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“Nature seems to enjoy running on the verge of inconsistency”
(D. Friedan, E. Martinec, S. Shenker)

Introduction

The union of gravity with quantum field theory leads to non renormalization issues so, despite of its
impressive success, the Standard Model is surely not the ultimate theory describing the reality at its
very fundamental level. Other hints in this direction also come from the fact that the Standard Model
appears to be, in a certain sense, too “arbitrary” and “unnatural”. It looks like arbitrary because it is not
able to explain the reason why its particular pattern of gauge fields and multiplets exists and because it
cannot, determine the values of the many parameters entering its Lagrangian. The latter have to be fixed
by comparison with experiments and some of them turn out to be unexpectedly much smaller than the
values that one would guess a priori: hence the unnaturalness of the model, which arises as a fine-tuning
problem. For instance, the Higgs boson is much lighter than the Planck mass Mp ~ 10'® GeV, whereas
one would expect that the large quantum contributions to its mass would inevitably make the latter very
huge (i.e. comparable to the scale at which new physics should emerge) unless there is an incredible
fine-tuning cancellation between the quadratic radiative corrections and the bare mass.

All the attempts at unification of the interactions of nature have been essentially based on enlarg-

ing the symmetry group of short distance physics. This has brought us to theories characterized by
large non-abelian gauge groups, supersymmetry (which helps with the naturalness issue, by solving the
fine-tuning problem for the Higgs mass), higher dimensions (that allow to describe several and different
four-dimensional fields in term of the same higher-dimensional object), etc...
Out of the theories that have been put forward to go beyond the SM, the most promising one seems to be
String Theory, according to which fundamental particles are nothing but different excitations of a one-
dimensional object. This idea leads - in a very natural way - to a theory where the characteristic length
of the string is the only arbitrarily adjustable parameter and where all interactions (gravity inluded) are
unified in a truly elegant formalism which is free from those UV divergences which typically affect any
QFT of pointlike particles. From an abstract point of view, string theory represents a radical step in
enlarging the symmetry group of fundamental physics, because it brings the infinite-dimensional algebra
of two-dimensional conformal transformations into the game. Such vast extension in symmetry is corre-
spondingly followed by tight restrictions on the structure of the theory. Indeed, because of the presence
of several potential anomalies, the consistency of string theory is a non-trivial issue. It requires stringent
constraints on the framework, which lead to the critical dimension (we can say that the superstring is
allowed to live only in a ten-dimensional spacetime), to precise restrictions on the possible gauge groups
(for example, the heterotic superstring is consistent only with Eg x Eg or SO(32) gauge vectors) and to
the spacetime supersymmetry.

So far, no evidence of supersymmetric partners of the SM particles has been found. Thus, there must

be a mechanism that breaks it at a certain energy scale A, considerably higher than the typical scale Agys
of the SM, namely the electroweak one: Ay > Agpr ~ 102 GeV. If supersymmetry is really the solution to
the hierarchy problem, the cancellation of the quantum corrections to the Higgs mass requires Ay not to
be too much above Agy; and it’s thus believed that the breaking of supersymmetry should occur around
an energy scale like 102 GeV < Ay < 10° GeV.
From the superstring point of view, the fact that A, < 10® GeV means that the compactification of the six
extra-dimensions should not be responsible for the breaking of the supersymmetry; otherwise, we would
have Ay ~ 1/R. where R, is the characterisitic length of the internal space, which has to be taken very
small in order for the additional dimensions to be penetrable only at very high energy, that is 1/R, > 103
GeV. In other words, the six extra dimensions are curled up into special manifolds which don’t break
supersymmetry (i.e. they must be Calabi-Yau, if the metric is the only background field) and A, cannot
be tied to the compactification scale. In the context of the superstring, the link between A, and 1/R.
appears to be a genericﬂ problem with tree-level supersymmetry breaking (see [I]) and we are left with
the possibility of breaking supersymmetry by means of loop or non-perturbative effects.

LAt least in the traditional approach to phenomenology based on the heterotic superstring.



In the final chapter of this thesis, we will analyze the only knoumEl example in which supersymmetry

can be spontaneously broken in superstring perturbation theory, despite being unbroken at the tree-level.
We will be able to detect the breaking of the supersymmetry by looking at the mass-splitting that arises
as a one-loop effect affecting a chiral supermultiplet of the low-energy limit of the SO(32) heterotic su-
perstring compactified in a Calabi-Yau manifold. To be more precise, we will determine - at one loop
level - the p;p} correlation function for a particular complex scalar field p; and we will find that a pos-
sible non-vanishing mass term is developed. We will perform the calculation around a vacuum which is
supersymmetric at the tree-level and in which p; and its superpartner appear massless. Given that the
latter will continue to be massless also perturbatively, the non-vanishing mass term for p; will precisely
coincide with the craved mass-splitting, which is due to the presence of a non-vanishing D-term.
This model is not interesting from a phenomenological point of view. Nevertheless, it’s worth of being
studied, because it lets us have a look at the differences between the old literature and the current state of
the art of on-shell string perturbation theory. Indeed, this calculation has been done in various ways in the
old literature (see [2], [3]) where, in order to get a non-vanishing mass term for p;, they needed to impose
the momentum conservation condition only at the very end of the calculation. Clearly, this sounds like a
trick, because nothing prevents us from imposing the momentum conservation in a previous step of the
computation. We will determine the mass-splitting by following the strategy outlined by A. Sen in 2015
(see [M]), a strategy that doesn’t require the momentum conservation condition to be imposed necessarily
at the end. His approach was inspired by some recent advancements that he and his collaborators carried
out in the context of the closed superstring field theory/off-shell superstring scattering amplitudes. We
will not present the heavy formalism underlying such advanced topics; rather, we will help the reader to
understand the structure of that calculation by following a very humble and elementary path, partially
based on the old-fashioned approach to string perturbation theory (indeed we will cite articles like [5],
[6] and [7] several times throughout all the course of the thesis); when big theorems and long proofs will
be required, we will refer to the proper reference.

We will not take any background in string theory for granted. After an informal introduction, we
will devote the second and the third chapter to presenting the quantization of the string; we will do it
for the bosonic string, a theory that we consider as an unrealistic but simple toy model that lets us get
acquaitance with the main ideas of string theory. In the fourth chapter, the most important ingredients
of CFT borrowed by string theory will be given and we will also have our first approach to the BRST
formalism, an essential tool that will help us to build up physically meaningful correlation functions.
Then, we will be ready to analyze how the global aspects of the worldsheet enter string perturbation
theory, something that we will describe in the fifth chapter, where particular attention will be paid to the
toroidal worldsheet, given that it will be precisely the worldsheet on which the final calculation will be
performed. At this point, the reader should have acquired enough familiarity with string theory, so, in
the sixth chapter we will be more sketchy with the superstring and we will describe in detail only those
features of it that have no analogy in the bosonic theory; here, for example, the basics of the technology
involving the picture changing operators will be presente(ﬂ Finally, in the seventh chapter we will study
the spontaneous supersymmetry breaking mechanism for the heterotic SO(32) superstring and we will
explicitly show the difference between the way the calculation used to be done in the 80’s and the strategy
proposed by Sen.

2 At least, the only known example according to the knowledge of E. Witten (see [2]).

3We like to mention that, essentially, there are two possible ways to do superstring perturbation theory. As E. Witten
likes, one could describe the superstring perturbation theory by resorting to the mathematically involved machinery of super-
Riemann surfaces, otherwise one could decide to follow the favourite approach by A. Sen, which consists of integrating out
the odd moduli of the worldsheet and dealing with the picture changing operators in a more intuitive and manifest way
since the beginning of the calculation. We prefer the second option, because it requires less mathematical background and
because it is more direct for computations.

II



1 String Theory: an informal introduction

In this section, we are going to introduce the reader to the technical language that will be used in the
following chapters, by presenting some of the fundamental ideas underlying string theory. We will not
delve into computations; rather, we will explain basic concepts on which this fascinating theory is based.
Particular emphasis will be laid on the features of the interactions allowed among extended objects and
on the formalisms used to deal with them.

1.1 p—branes and worldvolume formalisms

Let’s consider a p—brane, that is a classical object (relativistic or not) of p space dimensions propagating
in a flat D—dimensional spacetime M.

Such an object is defined to be fundamental if it is not an assembly of lower-dimensional branes which
are bound together by some forces and if it appears to be p—dimensional at any scales. In particular, this
means that a fundamental p—brane has no internal structure and it cannot be described either as a subset
of a higher-dimensional object by forgetting the not-observable dimensions of the latter. As we will see,
p—branes can interact and split into other branes; if the initial p—brane is fundamental, then also the
final ones are fundamental. Given that a fundamental object has no internal structure, we can require it
to be homogeneous; this stronger assumption lets us characterize the p—brane only by specifying a scalar
number T, called tension, which can be thought of as the homogeneous energy density of the object.

To completely characterize the dynamics of a fundamental p—brane, we have to describe its history - also
called worldvolume - as a subset of M - also called target space; using a standard language, we refer to
the worldvolume of a 0—brane (a pointlike particle) as worldline and to that one of a string (a 0—brane)
as worldsheet.

If we are searching for a relativistic theory, time and spatial coordinates must be considered on the
same footing and there are only two formalisms that achieve this within the framework of a lagrangian
formulation. To be more precise, the dynamics of the p—brane can be described in two fashions, which
differ for the choice of the dynamical variables and for the way they relate the p—brane to the spacetime

M.
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Figure 1
The abstract and the embedded worldvolume.

e According to the worldvolume formalism, both space and time positions of the object are dynamical
variables. They are given as functions X*(c®) on the worldvolume and the latter is parametrized



in terms of coordinates ¢® (a € {0,1,...,p}). Usually, X*#(c%) are sloppily called embeddings of
the worldvolume into the spacetime M. In the language of differential geometry, the worldvolume
of a p—brane is a manifold W, of real dimension p + 1 defined by the atlas of its local charts
{(Uky; ¢(k)) Y req1,2,...y and which is embedded into the spacetime M by means of some functions
i (see Figure|l)). Then, if P € Uy, is a point of W, we define X* as

XH(0%) = X*(0fy) = " 0 63} (073 (L1)

where J?k) = ¢(r)(P) are the coordinates of P in the k" local chart (Utky; ¢(ry); for the sake of
simplicity, we will always drop, as we have just done, the label of the chart and we will write o
instead of o(o‘k). We will continue to refer to the abstract manifold W, as the worldvolume of the
p—brane, whereas its embedded version i#()V,) will be called history of the p—brane. Actually, at
the classical level, there is no essential difference between the worldvolume and the history of the
fundamental object: the functions X*(c®) will be the solutions of the equations of motion and,
thus, we expect ¢* to be particularly nice functions which are able to identify the structure of W,
with that one of i*(W,). But, at the quantum level, we have to “sum” all possible histories of the
p—brane, as suggested by the path-integral approach to quantization; a way to do this is to fix
the topology of the abstract worldsheet and to “sum” over all the possible i* (not only over the
embeddings!) and then, as last step, to let the topology of the worldsheet vary.

Anyway, given a geometric object it is natural to consider its shape and its deformations; hence,
there is a natural action S, for a fundamental p—brane of tension 7" which is simply given by the
integration over its worldvolume, that is

Sp = — /
W,

p

o v
dVol = —T/derlU«/fdet'ya = T/derlo\/det(n,ngaaXﬂ) (1.2)
o do

where v,5 = nuu%% denotes the induced metric on the worldvolume by the Minkowskian

structure of M.

Not all X#(c?) correspond to degrees of freedom of the p—brane, because this description is ap-
parently redundant by contruction. Indeed, a manifold is defined up to diffeomorphisms and this
means, in particular, that its description must be invariant under reparametrizations (after all, o®
are merely unphysical labels introduced to have a practical description of the abstract W, and to
perform computations). Local symmetries must be fixed, so it is understood that, in a worldvolume
description, the action .S, must go with constraints, whose physical meaning become immediately
transparent in the easy case of a 0—brane. Indeed, for a pointlike particle, the tension coincides
with its mass m, so the action is nothing but the familiar integration of the proper time s over
the worldline Wj:

oXr XV

= _ - A i et 1.
So m - ds m/dT R . (1.3)

From the definition of the canonical momentum p* associated to the position variable X*#

oL X,
Pu = - =1m s

one can see that the dynamics of the action Sy has to be constrained by the on-shell condition
Ppy+mP=0 . (1.4)

So, in the case of the O—brane, reparametrization redundancy of the worldline has let us consider
the time position X of the particle as a dynamical variable on the same footing of the positions
X, without quitting the natural requirement that the particle cannot freely move into Minkowski
space: at the very least, it has to follow a timelike direction with (p°)? > m?.

Turning back to the case of a general p—brane, it is important to know that the action S, is



classically equivalentEl to the action S'p defined by

. T -1
Sp = — 5 derlO'\/ *dethaﬁn,uuhaﬁaaX”aﬁXy + pTT dp+10\/ 7dethozﬁ ’ (15)

where h,s is a new metric on the worldvolume, which a priori is not dependent on 7,g; nevertheless,
the equations of motion for h.s states that, classically, these two metrics are proportional.

The importance of the action Sp can be appreciated when one is interested in quantizing the
p—brane, a procedure which is very difficult to perform with the action S, because of the square
root appearing in . This is the reason why in string theory - which is a worldsheet formulation
of fundamental homogeneous strings - one defines S*p to be the action of the system; this action is
called Polyakov action and in the following will be denoted as Spoy, that is

. T
Spoiy = 1 = =5 / d?o\/—dethapsnu, h*? 0, X" 0s X" . (1.6)

This action is invariant under local Weyl transformations of the metric h,s which act on the latter
as
hap(a®,ot) = ezf(go’al)hag(ao, al), (1.7)

where f is a general real scalar function on the worldsheet. Geometrically speaking, this means
that string theory is not sensitive to a local change of scale which preserves the angles between all
lines; for example, the two worldsheet metrics shown in the Figure [2] are surprisingly viewed, by
the Polyakov string, as equivalent (at the quantum level, these two wordsheets will define the same
physical state). It is not difficult to imagine that a theory that enjoys such a gauge symmetry is

has(P)

Figure 2
A Weyl transformation on the worldsheet.

extremely rare and has to go with very stringent requirements in its structure. In particular, the
kind of interactions that we can add to Sp.y are strongly limited and familiar terms like

/daodalw/—dethagV(X“) ,  V polynomial potential (1.8)

are not allowed because they (explicitly) break the Weyl invariance of the theory; note that, in
particular, we cannot admit a cosmological constant p on the worldsheet, because it corresponds
to introduce a term like with a constant potential V (X*#).

At the quantum level, Weyl invariance will become even a more stringent requirement, to such a
point that it will lead us to introduce the concept of the critical dimension: the quantum theory of a
string moving in Minkowski spacetime M is consistent only if the latter has a particular dimension.
As we have already mentioned, in the worldvolume approach, to quantize a system one has to
sum over all possible trajectories (equivalently, over all possible histories) of the string: this is the
so-called first quantization of the string, where the basic object of the theory is the trajectory of
the string rather than a function(al) of strings.

4 Actually, this is true only for p = 0, 1; for p > 1 the action (I.5)) has not enough symmetry to fix all the entries of the
(unphysical) metric hog 50 in this case the worldvolume of the brane will contain inner unphysical degrees of freedom. So,
for p > 1 we have to use more sophisticated actions.



e According to the spacetime or field formalism, the dynamical variables are chosen to be some
fields W[X*#], which are functions (better, functionals) of the spacetime coordinates of the p—brane
for every given p—dimensional shape of the latter. This is the well-known approach to classical
and quantum field theory, where both the time coordinate and the spatial coordinates of pointlike
particles are nothing but labels.

By analogy with QFT, we can forecast that the field description is particularly suitable when we
have to work with a huge number of p—branes or when the number of the fundametal objects is
not fixed.

When the canonical quantization scheme is performed within the field formalism, one obtains the so-
called second quantization of the p—brane. In the case of fundamental strings, the second quantized
theory is called “string field theory”, whose consistency has been proven in the last ten years. A
lot of work has still to be done in this subject, but string field theory has already obtained its first
important success, among which there is the explanation of tachyon condensation.

Sharing the description of the same extended object, these two formalisms are conceptually equivalent.
Instead, they differ as computational tools, insofar as some calculations are simpler (if at all possible) in
one of them. Sometimes, it is impossible even to address a particular question in one formalism and we
are forced to select the other one. This happens, for example, when we are interestecﬂ in going off-shell.
If this is the case, it is difficult to deal with the wordvolume approach, because — as we explained for the
pointlike particle case — the redundant structure of the theory requires us to work on-shell (something
that holds also within string theory, as we will see).

1.2 Why strings?

Among all other fundamental p—brane theories, the theory of fundamental 1-branes occupies a distin-
guished place. Roughly speaking:

e Strings are nicer than pointlike particles. Being extended objects, strings do not suffer from UV di-
vergences. In a QFT of pointlike particles, UV divergences arise because interactions are arbitrarily
localized at a point of M (in the language of Feynman diagrams, UV divergences appear because
two vertices come together or, equivalently, because the momentum flowing into a loop becomes
infinite). The point of interaction — defined as the locus in spacetime where the number and/or
the nature of the objects change — of two pointlike particles is geometrical, perfectly localized in
spacetime, independent of the Lorentz frame of observation. The geometrical nature of this point
is apparent in Figure |3 where it is clear that both observers (one boosted with respect to the
other one) always agree on which parts of the worldline (there, the Feynman diagram of a cubic
interaction) correspond to one or two particle states. Instead, the spatial extension of the strings
makes their interactions non-local in spacetime; for instance, the two observers of the previous
example, this time will recognize the point of interaction in two different points of spacetime. In
other words, the interactions of strings appear “smeared out” and so, intuitively, there is hope for
getting a theory free of UV divergences.

The action defines a local field theory on the worldsheet: there are no non-local objects at our
disposal that can be attached “around” the “smeared out” region of interaction to specify the nature
of the interaction on the worldsheet. This means that the interaction is determined by the “shape”
of the worldsheet, namely by its topologyﬂ String interactions result from non-trivial topology of
the surface and, as such, they are “maximally smeared out”, because the topology of the worldsheet
appears as a global concept. As we will see, it will turn out that there is only one possible topology
for the worldsheet at a given loop leveﬂ and this is in apparent contrast with the perturbation
theory of pointlike particles, where the number of possible Feynman diagrams grows at each loop
level.

To sum up, the extended nature of strings makes string theory more appealing than a theory of

5Tt is important to learn how to go off-shell in a theory, because it is needed for the renormalization.

6We will be interested in compact oriented Riemann surfaces; in this case, it is legitimate to think of “topology” as the
number of handles of the surface.

"This is true only if we are considering closed oriented strings.
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Interactions between pointlike particles and strings. The red and green inertial observers
are the same in both cases. In the pointlike case (on the left), the interaction has a
geometrical nature. On the right, instead, the interaction is non-geometrical.

pointlike particles, both from conceptual (UV finite behaviour) and practical (drastic reduction of
the possible kind of interactions) points of view.

e Strings are nicer than p—branes with p > 1. In fact, there appear to be both technical and concep-
tual obstacles when ones tries to quantize higher dimensional objects.
For p > 1 the worldvolume action is not Weyl invariant anymore and this makes it hard to quan-
tize. Indeed, one would like to use the action 5},, but it hasn’t enough local symmetries to gauge
fix all the independent entries of the metric hog; given that we cannot let the abstract worldvolume
(something unphysical) to host inner degrees of freedom, we have to search for a more complex
action and the quantization procedure will end up with getting complicated.
The conceptual issue lays on the deep fact that the quantization of a higher dimensional object leads
to a continuum spectrum, but we need a discrete one, otherwise we can not interpret its excitations
as single particle states.

1.3 Quantization and interactions with the worldsheet: Polyakov’s formula-
tion

A fundamental 0—brane (a pointlike particle like the W~ boson, the electron or the antineutrino 7, of the
Standard Model) is ontologically one and can not be divided; it can decay into other particles but these
can not be considered as components of the first one. For example, in the framework of the Standard
Model, it is completely nonsense to say that the electron and the antineutrino coming from the decay of a
W~ boson used to be constituents of the W~ . It doesn’t make sense, because the interaction of pointlike
particles is totally localized in spacetime; this also implies that for each observer there is a glaring notion
of particle, which can be geometrically defined as the intersection point between the equal-time surface
of the observer and the worldline of the particle.

This is not the case for the blurred world of strings, because their interactions are not-localized. This is
the most striking physical difference between fundamental particles and fundamental strings. A string
can be cut into pieces, but these are nothing but pieces of the original string: they can carry different
quantum numbers like the mass and the spin (and so they appear, in our laboratory, as different particles)
but they cannot aquire new ontological attributes (their tension is the same as that of the original string),
otherwise the string would not be fundamental; at the same time, we can not say that the original string



used to consist of these two pieces melded together, because it could have been separated at any of its
points.

The upshot is that only the full Worldsheetﬂ Y, carries an ontological attribute and that interactions
among strings can be understood only by looking globally at it. We are then lead to two basilar ideas:

e the information about strings interactions is encoded in the topology of the worldsheet, as we have
already mentioned. In the following chapters, only the oriented closed string will be studied; its
worldsheet is an oriented Riemann surface (a complex manifold of real dimension 2) that, as we
will soon see, can be considered compact. The classification of compact oriented surfaces is well-
known: their topology can be distinguished by specifying the Fuler number =, an integer number
that describes their topological structure, regardless of the way they are bent (it is a topological
invariant quantity). For oriented and compact 2—dimensional surfaces, = is given by

2=2(1-g) (1.9)

where g is the genus of the surface, which simply counts the number of handles of ¥. For example,
a torus has one handle, so its Euler number is zero.

e the local dynamic of the string does not depend on whether there are interactions or not. In a
Lorentz-covariant theory like that one defined by Spoiy, non-local interaction terms are not allowed
to explicitly appear in the action. So, the action of the free string must already contain, somehow,
interactions. This is in apparent contrast with the case of the pointlike particle, whose free action is

Figure 4
A representation of the decay of the weak boson.

different from the interacting one. Let’s consider the decay of the W~ boson depicted in Figure
the smooth worldline of the free propagating boson experiences a singular joining at the interaction
point, meaning that “something different from the free propagation” happens there and the nature
of this “something different” must be specified, by adding - to the action of the free particle - the
action of the interaction. Analogously, in (Q)FT, one has to point out the Feynman rule for the
vertex of the corresponding diagram; for the pointlike particle, at every singularity of the worldline
one has to add a covariant object, such as a gamma matrix or the momentum of a particle. In
string theory, instead, worldsheets don’t experience any singularities, a symptom of the fact that
string interactions don’t need another action] to be specified.

Both of these features have to be taken into account to perform a meaningful quantization, because
they are direct consequences of the extended nature of the string.
A natural way to incorporate them in the quantized theory is achieved by resorting to the path integral.
Indeed, this is a method which is clearly suitable for describing interactions in string theory, because it
lets us get physical quantities by dealing directly with the worldsheet, which is the unique object which
has an ontological existence.
To be more precise, in this approach, amplitudes are given by summing over all histories (over all

8Given that strings are nicer than any other p—brane, we refer to its worldvolume Wp=1 with a particular symbol:
3= Wp=1.
9 Actually, this is true at the classical level and “almost” true at the quantum level (see later the introduction of Sgg).



Figure 5
From the left: non-interacting strings, interacting strings at tree level
and the one-loop interaction. The external states are the same for all the pictures.

worldsheets and over all fields defined on them) interpolating between the initial and final states; in
the case of the string, the external states are identified with the boundary curves of X, as illustrated in
Figure [5} where a free and an interacting worldsheet with the same external states are depicted. In the
path integral approacﬂ each history ¥ is weighted by (A= c=1)

e~ Sal®] (1.10)

where S, [%] is the classical action for the given worldsheet. So, at this point, we need to specify the most
general action S¢; for the classical string. This task is largely simplified by the strict structure imposed
by the gauge redundancies of the classical string, namely reparametrization and Weyl transformations,
which restrict the possible actions to be of the following form:

1
Scl :Spoly—f—)\SHE :Spoly+)\47/d0'0d0'l\/ER, (111)
™

where A is a real dimensionless parameter and Sy g is the usual Hilbert-Einstein action for the metric
hap of the worldsheet.

In two dimensions, the Hilbert-Einstein action doesn’t carry any dynamical information, essentially be-
cause the metric has three independent entries which locally can be fixed by gauging Weyl invariance and
reparametrization invariance of ¢ and o!. Indeed, Sy turns out to be a topological term, because, in
the two dimensional case, Gauss-Bonet theorem states that

Spp=E=21-g) , (1.12)

where = and g are the topological invariant quantities defined above: for a given worldsheet, Syg is a
constant integer.

At the classical level, we don’t have to sum over all the possible worldsheets and only the (¢ = 0)—topology
(a sphere) contributes; thus, at the classical level, Sy g - being a constant- can be forgotten and this is
the reason why the action of string theory is usually defined to be Spo;, alone. At the quantum level, all
possible g—topologies have to be considered and Sg g implies that the worldsheet with g holes must be
weighted by a factor of

€7>\:‘ — 672)\(17g)

We get that perturbation theory in string theory is a sum of all the contributions coming from all possible
worldsheets ¥, of genus g ordered by the string coupling constant

gs=e . (1.13)

So, for g; << 1, we have a good perturbative expansion in which the sum over all histories reads as

S [ DIXUIDlhslesp(-Suls ) = 3 [ DX IDlhaslesn( = Sponl,] - 2A(1 - 5)) =
" o= (1.14)

=3 g2 / DIX*] Dlhoslexp(—Spory S5))
g9>0

10We will always consider a path integral over the Euclidean version of the worldsheet, obtained by the lorentzian one
through a Wick rotation, because it leads to a better defined sum over the metrics of the worldsheet.



This is an asymptotic expansion, just as in QFT.

We can also make contact with QFT by taking the pointlike limit of the string; every worldsheet becomes
a worldline and, pictorially, all the Riemann surfaces that appear in the perturbative expansion can be
interpreted as Feynman diagrams; in particular, this tells us that the number of handles of a Riemann
surface is the string analogue of the number of loops. Whereas in QFT the number of Feyman diagrams
grows factorially with the loop level, in string theory there is only one topological distinct Riemann
surface contributing. In this sense, perturbation theory with strings is considered to be “cheaper” than
that one of QFT.

It is not only a cheaper description, but it also seems more fundamental, because:

e the string coupling g, = e is not an independent parameter of string theory, because A can be

determined by the dynamics of the string moving in a curved background. To be more precise,
A turns out to be the spacetime expectation value of a massless field - the dilaton field - whose
quanta can be described as particular excitations of the string. String theory doesn’t admit free
parameters (except for ) and it doesn’t leave room for adjusting any dimensionless constant that
enters the theory. This is a remarkable property of string theory which is not shared by any QFT,
whose coupling constants usually cannot be fixed by any inner mechanisms.

AgNPA

Figure 6
Intuitive decomposition of 2-point correlation function at one loop.

e all the possible topologies of the closed worldsheet can be decomposed into various copies of a
particular worldsheet (see Figure |§|, for example). This particular worldsheet represents the basic
interaction of closed strings, a process in which a closed string splits into two, or - reversing time
direction- a process in which two closed strings join into one. We can now appreciate the unifying
language of string theory: in closed string theory, not only all particles (graviton, gauge bosons,
fermions,...) are obtained as various states of excitation of the string, but also all interactions
(gravity, gauge, Yukawa, ...) arise from the single process of Figure [7, which - in the pointlike
limit of the string - can be interpreted as a Feynmann diagram of a cubic interaction. Perturbation
theory in closed (bosonic) string theory can thus be interpreted as a perturbation theory of a
(scalar) two-dimensional quantum field theory with cubic interaction on the Worldsheeﬂ the latter
is renormalizable, so we guess that string theory is a good candidate for describing a microscopic
(i.e. fundamental) theory of all interactions (gravity included).

1.4 Vertex operators and S-matrix

In order to get this cheap description, compactness of the worldsheet has revealed itself to be an essential
ingredient because it has allowed us to use the classification theorem of the 2—dimensional surfaces
mentioned above.

In string theory, this compactness can be reached by exploiting the state-operator correspondence map,
that will be discussed in section Roughly speaking, it consists of replacing the external state of a
string with a vertex operator, namely a local operator on the worldsheet which carries information about
all the quantum numbers of the replaced state. This correspondence can be schematically represented

HPlease note that this is true only if the string is propagating on a flat target space. Indeed, if the target space
is characterized by a metric G, (X), then the action that generalizes the Polyakov one should be something like
fdQUGW(X)aaX”[)ﬁX”nO‘B; the metric G, can depend in a complicated way on X* and the worldsheet theory is
not cubic in general.
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Pointlike limit

Figure 7
The basic process of closed strings as a cubic interaction.

as done in Figure |8] where the cross stands for the point where the vertex operator is inserted. The
state-operator correspondence is a tool which naturally appears in string theory, thanks to the gauge
redundancy of the worldsheet description. Indeed, within the framework of a theory which is Weyl and
reparametrization invariant, this correspondence can be understood as a conformal transformation, where
the latter is nothing but a residual gauge transformation that the theory still admits after fixing the gauge
redundancies.

With the introduction of vertex operators, we are outlining another analogy between string theory

STATE-OPERATOR
CORRFSPONDPNCF
for state A
.

Figure 8
We replace the state A of the string with the vertex
operator V(4 on the worldsheet.

and QFT, because external states (that is, on-shell particles) are represented by operators acting on the
classical vacuum |0) of the theory. In light of this similarity, it appears natural to define the scattering
amplitude S;, ;. (p1,...,pn) among n states (labeled by quantum numbers {j;} and spacetime momenta
{pi}, i € {1,...,m}) as the Polyakov path integral over the worldsheet with the insertions of the vertex
operators V;, (p;) corresponding to the external states, that is

Siv i (D1y s D) 292(9 1)/DXH agle —Spozy[Eg]HV,i(pi) ) (1.15)

g>0 =1

As in QFT, this formula deﬁneﬂ the S —matrix element for m external states, once the latter are taken
to sit at the infinity of the spacetime M.

1.5 Quantum gravity and compactifications

As we have just mentioned, the Polyakov string admits, among its excitations, the graviton, namely the
hypothetical massless boson of spin 2 that should mediate the force of gravity. Thus, it is common sense
to say that string theory is a theory of “quantum gravity”, because it allows us to explain, in terms of

12The complete formula for the S-matrix will be derived in section



the same fundamental object, the nature of all elementary particles and of all interactions between them,
gravity included.

But, with a theory of quantum gravity, one would like to determine, dynamically, the geometry of the
spacetime, given that the latter is expected to be a classical object consisting of interrelated fundamental
quanta. Obviously, this cannot be achieved in the framework of string theory, because it is a first quantized
theory and in the worldvolume formalism such a question cannot even be addressed. In order to describe
the metric of spacetime as an emergent property coming from collaborating strings, one should be able to
do “statistical mechanics with strings”, which is one of the aims of string field theory (the second quantized
version of string theory). Instead, in string theory the (finite) number of strings is fixed (according to
the scattering amplitude that we need to compute) and the geometry of M is specified a priori; in this
context, the string simply represents a fluctuation (namely: a graviton, an electon, etc.) propagating
with negligible backreaction on this background.

Actually, this is not completely true, because the gauge symmetries of string theory are very demanding;
they are so stringent that, to get a consistent dynamics of a single string in a curve(ﬂ background, the
latter must satisfy particular constraints: for example, a void spacetime can host a string only if it is
10—dimensionallz| and Ricci-flat. There are a lot of backgrounds that satisfy these requirements. Among
them, we find solutions which admit the not-observed six dimensions to be curled up in very tiny compact
manifolds, in such a way that they are penetrable only at very high energy; moreover, these manifolds
have to be very special if we want for important properties of our ten dimensional theory to survive also
in the four dimensional bul™]

It is a remarkable and significant fact that string theory, albeit being “only” a first quantized description,
it is able to give - in the attempt of recovering the daily phenomenology of our 4—dimensional spacetime
- additional and highly non-trivial information about the structure of spacetime and, as such, it is not
only a respectable theory of quantum gravity, but it is a more than respectabe one. Demanding string
theory to uniquely and dynamically determine the background of spacetime is simply asking too much a
theory which has already yielded enough. From this point of view, string theory shoud not be wickedly
criticized; instead, as a scientific theory, we should understand to what extent we can trust it. So let’s
have a closer look at it!

13The action S, of a string moving in a curved background G, (X) is obtained, as one would expect, by substituting
the flat metric 7, appearing in Sp,;, with the curved one, as dictated by the minimal-coupling principle:

T v
So=—5 /d%,/—dethaBGW(X)haﬂaaXuaBX : (1.16)

We specified the subscript o to denote this action only because S, defines a model that, for historical reasons, is called
non-linear sigma model.

14To be more precise, it has to be 10 dimesnional in the case of the superstring, 26 dimensional if we are considering the
bosonic string.

15We are talking about supersymmetry, a feature of the superstring.
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2 Bosonic String Theory

After discussing the fundamental ideas underlying string theory, in the following chapters we are going
to concisely present the structure of classical and quantum closed string theory. We will use the bosonic
version of string theory as a (non-realistic) toy model that allows us to get acquaintance with the standard
tools/techniques developed to study string theories.

The main references that we used for this chapter are [8] and [9].

2.1 The classical theory

The classical bosonic string theory is the theory on the 2—dimensional worldsheet ¥,_q defined by Spoy

T
SPoly[XM7 haB; EO] = - 5 dQJ \% _hhaﬂyaﬁ =
3o

T (2.1)
=-3 2oV =hh*P 0, X 0 X Ny
3o
where h stands for the determinant of the metric h,s and the tension 7' is usually expressed as
1

T =

2ma/ (2.2)

Oé/ ~ l2

with [ the characteristic length of the string. We specify that [, is an invariant quantity of the theory
(any observer agrees on its value) that is expected to approximately coincide with the characteristic
length of quantum gravitym namely the Planck length 1, (I5 ~ [, ~ 1073%m).

