only if there
are no distributions (i.e. Dirac delta and its derivatives) with support on it. We will discover, in the
computation of the last chapter, that a Dirac delta will be produced precisely where a particular �xed
vertex operator is placed. Fortunately, in the case of the torus we have a CKG that allows us to locate
this vertex operator where we prefer so we can put it far from the zero-measure-set, and the latter can
be consistently neglected. To be more precise, usually one follows the reverse argument: we locate the
vertex operator at z = 0 (so as to have handier OPEs) and, then, we use the CKG to take a fundamental
region like (5.56), such that the point z = 0 is in the middle, far from the zero-measure-set.
We very like to stress that neglecting a zero-measure-set is not very important for the torus, where a �at
metric can be reached globally, but can be very important for other surfaces, for which the �at metric
can be reached only locally. Indeed, one can always take a very big chart that covers the surface up to
zero-measure-sets79 and �x the gauge so as to reach the �at metric on it; then all the information about
the moduli is migrated to the boundaries of this chart, namely to the transition functions between this
�global� chart and the zero-measure-sets. In these zero-measure-sets there could be a very complicated
metric that makes life harder, but it doesn't matter: after considering the proper b-insertions, we can
simply neglect these portions of the worldsheet. Obviously, if a Dirac delta pops up in the calculations,

78The cylinders D± don't contain their boundaries (which are two circles), because u± are charts in the mathematical
sense of the word: they maps open subsets of the torus into proper oben subsets of C. Thus, in the Ca → C−b limit, D−
covers all the torus except for the circle C−b = Ca.

79For example, for the sphere, we can take the sphere deprived of the two poles, where we can introduce the spherical
coordinates.
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we must carefully �x the CKG, if we still want to neglect the zero-measure-set. Unfortunately, there is
no CKG for surfaces with g > 1 and this is one of the reasons why higher-loop computations are more
troublesome: nothing can be neglected and one must use several patches.
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6 Superstring Theory

We used the bosonic string theory as a toy model that has allowed us to get acquaitance with the tools
of string theory. Now we move to a more realistic model, the superstring, which includes fermionic �elds
in the game. The fermionic excitations are added in a supersymmetric way, so as to cure the tachyonic
behaviour of the bosonic string. To be more precise, if we want to remove the tachyon, we have to aim
at models with target space supersymmetry. A way to do it is to introduce the fermionic �elds in a
supersymmetric way on the worldsheet and, then, to perform a projection on the theory so as to single
out a spectrum which appears supersymmetric from the point of view of the target space.
At that time this thesis is written, �ve consistent superstring theory are known and the underlying pres-
ence of an intriguing web of connections relating all of them suggests that they should descend from a
more fundamental theory. In the next chapters we will be interested only in the heterotic superstring
and we will completely neglect all the other superstrings; actually, we will mention also Type IIA/B, but
only because studying them will help us to introduce the heterotic theory in a more natural way.
We will be sketchy in this chapter, because we need only the very basics and because a lot of the features
of the superstring works as in the bosonic string. The only object that has no comparison with the
bosonic string is the picture number operator, something that we will study at the end of the chapter.

We refer to [17] for a systematic and detailed introduction to the superstring.

6.1 The classical fermionic (�eld) theory

As �rst thing, it is convenient to have a look at a purely fermionic 2−dimensional free �eld theory. The
action for D real fermionic �elds ψµ de�ned on the Euclidean80 worldsheet Σ0 = [0, 2π]×R (or in a local
patch of the Euclidean worldsheet Σg) is

Sψ[ψµ; Σ0] ≡ − 1

4π

∫
dσ1dσ0ψ̄µρα∂αψ

νηµν , (6.1)

where:

• each �eld ψµ consists of two real components ψµ =

(
ψµ−
ψµ+

)
and we de�ned ψ̄µ as ψ̄µ ≡ (ψµ)tρ0;

• we denoted with ρ0 and ρ1 the 2−dimensional Dirac matrices, satisfyng the Dirac algebra {ρα, ρβ} =
2ηαβ .

In the case of the bosonic string it was necesary to assume that Xµ was periodic on σ1, because Xµ was
the embedding of Σ0 into the target space. The fermionic �eld ψµ is not an embedding of the worldsheet
into spacetime, so more general boundary conditions are now allowed. As usual, the consistent boundary
conditions are singled out with the equations of motion when we vary the action. The latter can be
rewritten, by using the coordinates σ± = σ0 ± σ1, as

Sψ[ψµ; Σ0] =
1

4π

∫
dσ−dσ+

(
ψµ−∂+ψ

ν
− + ψµ+∂−ψ

ν
+

)
ηµν =

=
1

2π

∫
dσ0dσ1

(
ψµ−∂+ψ

ν
− + ψµ+∂−ψ

ν
+

)
ηµν

(6.2)

and its variation reads as

δSψ[ψµ; Σ0] =− 1

π

∫
dσ0dσ1ηµν

(
∂+ψ

µ
−δψ

ν
− + ∂−ψ

µ
+δψ

ν
+

)
+

+
1

4π

∫
dσ0ηµν

(
ψµ−δψ

ν
− + ψµ+δψ

ν
+

)∣∣∣2π
0

;

(6.3)

from this variation we learn that the �elds ψµ±

80Till this moment we have denoted with σ2 the Euclidean time. We are changing conventions: from now on, the
Euclidean time will be σ0.
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• are chiral, in the sense that they depend only on a single light-cone coordinate ψµ± = ψµ±(σ±)
because of the equations of motion ∂∓ψ

µ
± = 0;

• must satisfy one of the following boundary conditions

ψµ±(σ1 + 2π) =

{
ψµ± R-sector (periodic on Σ0)

−ψµ± NS-sector (anti-periodic on Σ0)
, (6.4)

where NS and R are shorthands for Neveu-Schwarz and Ramond.

The boundary conditions can be picked up for the left and right movers independently so we have four
sectors: RR, RNS, NSR and NSNS.

6.2 The quantum fermionic (�eld) theory

The �eld ψµ− has weight 1/2 so, on the complex plane, it takes the following form

ψµ−(z) =
√
−ie− i

2σ
−
ψµ−(σ−) =

{∑
n∈Z b

µ
nz
−n− 1

2 R-sector (anti-periodic on C)∑
r∈Z+ 1

2
bµr z
−r− 1

2 NS-sector (periodic on C)
, (6.5)

and we note that, because of the factor
(
∂z
∂σ−

)− 1
2

=
√
−ie− i

2σ
−
, now, on the plane, it is the R-sector that

respects the anti-periodic boundary condition ψµ−(e2πiz) = −ψµ−(z). Clearly, the same holds for the �elds
ψµ+, whose Fourier modes we denote with b̄µn and b̄µr . It is not di�cult to show that the modes satisfy

{bµn, bνm} = ηµνδm+n,0 R-sector

{bµr , bνs} = ηµνδr+s,0 NS-sector .
(6.6)

In the case of the NS-sector, it is straighforward to build the Hilbert space of the theory, because in this
case there is a unique ground state |0〉NS such that

bµr |0〉NS = 0 ∀ r > 0 , (6.7)

so that the Hilbert space HNS is spanned by the states of the form

bµ1
r1 ...b

µi
ri |0〉NS where r1 < ... < ri ≤ −

1

2
, (6.8)

where the restriction r1 < ... < ri comes from the fact that each creation operator can be applied at most
once ((bµr )2 = 0).
In the R-sector, we have to be more careful because here there exist the zero modes bµ0 which, according
to (6.6), satisfy a D−dimensional Dirac-algebra. We assume for D to be even81 and so we can arrange
the zero modes into the following pairs of operators:

b00 ≡
1√
2

(b10 − b00) b†00 ≡
1√
2

(b10 + b00)

b0j ≡
1√
2

(b2j+1
0 − ib2j0 ) b†0j ≡

1√
2

(b2j+1
0 + ib2j0 ) .

(6.9)

By construction, these operators obey {b0i, b†0j} = δij and, therefore, the space of ground states in the
R-sector can be generated with b0i from a state |R〉 satisfying

b†0i |R〉 = 0 i ∈ {0, ..., D/2− 1}
bµn |R〉 = 0 n > 0 ,

(6.10)

81Later, we will see that the Weyl anomaly cancels in the superstring if and only if D = 10.
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from which we learn that the space of ground states has real dimension 2D/2. From this space it is now
possible to get the whole Hilbert space HR of the R-sector, which is spanned by the states of the form

bµ1
n1
...bµini

D−2
2∏
l=0

bεl0l |R〉 where n1 < ... < ni < 0 and εl ∈ {0, 1} . (6.11)

So far we have built the Hilbert spaces HR/NS corresponding to the R- and NS-sectors of the right
movers ψµ−; clearly, the same construction holds for the left moving bit of the theory (ψµ+) and we could
analogously de�ne H̄R/NS . Thus, the Hilbert space of the full theory is given by(

HR⊕HNS
)
⊗
(
H̄R ⊕ H̄NS

)
∼=

∼=
(
HR ⊗ H̄R

)
⊕
(
HR ⊗ H̄NS

)
⊕
(
HNS ⊗ H̄R

)
⊕
(
HNS ⊗ H̄NS

)
=HRR ⊕HRNS ⊕HNSR ⊕HNSNS ,

(6.12)

where in the last line we de�ned - with an obvious notation - the Hilbert spacesHRR,HRNS ,HNSR,HNSNS .
All these four spaces obviously carry a representation of the Virasoro algebra. Indeed, following a standard
route, we could determine the energy-momentum tensor Tψ and decompose it into the modes

LRm =
1

2

∑
n∈Z

(
n+

m

2

)
: b−n · bn+m : +

D

16
δRm,0

LNSm =
1

2

∑
r∈Z+ 1

2

(
r +

m

2

)
: b−r · bm+r : ,

(6.13)

where, as always, the index m for the modes is integer in the R-sector and half-integer in the NS-sector;
then, it is not di�cult to compute that these modes satisfy the Virasoro algebra with central charge
c = D/2 (as opposed to c = D in the case of D free bosons).

6.3 The classical supersymmetric (�eld) theory

We can combine the �elds ψµ with the �elds Xµ and obtain the action

S[Xµ, ψµ] = − 1

4π

∫
dσ0dσ1

( 1

α′
∂αX

µ∂αXµ + ψ̄µρα∂αψµ

)
. (6.14)

Being just the sum of the two models we studied before, one can guess that the analysis of this system
trivially reduces to the combination of the results that we already know for the free bosons and free
fermions. This is true (and this is the reason why we spent some time by studying also the fermionic
action alone) but it is not the whole story, because the action (6.14) enjoys a new global symmetry - the
supersymmetry - whose transformations on �elds are

δXµ =

√
α′

2
ε̄ψµ

δψµ =
1√
2α′

ρα∂αX
µε ,

(6.15)

where ε is a two-component Grassmann odd valued constant.
Supersymmetry implies a rigid mathematical structure and, in few words, it associates a supersymmetric
partner to every �eld in the theory. For example, the superpartner of the total energy-momentum tensor
T = TX + Tψ is the super energy-momentum tensor Gα

Gα ≡
i√
2α′

ρβραψ
µ∂βXµ (6.16)

which can be handily written with the lightcone coordinates as

G± ≡
√

2

α′
(ψµ)±∂X

µ
± . (6.17)
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The super energy momentum tensor G is conserved and traceless82 - as the energy-momentum tensor is.
The tracelessness condition shows that G has the same number (i.e. 2) of independent components of
T 83, whereas the conservation equation ∂αGα = 0 states that the two components correspond to the left-
and right-movers of G (i.e. G(z) and Ḡ(z̄)).

6.4 The quantum supersymmetric (�eld) theory

The Hilbert space of the quantum theory has clearly four di�erent sectors, because it is the tensor product
of the Hilbert space of the bosonic theory (which is unique) and of that one of the fermionic theory (which
can be NSNS, RR, NSR, RNS).
On all these spaces the Virasoro modes Ln = LXn + Lψn act; LXn commutes with Lψn (the αµn's don't
talk with the bµn's) and, thus, the central charge c of the system is the sum of the central charges:
c = cX + cψ = D +D/2.
Of course, on these spaces also the superpartners of the Virasoro modes act. These are the modes of the
super energy-momentum tensor Gα which has conformal weight 3/2 and which can be expanded as

G(z) =

{∑
n∈ZGnz

−n− 3
2 R-sector∑

r∈Z+ 1
2
Grz

−r− 3
2 NS-sector

, (6.18)

with the modes Gn/r given in terms of the αµn, b
µ
n and bµr according to

Gn =
∑
m∈Z

αµmb
ν
n−mηµν R-sector

Gr =
∑
m∈Z

αµmb
ν
r−mηµν NS-sector .

(6.19)

With the last two formulas one can determine the commutation relations of Gr, Gn with Ln and with
each other. The set of commutation relations [Ln, Lm], [Lm, Gr] and {Gr, Gs} is the N=1 super-Virasoro
algebra which, in the NS-sector, reads as

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n,0

[Lm, Gr] =
(m

2
− r
)
Gm+r

{Gr, Gs} = 2Lr+s +
D

2

(
rs − 1

4

)
δr+s,0 ;

(6.20)

in the R-sector, it is the same, with r, s→ n,m.

6.5 The action in superconformal gauge

The action for the superstring is a long expression that we don't write, because it is not particularly
enlightnening (look at [17]). The important thing is that it enjoys enough symmetries (local supersym-
metry, local Weyl, di�eomorphisms invariance, local super Weyl, 2−dimensional local Lorentz) that allow
us to work - locally - with the so-called superconformal gauge, in which the action takes the simple form
of the supersymmetric �eld theory presented in the last section:

S[Xµ, ψµ] = − 1

4π

∫
dσ0dσ1

( 1

α′
∂αX

µ∂αXµ + ψ̄µρα∂αψµ

)
. (6.21)

As we saw for the bosonic string, in order to �x the gauge in the proper manner, we should resort to the
Faddeev-Popov procedure (so as to introuce the ghost system and the measure on the moduli space) and

82To be more precise, it is ρ−traceless: ραGα = 0.
83As we know, out of the four components as Tαβ , only two of them are independent. Both G0 and G1 have two

components so (also) G has four components; but ραGα = 0 kills two of them.
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to the BRST quantization (so as to impose the right physical condition on states). We are not going to
redo all the Fadeev-Popov and BRST analysis also for the superstring and we prefer to simply sketch the
analogy and the di�erences with the bosonic case.
In few words, we should remember that, after �xing the gauge:

• we still have to impose the right constraints on physical states. In the case of the bosonic string we
had to impose the Virasoro constraints, now we have to impose the super-Virasoro ones.

• we have to add a new ghost system in the game, the so-called β− γ ghost system which arises from
�xing the local supersymmetry. This is a �rst order lagrangian system (as that one described in
full generality in section 4.11) characterized by ε = −1 and λ = 3/2; to be more explicit, the β
and γ �elds are commuting �elds of half-integer spin, whose conformal dimensions are respectively
(3/2, 0) and (−1/2, 0). The β−γ ghost system has central charge cβγ = 11 and a backgroung charge
Qβγ = 2. As for the b− c ghost system, this charge requires for a sensible scattering amplitude to
have the right number of zero mode insertions of the β and γ �elds. Note also that the total central
charge of the superstring is

ctot = cX + cψ + cbc + cβγ = D +D/2− 26 + 11 ,

so, if we don't want a Weyl anomaly, we have to require D to be D = 10. As in the bosonic string,
it is possible to show that the requirement of the critical condition on D is needed to eliminate
negative norm states from the Hilbert space of the theory84.

• in addition to the moduli, now there are also the super-moduli in the game, which are parameters
that describe the new geometrical features of the worldsheet. Indeed, the worldsheet is not a
Riemann surface anymore, but a super-Riemann surface, namely a Riemann surface equipped with
a spin structure and whose transition functions are superconformal transformations. For more
details about the geometry of such a surface, refer to [2]. For us, it is enough to know that the
super-moduli can be integrated out at the cost of introducing new operators in the scattering
amplitudes, the so-called picture changing operators; this is explained very well in [5]. Then, we
can still use the formula (5.51) for the S-matrix, provided that we leave as understood the sum over
the spin structure in the path integral 〈...〉 and provided that we insert the right number of PCO
in a proper way (see later).

Now we are going to brie�y explain what the super-Virasoro constraints are and how to obtain the
spectrum of the theory. In particular, this will lead us in a natural way to the Type IIA/B superstrings;
after describing a bit of their spectrum, we will be able to construct the massless spectrum of the heterotic
SO(32) superstring, which is the theory with which we will deal in the last chapter.
Then, we will introduce the picture changing operator which, being the essential new feature of the su-
perstring, deserves its own section.

6.6 The super-Virasoro constraints

Not surprisingly, if we followed the BRST quantization, we would �nd that we need to impose as con-
straints not only the vanishing of the modes of T , but also of those of its superpartner G. As in the
bosonic string, we impose the constraints in the weak sense: physical states have to be annihilated by
the non-negative modes of T and G.