This action appears to be the appropriate setting for a fundamental string model of elementary particles,
since it involves only the intrinsic geometry of the string, with no reference to the extrinsic curvature
experienced by the string.

It describes relativistic (homogeneous fundamental) strings: the Poincaré invariance

Xt = ALXY + !
haﬁ — haﬁ
appears as a global symmetry on the worldsheet (the index p is seen, from the worldsheet, as an inner

one) that gives the usual associated conserved Noether currents in the target space. The gauge structure
of Spoiy consists of:

e Reparameterization invariance. If we redefine the worldsheet coordinates as o — ¢%(o), the
fields X* transform as worldsheet scalars, whereas h,g transform as a metric should do. At the
infinitesimal level, this means

0XH (o) = =000, X" (o)
(5ha5(0') = —V,dog — Vgoo, (2.3)

where §o® are defined by the linear term of the transformation (6% ~ o® + d0%).

16 Actually, in this thesis we are interested in the case in which it is possible to get a well-defined perturbation expansion
in gs. It can be shown that gs < 1 implies that Is > [,. This means that the perturbative aspects of string theory are
better understood when it is possible to disentangle stringy physics from strong coupling effects of gravity and it maybe
means that quantum gravity phenomena could appear even before reaching I,,. It is worth to mention that compactifications
could explain the reason why ls > l,, by means of the presence, in our spacetime, of the (relatively big) volume of the
compactified extra-dimensions. See [§] for details.
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e Weyl invariance. As we have already seen in ([1.7)), Weyl transformations rescale the metric of the
worldsheet by a local factor that we like to express as e2/(?) (f is a function on the worldsheet).
At the infinitesimal level, this transformation reads as

IXH(o)=0

Shap(o) = 2f(0)has(o)
The local invariances allow for a convenient gauge choice for the worldsheet metric h,g, called conformal
gauge. For any point, we can consider the two null-vectors that exist because the metric has Minkowskian

signature; their integral curves give the light-cone coordinates o+ and o~ and with respect to them we
must have

(2.4)

ds* = —Q*(ot, 07 )doTdo™ (2.5)

for some real function 2. Now we can use reparametrization invariance to define the coordinates ¢¥ and

ol as

ot =0"+0' . (2.6)
With respect to these new coordinates, the metric takes its conformal gauge form, namely
ds* = O*(0)(—d*c" + d*ct) . (2.7)

At this point, one could also use Weyl invariance to bring (o) to 1 and we obtain that, locally, we can
always suppose'il hag = Nag, that is

ds* = (—d*c® + d?c') . (2.8)

One should be aware of an essential fact: the choice of the flat metric for h,g doesn’t fix completely
the gauge redundancies. The residual gauge consists of conformal transformations of the coordinates,
particular diffeomorphisms that can be undone by a Weyl rescaling. From formula , we understand
that these peculiar transformations are given by the redefinitions of new coordinates (f1 real functions
of only one variable)

5F = fulo®) . (2.9)
Indeed, the only effect of would have been changing the coordinates ¢* — &+ and changing Q: up
to a Weyl transformation, we would have ended up again with the flat metric

ds? = —dotdo— = —d?*6° + d*s'

where, as before, 6°, &' are defined by 6%+ = 5%+ 4'. This means that when we work with the flat metric

, we have still the freedom to specify what me mean with the coordinates ¢° and ¢!, the latter being
defined up to a conformal tranformation.

Anyway, with the choice of the flat metric (2.8) (or, more in general, with the conformal metric (2.7)),
the Polyakov action simplifies tremendously and becomes the theory of D free scalar fields:

SPoly[ X", Nag; To] = / ?e0* X" 0, X, (2.10)

4ma!

whose equations of motion are nothing but the free wave ones for the worldsheet scalars X*, that is
OxX*=0 . (2.11)
At this point, two comments must follow.

1. As always, to obtain the equations of motion for a field one has to stationarize the action against
all the possible synchronic variations of that field. When one does it with the action , it has
to be kept in mind that we are considering only closed strings, so all the total derivatives with
respect to o' vanish upon integration on ¥(; indeed, ¥ has the topology of a cylinder and there
are no possible contributions from the spatial boundary term of 3, because all the fields respect
the periodicity of o' (to be clear, let’s define the latter by o' ~ o' + 27). We like to stress this
elementary point, because it is precisely at this level that we are introducing in our model the
information regarding the topology of the string.

17Please note that this argument can be used for showing that gravity is not dynamical in two dimensions, given that, in
two dimensions, Sy and Spey, enjoy the same symmetries. Now it should be clear the reason why Sy g contributes as a
topological term when it is added to Spoy in the framework of perturbative string theory.
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2. The equations of motions (2.11) are not enough to specify the dynamics of the Polyakov string.
Indeed, by looking at the original action Speyy[X*, hag; Xo| (see (2.1)) it is apparent that we have
to take into account also the equations of motion for h,g, that are given by

0= 6SPoly

Ohap

The metric of the worldsheet appears only algebraically in (2.1]) (consistently with the fact that it

doesn’t carry any dynamical degrees of freedom), so the equations of motion of h,g are constraints

that have to be imposed on the solutions of the free wave equation (2.11). In the flat gauge, the
stress-energy tensor is

[Xu,ha,@;Z()] X Taﬁ

1
Top = 0o, X - 0gX — §na5np"8pX -0, X (2.12)
and the constraints read as

1 .
nw:ﬂlziuﬂ+xﬂ):o (2.13)

Tp=X-X'=0 ,

where we have introduced the standard notation for X = 8,0 X* and X’ = 9,1 X*.
The physical meaning of these constraints becomes transparent if we exploit the residual gauge that
has survived after imposing hag = 745 to relate o° to the time coordinate X° in the Lorentz frame
of our laboratoryiﬂ namely
0

o_ X"

R )
where R is a constant that is needed on dimensional grounds (it has the dimension of a lengtﬂ.
This choice of parameterization of ¢ is called the static gauge because the hypersurface of the

worldsheet defined by 0% = 7 € R becomes, once embedded into the target-space, the closed string
that we see in our laboratory at “fixed” time X° = R7. In the static gauge, the equation of motion

(2.11) naturally becomes

(2.14)

g

OX' =0, (2.15)
and the constraints (2.13) can be nicely written in vector notation as
(X)2 + (X’/)2 - R2

N (2.16)
X-X'=0

So, in our laboratory, we see the string oscillating according to the well-known wave equation...but
with a peculiarity: the physical oscillations must be perpendicular to the string itself, namely they
must be transverse, otherwise the last constraint would be violated.

To find the solution to (2.11)), it is convenient to rewrite it in terms of the lightcone coordinates o®

of the worldsheets:

040_XH(ot,07)=0 . (2.17)
The most general smooth solution to the wave equations (2.11) is locallym
X4 (0% 0") = Xf(o") + Xh(a™) (2.18)

18Later we will explain the reason why this is possible. Anyway, we are not entering the details of the static gauge,
because - for us - it is only a nice way to get an idea about the physical meaning of the constraints. We will never use the
static gauge again.

19Tn our conventions, the scalar fields X* have the dimension of a length (they are the spacetime positions of the string
in our spacetime), whereas ¢ and h,g are dimensionless (they respectively are unphysical labels and an auxiliary metric
field on the worldsheet).

20A very important detail. As we’ve already known from classical mechanics, the solution is the right one only if
XH(69,01) is defined on a simply connected region. If the worldsheet has a non-trivial topology, the decomposition into
right /left movers has to be performed in each local patch. If we choose the conformal gauge in each patch, the transition
functions that let us go from a patch to the other one are conformal transformations. If X‘LL/R were tensors under these

transformations, the decomposition of X* into right/left movers would be globally defined. It will turn out that this is the
case and the notion of right/left movers for X* is, thus, global. Note that if X! . are globally defined then also X* is and

L/R
this is consistent with the fact that X* is an embedding of all the worldsheet.
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where X/ . are arbitrary functions on the worldsheet that depend only on one of the lightcone variable
o¥; we use the subscripts ecause we will call them - for intuitive reasons - left/right movers.

+; the subscripts L, R b ill call th for intuiti left /right
By requiring X*(0%,0!) to respect the periodicity of o' ~ o! + 27, we can express the most general

solution in terms of the Fourier modes and we end up with

1
Xf(0+):§x#+ —a'p 0++”/ Z eino”

nEZ\{O} (2.19)
Xk(o™) = Low + lo/p"chr + iy o E L gprg=ina™
R 2 2 2 " " ’
n

where we have introduced:

e the real constants z* and p"; to see that they can be interpreted as the initial positon and the
momentum of the center of mass of the string, it is enough to get rid of the Fourier modes of the
string (that can be thought of as mechanical oscillations of the string that determine how it appears
in spacetime) by integrating over the periodicity of o', that is

1 27

o do' X" (oY, ot) =zt + o/p"o® (2.20)
s

and to notice that p* is precisely the Noether charge associate to the spacetime translation symmetry
of SPoly-

e the complex constants & and a¥; they are the coefficients of the Fourier modes of the right and
left movers that, because of the reality of X*, have to satisfy:
akt = (a",)*
M ( M")* (2.21)
a, = (af,)

According to the conformal structure of the Polyakov string, the fields 0+ X# = 0. X} 5 arﬂ in a

certain sense, more important than the fields X* themselves; so, it is convenient to interpret the
momentum of the centre of mass as the coefficient of the zero Fourier mode and to define

. o
=57
(2.22)
O(/
o= ph
O40 - 2 p I

so as to obtain compact formulae for 9+ X*, which are
o o+
DL XM = \/5 > apfemmr (2.23)
nez

As we explained with one of the comments above, to get the Polyakov dynamics we have to impose, on
the solution (2.19), the constraints (2.13) which, in terms of the & coordinates, are simply

(0_X)?=(0,X)>=0 . (2.24)
These can be easily rewritten as

0=(0_X)*=a Z Lye~mo
nez

0=(0,X)?=a ZL e_”“’Jr,

ne”Z

(2.25)

21With obvious notation, we define &+ as the partial derivatives with respect to o*.
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where we have introduced the Fourier modes of the constraints L,, and fm

§ Op—m * Qm
m
§ Op—m * Qm
m

What we have just found is a very important lesson: any classical solution of the Polyakov string must
obey an infinite number of constraints, namely

Ly,

(2.26)
Ly

N = DN

In=L,=0 VY neZ, (2.27)

which implies that «,, and «,, are somehow able to talk to each other, something that is not at all true at
the level of the solution (the same is valid for &,, and &,,). They are able to talk to each other in
a “Polyakov way”, because they organize themselves in order to make the worldsheet energy-stress tensor
vanish, which means, in particular, that the physical oscillations of the string are transverse.

By looking at formulae (2.26]), one could expect something particular arising from Ly and Lo because,
in this case, formulae ppear to be “symmetric”; indeed, Lo are Lg are very special, because they
include the square of the spacetime momentum p* of the centre of mass, which is interpreted, in the
Minkowskian target spacetime, essentially as the square mass of a particle:

pipu = —M>. (2.28)
More explicitly, we have:

1 1/
— —_ E . — 1] E . =
0= LO *2 A_m - Oy = 2 < 2 P Pu + a_m anL) -

meZ meZ\{0}

1 o
—2<‘2M +2Zam~am) :

m>0

-1 1/
— — ~ . A — | A CA —
O—LO—2 § A am—2<2p pu"’ § A_m am>—

meZ meZ\{0}

1 o . -
2<2M +2Za—m'am) )

m>0

(2.29)

from which we can deduce that the effective mass of the string??| can be expressed in terms of the excited
oscillator modes as

4 4
9 - ~
M = E E Qp - O_p = E E Op - O . (230)
n>0 n>0

This formula defines the spectrum of the Polyakov theory and it forecasts for the masses of the string to
be either zero or, otherwise, of the order of

M~ VT ~ zl . (2.31)
S

Usually, one (sometimes naively) takes [; to be approximately the Planck length. The Planck mass is
incredibly high above the rest masses of all the elementary particles that we know, so it is believed that
the latter should be massless excitations of the string that acquire their masses by means of a lower-energy
mechanism (Higgs) of quantum field theory. This is the reason why we will focus on the massless spectrum
of the Polyakov string. Obviously, it doesn’t mean that the massive string spectrum is not important; it
is essential to remove the UV divergences from loop integrals and its existence is thus necessary for the

22Here we are deliberately talking about masses but the reader should be aware that this is a sloppy language, borrowed
from field theory. At the classical level, strictly speaking, M is a frequency which can be translated into a mass only at the
quantum level, by means of a multplication with h.
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consistency of the theory: in string theory, every bit of its rigid structure is needed.

Formula states that, at the classical level, the string mass M is a reaﬁ continuous quantity. At
the quantum level, o/ and & will become operators which are able to create/dissolve a quantum of
excitation of the n** harmonic and, thus, the mass spectrum will be discrete, letting us interpret
the quantum string state as a single particle state. Another important feature of the quantum theory is
that the formula will get a quantum correction given by a constant shift and, thus, at the quantum
level there is the possibility to obtain particles with imaginary mass, called tachyons, which prevents the
theory from having a time-dependent stable solution. As we will see, these instabilities will be cured by
the superstring, by introducing fermions on the worldsheet. But, as first step, we have to understand the
reason why the spectrum receives these quantum corrections.

2.2 The quantum theory

Here we are going to sketch the basics about the quantization of the Polyakov string with the canonical
formalism, only to explain the new features that enter the theory at the quantum level and to get an idea
about the massless spectrum of the bosonic closed string, so as to persuade the reader that string theory
does include gravity.

The most natural (and old) approach with canonical quantization is the covariant quantization, which
is reminiscent of QED’s Gupta-Bleuler procedure: in a manifestly Lorentz invariant fashion, we promote
all the fields X* to operators and then we impose the constraints on the states of the Fock space.
Tracing the Gubta-Bleuler steps, we promote X*’s and their conjugate momenta IT, = 1/(27ro/)Xﬂ to
operator-valued fields obeying the canonical equal-time commutation relations

[X*(0%, oY), T, (6%, 6)] = id(ct — o1)s"
Mo, '), T, (6", 6*)] =0 (2.32)
[X“(JO,Ul) ’Xl/(o,O/?o,ll)} =0
By standard computations we obtain the induced commutation relations for the Fourier modes among
which the non-zero ones are

[#*, p,] =idk
[alerLa arun] = [dlrrﬁa &run] :nnwjéner,O )

(2.33)

We introduced the hat-label above x* and p*, to stress the fact that they are operators. We then see
that:

e the initial position £* and the momentum p* of the centre of mass of the string satisfy the Heisenberg
uncertainty principle of a pointlike particle when o° = 0 (p* is a conserved quantity and £ doesn’t
evolve in time: we are in the Schrodinger picture). This means that:

1. we can interpret the first-quantized bosonic string as a first-quantized pointlike particle ”sur-
rounded” by the oscillations of the string;

2. the quantum state of the center of mass is encoded in a wavefunction with support in the
target-space, which can be decomposed in terms of the eigenfunctions |p*) of the operator p*:

pr|p) = p" [p*)

e up to the redefinition of the Fourier modes

a“ZOég Vn>0
"
m
(a’,fb)fza_” Vn>0 , (2.34)

23This is true, thanks to the relations , only for the excitations in the spatial directions. The excitations in the time
direction have imaginary mass and, of course, this is not acceptable. At the quantum level, things are even worse, because
the quantum state corresponding to this kind of excitations will become states with negative norm and the unitarity of the
theory is at risk. As we will see, we can get rid of these excitation by fixing the gauge.
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we can restore the familiar algebra for the harmonic oscillators, namely
[aly , (a;)] = Gmnn™ . (2.35)

We discover that for each n" harmonic (obviously, to talk about harmonic, it must be n > 0)
of the right sector we have a creation ((a*)" o o",) and an annihilation (a? o a!) operator;
these operators carry a spacetime vector index which points out the target space direction in which
the quanta of that harmonic are created/annihilated; so we have an infinite toweﬂ of harmonic
oscillators for each spacetime directions. Actually, we are dealing with two of these towers, because

the same considerations are valid also for the left sector.

Thanks to the commutations relations (2.33), we can build the Fock space of the quantum string. The
vacuum state |0) is defined by
ab0)=ak]0)=0 VYn>0 |,

and a generic state is obtained by acting with any number of creation operators on the vacuum (an
example: (a”)3a",|0)). Being a first-quantized theory, the vacuum |0) is the vacuum of a single string
and as such, it must carry information about the center of mass of the string; so, to obtain the complete
vacuum of the theory, we have to tensor |0) with a wavefunction describing the quantum state of the
center of mass. Given that the latter can always be decomposed in terms of the eigenfunctions |p*), the
simplest choice is to work in momentum representation and define the vacuum |0; p*) of the single string
as

0;p") = 0) @ Ip") (2.36)

From the commutation relations , we can eventually understand the reason why the quantum mass
spectrum is shifted with respect to the classical one. Indeed, the classical constraints L, = L,, = 0 have
to be imposed as operator equations on the Hilbert space of the physical states |phys), namely we have
to require the vanishing of all of their matrix elements

(phys’| Ly, |phys) = (phys’| L,, |phys) =0 ,

which are conditions that can be achieved by requiring (L}, = L_,,)

L, |phys) = L, |phys) =0 Vn>0 . (2.37)

These are well-defined equations because, by looking at and , we note that, for n # 0,
L, (L,) is a composite operator of commuting a’s (&’s). But, when n = 0, there is an order ambiguity
affecting Lg (io), because this is a composite operator built in terms of the non-commuting modes
ot ot (6t @), This ambiguity must be taken into account, because different prescriptions will lead to
a different mass spectrum (different Lo, io), namely different quantum theories. We require the quantum
operators Ly and Ly to be normal ordered in the sense of QFT, with the annihilation operators also

moved to the right, that is

oo 1 B 0 _ ~ 1.
Ly = Z Ay - Qo + 5&8 Lo = Z Q_m * Qm + 504(2) ) (2.38)
m=1

m=1

and we take into account other possible prescriptions by introducing the real constants a and a into the
constraints

(Lo + a) [phys) = (Lo + @) [phys) =0 . (2.39)
These constants will shift the mass spectrum of the string, which is now given by
, 4 = 4/ .
M == a+Za_moam == a+2a_moam . (2.40)
m=1 m=1

h

24The harmonic defines a frequency, so an energy. We like to think about the n*® harmonic “above” the m?!
because this means that (af)' will create states more massive than those created with (ah,)T .

oneif n > m,
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As we will see later, Ly — Lo can be thought of as the generator d, of the rotation of the closed string.
Any point of the closed string is indistinguishable from another one, so we must require every state of
the string to satisfy )

(LO — Lo) |phyS> =0

But, according to

e formula (2:38), the condition (Lo — Lo) [phys) = 0 means that the number N = Y°°_ a_,, - ayp,
of right-moving modes must be equal to the number N = Y">°_ &_,, - &y, of the left-moving ones;
the condition (N — N) |phys) = 0 is called level matching condition;

e formula (2.39), the condition (Lo — Lo) [phys) = 0 means that a = a.

In particular, the quantum theory will require @ = @ = —1, which implies an imaginary mass for the
vacuum |0; p*). In the covariant quantisation, these values for a and @ are determined by requiring the
unitarity of the theory. To be more precise, one can show that the ghosts (quantum states of negative
norm arising from the quantization of oscillations in the time direction) decouple from any S-matrix only
if a = a = —1 and if the dimension D of the target-space is 26; this result is called no-ghost-theorem: if
a=a= —1, D = 26, then every physical state is of the form

Iphys) = [physp) +[s)

such that (phys;|phys;) > 0 and |s) decouples from all physical process; in words, the state |phys)
decomposes into the physical transverse state |phys;) plus a pure gauge state |s). The proof of this
theorem is not straightforward, because it involves an analysis of the unitarity not only at the tree-level,
but also at the one-loop level; we refer the reader to [I0] for further details.

Instead, we are going to find the values for a, @ and D in the light-cone quantization, which is the
analogue of the Coulomb fixing procedure of QED. The constraints are implemented classically,
before the quantisation, which is now performed only on the space of physically distinct classical solutions.
So, by construction, at the quantum level we will not have any ghosts and we don’t have to worry about
unitarity. Instead, the critical values for a, @ and D will be uniquely determined by requiring that Lorentz
invariance will still hold at the quantum level, a requirement that is not trivial, given that, in order to
explicitly solve the constraints, some particular directions in spacetime have to be singled out.

We have already mentioned that, after fixing h,s to be flat, we still have the freedom of specifying which
coordinates we really mean with the lightcone coordinates o0& of the worldsheet (see ), because they
are defined up to a conformal transformation, namely:

o ; <&+(a+) + &—(a—)>

(2.41)

2
Il
N
N
Q

+
Q
+
I
Q‘
o)
N

We note that 50 satisfies the free wave equation d_9,6° = 0, which is the same equation governing the
dynamics of X# (o, o!) (see (2.17)). We can therefore use the residual symmetry to identify 6" with one
of thﬂ X*. For example, we can choose 6° oc X? and this would lead to the static gauge, which we saw
to be very useful to get an idea about the physical meaning of the constraints; but, to explicitly solve the
latter, it is more conveninet to require (look at Figure E[)

5% oc Xt oc (X0 4 x(P-1)

So let’s introduce, in the target-space, the light-cone coordinates

Xt = %(XO:I:X(D_U) and X' i€l,.,D—2 , (2.42)

25We have presented this “quick and dirty” argument only to give an immediate idea about the lightcone scheme. The
reader should be aware that, in general, imposing the equation of motion before quantisation can hide subtle problems. For
a better understanding of this point, we refer to [II|, where light-cone quantisation is introduced without relying on the
equation of motion and just by exploiting local Weyl and reparametrisation invariance.
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Figure 9
An intuitive sketch for the static (on the left) and lightcone (on the right) gauge.

and let’s define the so-called lightcone gauge:

5 1
50 = s (X+(UO, 01) —azt) (2.43)

where 7 is a (real) constant of integration. In this way we have completely specified what we really
mean with 6%, because (2.43) implies

Xf= ler + lo/erc?'Jr . Xp= ler + lo/er&* . (2.44)
2 2 2 2

Given that we have fixed the residual gauge, from now on we will forget about the “tilde” above the
coordinates 6¥, by relabing them as o*. We note that the lightcone gauge is valid as long as p™ # 0,
namely as long as the string is not in a massless excitation travelling in the X~ direction (0 = p* =
—p_ = (1/v/2)(po — pp—1)). This is nothing strange, because we are defining ¢° by specifying the
timelike curves of 0” = 7 € R as the intersection of the embedded worldsheet with the null hypersurface
X* =a/p*7+ 2" in the spacetime (see Figure [J) and, clearly, this cannot always be done.

The advantage of working with the lightcone gauge is that

1
6+X+ za,X"' = io/p"' 5
which is a condition that allows us to readily solve the constraints (94 X)? = (9_X)? = 0. Indeed, the
latter can be written, in the lightcone coordinates, as

D—-2
20, X 0, X" =Y 0, X0, X’

i=1

(2.45)
D—2 4 ‘
20_X"0_XT=> 0_X'0_X' |
i=1
and so we immediately get that X~ = X, 4+ X, can be defined, up to integration constants, uniquely
in terms of the other fields X?, by solving:
= ‘ ‘
I X, =0, X = ST ; 0, X0, X"
= (2.46)
= 4 _
8_XR - 6_X - W ; 8_X 6_X
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This means that the Fourier modes p~, &,, and &;, of the usual decomposition of X~

1 1 ! 1 .
X; (o) =37 + 50/p‘0+ + 14/ % ezz\;{o} E&;e_”“ﬁ
o : 1 (2.47)
(8 — —
X7 (07) =3¢ + §a'p707 + 4/ 5 Z —age me
neZ\{0}

are functions of the Fourier modes of X? (z~ is the undetermined integration constant). For example,
one can express o, and @&, in terms of the other oscillations and, by using oy = &5 = \/a//2p~ one
reaches the following two expressions

op _ 1R~

22(@}91)—1—2@0[)
i=1 neZ\{0}

D—

2.

(2.48)
/ — 1 o
T ( o'pipt + Z &;dl_n> ,
neZ\{0}
which can be used to find the effective mass only in terms of the physical oscillations:
M? = —p'p, =2pTp~ = > p'p' =
1 =2 4
:a Z Zal—na:L = JNT (249)
i=1 n>0
D-2
4 o 4 -
== 22 aladn = —Nr
=1 n>0

where we have introduced the quantities N7 and Ny that, in the quantised theory, will become the
number operators for the transverse harmonic oscillators. In analogy to electromagnetism, it’s custom
to call the physical modes transverse oscillatorﬂ here they are of, and &', for i € {1,...,D — 2} and
n € Z\{0} and they determine the 2(D — 2) intema degrees of freedom. To be more precise: on-shell,
the string can propagate (at maximum) 2(D — 2) degrees of freedom. In fact, the equation of motion
states that the string is described by the 2D functions X% and X%, but: 2 of them (X; and X}) are
killed by fixing the residual gauge and other two of them (X; and Xj) are fixed by the constraints
. Actually, 2(D — 2) are only those on-shell degrees of freedom coming from the oscillations of the
string, we need to add those coming from the dynamics of the centre of mass. The dynamics of the
centre of mass is described in terms of z?, p?, p*, 7, p~ and «, but: 21 can be absorbed in by
shifting 0% and p~ (which is the canonical momentum associate to 21) is constrained by . In other
words, the centre of mass of the string cannot freely move in all the D directions of the target-space (as
in the case of the pointlike particle, the on-shell condition states that it cannot freely travel in the time
direction).

In order to quantize the string in the lightcone gauge, we have to impose the commutation relations as
in , but this time only on the physical degrees of freedom o, &', =, p*, p*, . Of course, the
vacuum state is now defined by

“10;p"y = p* [0;p") ol 0;p") = al [0;p") =0 VYn>0

26Technically, they are not number operators, because of the /n that appears in . For this reason, N and NT are
called level operators.

2TWe like to stress that this is true - with a little abuse of language - both at the classical and at the quantum level. We
know from classical mechanics that a stationary oscillation of a rope is locally described by inner forces that, on average,
cancel which each others: stationary waves of a rope give information about these inner forces. At the quantum level, the
oscillations o, and &}, will give information about the inner quantum degrees of freedom, namely the spin (and the mass).
From this point of view, the mass and the spin of the single string can not change because of the background in which the
string is moving, because external forces affect only the motion of the centre of mass, without interfering with the inner
mechanics of the string.
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and the Hilbert space built on this vacuum with the creation operators of the physical modes o’ , and &* ,,
is, by construction, positive definite. As in the covariant approach, we have to impose the non-trivial
constraints descending from the equation of motion of h,s (which now read as in ) as operator
equations on the physical states. When imposing them, we have to introduce constants a and a (a = a,
as before) in order to take into account the possibility of different prescriptions for solving the order
ambiguity appearing on the right side of ; so, again, the formula for the square mass will differ from
the classical one ((2.49)) only by the quantum shift of and we get

4 4 =
Mzzg(NT—l—a):J(NT—l—a) : (2.50)

Later, with the path integral quantisation, we will be able to derive the value of @ = —1 in a rigorous
way, but here we are going to determine it by means of a heuristic approach: first, we “show” that a must
be equal to a = (2 — D)/24 and, then, we guess the dimension of the target-space must be D = 26.

Let’s suppose that the string sits in its quantum vacuum |0; p*) for a well specified momentum p#. The
centre of mass of the string behaves like a first-quantized pointlike particle (see commutation relations
(2.33)) so, if it is required to have a sharp momentum p*, then it must have an infinite undeterminacy in
its location. But, delocalizing the centre of mass means also delocalizing the fluctuations that naturally
characterize the vacuum of the string, because it is not possible to change the centre of mass of the
string without moving the string itself. So, we expect that, in this limit, there should be an analogy
between the vacuum of the string (usually thought of as quantum noise on the string) and the vacuum
of QFT (a quantum background noise in the whole spacetime). If we were in the framework of QFT, to
quantize a formula affected by ordering ambiguity, we would simply use the normal ordering (annihilation
operators @ on the right and creation operators a* on the left), but let’s have a closer look at it. For
example, let’s consider the energy E of a scalar in a 4—dimensional spacetime; classically, we would have

(wy = Vm? + k2)
o / Py (ot (k)a(k))

We have to impose the commutation rule [a(k), @t (p)] = 63 (k—p); first of all we symmetrize the expression
in the variables, namely

B= / d*kwy(a* (k)a(k) +a(k)a® (k)

and, then, we turn a(k) and a™ (k) into operators, that is
1
E :/d3kwk&+(k)d(k) + §/d3kwk[d(k),&+(k)] -

= / d*kwya™ (k)a(k) + 6°(0 / & kwg.

The last term contributes as a constant and, given that only differences of energies matter, we can neglect
it and we end up with the well-known normal ordered energy; we stress the fact that we can neglect this
constant term regardless of its finite or infinite value (actually it diverges, because wy ~« |E|), as long as
gravity is not in the game (as in QFT). In string theory, instead, gravity is present and it is not possible
to arbitrarily shift the energy anymore: energy is coupled to the metric and the equations of motion of
the latter are, in general, non-linear. Let’s see what happens if we try to quantize formula by
following the same steps that we have done for the energy of the scalar field.

We start from the expression in (2.50), namely

D—-2
4 iy
OZ/ a—nan I

i=1 n=1

(2.51)

and, as first thing, we have to symmetrize in o’ ,, and in o,:

4 D=2
QZEZZ (@' ol +ala® )

i=1 n=1
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Then, we turn o', and «!, into operators satisfying the proper commutation relations (as we saw in
(2.33), this is [&, &% ] =n) and we obtain

, 4= Lo oon) 4 D-2
M :JZZ ) NT+TZn . (2.52)

i=1 n=1 n=1

We are tempted to throw away the constant shift given by the contribution ) _,n, but gravity asks us
to take it into account. We guess that the mass of the vacuum of the string cannot be infinite, so we
have to isolate the finite contribution that is naturally hiding inside ) _,n. As always, if we want to
isolate a finite term inside an infinite-valued one, we have to come up with a regularization, that here we
introduce by means of the parameter e:

oo oo o0 o0
n= lim ne” " = — lim d.e”" = — lim 8. e =
e—0t e—0t e—0t
n=1 n=1 n=1 n=1 (253)
1 1
N _ ,—e\—1 — 1 - =
== Mim 01 —em)™ = lim, [62 2 0(6)}

We stress that, so far, we haven’t performed any dirty tricks, because the steps that we have just done
are all mathematically rigorous F_gl This, in particular, means that —1/12 is the finite contribution that
canom’callﬂ can be associated to ) . ,n. Now we can get rid, by haof the unphysical divergent
part ~ ¢ 2 and we can decide to keep only the finite contribution of (2.53), because the vacuum of a
single string cannot have an infinite mass. Thus, we are allowed to use

If we plug this result back into equation (2.52)), we find that the possible mass of the quantum string can

be written as
4 D—-2
2 _ % =2
M* = o (NT o ) , (2.54)

from which we can read (by comparison with (2.50))) that

D -2
24

a=—

28The careful reader could be worried by the fact that we let the limit-operation and the partial derivative commute with

the series (see step labeled by * in (2.53).
But it is not difficult to show that we can actually write (here f(e,n) = —0ce™ " = ne™ ")

oo oo
lim e,n) = lim en
TLZ::1€—>O+ f( ) e—>0+n2::1f( )

thanks to the Beppo-Levi theorem.
Moreover, we can also commute 8. and Y > ; because (¢ = e~ ")

Zaeefen:éZqunzéaqzqnzaezefen ,
n=1 n=1

n=1 n=1

where we have used the well-known fact that we can bring the differentiation 0y outside the series if the latter is uniformly
convergent; indeed, the geometric series >~ ; ¢" uniformly converges in the open interval —1 < ¢ < 1 and in our case we
have 0 < g < 1 because the lim__, 4 is obviously on the left of J., meaning that we can assume ¢ > 0 on the right of O..

29Canonically from the point of view of a mathematician. A physicist would guess that we still have the freedom to
regularize the theory in several ways, because we could get rid of only a part of the infinite value of 1/¢2, by leaving in the
game a finite contribution different from —1/12; but it is very nice to see that this cannot be done because of conformal
invariance: look at [12], pag. 46.

30We mention that - with the path integral approach to quantization - we could also get rid of it in a more rigorous way,
see [12]. In general, Weyl invariance is broken upon quantization and we must then include Weyl-noninvariant counterterms
as well. For example, to the classical action Spyy + ASyE we can add a term like w? fdza —h, where p plays the role
of the cosmological constant of the worldsheet. This counterterm in the bare action then cancels off the divergence ~ 1/€2
arising in the quantum computation of the vacuum energy.
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With formula (2.54), we can now shortly analyse the spectrum of a single free string. We remember
that the states of the closed string have to respect - as we have already mentioned- the level-matching
condition, which means, in light-cone quantisation, that we have to impose Ny = Np. For:

e Ny = Np =0, we obviously get the ground state |0; p#), the state with no oscillators excited. The

mass formula (2.54)) gives

M? = _1D-2 . (2.55)
o 6

Clearly, if we want to embed the 2—dimensional worldsheet in the target-space, the dimension D
of the latter must be D > 2. We have already seen that the string has 2(D — 2) on-shell oscillating
degrees of freedom, so we have to suppose D > 2 if we want to gain non-trivial information coming
from the extended nature of the string; indeed, for D = 2, there is only one spatial direction and
the string hasn’t enough room to show its extended nature: it appears like a massless pointlike
particle travelling in the future of the light-cone (the dynamical variables in D = 2 are only p* and
27). But, by assuming D > 2, we immediately see that the vacuum of the string is tachyonic! We
remark that the unstable nature of the ground state in bosonic string theory shouldn’t worry the
reader, given that it will be eliminated by the superstring.

e Ny = Np =1, we get the first excited level of the string; at this level, we find the (D — 2)? states
&i—laj—l 0;p%)

where ¢ and j are manifestly vector indices of SO(D —2) C SO(1,D —1).

String theory wants to recognise the nature of the fundamental particles as particular “sounds”
(i.e. vibrational modes) of the strings; for example, here we are facing the problem of giving a
particle interpretation to the states &' o’ | |0;p*). The target space has been taken flat, so a
single particle is identified as an irreducible representation of the little group, namely the subgroup
of SO(1,D — 1) that leaves the momentum of the particle invariant (SO(D — 1) for a massive one,
SO(D —2) for a massless one) and that encodes how the internal degrees of freedom of the particle
(spin/helicity) transform. In string theory, the internal degrees of freedom are represented by the
harmonic oscillators &}, and «f,, so we should find the connection between the bunch of oscillators
characterizing a particular string level and the little group of the particles present at that level.
The level specifies the mass of the states so at each level we expect more particles of the same mass,
which can be distinguished by the different transformation properties of their internal degrees of
freedom. For example, at the first level, the states &* o’ ; |0;p*) are in the (D — 2)?—dimensional
representation of SO(D — 2) x SO(D — 2) which can be decomposed as the direct sum of three
irreducible representations of SO(D — 2): so the little group of the particles of the first level is
SO(D — 2) and they must be massless. In formulae,

b
D -2
+07[f1aj,]1 |0; p") + (2.56)

atyaly[05p") =<d(_i1a{)1 5”07’210/il> 105 p) +

1 »
+ ——59ak

D—29 "ok ]osp")

Respectively, these three representations correspond to

— a massless, transversely polarised spin 2 particle. Obviously, the first guess is that this particle
can be identified with the on-shell graviton, given that these characteristics coincide with
those expected from the quantization of the gravitational waves. Actually, to be sure about
this identification one should check that also the interactions of this particle are those expected
from a graviton, but it is not necessary to check it, because, on general grounﬂ it is possible
to show that any theory of interacting massless spin two particles must be equivalent to general
relativity (plus higher derivative corrections). Thus, we can think of the first line on the right
side of as an on-shell quantum of the target-space metric.

31See |T3] for details.
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— a particle deriving from the quantization of an antisymmetric 2—tensor field B;; that must be
present in the target-space. This tensor is called Kalb-Ramond and it has to be thought of as
a “generalized” gauge potential, meaning that the string is “electrically charged” under it. It
was possible to forecast the appearance of this generalized gauge potential only by looking at
the extended nature of the string. We know that the coupling of the electromagnetism with
the pointlike particle is governed by the Lorentz action, which is nothing but the integration
over the worldline of the pullback of the spacetime electromagnetic potential A* (which is a
1—form); if we want to build the close analog for the string, we need a field which is a 2—form
in the target-space, so its pull-back on the 2—dimensional worldsheet can be integrated over
the worldsheet itself.

a particle deriving from the quantization of a scalar field ¢ that must be present in the target-
space. This is called dilaton and, as we have already mentioned, it is possible to show that
its constant mode ¢g (namely, its expectation value on the target-space vacuum) determines
the string coupling constant g, = e = e®: we can only trust perturbation theory if the
strings involved in the process are localized in regions of the target-space where the zero
modes of the dilaton assumes a negative value. An important question is if string theory
is able to dynamically determine the value of ¢g: the bosonic string doesn’t, but there do
exist backgrounds (particular compactifications) of the superstring in which a potential for
the dilaton fixes its expectation value. Thus we have to thank the dilaton if, in (super)string
theory, we don’t need to introduce g5 as a "god-given parameter. On the other hand, having
a massless particle in the game means that long-range forces arise and we have to check if the
latter interfere with gravity. Indeed, in the framework of the non-linear sigma model it can be
shown that the dilaton field does interfere with gravity; in this context, if we want to restore
the (strong) equivalence principle of gravity, we have to find a way to make the dilaton massive
and, again, such a mechanism does arise in particular compactifications of superstring theory.

e Ny = Np > 1, we obviously get, according to formula (2.50) states that for sure have a mass bigger
than that of the first level. So, all the levels above the first one describe massive particles, in which
we are not interested.

What we have learnt from the string spectrum is that the quantum string forecasts an unstable vacuum,
three massless particles (the gravion, the dilaton and the “photon” of the Kalb-Ramond field) and an
infinite number of extremely massive particles. Now that we know that the first level is massless, we can
impose the massless condition for N = N =1 in and we discover that D must be fixed to be

D=2 . (2.57)

This is the famous value of the critical dimension for the target-space in bosonic string theory. It can be
rigorously determined, in the context of the light-cone quantisation, by imposing the Lorentz invariance
of the quantum theory, namely by requiring that the quantized version of the Noether charges associated
to Poincare’ invariance must satisfy the Poincare’ algebra (have a look at [I0] for it).

With the canonical quantisation of the string, we hope that we have given the reader a direct and
“mechanical” intuition about the physics of the string. In the next chapter, we are going to use the more
abstract language of the path integral. On the one hand, this approach could appear too formal and far
from the physical intuition developed so far. On the other hand, the path integral - letting us taste a
bit of the deep mathematical structure of string theory - will reveal itself as an essential tool in string
theory, because it will allow us to study scattering process in string theory.
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3 The path-integral quantization

The modern covariant approach to quantisation of the string uses the Faddeev-Popov gauge fixing pro-
cedure to properly deal with the redundant structure of the theory. The key idea is that there is a prize
to pay if ones wants to fix the diffeomorphism and Weyl redundancie, which is the introduction of the
b-c ghost system on the worldsheet. The presence of these two new fields will explain, in an elementary
way, the reason why the order ambiguity constant a = a has to be a = —1. Moreover, the b-c system is
essential to build the BRST algebra and to study the loop interactions of strings. Once we will have the
BRST algebra at our disposal, we will discover that the value of the critical dimension D = 26 is fixed
by the requirement for the BRST charge to be nilpotent also at the quantum level.

It will be easier to understand all the implications coming from the presence of the Faddeev-Popov’s
ghosts in the game once we will have developed the CFT’s tools. For the moment, we are mainly con-
cerned in persuading the reader about the necessity of introducing the b and c fields.

The main references that we used for this chapter are [8] and [11].

3.1 Faddeev-Popov gauge fixing: a first approach

As usual, the fundamental object in the path-integral approach is given by the partition function Z, here
corresponding to the path integral with no vertex operator insertions

7= 1 / D[X*|D[hagle™ Sre X5 hesEal (3.1
Vdif fxweyt

where we have divided by the (infinite) volume of the gauge group so as to take into account the over-
counting due to diffeomorphisms and Weyl redundancies. The combined infinitesimal version of these

two transformations reads as (see (2.3) and (2.4))
0XH = —00%0, XH
(5hag = 2fha[3 - VQ(SO’B - Vﬁéaa = (32)
= (2f —V,007)hap — 2(P160)ap

where we defined a differential operator P; that takes vectors into traceless symmetric 2—tensors,
1
(P10 )ap = i(vaéag + Vgdoa — hapgV,007) . (3.3)

Following a standard route, we define the Faddeed-Popov measure App by

1= Arplhas) [[d080s — BSy) (3.4)

where

° iLaﬁ is a fiducial metric, that is a fixed metric whose form any other metric can assume after a proper
gauge transfomation. We have already seen that in a given patch it is always possible to make any
heap conformally flat, so we can takd®?| hos = Q2(0)d4s; obviously, this choice for the fiducial metric
works (at least) locally, but here we are not interested in complications due to non-trivial topologies
of the worldsheet that will be instead analyzed in chapter |5 (to keep things simple, in this section,
one can assume L, = );

e ( is a shorthand for the infinitesimal version of a combined coordinate-Weyl transformation that
brings hag(o) to hag(o) + 0hag(o); here, dhqg(0) is given by (5.18) and, following the notation of
(3.4), we will indicate an infinitesimal gauge transformation ¢ as ¢ = (f,d00%);

e the delta function is, to be more precise, a delta functional, because it requires hog(o) = ﬁiﬂ(cr)
for every point;

32We are considering the wick rotated version of the worldsheet: 0% 02 = i0¥ and o! — o!; with the wick rotation,
the Polyakov action gets an overall minus sign.
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o App(hap) is gange invariant, that is App(has) = App(hS,). In fact:
Apb(E) = [1DCI(RS, ~ i) =
= [1D16has ~ B, 2L
= /[DC”}é(hag —hSy) =
=App(hap)

Note that we used the obvious gauge invariance of the delta function in the second equality and the
hypotheticaﬁ gauge invariance of the measure D[(] in the third step (D[{'] = D[(¢"] = D[¢")).

Inserting (3.4) into the functional integral (3.1)), the latter becomeﬂ
1 - ‘L
R — / D[()D[X*D[has)App(hap)d(hap — o g)e™ SromlX hasiBol (3.6)
dif fxWeyl

We can carry out the integration over h,s and rename the dummy variable X + X¢ to obtain

(S

1 IR e
Z= g [ DIODIX") A pp (i e Srn I (3.7)
dif fxWeyl

Now we can use the gauge invariance of AL}, D[(X*)] and of the action to write

1 ~ [ .
Zy =3 /D[C]D[(X”)]AFP(haﬁ)e_s”“y[X el (3.8)
Vaiffxweyl

Now there is nothing, in the integrand, that depends on the gauge parameter ¢ so the integral over (
gives the volume of the gauge group that perfectly cancelslfl the Vi fxwey term in the denominator. So
we finally get

% = / DI(X")|App(hag)e SromXhesol (3.9)
We are thus left with computing the Faddeev-Popov measure Ap p(ﬁag), determined by

(App(hap)) ' = /[dqa(haﬁ —hSs) (3.10)

Again, here we want to keep things simple, so we pretend that exactly for one value of ¢ the delta
functional 6(hag —hiﬁ) is nonzero. This means that all the nonzero contribution in (3.10) arises when ( is

the identity and, thus, to compute Ag P(ilag) it is enough to consider infinitesimal gauge transformations.
In other words, the integral
JEG

over the gauge group can be equivalently substituted with the integral over the tranformations ¢ =
(f,00%) near the identity, namely with

[ pipissr

330One can suppose that this measure is gauge invariant by an analogy with the Haar measure of finite-dimensional
Lie groups, but there are no reasons why this analogy has to hold a priori, given that, here, the gauge group is infinite
dimensional. In fact, it turns out that the measure is in general anomalous and, to remove the anomaly, we are forced to
fix D = 26 (and a = —1). This is the reason why, strictly speaking, all the Fadeev-Popov procedure that we are presenting
has to be performed under the assumption of the criticality condition.

34We add a subscript to Z to explicitly denote the dependece of Z on the choice of the fiducial metric.

35This is not true. As we have already seen in the last chapter, the gauge choice hag = izag = 0o (more in general, the
conformal gauge choice) doesn’t completely fix the gauge, because, locally, we still have the freedom to specify the meaning
of the coordinates by a confromal transformation. We will turn back to this problem in chapter [5] where we will see that
not the whole of Vy;rrxweyr Will cancel with the integral over ¢: the volume of the conformal transformations globally
defined in 34 will survive in the denominator.
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So, by introducing formula (5.18)) into the Dirac functional of (3.10]), we have

(App(has)) = /D[fwwaa]a( —(2f = V00 ) hap + 2(15150)&5> , (3.11)

where we put a hat on the differential operators V and P; because their definition depends on a metric
that here is the fiducial one.

To perform the calculation, we go to the analogue of the Fourier space for the Dirac functional, because
the latter admits the following integral representation in terms of a symmetric tensor field B*5:

5(—(2f — X500 Vhas + 2(Plaa)aﬁ> _
= /D[Baﬂ]exp [2#2’/(120\/23@5 < — (2f = V60" g + 2(]3150)&5)] (3.12)

After plugging this formula into , it is immediate to see that the infinitesimal Weyl transformation
f acts as a Lagrange multiplier. In fact, the integration over D[f] produces a Dirac functional that forces
B*8 to be traceless, namely A

B*has =0
From a practical point of view: in we can set f = 0, drop the integral over D[f] whereas, in ,
we can put a label / on B*? to remember that B'*" is traceless. Thus we obtain

1

(Arplhap)) " =
af ~ ~ ~ ~ (313)
:/D[B’ |D[6c*]exp [27ri/d2a\/EB/aB (V7507ha5+2(P150)a5>} ,
and, using the tracelessness condition of B*?, we end up with
(AFP(BQB))_l =
:/D[B’QB]D[(SUO‘]eXp [4Wi/d20\/ﬁB'°‘ﬁ(P150)a,3] = (3.14)

:/D[B’aﬂ]D[éaa]exp [4wi/d20\/ﬁB’aﬁ?a605}

The previous manipulations have given us an expression for (App(ﬁaﬂ))_l, but, for (3.9), we need
Ap p(iLaﬁ). Given that the exponent is quadratic, the integral computes the inverse determinant of the
operator V,. Both B*# and (1515o)a5 are symmetric traceless tensors, so, to be more precise, we are
computing the inverse determinant of the projection of V, onto symmetric, traceless tensors: in this
sense the operator is a “square matrix” and we can talk about its determinant. But, in order to find
the determinant from the path integral expression of its inverse, we can simply replace, in the latter,
each bosonic field with a corresponding Grassmann ghost field which inherits the same transformation
properties. So, in (3.14), we perform the substitutions

0% — c*
B (3.15)
af — af

where ¢* is a vector field and b,p is a symmetric traceless tensor field on the worldsheet. We obtain

App(hag) = / Dlbag)D[c*]e™ 5 (3.16)
where the ghost action S;, with a convenient normalization for the fields, can be written as

1 5 : 1 TR
Sy = o /d20\/ﬁbaﬂ(Plc)w8 - o /dzg\/ﬁbaﬁvacﬁ : (3.17)
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It is not difficult to see that this action, in the conformal gauge (izag = 0%6,p), reads as
S*l/d2(bv2+bvf) 1/d2(b62+baf) (3.18)
=5 2\0zzVzC 2z V2C) = o= 2\0220zC 2202C ) .
97 o 2m

where we introduced the following notation

2=c'+ic? z=c'—io?

3.19
d?z =2dotdo? ( )

)

which appears to be useful, given that the complex coordinates z and Z are directly related to the lightcone
coordinates oF of the Minkowskian version of the worldsheet by

z=0'4i0? = o +i(ic®) = o

' _io? =6t —i(io?)

(3.20)

g

zZ =0

The action (3.18]) is Weyl invariant, because the conformal factor Q of the conformal gauge doesn’t show
up and this means that both b,z and ¢ are neutral under Weyl transformation (in contrast to b and
t0 Cq)-

To sum up: the action of bosonic string theory is the diffeomorphism and Weyl invariant action de-
fined by the sum of the Polyakov action and of the b — ¢ system. These two actions describe the free
fields X*, b and c. Locally, there are no interaction terms in these actions that mix the b — ¢ system with
the X*’s so, at the classical level, in a given patch, the ghost fields can be forgotten because they don’t
influence the dynamics of X*. At the quantum level, instead, the b — ¢ ghost system assumes a key role
both for local and global reasons.

Gobally, the gauge fixing does not fix the metric completely and, for topologies with genus g > 1, we are
left with residual modes of the metric, known as moduli, which presence has to be taken into account by
a proper insertion of the b, ¢ ghosts in the worldsheet (see chapter . Given that g = 0 is the tree level
worldsheet, this fact finds a close analogy in QFT, where one has to worry about Faddeev-Popov ghosts
only in loops. In fact, the Faddeev-Popov fields are Grassmann fields with integer spin and, so, they
cannot, appear as external fields because of their unphysical spin-statistics; being mathematical objects
that are necessary for consistency, their presence is then evanescent and indetectable and this is the
reason why these fields are usually called “ghosts”. The reader should not confuse the Faddeev Popov
ghosts with the ghosts met during the covariant canonical quantisation of the string, the latter being
quantum states of the string that cannot have definite positive energy and norm. Of course, there should
be a connection between these two kinds of ghosts, because both of them arise from a covariant approach
to the quantisation of a gauge redundant system. Sloppily speaking, we can say that the contribution
coming from the Faddeev-Popov ghosts cancels the contribution coming from the ghosts which would
spoil unitaritym The reason why it is not so wrong to think about this kind of cancellations among
different ghosts can be found in the BRST-symmetry, the remnant of the local gauge symmetry that
survives after the gauge fixing. Being nilpotent, the Noether charge QQp associated to this symmetry
introduces a cohomology on the set of the quantum states of the theory that can be used to distinguish
which states are physical and which are not. With respect to this definition of “physical condition”, it
is possible to recover the no-ghost theorem of the old covariant approach to quantisation, as well as the

36For example, if we compute the total order ambiguity constant a!®* of the gauge-fixed theory, we would find that it
consists of three pieces a'°t = ar + ay + arp, where ar is the order ambiguity constant ap = —(D — 2)/24 coming from
the 2 % (D — 2) transverse degrees of freedom, ay = —2/24 = —1/12 comes from the 2 * 2 unphysical degrees of freedom
and app = +2/24 comes from the Faddeev-Popov ghosts; so we would have

a’* =ar +ay +app =ar

and we would recover the mass-formula of the lightcone quantisation. To understand the reason why app = 2/24 =
1/12 one should note that the equations of motion of Sy imply that both the b and ¢ fields can be decomposed, locally,
into left and right movers so we have 2 x 2 degrees of freedom from the Faddeev-Popov ghosts, which is the same number
of degrees of freedom coming from the unphysical modes of X9 and X ~1; but the latter are bosonic variables, whereas
the Faddeev-Popov ghosts are Grassmann ones so they contributes with opposite sign to at°t. Following this example, we
like to think that at each loop level the running of the Faddeev-Popov ghosts cancels the running of the other ghosts (the
unphysical oscillations of X#).
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same Hilbert space of the lightcone quantisation (see [II]). But, as we will see, the nilpotency of Qg
holds at the quantum level only if D = 26; only if we are working under the hypothesis of the critical
condition we can show that ghosts decouple from physical processess: for D # 26, unitarity is lost.
Locally, the b — ¢ ghost system is fundamental to preserve the gauge invariance of the gauge fixed theory
at the quantum level.

In this section, we have assumed that the measures D[(] and D[X*] are separately gauge invariant. The
truth is that they are invariant only under diffeomorphisms, but not under Weyl rescalings (see [6], for
example). We have seen that the gauge invariance of D[(] alone is equivalent to the gauge invariance of
App(hep), namely to the gauge invariance of the b — ¢ system; thus, we can expect that, at the quan-
tum level, both the b — ¢ and the matter sectors separately suffer from a Weyl anomaly (the traces of
their energy-momentum tensors are nonzero). Later we will find that these two Weyl anomalies cancel
if D =26 (and a = —1) and this is equivalent to the memorable result due to Polyakov: the combined
measure D[h,g]D[X*] (equivalently, the combined measure D[¢]D[X*]) is not anomalous only for the
critical string. If we want to obtain a gauge-fixed worldsheet that doesn’t depend on the gauge chosen to
fix Weyl invariance, we necessarily have to take into account the Faddeev-Popov ghosts and to impose
the criticality condition.

Given the importance of the criticality condition, in the following chapter we are going to analyze

the local aspects of the gauge-fixed worldsheet and its BRST remnant symmetry. The discussion of the
global aspects of the worldsheet will follow immediately after.
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4 Local aspects

As we have done so far, we are going to pay attention only to one patch of the worldsheet. Nevertheless,
it is important to keep in mind that, in general, the latter will be a manifold that can be described by
several local coordinate systems and the non-trivial information about the nature of the manifold will
be encoded in the transitions functions. The geometry of the 2—dimensional gauge-fixed worldsheet is
very rich thanks to the gauge redundancies of the theory and this translates into very nice transition
functions. In fact, we have seen that we can fix reparametrization invariance to bring, in each local
patch, the worldsheet metric hqp to the conformal form h,ps = Q20,5. If we denote two local patches
that intersect each other with the subscripts A and B, we have

P(oh, 0%) (<da}4>2 " (doiﬁ) — ds?

—0%(0h,03) ((dogf + <da?3>2) ,
ANB

and, in the overlapping region A() B, this means
(doy)? + (do)? o (dog)? + (dog)”

In other words, the transition function between the two patches must be ﬁ conformal transformation
and this is a peculiar fact characterizing all 2—dimensional Riemannian manifolds. Observe that, if we
denote with A and B the same patch, the transition function between the two patches is nothing but
a reparametrization of the coordinates of the same patch so we get that in each patch we still have the
freedom to perform a conformal transformation. Obviously, if we think (take the A patch, for example)
the conformal factor Q2 (o) to be fixed by the conformal gauge, then the freedom of reparametrizing the
single A patch by a conformal transformation is lost. But it is likewise obvious that we can recover this
freedom by adding into the game the Weyl invariance of the worldsheet! This is the reason why some
authors like to say - with a misleading abuse of language - that conformal transformations (on a given
patch) are diffeomorphisms followed by a compensating Weyl rescaling (see [8], for example); what they
really mean is that we have to thank Weyl invariance if we still have conformal invariance in a patch even
after fixing the metric to a precise conformal gauge form by the Faddeev-Popov procedure.

Weyl redundancy makes the worldsheet of string theory very special among all the 2—dimensional Rie-
mannian manifoldﬂ because a Weyl transformation really changes the Riemannian structure of the
worldsheet. It lets us bring the metric from the conformal to the flat gauge form in, at least, one patch.
We precise that the Weyl trasformations consist of rescalings of the metric ds? by a factor €2/ where f
is a function which is continuous and globally defined on the worldsheet, otherwise the rescaled world-
sheet wouldn’t be a Riemannian manifold. In general, Q% (c4) # Q%(0op) and, in this case, by a Weyl
rescaling it is possible to bring the metric into the flat form only in one of the two patches; only in the
case of Q% (04) = Q% (op) it is possible to bring the metric to the flat form in both patches by a Weyl
transformation.

We also stress that Weyl rescalings don’t touch the coordinates so, even after performing a Weyl trans-
formation in each patch, the transition functions will be the conformal transition functions of before.
To sum up:

e One starts with a Riemannian manifold (3,, ds?) and fixes reparametrization invariance by choosing
the conformal gauge in each patch. This choice fixes the transition functions among patches to be
conformal transformations.

e Then we remember that in the theory we have also the Weyl redundancy (3, ds?) ~ (Z,, ¢*/ ds?)
and we fix it by bringing the conformal gauge choice to the flat one at least in one patch.

e For the same reasoning explained around formula (2.9), we could naively guess that we still have
the freedom to specify the meaning of the local coordinates by performing in each local patch a
different conformal transformation. But again we have to remember that the Weyl rescalings are
continuous and globally defined, so, after fixing reparametrization and Weyl redundancies, we still

37This holds if we choose coordinate in A and B such that the metric is in conformal form in both patches.

3880 special to such a point that, as we will see later, the Euclidean version of the worldsheet is not a Riemannian
manifold, but a complex manifold. A complex manifold doesn’t need a metric to be defined and, in this sense, the metric
hap is completely an auxiliary field, not only at the dynamical level, but also from a geometrical point of view.
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have the freedom to perform only those conformal transformations that are globally defined on the
whole worldsheet. These transformations form the group of the residual gauge transformations,
which is called conformal killing group (CKG) of the worldsheet.

The main references that we used for this chapter are [8], [111, 12} 14 15 [7].

4.1 2-—dimensional conformal transformations

A conformal transformation is a diffeomorphism % — &% under which the metric changes only by an
overall factor. If the original metric is the flat Euclidean one, then the transformed metric should be

_ 007 o
95 95P
Obviously we are interested in the 2—dimensional case. Let €* be such that 0@ — 5% = 0% + €* + O(€?).
Then, it is not difficult to show that this definition reduces to

Bas = hap(8) 5,5 = A(0)das

6(165 + 85€a = 87675(15 . (4.1)

After introducing the usual complex notation

z=o0c'+ic? z=0c! —ig?
1 . 1 .
82 = 5(31 — 282) 85 = 5(81 + 182)
€ = €' +i€? € = €' —ie?
dzdz = 2do"do” (4.2)
]' zz zz zzZ zZz
gzizgiz:§ gzz:géézozg =g =0 g =g =2

1
€, = 5(61 — i€2) €5 = 5(61 +i€ea)

we find that, locally, the solution to (4.1)) is given by

||

0z =0 = 0,¢ (4.3)

Thus, we have simply

e=¢e® =€(2) E=¢e® =€ (2) (4.4)

and the infinitesimal conformal transformations on the 2—dimensional Euclidean worldsheet are gener-
ated, locally, by all the meromorphiﬂ functions €(z) and anti-meromorphic functions €(z). As such,
the group of the local conformal transformations is infinite dimensional, and this is a peculiarity of the
2-dimensional case. This means that the gauge-fixed worldsheet enjoys - locally - a huge number of
symmetries and, so, its mathematical structure is very rigid.

The (anti-)meromorphic generators can be expanded in a Laurent series as

z'—>z’:z+6(z):z+26nz"+1

neZ (45)

and we see that the algebra of the infinitesimal conformal transformations is generated by the Witt

generators l,, l,, namely by

ly=—2"9, | I,=-7""9, | (4.6)

39Not holomorphic, because the vector field e can have singularities outside the local patch of the worldsheet where we

are solving (4.3)).
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which satisfy the Witt Algebra

[l_ma l_n] = (m— n)l_ern
[y 1n] = 0

This is the infinite dimensional algebra of the 2—dimensional conformal transformations. Locally, it
characterizes the worldsheeﬂ ¥, regardless of its genus but most of these transformations fail to be
globally defined on X,.
For example, at the tree level (¢ = 0), the worldsheet is a Riemann-sphere which can be covered, as we
know, by two patches with complex coordinates z, u with transition function uz = —1 in the overlapping
region

S?\{North pole z = 0}\{South pole u = 0}

In the 2z patch, the Witt generators are given by (4.6), and they are globally defined only for n > —1 (for
n < —1, 1, and [,, are not defined at the North pole). In the u patch, instead, the Witt generators are
given by

o n+1
I, = 72n+laz _ <1> @&L — *(fu)*(”Jrl)uQ@u _ (71)nu17nau

U 0z
l_n — _zn—i-la% _ (_1)nﬂl—naﬁ ,

(4.8)

and only for n < 1 they are defined also at the South pole. Thus, the only Witt generators that are
globally defined on the Riemann sphere are:

e [_; = —0,: it generates rigid translations z — z 4+ b, b € C;

e lp = —z0,: it generates complex dilatations z — az, a € C which consist of real dilatations (for
a € R) and real rotations (for a € iR);

e [} = 220,: it generates the socalled special conformal transformations z +— z/(cz + 1), ¢ € C.

The combination of these three transformations gives the most general global conformal diffeomorphism
on the Riemann sphere:

Haerb
cz+d

, deC. (4.9)

Being a diffemorphisms, it has to be invertible, so we have to require ad—bc # 0; we can rescale a, b, ¢ and
d to obtain ad — bc = 1 without changing the transformation, and we recognize that the set of the diffeo-
morphisms is isomorphic to SL(2, C). Actually, after imposing the condition ad—bc = 1, we still have
the freedom to represent the same transformation with both (a,b,¢,d) and (—a, —b, —c, —d) so we have
to quotient by a Zg factor and we obtain PSL(2,C) = SL(2,C)\Zz. Given that we have also the anti-
holomorphic set of transformations, we get that the CKG of the Riemann sphere is PSL(2, C)x PSL(2,C).
The CKG of the sphere is useful to guess the CKG of surfaces with genus g > 0. In fact, any closed
oriented two-dimensional surface can be obtained by adding ¢ handles to the sphere. Higher genus
surfaces are - topologically speaking - more complicated than the sphere and, so, their CKG should
be a proper subgroup of PSL(2,C) x PSL(2,C). For instance, the only conformal transformations
that preserve the periodicity condition z &~ z + 277 of a torus (7 € C) are given by the Witt genera-
tors which act homogeneously on the plane, namely by the translations {; and {; and the CKG is now
U(1l) xU(1) ¢ PSL(2,C) x PSL(2,C). In the same way, we expect that the CKG(X,) of a worldsheet
with genus g > 1 should be a proper subgroup of the CKG of the torus, but the latter consists of only
translations, so we guess that there are no conformal transformations globally defined on ¥,~;. This
reasoning, though heuristic, gives the right CKG’s for all 3; the reader who is not satisfied with it can
refer to [6]-

40Up to conformal anomalies. We will discover that, at the quantum level, the conformal transformations are generated
by the Virasoro generators Ly, Ly, which are a “generalization® of the l,,, .
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4.2 From the cylinder to the plane

We understood a very important lesson: to study the conformal properties of the worldsheet it is con-
venient to work with complexEl coordinates z and Z, so, then, we can exploit the results coming from
complex analysis/geometry. From this point of view it is thus natural, as first step, to map the worldsheet
3o of the freely moving string to the complex plane and the importance of such a map will become even
clearer later, as being the building block of the state-operator correspondence.

On the Euclidean cylinder parametrizedﬁ by ol € [0,27[ and 02 €] — 0o, +00[ we can define the complex
coordinates

2 - 1

w=o?—ict |, w=o’+iot (4.10)

and the complex coordinates z, Z, related to w, w by means of the conformal transformation
z=e¥ z=ev (4.11)

which identifies, being a biholomorphism, the cylinder [0, 27[x] — 00, +00[ with C\{0}. One would like
to describe also the string sitting at o? = +o0; according to the map , we should add the corre-
sponding points z = 0 and z = oo to the complex plane and we end up with the compactified complex
plane C U {co}, namely with the Riemann sphere S2. One should be aware of the fact that the “closed”
cylinder [0, 27[x[—o0, +-oc] is not biholomorphic to S?, so they are different worldsheets (actually, they
cannot even be homeomorphic, given that the Riemann sphere is simply connected and the cylinder is
not). The problem is that the Riemann sphere has “less” information than what the cylinder has, because
all the points of the string sitting at 02 = —oco are indiscriminately mapped to the same point, namely
to the origin of the complex plane, so we don’t have an injective mapping. The right way to keep track
of this information is to introduce a vertex operator at the North Pole z = 0 of the sphere; in this way
the not-simply-connectedness of the cylinder will be somehow recovered on the sphere: indeed, it will not
anymore be possible to shrink any contour integral around the origin to a point, because of the presence
of the vertex operator at z = 0! Obviously, the same reasoning works also for the South pole and, if we
want to describe the string at 02 = 400, we have to add the same vertex operator at u = 0. In other
words, one should think of ¥ as the “closed” cylinder, or equivalently, as the Riemann sphere with the
vertex operator insertions at the poles.

Clearly, according to , lines of equal time o2 are mapped into circles around the origin, o' —translations
become rotations and time o2 —translations become dilatations. In the quantized theory, this means that:

e the generator of dilatations will take the role of the Hamiltonian,
e time ordering will be replaced by radial ordering and
e equal time commutators will be substituted by equal radius commutators.

This is the core of the so-called radial quantization, according to which products of fields are only defined
if we put them in radial order R]...]; in analogy to the time ordering of QFT, the latter is defined as

$1(21)02(22) for|z1| > [22]

4.12
ba(z2)on(z1) forlza| > |21] ®12)

R[¢1(2’1)¢2(22)] - {

where, as an example, we have taken two commuting fields; in the case of anti-commuting fields, there
will be a minus sign in the second line of the definition of RJ...].

41 A note for the careful reader. In order to use the results coming from complex analysis/geometry, we deal with z and
Z as they were independent coordinates. Strictly speaking, this means that we’re really extending the worldsheet from R?2
to C2. However, after computations one should remember that we’re really sitting on the real slice R? C C2 defined by
z = z*. To streamline our discussion, sometimes we will focus only on z, leaving understood that we should do the analogue
construction for Z.

42Because of the periodicity condition, the cylinder needs at least two charts to be covered. These charts can be chosen
such that their transition functions is only an innocent translation, so we can pretend to have only one “global” chart, as
long as the functions defined on it respect the periodicity of the cylinder. Note, for example, that the functions z(w) and
zZ(w) that we are going to introduce respect the periodicity of w ~ w + 2.
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4.3 Conformal Field Theory

A conformal field theory (CFT) is a theory invariant under the group of infinitesimal conformal transfor-
mations, as the gauge-fixed Polyakov theory defined on a local patch of the worldsheet.

One can define a CFT even without an action, but let’s introduce it by means of the lagrangian perspec-
tive, whose logic is reminescent of that one of QFT:

e the classical theory is given by an action S[¢;] invariant under infinitesimal conformal transforma-
tions;

e the basic objects of the theory are the fields O;(x). We specify that, in the context of conformal
field theories, we call “fields” any local expression written in terms of the ¢;(z) appearing in the
action and of their derivatives;

e the quantum theory is defined by the correlation functions

(R[O1(21)..0p(z0)]) = %/HD[qsi]efs[%lol(xl)...on(xn) :

e the equations involving the local fields will always be thought of as operator equations in the
quantum theory, namely as equations which are valid only if inserted into the path integral, where
also other operators can be present, as long as the latter are “far” from the operators of the equations.
To be more precise, let’s consider a formula like (g is an operator-valued function)

Oy (21)Oa(x2) = g(O1(21), O2(22))

this will be a shorthand for

<01($1)02(.’L‘2)> = <g(01(l‘1),02(1}2))...> s

where we denoted with ... the hypothetical presence of other operators O;(z;) which have to be
inserted at distances bigger than |21 — z2|; in the radial quantization, these operators cannot be
inserted in the annulus whose boundary are given by the circles of radii given by the radial positions
of @1 and Os.

In the case a classical action was missing, one can define a CFT as a “complete set” of local fields O;
with correlation functions given as maps from the space of operators to C whose forms are constrained
by conformal invariance. It turns out that the requirement of conformal invariance is so stringent that,
in principle, all correlation functions can be computed in terms of a finite amount of input datﬂ this
can be done because, in a CFT, there is a natural notion of “complete set” of operators - the notion of
quasi-primary fields, which doesn’t exist in a general QF T - and because the “product” (the OPEs) of two
such quasi primary fields has remarkable properties. We are going to introduce these concepts directly
in the setting of a 2—dimensional CFT defined on the Riemann sphere S? = CU{oc}, given that it is the
case of our interest.