R-sector The Hilbert space corresponding to the unconstrained R-sector of the right-moving half of
the theory is HXψR ≡ HX ⊗HψR, where, with obvious notation, we denoted with HX and HψR the Hilbert

spaces of the right-moving bosons and Ramond-fermions. The space HXψR carries the action of an N=1
superconformal algebra with generators Ln and Gn. We expect L0 to be a�ected by a normal order
ambiguity (in the bosonic case we have to impose, as a constraint, L0−1 instead of L0 alone). In the case

84To be more precise, in the R-sector the condition D = 10 is all what we need to recover unitarity; indeed, in the
R-sector, the normal order ambiguity constant of L0 is �xed -as we will see - by the super-Virasoro algebra. Instead, in
order to remove all the negative norm states in the NS-sector, we have to require - in addition to D = 10 - for the normal
order ambiguity constant in the NS-sector to assume the value 1/2.
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of G0 =
∑
αµ−nb

ν
nηµν , instead, there is no such problem because it is expressed in terms of commuting

operators (αµn don't see bµn) and we can impose G0 |phys〉 = 0. Then, from the super-Virasoro algebra we
see that

2G2
0 = {G0, G0} = 2L0 −

D

8

and we learn that the normal ordering ambiguity for L0 is−D/16, because consistency requires L0 |phys〉 =

D/16 |phys〉. Thus, the constrained theory is de�ned by the states |phys〉 ∈ HXψR such that

Ln |phys〉 = 0 n > 0

L0 |phys〉 =
D

16
|phys〉 =

5

8
|phys〉

Gn |phys〉 = 0 n ≥ 0 .

(6.22)

By looking at (6.13) we see that the on-shell condition L0 −D/16 = 0 can be simply rewritten as

0 = L0 −
D

16
=
α′

4
p2 +

+∞∑
n=1

nNα
n +

+∞∑
n=1

nN b
n , (6.23)

where we denoted with Nα
n (N b

n) the number of α's (b's) operators with index −n. So we conclude that
the mass formula in this sector is given by

M2 =
4

α′

+∞∑
n=1

nNn , (6.24)

with Nn that counts the number of creation operators αµ−n and bµ−n together. We immediately see that in
the R-sector there is no tachyon, given that M2 ≥ 0. The massless states are created by the zero modes
αµ0 ∼ pµ and bµ0l:

|p〉 ⊗
4∏
l=0

bεl0l |R〉 , (6.25)

where for the fermionic excitation we used the same notation introduced around formula (6.11). Being the
momentum of the centre of mass of a massless excitation, we can always suppose that pµ ∼ (1,−1, 0, ..., 0)
and it is then immediate to see that the 0 = G0 ∼ αµ0 b

ν
0ηµν ∼ pµ0 b

ν
0ηµν constraint on the state (6.25)

implies

(b00 + b10)

(
|p〉 ⊗

4∏
l=0

bεl0l |R〉

)
= 0 ,

which means that the operator b†00 ∼ b00 + b10 must annihilate the massless state (6.25). In other words,
the massless state (6.25) must not contain the creation operator b00 and, at the massless level, we have
the following 16 states

|p〉 ⊗
4∏
l=1

bεl0l |R〉 . (6.26)

Under the action of the little group SO(D−2) = SO(8), these 16 states decompose into two inequivalent
irreducible representations, that can be distinguished by the number of fermionic modes: the states with∑4
l=1 εl even form the spinor representation 8S and those with

∑4
l=1 εl odd form the spinor representation

8C .

NS-sector The Hilbert space corresponding to the non-constrained NS-sector of the right-moving half
of the theory is HXψNS ≡ HX ⊗H

ψ
NS . It carries the action of the N=1 superconformal algebra generated
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by the modes Ln and Gr (remember that r ∈ Z + 1
2 ).

We constrained the Hilbert space by de�ning the physical states as those states |phys〉 ∈ HXψNS that satisfy

Ln |phys〉 = 0 n > 0

L0 |phys〉 = aNS |phys〉

Gr |phys〉 = 0 r ≥ 1

2
.

(6.27)

This time, the order ambiguity constant aNS is not determined by the super-Virasoro algebra and, as in
the case of the bosonic string, it is �xed by the no-ghost theorem; indeed, it is possible to show that, in
order to remove the negative norm states from the theory, we have to impose D = 10 and

aNS = 1/2 . (6.28)

The on-shell condition (L0 − 1/2) |phys〉 = 0 gives

M2 = − 2

α′
+

4

α′

+∞∑
n=1

n

2
Nn

2
, (6.29)

where we denoted with Nn
2
the number of αµ's and bµ's modes with index85 −n2 (with n > 0). From this

formula, we learn that there is the tachyonic mode |p〉 ⊗ |0〉NS , where |0〉NS is the ground state in the
NS-sector de�ned by (6.7). At the �rst excited level, we �nd the massless states

ξµb
µ

− 1
2

|pµ〉 ⊗ |0〉NS (6.30)

with polarization vector ξµ satisfying the transversal constraint ξµp
µ = 0 because of

0 = G 1
2

(
ξµb

µ

− 1
2

|pµ〉 ⊗ |0〉

)
∼ bν1

2
pν

(
ξµb

µ

− 1
2

|pµ〉 ⊗ |0〉

)
= ξµp

µ

(
|pµ〉 ⊗ |0〉

)
. (6.31)

We mention that in the construction of the constrained Hilbert spaces of the R- and NS- sector, we have
always left as understood that states are de�ned up to null states, as in the case of the bosonic string.
For example, the state (6.30) has zero norm i� ξ2 = 0 and, because of ξµp

µ = 0, this means that the
state (6.30) with transversal polarization tensor de�nes a physical state up to the sum of longitudinal
null excitations. Once we remove this longitudinal excitation by de�ning the proper equivalence class,
we are left with the massless vector representation 8V of SO(8).

6.7 The GSO projection and the spectrum of Type IIA/B superstring

In the last paragraph we have seen that we have a tachyon in the NS-sector and that there is no space-
time supersymmetry (between the massless space-time bosons in the representation 8V and the fermions
in the representation 8S ⊕ 8C), because we have too many fermions. The Gliozzi-Scherk-Olive (GSO)
projection consists of neglecting the states containing an even number of fermionic generators bµ's: the
tachyon is removed from the NS-sector, along with one of the fermionic octoplets.
To construct this projection, we need two operators Γ± which commute with all bosonic operators αµn
and that anti-commute with the fermionic ones: Γ±b

µ
l = −bµl Γ± (l ∈ Z/2). Then, they are uniquely

de�ned in terms of the fermionic operators bµl by their action on the vacuum states, namely by

Γ± |p〉 ⊗ |0〉NS = − |p〉 ⊗ |0〉NS Γ± |p〉 ⊗ |R〉 = ± |p〉 ⊗ |R〉 . (6.32)

With the GSO projection, we keep only those states that have eigenvalue +1 under the action of Γ±: the
tachyon of the NS-sector and half of the ground states of the R-sector are eliminated.

85Here we are sloppy only to make our formulae shorter. When we say that Nn
2

(αµ) counts the number of αµ's modes

with index −n/2 we leave as understood that Nn
2

(αµ) = 0 when n is odd.

78



To be more precise, let's consider the Hilbert space H′ of the theory before the projection. It consists of
the linear combination of the Hilbert spaces that we built in the last paragraph86, i.e.

H′ ≡ H′NSNS ⊕H′RR ⊕H′NSR ⊕H′RNS , (6.33)

where we introduced a ′-label to stress that H′• is the Hilbert space obtained by H• after imposing the
super-Virasoro constraints. The Hilbert space H′ admits two types of projection operators:

ΠA ≡ Π+Π̄− (or, ΠA ≡ Π−Π̄+)

ΠB ≡ Π+Π̄+ (or, ΠB ≡ Π−Π̄−)
(6.34)

with Π± ≡ (1 + Γ±)/2.

Type IIB If we implement the projection by means of the operator ΠB (we keep only those states of
H′ that have ΠB−eigenvalue +1), we obtain the spectrum of the so-called Type IIB superstring theory.
In the

• NSNS-sector: the tachyon is removed and, at the massless level, we have

8V ⊗ 8V ∼= 1⊕ 28⊕ 35V , (6.35)

where we displayed, on the right-hand side, the usual decomposition of the product of two vectors
into the trace, antisymmetric, symmetric traceless tensors; as we already know, these correspond
to a space-time dilaton, Kalb-Ramond �eld and graviton.

• RR-sector: the massless excitations are

8S ⊗ 8S ∼= 1⊕ 28⊕ 35V , (6.36)

which correspond to a 0−, 2− and 4−form.

• RNS-sector: the massless excitations are

8V ⊗ 8S ∼= 8S ⊕ 56S , (6.37)

which are the left-handed dilatino and the left-handed gravitino.

• NSR-sector: the massless excitations are

8S ⊗ 8V ∼= 8S ⊕ 56S , (6.38)

which give another left-handed dilatino and another left-handed gravitino.

Note that NSNS- and RR-sectors represent space-time bosons, whereas NSR- and RNS-sectors give
space-time fermions, and that the number of the massless fermions matches with the number of the
massless bosons. The spectrum is chiral87: the massless spectrum of the Type IIB superstring (N = 2
supersymmetry) gives Type IIB supergravity in 10 dimensions.

Type IIA If we implement the projection by means of the operator ΠA (we keep only those states of
H′ that have ΠA−eigenvalue +1), we obtain the spectrum of the so-called Type IIA superstring theory.
In the

• NSNS-sector: the tachyon is removed and, at the massless level, we obtain the dilaton, the Kalb-
Ramond �eld and the graviton, exactly as before.

86To streamline the notation, we drop the Xψ label from the Hilbert spaces; for example, we write HNSR instead of

HXψNSR, because at this point of the thesis it is obvious that we are dealing with both fermions and bosons at the same time.
87In the sense that both gravitinos (dilatinos) are left-handed. If one had used ΠB = Π−Π̄− instead of ΠB = Π+Π̄+,

the two gravitinos (dilatinos) would have been right-handed; the spectrum would have been the same, because right/left is
only a matter of conventions.
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• RR-sector: the massless excitations are

8C ⊗ 8S ∼= 8V ⊕ 56V , (6.39)

which correspond to a 1− and 3−form.

• RNS-sector: the massless excitations are

8V ⊗ 8S ∼= 8S ⊕ 56S , (6.40)

which are the left-handed dilatino and the left-handed gravitino.

• NSR-sector: the massless excitations are

8C ⊗ 8V ∼= 8C ⊕ 56C , (6.41)

which give a right-handed dilatino and a right-handed gravitino.

As before, the number of the massless fermions (NSR- and RNS-sectors) matches with the number of the
massless bosons (NN- and RR- sectors). The spectrum is not chiral: the massless spectrum of Type IIA
superstring (N = 2 supersymmetry) gives Type IIA supergravity in 10 dimensions.

We like to conclude this chapter with two comments.
First, we have seen that with both types of superstrings we have recovered a supersymmetric massless
spectrum, but supersymmetry should be a property of the whole of the spectrum; it is indeed possible to
show that supersymmetry holds also at every massive level of the spectrum.
Second, to keep things simple, we presented the GSO-projection as a dirty trick introduced by hand in
the theory; but it is not a dirty trick, because, in the covariant NSR-formulation discussed here, the
GSO-projection is implemented in the path-integral by summing over all the spin structures (refer to
[17] for more details). Given that the sum over spin structures has to be performed for every scattering
amplitude, we understand that, regardless of the number and nature of the external states, the states
killed by the GSO projection will never appear as modes exchanged in string scattering experiments and
this means that removing them from the spectrum is a consistent procedure88.

6.8 The heterotic superstring theory

So far we have discussed superstring theories with N=2 supersymmetry in 10 dimensions, namely with
32 supercharges. In this chapter, by following the approach of [20] and [21], we are going to mention
other two superstring teories that, instead, have the minimal number of supercharges, i.e. 16. They have
N=1 supersymmetry and they are tachyon free. They are the so-called heterotic superstring theories and
can be e�ectively89 described by N=1 supergravity in 10 dimensions. The latter is a chiral theory which
admits two kinds of massless supermultiplets:

• the N=1 vector multiplet which, under the action of the little group SO(8) decomposes into

8V ⊕ 8S/C , (6.42)

namely into a vector boson of eight physical polarizations and into eight fermionic degrees of
freedom.

88This is in apparent contrast with what happens for the bosonic string. For example, one could compute the 4-point
scattering amplitude among massless bosonic strings and the result would have a pole (in the Mandelstam variable t) for
every state of the spectrum. In particular, the �rst pole would appear at t = M2 = −4/α′, namely for the tachyon, which
then cannot be removed from the spectrum. In the superstring, instead, the states killed by the GSO projection like the
tachyon simply are not exchanged among strings, do not appear in loops.

89In the limit in which we get rid of the massive spectrum by taking α′ → 0. We have also to assume that higher loops
contributions (which are suppressed by additional power of gs) can be neglected and we have to work at the weak coupling
gs � 1.
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• the N=1 graviton multiplet which, under the action of SO(8), decomposes into

1⊕ 28⊕ 35⊕ 56S/C ⊕ 8S/C , (6.43)

namely into a dilaton, the Kalb-Ramond �eld B, a graviton, a gravitino and a dilatino.

We can use one graviton supermultiplet and a certain copies of the vector supermultiplet to build the
N=1 supergravity action as (we write down only its bosonic part)

S10 ∼
1

κ2
10

∫
d10x
√
−Ge−2φ

[
R+ 4(∂φ)2 − 1

2
(H̃3)2 − κ2

10

g2
10

Tr(|F 2
2 |2)

]
, (6.44)

where: κ10 plays the role of the Newton constant in 10 dimensions, R is the Ricci scalar associated to
the spacetime metric Gµν , φ is the dilaton and F2 denotes the �eld strength of a Yang-Mills gauge �eld
Aµ with gauge group GA and with coupling constant g10. Note that the kinetic term H2

3 for the Kalb-
Ramond �eld (H3 = dB) is contained - along with interactions between the gauge and gravity content of
the theory - in the term H̃2

3 , because we de�ned

H̃3 ≡ dB −
κ2

10

g2
10

ΩCS(A) , (6.45)

with ΩCS(A) given by the so-called Chern-Simon 3-form of the gauge �eld, i.e.

ΩCS(A) = tr
(
A ∧ dA− 1

3
A ∧A ∧A

)
.

At the classical level, this action enjoys di�eomorphism invariance, gauge invariance and N=1 local
supersymmetry invariance. It is possible to show that, in order to avoid anomalies and, thus, negative
norm states in the quantum theory, we have to require the Lie algebra of GA to be a 496-dimensional Lie
algebra isomorphic to that one of SO(32) or to that one of E8 × E8.
It is then intuitive that - correspondingly - there are only two consistent heterotic superstring theories,
from which the SO(32) and the E8 × E8 supergravity limits can be recovered. We will present only the
SO(32) heterotic superstring, given that it is the one that will be used in the last chapters. But let's �rst
present the fundamental idea underlying the heterotic string.
The simplest way to obtain an N=1 supersymmetry (in spacetime) is to combine an N=1 (spacetime)
supersymmetric spectrum for the right movers with a (spacetime) non-supersymmetric spectrum for the
left movers. We stress the fact that we have already met an N=1 supersymmetric spectrum for one single
mover of the theory. Indeed, if we look back into our discussion of Type II superstring theories, we see
that, after the GSO projection, in the right moving sector we got massless modes in the representation
8V ⊕ 8S/C that we then tensored with the representation 8V ⊕ 8S/C of the massless excitations coming
from the left-moving sector in order to obtain the N=2 supersymmetric spectrum of Type II theories90.
But from (6.42) we immediately recognize 8V ⊕ 8S/C as the representation of the vector supermultiplet
for N=1 supersymmetry! In light of this, we can take the supersymmetric N=1 right moving sector of
the Type II superstring and combine it with the non-supersymmetric left moving sector of the bosonic
string. By recasting this goal in the language of the CFT, we need to build a theory with central charges
(c, c̄) = (15, 26). Since we want to describe a theory propagating in a ten dimensional Minkowski space,
for sure we need 10 bosonic �elds Xµ and these �elds contribute with (cX , c̄X) = (10, 10). On the right
moving sector then we add 10 fermions ψµ so as to reach a supersymmetric rigth moving sector with the
desired c = 15. In the left sector, we are tempted to add other 16 bosonic �elds Xµ so as to reach c̄ = 26,
but this would also bring c = 15 to c = 31; we remember that the 2-dimensional Majorana fermions
have two components, one of which is purely right/left-moving, so we add into the system 32 left moving
Majorana �elds. We end up with the following action:

Shet[X
µ, ψµ, λα] ≡ 1

πα′

∫
dσ0dσ1∂+X

µ∂−Xµ+

+
1

2π

∫
dσ0dσ1

(
λα∂−λα + ψµ−∂+ψ−,µ

)
,

(6.46)

90To be more precise, the massless spectrum of Type IIB is (8V ⊕ 8S) ⊗ (8V ⊕ 8S) , whereas the massless spectrum of
Type IIA is (8V ⊕ 8C)⊗ (8V ⊕ 8S).
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where α ∈ {1, ..., 32}.
With this action, we can describe di�erent theories that can be distinguished by their GSO-projection
and by the choice of boundary conditions for the left-moving fermions λα. It turns out91 that there are
only two consistent boundary conditions for the 32 fermion. The �rst choice consists of treating all of
them on the same footing: we can impose the same boundary conditions on every λα and this clearly
brings us to a model with an so(32) symmetry. Alternatively, we can split the 32 fermions into two groups
of 16 fermions each and independently choose for these two groups the boundary conditions; this is the
E8 × E8 heterotic superstring.
In each case, the Hilbert space of the right-sector will be generated by the αµ−n (modes of Xµ) and bµ−n/r
(modes of ψµ) and will be subject to the super-Virasoro constraints of the N=1 superconformal algebra,
whereas the Hilbert space of the left-sector will be generated by the αµ−n and by the cα−n/r (modes of λα)
and will be subject to the Virasoro constraints. As we know, the formula for the mass spectrum comes,
in both cases, from the L0 constraint (or - equivalently - from the L̄0 constraint92):

M2 =
4

α′
(−a∗ + L′0) =

4

α′
(−ā∗ + L̄′0) , (6.47)

where we added the ′−label in order to denote the L0, L̄0 Virasoro generators without the contributions
from the zero modes. The values of the order ambiguity constant a∗ (and ā∗) depend on the kind of
constraints. In the case of Virasoro constraints, we have a∗ = 1, as we saw for the bosonic string; for
the super-Virasoro constraint we have a∗ = 1/2 in the NS-sector and a∗ = 5/8 in the R-sector, as we
discussed for the superstring. The expressions for L′0 and L̄′0 are

L′0 =

+∞∑
n=1

n

2
Nn

2
+
nfP
16

L̄′0 =

+∞∑
n=1

n

2
N̄n

2
+
n̄fP
16

, (6.48)

where Nn
2
(N̄n

2
) counts all the −n/2 operator modes (fermionic and bosonic) of the right (left) sector,

whereas the real number nfP (n̄fP ) counts the right- (left-) moving fermions with periodic boundary
conditions (see (6.13)). With these formulae for L′0 and L̄′0, we can rewrite (6.47) in a more direct way as

M2 =
4

α′

(
K +

+∞∑
n=1

n

2
Nn

2

)
=

4

α′

(
K̄ +

+∞∑
n=1

n

2
N̄n

2

)
, (6.49)

where

K ≡ −a∗ +
nfP
16

K̄ ≡ −ā∗ +
n̄fP
16

(6.50)

are the lowest eigenvalue of M2 in the right- and left- sector.
With these formulae, now we are ready to discuss the spectrum of the heterotic string.