4.4 Primary and quasi-primary fields

We have already seen that, on S?, the complex dilatations z ++ Az (Z + AZ) have an important role,
because they are related to the o' and o2 translations on the cylinder, namely with rotations and time
translations. It is thus natural to labellfl the fields ®(z, z) defined on S? according to their transformation
properties under dilatations. If a field transforms as

B(z,2) = (2, 7) = NN "B(2,7)

then we say that it has conformal dimensions (h,h). It is intuitive that h +h and h — h are, respectively,
the eigenvalues of ® under real dilatations and real rotations on S? (see |§]) and, so, A = h + h and

43See later: the input needed is what we will call structure constants of the theory.
44This is reminiscent of our approach to QFT, where one labels fields according to the mass and spin.
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s = h — h play the role of the scaling dimension and spin of the field ®. The reader should also keep in
mind that a unitary CFT is characterized by h,h > 0 (the conformal dimensions vanish only in the case
of ® proportional to the identity operator).
A primary field ®(z,z) is a field that transforms as a tensor under conformal transformations, namely:
22 = f(2)
ze 2 = f(2)

B(,2) o B(/, ) = (?)(?)hw) ;

at the infinitesimal level, this definition reduces to

(4.13)

2 2 = f(2) = 24+ €(2) + O(?)
z 7 = f(2) =2+ &2)+ O(?) (4.14)
8 e®(2,2) = —(h0.€ + €0, + hOz€ + €0;)®(z, 2)

A quasi-primary field satisfies only when the conformal transformation is globally defined on S?,
that is when (f, f) € PSL(2,C) x PSL(2,C).

We have seen, in the last chapters, that the closed string theory consists of the right sector (fields
depending only on the o~ coordinate), and the left one (fields depending only on o7); the coordinates
w, W coincide with w = ic~ and w = ioc™ so the conformal map to the cylinder preserves the notion of
“right” and “left” movers, because z (Z) depends only on w (w). It makes then sense to introduce proper
names for fields that, on the plane, depend only on z or only on Z; these are respectively called chiral
and antichiral fields and correspond to left and right moving fields on the cylinder. On the cylinder, a
right-moving field ®(o~) can always be expanded as

o7) = Z Ppe "7, (4.15)
neEZ
namely as
=D e (4.16)
neZ
if it is primary, then, after the conformal map to the complex plane, it becomes the chiral field
plane Z ¢n ) (417)
nez

where we have added the subscript “plane” instead of putting the ’ as we did in (4.13]). So we have learnt
that the modes ¢,, for a chiral primary field ®(z) of conformal dimension i can be simply obtained as

1

5 B(z)" T (4.18)

¢n:

4.5 OPEs

In a QFT, the operator product expansion (OPE) is defined as an approximative expansion of two oper-
ators O;(z;) and Oj(z;) valid in the limit ; — 2; — 0 and in a certain neighbourhood of the locations
of the operators:

Oi( Z (2 — 25))Ok(@r) - (4.19)

In a CFT, the structure of the OPE is constrained by the requirement of conformal invariance to such
a point that the functional dependence of ij(|:1cZ — x;|) is completely fixed. Moreover, the OPE is an
exact expressiorﬁ and the OPE of two quasi-primary fields involves only other quasi-primary fields and

45Namely, a convergent series whose radius of convergence is given by the distance to the next field insertion.
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their derivatives (the so-called descendant fields).
For example, in the case of the 2—dimensional CFT it is possible to showEl that the OPE of two chiral
quasi-primary fields ¢;(z), ¢;(w) can be written as

a™ 1

k ijk n
¢l(z)¢](w) = z; Sij n (Z . w)hz‘Jrhj*hk*na ¢k(w)
Fn=0 (4.20)
. O +n—1\""(hp+hi—h;j+n—1
Qi1 = n n )

where the sum over k runs only over the quasi-primary fields and the complex constants Sfj are called
structure constants. Even though it is not important for what we are going to study later, the reader
should be aware about an essential fact: it is possible, by successive applications of the OPEs, to reduce
all higher order correlations functions to the correlators , so the structure constants is all what we
need to solve the theory.

Now that we understood the advantages of working with the OPEs in a CFT, we show how to compute
them. We will start by focusing on the OPEs between the energy momentum tensor and any other
conformal field.

4.6 Conformal Ward-Takahashi identities

We need to borromEl a general result from QFT, namely the Ward-Takahashi indentity; this computes
the variation dO; of an operator under a tranformation of the fields ¢ — ¢ + €d¢ in terms of the integral
of the divergence of the Noether current that one would obtain at the classical level by taking e constant.
So let’s supose that, at the classical level, the action S[¢] is invariant under a global tranformation
¢ — ¢+ edp and let the associated Noether current be J,. Then, at the quantum level, the following
equation is valid as an operator equation:

1

- dz 0o J“(2)O1(21)... = 001 (21)... (4.21)
27'(' B(zl)

where we denoted with B(x1) a region that contains the location x; of the operator Oy, but that doesn’t
include any other hypothetical operators present in “...”.
In the case of a 2—dimensional QFT, we can use Stoke’s theorem and introduce the complex coordinates

z =2 +i2?, Z =z! — iz? to rewrite this equation as

1
0 0) = ——— d 2(2,2) — dz z ;_ ) v ) -
Ow, @) = —5— ) ( 2 J.(2,2) — dZ Jo(2 z))O(w @) (4.22)
where
1 , 1 .
Jo=g(h—ik) . Ji=g(htik) (4.23)

because indices are raised and lowered as in .
Now we want to apply the Ward-Takahashi identity to the conformal symmetry of a 2—dimensional CFT,
so we need to find the Noether current associated to conformal invariance.
We start by applying Noether’s theorem to translations and dilatations and we obtain that the energy-
momentum tensor has to be conserved and it has to be traceless, that is

D TP =0 , T =0

[e%

Let’s rewrite these equations with the complex coordinates. The tracelessness condition becomes

T.: =0 (4.24)

465ee |T6] for the proof.
47See |8] for a derivation and for details.
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and the conservation condition now reads as

aETzz =0 ) az

o

:=0 . (4.25)
In other words, the energy-momentum tensor splits into a chiral and into an anti-chiral part:

T..=T(z) , T===T(2) , (4.26)
and now it is not difficult to guess that the Noether currents for the conformal transformations

2zt ev(z) =z +€(z)

Z—Z+eu(z) =z+€2) (4.27)
are given by the couple
J, = €(2)T(2) J:=e2)T(z) . (4.28)
After pluggig these currents back into , we get the conformal Ward-Takahashi identity:
5..cO(w, @) = —% 3 (dze(z)T(z) +dz g(z)T(z))O(w,w) : (4.29)

where both the contour integrals around w and w are counter-clockwise in z and in Z; remember that
the Ward-Takahashi identities are operator equations, so, here, both T'(2)O(w,w) and T(2)O(w,w) are
taken radially ordered, namely |z| > |w| and |Z| > |@].

So we have learnt that the way an operator O changes under an infinitesimal conformal transformation
is encoded in it OPE with the energy-momentum tensors T(z), T(Z).

If we specialize this formula to a primary field ¢(w, w) of dimension (h, h), we can be more precise; indeed

we can substitute the left side of (4.29)) with the last line of (4.14) to obtain

S5e.c®(w, w) = —(hOye(w) + €(w)Dy + hge(Ww) + &(W)Dg)P(w, W) =

1 o ) (4.30)
= (dze(z)T(z) n dze(z)T(z))qS(w,w) :
and by using the standard formulae
€(w) 0y ]i dz — i 7 — 3w¢(w, w)
v ) (4.31)
Owe(w ]iw dz — 37 (2 — w)? ———¢(w,w)

we end up with the very important formulae for the OPEs between a primary field and the energy-
momentum tensor, namely

T(2)00,15) = oz 10,) + = 0u0(w,) + O(1)

T(Z)(b(w,’lfj) = %qﬁ(w,u’/) + ﬁaﬁ)qﬁ(w, ’ID) + 0(1) ) (432)

4.7 The Virasoro generators

Given the importance of the energy-momentum tensor in a CFT the most natural question is to ask what
happens if we take ¢(w,w) to be T'(w) or T'(w) in formulae . The energy-momentum tensor Ty
has for sure scaling dimension A[T, 3] = h+h = 2 because after 1ntegrat1ng it over the space direction we
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obtain the conserved energy of the system. T'(w) is chiral and T'(w) anti-chiral, so we understand that
the first one has conformal dimensions (h, h) = (2,0) and the latter has (h, h) = (0,2). So we must have

T()T(w)=...+ —=T(w) + ﬁ@wT(w) +0(1)
o 9 B 1 (4.33)
T@ﬂwmza“+(§jaﬁTmn+

Z—w
where we denoted with the dots the hypothetical presence of terms of higher singular behaviour. Ob-
viously, this hypothetical term must have the same scaling dimension of the product of two energy-
momentum tensors, so any operators that appear on the right-hand-side must be of the form

On

with A[O,] =4 —n. But, there are no operators with negative conformal dimensions in a unitary theory
so the most singular term has to be a constant that multiplies (z —w)~* and we write

ﬂ@ﬂwﬁ:@d;4+@};PTWMh;zpﬂW@+O@
_ _ (4.34)
T =~ )+ L a,Tw) +0q)

(z—w)*  (z—w)? zZ—w
where we didn’t include terms proportional to (z — w) ™ because the stress energy momentum tensor is
bosonic and, so, in a radial ordered equation we must have T'(z)T(w) = T(w)T(z). The constants ¢ and
¢ are called central charges and, roughly speaking, they somehow count the number of degrees of freedom
in the CFT@ S0, if we want to have a theory that describes the same number of degrees of freedom both
in the chiral and anti-chiral sector@ we have to require ¢ = ¢.

By comparing with , we discover that the the energy-momentum tensor is a primary field
only if ¢ = ¢ = 0. Here we introduced the charges by hand; one way to compute them is to determine
the commutator relations among the modes L,, of the energy-momentum tensor, because the information
contained in the OPE of two operators is equivalent to the commutator relations among their modes.
Indeed, let a(z) and b(z) be two fields of our CFT, and let

A= dza(z) B:j{ dzb(z)
Co C'0

be their contours integrals around 0 € C, with Cy oriented counterclockwisely. Then, if we remember
about the omnipresent radial ordering, it is not difficult to show the validity of the following two equations
as operatorial ones:

[A,b(2)]+ :]Q dw a(w)b(z)
(4.35)

(A, Bls — ]fc 0z fc A awh(z)

where we denoted with [-, -]} the anticommutator, that has to be used when both fields are Grassmann
odd and with [-,-]_ the anticommutator (that has to be used in all other cases). These formulae are
extremely useful in CFT, because they relate OPEs to commutation relations and allow us to translate
into operator language the dynamical or symmetry information contained in the OPEs.

If we define the modes L,, of T(z) as in (4.18), namely as

1 1
L= - mw%h—¢ﬂmw, (4.36)

~ omi = omi

48For example, the central charge of a system consisting of D free-bosons is precisely D. We will see that the central
charge represents an anomalous behaviour of the conformal theory, so, to be more precise, it counts the anomalous degrees
of freedom of the quantum theory.

49Which is the case for closed string theory, because of the level matching condition.

38



then we can insert the OPE (4.34) into (4.35) to get that the Virasoro Generators L, satisfy

[Lony Ln] = (M = 1) Lopin + —=(m> = m)0mino - (4.37)

c
12
The set of these commutations relations define the so-called Virasoro algebra, which is precisely the unique
central extension of the Witt algebra.

We can expand €(z) and €(z) appearing in (£.29) into their Laurent series as we have done in (L5);
then, it is not difficult to read from equation (4.29)) (one has only to apply ) that L, L, are - at
the quantum level - the generators for the conformal transformation §z ~ z"*1, §z ~ z"+1. In other
words, the Virasoro generators are the “quantum version” of the Witt generators and, by comparing their
algebras, we can understand that the central charges are due to a pure quantum effect: if ¢, ¢ # 0, then
the conformal algebra is anomalous.

To be more precise, it is possible to show that for a 2—dimensional CFT, the conformal anomaly is given
by the expectation value of the trace of the energy-momentum tensor (that, in complex coordinates, is
T.z). In fact, whereas at the classical level we have, thanks to dilatation invariance, that

T.:=0 ,
at the quantum level we instead have (see [11] for a proof)

c
{Tz)= -3 R (4.38)
where we denoted with R the Ricci scalar of the worldsheet. This formula is saying that the curvature
and the charges are somehow connected to the breaking of the dilatation invariance at the quantum level.
This is intuitive for the curvature, because a non-vanishing one implies the notion of a typical length scale
in the theory. Instead, it is not intuitive for the central charge; but also ¢ does define a length scale in the
theory, because it turns out (see again [I1]]) that ¢ # 0 is equivalent to the presence of a vacuum-energy
on the cylinder.
The formula is interesting, because on the right side there is no dependence on the states that
we used to sandwich T on the left. According to this formula, it is not important to know the (finite)
energies of these states: the conformal anomaly is the same at all energies. Indeed, from a practical point
of view, the conformal anomaly is completely@l due to the normal ordering prescription that we have
to specify at the quantum level to remove short distance divergences; obvioulsy, at very short distances
all the finite energy states look basically the same, so it makes sense that there is no dependence on the
state on the right side of .
In QFT, the normal order : ¢;¢; : is usually defined as moving all creation operators to the left. In the
setting of a 2—dimensional CFT, one can rigorously prove (see [16]) that this notion of normal ordering
is equivalent to picking out the non-singular term in the radially ordered OPE, that is

1 ¢i(2)p;(w) = Rlg;(2)¢;(w)] — singular terms . (4.39)
Clearly, (: ¢:i(2)¢;(w) :) = 0, and this is essential to prove Wick’s theorem for two fields, which is

R[pi(2)¢;(w)] = (9i(2);(w)) + : di(2)ps(w) = (4.40)

As in a general QFT, one can inductively use the Wick theorem for two fields to relate radial-ordered
and normal-ordered products of more than two fields by replacing any pair of them by their two-point
correlator.

In the literature it is common not to write the normal order symbol, by giving it as understood. The
reader should be aware that every composite operator that involves fields whose OPEs are singular has
always to be taken in its normal ordered form, otherwise it is not well—deﬁneﬂ

50 As we have seen for the string, the quantum anomaly a, @ affecting Lo, Lo arose because of the ordering prescription
that we introduced.

51For instance, see the T'(z) ~ 9XAX and the e?hX(2) ~ >, X™ operators that will appear later in the CFT of the single
boson; the OPEs 8X8X and X (z)X(z) contain singular terms, so T(z) and ¢?*X(2) have to be considered in their normal
ordered version.
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4.8 State-operator correspondence

As always, the first step to buid the Hilbert space of the theory is to define the vacuum state. For a
2—dimensional CFT on S?, we distinguish between the in-vacuum |0) and the out-vacuum (0| respectively,
corresponding to the vacuum at 02 = —oo and at 02 = +oc.

Given that we have already subtracted the infinities that naturally arise in the quantum theory by taking
all fields in their normal ordered form, we require the vacuum to give well-defined states under the action
of the energy-momentum tensor operator.

Regularity of T'(z) =Y., 27" 2L, at 0> = —o0, i.e. at z = 0, implies that

Lo|0)=0 ¥n>-1 , (4.41)
and regularity at 02 = +o0, i.e. at z = co (better, at u = —1/z = 0) imposes
O L,=0 VYn<1 . (4.42)

By looking at these two conditions we understand that the only Virasoro generators that annihilate both
|0) and (0| are L_y, Lo and L;. Obviously, analogous relations hold for the anti-chiral sector and we get
that the vacuum of a 2—dimensional CFT is invariant only under PSL(2,C) x PSL(2,C).

Then, we can associate a state to every quasi—primarﬂ field ®(z, z) by postulating that also the action
of ®(2,2) on the vacuum is regular at 02 = Foo. For a chiral field ¢(z) = 3, ¢z~ """ of conformal
dimension h, this implies

$n|0)=0 VYn>1—h

4.43

where we used the intuitiv definition of the hermitian conjugate for a mode, that is (¢,)" = ¢_,,.
We can now define the in-state and out-state as

610} =61 10) = lim 0(2) [0) = 6(0) [0
<¢out| = <O| ¢h

In these two formulae is encoded the operator-state correspondence: thanks to the conformal map between
the cylinder and the complex plane, we can bring the entire spatial slice 0> = —oco to the point z = 0
and, thus, in the path integraﬂ the information about the state corresponding to a field configuration in
the remote past is represented by a local operator inserted at the origin of the plane. This is a peculiarity
of CFT that doesn’t happen in a general QFT.

(4.44)

4.9 Highest weight states

As usual, we are interested in the transformation properties of the states of our theory. Thanks to the
operator correspondence map, we can focus on the transformation properties of the fields.

With the help of the formulae ([@.35), the OPE between the energy-momentum tensor and a chiral primary
field ¢(w) becomes

(Lo, ¢(2)] = 2™ (20: + (m + Dh)d(2) . [Lm, dn] = (= 1)m —n)dmin (4.45)

These results can be used to determine the action of the Virasoro generators on the primary state

|¢) = ¢(0)[0):

Lo |¢) = h|o)
Lold) =0 ¥n>0 (4.46)
Lo(L—n¢)) = (n+h)(L-pnl|p)) Yn>0 ;

521n order to talk about the values of ¢(z) at both z = 0 and u = 0, we need a globally defined field on the sphere.

53To define the Hilbert space it is not enough to specify its states; also a scalar product is needed. Defining the scalar
product is equivalent to define the hermitian conjugation. It turns out that the right definition for the hermitian conjugation
is @1 (z,2) = 272272 ®(1/%,1/2), see [15] for details. For the modes, this means @In,n = ®_,,_n, as one would intuitively
guess.

54 A clear reference for understanding this is [8].
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therefore we recognize L, and L_, as lowering and raising operator with respect to the eigenstates of
Lg. The states corresponding to the primary fields, namely the states of the theory satisfying , are
called highest weight states. These states are very important, because they are the building block of the
Hilbert space of the 2—dimensional CFT. Indeed, the complete Hilbert space is obtained by acting with
L_, on all highest weight states ¢;, where the j—subscript labels the primary fields. One usually calls
Verma module V},; the subspace of the Hilbert space spanneﬂ by the set of all the states of the form

) = Ly,

o),  ki>0 (4.47)

of conformal weight h = h; + > " k;.
By means of the operator-state correspondence one can define a conformal field associated to a state in
the Verma module V},, and it turns out that it is not primary; instead, the field that creates the state

|¢§"“k’"> from the PSL(2,C) x PSL(2,C) invariant vacuum is called descendant field gzﬁfl“'km (2).

With these concepts we consider our introduction to CFT as concluded. Now we are going to show a
short application of these abstract ideas to bosonic string theory. We have already seen that the gauge-
fixed Poyakov action consists of the matter sector (D free bosonic fields with a second-order Lagrangian)
and of the ghost sector (a couple of anticommuting fields defining a first-order Lagrangian). So, we are
going to focus on the CFT of a single free boson and on the CFT defined by a first-order Lagrangian.

4.10 A single free boson on the sphere

The action of a single free boson on the sphere is

1

2ma

/ d2d20X (2, 2)0X (2,7) (4.48)

which gives immediately the classical equation of motion 00X (z,2) = 0. It is important to check that
this equation holds also at the quantum level as an operator equation inside the path integral, because,
in that case, we can still use the essential decomposition X (z,2) = X(z) + X(z). But we simply have

0= [ DX S =5 [Dlx1T5e = Lioax( ) (4.49)

and the classical equation of motion does hold as an operator equation.
With a similar trick, we can compute

0 :/D[X]%(e*SX(z',y)) -

1 (4.50)
:/D[X]efs(a@xz — -2 S 0.0.X (5 9)X( D))
o
namely
(0,0:X(2,2)X (2, 2)) = —md/ (0P (2 — 2,2 - 7)), (4.51)
which can be integrateﬂ to
/
(X (2,2)X (w, @) = f% log(|z — w?) . (4.53)
Correspondigly, the chiral correlators are
o o o
(X()X(w)) =~ loglz —w) , (X(2)X(w) =~ log(z ) . (4.54)
551t is possible to show that for k; > kg > ... > ky, the states |¢§1'“k’") are linearly independent.
56Remember that ) L
9.= = 8:~ =216 (z,2) (4.52)
z z
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Taking the derivatives of equations (#.54)), we get the 2—point functions for the fields X and X, which
are

o 1

<5X(Z)3X(w)>:*5m . (0X(2)0X (w)) =

o 1

TG (4.55)

The fields 0X, 0X are important, because the energy-momentum tensor can be written in terms of them,
ie.

1 _
T(z)=——:0X(2)0X(2):  T(2) = —:0X(2)0X(2): . (4.56)
Now we can compute the OPE between the energy-momentum tensor and all the fields of our theory. We
discover that
e X and X have dimensions (0,0). In fact

T(2)X(w) =R| ~ ai L X (2)0X (2) : X (w)] =

. %aX(z)a)@(w) o= 0X () ! = (4.57)
:BX(w) N

e the fields X and 9X are primary fields of conformal dimensions (1,0) and (0, 1), because
0X(w) = 90X (w)

G-w? ' (z-w)

T(2)0X (w) = (4.58)

e the descendant fields (n > 1) 9"X and 9" X are fields of conformal dimensions (n,0) and (0,n).
They are not primaries, as it is not difficult to check for 92X, by taking the derivative d,, of (#.58));

e the energy-momentum tensor is indeed quasi-primary of conformal dimension (2, 0):

()T (w) = 1_/ 1)4 + <3T_(32 + 2T_(11‘;) + .. (4.59)

So we have learnt that:

e the fields X and X are the fundamental’|fields in the game: being primaries, they are the fields
from which the Hilbert space of theory can be built. Note that, on the complex plane, these fields
take the following form

« «
8X(Z) =t 5 Z Znil
ner (4.60)
o, of Qp
8X(Z) = 5 Z Fn+l 7
nez
with Qo = 5[0 =14/ %lﬁ and
Qp =1\ — j{ 2"0X (2
2mi (4.61)

\/ 7{00 2mi 0X()

where the last two expressions are valid for all n € Z.

57The fields X and X are not fundamental, because their correlation functions scale in a logaritmic way, see (£.54);
conformal field theories are scale invariant, and this requires correlation functions of conformal fields to behave as power
laws.
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e the central charges for one free integer-moded real boson are ¢ = ¢ = 1.

We conclude this section by saying that there is another very important primary field in this CF'T, which
is given by the (normal ordered, of course) exponential of the X, X fields; here its useful OPEs are:

0X(z): ek X (w) . — —ia—/k ;R X (w) ! + ..
2 Z—w
) "k2 /4 ) 0, ; 4.62
T ‘ kX (w) L= Cki : ik X (w) . w : kX (w) : ( ’ )
(2):e Gy e +(z—w) e +
L1 X(2) 4 gtk X (W) | =y qp)e(kika) | itk X()(1 4 O(z —w)) ;|

and, in particular, from the second line we get that : e?%X(2:2)

(h,h) = (a'k?/4,a'K?/4).

: is a primary field of conformal dimensions

4.11 First-order Lagrangians

In complex coordinates, the b — ¢ ghost action reads as

1 _
S, = o / d?2(b,.0:¢% + bz:0.¢7) | (4.63)
where ¢*(z) is a worldsheet vector so it has h = —1 and, correspondingly, b..(z) has dimension h = 2.

As we have done for the single boson, we can show that the equations of motion are valid as operator
equations; given that the equations of motion impose on the chiral and anti-chiral sectors to be indepen-
dent, it is enough to analyze only one of them. Thus, by following the approach of [7], we decide to study
the chiral part of a theory that is sligthly more general:

S = i/dQZbéc ) (4.64)
2m

where ¢(z) and b(z) have conformal dimensions h = 1 — XA and h = A. The statistics of b and c is
parametrized by e: € = 1 if they are Grassmann odd and € = —1 if they are Grassmann even.

The importance of this first-order lagrangian relies on the fact that for A = 2, ¢ = 1 it describes the
b — ¢ theory of (the conformal ghost system) whereas, for A = 3/2, ¢ = —1 it describes the
“superconformal ghost system®. The latter will appear in the context of the superstring, where we will
have more gauge redundancie to fix and this will lead us to introduce another couple of conjugate fields,
which are bosonic fields with half-integer spin and which form the so-called 5 — v system.

The equations of motion are easily found to be

0b=0 ie. b=0b(2)

_ 4.65
Jde=0 ie. c=c(z) , (4.65)
and the propagator is
1
= ) 4.66
(e(2)b(w) = —— (460)
The basic OPEs are
1 €
= = 4.67
) = o BEe(w) = (467)

where, as usual, the dots denote the presence of regular terms; the b(z)b(w) and ¢(z)c(w) products are
non-singular.
Following (4.17), we decompose the b and c fields into the mode expansions

b(z)= Y. 2" b, o, b=,

n€a—\+7Z (468)
2= Y e di=e

n€a+A+7Z
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where we introduced the constant a for reasons that will become clear in the superstring. Indeed, for
the case of half-integer A, there are two sectors: the Ramond one (R), which is specified by a = 0,
and the Neveu-Schwarz (NS) characterized by a = 1/2. Anyway, the OPEs are equivalent to the
(anti)commutator relations

[Cm7 bn]e = 6m+n,0 . (4'69)

As we explained in (4.43), the modes have to act in the following way on the PSL(2, C) invariant vacuum:

ba]0) =0 ¥n>1- A
|0y =0 Vn>A . (4.70)

The energy-momentum tensor is

T=—X:b0c:+(1—=X):()c:=

:%( : (Bb)c: —:bdc: ) + %6@6(2 be:) (4.11)
where we introduced the quantity
Q=c(1-2)\) (4.72)
which will aquire the meaning of a background charge soon.
From the energy-momentum tensor, we can find the Virasoro generators as in :
Ly=)Y (m—=(1=Xn):by_mem: . (4.73)
The OPEs of the fields in the game with the energy momentum tensor are:
T@%@Q—(S%Z¥ g%ﬁ)+m
T(2)e(w) = (1(2_ ”5530 (2‘7(“2) b (4.74)
TGy - G202, B AW,

and we find that the b, ¢ fields are primaries of the expected dimensions h = A\, h = 1 — X\ and that the
central charge of the system is

c=¢(1-3Q% . (4.75)

Actually, there is another important field in the game, the Noether current j(z) associated to the following
U(1) symmetry of the action (4.64):

c(z) = e%c(2) b(z) = e b(z) a€R. (4.76)
By applying the Noether theorem we find

j(z)=—:0b(2)c(z) : (4.77)

o Q Jj(w) 9j(w)
(z —w)3 + (z — w)? + z—w Tt ' (4.78)
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This means that the number current j(z) is a primary field of conformal dimension ~ = 1 only in the
case of vanishing @), i.e. when b and ¢ have the same conformal dimension h = 1/2.
We can decompose j as usual as

i)=Y, (4.79)
with

jn = Z €. cn*mbm D) []mvjn] = 6m6m+” ’ (480)

m

where the commutation relations come from the OPE

€

J(2)j(w) = Gowp to (4.81)
The other OPEs which involve the number current are
. —b(w) ‘ c(w)
b = = 4.82
JEbw) = 2D ) = 2 (482)

which reflect the fact that b and ¢ have U(1) charges —1 and +1, as we see from (4.76), because the
conserved Noether charge associate to the current j(z) is nothing but N; = fCo %j(z)

To understand the meaning of the quantity @, we begin with rewriting the OPE (4.78]) in the form of
the corresponding commutators

. 1 .
[Lna]m] = 7@”(” + 1)6n+m,0 —Mim+4n (483)

2
and we see that j(z) transforms covariantly under translations (L_;) and under dilatations (Lg), but
not under special conformal transformations (L), i.e. the number current is not a quasi-primary field.
Then, we note that the Hermiticity conditions easily give j! = —j_,, for n # 0. Instead, the case
n = 0 is delicate because of normal ordering ambiguities and, to find jg, we can alternatively exploit the
anomalous commutators :

(o) =(—[L_1,1)T = [LT 1, 3] = [L1,—j1] = —[L1, 1] = (4.84)
=—(Q + Jjo)
The relation jg = —jo — @ has striking consequences on the operator expectation values of the theory.

Indeed, if O, is an operator with U(1) charge p, i.e. [jo, O,] = pO,, and |g) is a state with U(1) charge g,
we find that

p(d'|0,la) =(d'|[jo, Oplla) = (jid'|Opla) — (d'|Opala) =

; , (4.85)
=(—¢ - Q - (' |0,lg) ,
which means that
PHa+d +Q#0= (¢|0p]q) =0 ; (4.86)
we then normalize the states such that
(—¢—Qlg) =1 (4.87)

and this makes the meaning of @ as a background charge apparent. By passing from the classical to
the quantum level, the background charge @) appears because of the normal ordering prescription (which
affects jo). This is the same mechanism that makes the central charge ¢ emerge; we know that the central
charge is an anomaly in the theory (it signals the breaking of the dilatation invariance) and we wonder

58 As always, the conserved quantity is simply given by the integration of the conserved current over the spatial directions
of the theory. In the radial quantization, the spatial slices are given by the circles centered in z = 0.
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whether the background charge @ is also an anomaly. We can already guess that the answer is yes, by
looking at the relation (4.75)). The precise statement is that @ is an anomaly which affects the classical
conservation of the number current, because it is possible to show[’”| that

1
VZj.(2) = 198 (4.88)
where R, as usual, is the Ricci scalar of the worldsheet.

Bosonization of the first order Lagrangian systems The number current is extremely useful not
only because its anomalous nature constrains the theory to satisfy , but also because it lets us
bosonize the system, giving us the opportunity to equivalently describe the latter in terms of a bosonic
conformal field theory. We are going to present the bosonization herﬂ even though it will become useful
only in the context of the superstring; at a first reading, this paragraph can be omitted.
The key idea is that the number current characterized by the OPE ({.81)), namely by

€

J(2)j(w) = EEnrRE (4.89)

is all what we need to define a new energy-momentum tensor T;(z) which satisfies the expected OPE

(#.78) with j, which is

. j(w 07(w
i) = (= + <zj( u>)>2 P (4.90)
In fact, if we define
T(2) = e~ 3G - 5@0-5:()) (4.91)

then it is not difficult to recover and this means that @ still assumes the meaning of a background
charge. Note that in this approach we are considering j as a general field satisfying , in our mind
there is not necessarily the field j given in terms of the b and c fields as in . This is the crux: we
want to find another set of fields that equivalently describe the same CFT as the b and c fields.

If we compute the OPE of the new energy-momentum tensor 7} with itself, we find

(1 - 3eQ?)/2 2T (w) n oT (w) n

T
4 2 z—w

T;(2)Tj(w) = (4.92)

(z —w) (z —w)

and, thus, the new central charge ¢; is now ¢; = (1 — 3eQ?).
If we continue to call ¢ = €(1 — 3Q?) the central charge characterizing the theory of the b, c fields, we
immediately note that

¢ =c;j if ¢e=+1 (Fermi statistics for b, ¢ fields)

4.93
c=c; —2 if e=—1 (Bose statistics for b, c fields) (4.93)

The current j and its stress energy momentum tensor 7; completely characterize the Fermi theory,
because, in this case, we have ¢ = ¢; and, so, we can identify 7" and T}.
Instead, in the case of Bose statistics, there is a “residual” central charge c_5 given by

C.o=c—cj=-2 ;

it is natural to think about it as the effect of a third energy-momentum tensor 7_5 which commutes with
j and T; and which satisfies

T=T;+T . (4.94)

59See |17].
60We are going to closely follow the approach of [7], where the usufulness of the bosonization of the b, c system was
discussed for the first time.
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By looking at formula , we see that we can take 75 to be the energy-momentum tensor associated
to an auxiliary linear Fermi system with A_o = 1 and Q_o = —1, consisting of a field n(z) of conformal
dimension h = 1 and of a field £(z) of conformal dimension h = 0. In other words, to bosonize the b, ¢
system, only the field j is needeed in the case of Fermi statistics, but we have to add the fields 7, £ in the
case b, ¢ were commuting fields.

In any case, to bosonize the b, ¢ system, we recognize that if we impose

() = €0.6(2)
(9(2)p(w)) ~ elog(z —w)
namely if we impose for j to be the conserved current associated to the translation invariance of a free

boson ¢, then we do recover (4.89)). This suggests that we should be able to express the b, ¢ CFT in terms
of the CFT of a single boson ¢°!| The action that describes the bosonized current (4.95) is

(4.95)

Sy = —i / 2vh (682¢58g¢) + %QRQ&) , (4.96)

where we added also the term with @ in order to reproduce the anomalous behaviour of j = €0, ¢; indeed,
formula (4.88) is recovered simply by the equation of motion of the action Sg.

The last step needed to complete the bosonization of the b, ¢ system is to find, within the theory deter-
mined by this new action, primary fields that can correspond to the old b, ¢ fields.

We see that the primary field : e9?(*) : satisfies

L e1#(2.2) 1 gh2d(wD) L — (5 gyyelkike)  p(hitka)d(wD) (1 L Oz —w)) @ (4.97)

and, so, in the case of Fermi statistics for b, ¢, namely for ¢ = 1, we get

1
zZ—w

. - 1
ce?(22) L d(ww) L

. e¢(275) - e—¢(w,@) .

~ c(z)b(w)
(4.98)

~b(w)e(z)

w—z
which are precisely the OPE of (4.67)). Thus, for the anticommuting b, c fields we guess the correspondence
c(z) «—: e?) b(z) e )

In the case of commuting b, ¢ fields, this guess is clearly wrong, because the OPE among : e?(*%) : and
: e~?(w®) : has odd powers of (z — w), meaning that these fields behave as Grassmann odd fields; to
cook up commuting b, ¢ fields, the fields e¥¢(*) have to be combined with other fermionic fields. We guess
that the fermionic fields needed are precisely those coming from the T_5’s theory, namely 7(z) and £(z).
Indeed, from

o(z) +—: e??) 1 (2) b(z) «—:e %) 1 0g(2)

we recover the OPEs of in the case of Bose statistics (e = —1).

In order to have a proper identification among conformal fields, it is not enough to recover the right OPEs
among fields; one has also to check that their conformal properties do match.

The conformal dimensions and the charge of : €9%(?) : are determined by

T(z) s cootw) , = UAH Q2 o), LOwiet? s
(z —w)? zZ—w (4.99)
§(z) et = 4 o)y
z—w

and the charges of the n, £ fields are clearly vanishing, because they do not depend on the field ¢. With
this information it is not difficult to check that our guesses (both of them, for both statistics) identify
the b, ¢ fields with conformal fields of the same conformal dimension and charge.

To sum up:

61This guess turns out to be completely true only in case b, c are anti-commuting. See later.
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1. in case of Fermi statistics (¢ = 1), the fields b, ¢ themselves can be bosonized simply as the ex-
ponential of ¢(z) where the bosonic field ¢(z,2) = ¢(z) + ¢(Z) is described by the action (4.96)),

namely
b(z) =: e~ . = %(2) .
(2) =t e L elz) =i (100)
¢(2)p(w) ~log(z —w) ;
2. in case of Bose statistics (¢ = —1), the “bosonization” of the b, ¢ fields needs also the introduction

of T_5 - namely the introduction of the n and £ fields - in the system and we have

b(z) = e %) 96(z) ,  c(z) = e i n(z)
P(2)p(w) ~ —log(z —w) ; (4.101)
M) ~ EEnw) ~ ——

—w

4.12 The critical dimension from the CFT perspective

The starting point of string theory is the Polyakov action Spo,[X*, hag], which enjoys both local Weyl
and diffeomorphism invariance on the worldsheet. The Faddeev-Popov procedure allows us to gauge fix
the theory; in particular, we can do it locally so as to obtain a CFT on each patch.

The gauge fixed action consists of D copies of the free-boson-CFT (one for each X*#) and of the b, c—ghost
CFT; these theories don’t talk with each other, so their central charges sum together and we get that the
total central charge c'°* of the system is given by

ot = C(D free bosons) + C(be) = Dc(l free boson) + 6(1 - 3Q2) =D-26 |, (4-102)

where we used the fact that the bc—ghost system is a first-order Lagrangian system characterized by
e=1,A=2(so Q=-3).

From the perspective of the conformal field theory defined on each patch, a non-vanishing central charge
is not a problem, given that the conformal transformations are here seen as global symmetries. From
the perspective of the Polyakov action, a non-vanishing central charge really is a big problem, because it
means that the Weyl invariance is anomalous. Indeed, from the relation

ctot

4.103
TR ( )

<T22> = -

we see that, if ¢*°* # 0, then we are able to distinguish which gauge choice has been selected for fixing the
Weyl invariance, because the Ricci scalar of the worldsheet does transform under a general Weyl trans-
formation. For ¢'* # 0 we have an observable (the expectation value of the energy-momentum tensor)
that depends on which conformal gauge choice we used and our quantum theory is not Weyl invariant.
This is not acceptable, because Weyl transformations are not symmetries, but gauge redundancies of the
theory; so, if we want to obtain a quantum theory that has the same degrees as freedom of the classical
one, gauge transformations cannot be anomalous. This leads us to impose the vanishing of the central
charge

ot =D-26=0 |, (4.104)

and we then recover that the quantum bosonic string defines a consistent theory only if it is moving in a
26—dimensional spacetime.

Here we can appreciate the importance of the presence of the b, c—ghost system because it is the latter
that precisely fixes the central charge of the matter sector. On the other hand, the presence of fields
with the wrong spin-statistics (like b and ¢, which are anticommuting fields with integer spin) raises the
question of the physical state condition. But from the path integral quantization of gauge theories in
QFT, we already know how to deal with this problem: the physical state condition is implemented by
analyzing the BRST symmetry of the system.
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4.13 BRST quantization

Here we are going to briefly introduce the basics about the BRST quantization in the Polyakov string.
By following the approach of [I7] we want to give the reader an operative introduction to the BRST
quantization; for further details, [I1] is a good reference.

We observe that, after fixing the flat gauge by means of the Faddeev Popov method, the gauge fixed
action Sy
1 2 9 15 /79
— |4 z(aX X + o'bde + a bac) (4.105)

2ma’

St = Spoiy[ X", hag; To] + Sy =

enjoys a global, fermionic, residual symmetry. Let € be a constant Grassmann odd parameter; then this
symmetry is generated by the transformation (let’s focus on the chiral part, the antichiral one is analogue)

(
0. XH(2) = ie0XH (2)c(z)
dcc(z) = iec(z)0c(z) (4.106)
deb(z) = ieT™ ()

where we denoted with T%°* the total energy-momentum tensor, 7% = T 4+ T, This transformation is
called BRST symmetry; its associated Noether charge is called BRST charge @ p, so we can also rewrite

as
6. X" (2) = €[@p, 0X"(2)]
650(2:) — €{QB,C(Z)} (4107)
0cb(z) = @B, b(2)}

One can compute the Noether current jp associated to the BRST symmetry to find that
1 ..
jB(z) =: c(2) [TX(Z) + 2Tb°(z)] : (4.108)

and this means that the Qp satisfying ([.107) is given by (here 7% = TX + T?°)
dz

Qp = f 5 c(?) [Ttot(z) £ 9(c(2)b(2)) ;} -

7( 42 ) {TX(Z) + ;Tbc(z)} .-

= fCm (LWXT + 1Li’,f) :
2 (4.109)

from which we can see that

QL =Qs - (4.110)
Another important feature of the BRST charge is that it must be nilpotent, i.e. it has to satisfy
Q=0 . (4.111)

But, in the quantum theory, the evaluation of Q% = %{Q B,Q@p} is complicated by the normal ordering

and one would find
—+o0

Oh=3(QmQs} =5 > (LI — (m—m)LE e men (4.112)

m,n=—o0
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which implies that Q% = 0 if and only if the total anomaly of the matter-plus-ghost system vanishes
(compare with ) In other words, consistency of the BRST symmetry is equivalent to the
abscence of the total Weyl anomaly and, so, to the critical dimension condition.

Actually, now we can gain another interpretation of the reason why we need the critical dimension in
string theory. As always, we can add a total derivative to the Noether current of a symmetry without
affecting the (physical) value of the associated charge. To the definition of jg, we add, by hand,
the total derivative %820 to obtai

iB(z) = c(z) |:TX(Z) + %Tbc(z) : +2620(z) ; (4.113)

with this definition, the OPE of the BRST-current with the total energy-momentum tensor of the system
is

ctot/24 () jp(w) +6j5(w)

TN (2)in(w) = (z —w) (z—w)?2  z-—w

+.o (4.114)
from which we can see that jp is a tensor if and only if the critical dimension condition D = 26 is
satisfied. But we must require for jg to be a tensor under conformal transformations, because the latter
are the transition functions from one patch to the other one. In fact, if jp didn’t transform well under
such transformations, it would imply that the definition of Qg depends on the patch and, with it, also
the meaning of the physical state condition defined by Qp! Said another way: if Qg defines the notion of
physical state and if we want for this notion not to depend on the local features of the worldsheet, then
we have to impose the vanishing of the total central charge of the system.

The reason why the BRST symmetry can be used to define the notion of physical state is implicit in the
definition of the BRST transformation: it is a remnant of the local gauge symmetrﬂ Physical states
must be gauge invariant, so it is natural to ask for them to be also @p invariant. Then, a necessary
condition for a state to be physical is

@p |phys) =0 (4.115)

namely it has to be Q-closed.

Classically, the Virasoro constraints (L:X = 0) have to be imposed by hand as the equation of motion of
the worldsheet’s metric h,g; in the modern approach to quantization, locally we fix the gauge by fixing
the metric and the remnant of the gauge symmetry gives at the quantum level the constraint ,
which has to be thought of as the gauge-fixed analogue of the Virasoro constraints.

Obviously, if a state automatically satisfies (4.115), then it cannot be physical, because, in that case,
formula (4.115)) wouldn’t impose any constraints. Because of the nilpotency of @, there exist a lot of
states which trivially satisfy ({.115); they are given by

[xX) = Q5B |v¥) for |¢) arbitrary (4.116)

and they are called null states, because they are orthogonal to all physical states and to themselve@
indeed

(phys|x) =(phys|Qp|v¥) = (QLphys|) = (Qpphys|y) = 0
1) 112 = (xIx) =(01Q%[v) =0

This means that we can add a null state to a physical state |phys), without changing the (physical) values
of (phys’|phys). In other words, to define the Hilbert space containing the physical states of our theory,

(4.117)

62The formula (.108)) defines jp only up to a total derivative which must be of dimension one and ghost number one.
The most general form is then

iB(z) = c(z) TX(z)—l—%Tbc(z) D +k0%c(z)

and requiring jp to be a conformal field of conformal dimension h = 1 we get k = 3/2. One can show that the total derivative
that we have just added has no effect on flat correlation functions, but it ensures the conservation of the BRST-current on
curved worldsheets. So, jp(z) has to be defined as in ([{.I13).

63 As it can be understood by looking at : the BRST transformation of X* is just the conformal transformation
with (real bosonic) parameter iec.

64In particular, they are zero norm states.
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we have to divide the set of the Q-closed states by the set of the null states - which are also called, for
reasons that are apparent in (4.116)), Q-ezact states. We denote this Hilbert space as Hp:

__ closed states

Hp = (4.118)

exact states
The physical states of the theory are given by the equivalence classes just defined; one can show (see [11])
that every non-trivial equivalence class has a representative which essentially is given by a highest weight
state of the Virasoro algebra with L eigenvalue +1, so we recover the correct constraints defining the
Hilbert space of the old covariant approach to quantization. To be more precise, every equivalence class
has a representative |V) of the form

V) = ¢(0)0) x ® c1]0), = ¢(0) 0) x ® ¢(0) [0),, = |¢) @ [c) (4.119)

where |0) y and |0),. are respectively the PSL(2,C) invariant vacua of the matter and of the ghost CFTs
and |¢) is a highest weight state of the Virasoro algebra of the matter sector with L eigenvalue +1 (or
eigenvalue 0, in the only case |¢) = |0) y). By requiring the state of the form ({4.119) to be @ p invariant,
we find that

“+o0
0=QsV)=Qs(|¢)®c110),,) = Z cn(Lpy = 6n0)(l0) ®c110),.) (4.120)
n=0

where the term —§,, ¢ arises because of the ¢ ghost appearing in : in the language of the BRST
quantization, the normal ordering constant a for Lg is fixed to be a = —1 by the presence of the ghost ¢
in (L119).

Formula suggests to take, as the vacuum for the ghost sector, the state |c) instead of |0),.; to
understand the reason why this is the case, we have to turn back to the definition of the PSL(2,C)
vacuum of the ghost CFT.

As explained in ([£43), the PSL(2,C) vacuum |0),, is defined by

b, [0),, =0 forn > —1

(4.121)
cn|0)y, =0 forn >2

This means that |0),., although a highest weight state of the Virasoro algebra, is not a highest weight
state for the b, c algebra, i.e. it is not annihilated by all the negative frequency modes of b and c since

c(0) [0y =c1 [0y, # 0

(4.122)
¢(0)9¢(0) [0}, =c1¢0 [0}, # O
These two states are degenerate with respect to the ghost energy
+oo
LSC — Z m(bfmcm + c,mbm) -1 (4.123)
m>1

and later we will see that there are no other states with the same energy of these two. It is not |0),. the
lowest energy state of the Hilbert space of b — ¢’s CFT; the two states of are the lowest energy
states, because they are such that only positive frequency states propagate forward in time (outward
from the origin):

bply) =0 forn>1

(4.124)
enpy=0 forn>1 |

where here we denoted with [i)) anyone of the states (4.122)). In other words, it is only with respect to
the state |¢)) that we recover the interpretation of annihilation operators for the b,,’s and ¢,’s with n > 0
and, thus, the ground state of the ghost sector is |¢)). For ) = |c) we have

by |c) = bp(c10),.) =0 forn >0

4.125
cnle) =cn(c1|0),.) =0 forn>1 , ( )
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whereas, for |¢) = |cdc) we get

by |cOc) = by (ci1c90),.) =0 forn>1

4.126
e |coc) = cp(c1co]0),,) =0 forn>0 ( )

and we notice that we can distinguish the states |c¢) and |cOc) by looking at the zero modes of the b and
c fields: the first one is annihilated by by and the second one by cg.

This is nothing strange. The zero modes by and ¢y don’t appear in the expression and so they
commute with the Hamiltonian of the b — ¢ ghost system. This means that the algebra

be=0 c2=0 {bo,co} =1 (4.127)

can be used to define degenerate states for every energy level of the b — ¢ CFT. Indeed, it is not difficult
so show that we cannot represent this algebra with only one state, and we need at least two of them. Let
[1) and |[{) be the states defining the representation of the by — co algebra, i.e.

oty =alt) , byll)=Bll) forsomea,feC ;

because of the first two relations of (4.127), we get o = 8 = 0 and we have to check whether the third
relation of (4.127) is consistent or not with these conditions. With {bg, ¢} = 1 we immediately find that
{14) = |1) =0. But if the algebra is represented with only one state, namely if ||) = |1), then

1) = I1) = (cobo + boco) [4) =0 (4.128)

and thus with only one state it is not possible to implement the by — cg algebra ({4.127).
Instead, if ||) # |1), then we obtain

=0, bll)=0

4.129
b=~ , cldy=4d1) fory,6eC |, ( )

where the equations of the last line come from the relations b3 = ¢ = 0. Now we can apply the third
property of (4.127) and we simply obtain that v§ = 1, because

[}) = (boco + cobo) [4) = boco [4) = vd [4)

For example, we can choose

1) = coct 0}, = — [cOc)
) =cil0) =)
and the algebra (4.129) is satisfied with v = § = 1. We are left with the possibility of rescaling both

coc1 |0),,. and ¢; |0),, with the same constant, but we can fix this freedom by normalizing the non-vanishing
value of (1] ]) to be 1 and we will always work with

(4.130)

(1) = Ol corcoer [0) =1 (4.131)

We have thus found that the algebra of the zero modes of the b, ¢ ghost system is responsible for the
double degeneracy of each energy level of the system. In particular, the ground state of the b,¢ CFT can
be described both with [1) = — |cdc¢) and with ||) = |c).

Instead, when the b — ¢ CFT is thought of as part of string theory, this degeneracy of states doesn’t
survive because there is the @ p charge in the game. If we require the ground state of the string

0ot = 10)x @[¢) ) €{le),|cde)}

to be BRST-closed, we should find the right Virasoro constraints; as we saw in (4.120)), this can be done
for |¢p) = |c). Instead, for 1) = |cdc), we wouldn’t find the Virasoro constraints; indeed, by looking at
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the BRST transformations of the various fields:

(@B, X*(2)] = c(2)0X"(2)
Qp, T (2)] = 1—12( —26)0%c(2)
{Qp,c(2)} = c¢(2)0c(2) (4.132)
{QB,b(2)} = T""(2)
[QBv (Z)] = _]B( )

we can see that T jp and cOc are BRST-exact operators. In particular, this means that |cdc) is a
null state and, thus, it cannot be the representative state defining the equivalence class of a non-trivial
physical state: requiring for it to be BRST-closed wouldn’t give us any physical information.

The upshot is that the physical states of the closed bosonic string theory are defined - up to BRST-
exact states - by the conditions

Q@ B |phys) =0
by, [phys) =0 for n >0
b, [phys) =0 for n >0 (4.133)
¢p |phys) =0 forn >1
Cn |phys) =0  formn >1

We saw that these requirements give the right Virasoro constraints on the matter sectors; we now note
that they also give the level matching condition. In fact, {Qp,b(z)} = T*!(z) is equivalent to

{Qp,by} =L forneZ (4.134)

and this implies that

(L — L) Iphys) = (Lg” — L§") [phys) = {Qp,bo — bo} [phys) =0, (4.135)

because of the relations (4.133)). We like to mention that the Hilbert space defined by (#.133) and ({.118)
doesn’t contain the unphysical oscillators of X* and the unphysical b, c oscillations. Essentially, the
condition of @ p invariance removes one set of unphysical X*# oscillators and one set of ghost oscillators,
whereas the equivalence relation removes the other set of unphysical X* oscillators and the other set of
ghost oscillators; for more details, we refer to [I1], where it is also shown that the Hilbert space defined
by contains only positive norm states and that the conditions allow us to immediately
recover the spectrum of the string that we have already studied in the light-cone quantization. Hence the
equivalence of the Hilbert space given by the BRST quantization to that one coming from the canonical
quantization.

4.14 Vertex operators

The operators V(z, Z) that create the states ) from the PSL(2,C) vacuum |0),,, = [0) y ® |0),.
the theory can be always chosen, modulo a BRST exact operator, to be of the form (see (4.119))

V(z,2) = c(2)e(2)d(2, 2) (4.136)

where ¢(z, %) is a primary operator of the matter CFT of conformal dimension h = h = 1 that is called
a vertex operator; the operator V(z, z) has vanishing conformal dimensions and it is called a fized vertex
operator.

An important example of a vertex operator is the primary field : e
create the state

ik-X(2,7) . which acts on the vacuum to

/

k) = lim ™ XED o) h=h = O‘ZkQ . (4.137)
Z,Z—



In order for it to be a vertex operator, we have to impose h = h = 1 and this gives the mass-shell
condition for the lowest-lying state (the tachyon). This is nothing strange, because we saw in that
the vacuum for the oscillations of the string has to be tensored with the eigenvector |p*) of the momentum
operator of the centre of mass, and we can show that the above defined |k) is precisely the momentum
eigenstate with momentum k* of the centre of mass operator:

a," Z Z,Z
\/ 517” |k) :O‘O k) = 111200‘0 et X2 0)x =

= lim [af e ¥ED:T]0) =

= lim, [7{ %W (w) : HFE2 2 [0y = (4.138)
i 1 4 ,
1 4 1. . ik X(2,2) . _
z,lggo\/>17{ 27m ok w—z) ¢ H0)x
o
=/ =k" |k
VER

where we used formula and the OPE appearing in the first line of ({.62). Thus, if we want to
describe a string (its quantum vacuum) propagating with momentum p*, we have to insert : etk X(2.2)
at the origin z = Z = 0 of the complex plane, with k* = p#.

If we want to describe also the quantum excitations of the string, : : alone is not enough. For
instance, the states of the first level are created with momentum £* and polarization tensor §,, by the
following vertex operator:

k€)= lim & IXH(2)dX" (2)e* X =2 0y . (4.139)

eik:‘X(z,Z)

One can easily compute the OPE of this operator with the energy-momentum tensor of the matter sector
to find that it is primary if and only if £#¢,, = 0, and so we have just recovered the transversality
constraint of momentum and polarization for massless particles. The masslessness condition arises by
demanding the conformal dimensions h = h = 1 + %kQ of this vertex operator to be 1.

The reader should notice again that in the discussion of these two examples, all the physical information
(e.g. the transversality constraint and the on-shellness condition) come from the fact that we have to
require the vertex operator ¢ of formula to be a primary operator of dimensions h = h = 1; we
didn’t need to work with the ghost insertions c¢ and, thus, we wonder whether it is possible to rewrite the
operator defining the physical state without involving them. As we have already mentioned, a physical
state must be gauge invariant so the corresponding operator must have vanishing conformal dimensions.
Obviously, this is the case for V, because the cé contribution has conformal dimensions h = h = —1 and if
we want to remove the latter, we have to replace it with an object of the same conformal dimensions. But
this object cannot be a conformal operator of the matter sector, because the X-theory is a unitary CFT
(it consists of operators of non negative conformal dimensions); thus, the only object that can replace
the ghosts cc is the measure dzdz and we end up with

V= / dzdzg(z,2z) (4.140)
b
which is the gauge fixed version of the integrated vertex operator:
V= / Vh2dotdo? (o, o) . (4.141)
b

One of the advantages of rewriting the vertex operators in their integrated form is that we can immediately
see that the vertex operator ¢(z, z) is defined up to total derivatives:

d(z,2) ~ ¢(z,2) +dd'(2,2) (4.142)

where ¢'(z, ) is another operator.
Obviously, this is due to the fact that the state |V) of formula (4.119) is only a representative of its
equivalence class

V)~ V) +Qs V) . (4.143)
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By looking at formulae and , we can appreciate the close similarity between our BRST-charge
and the differential d, seen as cohomological operators.

Given that derivatives of fields are examples of descendant fields, we guess that defining physical states up
to BRST-exact states is translated, by the operator-state correspondence, into the following equivalence
relation of operators

#(2,2) ~ ¢(z, Z) + descendant fields , ¢(z,2) primary field of h =h =1

For further details, we refer to [I7]; adding a @) exact state to a physical one doesn’t change the ampli-
tudes involving the latter and, correspondingly, we can show that descendant fields don’t contribute to
the amplitudes.

We like to conclude this section by stressing the fact that the fundamental version of the vertex
operator is the fixed one, because it derives from the state-operator correspondence. Indeed, the c¢
insertions appearing in cannot be neglected because they give the right information about the
ghost charge of the vacuum, which has to be taken into account, if we want to obtain non-vanishing
amplitudes. For example, the presence of ¢¢ has led us to formula ([£.131), from which we can read off
that the physical vacuum of closed string theory at the tree level has ghost charge 6:

(0°*e_qcoerc—1coe1 [0°F) #0 . (4.144)

In the next chapter, we will see the geometric interpretation of this result and we will see in which sense
the integrated version of the vertex operator is useful.
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5 Global aspects

The Faddeev-Popov gauge fixing procedure presented in chapter [3] didn’t take into account the compli-
cations due to the global aspects of the worldsheet. There are gauge transformations (those ones which
belong to the CKG) that are not fixed by the choice of the metric and there are metrics that are not
gauge (i.e. conformally) equivalent to one another (because there are the moduli in the game, parameters
that specify the complex structure of the worldsheet).

Later on, we will be interested in calculating an amplitude at one loop, so now we are going to introduce
the concept of the moduli parameters by focusing our attention to the case of the toroidal worldsheet ¥ .

The main references used for this chapter are [I1, [6] [18].

5.1 The moduli space of the torus

As a topological space, the torus is constructed by introducing the following equivalence relations in the
z—complex plane (z = o! +io?):

z Zz+ 27

z Zz 4 21T,

(5.1)

so that one can think of the torus as the cylinder of circumference 27 and length 2775 with the ends
rotated by an angle of 277 and then sewn together. The region inside the parallelogram of Figure [I0]
is called fundamental domain of the torus and the complex number 7 = 7 + iTo is called Teichmiiller
parameter.

By means of this construction, it is clear that one can always turn this topolological space into a flat Rie-

1z

2nT 2 (T +1)

Figure 10
A fundamental region for the torus parametrized by z.

mannian manifold, because the flat Euclidean metric defined on the z—complex plane naturally induces
the flat metric on the quotient space defined by the relations , the latter becoming the transition
functions on the overlap regions. It is common, in the physics literature (see [II] for example), to cover
the torus only with a single coordinate patch which is a little larger than the fundamental region; then,
the periodicity conditions are precisely the transition functions on the overlap between the opposite
edges of the patch. Clearly, such a patch cannot be a chart in the mathematical sense of the word,
because it is not injective; the torus is a compact topological space, it cannot be covered with only one
chart. For the moment@ the important thing is that the transition functions of the torus are nothing
but translations, as in : the latter are isometries of the flat Euclidean metric, so it is really possible
to equip the torus with the flat Euclidean metric.

65 At the end of this chapter, the torus will be covered with two coordinate patches (z and u): they will be two cylinders
with transition functions corresponding to the periodicity condition in the second line of {5.1)), namely z = v and z & u+27.
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In the previous chapters, we showed that it is always possible - locally - to bring the metric of the
worldsheet into the flat form by means of the combined action of diffeomorphisms and Weyl transforma-
tions. Now we have just seen that, on the torus, this can be achieved globally...but we have to be careful,
here. To be more precise, we have just shown that it is always possible to globally reach the flat metric
on a torus of a given Teichmiiller parameter 7 (equivalently, on a given torus defined by the periodicity
conditions/transition functions (5.1)). But, in the path integral approach to quantization, we have to
sum over all the possible metrics that we can introduce on the same Worldshee@ Then it is intuitive
that, in order to perform the path integral over the metrics of the torus, we have to find a way to remove
the 7 dependence of the periodicity conditions , S0 as to obtain similar transition functions for all
the tori. This can be easily done by defining a new coordinate 2z’ by

z=Rez +7Imz" (5.2)

so that the periodicity conditions now read as

2 =22 + o

!

5.3
2 =22+ 2mi (5:3)

Please note that, with this choice of coordinates, the flat metric ds? = dzdz becomes T—dependent,
namely

ds* = dzdz = |[dRe 2 +7dIm 2'|* . (5.4)

This is very interesting. We can say that, by means of the combined action of Weyl and diffeomorphism
transformations, we can always reach one of the following two equivalent descriptions of the globally flat
torus.

e One can work with the metric ds?> = dzdZ and hide the 7—dependence in the transition func-
tions/periodicity conditions. The prize that we have to pay if we want to work with the simple
ds? = dzdz is to admit that we are working with a family of tori whose fundamental regions are
parametrized by 7. We can assume 75 > 0, because in we can take 7 and —7 without changing
the toruﬂ The upper complex plane Im 7 > 0 is called Teichmiiller space and it represents the
family of our tori.

e One can fix the fundamental region of the torus to [0,27] x [0, 27i] (as illustrated in Figure [T1]) and
work with a 7—dependent metric ds® = |dRe 2’ + 7dIm 2'|?.

Ed

2mi 2m(i+1)

2m

Figure 11
A fundamental region for the torus parametrized by z’.

In the path integral approach it is convenient to adopt the second description, according to which the
integration over the metrics should reduce - after locally fixing the flat metric (5.4) - to two ordinary

66S00n it will be clear in which sense two worldsheets can be considered equivalent.
670ne can also see from (5.4)) that 7 and 7 define the same metric.
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integrals, over the real and imaginary part (73 and 72) of the Teichmiiller parameter. On the other hand,
we will exploit the other description to understand over which integration domain we have to integrate
71 and 75 and now we explain how we are able to get this information.

To perform the integration over the metrics, we would like to identify a gauge slice on the space G, of all
the possible metrics on a given worldsheet of genus g, namely a choice of one configuration from each set of
(diffeomorphism x Weyl)-inequivalent metrics (see Figure. Clearly, as first step, we have to understand

99

gauge slice

gauge orbits

Figure 12
A schematic representation of the space of all the possible metrics of 3.
You can move along the gauge orbits by performing a diffx Weyl transformation.
You can move along the gauge slice by changing the moduli of the metric.

when two metrics on the same worldsheets can be considered (diffeomorphismx Weyl)-inequivalent. As
we know, from a local point of view, this question is trivial. From a global perspective, instead, it is
difficult to answer. Fortunately, we can resort to a very natural 1 : 1 correspondence between a Riemann
surface (namely a complex manifolds of real dimension 2) and Riemannian manifolds of the same (real)
dimension defined up to (diffeomorphismxWeyl) transformations. Of course, a Riemannian manifold is
already defined up to diffeomorphisms, so we reformulate the correspondence as

Riemannian manifolds mod Weyl <% Riemann surfaces |, (5.5)

where we left as understood that the Weyl transformations over the Riemannian manifold are globally
defined and that both the Riemannian manifold and the Riemann surface are oriented 2—real dimensional
manifolds.

Proof. Let’s start with a (2—dimensional, real and oriented) Riemannian manifold (M, ds?) and
let’s suppose for it to be covered with N coordinate patches. From our discussion of conformal
gauge, we know that we can find in each coordinate patch a coordinate z,, (m € {1,...,N}) such
that ds®> oc dz,dZ,,. In the overlapping region between the m®* and n'* patches, we then have
dzmdZzZ, « dz,dz, and the transition function must be holomorphic or antiholomorphic. But an
antiholomorphic transition function would change the orientation of the manifold and this is not
possible, because the latter is, by hypothesis, oriented. Now we could perform a Weyl transformation
on ds?: given that the Weyl rescaling doesn’t touch the coordinates, we would recover the same set
of holomorphic transition functions and thus the same Riemann surface.

Let’s start with a 2—real dimensional, oriented complex manifold M and let’s suppose for it to
be covered with IV coordinate patches. The transition functions are, by definition of a complex
manifold, holomorphc functions on the overlapping regions of neighbourhood patcheﬂ To turn

68 A complex manifold is defined by functions which must be holomorphic on the overlapping regions, not necessarily
everywhere. Take, for example, the Riemann sphere S2. It can be covered with the u and z patches that we have already
mentioned and the transition function can be taken to be u = —1/z. Naively, one would say that this is not a holomorphic
function, because it consists of a negative power of the coordinate z. But we have to remember that this transition function
is defined only in the intersection of the z and w patches, which is the sphere without the South pole z = co and the North
pole z = 05 in this region it is indeed holomorphic, because 9z(1/z) = 0.
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M into a Riemannian manifold, we have to introduce a metric on it. But we can always define the
flat metric dz,,dZz,, on each patch and then, to obtain a globally defined and continuous metric, we
can use the partition of unity. If we call ds? the metric that we have just built, we have to show
that both (M, ds) and (M, e2/ds) come from the same complex manifold M. But this is clear, since
a Weyl transformation doesn’t touch the transition functions among patches. O

We want to persuade the reader about the identification , by sketching another proof, which
is more intuitive; on the other hand, it requires a little of familiarity with the notion of complex
manifold, so we will be more sloppyﬂ In the two dimensional case, saying that a manifold has
holomorphic transition functions is equivalent to say that it can be equipped with a complex struc-
ture J, namely with a (1,1)-tensor that squares to the identity I and that, in particular, can be
locally though@ of as a “rotation of 90°” on each tangent space of the manifold, in the precise
sense that it acts on the tangent space basis vectors 0,1 and J,2 according to

0 0
() e
ol O
0 0
()=
0o dol
These equations imply that, up to a constant, one can write Jg ~ \/Eﬁygha’y, where we have
introduced the square root of the determinant of the metric in order to transform the e—object into

a tensor and we have then raised one index so as to obtain a tensor that maps vectors into vectors.
The constant is fixed by the J? = —I condition and we get

J§ = Vhh e . (5.7)

We immediately note that the complex structure is automatically Weyl-invariant (in two dimen-
sions), so we are essentially done, the rest of the proof being obvious.

(5.6)

Now that we have the identification at our disposal, we immediately understand that, for our
purpose, two tori have to be considered the same if and only if they are the same complex manifold,
namely if they are biholomorphic. We could tackle this problem in a rigorous mathematical way and we
would discover that two Teichmiiller parameters 7 and 7 define biholomorphic tori if and only if they are
related by a PSL(2;C) transformation, namely by the transformation

ar +b
_ 5.8
T ct+d (5:8)

for some integer numbers a, b, ¢, d € Z such that ad — bc = 1. In fact, if we start with the torus defined
by formulae (5.4) and (5.3)), that is with the torus
z

/ :0_/1 T Z-O_IZ
2 =2 + 2
2 =22+ 2mi

ds® =|dRe 2 4+ 7dIm 2'|* = |do"* + 7do?|*

(2)-(24)(2)

(5.9)

then we can define the coordinates

and we will obtain the torus

(5.11)

ds* =|dRe 2 + #dIm 2|> = |6* + 7627 |

69We refer to [I9] for all the mathematical details regarding complex manifolds.

70We like to depict the complex structure as a “rotation of 90°” because in this way it is more natural to think about
a similarity between the notions of complex structure and metric. But it should be clear that a complex manifold doesn’t
need a metric to be defined, so it makes no sense to talk about length and angles.
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which is clearly the same complex torus, only written in different coordinates.

The transformation is a large coordinate transformation, namely a diffeomorphism of the torus
that cannot be obtalned from the 1dent1ty by successive 1nﬁn1tes1mal transformations; indeed, the curve
A in the coordinates 2’ (see Figure maps to a curve in the 2 coordinate that runs a times in the A
direction and —c times in the B dlrectlon in order to turn the torus characterized by 7 into the torus
defined by 7, we have to cut the torus to a cylinder, to properly twist it and to sew together again its
ends. These large coordinate transformations are called modular group and they are generated by the
repeated application of the following two transformations:

T: 7—714+1 S: -1/ . (5.12)

In order not to overcount the same complex structure, in the path integral we must integrate 7 over
the moduli space of the torus, which is the Teichmiiller space mod the action of the modular group
PSL(2,C). We usually represent the moduli space as a particular subset of the Teichmiiller space, the
so-called fundamental region of the moduli space. For example, in Figure [I3] we depict two possible choice
(Fo and F}) for the fundamental region, where the lines I and I’ are identified, as the arcs IT and IT’
(or the arcs IIT and I1I') are. In this thesis, we like to work with the fundamental region Fy, and this
means that the integral over the metrics of the torus will reduce, after locally fixing the gauge, to an
integral over the 7 in the region

EES! (5.13)

)

1
—igReTS

N |

which has to be thought of as open only at Im7 — 400, because it is rolled up according to the
identification I-I’ and II-II'.

” T

Fy

11 i Il

Fy

1

b | =

Figure 13
The regions Fy and F; are two possible representations of the moduli space of the torus.
In this thesis we will always use Fj, whose unique boundary is at 7 = 4o00.

5.2 Moduli and conformal killing vectors

After discussing the concrete example for the torus, we want to discuss the appearence of the moduli
space of the worldsheet in scattering amplitudes from a more general and abstract way, which requires a
mathematical language that will be useful in the next section.

The path integral wants us to sum over the space G, of all the possible metrics which can be introduced
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on the worldsheet of genus g. After taking into account the diff x Weyl redundancie, we are left with the
moduli space M,

Yy

Mo = T Woyl

(5.14)
where we have to be careful and remember that in the game there are both global and infinitesimal diffeo-
morphisms. Indeed, as we have seen for the torus, the redundancy group consisting of diffeomorphisms
in general is not connected and we will refer to its connected component containing the identity as diffy.
Then, the modular group MG is nothing but the quotient

diff
MG = diff,

(5.15)

and we can rewrite the moduli space as

_ Y, diffy T,
Mo = Giffox Weyl diff ~ MG (5.16)

where we denoted with

Yy

79 = Tiffgx Weyl (5.17)

the Teichmiiller space of the worldsheet of genus g.