The SO(32) Heterotic superstring If we impose the same boundary conditions on all the left-
moving 32 fermions λα, then we obtain two sectors for the left-moving bit of the theory: one when all of
them satisfy periodic (P) boundary conditions, the other one when they are subject to anti-periodic (A)
boundary conditions. Thus, according to formula (6.49), to �nd the spectrum of this theory we have to
�nd the values of the constants K and K̄ for all the four sectors (P,R), (P,NS), (A,R) and (A,NS).
In the right-sector we have N=1 supersymmetry (Super-Virasoro constraints) and

K = −a∗ +
nfP
16

=

{
− 1

2 + 0
16 = − 1

2 NS-sector

− 5
8 + 10

16 = 0 R-sector
(6.51)

91It is enough to compute the one-loop partition function of the theory de�ned by (6.46) and to require it to be modular
invariant.

92Remember that the level matching condition still holds, even if we're describing the left/right-sectors of the theory
with di�erent �elds; as we have already explained, the states of the theory must be invariant under the action of L0 − L̄0,
otherwise not all the points of the closed string would be indistinguishable.
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so we recover formulae (6.29) and (6.24).
In the left-sector, we have the Virasoro constraint (ā∗ = 1) and K̄ is

K̄ = −ā∗ +
n̄fP
16

=

{
−1 + 32

16 = 1 P-sector

−1 + 0
16 = −1 A-sector

; (6.52)

please note that in the periodic-sector we must have M2 ≥ 4
α′ (+1) > 0 and therefore here we cannot

have contributions to the massless spectrum.
Anyway, with formulae (6.52) and (6.51), the mass formula (6.49) is determined; to determine the spec-
trum, we need only to �nd the proper GSO projection.
For the right-sector, we can recycle the projection operators Π± = ( 1+Γ±

2 ), with Γ± de�ned around (6.32);
we know that this projection removes the tachyon from the NS-sector and thus imposesM2 ≥ 0: because
of the level matching condition, this means that, regardless of the GSO projection used in the left-half
of the theory, the heterotic superstring is tachyon free. In particular, we can select a GSO projection93

on the left-sector that keeps the tachyon |A〉 of the A-sector (K̄ = −1 < 0 for anti-periodic boundary
conditions) and this allows us to obtain a richer massless spectrum on the left-half of the theory, as now
we are going to explain.
To study the massless spectrum of the theory it is enough to analyze the case in which all the 32 left-
moving fermions have anti-periodic boundary conditions, because in the P-sector we have M2 ≥ 4

α′ > 0;
the massless spectrum of the SO(32) heterotic string arises from the (A,NS) and (A,R) sectors. We
already know that the NS-sector gives massless bosons in the 8V representation and that the R-sector
yields fermions in the 8S/C representation; thus, the contribution to the massless spectrum coming from
the right-movers is

(8V ,1)⊕ (8S/C ,1) ,

where we denoted each representation with two labels (a,b), because there are two symmetries in the
game: a speci�es the representation of the little group so(8), whereas b refers to the representation of
the so(32) gauge symmetry (which a�ects only the left-sector, so it is trivially represented on the right-
sector). To �nd the contribution to the massless spectrum coming from the left-movers, we have to look
at the mass-formula, which, in the A-sector, reads as

M2 =
4

α′

(
− 1 +

+∞∑
n=1

n

2
N̄n

2

)
; (6.54)

we immediately see that we can obtain M2 = 0 in two ways:

• we can act on the ground state |k〉⊗ |A〉 with the modes αµ−1; the GSO projection keeps this states
simply because it doesn't kill the anti-periodic ground state |A〉. As usual, we have to impose the
physical state condition on these 10 states and after removing the null norm states we end up with
the 8V representation of so(8); note that we have built this representation without the fermionic
modes cα's and this means that, to be more precise, we have obtained the representation (8V ,1).

• we can also act with a couple of fermionic modes cα−1/2; indeed, the states c
α
−1/2c

β
−1/2 |p〉⊗|A〉 are not

removed by the GSO projection, because they contain an even number of fermionic modes. These
are 32∗32/2 = 496 states that form the adjoint representation of so(32), that in our conventions we
denote as (1,496) (the states have no spacetime indices, so so(8) is trivially represented on them).

Putting together the massless contributions from the right- and left- movers, we �nally get that the
massless spectrum of the SO(32) heterotic superstring is given by[

(8V ,1)⊕ (8S/C ,1)
]
⊗
[
(8V ,1)⊕ (1,496)

]
, (6.55)

93We only mention that for the left-sector, in case of anti-periodic conditions, we use the projection operator given by

Π̄A± ≡
1

2
(1− Γ̄A±) , (6.53)

where Γ̄A± are the analogue of the Γ± of formula (6.32): they are de�ned such that they anti-commutes with the modes cαr
and they are −1 on the ground state; note that the ground state |A〉 of the anti-periodic sector and all the states that are
built from it with an even number of fermionic modes cαr are not projected out.
In case of periodic conditions, we use similar operators Π̄P±.
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which can be decomposed into the following irreducible representations[
(8V ,1)⊕ (8S/C ,1)

]
⊗
[
(8V ,1)⊕ (1,496)

]
=

=(1,1)⊕ (28,1)⊕ (35,1)⊕ (8V ,496)⊕ fermionic partners
(6.56)

which are precisely the dilaton, the Kalb-Ramond �eld, the graviton, the so(32)− vector (and all their
fermionic partners) of the N=1 supergravity with gauge group GA = SO(32).

6.9 The PCO

In bosonic string theory, we saw that the b− c ghost system was essential to build BRST-invariant vertex
operators. Clearly, the same will still hold for the superstring, and we expect that some bits of the β− γ
ghost system should be included in the construction of the covariant vertex operators of the superstring.
We will be interested in the heterotic superstring so, from now on, we will focus on the right-half of the
theory (in the left-sector there is no supersymmetry, no β − γ system).
It is immediate to guess, by analogy with (4.119), that a BRST-invariant state should have the following
form

|p〉︸︷︷︸
centre of mass momentum

⊗ |c〉︸︷︷︸
bc sector

⊗ |V Xψ〉︸ ︷︷ ︸
NS/R sector

⊗ |q〉︸︷︷︸
βγ sector

,
(6.57)

where:

• we introduced |p〉 = eip·X |0〉X so as to give motion to the string in the 10-dimensional spacetime
(remember (4.138), where we showed that the insertion of eip·X gives momentum to the centre of
mass of the string). Note that this is the only way to get a non-vanishing momentum for the centre
of mass of the string, because the equations of motions for the fermionic �elds ψµ are ∂±ψ

µ
∓ = 0

and this means that ψµ cannot have a linear term in the time variable σ0 (σ2) on the cylinder94;
this is in agreement with the interpretation of the �elds ψµ, which are not embeddings in spacetime
so they should not give information about the centre of mass of the string.

• we inserted |c〉 = c(0) |0〉bc, as in (4.119). Remember that - locally, in the superconformal gauge
- the �elds Xµ, ψµ, b, c, β, γ are not interacting; thery are independent95, so we can recycle our
knowledge about the bosonic string.

• the state |V Xψ〉 is created from the vacuum of the matter sector (|0〉NS or |R〉) by an operator
which can have both Xµ and ψµ dependence. Clearly, out of the four states appearing in (6.57),
this is the only one that is subjected to the restrictions given by the GSO projection.

• the state |q〉 = Uq(0) |0〉βγ is created from the PSL(2,C) vacuum of the βγ theory by an operator
Uq. This is in close analogy with what we studied for the bc system; because of the non-unitarity
of the ghost system (h(c) = −1 < 0 for the conformal ghost system, h(γ) = −1/2 < 0 for the
superconformal one) the PSL(2,C) vacuum is not the ground state and, to obtain the state of
lowest energy, we have to act on it with some ghosts, as we are going to explain in more detail now.

Fermi and Bose sea level Let's focus on a �rst order Lagrangian system, as those ones discussed
in full generality in section96 4.11. According to (4.73), the energy of the system is given by
L0 =

∑
m∈Zm : b−mcm : and it is not di�cult to �nd that [L0, cn] = −ncn, namely that

L0

(
cn |0〉

)
= −n

(
cn |0〉

)
. (6.58)

94Instead, the equations of motion for the bosonic �elds Xµ are of the second order (∂−∂+Xµ = 0) and this allows Xµ

to have a non-vanishing linear term αµ0σ
0 ∼ pµσ0 on the cylinder.

95From a global point of view, all these �elds are not completely independent and, because of supersymmetry, their
boundary conditions must be chosen according (see [17]). For us, it is enough to know that, for consistency, the boundary
conditions of the β and γ �elds are precisely the same of those imposed on the �elds ψµ, and now formula (4.68) should be
clear, where we labeled the modes of β and γ in the R-sector (NS-sector) with integer (half-integer) numbers.

96As we did in 4.11, again we mainly refer to [7].
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We also know (see (4.70)) that

cn |0〉 = 0 for n ≥ λ, (6.59)

and this implies that

L0

(
cn |0〉

)
= −n

(
cn |0〉

)
6= 0 for n < λ . (6.60)

We have just obtained the key result: for 0 < n < λ, cn lowers the energy of the PSL(2,C) vacuum
|0〉.
For example, in the case of the conformal ghost system, λ = 2 and, according to (6.60), the ground
state of the system must be built from |0〉 by acting with c1; we thus recover the well-known ground
state of the bc ghost system, i.e. c1 |0〉 = c(0) |0〉 = |c〉; we stress that there are no other possible
ground states, because c1 is Grassmann odd: we can act on |0〉 with c1 only one time and this
means that the system of the anticommuting ghosts b, c has a spectrum which is bounded from
below97. The situation is reminescent of systems with Fermi statistics, in which a Fermi-sea level
must be speci�ed; we can build states with negative energy, because we can de�ne di�erent vacua by
specifying to which level the Fermi-sea is �lled. These vacua are stable thanks to Pauli's exclusion
principle and this is in agreement with the fact that the spectrum is bounded from below.
Instead, the superconformal ghost system (λ = 3/2) consists of Grassmann even �elds, and, obvi-
ously, this is a remarkable di�erence. Acording to (6.60), we can build the ground state of the βγ
system by acting on the vacuum by means of γn with 0 < n < 3/2. To be more concrete, let's
consider the NS-sector, where the modes are labeled by half-integer numbers . This means that we
can reach the ground state by acting with γ1/2 on |0〉98; γ1/2 is a bosonic operator, we can apply it
an arbitrary number of times and, thus, the spectrum of the βγ theory is unbounded from below,
because the possible ground states (γ1/2)n |0〉 have energy −n/2 ( with n arbitrary). This is in
apparrent contrast with the case of the Fermi-statistics, where the bounded-from-below-spectrum
gives us a clear notion of ground state; in the case of Bose-statistics there is no natural and unique
choice for the ground state. Anyway, as in the Fermi case, we de�ne a ground state by specifying
the energy level below which all the levels of the �Bose-sea� are �lled. This time there is no exclu-
sion principle that guarantees the stability of the ground state, so one would guess that, regardless
of the ground state that we can specify, the system would collapse to the in�nite bottom of the
spectrum; but, our βγ system is a free theory and, without interaction, transitions between levels
are not allowed. So, in this case, it makes sense to de�ne a ground state even for the Bose-sea level.
We de�ne the possible ground states |q〉 by

γn |q〉 = 0 for n ≥ q + λ = q +
3

2
, (6.61)

which, for consistency (see (4.70)) requires also

βn |q〉 = 0 for n > −q − λ = −q − 3

2
, (6.62)

where we left as understood that q ∈ Z for the NS-sector and q ∈ Z + 1
2 for the R-sector.

Now we must solve the constraints (6.61), (6.62) to �nd the state |q〉 and it is precisely at this point
that the bosonization of the �rst order Lagrangian systems reveals itself to be very handy.
Let's remind us that the bosonization of the βγ is encoded in the following expressions

β(z) = e−φ(z)∂ξ(z) γ(z) = eφ(z)η(z)

φ(z)φ(w) ∼ − log(z − w) ξ(z)η(w) ∼ 1

z − w
jβγ(z) = − : β(z)γ(z) := −∂φ(z) ,

(6.63)

97Actually, from (6.58) we see that c0 commutes with L0 so also the state c0c1 |0〉 = |∂cc〉 is a possible ground state. But
it clearly has the same energy as |c〉, so the spectrum of the bc system is still bounded from below; anyway, as we know,
this state can be neglected, when the bc system is seen as part of string theory, so we consider only |c〉.

98One can equivalently reformulate the argument in the R-sector, by considering γ1 instead of γ1/2.
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where η and ξ are fermionic �elds with conformal dimensions 1 and 0, cηξ = −2 and Qηξ = −1.
One can �nd that (6.61) and (6.62) are satis�ed99 by

|q〉 ≡ eqφ(0) |0〉βγ , (6.65)

where we denoted, as usual, with |0〉βγ the PSL(2,C) vacuum of the βγ system. We stress the
obvious fact that the possible ground states |q〉 can be distinguished by their conformal properties,
which are encoded in (4.99) and that here are summarised:

Lβγ0 |q〉 = −q
2

(
q +Qβγ

)
|q〉 = −q

2
(q + 2) |q〉

jβγ0 |q〉 = q |q〉 .
(6.66)

We have just understood the meaning of each component of formula (6.57). We want to keep track of
the q−charge of the ground state selected for the βγ system, so we will add a label q to the �xed version
Fq of the vertex operator:

|Fq〉 ∼= |p〉 ⊗ |c〉 ⊗ |V Xψ〉 ⊗ |q〉 . (6.67)

To be more precise, with the q−label we will denote the so-called picture number of the vertex operator.
The picture number Np is a new quantum number which naturally appears in the superconformal ghost
system and which is de�ned as

Np ≡
∮

dz

2πi

(
ξ(z)η(z)− ∂φ(z)

)
, (6.68)

such that the original β, γ ghosts have picture number zero. In our approach100, the picture number
arises through the bosonization, when we have to choose a ground state for the βγ system.
Clearly, in the context of the superconformal ghost system, there isn't a particular ground state |q〉 which
is preferred out of all the possible ones. On the other hand, in the context of the superstring, it does exist
a favourite ground state |q〉 because, in order to build a BRST-invariant state, the vertex operator Fq
must be characterized by a precise picture number101, as now we are going to show for vertex operators
corresponding to massless states in the NS-sector (which precisely are the kind of vertex operators with
which we will have do deal in the next chapter).
The masslessness condition on the state |p〉 �xes the conformal dimension of eip·X to be 0, because, as we
know from the bosonic string (see (4.137)), we have h(eip·X) ∼ p2. If the state comes from the NS-sector,
we have to impose the corresponding super-Virasoro constraint102 on the state |V Xψ〉 = V Xψ(0) |0〉NS
and (6.28) �xes the conformal dimension of V Xψ to be 1/2. A physical state must be invariant under gauge

99For example,

βn |q〉 =

∮
dz

2πi
zn+ 1

2 β(z) : eqφ(0) : |0〉 =

=

∮
dz

2πi
zn+ 1

2 e−φ(z)∂ξ(z) : eqφ(0) : |0〉 =

=−
∮

dz

2πi
zn+ 1

2 ∂ξ(z)e−q〈φ(z)φ(0)〉 : e−φ(z)+qφ(0) : |0〉 =

=−
∮

dz

2πi
zn+ 1

2
+q : ∂ξ(z)e−φ(z)+qφ(0) : |0〉 =

=−
∮

dz

2πi
zn+ 1

2
+q
(
O(1)

)
|0〉 ,

(6.64)

where, in the last step, we rewrote the normal ordered product as O(1) because, by de�nition, the normal order product is
regular ar z = 0 and it can be thus expanded as a positive power series in the variable z; so, in the case also n+ 1

2
+ q was

non-negative, then βn |q〉 = 0 vanishes. We have recovered equation (6.62).
100Which is that one proposed by D. Friedan, E. Martinec and S. Shenker in [7].
101The situation is similar to that one that we met during the construction of the physical states of the bosonic string:
according to the bc ghost system, both the states |c〉 and |∂cc〉 can be equivalently used as ground states, something that is
not anymore true in string theory where, because of the BRST-invariance, we have to reject all the vertex operators built
on |∂cc〉.
102We are reasoning by analogy with the bosonic string, where we saw that the BRST-invariance of a physical state was
equivalent to the Virasoro constraints.
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transformations, so the corresponding operator (here Fq) must have, in particular, vanishing conformal
dimension, i.e.

0
!
= h(Fq) = h(eip·X) + h(c) + h(V Xψ) + h(eqφ) = 0− 1 +

1

2
+ h(eqφ)

(6.66)
= −1

2
− q

2
(q + 2) ⇐⇒ q = −1 .

(6.69)

If we want the operator Fq corresponding to the state (6.67) to describe a physical (BRST-invariant)
massless state in the NS-sector, then we necessarily have to �x its picture number to be −1; NS (�xed)
vertex operators with q = −1 are said to be in the canonical picture. Analogously, one can �nd103 that
the canonical picture in the massless R-sector is given by q = −1/2.
Since the OPE between operators like eq1φ(z) and eq2φ(w) reads

eq1φ(z)eq2φ(w) =eq1q2〈φ(z)φ(w)〉 : eq1φ(z)+q2φ(w) :=

=(z − w)−q1q2 : e(q1+q2)φ(w) +O(1) : ,
(6.70)

it is apparent that vertex operators in non-canonical pictures appear in the theory. In order to understand
the meaning of states with arbitrary picture number (whose existence is required for the closure of the
OPE algebra) we need to resort to the BRST-formalism, because, as we are going to explain, we must
learn how to change picture number of a vertex operator in a �BRST-invariant�-way.
Let's suppose that we want to construct a correlation function that is manifestly BRST-invariant, so
it must consist of a bunch of BRST-invariant operators. Let's suppose that we want to compute the
S-matrix element for a process involving n+m vertex operators, n (m) of which correspond to massless
states coming from the NS (R) sector. In order to obtain a BRST-invariant expression, we could insert all
the vertex operators in their canonical pictures, and this would bring the picture number of the correlation
function to −n −m/2. But, as we know, the βγ system is anomalous; to be more precise, the anomaly
a�ects the ghost-number current and (4.88) reads as

∇zjβγz (z) =
1

4
QβγR =

1

2
R . (6.71)

This is a local expression that can be integrated to give the superconformal analogue of equation (5.37),
namely

Nγ −Nβ = −Q
βγ

2
Ξ = −2(1− g) = 2g − 2 . (6.72)

According to the bosonization of the βγ system, we have jβγ = − : βγ := −∂φ, so the βγ anomaly
doesn't a�ect the ξη system and it is translated into an anomaly of the φ-system. Each γ = eφη ∼ eφ

carries one unit of φ−charge, whereas each β = e−φ∂ξ ∼ e−φ decreases by −1 the φ−charge; (6.72) thus
states that the total φ−charge of the insertions must be 2g − 2.
This means that we have to introduce a BRST-invariant expression in the correlation function which
must be able to rise the φ-charge of the correlation function by 2g − 2 + n+m/2 units.
The right way to do it is by de�ning the so-called picture changing operator (PCO) χ, which is BRST-
invariant by construction, as we can see from

χ(z) ∼= {QB , ξ(z)} (6.73)

103The super-Virasoro constraints in the R-sector give h(V Xψ) = 5/8, see the second line of (6.22). Thus, by requiring
the conformal dimension of Fq to vanish (as we have done in (6.69)), we would obtain two possible choices: q = −1/2
and q = −3/2. As discussed in [22], we have to reject the choice q = −3/2, because only q = −1/2 reproduces the right
super-Virasoro constraints (i.e. all conditions appearing in (6.22)) from BRST-invariance.
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and by introducing 2g − 2 + n+m/2 copies of this operator in the correlation function.
The BRST-charge of the superstring theory is given by

QB = Q0 +Q1 +Q2

Q0 =

∮
dw

2πi
c(w)

(
T tot(w)− : ∂(c(w)b(w)) :

)
Q1 = −

∮
dw

2πi
: γ(w)GX,ψ(w) := −

∮
dz

2πi
: η(w)eφ(w)GX,ψ(w) :

Q2 = −1

4

∮
dw

2πi
: b(w)γ2(w) :=

1

4

∮
dz

2πi
: b(w)e2φ(w)η2(w) : ,

(6.74)

where:

• Q0 is the same104 BRST operator as in the bosonic theory which clearly acts - on the matter �elds
and on the βγ system - as conformal transformation with parameter ∼ c;

• Q1 is the �super-analogue� of Q0, giving that it generates superconformal transformation with
parameter ∼ γ on the matter sector of the theory;

• Q2 is needed for the nilpotency of the BRST algebra.

Given the BRST-charge, one can compute the PCO and its explicit expression reads as

χ(w) =: {QB , ξ(w)} : = :

[
eφGXψ + c∂ξ − 1

2
∂ηe2φb− 1

4
η∂w(e2φb)︸ ︷︷ ︸

pure ghost contribution

]∣∣∣∣
w

:
(6.75)

The PCO has picture number105 +1 so it increases by one unit the picture number of the (�xed) vertex
operator Fq on which it acts:

Fq+1(z) = lim
w→z

χ(w)Fq(z) = χ(z)Fq(z) , (6.76)

and Fq+1 is usually written as

Fq+1(z) =χ(z)Fq(z) = {QB , ξ(z)}Fq(z)
∗
= {QB , ξ(z)}Fq(z) + ξ(z)[QB , Fq(z)] =

={QB , ξ(z)Fq(z)} =

=

∮
C(z)

dw

2πi
jB(w)ξ(z)Fq(z) ,

(6.77)

where in the (*) step we used [QB , Fq] = 0, namely the fact that the �xed version of the vertex operator
(i.e. the version with the c factor) is BRST-invariant.
If we think about the φ−charge anomaly, we understand that the most important piece of the PCO
(6.75) is eφGXψ. It is the only piece of the PCO that carries one unit of φ−charge, so, if we insert
2g−2+n+m/2 PCO's in the correlation function, then eφGXψ is the piece that - for sure - will saturate
the φ−anomaly and it will let the correlation function be non-vanishing. This is the reason why some
authors (see [17], for instance) sloppily write

χ(w) = eφGXψ + ... ; (6.78)

this notation has the advantage of giving an immediate interpretation of the PCO: it essentially acts on
the matter �elds of the theory as a superconformal transformation with parameter ∼ eφ; from this point
of view, it is even more clear that all the Bose-sea levels must be physically equivalent, given that we
can pass from one to the other one by means of a remnant of the gauge redundancy of the superstring.

104This is true if we treat β, γ as extra matter �elds; indeed, compare Q0 with the BRST charge of (4.109): we have only
substituted TX + T bc with TX + Tψ + T bc + Tβγ = T tot.
105Indeed, Np(ξ) = +1; moreover, Np(QB) = 0, because QB doesn't need the bosonization of the βγ system to be de�ned
and the picture number appears only when we separate the φ-sector from the ξη−sector.
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Anyway, we like to stress that all the pure ghost contributions that we neglected in (6.78) (and which
are instead present in formula (6.75) ) are indispensable to change the picture number of the vertex
operator in a manifestly BRST-invariant way and it can happen that some of them do contribute to the
�nal result of the correlation function. Actually, the BRST-invariance of the PCO (6.75) is so manifest
that one could naively guess that χ is also BRST-exact in which case its insertion would make vanish
any correlation function of BRST-invariant operators. This is however not the case, since the βγ algebra
(and consequently also QB) only contains ∂ξ, but not the constant zero mode ξ0 of ξ. The latter is
Grassmann odd, so the Hilbert space Hφηξ of the φξη−theory is twice as large as the Hilbert space Hβγ
of the βγ−system:

Hφηξ = Hβγ ⊕ ξ0Hβγ ; (6.79)

therefore, we can specify Hβγ as

Hβγ = {|ψ〉 ∈ Hφηξ | η0 |ψ〉 = 0} . (6.80)

The Hilbert space Hφξφ carries a reducible representation of the βγ−algebra (equivalently, of the small
algebra φ∂ξη), whereas it hosts an irreducible representation of the βγξ0 algebra (equivalently, of the
large algebra φξη). The reader should be aware that the distinction between the small and large algebra
is not a detail - not at all! - and it can be a source of troubles, for practical computations. On the other
hand, this distincion turns out to be essential to prove that we can arbitrarily attach the 2g−2+n+m/2
PCO insertions to the vertex operators of the correlation function, as we are now going to argue for the
case of the sphere.
Let's suppose that we have distributed our PCOs among the n + m vertex operators such that in the
correlation function we end up with having a couple of the latters (let them be called Fq1(z1) and Fq2(z2))
in the q1 and q2 picture at the positions z1 and z2. Since none of the n+m vertex operators depends on
ξ0, we can switch from the small to the large algebra by inserting it in the path integral and by integrating
over it, because ξ0 is Grassmann odd:

∫
dξ0ξ0 = 1. Actually, we can replace ξ0 with ξ(z) for an arbitrary

z because ∫
D[ξ′]dξ0ξ0g(ξ′) =

∫
D[ξ′]dξ0ξ(z)g(ξ′) ,

where g is an arbitrary function and ξ′ denotes the non-zero mode part of ξ (ξ(z) = ξ0 + ξ′(z)). In other
words, we can attach ξ(z) to any of the vertex operators of the correlation function, say to Fq1(z1) (so
z = z1). Now let's rewrite Fq2(z2) in terms of a PCO and of Fq2−1(z2), namely as (see (6.77))

Fq2(z2) =

∮
Cz2

dw

2πi
jB(w)ξ(z2)Fq2−1(z2) .

We deform the integration contour by pulling it o� the back of the sphere; due to the BRST invariance it
passes through all vertex operators except for ξ(z1)Fq1(z1), which becomes Fq1+1(z1). Then, the integral∫
dξ0 (that in the correlation function is sitting on the left of Fq1+1) can be moved106 to the left of ξ(z2)

and, as at the beginning, we can use
∫
dξ0ξ(z2) = 1 to soak up ξ(z2) and to turn back to the small algebra

again. Schematically, we have just shown that our correlation function can be equivalently written as

〈...Fq1(z1)...Fq2(z2)...〉 = 〈...Fq1+1(z1)...Fq2−1(z2)...〉 ,

where the dots denote the presence of the other insertions of the correlation function. Obviously, this
expression can be reformulated in a more explicit way as

〈...Fq1(z1)...χ(z2)Fq2−1(z2)...〉 = 〈...χ(z1)Fq1(z1)...Fq2−1(z2)...〉 ,

and we learn that our 2g − 2 + n + m/2 PCO's can be distributed in the correlation functions as we
prefer. This freedom is a great advantage, because - as long as our correlation function has a 2g − 2
total picture number - we can distribute the PCOs so as to obtain an expression as simple as possible

106To be honest, in doing this we get a minus sign every time that we permute the position in the correlation function of
ξ0 with another Grassmann odd �eld. But we get the same sign when we deform the integration contour of jB , because
also the position of the latter - which is Grassmann odd too- in the correlation function must be changed.
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from a computational point of view: sometimes, it is easier and shorter to change the picture number of
a particular vertex operator, out of those present in the correlation functions. Other times, we want to
exploit this freedom to change the picture number of a vertex operator whose position is not �xed, but
so far, we have always worked with the vertex operators in their Fixed version Fq. We know that in the
S-matrix some of them will appear in their Integrated version Iq (de�ned by Fq(z) = c(z)Iq(z)) and now
it's time to learn how to change the picture numbers also of these operators. We would like to mimick
(6.77) and de�ne Iq+1 as Iq+1 = [QB , ξIq], but it turns out that we have to slightly modify this expression,
as we are now going to show with an integrated vertex operator corresponding to a massless state of the
NS-sector. To be even more explicit, let's take it in the canonical picture: I−1 ∼ eip·XV Xψe−φ; this
vertex operator has no c-ghost insertions at all, so107

I0(z) =[QB , ξ(z)I−1(z)] ∼ [Q0, ξ(z)I−1(z)] =

=

∮
C(z)

dw

2πi
c(w)

(
T tot(w)− : ∂(c(w)b(w)) :

)
ξ(z)I−1(z) =

=

∮
C(z)

dw

2πi
c(w)

[ξ(z)I−1(z)

(z − w)2
+
∂(ξ(z)I−1(z))

z − w
+O(1)

]
+

−
∮
C(z)

dw

2πi
c(w) : ∂(c(w)b(w)) : ξ(z)I−1(z) =

=c(z)∂(ξ(z)I−1(z)) + ∂c(z)ξ(z)I−1(z) =

=∂(cξI−1)(z) ;

(6.81)

this result is unacceptable, because it sits in the large algebra. In order for I0 to be in the small algebra,
we have to subtract this problematic contribution and, by following the approach of [23], we de�ne

I0(z) = [QB −Q0, ξ(z)Iq(z)] = [QB , ξ(z)I−1(z)]− ∂(cξI−1)(z) . (6.82)

We could perform a similar construction for all the Iq regardless of the picture number q and so we de�ne

Iq+1(z) ∼=[QB −Q0, ξ(z)Iq(z)] = [QB , ξ(z)Iq(z)]− ∂(cξIq)(z) ; (6.83)

this guess turns out to be the right one given that, for each q, we recover the expected relation among
the �xed and integrated operators, namely {QB , Iq+1} = ∂Fq+1, as it is easy to see

{QB , Iq+1} =
{
QB , [QB , ξIq]− ∂(cξIq)

}
=

={QB ,−∂(cξIq)} = {QB , ∂(ξcIq)} =

={QB , ∂(ξFq)} = ∂{QB , ξFq} =

=∂Fq+1 ,

(6.84)

where in the last step we used Fq+1 = {QB , ξFq}.
The most important lesson that we learn from (6.83) is that

Iq+1 =[QB , ξIq] + ∂(ξcIq) = {QB , ξ}Iq − ξ{QB , Iq}+ ∂ξcIq + ξ∂Fq =

=χIq − ξ∂Fq + ∂ξcIq + ξ∂Fq =

=
(
χ+ ∂ξc

)
Iq =

=χMIq ;

(6.85)

in other words, we can raise the picture number of an integrated vertex operator by acting on it with the
operator χM de�ned by

χM (z) ∼= χ(z) + ∂ξ(z)c(z) , (6.86)

and that we like to call the moving PCO.

107Let's focus on Q0 because it is the only problematic piece. Clearly, the contribution from Q1 doesn't trigger any
problem, because Q1 is not sensitive to the presence of the c-ghost, see (6.74). It is also clear that the contribution from
Q2 doesn't give any bad surprise in [Q2, ξ(z)I−1(z)]: we know that [Q2, ξ(z)F−1(z)] is acceptable and that Q2 ∼ b, so, if
we remove the c-insertion from F−1 we even lose terms from [Q2, ξ(z)F−1(z)].
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6.10 Degeneration limit

We have stressed a lot that we have the freedom to distribute the PCOs as we prefer. This is not com-
pletely true, because we have a constraint on their positions: they must be chosen in such a way that
they behave well under the so-called degeneration limit, as explained - for example - by A. Sen et al. in
[24]. The mathematical issues underlying the degeneration limit of a Riemann surface with punctures
are very involved (see [22]); here we give only the practical rule of thumb that lets one obtain the right
correlation function.
Let's consider a worldsheet Σg,m of genus g with m NS vertex operators108, and let's suppose that we
have enough CKG transformations to �x the positions of mF of them. We need to insert 2g − 2 + m
PCOs; we introduce a χ everytime we want to change the picture of a �xed vertex operator, otherwise
we use the moving version χM .
We say that the Riemann surface Σg,m is falling into a degeneration limit when one of its moduli ap-
proaches the boundary of the moduli space.
For the moduli coming from the metric, the boundary is simply the boundary of the corresponding funda-
mental region; for example, for the torus whose metric moduli space is represented with the fundamental
region F0, the boundary is the region τ2 = +∞.
For the moduli coming from the positions of the integrated vertex operators, it is possible to show109

that the boundary of moduli space corresponds to those versions of Σg,m in which one of the integrated
vertex operators comes together with another vertex operator. To be more concrete, let's take into con-

Figure 17

Torus with a �xed vertex operator at z = 0 and an integrated vertex operator at z = y.
Both of them come from the NS-sector and they are in the canonical picture.

sideration the case of a torus (parametrized with z) with two vertex operators; we know that for g = 1
we can �x the position of only one vertex operator (let's call it F−1 and let's put it at the point labeled
by z = 0) so the other vertex operator must be in the integrated form (let's call it I−1(y), with z = y
describing any point of the worldsheet); see Figure 17. We obtain a degeneration limit when y → 0. It
is possible to show that the torus falling into this limit is conformally equivalent to a Riemann sphere
which hosts the two vertex operators and which is connected to a torus by means of a �NS-propagator�,
a long cylinder (a propagating closed string) whose ends are characterized by −1 picture number, as we
represented in Figure 18 . A similar description of the degeneration limit holds for every Riemann surface
and the boundary of the moduli space associated to the positions of the vertex operators in Σg,m can be
represented by a set110 of degenerating Riemann surfaces, each of which consists of two Riemann surfaces
Σg1,m1 , Σg2,m2 connected with the NS-propagator (g = g1 + g2 and m = m1 +m2).
The rule of thumb: we locate the PCOs in such a way that we restore the right picture number 2gi−2
in both Riemann surfaces Σg1,m1

, Σg2,m2
into which the worldsheet splits in the case of a degeneration

108See [4] for the Ramond case, which is more troublesome and which will be out of our interest.
109Here the point where we should resort to powerful tools/results of algebraic geometry is, because we should deal with
the so-called �Deligne-Mumford compacti�cation� of the moduli space of a Riemann surface with punctures; see [22].
110Clearly, there is a degenerating version of Σg,m for each possible degeneration limit. In the case of the torus with two
insertions, only the degeneration limit y → 0 is possible, so in this case the boundary of the moduli space is described only
by the torus with y = 0.
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Figure 18

Representation of the limit version of the Riemann surface Σ1,2 which sits at the boundary
of the moduli space associated with the positions of the vertex operators. On the right, the cylinder
connecting the sphere and the torus has to be thought of as very long. The ends of this cylinder carry
picture number -1 (which is the canonical picture of the NS vertex operators), because this degeneration

limit is obtained by taking a particular value for the position of an NS-vertex operator.

limit.
For example, in the case of y → 0 for the torus with two vertex operators, we obtain a sphere with
Np(F−1) +Np(I−1)− 1 = −3 and a torus with Np = −1 (remember that each end of the NS-propagator
contributes as an NS-insertion in the canonical picture). Both the sphere and the torus developed in the
degeneration limit need one PCO. We can then satisfy this requirement, by:

• �xing one χ PCO at a point of the original torus, say z = u1 (with u1 �xed);

• locating a moving PCO χM (u2) �nearby� the position y of the integrated vertex operator I−1(y) so,
when y → 0 and I−1(y) �ees to the sphere with F−1(0), χM (u2) must follow them. For instance,
we can set u2 = αy, with α ∈ C\{0} constant (α = 1 corresponds to working with I0(y) instead of
I−1(0)).