We like to stress again that in the Faddeev-Popov procedure presented in section [3] we considered only
the infinitesimal diffeomorphisms, namely the diffy transformations. There we wrote the infinitesimal
variation of the metric under the combined action of diffy x Weyl as

5ha5 = _2(P160)a,3 + (2f - Vv(so"y)htxﬁ ) (518)

where the operator P is given by
1
(P100)ap = i(voﬁag + Vgdoa — hapgV,007) . (5.19)

At the infinitesimal level, changes in the moduli correspond to variations 6’haps of the metric that cannot
be reached by dif fo x Weyl; equivalently, by changing the moduli we obtain those variations ¢’h,g that
are orthogonaﬂ to all variations given by formula (5.18]):

0 :/ dotdo* V1o heps { —2(P160)™P + (2f — vmo—v)hﬂ =
"o (5.20)
:/ daldUQ\/E[ —2(PI8'h) 60 + 6" hosh®P (2f — Wéav)] ’
b))

9

where we introduced the transpose operator P’ whic@ maps traceless symmetric tensors t,g to vectors
via (Prllﬂt)a = —Vﬁta@.
In order for ((5.20) to vanish for every f and do, we need

BB hop =0

5.21
(PL6'h)e =0 (5.21)

the first condition says that §’h,g is traceless so the second equation is well-defined (P acts on traceless
tensors) and for every solution of the second equation there will be a modulus. Obviously, we are interested

"1Orthogonal with respect to the scalar product (Shas and 8'h.s are infinitesimal variations of the same metric)
(hag, 6'hos) = /E o' do® VRhO WP Sha 56 hoys
g

which induces the norm on G, used to define the integration measure D[h,g]; refer to [6] for the details regarding the
geometrical aspects of string perturbation theory.
72See |17] for details.
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in understanding how many moduli exist for a given worldsheet and we have to find the number of
independent globally defined zero modes for the operator P{. This is a highly non-trivial mathematical
question, and the best that we can do is, on general ground, to appeal to an index theorewﬂ which gives
the difference between the number of the globally defined zero modes of the operator and its adjoint (here
the transpose) in terms of a topological invariant of the manifold (like the Euler number =, for example).
To be more precise, we can resort to the Riemann-Roch theorem which, in our case, reduces to

dimg KerP; — dimg KerP! =32 =6(1 —g) . (5.22)

So, if we are interested in finding dimg Ker P{, we can equivalently determine the number of independent
globally defined zero modes for the operator P;...which are something that we have already met because,
as we are now going to show, they are nothing but the transformations of the CKG! Indeed, we have
already explained that, after locally fixing the gauge in each patch (take the conformal one, for example),
we still have the residual freedom of reparametrizing the worldsheet by conformal transformations that
are globally defined on it. The CKG’s transformations are the globally defined diffeomorphisms that can
be “undone” by a global Weyl rescaling. They embody the residual freedom that we have of parametrizing
the worldsheet after fixing the gauge so, in mathematical terms, they correspond to the transformations
that correspond to a vanishing combined variation of the metric ([5.18):

0= 6hap = —2(P160)ap + (2f — V60, hap - (5.23)

The trace of this equation uniquely specifies f (remember: P; maps to traceless tensors) and we learn
which is the precise Weyl rescaling that is able to undo the transformation. The term (f — V7o, ) must
vanish and ([5.23) then states that the transformations of the CKG are precisely those satisfyinﬁ

0= (Pl(SO')a@ . (524)

With the description of the CKGs for different worldsheets that we gave at the beginning of the last
chapter, we can write

6, for g=0 Riemann sphere
dimg KerP; = ¢ 2, for g=1 Riemann torus (5.25)
0, for g >1 Higher genus Riemann surfaces

and, by using the Riemann-Roch theorem we finally obtain that the number of moduli is

0, for g=0 Riemann sphere
dimg KerP!' = { 2, for g =1 Riemann torus . (5.26)
6(g—1), for g >1 Higher genus Riemann surfaces

Clearly, the last formula should also give, according to (5.16), the real dimension of the Teichmiiller
space; indeed, it is possible to show that, for g > 1, the Teichmiiller space is a complex manifold of real
dimension 6(g — 1) topologically equivalent to (Ry x R)?>@~1), The moduli space is obtained by taking
the quotient of the Teichmiiller space as explained by ; in general, the modular group MG acts
holomorphically on the Teichmiiller space, but with fixed points and, thus, the moduli space will have
the structure of an orbifold. See [6] for details in this directions; for us it is enough to know that, locally,
the moduli space has the structure of a manifold of the dimension given by formula (5.26)).

So far, we have discussed only the moduli associated to the metric. When there are vertex operators
appearing in the path integral it is useful to treat their positions on the same footing as the moduli
from the metric, as we will show later. In general, a vertex operator can be inserted at any point of the
worldsheet ¥, so the Teichmiiller space and the moduli space at topology g with n vertex operators are

"3Refer always to [B], for more details about the mathematical aspects of what we are presenting.
~ 74For the distrustful reader: in the conformal gauge and with the complex notation, we have that 0 = (P160) a3 becomes
06z = 06z = 0 and the identification among the (globally defined) zero modes of P; and CKG’s transformations reduces to
a tautology.
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then
Gy x Xy
™ diffy x Weyl

Ton
Mo.n :AjG

(5.27)

We are now ready to discuss the complete Faddeev-Popov procedure for string theory. We will follow
the same steps done in section [3| but, this time, we will not neglect the complications coming from the
presence of the CKG and the moduli in the game. In particular, the b — ¢ ghost system will reveal all its
importance, because it will let us define the proper measure on the moduli space.

5.3 Faddeev-Popov gauge fixing: the complete approach

The Polyakov path integral for the S-matrix with n external states is

D[X
S (s o) = 3 g20 1)/ VdeWeyl o8] Sy X hass Eq]H/d i/ (o) bj, ki (i) (5.28)
>0 !

9z

where we introduced the vertex operators in their integrated form because we cannot let a physical
quantity like the S-matrix depend on unphysical parameters like the positions of the vertex operators on
the worldsheet.
In gauge-fixing, the integral over the metrics becomes an integral over the gauge group and over the
moduli

Dlhas] = DICd?t

where we denoted with ¢ the combined action of diffx Weyl, with ¢ the real moduli of the worldsheet and
with p = dimg KerP{' the number of them.
We have to remember that we have still to fix the transformations of the CKG, and we do it by fixing
the positions of k = dim¢ KerP; vertex operators:

d2n N d2n—n :
for example, on the torus we can fix the position of one vertex operator. Clearly, here we are assuming
that in the S-matrix there are at least k vertex operators. If there are not enough vertex operators to
fix the whole CKG, we can divide the S-matrix by the volume of the unfixed subgroup. Please note
that if the volume of this subgroup is infinite, then the S-matrix vanishes. For example, the CKG of
the Riemann sphere is PSL(2,C), which has an infinite volume, given that SL(2,C) is a non compact
Lie group. Thus, the oriented closed string O-point, 1-point and 2-point functions vanish at tree-level,
and this means that there is no vacuum energy, no tadpole and, respectively, no mass renormalisation at
tree-level.
In the last chapter we will be interested in computing a mass term at one loop-level, so here we study
the case in which we have enough vertex operators to fix the whole of the CKG. We will denote with the
hat the x positions of the vertex operators that we are able to fix ( o — ) in analogy with the hat by
which we denote the gauge choice for the metric (hag — hag).
The Fadeev-Popov measure is defined by

1:AFP(/”Lo(g,U)/det‘/D.ﬂF w 1D[d5(haﬁ — H 5 ACO‘) , (5.29)
iff x Wey

(a,3)EQ

where 2 denotes the set of the fixed coordinates and F' is a fundamental region of the moduli space.
Note that in this formula we stressed the fact that we are considering the worldsheet as the manifold
without moduli dependence inside the transition functions and with the Teichmiiller parameters explicitly
appearing in the metric (at one loop, for example, the torus that we have in our mind is that one define

by (G.9)).
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We can insert the expression ([5.29)) into the S-matrix and, after following the steps that we did in chapter
[l the latter will become

Sivjn (k1o ki 292(9 1)/dptAFP B0 /DX“ H /da x e~ SPoty[ X" hasiBl o

g>0 (a,i)gQ

X H Uz (bjz, ( ) 9
(5.30)

and we are left with evaluating the Faddeev-Popov measure. As we did in chapter 3] we expand
App(hag,o) around the particular pair (¢, t) that makes the delta functional nonzero.
The general metric variation consists of a local symmetry variation and of a change in the moduli,

P
Shap =Y 6t°0uhag — 2(P100)ap + (2f — V700, hag (5.31)
k=1

and we compute the inverse of the Faddeev-Popov determinant as

App(hag, )7 :nR/dpétD[f]D[éa (6hap) ] 0(60%(64))

(e, i)

:nR/dpétd”xD[ﬁ;ﬁ]D[éoa]exp (27Ti(5’,215150—5tk8tk§) + 2mi Z Xm-éa“(@)) ,
(a,i)EQ
(5.32)

where we have written the delta functions and functionals respectively as integrals over x,; and 8,5 and
we have also integrated out D[f] to obtain the traceless constraint on ﬂ;B; the inner product among (3’
and 2P, 60 — 6t*9,.§ is the natural one for traceless symmetric tensors (T, T?) of rank 2: (T*,T?) =
J 2o VR(T")*PT2,. We have also taken into account the possibility that the Dirac deltas could be
nonzero at np different points; these must be related by a residual discretdfl group symmetry so we
consider only one of these points and we multiply by ng.

Now we invert the integral by replacing all bosonic variables with Grassmann odd fields:

00 —
Bap = ba
g s (5.33)
Xai = Nai
otk — ¢k,
and, with convenient normalization for the fields, we can arrive at
. 1
App(hap, &) /D as)D[c®]dPEd  nexp | — — (b,2P1c — E°0kh) + Y naic®(6) | =
nR 47
(e, i)
p (5.34)
1 1 N
- Dlbag ]:[Zbakh II e .

(a,i)EQ

T5For example, in the case of the torus we can fix the metric to the form . We still have the freedom to perform
a CKG’s transformation, because a rigid U(1) x U(1) translation leaves the metric and the periodicity conditions of
invariant. We can fix this freedom by fixing the position of a vertex operator on the worldsheet. At this point we are
left only with the freedom of changing 2’ of formula by z/ — —2’. Thus, for the torus, the residual discrete group
symmetry is Zo and ng = 2.
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which is the proper integration measure for integration on moduli space.
Finally, we get the full expression for the S-matrix:

+oo
dpt ®o .
v (bt hn) = 20D / = / DIX*|D[bas] D[c™]e=SPotslX " hasiSel =S,
g>0 F MR
= (5.35)

< 11 / dafnﬁ(b,a,ﬁ) I @) [ Vissr (o
( k=1 (o i=1

,i) g9 A)EQ

Even though it would be an instructive thing to do (see [11] and [6]), we don’t check the BRST-invariance
and the independence of the gauge choice of this formula, because the Faddeev-Popov procedure guaran-
tees these properties for the gauge-fixed amplitude. What we want to stress is that the formula is
very fundamental, because it depends essentially only on the geometry of the worldsheet. It can be easily
extended to all bosonic string theories (closed, open, oriented, not oriented) and Sp,, can be replaced
by a general ¢ = ¢ = 26 matter theory; the measure on moduli space is always given by formula , SO
we can use formula also for different bosonic string theories, which are characterized by different
vertex operators, namely by a different spectrum.

We summarize what we have learnt in this chapter by stating that we can always work locally and the
complications caused by the moduli and the CKG are taken into account by the ghost insertions:

e for each fixed coordinate, [ do* is replaced by ¢*(d;); in particular, if we are able to completely fix
the position of a vertex operator ¢;, ,, then this replacement, in the flat gauge and with complex
coordinates, reads as

/dzdf%,ki(zuii) — c(20)e(Zi) pj, ki (205 Zi)

and we see that the replacement precisely consists of substituting the integrated vertex operator
with its fixed form.

e for each modulus t* we have to introdue a b ghost by means of .- (b, Ah).

We mention that these ghost insertions are precisely those that we need to avoid a vanishing result.
Indeed, we have to remember that there is the U(1) anomaly in the b — ¢ sector which, locally, is given

by (see (4.88)) and remember that Q = e(1 — 2)\) = —3)

. 1 3
Vij(z) = {QR = —1R (5.36)

it is possible to integrate this expression to obtain its global version, namely

NC—Nb:—%E:3(1—g) , (5.37)
where we denoted with N., IV, the number of zercr_gl modes of ¢ and b which are globally defined on the
worldsheet of genus g.

All the dependence of on the zero modes of b and ¢ is hidden in App (better, in the ¢*(4;) and
in the (b, dh) insertions) because eS¢ = 1 when the action S, eats a ghost’s zero mod So, in
the formula (5.35) we have N, = k and N, = p zero modes: Riemann-Roch theorem guarantees that
the constrain is respected and the U(1) anomaly does not force our S-matrix to necessarily vanish.

"6Note that the situation is very similar to the U(1) anomaly in gauge theory, where the integral of the anomalous
divergence of the chiral U(1) current gives the difference between the number of massless left- and right-handed fermions,
which are the zero modes of the chiral Dirac operator. The role of the Dirac operator is played by Py, PlT, since the equation
of motions of b and ¢ are Pic = 0 and PlTb =0.

"Look at ([B.17): the action Syb, c] can be written as

1 1
Sylb, c] = E(b, Pic) = g(PlTb, c)
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5.4 S-matrix

In the last chapter we derived the form of the S-matrix by considering the worldsheet with all its moduli
dependence encoded in the metric. As we know, we can equivalently describe the worldsheet with a
moduli independent metric and with moduli dependent transition functions and now we are going to
recast the result from this point of view, which is more convenient for practical purposes. Let’s
consider coordinates z,, in each patch such that the moduli dependent metric fz(t) is Weyl equivalent to
dzmdZ,; our goal is to rewrite the terms (b, 6kfz(t)) in such a way that they depend only on the transition
functions of the worldsheet.

We start by defining the so-called Beltrami differential as

14
Hio = 3h° (0)0han (1) (5.38)
so that the b insertions read as

1 ~ 1 9 P sy 1
1 0 0u) = oo [ Polbuanie + bai) = o) (539)

Note that if the metric h(t) is Weyl-equivalent to dzy,dZ,, then the metric h(t 4 6t) is equivalent to

Az dZm + O (17 dzmdzm, + piz dzZndzy) (5.40)

Zm
We could also say that after a change 6t in the moduli there will be new transition functions and, thus,
new coordinates in the m” patch:
2= Zm + 5tkv,’z’" (Zms Zm)
_dzl, (5.41)
T odtk

Zm
Uk

where we denoted with v;™ a vector that is defined only in the m'* patch. The metric dz],dz}, must
be Weyl equivalent to the metric (5.40) because they correspond to metrics with the same value for the
moduli; from

dz! dz o dzy,dZ, + 6t (,ui’zﬂm A2z + s dZpmdzy) (5.42)

we thus arrive at the infinitesimal version of Beltrami’s equation, which is the crux:

ppr, =0z, 0" mE, =0z, . (5.43)
The generators v;™ (v;™) contain a holomorphic (antiholomorphic) part which is not determined by the
equation and which correspond - as we already know - to the freedom to make holomorpic (anti-
holomorphic) reparametrizations within each patch. If we want to change the moduli of the worldsheet,
the Beltrami differentials must be non-vanishing and this means, according to Beltrami’s equations, that
vi™ (vi™) must not be holomorphic (antiholomorphic).
We can now integrate by parts the b—insertions of formula to obtain

1 1 = _ .z
%(bv Mk) :Tm ch (dzmvkm bzmzm - dzmvkm bémim) y (544)

with the contour C,, counterclockwisely oriented in the m!”* patch.
If pp, was the transition function between the m* and n'" patches (z,, = @mn(2,)) then, after the
variation ¢ of the moduli we will have

2y =2 + ot
2l =z + 6tFvir (5.45)

!
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which, in the overlapping region, can be combined together to get

SD;nn(Z:z) :Z;n m + 5tkvkm = Spmn(zn) + 5tkU;§m =
= k Zn k Zm _
_@mn( — o0t ) + 6ttov — (546)
=omn(2) — (;P;;n v stk 4 Stk Zn
so, we have
84,0 z 890 n 2z
G U T L (5.47)

which can be introduced into (5.44) to finally get the expression of the b—insertions in terms of the
transition functions of the complex manifold:

a(Pmn _ 8(pmn
b ,U/k: 271'7, Z fmn ( miatk bzmzm _dzm 8 % b5m2m> s (548)

where the C,,,, contour is running in the overlapping region between the m!” and the n'* patches, coun-
terclockwise from the point of view of the m!”* patch.

The formula is very useful for computations. Here, we want to take advantage of it in order to
reach a more elegant formulation of our S-matrix, where we treat the moduli coming from the location
of a vertex operator on the same footing as the moduli coming from the metric. Actually, it is not only
a matter of reaching a more elegant formulation; the reader should note that the insertion of a vertex
operator modifies the complex structure of the worldsheet, because it brings new moduli into the game.
Let z, be the position of the vertex operator in a coordinate frame z. We introduce a new coordinate
system z’ around the vertex operator such that the latter sits at z/ = 0. For example, we can imagine to
cut, in the z—patch, a small disk of radius € > 0 around z = z, and then we cover the hole with a disk of
radius €’ (just a little bigger than €) where we use the coordinate 2’; then we sew together the disk with
the rest of the worldsheet by using the transition function

z2=2 4z , (5.49)

which is obviously holomorphic in the overlapping region, namely in the annular region between the circles
of radii € and €. The transition function (5.49) suggests to treat the position of the vertex operator as
a modulus and, according to formula @)prplied to the 2 moduli z, and Z,, we have to add, in the
S-matrix, the following two ghost insertions:

dz' dz'
/ i b“/ i b =boaboy (5.50)
271 —27

where C' is any not shrinkable contour running counterclockwise in the annulus (in the overlapping region
between the coordinates z and z’).
Now we can rewrite the full expression ({5.35)) for the S-matrix in a very compact form:

—+o0
Sjl...jn(kl,...,kn):Zg;"@*”/ a t<HBkHvl, > , (5.51)

o50 Fx Z2n v MR

where we introduced By which is the shorthand for the b—insertions of formula (5.48): By = %(b, k).
The upshot is that we can insert the vertex operators in their fixed versions Vj, 1, (2, 2) = ¢(2)¢é(2)¢j, 1, (2, Z)
and treat the coordinates of the vertex operators as moduli of the surface: this is the reason why in
we have considered the integration over the positions of the vertex operators which are not fixed by the
CKG as an integration over the moduli space, which is now m—dimensional, with m given by

m=pu+2n—k=6(g—1)+2n=23g+n—-3) . (5.52)
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Clearly, if we have to integrate over the positions of 2n — k vertex operators, then the latter have to
appear in (5.51)) in their integrated form, even though we introduced them in their fixed version. Indeed,
the b—insertions that we add according to (5.50)) remove the c¢ contributions from the fixed version:
_ B dw dw -, _ L _ _
b_1b_1Vj, k(205 Z) :}{ fb(w)]{ s 0(w)e(2:)e(2:) Qg ki (2, Zi) = Gy ki (20, 2) - (5.53)
C(zi) 21 C(z) 211

The reader should appreciate again the elegance of formula (5.51)), where all vertex operators appear in
their fundamental versions, namely in their fixed forms ¢(z;)é(Z;)®;, &, (%, Zi), which are BRST-invariant

because they directly come from the state-operator correspondence. The integrated form ¢;, x,(2;, Z;) is

not BRST-invariant and it shouldn’t be considered fundamental; nevertheless, it is not difficult to show
that, under a BRST transformation, we have

_ 0 _
(@B Pji ki (215 21)] Za(c(%)@uki(zuzi))
82 (5.54)
(@B bji ki (2, 20)] =5 (€(Z0) bgi s (20, Z))
3zi
and, thus, we can still have integrated vertex operators in the S-matrix, provided that we integrate their
positions over the (compact) worldsheet.

5.5 The torus again: an exercise

In the last paragraph, we have used formula to understand the kind of b-insertions that are
associated to the moduli coming from the positions of the vertex operators. Here, we exploit it to find
the ghost insertions corresponding to the metric moduli and, to be more concrete, we will do this exercise
in the case of the torus.
First of all, we have to cover the torus with 7-depending charts, so as to apply formula in a
straightforward way. We use the minimal number of charts, namely two (one chart is not enough,
because of compactness) and we decide for them to cover cylindrical open subsets of the torus, as we are
going to explain.
As usual, let z be a complex coordinate in which the torus is described by the identification

z =z 427

(5.55)
z Zz 4 21T

Let b be a positive constant such that 0 < b < 2779; then, as a fundamental region for the torus, we can
choose the following portion of the complex plane (see Figure

&

Imz=2rm—-b

1/ /
2 o
) T Rez
2
y - Imz=-b

Figure 14
This is the fundamental region for the torus that will be used in this thesis.

1 1
—b<Imz<2rmy —b —7+EImz§Rez<+7+EImz . (5.56)
2 T2 2 T2
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Let a be a positive constant such that 0 < a < 2775 — b and let’s call C, the circle on the torus that,
on the fundamental region, corresponds to Imz = a. We also call C_; the circle on the torus that, on
the fundamental region, corresponds to Im z = —b (or, equivalently, to Im z = 2775 — b). Clearly, C, and
C_, are the ends of two cylinders, that we like to name as D_ and D, and that are respectively defined
as those parts of the fundamental region satisfying Im z < a and Im 2z > a. If we slightly extend both
D_ and D, such that their intersections contain both the circles C, and C_;, then we can consider, as
charts, the coordinates u_ (uy) on D_ (D) defined by

_=z+b on D_

(5.57)
uy =2n7r —b—2z on Dy

in few words (look at the arrows in Figure [15): u_ parametrizes the points of D_ by starting from

the bottom of the fundamental region (the circle Im z = —b) and by going up towards C,, whereas u

parametrizes the points of D, by starting from the top of the fundamental region (the circle Imz =

2779 — b) and by going down towards C,. Clearly, the transition functions between these two charts are
U = Uy along the intersection containing C_;

5.58
u_ =277 —uy along the intersection containing C, ( )

[z
K Im z '

Imz=2rm5 -0

7

............................. Imz=a
Rez
b, u
..... y l S § 1 s B2
Figure 15

Tllustration of the u4 charts.

We see that the only transition function that depends on the modulus is that one defined on C,, to
which the following ghost insertion is associated

1 8u_
du_ du_2mh =
“omi b or buu- 2m% U= 2M0u—u—
(5.59)
dz27b(z
“omi f =en ’
where the integration contour C, is oriented so that the region D, lies to its right. Note that in the last
step we exploited the facts that the b-ghost is a conformal tensor (of dimension (2,0) ) and that d”—* =1
Analogously, the modulus 7 appears in the transition function @_ = 277 — @4 and we have the 1nsert10n
(look again at formula (5.48)
- 1 Ot _
br=——— ¢ di by 4 b du-2mb_a =
2mi or ’ omi -
(5.60)

2
2mj{ dz27h(z)
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where, in the last step, we absorbed the overall sign by changing the orientation of the contour integral

(Cy — Cy).

Figure 16
A representation of the u4 charts on the torus.

A little heads-up Clearly, in order to get the right expressions for b, and b, we must use two charts,
as we have seen; but, after obtaining b, and b-, one would like to work with only one chart, so as to make
life easier. This can be achieved by taking the formal limit in which a — 277 — b: C, approaches C_y,
the area of the cylinder D, becomes “negligible” and we can use the coordinate u_ in a wider region. In
this limit, D_ corresponds to the torus deprivec@ of C_yp, that we call D' ; C_, is a zero-measure set
of the torus, so it is completely irrelevant to the S-matrix elements. Once we have taken into account
the information coming from the moduli by means of the corresponding b-insertions, we can equivalently
work with this limit-case cylinder D' instead of working on the torus. This is what we will do in the last
chapter, where we will work with the fundamental region

1 1
—b<Imz<2rmy — b —7+EImz§Rez<+7+EImz , (5.61)
2 T2 2 T2

which differs from that one defined in only because now C_; is missing. In this fundamental region
we can equivalently use z or u_; for example, in the last chapter we will use the first one. We want
to stress the fact that a Lebesgue-zero-measure set can be neglected from an integration only if there
are no distributions (i.e. Dirac delta and its derivatives) with support on it. We will discover, in the
computation of the last chapter, that a Dirac delta will be produced precisely where a particular fixed
vertex operator is placed. Fortunately, in the case of the torus we have a CKG that allows us to locate
this vertex operator where we prefer so we can put it far from the zero-measure-set, and the latter can
be consistently neglected. To be more precise, usually one follows the reverse argument: we locate the
vertex operator at z = 0 (so as to have handier OPEs) and, then, we use the CKG to take a fundamental
region like , such that the point z = 0 is in the middle, far from the zero-measure-set.

We very like to stress that neglecting a zero-measure-set is not very important for the torus, where a flat
metric can be reached globally, but can be very important for other surfaces, for which the flat metric
can be reached only locally. Indeed, one can always take a very big chart that covers the surface up to
zero-measure-setd ] and fix the gauge so as to reach the flat metric on it; then all the information about
the moduli is migrated to the boundaries of this chart, namely to the transition functions between this
“global” chart and the zero-measure-sets. In these zero-measure-sets there could be a very complicated
metric that makes life harder, but it doesn’t matter: after considering the proper b-insertions, we can
simply neglect these portions of the worldsheet. Obviously, if a Dirac delta pops up in the calculations,

"8The cylinders D4 don’t contain their boundaries (which are two circles), because ut are charts in the mathematical
sense of the word: they maps open subsets of the torus into proper oben subsets of C. Thus, in the Cq — C_p limit, D_
covers all the torus except for the circle C_;, = C4.

T9For example, for the sphere, we can take the sphere deprived of the two poles, where we can introduce the spherical
coordinates.
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we must carefully fix the CKG, if we still want to neglect the zero-measure-set. Unfortunately, there is
no CKG for surfaces with g > 1 and this is one of the reasons why higher-loop computations are more
troublesome: nothing can be neglected and one must use several patches.
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6 Superstring Theory

We used the bosonic string theory as a toy model that has allowed us to get acquaitance with the tools
of string theory. Now we move to a more realistic model, the superstring, which includes fermionic fields
in the game. The fermionic excitations are added in a supersymmetric way, so as to cure the tachyonic
behaviour of the bosonic string. To be more precise, if we want to remove the tachyon, we have to aim
at models with target space supersymmetry. A way to do it is to introduce the fermionic fields in a
supersymmetric way on the worldsheet and, then, to perform a projection on the theory so as to single
out a spectrum which appears supersymmetric from the point of view of the target space.

At that time this thesis is written, five consistent superstring theory are known and the underlying pres-
ence of an intriguing web of connections relating all of them suggests that they should descend from a
more fundamental theory. In the next chapters we will be interested only in the heterotic superstring
and we will completely neglect all the other superstrings; actually, we will mention also Type IIA /B, but
only because studying them will help us to introduce the heterotic theory in a more natural way.

We will be sketchy in this chapter, because we need only the very basics and because a lot of the features
of the superstring works as in the bosonic string. The only object that has no comparison with the
bosonic string is the picture number operator, something that we will study at the end of the chapter.

We refer to [I7] for a systematic and detailed introduction to the superstring.

6.1 The classical fermionic (field) theory

As first thing, it is convenient to have a look at a purely fermionic 2—dimensional free field theory. The
action for D real fermionic fields ¢ defined on the Euclidean| worldsheet 3o = [0,27] x R (or in a local
patch of the Euclidean worldsheet ¥,) is

1 _
Sy[pH; Zo] = —Z/daldaow“po‘ WV N (6.1)
T
where:

H _ -
e each field ¥* consists of two real components ¥* = ( Zi,j > and we defined * as P = (*)p?;
+
e we denoted with p° and p' the 2—dimensional Dirac matrices, satisfyng the Dirac algebra {p*, p°} =
2nB.,

In the case of the bosonic string it was necesary to assume that X* was periodic on o', because X* was
the embedding of ¥ into the target space. The fermionic field 1* is not an embedding of the worldsheet
into spacetime, so more general boundary conditions are now allowed. As usual, the consistent boundary
conditions are singled out with the equations of motion when we vary the action. The latter can be
rewritten, by using the coordinates o* = 0¥ + ¢!, as

1
Sulihs Sol =5 [ do™ o (60,07 + 6404 Y =

1 (6.2)
— 5 [ Ao (W 0s0 4 VDY
and its variation reads as
1 P Loy
5[5 Do) = - — / d00do 1, (D" 507+ O_pH 6y ) +
(6.3)

2w
0

1
e / Ao (4507 + 9605)| "

from this variation we learn that the fields ¢/}

801l this moment we have denoted with o2 the Euclidean time. We are changing conventions: from now on, the
Euclidean time will be o©.
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e are chiral, in the sense that they depend only on a single light-cone coordinate ¢} = z/;i(ai)
because of the equations of motion ¢4 = 0;

e must satisfy one of the following boundary conditions

Y4 Resector  (periodic on )

Ph (ot +27) = { , (6.4)

—y%  NS-sector (anti-periodic on %)

where NS and R are shorthands for Neveu-Schwarz and Ramond.

The boundary conditions can be picked up for the left and right movers independently so we have four
sectors: RR, RNS, NSR and NSNS.

6.2 The quantum fermionic (field) theory
The field 4" has weight 1/2 so, on the complex plane, it takes the following form

- i - _ S, bz R-sector  (anti-periodic on C)
I —/_ 30 1 — nez -n 6.5
v=z) ze v=(o7) {ZTE%_; biz="=3 NS-sector (periodic on C) ’ (6:5)
and we note that, because of the factor ( = ) = /—ie~ 3% , now, on the plane, it is the R-sector that

respects the anti-periodic boundary condition 9" (e 2miz) = —pt (2). Clearly, the same holds for the fields
¢!, whose Fourier modes we denote with b% and b”. It is not difficult to show that the modes satisfy

{b8,07,} =n""6mino R-sector

n)-’m

{0} = 0" 6,450 NS-sector

TYYs

(6.6)

In the case of the NS-sector, it is straighforward to build the Hilbert space of the theory, because in this
case there is a unique ground state |0) 5 ¢ such that

B 0)yg=0 Vr>0 , (6.7)
so that the Hilbert space H g is spanned by the states of the form

1
blL.LbE|0) g where vy < <y < 3 (6.8)

where the restriction r < ... < r; comes from the fact that each creation operator can be applied at most
once ((b*)? = 0).
In the R-sector, we have to be more careful because here there exist the zero modes bfy which, according
to , satisfy a D—dimensional Dirac-algebra. We assume for D to be everF_Tl and so we can arrange
the zero modes into the following pairs of operators:
(B5—8) by = —=(bh+ 1)
\/>

1 ojp1 25 L oojv1 | 2)

(B —ibg’) bl ===y by

by = — =
RN TV2

By construction, these operators obey {bo;, b(T)j} = 0;; and, therefore, the space of ground states in the
R-sector can be generated with by; from a state |R) satisfying

boo =
\f (6.9)

bl Ry =0 ie{0,..,D/2—1}

(6.10)
IRy=0 n>0 |,

81 Later, we will see that the Weyl anomaly cancels in the superstring if and only if D = 10.
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from which we learn that the space of ground states has real dimension 2”/2. From this space it is now
possible to get the whole Hilbert space Hpg of the R-sector, which is spanned by the states of the form

D—-2
2

bht...bhi H bey |R)  whereny < ...<n; <0 and ¢ € {0,1} . (6.11)
1=0

So far we have built the Hilbert spaces Hp/ng corresponding to the R- and NS-sectors of the right
movers " ; clearly, the same construction holds for the left moving bit of the theory (¥) and we could
analogously define Hp/ns. Thus, the Hilbert space of the full theory is given by

(HR@HNS) ® (riqR EB?:[N5> =
g(HR ® 7'_lR) ® (HR ® 7'_le) @ (HNS ® 7-_lR) @ (’HNS ® 7-_le) (6.12)
=Hrr ® Hrns ® HNsr @ Hnsns

where in the last line we defined - with an obvious notation - the Hilbert spaces Hrr, Hrns, HNsrs HNSNS-
All these four spaces obviously carry a representation of the Virasoro algebra. Indeed, following a standard
route, we could determine the energy-momentum tensor 7% and decompose it into the modes

L5 =53 (n+ 5 b b +12665’0

9 2

neZ (6 13)

1 m ‘
L= X0 (r4) b b

re€Z+3

where, as always, the index m for the modes is integer in the R-sector and half-integer in the NS-sector;
then, it is not difficult to compute that these modes satisfy the Virasoro algebra with central charge
¢ = D/2 (as opposed to ¢ = D in the case of D free bosons).

6.3 The classical supersymmetric (field) theory
We can combine the fields ¥* with the fields X* and obtain the action

S[XH, ] = f% / daodal(éaaX“aaX# + zzﬂpaaa%) . (6.14)

Being just the sum of the two models we studied before, one can guess that the analysis of this system
trivially reduces to the combination of the results that we already know for the free bosons and free
fermions. This is true (and this is the reason why we spent some time by studying also the fermionic
action alone) but it is not the whole story, because the action enjoys a new global symmetry - the
supersymmetry - whose transformations on fields are

!
SXH — /ﬁgw;t
2 (6.15)

1
51@“’ = \/@paaaXHE s

where € is a two-component Grassmann odd valued constant.

Supersymmetry implies a rigid mathematical structure and, in few words, it associates a supersymmetric
partner to every field in the theory. For example, the superpartner of the total energy-momentum tensor
T =TX + TV is the super energy-momentum tensor G

i
Ga=—= P’ et 05X, (6.16)

which can be handily written with the lightcone coordinates as

Gy = \/Z(zp#)iaxg; . (6.17)
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The super energy momentum tensor G is conserved and traceles@ - as the energy-momentum tensor is.
The tracelessness condition shows that G has the same number (i.e. 2) of independent components of
TEL whereas the conservation equation 0*G, = 0 states that the two components correspond to the left-
and right-movers of G (i.e. G(z) and G(2)).

6.4 The quantum supersymmetric (field) theory

The Hilbert space of the quantum theory has clearly four different sectors, because it is the tensor product
of the Hilbert space of the bosonic theory (which is unique) and of that one of the fermionic theory (which
can be NSNS, RR, NSR, RNS).