Figure 19

On the left, a possible way to distribute the two PCOs on Σ1,2. As we
can see on the right, this choice is compatible with the degeneration limit y → 0.

This choice gives the right correlation function, because in the y → 0 limit we have the picture represented
in Figure 19, and we see that both the sphere and the torus have the right picture number (respectively
−2 and 0). We could also have decided to �x χ(u1) to u1 as before and to �x another χ(u2) in u2 = 0 so
as to work with F0(0) instead of F−1(0); actually, this correspond to setting α = 0 in the previous case,
because χM (0)F−1(0) = χ(0)F−1(0).
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So far, we have gathered all the basic background about perturbation theory in string theory. In the
next chapter, we are going to use what we have learnt to understand the spontaneous supersymmetry
breaking that happens at one loop for particular compacti�cations of the heterotic superstring; after
presenting the physical problem, we will evaluate the entity of the spontaneous breaking, by computing
the mass splitting that appears among �elds of the same supermultiplet.

93



7 Spontaneous supersymmetry breaking

In this chapter, we will brie�y introduce the problem and then we will delve into calculations. We will
refer to [17] for all the details about compacti�cations and to [2, 25, 26, 3, 4] for physical and computa-
tional issues.

We know that the heterotic superstring is characterized by N=1 supersymmetry in D=10 dimensions.
We can reach the phenomenologically desirable N=1 supersymmetry in d = 4 dimensions (that is, one
gravitino, four supercharges) by compactifying the theory on a Calabi-Yau three-fold (CY3), namely on
a compact complex manifold of real dimension 6 that is characterized by SU(3) holonomy group.
The complete form of H̃3 is

H̃3 = dB − κ2
10

g2
10

(
ΩCS(A)− ΩCS(ω)

)
,

were we denoted with ΩCS(ω), ΩCS(A) the Cern-Simon 3-forms for the spin connection ω and for the
gauge connection A:

ΩCS(A) = tr
(
A ∧ F2 −

1

3
A ∧A ∧A

)
dΩCS(A) = tr

(
F2 ∧ F2

)
ΩCS(ω) = tr

(
ω ∧R− 1

3
ω ∧ ω ∧ ω

)
dΩCS(ω) = tr

(
R ∧R

)
.

(7.1)

In a topologically non-trivial situation, the spin connection, gauge �eld and Chern-Simons forms are not
globally de�ned. At best, we can cover our manifold with open sets on each of which these are de�ned
with suitable relations imposed in the overlapping regions (as it happens for the gauge �eld con�guration
of Wu-Yang's monopole). However, the gauge invariant �eld strength H̃3 must be globally de�ned, since
it is a physical object (for instance, the energy contains a term ∼ (H̃3)2 ). To see what this implies, note
that the Bianchi-identity reads as

dH̃3 ∝ −tr
(
F2 ∧ F2

)
+ tr

(
R ∧R

)
; (7.2)

now, let S4 be a closed (i.e. with no boundaries) four dimensional submanifold in space-time. In general,∫
S4

tr
(
R ∧R

)
and

∫
S4

tr
(
F2 ∧ F2

)
may be non-trivial topological invariants, but (7.2) implies∫

S4

[
tr
(
R ∧R

)
− tr

(
F2 ∧ F2

)]
=

∫
S4

dH̃3 = 0 , (7.3)

where in the last step we used Stokes theorem and the fact that H̃3 is globally de�ned. We have just
obtained a restriction on possible compacti�cations of the string theory: the cohomology class represented

by tr
(
R ∧ R

)
− tr

(
F2 ∧ F2

)
must be zero. The simplest solution to this constraint is achieved by the

so-called standard embedding of the spin connection in the gauge connection, which consists of switching
on a background �eld A such that A = ω; note that in this way we can then set H̃3 = 0 everywhere
and this makes life easier (compacti�cations with �uxes are more involved). For a Calabi-Yau manifold,
the spin connection takes value in the Lie Algebra of SU(3) and the standard embedding choice thus
breaks the SO(32) and E8 × E8 gauge group of the heterotic superstring to SU(3) × [U(1) × SO(26)]
and SU(3) × [E6 × E8], where we denoted the unbroken subgroup between the square brackets; we will
consider only the SO(32) heterotic superstring, because it is precisely the unbroken U(1) factor that may
trigger the spontaneous supersymmetry breaking, by leading to a Fayet-Iliopoulos D-term.

It turns out that - at one loop level - the U(1) factor is a�ected by a variety of anomalies111. All
these anomalies are removed - at one loop level - by the so-called Green-Schwarz mechanism, which is

111Anomalies involving three U(1) gauge bosons, one U(1) and two SO(26) gauge bosons, one U(1) gauge boson and two
gravitons. Note that the U(1) and the SO(26) gauge bosons that we have just mentioned are those obtained by decomposing,
under SU(3)× SO(26)× U(1) the adjoint representation of SO(32) as

496 = (8,1)0 ⊕ (1,325)0 ⊕ (1,1)0 ⊕ (3,26)1 ⊕ (3,1)-2 ⊕ (3̄,26)-1 ⊕ (3̄,1)2 .

In this language, the U(1) gauge boson is (1,1)0, whereas the SO(26) gauge boson is (1,325)0 (clearly, they are singlets
under SU(3)).
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essentially a way to give a Stückelberg mass to the U(1) gauge boson, which acquires the longitudinal
degrees of freedom by incorporating the Hodge-dual of the anti-symmetric d=4 tensor Bµν .

At one-loop order, Green-Schwarz interactions I10
G−S in the 10-dimensional spacetime

I10
G−S ∼

∫
R4×CY3

B ∧ tr
(
F2 ∧ F2 ∧ F2 ∧ F2

)
are generated; B is the usual two-form �eld coming from the NS-sector and F2 is the �eld strength of the
SO(32) gauge vector Aµ. Because of the standard embedding choice (Aµ = ωµ), some of the background
gauge �elds (those with index µ corresponding to an internal direction, because only in this case ωµ 6= 0)
possess expectation values; we can then isolate from I10

G−S the contribution coming from the internal
space and we �nd that the Green-Schwarz interaction I4

G−S in the 4-dimensional bulk is given by

I4
G−S ∼ p

∫
R4

B ∧ F̂2

where we denoted with F̂2 the �eld strength of the anomalous photon Âµ and where the real number p
takes into account the integration over the CY3, that is

p ∼
∫
CY3

trSU(3)F2 ∧ F2 ∧ F2 .

To understand the e�ect of the I4
G−S interaction, it is convenient to dualize the purely four-dimensional

part of B to a scalar �eld a; the B ∧ F̂2 then dualizes to Âµ∂µa and H̃2
3 will give a term like

DµaD
µa = (∂µa+ pÂµ)(∂µa+ pÂµ) .

In other words, the anomalous photon Â acquires a Stückelberg mass ∼ p2 and the B �eld is not
invariant under the gauge transformation, because the U(1)-gauge transformation Âµ 7→ Âµ − ∂µs must
be accompanied by a 7→ a+ ps.
From the perspective of the N=1 supersymmetry in d = 4 dimensions:

• the �eld a is the imaginary part of the scalar component of the chiral multiplet Sc

Sc = e−2φ − ia+ θακα + ... , (7.4)

where we denoted with φ the dilaton (gs = eφ) and with κα the dilatino;

• the U(1) gauge �eld Âµ is part of a vector multiplet, whose auxiliary �eld we call D̂;

• there are some massless charged chiral multiplets

Sρi = ρi + θα(ψi)α + ... (7.5)

that arise in the four dimensional bulk after the expansion of the ten-dimensional SO(32) vector
multiplet. We denote their U(1) charges as ei.

The potential energy of the e�ective low energy �eld theory is

V =
D̂2

2g2
s

. (7.6)

The important thing to know is that the expectation value of the D-term D̂ - beyond getting a natural
contribution from the massless charged chiral multiplets ρi (∼

∑
i ei|ρi|2) - now is also in�uenced by the

chiral multiplet Sc, according to

D̂ =
p

ReSc
+
∑
i

ei|ρi|2 = pg2
s +

∑
i

ei|ρi|2 ; (7.7)
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intuitively, this happens because all the U(1)-charged �elds contribute to the auxiliary D̂ term and, as
we have explained above, at one loop level the a �eld (which is a component of the Sc chiral multiplet)
acquires a U(1)-charge proportional to p. Thus, because of the mass acquired by the U(1)-photon Âµ,
the D-term is corrected - at one loop level (g2

s) - by the parameter p (which is a topological invariant of
CY3: it's half of its Euler number).
This is the only known superstring model in which supersymmetry can be spontaneously broken in
perturbation theory, despite being unbroken at tree-level. Indeed, if we start, at the tree-level, with the
supersymmetry preserving (V = 0) vacuum < φi >= 0 (let's suppose ei 6= 0 for a partiular i), then, at
the loop level, we get V = p2g2

s/2 > 0 and supersymmetry is broken. As expected, V = p2g2
s/2 > 0 only

if p 6= 0, because it is the presence of p that induces Â to become massive and the mass of Â is what
precisely relates Sc (a ∈ Sc) to D̂ (which belongs to the same supermultiplet as Âµ).
The fact that p is proportional to the Euler characteristic of CY3 suggests to treat p essentially as an
index: thus, it shouldn't receive contributions from the massive modes and, in order to analyze the
supersymmetry breaking, it should be enough to examine the massless spectrum of the compacti�ed
theory. Indeed, the supersymmetry breaking can be detected by looking at the mass splitting among
the �elds of the supermultiplet Sρi that is developed at one loop level. Actually this is already apparent
in formulae (7.6) and (7.7), from which we can see that the �eld ρi corresponding to ei 6= 0 acquires a
mass m2 = eip. Instead, its superpartner (ψi)α cannot acquire a mass because terms like ¯(ψi)α(ψi)α are
not Lorentz invariant ((ψ̄i)α and (ψi)α have opposite chirality), while (ψi)α(ψi)α and (ψ̄i)α(ψ̄i)α do not
conserve the U(1) charge.
We'll focus on the scalar ρi which is a singlet of SO(26) (and carries U(1) charge 2). Our goal is to
compute the mass term for ρi, namely the two point correlation function ρiρ

∗
i . Clearly, this �eld comes

from the NS-sector of the theory so we know how the vertex operators corresponding to ρi and ρ
∗
i should

look like; in their �xed versions, they are

F−1 = c̄c e−φV eik1·X︸ ︷︷ ︸
I−1

F ∗−1 = c̄c e−φV ∗eik2·X︸ ︷︷ ︸
I∗−1

,
(7.8)

where we added also a c̄ in addition to the formula (6.57), because in (6.57) we considered only the right
sector of the theory. As we discussed in (6.57), the operators V and V ∗ are very important, because
they contain all the physical information about the nature of the particle. Here they are made of the
degrees of freedom associated with the compact directions, consistently with the fact that ρi is a singlet
of SO(26). We like to streamline our presentation by saying that all what we need to know about V and
V ∗ is that they are Grassmann odd primary operators of conformal dimensions (1, 1

2 ) (so F−1 and F ∗−1

have vanishing conformal dimensions) which satisfy the following OPEs:

GXψ(z)V (w, w̄) = Gint(z)V (w, w̄) = − 1

z − w
Ṽ (w, w̄) +O(z − w)

GXψ(z)V ∗(w, w̄) = Gint(z)V ∗(w, w̄) = − 1

z − w
Ṽ ∗(w, w̄) +O(z − w)

V (z, z̄)V ∗(w, w̄) = − q

z̄ − w̄
VD̂(z, z̄) +O(z̄ − w̄) .

(7.9)

In these formulae:

• Ṽ and Ṽ ∗ are Grassmann even (they are the superpartners of V and V ∗) vertex operators of
dimensions (1, 1) of the CFT associated with CY3. According to (6.78), χ ∼ eφGXψ, so we expect
the operators Ṽ and Ṽ ∗ to appear when we'll change the pictures of V and V ∗. Anyway, we are
not interested in giving a precise description of Ṽ and Ṽ ∗, because we will see that they will not
in�uence the �nal result of our computation;

• VD̂ is the vertex operator of conformal dimensions (1, 1) that represents the D̂ term discussed above,

namely the auxiliary �eld contained in the supermultiplet of the U(1) anomalous photon Âµ.
Unfortunately, there is not a systematic theory of correlation functions with insertions of vertex
operators for auxiliary �elds (as opposed to vertex operators associated to physical states), and there
is no standard recipe to build such a vertex operator. Nevertheless, VD̂ appears in the literature

in a number of interesting calculations that suggest to interpret it as the vertex operator of D̂.
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Clearly, the most important hint in this direction comes from the fact that, under the space-time
supersymmetry, it transforms as it should, namely into the gaugino vertex operator.

• the coe�cient q with which VD̂ appears in the product (7.9) depends only on the U(1) charges of
the operators V and V ∗; in other words: q ∝ ei, where ei is the charge of ρi.

We stress one more time that we will treat V and V ∗ as �black boxes� satisfyng the relations (7.9).
We prefer this approach, because in this way we can present the strategy that will let us perform the
computation in a neater fashion; of course, one can always �nd the explicit112 form for the vertex operators
V and V ∗ and check that formulae (7.9) indeed hold.
We have to compute the 2-point function of the vertex operators F−1 and F ∗−1 at one loop and extract
the mass term from it (i.e. the term that survives for k2

1 = k2
2 = 0, which are the on-shell conditions

for F−1 and F ∗−1, see later). So we have to insert them on a torus with two PCOs and the positions of
the latter must be chosen according to respect the degeneration limit, as explained at the end of the last
chapter.
We describe the torus as we explained in section 5.5. In particular, we can use the fundamental region
Fb de�ned by (5.61) and the �global� chart given by the coordinate z:

z ∼=z + 2π

z ∼=z + 2πτ ;
(7.10)

as discussed in 5.5, this variable doesn't allow us to properly describe the points of the torus corresponding
to C−b, but this is not a problem, since it is a zero-measure set and the only Dirac delta with which we
have to deal will be developed at the position of F−1, that we �x at z = 0 (and z̄ = 0), far from C−b (and
C̄−b).
We have to take into account the b-insertions associated to the moduli of the torus with two punctures:

• for the metric moduli τ and τ̄ , we already computed that these are

bτ =
1

2πi

∮
Ca

dz2πb(z) b̄τ̄ =
1

2πi

∮
C̄a

dz̄2πb̄(z̄) , (7.11)

where Ca is the circle in the torus corresponding to Im z = a.

• for the moduli corresponding to the position z = y and z̄ = ȳ of F ∗−1, the proper b-insertions will
transform F ∗−1(y, ȳ) into I∗−1(y, ȳ), as explained in (5.53).