On all these spaces the Virasoro modes L, = LX + LY act; L:;X commutes with LY (the a/’s don’t
talk with the b%’s) and, thus, the central charge ¢ of the system is the sum of the central charges:
c=cX+c¥=D+DJ2.

Of course, on these spaces also the superpartners of the Virasoro modes act. These are the modes of the
super energy-momentum tensor G, which has conformal weight 3/2 and which can be expanded as

an*"’% R-sector
G(z) = { Znez s (6.18)
>rezty Grz™"72 NS-sector
with the modes G,/ given in terms of the o, bl and b% according to
G, = Z ab by M R-sector
men (6.19)
G, = Z ab by N NS-sector
meZ

With the last two formulas one can determine the commutation relations of G,, G,, with L,, and with
each other. The set of commutation relations [L,, Ly,], [Lm, G| and {G.., G} is the N=1 super-Virasoro
algebra which, in the NS-sector, reads as

D
[L'rru Ln] = (m - n)Lm-‘rn + gm(m2 - 1)6m+n,O
m
[Lmy GT] = (5 - T’) Gm—i—r (620)

(GG = 2Lyt 2 (1" = 2)drino

in the R-sector, it is the same, with r, s — n, m.

6.5 The action in superconformal gauge

The action for the superstring is a long expression that we don’t write, because it is not particularly
enlightnening (look at [I7]). The important thing is that it enjoys enough symmetries (local supersym-
metry, local Weyl, diffeomorphisms invariance, local super Weyl, 2—dimensional local Lorentz) that allow
us to work - locally - with the so-called superconformal gauge, in which the action takes the simple form
of the supersymmetric field theory presented in the last section:

1 1 -
S[X/L, ,(/)/L] _ _E /doodal (aaaXuaaXM + ,(/}/Lpaaaqp”) ) (6.21)

As we saw for the bosonic string, in order to fix the gauge in the proper manner, we should resort to the
Faddeev-Popov procedure (so as to introuce the ghost system and the measure on the moduli space) and

82To be more precise, it is p—traceless: p®Go = 0.
83 As we know, out of the four components as Tap, only two of them are independent. Both Gg and Gp have two
components so (also) G has four components; but p*Gq = 0 kills two of them.
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to the BRST quantization (so as to impose the right physical condition on states). We are not going to
redo all the Fadeev-Popov and BRST analysis also for the superstring and we prefer to simply sketch the
analogy and the differences with the bosonic case.

In few words, we should remember that, after fixing the gauge:

e we still have to impose the right constraints on physical states. In the case of the bosonic string we
had to impose the Virasoro constraints, now we have to impose the super-Virasoro ones.

e we have to add a new ghost system in the game, the so-called 5 — vy ghost system which arises from
fixing the local supersymmetry. This is a first order lagrangian system (as that one described in
full generality in section characterized by ¢ = —1 and A = 3/2; to be more explicit, the 3
and -y fields are commuting fields of half-integer spin, whose conformal dimensions are respectively
(3/2,0) and (—1/2,0). The 8 —+ ghost system has central charge cg, = 11 and a backgroung charge
Qs = 2. As for the b — c ghost system, this charge requires for a sensible scattering amplitude to
have the right number of zero mode insertions of the 8 and + fields. Note also that the total central
charge of the superstring is

Ctot:CX+C'¢'+Cbc+cﬂ’y:D+D/2726+11 B

so, if we don’t want a Weyl anomaly, we have to require D to be D = 10. As in the bosonic string,
it is possible to show that the requirement of the critical condition on D is needed to eliminate
negative norm states from the Hilbert space of the theorylﬂ

e in addition to the moduli, now there are also the super-moduli in the game, which are parameters
that describe the new geometrical features of the worldsheet. Indeed, the worldsheet is not a
Riemann surface anymore, but a super-Riemann surface, namely a Riemann surface equipped with
a spin structure and whose transition functions are superconformal transformations. For more
details about the geometry of such a surface, refer to [2]. For us, it is enough to know that the
super-moduli can be integrated out at the cost of introducing new operators in the scattering
amplitudes, the so-called picture changing operators; this is explained very well in [5]. Then, we
can still use the formula for the S-matrix, provided that we leave as understood the sum over
the spin structure in the path integral (...) and provided that we insert the right number of PCO
in a proper way (see later).

Now we are going to briefly explain what the super-Virasoro constraints are and how to obtain the
spectrum of the theory. In particular, this will lead us in a natural way to the Type ITA/B superstrings;
after describing a bit of their spectrum, we will be able to construct the massless spectrum of the heterotic
SO(32) superstring, which is the theory with which we will deal in the last chapter.

Then, we will introduce the picture changing operator which, being the essential new feature of the su-
perstring, deserves its own section.

6.6 The super-Virasoro constraints

Not surprisingly, if we followed the BRST quantization, we would find that we need to impose as con-
straints not only the vanishing of the modes of T, but also of those of its superpartner G. As in the
bosonic string, we impose the constraints in the weak sense: physical states have to be annihilated by
the non-negative modes of T" and G.

R-sector The Hilbert space corresponding to the unconstrained R-sector of the right-moving half of
the theory is ng =HY® ”H,}é, where, with obvious notation, we denoted with #* and HY the Hilbert
spaces of the right-moving bosons and Ramond-fermions. The space 'H?p carries the action of an N=1
superconformal algebra with generators L, and G,. We expect Ly to be affected by a normal order
ambiguity (in the bosonic case we have to impose, as a constraint, Lo — 1 instead of Lo alone). In the case

84Ty be more precise, in the R-sector the condition D = 10 is all what we need to recover unitarity; indeed, in the
R-sector, the normal order ambiguity constant of Lo is fixed -as we will see - by the super-Virasoro algebra. Instead, in
order to remove all the negative norm states in the NS-sector, we have to require - in addition to D = 10 - for the normal
order ambiguity constant in the NS-sector to assume the value 1/2.
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of Gy = Y a", bn,,, instead, there is no such problem because it is expressed in terms of commuting
operators (a# don’t see b*) and we can impose Gg |[phys) = 0. Then, from the super-Virasoro algebra we

see that D
2G5 = {Go,Go} = 2L — 5

and we learn that the normal ordering ambiguity for Lj is —D/16, because consistency requires L |phys) =
D/16 |phys). Thus, the constrained theory is defined by the states |phys) € ’ng such that

L, |phys) =0 n>0

D 5
Lo [phys) = 1 [phys) = 2 [phys) (6.22)
G, [phys) =0 n>0

By looking at (6.13) we see that the on-shell condition Lo — D/16 = 0 can be simply rewritten as

D Jd, R = b
=Ly— = 2p*+ Y aNg + > uN, 2
0 0 16 4 p * n=1 i " n=1 B ’ (6 3)

where we denoted with N (N?) the number of a’s (b’s) operators with index —n. So we conclude that
the mass formula in this sector is given by

+oo
4
M? = = > nN, (6.24)
n=1

with NV, that counts the number of creation operators o, and bv", together. We immediately see that in
the R-sector there is no tachyon, given that M? > 0. The massless states are created by the zero modes
Ot“ o d bM .

o ~p" and Oy

4
REI T (6.25)
=0

where for the fermionic excitation we used the same notation introduced around formula . Being the
momentum of the centre of mass of a massless excitation, we can always suppose that p* ~ (1,—1,0,...,0)
and it is then immediate to see that the 0 = Gy ~ afbin., ~ phbyn,, constraint on the state
implies
4
<b8+bé><|p>®Hbaa|R>> =0,
1=0

which means that the operator b(T)O ~ b3 + b} must annihilate the massless state (6.25). In other words,
the massless state (6.25) must not contain the creation operator byy and, at the massless level, we have
the following 16 states

REI I (6.26)
=1

Under the action of the little group SO(D —2) = SO(8), these 16 states decompose into two inequivalent
irreducible representations, that can be distinguished by the number of fermionic modes: the states with
Z?Zl ¢; even form the spinor representation 8 and those with 2?21 €; odd form the spinor representation
8¢.

NS-sector The Hilbert space corresponding to the non-constrained NS-sector of the right-moving half
of the theory is ’Hﬁg =HY® ’H,}f,s. It carries the action of the N=1 superconformal algebra generated
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by the modes L,, and G, (remember that r € Z + 3).
We constrained the Hilbert space by defining the physical states as those states |phys) € Hﬁg that satisfy

L, |phys) =0 n>0
Lo |phys) = ans [phys) (6.27)
1
G, |phys) =0 r > 5
This time, the order ambiguity constant a,g is not determined by the super-Virasoro algebra and, as in

the case of the bosonic string, it is fixed by the no-ghost theorem; indeed, it is possible to show that, in
order to remove the negative norm states from the theory, we have to impose D = 10 and

ans =1/2 . (6.28)

The on-shell condition (Lo — 1/2) |phys) = 0 gives
—+o0
2 4 n
2 _
M —75+a E §N% ) (6.29)
=1

where we denoted with N=» the number of a/’s and b#’s modes with index™| —4 (with n > 0). From this
formula, we learn that there is the tachyonic mode |p) ® |0) v 4, where |0) y ¢ is the ground state in the

NS-sector defined by . At the first excited level, we find the massless states
&b, 1) ® 10) v (6.30)

with polarization vector £# satisfying the transversal constraint &, p* = 0 because of

0=Gy <§ub"; p") @ |0>> ~ bipy <§ub#; ) ® |0>> = &up” ( P) ® |0>> - (6.31)

We mention that in the construction of the constrained Hilbert spaces of the R- and NS- sector, we have
always left as understood that states are defined up to null states, as in the case of the bosonic string.
For example, the state has zero norm iff £€2 = 0 and, because of &upt = 0, this means that the
state with transversal polarization tensor defines a physical state up to the sum of longitudinal
null excitations. Once we remove this longitudinal excitation by defining the proper equivalence class,
we are left with the massless vector representation 8y of SO(8).

6.7 The GSO projection and the spectrum of Type ITA /B superstring

In the last paragraph we have seen that we have a tachyon in the NS-sector and that there is no space-
time supersymmetry (between the massless space-time bosons in the representation 8y and the fermions
in the representation 85 @ 8¢), because we have too many fermions. The Gliozzi-Scherk-Olive (GSO)
projection consists of neglecting the states containing an even number of fermionic generators b*’s: the
tachyon is removed from the NS-sector, along with one of the fermionic octoplets.

To construct this projection, we need two operators I'+ which commute with all bosonic operators o
and that anti-commute with the fermionic ones: T'yb)" = —b/'T+ (I € Z/2). Then, they are uniquely
defined in terms of the fermionic operators b}’ by their action on the vacuum states, namely by

Iilp)@0)ns == ®|0)ys  Tilp)®|R)==*[p)@[R) . (6.32)

With the GSO projection, we keep only those states that have eigenvalue +1 under the action of I'y: the
tachyon of the NS-sector and half of the ground states of the R-sector are eliminated.

85Here we are sloppy only to make our formulae shorter. When we say that N% (a*) counts the number of a*’s modes
with index —n/2 we leave as understood that Na (a*) = 0 when n is odd.
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To be more precise, let’s consider the Hilbert space H’' of the theory before the projection. It consists of
the linear combination of the Hilbert spaces that we built in the last paragrap}m i.e.

H =Hysns ©Hpr © Hisr @ Hrns (6.33)

where we introduced a ’-label to stress that #H, is the Hilbert space obtained by H, after imposing the
super-Virasoro constraints. The Hilbert space H’ admits two types of projection operators:

Oy =T0,10_ (or, Ty = I_1I,)

_ _ (6.34)
g =101, (or, Ip =T1_1II_)

with Iy = (1 +T1)/2.

Type IIB If we implement the projection by means of the operator Iz (we keep only those states of
‘H' that have IIp—eigenvalue +1), we obtain the spectrum of the so-called Type IIB superstring theory.
In the

e NSNS-sector: the tachyon is removed and, at the massless level, we have
8y ®8y =213528¢ 35y , (635)

where we displayed, on the right-hand side, the usual decomposition of the product of two vectors
into the trace, antisymmetric, symmetric traceless tensors; as we already know, these correspond
to a space-time dilaton, Kalb-Ramond field and graviton.

e RR-sector: the massless excitations are
8585 =10 28 B35, (636)

which correspond to a 0—, 2— and 4—form.

e RNS-sector: the massless excitations are
8y ®8g =85 P 5bsg (6.37)

which are the left-handed dilatino and the left-handed gravitino.

e NSR-sector: the massless excitations are
85 ® 8y =85 P 5Hbs (638)

which give another left-handed dilatino and another left-handed gravitino.

Note that NSNS- and RR-sectors represent space-time bosons, whereas NSR- and RNS-sectors give
space-time fermions, and that the number of the massless fermions matches with the number of the
massless bosons. The spectrum is chiram the massless spectrum of the Type IIB superstring (N = 2
supersymmetry) gives Type IIB supergravity in 10 dimensions.

Type ITA If we implement the projection by means of the operator IT4 (we keep only those states of
‘H' that have II4—eigenvalue +1), we obtain the spectrum of the so-called Type IIA superstring theory.
In the

e NSNS-sector: the tachyon is removed and, at the massless level, we obtain the dilaton, the Kalb-
Ramond field and the graviton, exactly as before.

86To streamline the notation, we drop the X4t label from the Hilbert spaces; for example, we write Hxggr instead of

HX¢R, because at this point of the thesis it is obvious that we are dealing with both fermions and bosons at the same time.

In the sense that both gravitinos (dilatinos) are left-handed. If one had used g = II_TI_ instead of IIp = 4114,

the two gravitinos (dilatinos) would have been right-handed; the spectrum would have been the same, because right/left is
only a matter of conventions.
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e RR-sector: the massless excitations are
8c ®8s =8y 56y (6.39)

which correspond to a 1— and 3—form.

e RNS-sector: the massless excitations are
8y ® 85 =85 PH56s (640)

which are the left-handed dilatino and the left-handed gravitino.

e NSR-sector: the massless excitations are
8c ¥ 8y =8 F 560 (6.41)

which give a right-handed dilatino and a right-handed gravitino.

As before, the number of the massless fermions (NSR- and RNS-sectors) matches with the number of the
massless bosons (NN- and RR- sectors). The spectrum is not chiral: the massless spectrum of Type ITA
superstring (N = 2 supersymmetry) gives Type ITA supergravity in 10 dimensions.

We like to conclude this chapter with two comments.

First, we have seen that with both types of superstrings we have recovered a supersymmetric massless
spectrum, but supersymmetry should be a property of the whole of the spectrum,; it is indeed possible to
show that supersymmetry holds also at every massive level of the spectrum.

Second, to keep things simple, we presented the GSO-projection as a dirty trick introduced by hand in
the theory; but it is not a dirty trick, because, in the covariant NSR-formulation discussed here, the
GSO-projection is implemented in the path-integral by summing over all the spin structures (refer to
[I7] for more details). Given that the sum over spin structures has to be performed for every scattering
amplitude, we understand that, regardless of the number and nature of the external states, the states
killed by the GSO projection will never appear as modes exchanged in string scattering experiments and
this means that removing them from the spectrum is a consistent procedur

6.8 The heterotic superstring theory

So far we have discussed superstring theories with N=2 supersymmetry in 10 dimensions, namely with
32 supercharges. In this chapter, by following the approach of [20] and [2I], we are going to mention
other two superstring teories that, instead, have the minimal number of supercharges, i.e. 16. They have
N=1 supersymmetry and they are tachyon free. They are the so-called heterotic superstring theories and
can be eﬂectively@ described by N=1 supergravity in 10 dimensions. The latter is a chiral theory which
admits two kinds of massless supermultiplets:

e the N=1 vector multiplet which, under the action of the little group SO(8) decomposes into
8y ©®8s/c (6.42)

namely into a vector boson of eight physical polarizations and into eight fermionic degrees of
freedom.

88This is in apparent contrast with what happens for the bosonic string. For example, one could compute the 4-point
scattering amplitude among massless bosonic strings and the result would have a pole (in the Mandelstam variable ¢) for
every state of the spectrum. In particular, the first pole would appear at t = M? = —4/a’, namely for the tachyon, which
then cannot be removed from the spectrum. In the superstring, instead, the states killed by the GSO projection like the
tachyon simply are not exchanged among strings, do not appear in loops.

89In the limit in which we get rid of the massive spectrum by taking o/ — 0. We have also to assume that higher loops
contributions (which are suppressed by additional power of gs) can be neglected and we have to work at the weak coupling
gs K 1.
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e the N=1 graviton multiplet which, under the action of SO(8), decomposes into
1528335®565,c©8s5/c (6.43)

namely into a dilaton, the Kalb-Ramond field B, a graviton, a gravitino and a dilatino.

We can use one graviton supermultiplet and a certain copies of the vector supermultiplet to build the
N=1 supergravity action as (we write down only its bosonic part)

1 1, -~ K2
Sio ~ — dPzv/—Ge 2 | R + 4(0¢)* — §(H3)2 - 2BTr(|FFA)| (6.44)
10 910

where: k19 plays the role of the Newton constant in 10 dimensions, R is the Ricci scalar associated to
the spacetime metric G, ¢ is the dilaton and F5 denotes the field strength of a Yang-Mills gauge field
A,, with gauge group G4 and with coupling constant gio. Note that the kinetic term HZ for the Kalb-
Ramond field (H3 = dB) is contained - along with interactions between the gauge and gravity content of
the theory - in the term HZ, because we defined

_ 2
Hy=dB - %QCS(A) , (6.45)
10

with Qcg(A) given by the so-called Chern-Simon 3-form of the gauge field, i.e.
1
Qcs(A) = tr(A NdA= ZANAN A)

At the classical level, this action enjoys diffeomorphism invariance, gauge invariance and N=1 local
supersymmetry invariance. It is possible to show that, in order to avoid anomalies and, thus, negative
norm states in the quantum theory, we have to require the Lie algebra of G 4 to be a 496-dimensional Lie
algebra isomorphic to that one of SO(32) or to that one of Fg x Fjs.

It is then intuitive that - correspondingly - there are only two consistent heterotic superstring theories,
from which the SO(32) and the Eg x Fg supergravity limits can be recovered. We will present only the
SO(32) heterotic superstring, given that it is the one that will be used in the last chapters. But let’s first
present the fundamental idea underlying the heterotic string.

The simplest way to obtain an N=1 supersymmetry (in spacetime) is to combine an N=1 (spacetime)
supersymmetric spectrum for the right movers with a (spacetime) non-supersymmetric spectrum for the
left movers. We stress the fact that we have already met an N=1 supersymmetric spectrum for one single
mover of the theory. Indeed, if we look back into our discussion of Type II superstring theories, we see
that, after the GSO projection, in the right moving sector we got massless modes in the representation
8y @ 8g/¢ that we then tensored with the representation 8y @ 8g/¢ of the massless excitations coming
from the left-moving sector in order to obtain the N=2 supersymmetric spectrum of Type II theorieﬂ
But from we immediately recognize 8y @ 8g/¢ as the representation of the vector supermultiplet
for N=1 supersymmetry! In light of this, we can take the supersymmetric N=1 right moving sector of
the Type II superstring and combine it with the non-supersymmetric left moving sector of the bosonic
string. By recasting this goal in the language of the CFT, we need to build a theory with central charges
(¢,¢) = (15,26). Since we want to describe a theory propagating in a ten dimensional Minkowski space,
for sure we need 10 bosonic fields X* and these fields contribute with (c*,&*) = (10,10). On the right
moving sector then we add 10 fermions ¢* so as to reach a supersymmetric rigth moving sector with the
desired ¢ = 15. In the left sector, we are tempted to add other 16 bosonic fields X* so as to reach ¢ = 26,
but this would also bring ¢ = 15 to ¢ = 31; we remember that the 2-dimensional Majorana fermions
have two components, one of which is purely right/left-moving, so we add into the system 32 left moving
Majorana fields. We end up with the following action:

1
Shet[X,u7w,u7>\a] Ew/daodaloﬂ_X“@_Xu—l-
(6.46)
1
+ ?/dO'OdCTl (/\0‘8_/\@ +1/)’_‘8+w_,u) y
™

90To be more precise, the massless spectrum of Type IIB is (8 ® 85) ® (8 ® 85) , whereas the massless spectrum of
Type I1A is (8y @ 8¢) ® (8y @ 8g).
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where a € {1, ..., 32}.

With this action, we can describe different theories that can be distinguished by their GSO-projection
and by the choice of boundary conditions for the left-moving fermions A“. It turns outEl that there are
only two consistent boundary conditions for the 32 fermion. The first choice consists of treating all of
them on the same footing: we can impose the same boundary conditions on every A* and this clearly
brings us to a model with an so(32) symmetry. Alternatively, we can split the 32 fermions into two groups
of 16 fermions each and independently choose for these two groups the boundary conditions; this is the
Es x Eg heterotic superstring.

In each case, the Hilbert space of the right-sector will be generated by the o', (modes of X*) and b" Jr
(modes of ¥*) and will be subject to the super-Virasoro constraints of the N=1 superconformal algebra,
whereas the Hilbert space of the left-sector will be generated by the o/ and by the (. (modes of \%)
and will be subject to the Virasoro constraints. As we know, the formula for the mass spectrum comes,
in both cases, from the Ly constraint (or - equivalently - from the L constrainﬂ:

M? = %(—a* + Lp) = %(—a* +Ly) (6.47)
where we added the '—label in order to denote the Ly, Ly Virasoro generators without the contributions
from the zero modes. The values of the order ambiguity constant a* (and @*) depend on the kind of
constraints. In the case of Virasoro constraints, we have a* = 1, as we saw for the bosonic string; for
the super-Virasoro constraint we have ¢* = 1/2 in the NS-sector and a* = 5/8 in the R-sector, as we
discussed for the superstring. The expressions for L{, and L{, are

= n nf = n ﬁf
L, = —Na 4+ £ L, = —Na 4+ -£ 6.48
0 ; 5% T 16 0 ; R RIETI (6.48)

where Nz (Nz) counts all the —n/2 operator modes (fermionic and bosonic) of the right (left) sector,

whereas the real number né (ﬁé) counts the right- (left-) moving fermions with periodic boundary
conditions (see (6.13))). With these formulae for L{, and L, we can rewrite (6.47)) in a more direct way as

4 < n 4, & n -
2 —
M _—a,(K+§ §N%>_—a/(K+§ §N%) , (6.49)
where
i _f
— P co— % P 6.50
K=—a"+ ¢ K=-a"+¢ (6.50)

are the lowest eigenvalue of M? in the right- and left- sector.
With these formulae, now we are ready to discuss the spectrum of the heterotic string.

The SO(32) Heterotic superstring If we impose the same boundary conditions on all the left-
moving 32 fermions A%, then we obtain two sectors for the left-moving bit of the theory: one when all of
them satisfy periodic (P) boundary conditions, the other one when they are subject to anti-periodic (A)
boundary conditions. Thus, according to formula , to find the spectrum of this theory we have to
find the values of the constants K and K for all the four sectors (P,R), (P,NS), (A,R) and (A,NS).

In the right-sector we have N=1 supersymmetry (Super-Virasoro constraints) and

K=—-a"+

ﬁ B {—é 4 % = —% NS-sector (6.51)

- 5 , 10 _
16 —s+13=0 R-sector

911t is enough to compute the one-loop partition function of the theory defined by and to require it to be modular
invariant.

92Remember that the level matching condition still holds, even if we’re describing the left/right-sectors of the theory
with different fields; as we have already explained, the states of the theory must be invariant under the action of Lo — Lo,
otherwise not all the points of the closed string would be indistinguishable.
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so we recover formulae (6.29) and (6.24).

In the left-sector, we have the Virasoro constraint (a* = 1) and K is

= 32
K= —a"+ np _ -1+ 1? =1 P-sector (6.52)
1+ 5=-1 A-sector

please note that in the periodic-sector we must have M? > §(+1) > 0 and therefore here we cannot
have contributions to the massless spectrum.

Anyway, with formulae and , the mass formula (6.49) is determined; to determine the spec-
trum, we need only to find the proper GSO projection.

For the right-sector, we can recycle the projection operators I = <1+21‘ £), with I'y. defined around ;
we know that this projection removes the tachyon from the NS-sector and thus imposes M2 > 0: because
of the level matching condition, this means that, regardless of the GSO projection used in the left-half
of the theory, the heterotic superstring is tachyon free. In particular, we can select a GSO projectiorﬁ
on the left-sector that keeps the tachyon |A) of the A-sector (K = —1 < 0 for anti-periodic boundary
conditions) and this allows us to obtain a richer massless spectrum on the left-half of the theory, as now
we are going to explain.

To study the massless spectrum of the theory it is enough to analyze the case in which all the 32 left-
moving fermions have anti-periodic boundary conditions, because in the P-sector we have M? > % > 0;
the massless spectrum of the SO(32) heterotic string arises from the (A,NS) and (A,R) sectors. We
already know that the NS-sector gives massless bosons in the 8y representation and that the R-sector
yields fermions in the 8¢,¢ representation; thus, the contribution to the massless spectrum coming from
the right-movers is

(8v,1)® (8s/c,1)
where we denoted each representation with two labels (a,b), because there are two symmetries in the
game: a specifies the representation of the little group so(8), whereas b refers to the representation of
the s0(32) gauge symmetry (which affects only the left-sector, so it is trivially represented on the right-
sector). To find the contribution to the massless spectrum coming from the left-movers, we have to look
at the mass-formula, which, in the A-sector, reads as

4 A n -
2 .
M _—/(—1—1— E 2N%) ; (6.54)
n=1

(0%

we immediately see that we can obtain M? = 0 in two ways:

e we can act on the ground state |k) ® |A) with the modes o ;; the GSO projection keeps this states
simply because it doesn’t kill the anti-periodic ground state |A). As usual, we have to impose the
physical state condition on these 10 states and after removing the null norm states we end up with
the 8y representation of so(8); note that we have built this representation without the fermionic
modes ¢*’s and this means that, to be more precise, we have obtained the representation (8y,1).

e we can also act with a couple of fermionic modes ¢* /25 indeed, the states ¢, /206 1/2 |p)®|A) are not
removed by the GSO projection, because they contain an even number of fermionic modes. These
are 32%32/2 = 496 states that form the adjoint representation of so(32), that in our conventions we
denote as (1,496) (the states have no spacetime indices, so so(8) is trivially represented on them).

Putting together the massless contributions from the right- and left- movers, we finally get that the
massless spectrum of the SO(32) heterotic superstring is given by

[(sv, 1) & (8¢, 1)} ® [(8V, 1)e (1,496)} , (6.55)

93We only mention that for the left-sector, in case of anti-periodic conditions, we use the projection operator given by
_ 1 _
A — A
Hifiﬂng , (6.53)

where f‘ﬂ are the analogue of the I'+ of formula : they are defined such that they anti-commutes with the modes c
and they are —1 on the ground state; note that the ground state |A) of the anti-periodic sector and all the states that are
built from it with an even number of fermionic modes ¢ are not projected out.

In case of periodic conditions, we use similar operators ﬁi.

83



which can be decomposed into the following irreducible representations

[(8v.1) & (850, 1)| @ |(Br.1) & (1,496) ] =
=(1,1) ® (28,1) ® (35,1) @ (8y,496) @ fermionic partners

(6.56)

which are precisely the dilaton, the Kalb-Ramond field, the graviton, the so(32)— vector (and all their
fermionic partners) of the N=1 supergravity with gauge group G4 = SO(32).

6.9 The PCO

In bosonic string theory, we saw that the b — ¢ ghost system was essential to build BRST-invariant vertex
operators. Clearly, the same will still hold for the superstring, and we expect that some bits of the 8 —
ghost system should be included in the construction of the covariant vertex operators of the superstring.
We will be interested in the heterotic superstring so, from now on, we will focus on the right-half of the
theory (in the left-sector there is no supersymmetry, no S — v system).

It is immediate to guess, by analogy with (4.119), that a BRST-invariant state should have the following
form

|p) ® o ® [V @ lg
—~~ Ny —— —

centre of mass momentum  bc sector NS/R sector [+ sector

(6.57)

where:

e we introduced |p) = e?* |0) , so as to give motion to the string in the 10-dimensional spacetime
(remember ([{138), where we showed that the insertion of e~ gives momentum to the centre of
mass of the string). Note that this is the only way to get a non-vanishing momentum for the centre
of mass of the string, because the equations of motions for the fermionic fields ¢* are d19% =
and this means that ¢ cannot have a linear term in the time variable o (02) on the cylinder@
this is in agreement with the interpretation of the fields ¢*, which are not embeddings in spacetime
so they should not give information about the centre of mass of the string.

e we inserted |c) = ¢(0)|0),., as in (4.119). Remember that - locally, in the superconformal gauge
- the fields X*, ¢*, b, ¢, 5, v are not interacting; thery are independen@ so we can recycle our
knowledge about the bosonic string.

e the state |VX¥) is created from the vacuum of the matter sector (|0), 4 or |R)) by an operator
which can have both X* and ¢* dependence. Clearly, out of the four states appearing in (6.57),
this is the only one that is subjected to the restrictions given by the GSO projection.

e the state |¢) = Uy(0) [0) 5, is created from the PSL(2,C) vacuum of the v theory by an operator
U,. This is in close analogy with what we studied for the bc system; because of the non-unitarity
of the ghost system (h(c) = —1 < 0 for the conformal ghost system, h(y) = —1/2 < 0 for the
superconformal one) the PSL(2,C) vacuum is not the ground state and, to obtain the state of
lowest energy, we have to act on it with some ghosts, as we are going to explain in more detail now.

Fermi and Bose sea level Let’s focus on a first order Lagrangian system, as those ones discussed

in full generality in section@ According to (4.73)), the energy of the system is given by
Lo =73 ,,czm:b_mcy : and it is not difficult to find that [Lo, ¢,] = —nc,, namely that

Lo(cn 10)) = —n(c,]0)) . (6.58)

94Tnstead, the equations of motion for the bosonic fields X* are of the second order (9_94+X* = 0) and this allows X#
to have a non-vanishing linear term afc® ~ p*o® on the cylinder.

95From a global point of view, all these fields are not completely independent and, because of supersymmetry, their
boundary conditions must be chosen according (see [I7]). For us, it is enough to know that, for consistency, the boundary
conditions of the 8 and + fields are precisely the same of those imposed on the fields ¥*, and now formula should be
clear, where we labeled the modes of 8 and ~y in the R-sector (NS-sector) with integer (half-integer) numbers.

96 As we did in again we mainly refer to [7].
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We also know (see (£.70)) that
cn [0) =0 forn> A, (6.59)
and this implies that
Lo(cn|0)) = —n(cn [0)) #0 forn <X . (6.60)

We have just obtained the key result: for 0 < n < A, ¢, lowers the energy of the PSL(2,C) vacuum
|0).

For example, in the case of the conformal ghost system, A = 2 and, according to , the ground
state of the system must be built from |0) by acting with ¢1; we thus recover the well-known ground
state of the bc ghost system, i.e. ¢1 |0) = ¢(0)]0) = |c); we stress that there are no other possible
ground states, because c¢; is Grassmann odd: we can act on |0) with ¢; only one time and this
means that the system of the anticommuting ghosts b, ¢ has a spectrum which is bounded from
belowﬂ The situation is reminescent of systems with Fermi statistics, in which a Fermi-sea level
must be specified; we can build states with negative energy, because we can define different vacua by
specifying to which level the Fermi-sea is filled. These vacua are stable thanks to Pauli’s exclusion
principle and this is in agreement with the fact that the spectrum is bounded from below.
Instead, the superconformal ghost system (A = 3/2) consists of Grassmann even fields, and, obvi-
ously, this is a remarkable difference. Acording to , we can build the ground state of the S~
system by acting on the vacuum by means of -, with 0 < n < 3/2. To be more concrete, let’s
consider the NS-sector, where the modes are labeled by half-integer numbers . This means that we
can reach the ground state by acting with ;o on |O>|ﬂ 7Y1/2 18 a bosonic operator, we can apply it
an arbitrary number of times and, thus, the spectrum of the 8+ theory is unbounded from below,
because the possible ground states (7y;/2)" |0) have energy —n/2 ( with n arbitrary). This is in
apparrent contrast with the case of the Fermi-statistics, where the bounded-from-below-spectrum
gives us a clear notion of ground state; in the case of Bose-statistics there is no natural and unique
choice for the ground state. Anyway, as in the Fermi case, we define a ground state by specifying
the energy level below which all the levels of the “Bose-sea” are filled. This time there is no exclu-
sion principle that guarantees the stability of the ground state, so one would guess that, regardless
of the ground state that we can specify, the system would collapse to the infinite bottom of the
spectrum; but, our 7 system is a free theory and, without interaction, transitions between levels
are not allowed. So, in this case, it makes sense to define a ground state even for the Bose-sea level.
We define the possible ground states |¢) by

3
Yalg) =0 forn>q+A=q+5 (6.61)

which, for consistency (see (4.70))) requires also

3
Bnlg) =0 for n>—q—/\:—q—§ , (6.62)
where we left as understood that g € Z for the NS-sector and ¢ € Z + % for the R-sector.
Now we must solve the constraints (6.61]), (6.62) to find the state |¢) and it is precisely at this point
that the bosonization of the first order Lagrangian systems reveals itself to be very handy.
Let’s remind us that the bosonization of the 8~ is encoded in the following expressions

B(z) = e ?Po¢(z) (z) = e?P(z)
62)o(w) ~ —loglz—w) &) ~ ——
§7(2) = = : B(2)y(2) = —0¢(2)
97 Actually, from we see that ¢o commutes with Lo so also the state coer |0) = |Occ) is a possible ground state. But
it clearly has the same energy as |c), so the spectrum of the bc system is still bounded from below; anyway, as we know,

this state can be neglected, when the bc system is seen as part of string theory, so we consider only |c).
980ne can equivalently reformulate the argument in the R-sector, by considering v; instead of V1/2-

(6.63)
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where 7 and ¢ are fermionic fields with conformal dimensions 1 and 0, ¢”¢ = —2 and Q"¢ = —1.