We have �xed F−1(z = 0, z̄ = 0) at z = z̄ = 0 and we have I∗−1(z = y, z̄ = ȳ) that is free to move on
the torus. Then, according to the proper treatment of the degeneration limit, we can �x a PCO χ(z) at
z = u1 and insert a moving PCO χM (z) at z = u2 = αy, precisely as we explained at the end of the last
chapter.
To sum up, the vertex operators are distributed as in Figure 20 and our 2-point function will be

proportional to ∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)χM (αy)I∗−1(y, ȳ)

〉
=

=

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
χ(αy) + ∂ξ(αy)c(αy)

]
I∗−1(y, ȳ)

〉
,

(7.12)

where, in the last step, we used the de�nition (6.86) of χM .
This correlation function is the right one only for α = 1. In the last chapter, while we were searching
for the expression of the moving PCO (see (6.85)), we assumed that it was always acting precisely at the

112But this requires a sound background in string compacti�cations.
In the special case that CY3 is a Calabi-Yau orbifold (we mean the quotient of the six-dimensional torus R/Λ by a �nite
group of symmetries of Λ that preserves N=1 supersymmetry in four dimensions) the operators V and V ∗ are simply given
by

V ∼ εmpqψmλpλq V ∗ ∼ εm̄p̄q̄ψm̄λp̄λq̄ ,

where m, p, q are SU(3) indices. Note that, as we mentioned, V has U(1) charge 2 (and V ∗ has charge −2).
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Figure 20

The distribution of the vertex operators and of the PCOs chosen for the computation.

same spot where the integrated vertex operator Iq was located; clearly, in our correlation function, this
corresponds to setting α = 1, because I−1 is inserted at z = y, whereas χM is inserted at z = αy.
One can ask whether the form of the moving PCO that is not acting precisely at the spot of an integrated
vertex operator is di�erent from the χM that we found in (6.86). The answer is yes, they enter the
correlation functions in a slightly di�erent way. Unfortunately, to understand the �more general version
of the moving PCO�, one should resort to a heavy formalism, that is discussed, for example, in [4]. We
haven't found an intuitive way to present it, so we only say that the starting point for our computation
is not (7.12), but∫

F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y)

〉
. (7.13)

The reader should note the tiny di�erence between (7.13) and (7.12), which lies in the substitution

c(αy) 7→ αc(y)

and which vanishes for α = 1, as expected.
Only in the second case (with αc(y)) we get a result (the right one) which is independent of the value
of α. We are going to perform the calculation with (7.13), because we like the reassuring idea of a PCO
that can be located on the worldsheet wherever we want (as long as we respect the degeneration limit).
The reader who doesn't like to take �God-given� expressions can set α = 1, start with (7.12) and �nd the
same �nal result, by following precisely the same steps that we are going to present below.

Fou our convenience, here we write again all the formulae that we will need for the computation:

TXψ(w) = −∂Xµ(w)∂Xµ(w) + ψµ(w)∂ψµ(w)

T (w) = TXψ(w) + T int(w)

T βγ(w) = −3

2
β(w)∂γ(w)− 1

2
∂β(w)γ(w)

T bc(w) = 2∂c(w)b(w) + c(w)∂b(w)

T tot(w) = TXψ(w) + T int(w) + T βγ(w) + T bc(w)

GXψ(w) = −ψµ(w)∂Xµ(w)

G(w) = GXψ(w) +Gint(w)

γ(w) = eφ(w)η(w)

β(w) = e−φ(w)∂ξ(w)

QB = QRB +QLB =

∮
C0

dw

2πi
jB(w) +

∮
C̄0

dw̄

2πi
j̄B(w̄)

(7.14)

98



jB(w) = : c(w)

(
TXψ(w) + T int(w) + T βγ(w) + ∂c(w)b(w)

)
: +

− : γ(w)G(w) : −1

4
: β(w)γ2(w) : =

= : c(w)

(
T tot(w)− ∂(c(w)b(w))

)
: −: γ(w)G(w) :+

− 1

4
: b(w)γ2(w) :

j̄B(w̄) = c̄(w̄)

(
T̄Xψ(w̄) + T̄ int(w) + T̄ bc(w̄)− ∂

(
c̄(w̄)b̄(w̄)

))
χ(w) =: {QRB , ξ(w)} : = :

[
eφG+ c∂ξ − 1

2
∂ηe2φb− 1

4
η∂w(e2φb)

]∣∣∣∣
w

:

c(z)b(w) =
1

z − w
+ ...

ξ(z)η(w) =
1

z − w
+ ...

eq1φ(z)eq2φ(z) = (z − w)−q1q2 : e(q1+q2)φ(w) + ... :

∂X(z) : eikX(w) : = −iα
′k

2
: eikX(w) :

1

z − w
+ ...

TXψ(z) : eikX(w) : =
α′k2/4

(z − w)2
: eikX(w) : +

∂w
(z − w)

: eikX(w) : +...

: eik1X(z) :: eik2X(w) : = (z − w)α
′(k1k2) : ei(k1+k2)X(w)(1 +O(z − w)) : .

(7.15)

Note that we have slightly changed the conventions. In particular, we will refer with Xµ and ψµ only to
the non-compact directions (µ = 0, 1, 2, 3); then, the energy-momentum tensor T for the matter sector
splits as T = TXψ + T int, and analogous relations hold for its superpartner (G = GXψ +Gint), where we
labeled with �int� the contributions coming from the internal CFT.
We stress that now we are working on the torus, so the Green functions among the �elds are in general
di�erent (much more complicated!) from those that we have in the complex plane and that we used to
study each CFT; this is nothing strange, since Green`s functions are the solutions to particular PDEs and
the latter are sensitive to the boundary conditions of the problem. This implies that the OPEs among
�elds on the torus will be di�erent from the OPEs among the same �elds on the sphere/complex plane.
Nevertheless, we expect the divergent parts of the OPEs to be independent of the worldsheet, because
they arise only when two vertex operators come together. This is the reason why the OPEs that we have
just written look like the same of those ones that we have already met when we studied conformal �eld
theories on the complex plane/sphere. Locally one should not feel the boundary conditions and this is a
great advantage for our calculations, because all the result will come from a Dirac delta; this is a lucky
case: for this scattering amplitude, we don't have to be worried by the (non-singular) corrections to the
OPEs due to the periodic boundary conditions of the torus and we can use the (divergent parts of the)
OPES as if we were on the sphere.

7.1 The bone of the calculation

The most important step to get the right result is the following simple and seemingly innocent one: in
the correlation function, we substitute χ(u1) with

χ(u1) = χ(0) + [χ(u1)− χ(0)] . (7.16)

We'll separately analyze the χ(0) and the χ(u1)− χ(0) contributions.

Let's start with the �rst one. When χ(0) is inserted in the correlation function, it changes the picture
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number of F−1(0, 0) and we obtain F0(0), namely (see Appendix A for the computation)

F0(0) =χ(0)F−1(0, 0) = χ(0)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) =

= : c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) : −1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) :

(7.17)

In other words, χ(0) transforms the correlation function into∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

{
: c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) : −1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) :

}
×

×
[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
.

(7.18)

As we will show later, the correlation function (7.13) is independent of the value of α, so we can take the
limit α → 1 in (7.18). As we know, this correspond to changing the picture number of I∗−1(y, ȳ) and we
get (see Appendix B)

I∗0 (y) = lim
α→1

[χ(αy) + α∂ξ(αy)c(y)]I∗−1(0, 0) = χM (0)I∗−1(0, 0) =

=

[
Ṽ ∗(y, ȳ)− i

2
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ) .

(7.19)

This means that (7.18) becomes∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

{
: c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) : −1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) :

}
×

×
[
Ṽ ∗(y, ȳ)− i

2
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ)

〉
;

(7.20)

from this expression, we can drop the terms that don't respect the constraint given by the anomaly of
the βγ system, which requires - as we know- that the φ-charge of the insertions must be 2g − 2 = 0, so
(7.20) is ∫

F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄ : c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) : ×

× :

[
Ṽ ∗(y, ȳ)− i

2
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ) :

〉
.

(7.21)

In this expression, we can distinguish three components: the contribution without any ψµ, a piece which
is linear in ψµ and a bit with quadratic dependence on ψµ. The �rst term vanishes because of the sum
over the spin structure, that, in our formalism, is hidden in 〈...〉; this claim is true because of the �usual�
GSO cancellation between spin structures that also leads to the vanishing of the 1-loop cosmological
constant for superstrings in113 R10. Also the contribution with linear dependence on ψµ vanishes, this
time because of the four-dimensional Lorentz invariance of the two dimenional �eld theory. In other
words, (7.21) reduces to the contribution quadratic in ψµ, which is∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄ : c̄(0)c(0)

[
− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) ::

[
− i

2
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ) :

〉
.

(7.22)

By Lorentz invariance, the ψµψν correlator is proportional to ηµν , so (7.22) contains an

k1 · k2

113In our case, we have compacti�ed six dimensions, but it can be shown that this di�erence doesn't matter: the fermionic
partition function still vanishes after the sum over spin structures.
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overall factor. We have to remember that ρi is massless at the tree level, so the on-shell condition (which
comes from the BRST invariance of the vertex operator) gives k2

1 = 0 and - obviously - the same holds
for k2, k

2
2 = 0. As in QFT, also in string theory we have a Dirac delta in front of the S-matrix element

that forces the momentum conservation, so we are actually working with kµ1 + kµ2 = 0. This means that

0 = (kµ1 + kµ2 )2 = k2
1 + k2

2 + 2k1 · k2 = 2k1 · k2 , (7.23)

and (7.22) must vanish.
We have thus shown that the contribution to our original correlation function of the χ(0) coming from
formula (7.16) is zero. All the result must come from the term χ(u1) − χ(0) of (7.16), as we are now
going to show.

In other words, we are left with computing∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
χ(u1)− χ(0)

]
F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
, (7.24)

provided that we take the limit α → 1, because only in this case we are sure that this term is all the
contribution that the result gets. Clearly, we are free to take this limit when we want so we postpone
it till the end of the computation, so as to avoid - in the meantime - dealing with a variety of terms
resulting from changing the picture of I∗−1(y, ȳ).
We rewrite χ(u1)− χ(0) as

χ(u1)− χ(0) = {QRB , ξ(u1)− ξ(0)} (7.25)

and we deform the BRST-contour so as to get BRST commutators/anticommutators for the other inser-
tions. We obtain (see Appendix C)∫

F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

{
QRB , ξ(u1)− ξ(0)

}
F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
=

=−
∫
F0

d2τ

∫
Fb

d2y

〈{
QRB , bτ

}
b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
+

+

∫
F0

d2τ

∫
Fb

d2y

〈
bτ

{
QRB , b̄τ̄

}[
ξ(u1)− ξ(0)

]
F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
+

+

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

][
QRB , F−1(0, 0)

][
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
+

+

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)

[
QRB , χ(αy)

]
I∗−1(y, ȳ)

〉
+

+

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)χ(αy)

[
QRB , I

∗
−1(y, ȳ)

]〉
+

+

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)α

{
QRB , ∂ξ(αy)

}
c(y)I∗−1(y, ȳ)

〉
+

−
∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)α∂ξ(αy)

{
QRB , c(y)I∗−1(y, ȳ)

}〉
.

(7.26)

Clearly, from the de�nition of the PCO, we get

[QRB , χ(αy)] = 0

{QRB , ∂ξ(αy)} = ∂χ(αy) ;
(7.27)

moreover, from the BRST characteristics of the �xed and integrated vertex operators, we know that

[QRB , F−1(0, 0)] =0

[QRB , I
∗
−1(y, ȳ)] =[QRB , e

−φ(y)V ∗(y, ȳ)eik2·X(y)] = ∂y

(
c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y)

)
= ∂y

(
c(y)I∗−1(y, ȳ)

)
{QRB , c(y)I∗−1(y, ȳ)} ={QRB , c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y)} = 0 ,

(7.28)
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which are formulae that we also explicitly show in Appendix D.
Finally, there are the BRST anticommutators with the b-ghost insertions. Obviously,

{QRB , b̄τ} = 0 , (7.29)

becuase the left and right sector of the theory are independent. It's more involved, instead, to show that

{QRB , bτ} (7.30)

generates a total derivative with respect to τ which vanishes after the integration over the fundamental
domain of the metric moduli space114.
Thus, the net contribution that we get from (7.26) is∫

F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)

[
χ(αy)∂y

(
c(y)I∗−1(y, ȳ)

)
+ α∂χ(αy)c(y)I∗−1(y, ȳ)

]〉
,

(7.32)

where, as always, we have been careful to distinguish the partial derivative with respect to the argument
(∂) with the partial derivative ∂y with respect to y; it is then immediate to see that(7.32) can be written
as a total derivative, namely as∫

F0

d2τ

∫
Fb

d2y ∂y

[〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
F−1(0, 0)χ(αy)c(y)I∗−1(y, ȳ)

〉]
, (7.33)

which is a compact expression corresponding to (let's insert the formulae for F−1(0, 0) and I∗−1(y, ȳ))∫
F0

d2τ

∫
Fb

d2y ∂y

[〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)χ(αy)c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ)

〉]
.

(7.34)

Because of the constraint on the φ-charge, only the components of χ(αy) with φ-charge equal to 2 can
contribute to (7.33); according to (6.75), these are

χ(αy)
∣∣∣
φ- charge=2

= −1

2
∂η(αy)e2φ(αy)b(αy)− 1

4
η(αy)∂

(
e2φ(αy)b(αy)

)
. (7.35)

114We don't give the proof, we only roughly outline it. By using the fundamental relation {QRB , b(z)} = T tot(z) we get
that (rewrite bτ as in (5.39))

{QRB , bτ} =
{
QRB ,

1

4π
(b, ∂τ ĥ)

}
=

1

4π
(T tot, ∂τ ĥ) ∼ ∂τStot ,

where, in the last step, we used the fact that T tot ∼ δStot

δh
(here Stot is the total action, namely the sum of the action of

the superstring and the actions of the ghost systems). So the �rst line of the right-hand side of (7.26) can be written as
(we hide

∫
Fb
d2y and the presence of the other operators in the dots)∫

F0

d2τ < {QRB , bτ}... > ∼
∫
F0

d2τ < ∂τS
tot... >∼

∫
F0

d2τ

∫
D[Φ]e−S

tot[Φ]∂τS
tot[Φ]... =

∼
∫
F0

d2τ

∫
D[Φ]∂τ

(
e−S

tot[Φ]
)
... ,

where we denoted with D[Φ] the path-integral measure of all the �elds Φ of the theory. Then, with some work (read around
formula (2.194) of [6] to get an idea), it is possible to show that we can bring the derivative ∂τ out of < ... > and we end
up with ∫

F0

d2τ < {QRB , bτ}... >∼
∫
F0

d2τ

∫
D[Φ]∂τ

(
e−S

tot[Φ]...
)
∼
∫
F0

d2τ∂τ

(
< ... >

)
, (7.31)

where

(
< ... >

)
is shown to be zero for τ2 → +∞. Thus, (7.31) vanishes, because the only boundary that F0 has is at

τ2 → +∞, where the integrand is zero.
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By taking the limit α→ 1, we get (see Appendix (E))

χ(αy)
∣∣∣
φ- charge=2

c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) = −1

4
η(y)eφ(y)V ∗(y, ȳ)eik2·X(y,ȳ) ; (7.36)

which can be inserted into (7.34) to obtain

−1

4

∫
F0

d2τ

∫
Fb

d2y ∂y

[〈
bτ b̄τ̄

[
ξ(u1)− ξ(0)

]
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)η(y)eφ(y)V ∗(y, ȳ)eik2·X(y,ȳ)

〉]
.

(7.37)

This is a total derivative in y. The torus has no boundary, so we get a non-vanishing result only if the
integrand contributes with a singularity like

1

ȳ
,

because in this case we can use the well-known formula

∂y
1

ȳ
= 2πδ(y, ȳ) . (7.38)

In particular, this means that all the result to our correlation function comes from the limit y → 0 and
we can use the OPEs to understand what the integrand of (7.37) will become in this limit. Because of
the on-shell condition on k1, k2 and because of (7.23), we have

: eik1·X(0,0) :: eik2·X(y,ȳ) := | − y|α
′k1·k2 : ei(k1+k2)X(y,ȳ) +O(y) := 1 +O(y) . (7.39)

The other possible OPEs in the game are[
ξ(u1)− ξ(0)

]
η(y) =

1

y
+O(y)

e−φ(0)eφ(y) = −y +O(y2)

(7.40)

and, most importantly, the OPE (7.9), namely

V (0, 0)V ∗(y, ȳ) =
q

ȳ
VD̂(0, 0) +O(y) . (7.41)

The only way to get, in the integrand, a Dirac delta that is not multiplied by a positive power of y is to
pick up the �rst terms from all these OPEs:

+
1

4

∫
F0

d2τ

∫
Fb

d2y ∂y

[〈
bτ b̄τ̄ c̄(0)c(0)

[
ξ(u1)− ξ(0)

]
η(y)e−φ(0)eφ(y)V (0, 0)V ∗(y, ȳ)eik1·X(0,0)eik2·X(y,ȳ)

〉]
=

=
1

4

∫
F0

d2τ

∫
Fb

d2y ∂y

[〈
bτ b̄τ̄ c̄(0)c(0)

[
ξ(u1)− ξ(0)

]
η(y)e−φ(0)eφ(y)V (0, 0)V ∗(y, ȳ)eik1·X(0,0)eik2·X(y,ȳ)︸ ︷︷ ︸

1
y×(−y)× qȳVD̂(0,0)×1=− qȳVD̂(0,0)

〉]
=

= −q
4

∫
F0

d2τ

〈
bτ b̄τ̄ c̄(0)c(0)VD̂(0, 0)

〉
×
∫
Fb

d2y∂y
1

ȳ
=

= −πq
2

∫
F0

d2τ

〈
bτ b̄τ̄ c̄(0)c(0)VD̂(0, 0)

〉
.

(7.42)

We have thus found that at one-loop level a mass term ρiρ̄i is generated and this is proportional to the
expectation value of the D-term.
The computation explicitly shows that the perturbation theory around the vacuum < ρi >= 0 (that
is supersymmetric at the tree-level) leads - at one-loop level - to a mass splitting a�ecting the chiral
multiplet Sρi . Note that our calculations have been performed around the vacuum < ρi >= 0, because
we supposed ρi to be massless at the tree-level (according to formulae (7.6) and (7.7), if < ρi > 6= 0 then
the �eld ρi would be massive already at tree level).
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7.2 The independence of α

More times we have mentioned that we are free to distribute the PCOs as we prefer, as long as the
degeneration limit is respected. With our calculation, we can explicitly check that this is the case.
Indeed:

• the �nal result doesn't depend on the �xed position u1 of the PCO χ(u1). We note that all the
dependence on u1 is erased at the very end of the calculation, thanks to the �rst line of (7.40).
Actually, at this comment, the careful reader should be very upset. All the computation was based
on the innocent (innocent not at all) equation (7.16), where we wrote χ(u1) = χ(0)+(χ(u1)−χ(0))
and then we showed that the contribution coming from χ(0) alone is zero (see the comments under
(7.22)). But we have just noted that all the contribution coming from χ(u1)−χ(0) is due to −χ(0),
because of the �rst OPE in (7.40). It seems that we have reached an absurd: how is it possible for
χ(0) to give zero contribution in the �rst case and, at the same time, to give all the non-vanishing
contribution in the second case? We have to be careful. It is wrong to say that in the second case
(when there is χ(u1)−χ(0) in the correlation function) all the result comes only from −χ(0). Even
though the OPE (7.40) seems to suggest that only ξ(0) is important for the calculations, the latter
are right only when ξ(0) is accompanied by ξ(u1) in ξ(u1)−ξ(0). This is because of the tricky nature
of the bosonization of the βγ system, which requires a lot of attention, in particular at loop levels,
where the distinction between the small and large algebra becomes essential. A detailed analysis
of this kind of issues is beyond the purposes of this thesis, so we refer to [4]. It turns out that
on surfaces with genus g ≥ 1 the bosonization of the superconformal system brings into the game
unphysical singularities (the so-called spurious singularities) which make life harder. To avoid this
kind of problems, we should always work with the small algebra. This means that we have to plan
our manipulations so as to avoid working with the zero mode ξ0: the �eld ξ can explicitly appear
only through its derivatives ∂nξ(z) and through di�erences of ξs (like ξ(u1)− ξ(0)). It is precisely
from this point of view that also χ(u1) contributes to the �nal result, because ξ(u1) is necessary to
remove the zero mode ξ0 from ξ(0);

• the correlation function (7.13) is independent of the value of α. By taking the total derivative with
respect to α of formula (7.13), we get

d

dα

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
χ(αy) + α∂ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
=

=

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
y{QRB , ∂ξ(αy)}+ ∂ξ(αy)c(y) + αy∂2ξ(αy)c(y)

]
I∗−1(y, ȳ)

〉
=

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
y{QRB , ∂ξ(αy)}I∗−1(y, ȳ) + ∂y

(
y∂ξ(αy)

)
c(y)I∗−1(y, ȳ)

]〉
,

(7.43)

where we substituted, in the �rst line, χ(αy) with its de�nition χ(αy) = {QRB , ξ(αy)}, because now
we want to deform the BRST-contour so as to obtain BRST anticommutators/commutators on the
other �elds, as we did in (7.26). As before, the anticommutor {QRB , bτ} gives a total derivative
which integrates to zero on the metric moduli space, and {QRB , b̄τ̄} vanishes as also [QRB , F−1(0, 0)]
does too; on the other hand, [QRB , I

∗
−1(y, ȳ)] = ∂y

(
c(y)I∗−1(y, ȳ)

)
, as we saw in (7.28). Thus, we can

rewrite (7.43) as∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
y∂ξ(αy)∂y

(
c(y)I∗−1(y, ȳ)

)
+ ∂y

(
y∂ξ(αy)

)
c(y)I∗−1(y, ȳ)

]〉
,

(7.44)

which is simply∫
F0

d2τ

∫
Fb

d2y ∂y

〈
bτ b̄τ̄χ(u1)F−1(0, 0)

[
y∂ξ(αy)c(y)I∗−1(y, ȳ)

]〉
. (7.45)

Again, the torus has no boundary so (7.45) is non-zero only if a Dirac-delta is developed. We can
obtain a term ∼ 1

ȳ in the integrand only when the two vertex operators F−1(0, 0) ∼ V (0, 0) and
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I∗−1(y, ȳ) ∼ V ∗(y, ȳ) come together, so we need to analyze what happens in the y → 0 limit:

F−1(0, 0)
[
y∂ξ(αy)c(y)I∗−1(y, ȳ)

]
=

= yc̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)∂ξ(αy)c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) =

= yc̄(0) c(0)c(y)︸ ︷︷ ︸
∼y+O(y3)

e−φ(0)e−φ(y)︸ ︷︷ ︸
− 1
y+O(1)

V (0, 0)V ∗(y, ȳ)︸ ︷︷ ︸
q
ȳVD̂+O(y,ȳ)

eik1·X(0,0)eik2·X(y,ȳ)︸ ︷︷ ︸
1+O(y)

∂ξ(αy) =

∼ y

ȳ
,

(7.46)

where, in the last step, we used the OPEs (7.39), (7.41), (7.40) and the fact that the ghost c is a
Grassmann odd variable (i.e. c(0)c(0) = 0 which means that c(0)c(y) = O(y)).
Thus, the integrand in (7.45) doesn't develop a Dirac delta and it integrates to zero: the correlation
function (7.13) is independent of the value of α.

7.3 The old computation

We want to conclude this thesis by presenting how our correlation function used to be computed in the
80's (see [26] and [3], for example).
At that time, it was not clear that the PCOs should be placed according to the degeneration limit and,
to compute the mass-term ρiρ

∗
i , they legitimately thought to locate one PCO on the top of each vertex

operator.
This choice corresponds, in our language, to set α = 1 and u1 = 0, so the starting point of the old
computation is precisely our formula (7.18) (which - remember it! - was the �χ(0)� contribution of
fomula (7.16)). Then, we can follow the same steps as before and arrive again at (7.22), namely at

−1

4

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄ c̄(0)c(0)

[
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0)

[
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ)

〉
. (7.47)

Obviously, they knew that this term vanishes if we mantain both momentum conservation and the on-shell
(BRST-invariance) condition for our vertex operators, because (7.47) is proportional to k1 ·k2. The Dirac
delta that forces the conservation of the momentum of the system comes, in the path integral approach,
from the integration of the zero modes of the �eld Xµs, so they proposed to perform this integration as
the very last step of the computation. From a practical point of view, the right result should come, in
their opinion, from imposing the conditions

k2
1 = k2

2 =0

k1 · k2 =ε
(7.48)

on formula (7.47) and from performing the limit ε→ 0 at the very end of the calculations. This strategy
will lead to a non-zero result because the k1 · k2 factor coming from < k1 · ψ(0)k2 · ψ(y) > multiplies an
integral that diverges as 1/k1 · k2. This singularity arises near y = ȳ = 0, where the following OPEs hold

eik1·X(0,0)eik2·X(y,ȳ) =
1

|y|k1·k2
ei(k1+k2)·X(y,̄(y))(1 +O(|y|2))

ε→0−→ 1

|y|k1·k2
(1 +O(|y|2))

ψµ(0)ψν(y) = −η
µν

y
+O(y)

V (0, 0)V ∗(y, ȳ) =
q

ȳ
VD̂(0, 0) +O(y, ȳ) .

(7.49)
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So, we have

−1

4

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄ c̄(0)c(0)

[
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0)

[
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ)

〉
=

=
1

4

∫
F0

d2τ

∫
Fb

d2y

〈
bτ b̄τ̄ c̄(0)c(0) k1 · ψ(0)k2 · ψ(y)︸ ︷︷ ︸

− k1·k2
y +O(y)

V (0, 0)V ∗(y, ȳ)︸ ︷︷ ︸
q
ȳVD̂(0,0)+O(y,ȳ)

eik1·X(0,0)eik2·X(y,ȳ)︸ ︷︷ ︸
1

|y|k1·k2
(1+O(|y|2))

〉
=

= −q k1 · k2

4

∫
F0

d2τ〈bτ b̄τ̄ c̄(0)c(0)VD̂(0, 0)〉
∫
Fb

d2y
1

|y|2+k1·k2
+
(
vanishing terms for k1 · k2 → 0

)
=

= −q k1 · k2

4

∫
F0

d2τ〈bτ b̄τ̄ c̄(0)c(0)VD̂(0, 0)〉 2π

−k1 · k2
;

(7.50)

note that the integral115
∫
Fb
d2y 1

|y|2+k1·k2
is clearly positive and this is consistent with the result 2π/(−k1 ·

k2) because, in order to make it convergent, we have to take the k1 · k2 → 0 limit from below, namely
k1 · k2 → 0−.
The result of the amplitude is then

q
π

2

∫
F0

d2τ〈bτ b̄τ̄ c̄(0)c(0)VD̂(0, 0)〉 , (7.51)

which is precisely the result that we computed with our approach, see (7.42), except for a sign. Intuitively,
the results (7.42) and (7.51) di�er for a sign because, according to our strategy, the �nal result comes
from the χ(u1) − χ(0) ∼ −χ(0) contribution (�only �−χ(0) gave a contribution!), whereas, according to
the old approach, it instead arises from the insertion of χ(0).
Note that the sign is relevant because if m2

ρiρ∗i
< 0, then a tachyonic direction is developed and the

classical vacuum becomes, at one loop level, unstable116. If we want to pick up the right sign, we need
to distribute the PCOs according to the degeneration limit.
The reason why the old approach gives the right result (modulo a sign) despite the fact that momentum

Figure 21

The mass shift of the massless particle ρi can be computed slightly o�-shell
by treating ρi as a resonance in a scattering amplitude with four external particles.

conservation was only imposed at the end can be understood by computing another correlation function.
One can consider a scattering amplitude in which the particle ρi appears as a resonance or intermediate
state. Such an amplitude (see Figure 21) is a�ected by the mass shift of the ρi particle, but now the
latter can be slighlty o�-shell. So k2

1 and k2
2 are not properly zero and, correspondingly, we can consider

k1 · k2 6= 0, as we have done throughout this section. The mass shift δm2 of the ρi particle appears in
the perturbative computation of the scattering amplitude of Figure 21 as the coe�cient of a double pole,
because of the usual expansion

1

k2 + δm2
=

1

k2
− 1

k2
δm2 1

k2
+ ... (7.52)

115We don't compute the integral here because it is straightforward; it is enough to note that all the contribution in which
we are interested comes from the region around y = ȳ = 0, so we can equivalently calculate the integral

∫
B(0,δ) d

2y 1
|y|2+k1·k2

,

where B(0, δ) is a little ball of radius δ centered in y = 0.
116In this case, according to (7.6) and (7.7), we expect a supersymmetric stable vacuum to be developed at |ρi|2 = −pg2

s/ei
provided that there are no D-terms for the other �elds.
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Appendix A Calculation for (7.17)

In this appendix we will be very precise with the computations, because we want explicitly show that
if we are interested in a local issue (as changing the picture of a vertex operator is) then we don't have
to worry about all the non-singular corrections that the OPEs get from the boundary conditions of the
surface and we can pretend to be on the sphere.

First of all, we clarify our conventions.
In QFT, Wick's theorem states that a time ordered product of normal ordered bunches of �elds can be
simpli�ed to a sum over all possible contractions performed over �elds evaluated at di�erent time. In
radial quantization, we analogously have that radial ordered product of normal ordered bunches of �elds
can be simpli�ed to a sum over all possible contractions performed over �elds positioned at di�erent radii.
With the label �NER� we will precisely mean that we have to do all the contractions among Not Equal
Radii �elds. Also,

• φ(w)φ(0) is the 2-�elds contraction. It means that we have substitute these two �elds with their
correlation function;

•

c︷ ︸︸ ︷
φ(w)

n
φ(0)

m
will mean that we are taking into consideration all the possible terms that arise by

taking c times the 2-�elds-contractions out of the n copies of the �eld φ(w) and the m copies of the
�eld φ(0). For example,

φ(w)
n
φ(0)m ≡

1︷ ︸︸ ︷
φ(w)

n
φ(0)

m
.

Finally, we say that in all the appendices we will write
∫
C(z)

dw instead of
∫
C(z)

dw
2πi , where, as usual,

C(z) denotes a circle around z.

We need to compute

lim
w→0

χ(w) : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : = (A.1)

= : c̄(0)c(0){Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)}eik1·X(0,0) : −1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) : (A.2)

We have to use the de�nition117 of

χ(w) =: {QRB , ξ(w)} : = :

[
c∂ξ︸︷︷︸
1.

+ eφG︸︷︷︸
2.

− 1

2
∂ηe2φb︸ ︷︷ ︸

3.

− 1

4
η∂w(e2φb)︸ ︷︷ ︸

4.

]∣∣∣∣
w

: (A.3)

So, when χ(w) approaches : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : we get 4 contributions:

1. limw→0 : c(w)∂ξ(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : here there are no possible contractions so
Wick theorem gives

lim
w→0

: c(w)∂ξ(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : = (A.4)

= lim
w→0

: c(w)∂ξ(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : = (A.5)

= lim
w→0

[
: c(0)∂ξ(0)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : +O(w)

]
= (A.6)

= 0 (A.7)

where the we have exploited the standard fact c(0)c(0) = 0.

117Please note that, whenever not precised, ∂ is a partial derivation with respect to the argument of the function on which
it is acting.
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2. limw→0 : eφ(w)G(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : which we are going to compute by using
Wick theorem

: eφ(w)G(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :=

=

[
: eφ(w)G(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=−
[

: eφ(w)e−φ(0)G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

(A.8)

=−
[ ∞∑
m,n=0

(−1)m

n!m!
: φ(w)

n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=−
∞∑

m,n=0

(−1)m

n!m!
: φ(w)

n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=1

∞∑
m,n=c

(−1)m

n!m!
:

c︷ ︸︸ ︷
φ(w)

n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=1

∞∑
m,n=c−1

(−1)m

n!m!
:

c−1︷ ︸︸ ︷
φ(w)

n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=1

∞∑
m,n=c−1

(−1)m

n!m!
:

c−1︷ ︸︸ ︷
φ(w)

n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=−
∞∑
c=0

∞∑
m,n=c

(−1)m

n!m!

(
n

c

)(
m

c

)
c! 〈φ(w)φ(0)〉c ×

× : φ(w)
n−c

φ(0)
m−c

G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=1

∞∑
m,n=c−1

(−1)m

n!m!

(
n

c− 1

)(
m

c− 1

)
(c− 1)! 〈φ(w)φ(0)〉c−1×

× : φ(w)
n−c+1

φ(0)
m−c+1

G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=1

∞∑
m,n=c−1

(−1)m

n!m!

(
n

c− 1

)(
m

c− 1

)
(c− 1)! 〈φ(w)φ(0)〉c−1 ×

× : φ(w)
n−c+1

φ(0)
m−c+1

G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=−
∞∑
c=0

(
− 〈φ(w)φ(0)〉

)c
c!

∞∑
m,n=0

(−1)m

n!m!
×

× : φ(w)
n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=0

(
− 〈φ(w)φ(0)〉

)c
c!

∞∑
m,n=0

(−1)m

n!m!
×

× : φ(w)
n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

−
∞∑
c=0

(
− 〈φ(w)φ(0)〉

)c
c!

∞∑
m,n=0

(−1)m

n!m!
×

× : φ(w)
n
φ(0)

m
G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

(A.9)

= −e−〈φ(w)φ(0)〉 : eφ(w)e−φ(0) :

[
: G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

(A.10)
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Now we can use the following relations

〈φ(w)φ(0)〉 = − log(w) +O(w)

: eφ(w)e−φ(0) : = 1 +O(w)

G(w)V (0, 0) = Gint(w)V (0, 0) =

= − 1

w
Ṽ (0, 0) +O(1)

G(w) : eik1·X(0,0) : = GXψ(w) : eik1·X(0,0) : =

= : −ψ(w) · ∂X(w) : : eik1·X(0,0) : =

=
i

2w
: k1 · ψ(0)eik1·X(0,0) : +O(1)

(A.11)

so as to obtain

=− eln(w)+O(w)
(
1 +O(w)

) [
: G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=(−w +O(w))
(
1 +O(w)

) [
: G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=(−w +O(w))
(
1 +O(w)

)
: G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

+ (−w +O(w))
(
1 +O(w)

)
: G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

=(−w +O(w))
(
1 +O(w)

)
: c̄(0)c(0)

(
− 1

w
Ṽ (0, 0) +O(1)

)
eik1·X(0,0) : +

+ (−w +O(w))
(
1 +O(w)

)
: c̄(0)c(0)V (0, 0)×

×
(
− i

2w
k1 · ψ(0)eik1·X(0,0) : +O(1)

)
: =

= : c̄(0)c(0)Ṽ (0, 0)eik1·X(0,0) : − : c̄(0)c(0)
i

2
k1 · ψ(0)V (0, 0)eik1·X(0,0) : +O(w)

(A.12)

Finally, taking the limw→0 we end up with

lim
w→0

: eφ(w)G(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=: c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) :

(A.13)

3. limw→0 : 1
2∂η(w)e2φ(w)b(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : here we can use Wick theorem to go

through similar calculations as we have just done for the previous contribution so as to obtain the
result analogous to (0.10):

:
1

2
∂η(w)e2φ(w)b(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=

[
:

1

2
∂η(w)e2φ(w)b(w) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=− e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) :

[
:

1

2
∂η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=

=− e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) : :
1

2
∂η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

(A.14)

By using the standard relations

〈φ(w)φ(0)〉 = − log(w) +O(w)

〈b(w)c(0)〉 =
1

w
+O(1)

(A.15)
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this contribution reads

=−
(
w2 +O(w3)

)
:
(
eφ(0) +O(w)

)
:

1

2

(
− 1

w
+O(w)

)
: ∂η(w)c̄(0)V (0, 0)eik1·X(0,0) : =

=
1

2

(
w +O(w2)

)
:
(
eφ(0) +O(w)

)
: :
(
∂η(0) +O(w)

)
c̄(0)V (0, 0)eik1·X(0,0) :

(A.16)

and we see that it vanishes by taking the w → 0 limit.

4. limw→0 : 1
4η(w)∂w(e2φ(w)b(w)) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : as �rst step, we are going to use

Leibniz rule to split it into 2 terms, that is

:
1

4
η(w)∂w

(
e2φ(w)b(w)

)
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=
1

4
: ∂we

2φ(w)e−φ(0)η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

+
1

4
: e2φ(w)e−φ(0)η(w)∂b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

(A.17)

With both of these terms we could go through all the possible contractions as we have done when
computing the second contribution and end up with results analogous to (0.10), that is:

:
1

4
η(w)∂w

(
e2φ(w)b(w)

)
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=
1

4

[
: ∂we

2φ(w)e−φ(0)η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

+

+
1

4

[
: e2φ(w)e−φ(0)η(w)∂b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

=
1

4
∂w

(
e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) :

)[
: η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

+

+
1

4
e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) :

[
: η(w)∂b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) :

]∣∣∣∣
NER

(A.18)

And using the usual formulae for the contractions (see 0.15) we obtain

=
1

4
∂w

(
e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) :

)
: η(w)b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

+
1

4
e−2〈φ(w)φ(0)〉 : e2φ(w)e−φ(0) : η(w)∂b(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=
1

4
∂w

(
(w2 +O(w3)) : eφ(0) +O(w) :

)(
− 1

w
+O(w)

)
: η(w)c̄(0)V (0, 0)eik1·X(0,0) : +

+
1

4
((w2 +O(w3)) : eφ(0) +O(w) : ∂

(
− 1

w
+O(w)

)
: η(w)c̄(0)V (0, 0)eik1·X(0,0) : =

=− 1

2
: eφ(0)η(0)c̄(0)V (0, 0)eik1·X(0,0) : +

1

4
: eφ(0)η(0)c̄(0)V (0, 0)eik1·X(0,0) : +O(w) =

=
1

4
: eφ(0)η(0)c̄(0)V (0, 0)eik1·X(0,0) : +O(w)

(A.19)

This means that after taking the w → 0 limit we end up with

lim
w→0

:
1

4
η(w)∂w(e2φ(w)b(w)) : : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=
1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) :

(A.20)
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Coming to a conclusion, we can sum all these contributions together and we �nally obtain

lim
w→0

χ(w) : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

= lim
w→0

:

[
c∂ξ + eφG− 1

2
∂ηe2φb− 1

4
η∂w(e2φb)

]∣∣∣∣
w

: : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

= lim
w→0

:

[
eφ(w)G(w)− 1

4
η∂w(e2φ(w)b(w))

]
: : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

= : c̄(0)c(0)

[
Ṽ (0, 0)− i

2
k1 · ψ(0)V (0, 0)

]
eik1·X(0,0) : −1

4
: c̄(0)η(0)eφ(0)V (0, 0)eik1·X(0,0) :

(A.21)

Note that, as expected, when we compute the OPE among the PCO and a vertex operator, we get a
non-zero contribution only from the divergent part of the OPEs, because any vertex operator (regardless
of its picture) is something local and should not contain any information on the world sheet on which it
is inserted. Locally, one should not feel the boundary conditions.

Appendix B Calculation for (7.19)

We have to compute

lim
α→1

(
χ(αy) + α∂ξ(αy)c(y)

)
: e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : = (B.1)

In this limit, the c(αy)∂ξ(αy) term from χ(αy) cancels the α∂ξ(αy)c(αy) term and this means that if
we want to change the picture number of an integrated vertex operator, we have to act on it with the
moving operator χM :

χM (y) ≡ χ(y) + ∂ξ(y)c(y) =

= : eφ(y)G(y)︸ ︷︷ ︸
1.

−1

2
∂η(y)e2φ(y)b(y)︸ ︷︷ ︸

2.

−1

4
η(y)∂y(e2φ(y)b(y))︸ ︷︷ ︸

3.

: (B.2)

Given that the operator : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : has no c insertions, the contributions 2. and 3.
vanishes in the limw→y and we are left with

lim
w→y

: eφ(w)G(w) : : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : = lim
w→y

[
: eφ(w)G(w)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

]
NER

=

= lim
w→y

(−1)e−〈φ(w)φ(y)〉 : eφ(w)−φ(y)G(w)V ∗(y, ȳ)eik2·X(y,ȳ) : +

+ lim
w→y

(−1)e−〈φ(w)φ(y)〉 : eφ(w)−φ(y)G(w)V ∗(y, ȳ)eik2·X(y,ȳ) : =

=

[
Ṽ (y, ȳ)− i

2
k2 · ψ(y)V ∗(y, ȳ)

]
eik2·X(y,ȳ) .

(B.3)

Appendix C BRST-contour deformation

Here we show how the deformation of the BRST-contour integral should be done. We illustrate this with
a general example, then the application to (7.26) will be straightforward.

Let's consider a correlation function like〈
A(zA)B(zB)

{
QRB , C(zC)

}
D(zD)

〉
=

∮
C(zC)

dw
〈
A(zA)B(zB)jRB(w)C(zC)D(zD)

〉
, (C.1)

where QRB is the holomorphic bit of the BRST charge and the capital letters I(zI) denote local operators
inserted at the positions zI on (the fundamental region of) the torus. In the second expression, we used
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Figure 22

Deformation of the contour integral on the torus.

(4.35) to write the anticommutator in terms of the BRST-integral along a circle CzC that is centered on
zC and which is counterclockwise oriented.

We can deform CzC as depicted in Figure 22 to obtain∮
C(zC)

dw
〈
A(zA)B(zB)jRB(w)C(zC)D(zD)

〉
= −

∮
C(zA)

dw
〈
A(zA)B(zB)jRB(w)C(zC)D(zD)

〉
+

−
∮
C(zB)

dw
〈
A(zA)B(zB)jRB(w)C(zC)D(zD)

〉
+

−
∮
C(zD)

dw
〈
A(zA)B(zB)jRB(w)C(zC)D(zD)

〉
,

(C.2)

where all the contours CzI are counterclockwise oriented around the insertion at zI . If we want to rewrite
this expression in terms of BRST- commutators/anticommutators of the �elds A,B,D, we need to bring
jRB to the close left of each operator, so then we can appply (4.35) again. In doing so, we have to be
careful, because swapping jRB with a fermionic operator brings a sign into the game. To be more concrete,
let's consider the case in which A,B,C are Grassmann odd and D is Grassmann even. Then, (C.4) reads
as 〈

A(zA)B(zB)
{
QRB , C(zC)

}
D(zD)

〉
= −

∮
C(zA)

dw
〈
jRB(w)A(zA)B(zB)C(zC)D(zD)

〉
+

+

∮
C(zB)

dw
〈
A(zA)jRB(w)B(zB)C(zC)D(zD)

〉
+

+

∮
C(zD)

dw
〈
A(zA)B(zB)C(zC)jRB(w)D(zD)

〉
;

(C.3)
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now, by using (4.35) we reach the �nal expression〈
A(zA)B(zB)

{
QRB , C(zC)

}
D(zD)

〉
= −

∮
C(zA)

dw
〈{
QRB , A(zA)

}
B(zBC(zC)D(zD)

〉
+

+

∮
C(zB)

dw
〈
A(zA)

{
QRB , B(zB)

}
C(zC)D(zD)

〉
+

+

∮
C(zD)

dw
〈
A(zA)B(zB)C(zC)

[
QRB , D(zD)

]〉
.

(C.4)

We mention that this kind of mannipulations can be done also for (compact, oriented) higher genus
surfaces, because these can be represented - as the torus - as spaces obtained by introducing proper
identi�cations on the complex plane.

Appendix D Calculation for (7.28)

We have to compute the commutator of the �rst vertex operator with the holomorphic bit of the BRST-
charge, that is

[QRB , : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] =? (D.1)

where

QRB =

∮
dwjRB(w)

jRB(w) = : c(w)

(
TXψ(w) + T int(w) + T βγ(w) + ∂c(w)b(w)

)
: +

− : γ(w)G(w) : −1

4
: β(w)γ2(w) : =

= : c(w)

(
T tot(w)− ∂(c(w)b(w))

)
︸ ︷︷ ︸

1.

: − : γ(w)G(w) :︸ ︷︷ ︸
2.

− 1

4
: b(w)γ2(w) :︸ ︷︷ ︸

3.

(D.2)

Here, T tot is the holomorphic part of the sum of all the energy momentum tensors (matter, bc ghost
system, βγ system) and G is the holomorphic matter part of the worldsheet supersymmetry current. To
be more precise:

T tot(w) = TXψ(w) + T int(w) + T βγ(w) + T bc(w)

TXψ(w) = −∂X(w) · ∂X(w) + ψ(w) · ∂ψ(w)

T βγ(w) = −3

2
β(w)∂γ(w)− 1

2
∂β(w)γ(w)

T bc(w) = 2∂c(w)b(w) + c(w)∂b(w)

G(w) = GXψ(w) +Gint(w) = −ψ(w) · ∂X(w) +Gint(w)

(D.3)

Turning back to the computation of (D.1), we have three contributions, which correspond to the three
terms which jRB(w) consists of. These are:

1. [
∮
dw : c(w)

(
T tot(w) − ∂(c(w)b(w))

)
:, : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] of course, here it is

essential to remember that we �xed the position of the �rst vertex operator (as the presence of
c̄(0)c(0) in it testi�es) so : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : is a primary operator of conformal
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dimension 0; said another way, the most singular term of its OPE with T tot goes like a simple pole.

[

∮
dw : c(w)

(
T tot(w)− ∂(c(w)b(w))

)
: , : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] =

=

∮
C(0)

dw : c(w)T tot(w) :: c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : +

−
∮
C(0)

dw : c(w)∂(c(w)b(w)) :: c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=

∮
C(0)

dw

[
: c(w)T tot(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]
NER

+

−
∮
C(0)

dw

[
: c(w)∂(c(w)b(w))c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]
NER

=

=

∮
C(0)

dw : c(w)

[
T tot(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)

]
NER

: +

−
∮
C(0)

dw : c(w)∂(c(w)b(w))c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=

∮
C(0)

dw : c(w)

[
1

w
∂

(
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)

)
+O(1)

]
: +

−
∮
C(0)

dw : c(w)∂

(
− 1

w
c(w) +O(w)

)
c̄(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

= : c(0)∂

(
c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0)

)
: +

−
∮
C(0)

dw : c(w)

(
− 1

w
∂c(w) +O(1)

)
c̄(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

= : c(0)c̄(0)∂c(0)e−φ(0)V (0, 0)eik1·X(0,0) : +

+ : c(0)∂c(0)c̄(0)e−φ(0)V (0, 0)eik1·X(0,0) : =

=0

(D.4)
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2. [
∮
dw : γ(w)G(w) :, : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] which is

[

∮
dw : γ(w)G(w) :, : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] =

=

∮
C(0)

dw : γ(w)G(w) :: c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :=

=

∮
C(0)

dw

[
: η(w)eφ(w)G(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]
NER

=

=

∮
C(0)

dw e−〈φ(w)φ(0)〉 : eφ(w)−φ(0)

[
η(w)G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0)

]
NER

: =

=

∮
C(0)

dw e−〈φ(w)φ(0)〉 : eφ(w)−φ(0)η(w)G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : +

+

∮
C(0)

dw e−〈φ(w)φ(0)〉 : eφ(w)−φ(0)η(w)G(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=

∮
C(0)

dw(w +O(w2)) : (1 +O(w))(η(0) +O(w))c̄(0)c(0)×

×
(

1

w
Ṽ (0, 0) +O(1)

)
eik1·X(0,0) : +

+

∮
C(0)

dw(w +O(w2)) : (1 +O(w))(η(0) +O(w))c̄(0)c(0)V (0, 0)×

×
(

i

2w
: k · ψ(0)eik1·X(0,0) : +O(1)

)
: =

=

∮
C(0)

dwO(1) =

=0

(D.5)

3. [
∮
dw 1

4 : b(w)γ2(w) :, : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] which is

[

∮
dw

1

4
: b(w)γ2(w) :, : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :] =

=
1

4

∮
dw

[
: b(w)η2(w)e2φ(w)c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]
NER

=

=− 1

4

∮
dw e−2〈φ(w)φ(0)〉 : e2φ(w)−φ(0)b(w)η2(w)c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=− 1

4

∮
dw (w2 +O(w3)) : (eφ(0) +O(w))×

×
(

1

w
+O(1)

)
(η2(0) +O(w))c̄(0)c(0)V (0, 0)eik1·X(0,0) : =

=

∮
dwO(w) =

=0

(D.6)

In this computations, the c̄ ghost of the vertex operator has been a spectator. We have never con-
tracted it with something else, becuase we are computing the commutator of the vertex operator with
the holomorphic bit of the BRST-charge. We can drop it and the �nal result of the (anti)commutator
will not change, so we have actually proved118 both

118More formally, we have[
QRB , : c̄(y)c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

]
=
{
QRB , c̄(y)

}
: c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : +

− c̄(y)
{
QRB , : c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

}
=

=− c̄(y)
{
QRB , : c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

} (D.7)
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[
QRB , : c̄(0)c(0)e−φ(0)V (0, 0)eik1·X(0,0) :

]
= 0 (D.8)

and {
QRB , : c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

}
= 0 (D.9)

It is useful to understand how this anticommutator changes if we remove also the c ghost from it,
which is equivalent to understand how an integrated vertex operator behaves under the action of the
holomorphic part of the BRST charge:[

QRB , : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :
]

=? (D.10)

As we have just done, we are going to perform this computation by splitting it into three contributions,
that is [

QRB , : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :
]

=

=

∮
C(y)

dw : c(w)

(
T tot(w)− ∂(c(w)b(w))

)
: : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :︸ ︷︷ ︸

1.

+

−
∮
C(y)

dw : γ(w)G(w) :: e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :︸ ︷︷ ︸
2.

+

− 1

4

∮
C(y)

dw : b(w)γ2(w) :: e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :︸ ︷︷ ︸
3.

(D.11)

where

1. given that : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : is a primary operator of conformal dimension 1 without any
b or c dependece, the �rst contribution simpli�es to∮

C(y)

dw : c(w)T tot(w) : : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : =

=

∮
C(y)

dw : c(w)

[
T tot(w)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ)

]
NER

: =

=

∮
C(y)

dw : c(w)
1

(w − y)2
e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : +

+

∮
C(y)

dw : c(w)
1

w − y
∂y

(
e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

)
+O(1)

=

∮
C(y)

dw : c(w)
1

(w − y)2
e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : +

+

∮
C(y)

dw : c(w)
1

w − y
∂y

(
e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

)
+

+

∮
C(y)

dw : c(w)O(1) : =

=

∮
C(y)

dw :

(
c(y) + (w − y)∂c(y) +O((w − y)2)

)
1

(w − y)2
×

× e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) : +

+

∮
C(y)

dw :

(
c(y) + (w − y)∂c(y) +O((w − y)2)

)
1

w − y
×

× ∂y
(

: e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

)
=

=∂y

(
: c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

)

(D.12)
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2. to compute the second term we have to go through the same computations that we did to arrive at
the result D.5. Nothing changes, because there both c and c̄ were spectators. So this contribution
vanishes again.

3. following the same procedure that lead us to the the result D.6, it is immediate to see that also this
contribution vanishes.

So we have proved that

[
QRB , : e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

]
= ∂y

(
: c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) :

)
(D.13)

Appendix E Calculation for (7.36)

Now we will be very sloppy, given that we showed in Appendix A how computations should be done in
a diligent way.

We have to compute

χ(w)
∣∣∣
φ- charge=2

c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) = −1

4
η(y)eφ(y)V ∗(y, ȳ)eik2·X(y,ȳ) , (E.1)

in the w → y limit.
We have two contributions, because

χ(w)
∣∣∣
φ- charge=2

= −1

2
∂η(w)e2φ(w)b(w)− 1

4
η(w)∂

(
e2φ(w)b(w)

)
. (E.2)

• The �rst one is zero, because

− 1

2
∂η(w)e2φ(w)b(w)c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) =

= −1

2
∂η(w) :

[
(w − y)2e2φ(w)−φ(y) +O((w − y)3)

]
:
[ 1

w − y
+O(w − y)

]
V ∗(y, ȳ)eik2·X(y,ȳ) =

= O(w − y)
w→y−→ 0

(E.3)

• instead, the second one reads as

− 1

4
η(w)∂w

(
e2φ(w)b(w)

)
c(y)e−φ(y)V ∗(y, ȳ)eik2·X(y,ȳ) =

= −1

4
η(w)∂w

{
:
[
(w − y)2e2φ(w)−φ(y) +O((w − y)3)

]
:
[ 1

w − y
+O(w − y)

]}
V ∗(y, ȳ)eik2·X(y,ȳ) =

= −1

4
η(w)∂w :

{
(w − y)e2φ(w)−φ(y) +O((w − y)2)

}
: V ∗(y, ȳ)eik2·X(y,ȳ) =

w→y−→ −1

4
η(y)eφ(y)V ∗(y, ȳ)eik2·X(y,ȳ) .

(E.4)
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