One can find that (6.61) and (6.62) are satisﬁeﬂ by
lg) =@ [0),, (6.65)

where we denoted, as usual, with |0)5, the PSL(2,C) vacuum of the 3y system. We stress the
obvious fact that the possible ground states |¢) can be distinguished by their conformal properties,
which are encoded in (4.99) and that here are summarised:

L) = =2 (a+ Q") lo) = ~3(a+2) o) 6.6

3o la) = qla)

We have just understood the meaning of each component of formula (6.57). We want to keep track of
the g—charge of the ground state selected for the 57 system, so we will add a label ¢ to the fixed version
F, of the vertex operator:

[Fp) =) elde Vi) el . (6.67)

To be more precise, with the g—label we will denote the so-called picture number of the vertex operator.
The picture number NN, is a new quantum number which naturally appears in the superconformal ghost
system and which is defined as

N, = § S (6m) - 000) (6.65)

such that the original 3, v ghosts have picture number zero. In our approac}m the picture number
arises through the bosonization, when we have to choose a ground state for the S system.

Clearly, in the context of the superconformal ghost system, there isn’t a particular ground state |¢) which
is preferred out of all the possible ones. On the other hand, in the context of the superstring, it does exist
a favourite ground state |¢) because, in order to build a BRST-invariant state, the vertex operator F,
must be characterized by a precise picture numbeIFEI, as now we are going to show for vertex operators
corresponding to massless states in the NS-sector (which precisely are the kind of vertex operators with
which we will have do deal in the next chapter).

The masslessness condition on the state |p) fixes the conformal dimension of e?”"*X to be 0, because, as we
know from the bosonic string (see (#.137)), we have h(e?X) ~ p?. If the state comes from the NS-sector,
we have to impose the corresponding super-Virasoro constrainf'% on the state |VX%) = VX¥(0)]0) v g
and fixes the conformal dimension of VX% to be 1/2. A physical state must be invariant under gauge

99For example,

Bule) = § &2 ntdp(a): O ;o) =

271

:fdiz'zwr%e—ﬂ@ag(z) ;1900 |0y =
27

— 7{ 92 1t 9g()e=a((2)6(0)) ; g=6(:)+20(0) . [g) — (6.64)
271

= ?{ ﬁzn+%+q : 9E(z)e (=) +a9(0) 1 |0) =
271
dz 1

S Ze nt5+q

- § szt (o) o)

where, in the last step, we rewrote the normal ordered product as O(1) because, by definition, the normal order product is
regular ar z = 0 and it can be thus expanded as a positive power series in the variable z; so, in the case also n + % + g was
non-negative, then 3, |¢) = 0 vanishes. We have recovered equation .

100Which is that one proposed by D. Friedan, E. Martinec and S. Shenker in [7].

101The situation is similar to that one that we met during the construction of the physical states of the bosonic string:
according to the be ghost system, both the states |c¢) and |dcc) can be equivalently used as ground states, something that is
not anymore true in string theory where, because of the BRST-invariance, we have to reject all the vertex operators built
on |dcc).

102\We are reasoning by analogy with the bosonic string, where we saw that the BRST-invariance of a physical state was
equivalent to the Virasoro constraints.
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transformations, so the corresponding operator (here F,;) must have, in particular, vanishing conformal
dimension, i.e.

0L A(Fy) = heX) + hie) + (V") + h(e™) = 0~ 1+ 5 + h(e")

1
(659 _§_g(Q+2) = qg=-1

(6.69)

If we want the operator F, corresponding to the state to describe a physical (BRST-invariant)
massless state in the NS-sector, then we necessarily have to fix its picture number to be —1; NS (fixed)
vertex operators with ¢ = —1 are said to be in the canonical picture. Analogously, one can ﬁn(JFEl that
the canonical picture in the massless R-sector is given by ¢ = —1/2.

Since the OPE between operators like e?1%(2) and e?2#(*) reads

1 #(2) pa2d(w) _oq192(P(2)d(w)) . cq1d(2)+a2¢(w) .

:(Z — w)*qum . e(1+a2)9(w) + 0(1) - (6.70)

it is apparent that vertex operators in non-canonical pictures appear in the theory. In order to understand
the meaning of states with arbitrary picture number (whose existence is required for the closure of the
OPE algebra) we need to resort to the BRST-formalism, because, as we are going to explain, we must
learn how to change picture number of a vertex operator in a “BRST-invariant”-way.

Let’s suppose that we want to construct a correlation function that is manifestly BRST-invariant, so
it must consist of a bunch of BRST-invariant operators. Let’s suppose that we want to compute the
S-matrix element for a process involving n + m vertex operators, n (m) of which correspond to massless
states coming from the NS (R) sector. In order to obtain a BRST-invariant expression, we could insert all
the vertex operators in their canonical pictures, and this would bring the picture number of the correlation
function to —n — m/2. But, as we know, the S~ system is anomalous; to be more precise, the anomaly
affects the ghost-number current and reads as

1 1
VZiP(z) = ZQﬂvR = 53 _ (6.71)

This is a local expression that can be integrated to give the superconformal analogue of equation (5.37)),
namely

Qﬁv
2

N, —Ng=—

[1]

=-2(1-g)=29—2 . (6.72)

According to the bosonization of the 3y system, we have j%7 = — : By := —0¢, so the 3y anomaly
doesn’t affect the ¢n system and it is translated into an anomaly of the ¢-system. Each v = e®n ~ e®
carries one unit of ¢p—charge, whereas each 8 = e ?9¢ ~ e~? decreases by —1 the ¢—charge; thus
states that the total ¢—charge of the insertions must be 2g — 2.

This means that we have to introduce a BRST-invariant expression in the correlation function which
must be able to rise the ¢-charge of the correlation function by 2g — 2 + n + m/2 units.

The right way to do it is by defining the so-called picture changing operator (PCO) x, which is BRST-
invariant by construction, as we can see from

x(2) ={Qs,¢(2)} (6.73)
103The super-Virasoro constraints in the R-sector give h(VX¥) = 5/8, see the second line of (6.22). Thus, by requiring
the conformal dimension of Fy to vanish (as we have done in ), we would obtain two possible choices: ¢ = —1/2

and ¢ = —3/2. As discussed in [22], we have to reject the choice ¢ = —3/2, because only ¢ = —1/2 reproduces the right
super-Virasoro constraints (i.e. all conditions appearing in (6.22))) from BRST-invariance.
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and by introducing 2¢g — 2 4+ n + m/2 copies of this operator in the correlation function.
The BRST-charge of the superstring theory is given by

Qp=Qo+ Q1+ Q2
Q0= et (T (w) = Dlctuwlpiw) )

27
J d 6.74
Qu=- ?{ 5 V(W) G (w) = — f{ 5o 1MW) IG () .
1 [d L [d
Q2 = 4 7{ 277:)@ b(w)yP (w) = 4 j{ 27; s b(w)e??n? (w)

where:

e () is the sameFEI BRST operator as in the bosonic theory which clearly acts - on the matter fields
and on the S~ system - as conformal transformation with parameter ~ c;

e ()7 is the “super-analogue” of )y, giving that it generates superconformal transformation with
parameter ~ v on the matter sector of the theory;

e ()5 is needed for the nilpotency of the BRST algebra.

Given the BRST-charge, one can compute the PCO and its explicit expression reads as

x(w) = {Qp, {(w)} :=: [?GXY + cdE — %87762% - inaw(e%b)]

(6.75)

w

pure ghost contribution

The PCO has picture number@ +1 so it increases by one unit the picture number of the (fixed) vertex
operator F;; on which it acts:

Fyp1(z) = lim x(w)Fy(2) = x(2)Fy(2) (6.76)

w—z

and F,; is usually written as

Fyi1(2) =X(2)Fy(2) = {Q, £(2)} Fy(2) = {Qp, £(2)} Fy(2) + £(2)[Q, Fy(2)] =
={@B,¢(2)Fy(2)} =

_ 7{ o W)E()Fy(z)
C

(2) 21

(6.77)

where in the (*) step we used [@g, Fy] = 0, namely the fact that the fixed version of the vertex operator
(i.e. the version with the ¢ factor) is BRST-invariant.

If we think about the ¢—charge anomaly, we understand that the most important piece of the PCO
is e?GX¥. It is the only piece of the PCO that carries one unit of ¢—charge, so, if we insert
29 —2+n+m/2 PCO’s in the correlation function, then e?GX" is the piece that - for sure - will saturate
the ¢p—anomaly and it will let the correlation function be non-vanishing. This is the reason why some
authors (see [17], for instance) sloppily write

x(w) =e?GXY 4+ ... (6.78)

this notation has the advantage of giving an immediate interpretation of the PCO: it essentially acts on
the matter fields of the theory as a superconformal transformation with parameter ~ e?; from this point
of view, it is even more clear that all the Bose-sea levels must be physically equivalent, given that we
can pass from one to the other one by means of a remnant of the gauge redundancy of the superstring.

104This is true if we treat (3, v as extra matter fields; indeed, compare Qo with the BRST charge of : we have only
substituted TX + T with TX 4 TY 4 T + T8 = Ttot,

105Tndeed, Ny (&) = +1; moreover, Np(Qp) = 0, because Q5 doesn’t need the bosonization of the 3y system to be defined
and the picture number appears only when we separate the ¢-sector from the £n—sector.
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Anyway, we like to stress that all the pure ghost contributions that we neglected in (and which
are instead present in formula ) are indispensable to change the picture number of the vertex
operator in a manifestly BRST-invariant way and it can happen that some of them do contribute to the
final result of the correlation function. Actually, the BRST-invariance of the PCO is so manifest
that one could naively guess that y is also BRST-exact in which case its insertion would make vanish
any correlation function of BRST-invariant operators. This is however not the case, since the 8 algebra
(and consequently also Q) only contains ¢, but not the constant zero mode &y of £&. The latter is
Grassmann odd, so the Hilbert space Hgye of the p§n—theory is twice as large as the Hilbert space H gy
of the Sy—system:

Hone = Hpy ® &oHpy (6.79)
therefore, we can specify Hg, as

Hoy = 1) € Hone | m0|) =0} (6.80)

The Hilbert space Hq¢y carries a reducible representation of the 3y—algebra (equivalently, of the small
algebra ¢OEn), whereas it hosts an irreducible representation of the 8v€y algebra (equivalently, of the
large algebra ¢€n). The reader should be aware that the distinction between the small and large algebra
is not a detail - not at all! - and it can be a source of troubles, for practical computations. On the other
hand, this distincion turns out to be essential to prove that we can arbitrarily attach the 2g —2+4n+m/2
PCO insertions to the vertex operators of the correlation function, as we are now going to argue for the
case of the sphere.

Let’s suppose that we have distributed our PCOs among the n 4+ m vertex operators such that in the
correlation function we end up with having a couple of the latters (let them be called Fy, (21) and Fy, (z2))
in the ¢; and go picture at the positions z; and z3. Since none of the n + m vertex operators depends on
&o, we can switch from the small to the large algebra by inserting it in the path integral and by integrating
over it, because &y is Grassmann odd: [ d&y&, = 1. Actually, we can replace &, with £(z) for an arbitrary
z because

/ DI€]dokog(€) = / DIENdgot (2)g(€) .

where ¢ is an arbitrary function and £’ denotes the non-zero mode part of £ (£(z) = & +£'(2)). In other
words, we can attach £(z) to any of the vertex operators of the correlation function, say to Fy, (21) (so
z = z1). Now let’s rewrite Fy,(22) in terms of a PCO and of F,,_1(z2), namely as (see (6.77))

Fy(22) = f 0 G (w)E(z2) Fay 1 (22)

We deform the integration contour by pulling it off the back of the sphere; due to the BRST invariance it
passes through all vertex operators except for £(z1)Fy, (z1), which becomes Fy, +1(z1). Then, the integral
[ d&o (that in the correlation function is sitting on the left of F,,11) can be moveﬂ to the left of £(z2)
and, as at the beginning, we can use [ d&y€(z2) = 1 to soak up £(z2) and to turn back to the small algebra
again. Schematically, we have just shown that our correlation function can be equivalently written as

<...Fq1 (2’1)...Fq2 (2’2)> = <...Fq1+1(Zl)...FqQ_l(ZQ)...> 3

where the dots denote the presence of the other insertions of the correlation function. Obviously, this
expression can be reformulated in a more explicit way as

<...Fq1 (Zl)...X(22>Fq2,1(22)...> = <X(Z1)Fq1 (Zl)...qufl(ZQ)..» ,

and we learn that our 2g — 2 4+ n + m/2 PCO’s can be distributed in the correlation functions as we
prefer. This freedom is a great advantage, because - as long as our correlation function has a 2g — 2
total picture number - we can distribute the PCOs so as to obtain an expression as simple as possible

106 T be honest, in doing this we get a minus sign every time that we permute the position in the correlation function of
&o with another Grassmann odd field. But we get the same sign when we deform the integration contour of jp, because
also the position of the latter - which is Grassmann odd too- in the correlation function must be changed.
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from a computational point of view: sometimes, it is easier and shorter to change the picture number of
a particular vertex operator, out of those present in the correlation functions. Other times, we want to
exploit this freedom to change the picture number of a vertex operator whose position is not fixed, but
so far, we have always worked with the vertex operators in their Fixed version Fj;. We know that in the
S-matrix some of them will appear in their Integrated version I, (defined by Fj(z) = ¢(z)I,(z)) and now
it’s time to learn how to change the picture numbers also of these operators. We would like to mimick
(6.77) and define I ;11 as Ig41 = [@B, &1, but it turns out that we have to slightly modify this expression,
as we are now going to show with an integrated vertex operator corresponding to a massless state of the
NS-sector. To be even more explicit, let’s take it in the canonical picture: I_; ~ e®PXVX¥e=9: this
vertex operator has no c-ghost insertions at all, sd™|

Io(2) =[@p. £()I-1(2)] ~ [Qo. ()1 (2)] =
- 74 9 w) (th(w)— - Bc(w)b(w)) )f(z)fl(Z) -
C(z)

2ms
L dw TG | AER ()
_jé(z) 2mi ( ){ (z — w)? + z—w +O(1)}+ (6.81)

c(w) : (c(w)b(w)) : £(2)I-1(2)
=c(2)9(§(2)1-1(2)) + 0c(2)€(2) [ -1(2) =
=0(c€l1)(2)

this result is unacceptable, because it sits in the large algebra. In order for Iy to be in the small algebra,
we have to subtract this problematic contribution and, by following the approach of [23], we define

- 7{ dw
C(z) 211

Io(2) = [@B — Qo,§(2)14(2)] = [@B,&(2)I-1(2)] — O(c€1-1)(2) . (6.82)
We could perform a similar construction for all the I, regardless of the picture number ¢ and so we define
I4+1(2) =[Q@p — Qo, §(2)14(2)] = [@B,&(2)I4(2)] — O(c&lg)(2) (6.83)

this guess turns out to be the right one given that, for each ¢, we recover the expected relation among
the fixed and integrated operators, namely {Qg, I44+1} = OFy41, as it is easy to see

{Qu Ly} ={Qp. Q. €1,) - 0(esl,) } =

={Qp,—0(cf1y)} ={QB,0(cly)} = (6.84)
:{QBaa(qu)} = a{QB7§Fq} =
:an—i-l ;

where in the last step we used Fy11 = {Qp,{F}.
The most important lesson that we learn from (6.83)) is that

Iyp1 =[@p,&1g) +0(&cly) = {Qp, EHy — E{Qp, 1o} + 08cly + EOF,; =
=xI, — EOF, + dcl, + E0F, =

=<X + 8§c> I, =
:XMIq )

(6.85)

in other words, we can raise the picture number of an integrated vertex operator by acting on it with the
operator x™ defined by

XM (2) = x(2) + 06(2)e(2) (6.86)
and that we like to call the moving PCO.

107 et’s focus on Qo because it is the only problematic piece. Clearly, the contribution from @Q; doesn’t trigger any
problem, because Q1 is not sensitive to the presence of the c-ghost, see {(6.74)). It is also clear that the contribution from
Q2 doesn’t give any bad surprise in [Q2,&(2)I—-1(z)]: we know that [Q2,&(2)F_1(z)] is acceptable and that Q2 ~ b, so, if
we remove the c-insertion from F_; we even lose terms from [Q2,&(z)F_1(2)].
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6.10 Degeneration limit

We have stressed a lot that we have the freedom to distribute the PCOs as we prefer. This is not com-
pletely true, because we have a constraint on their positions: they must be chosen in such a way that
they behave well under the so-called degeneration limit, as explained - for example - by A. Sen et al. in
[24]. The mathematical issues underlying the degeneration limit of a Riemann surface with punctures
are very involved (see [22]); here we give only the practical rule of thumb that lets one obtain the right
correlation function.

Let’s consider a worldsheet X, ,,, of genus g with m NS vertex operatorm and let’s suppose that we
have enough CKG transformations to fix the positions of mg of them. We need to insert 2g — 2 + m
PCOs; we introduce a y everytime we want to change the picture of a fixed vertex operator, otherwise
we use the moving version ™.

We say that the Riemann surface X, ,, is falling into a degeneration limit when one of its moduli ap-
proaches the boundary of the moduli space.

For the moduli coming from the metric, the boundary is simply the boundary of the corresponding funda-
mental region; for example, for the torus whose metric moduli space is represented with the fundamental
region Fjy, the boundary is the region 7 = +oo.

For the moduli coming from the positions of the integrated vertex operators, it is possible to show@
that the boundary of moduli space corresponds to those versions of X ,, in which one of the integrated
vertex operators comes together with another vertex operator. To be more concrete, let’s take into con-

Figure 17
Torus with a fixed vertex operator at z = 0 and an integrated vertex operator at z = y.
Both of them come from the NS-sector and they are in the canonical picture.

sideration the case of a torus (parametrized with z) with two vertex operators; we know that for g = 1
we can fix the position of only one vertex operator (let’s call it F_; and let’s put it at the point labeled
by z = 0) so the other vertex operator must be in the integrated form (let’s call it I_1(y), with z = y
describing any point of the worldsheet); see Figure We obtain a degeneration limit when y — 0. It
is possible to show that the torus falling into this limit is conformally equivalent to a Riemann sphere
which hosts the two vertex operators and which is connected to a torus by means of a “NS-propagator”,
a long cylinder (a propagating closed string) whose ends are characterized by —1 picture number, as we
represented in Figure[I§. A similar description of the degeneration limit holds for every Riemann surface
and the boundary of the moduli space associated to the positions of the vertex operators in X, ,,, can be
represented by a setlzgl of degenerating Riemann surfaces, each of which consists of two Riemann surfaces
Eg1,m1> Sgs,m, connected with the NS-propagator (g = g1 + g2 and m = mq + ma).

The rule of thumb: we locate the PCOs in such a way that we restore the right picture number 2g; — 2
in both Riemann surfaces g, m,, Xg,,m, into which the worldsheet splits in the case of a degeneration

1083ee [4] for the Ramond case, which is more troublesome and which will be out of our interest.

109Here the point where we should resort to powerful tools/results of algebraic geometry is, because we should deal with
the so-called “Deligne-Mumford compactification” of the moduli space of a Riemann surface with punctures; see [22].

110Clearly, there is a degenerating version of 34, for each possible degeneration limit. In the case of the torus with two
insertions, only the degeneration limit y — O is possible, so in this case the boundary of the moduli space is described only
by the torus with y = 0.
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y—0

Figure 18
Representation of the limit version of the Riemann surface ; o which sits at the boundary
of the moduli space associated with the positions of the vertex operators. On the right, the cylinder
connecting the sphere and the torus has to be thought of as very long. The ends of this cylinder carry
picture number -1 (which is the canonical picture of the NS vertex operators), because this degeneration
limit is obtained by taking a particular value for the position of an NS-vertex operator.

limit.

For example, in the case of y — 0 for the torus with two vertex operators, we obtain a sphere with
Np(F_1) + Np(I-1) —1 = —3 and a torus with N, = —1 (remember that each end of the NS-propagator
contributes as an NS-insertion in the canonical picture). Both the sphere and the torus developed in the
degeneration limit need one PCO. We can then satisfy this requirement, by:

e fixing one xy PCO at a point of the original torus, say z = uy (with u; fixed);

e locating a moving PCO x™ (uz) “nearby” the position y of the integrated vertex operator I_(y) so,
when y — 0 and I_(y) flees to the sphere with F_1(0), x* (uz) must follow them. For instance,
we can set us = ay, with o € C\{0} constant (o = 1 corresponds to working with Iy(y) instead of
1_1(0)).

Figure 19
On the left, a possible way to distribute the two PCOs on ¥; 5. As we
can see on the right, this choice is compatible with the degeneration limit y — 0.

This choice gives the right correlation function, because in the y — 0 limit we have the picture represented
in Figure and we see that both the sphere and the torus have the right picture number (respectively
—2 and 0). We could also have decided to fix x(u1) to u; as before and to fix another x(uz) in us = 0 so
as to work with Fy(0) instead of F_1(0); actually, this correspond to setting oz = 0 in the previous case,
because xM (0)F_1(0) = x(0)F_1(0).
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So far, we have gathered all the basic background about perturbation theory in string theory. In the
next chapter, we are going to use what we have learnt to understand the spontaneous supersymmetry
breaking that happens at one loop for particular compactifications of the heterotic superstring; after
presenting the physical problem, we will evaluate the entity of the spontaneous breaking, by computing
the mass splitting that appears among fields of the same supermultiplet.
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7 Spontaneous supersymmetry breaking

In this chapter, we will briefly introduce the problem and then we will delve into calculations. We will
refer to [17] for all the details about compactifications and to |2}, 25| 26} 3] [4] for physical and computa-
tional issues.

We know that the heterotic superstring is characterized by N=1 supersymmetry in D=10 dimensions.
We can reach the phenomenologically desirable N=1 supersymmetry in d = 4 dimensions (that is, one
gravitino, four supercharges) by compactifying the theory on a Calabi-Yau three-fold (CY3), namely on
a compact complex manifold of real dimension 6 that is characterized by SU(3) holonomy group.

The complete form of Hj is ,
I{Ig =dB — Léo(ch(A) - ch(w)) ,
9io
were we denoted with Qcg(w), Qeg(A) the Cern-Simon 3-forms for the spin connection w and for the
gauge connection A:

Qos(A) = tr(A/\F2 - %A/\A/\A) dQcs(A) :tr(FQ /\Fg)
7.1
Qes(w) :tr(w/\R—%w/\w/\w) dQeos(w) :tr(R/\R) -

In a topologically non-trivial situation, the spin connection, gauge field and Chern-Simons forms are not
globally defined. At best, we can cover our manifold with open sets on each of which these are defined
with suitable relations imposed in the overlapping regions (as it happens for the gauge field configuration
of Wu-Yang’s monopole). However, the gauge invariant field strength Hs must be globally defined, since
it is a physical object (for instance, the energy contains a term ~ (H3)? ). To see what this implies, note
that the Bianchi-identity reads as

dH; o —tr (F2 A Fg) n tr(R A R) : (7.2)

now, let S; be a closed (i.e. with no boundaries) four dimensional submanifold in space-time. In general,
Js, tr (R A R) and [g tr (F2 A FQ) may be non-trivial topological invariants, but (7.2) implies

/54 r(RAR) —tr(RAR)] /S di; =0 | (7.3)

where in the last step we used Stokes theorem and the fact that Hs is globally defined. We have just
obtained a restriction on possible compactifications of the string theory: the cohomology class represented

by tr (R A R) —tr (F2 A F2> must be zero. The simplest solution to this constraint is achieved by the

so-called standard embedding of the spin connection in the gauge connection, which consists of switching
on a background field A such that A = w; note that in this way we can then set Hs = 0 everywhere
and this makes life easier (compactifications with fluxes are more involved). For a Calabi-Yau manifold,
the spin connection takes value in the Lie Algebra of SU(3) and the standard embedding choice thus
breaks the SO(32) and Eg x Eg gauge group of the heterotic superstring to SU(3) x [U(1) x SO(26)]
and SU(3) x [Eg x Eg|, where we denoted the unbroken subgroup between the square brackets; we will
consider only the SO(32) heterotic superstring, because it is precisely the unbroken U (1) factor that may
trigger the spontaneous supersymmetry breaking, by leading to a Fayet-Iliopoulos D-term.

It turns out that - at one loop level - the U(1) factor is affected by a variety of anomaliesIn_Tl All
these anomalies are removed - at one loop level - by the so-called Green-Schwarz mechanism, which is

111 Anomalies involving three U(1) gauge bosons, one U(1) and two SO(26) gauge bosons, one U(1) gauge boson and two
gravitons. Note that the U(1) and the SO(26) gauge bosons that we have just mentioned are those obtained by decomposing,
under SU(3) x SO(26) x U(1) the adjoint representation of SO(32) as

496 = (8,1)0 @ (1,325)0 @ (1,1)0 & (3,26)1 @ (3,1).2 @ (3,26).1 & (3,1)2

In this language, the U(1) gauge boson is (1, 1), whereas the SO(26) gauge boson is (1,325)¢ (clearly, they are singlets
under SU(3)).
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essentially a way to give a Stiickelberg mass to the U(1) gauge boson, which acquires the longitudinal
degrees of freedom by incorporating the Hodge-dual of the anti-symmetric d=4 tensor B, .

At one-loop order, Green-Schwarz interactions I} ¢ in the 10-dimensional spacetime
Iéf{sw/ BAtr(Fy AFy A Fy A F)
R4xCY3

are generated; B is the usual two-form field coming from the NS-sector and F5 is the field strength of the
S0O(32) gauge vector A,,. Because of the standard embedding choice (4, = w,,), some of the background
gauge fields (those with index 4 corresponding to an internal direction, because only in this case w, # 0)
possess expectation values; we can then isolate from I'Y ¢ the contribution coming from the internal
space and we find that the Green-Schwarz interaction I¢, g in the 4-dimensional bulk is given by

Ié,sfvp/ BAF,
]RAL

where we denoted with Fb the field strength of the anomalous photon /1# and where the real number p
takes into account the integration over the C'Y3, that is

pN/ tT‘SU(g)FQ/\FQ/\FQ
CY3

To understand the effect of the I, ¢ interaction, it is convenient to dualize the purely four-dimensional
part of B to a scalar field a; the B A F, then dualizes to fl“(’?#a and fig will give a term like

D,aD"a = (8,a + pA,)(0"a + pA*)

In other words, the anomalous photon A acquires a Stiickelberg mass ~ p? and the B field is not
invariant under the gauge transformation, because the U(1)-gauge transformation fl# — /1# — 0,5 must
be accompanied by a — a + ps.

From the perspective of the N=1 supersymmetry in d = 4 dimensions:

e the field a is the imaginary part of the scalar component of the chiral multiplet S,
S.=e 2 —ia+0q+ ... , (7.4)
where we denoted with ¢ the dilaton (g5 = e?) and with r, the dilatino;

e the U(1) gauge field flu is part of a vector multiplet, whose auxiliary field we call D;

e there are some massless charged chiral multiplets
SPi =p;+ Oa(wi)a + .. (75)

that arise in the four dimensional bulk after the expansion of the ten-dimensional SO(32) vector
multiplet. We denote their U(1) charges as e;.

The potential energy of the effective low energy field theory is

b2

=5 (7.6)

The important thing to know is that the expectation value of the D-term D - beyond getting a natural
contribution from the massless charged chiral multiplets p; (~ >, €;|p;|?) - now is also influenced by the
chiral multiplet S., according to

> — p . ,2— 2 . .2 .
D= Re S, +Zi:ez|pz| = Pgs +zi:ez|p1| ) (7.7)
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intuitively, this happens because all the U(1)-charged fields contribute to the auxiliary D term and, as
we have explained above, at one loop level the a field (which is a component of the S. chiral multiplet)
acquires a U(1)-charge proportional to p. Thus, because of the mass acquired by the U(1)-photon Aw
the D-term is corrected - at one loop level (¢2) - by the parameter p (which is a topological invariant of
CY5: it’s half of its Euler number).

This is the only known superstring model in which supersymmetry can be spontaneously broken in
perturbation theory, despite being unbroken at tree-level. Indeed, if we start, at the tree-level, with the
supersymmetry preserving (V = 0) vacuum < ¢; >= 0 (let’s suppose e; # 0 for a partiular i), then, at
the loop level, we get V = p?¢g2/2 > 0 and supersymmetry is broken. As expected, V = p?g2/2 > 0 only
if p # 0, because it is the presence of p that induces A to become massive and the mass of A is what
precisely relates S, (a € S.) to D (which belongs to the same supermultiplet as A*).

The fact that p is proportional to the Euler characteristic of CY5 suggests to treat p essentially as an
index: thus, it shouldn’t receive contributions from the massive modes and, in order to analyze the
supersymmetry breaking, it should be enough to examine the massless spectrum of the compactified
theory. Indeed, the supersymmetry breaking can be detected by looking at the mass splitting among
the fields of the supermultiplet S, that is developed at one loop level. Actually this is already apparent
in formulae and , from which we can see that the field p; corresponding to e; # 0 acquires a
mass m? = e;p. Instead, its superpartner (¢;), cannot acquire a mass because terms like (¢;) ,(¢;)q are
not Lorentz invariant ((¢;), and (1;), have opposite chirality), while (¥;),(¥:)a and (¥;)a(¢i)a do not
conserve the U(1) charge.

We’ll focus on the scalar p; which is a singlet of SO(26) (and carries U(1) charge 2). Our goal is to
compute the mass term for p;, namely the two point correlation function p;p;. Clearly, this field comes
from the NS-sector of the theory so we know how the vertex operators corresponding to p; and p; should
look like; in their fixed versions, they are

F_y =cce Vet X F* =cce Vret2X
A I,

where we added also a ¢ in addition to the formula (6.57)), because in we considered only the right
sector of the theory. As we discussed in , the operators V' and V* are very important, because
they contain all the physical information about the nature of the particle. Here they are made of the
degrees of freedom associated with the compact directions, consistently with the fact that p; is a singlet
of SO(26). We like to streamline our presentation by saying that all what we need to know about V' and
V* is that they are Grassmann odd primary operators of conformal dimensions (1, %) (so F_1 and F*,
have vanishing conformal dimensions) which satisfy the following OPEs:

GV (w,w) = G )V (w,0) =~ —— T (w,0) + Oz — w)
XU () V™ (w, @) = G™ (2)V* (w, ) = ———V* (1, @) + O(= — w) (7.9)

zZ—w

V(z,2)V*(w,w) = —#Vf,(@ Z)+O(z — w)

In these formulae:

e V and V* are Grassmann even (they are the superpartners of V' and V*) vertex operators of
dimensions (1, 1) of the CFT associated with C'Y3. According to (6.78), x ~ e?GXY, so we expect
the operators V and V* to appear when we’ll change the pictures of V' and V*. Anyway, we are
not interested in giving a precise description of V and V*, because we will see that they will not
influence the final result of our computation;

e V}p is the vertex operator of conformal dimensions (1, 1) that represents the D term discussed above,

namely the auxiliary field contained in the supermultiplet of the U(1) anomalous photon /Al,,

Unfortunately, there is not a systematic theory of correlation functions with insertions of vertex
operators for auxiliary fields (as opposed to vertex operators associated to physical states), and there
is no standard recipe to build such a vertex operator. Nevertheless, V5 appears in the literature

in a number of interesting calculations that suggest to interpret it as the vertex operator of D.
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Clearly, the most important hint in this direction comes from the fact that, under the space-time
supersymmetry, it transforms as it should, namely into the gaugino vertex operator.

e the coefficient ¢ with which V5 appears in the product (7.9) depends only on the U(1) charges of
the operators V and V*; in other words: g o< e;, where e; is the charge of p;.

We stress one more time that we will treat V' and V* as “black boxes” satisfyng the relations .
We prefer this approach, because in this way we can present the strategy that will let us perform the
computation in a neater fashion; of course, one can always find the explicitlEI form for the vertex operators
V and V* and check that formulae indeed hold.

We have to compute the 2-point function of the vertex operators F_; and F*; at one loop and extract
the mass term from it (i.e. the term that survives for k¥ = k3 = 0, which are the on-shell conditions
for F_y and F*,, see later). So we have to insert them on a torus with two PCOs and the positions of
the latter must be chosen according to respect the degeneration limit, as explained at the end of the last
chapter.

We describe the torus as we explained in section In particular, we can use the fundamental region
Fy defined by and the “global” chart given by the coordinate z:

z &z 427
(7.10)
z Zz 42w

as discussed in[5.5] this variable doesn’t allow us to properly describe the points of the torus corresponding
to C_p, but this is not a problem, since it is a zero-measure set and the only Dirac delta with which we
have to deal will be developed at the position of F_;, that we fix at z =0 (and z = 0), far from C_, (and
Cy).

We have to take into account the b-insertions associated to the moduli of the torus with two punctures:

e for the metric moduli 7 and 7, we already computed that these are

2 b 2
b, 2m% dz2mb(z bz = 2m}{ dz2mb(z) (7.11)

where C, is the circle in the torus corresponding to Im z = a.

e for the moduli corresponding to the position z = y and Z = gy of F*,, the proper b-insertions will
transform F*,(y,7) into I*,(y.7), as explained in (5.53).

We have fixed F_;(z = 0,Z =0) at z = Z = 0 and we have I*,(z = y,Z = g) that is free to move on
the torus. Then, according to the proper treatment of the degeneration limit, we can fix a PCO x(z) at
z = u; and insert a moving PCO x™ (z) at z = uy = ay, precisely as we explained at the end of the last
chapter.

To sum up, the vertex operators are distributed as in Figure [20] and our 2-point function will be
proportional to

/Fo d*r /Fb d*y <b'rb*FX(U1)F1(0,O)XM(ay)I*1(y’y)> _

(7.12)
= [ e [ (babentun) P 0.0)[xton) + d6(anetan] 11 )
Fo £,
where, in the last step, we used the definition (6.86) of x™
This correlation function is the right one only for a = 1. In the last chapter, while we were searching
for the expression of the moving PCO (see (6.85))), we assumed that it was always acting precisely at the

2Byt this requires a sound background in string compactifications.
In the special case that C'Y3 is a Calabi-Yau orbifold (we mean the quotient of the six-dimensional torus R/A by a finite
group of symmetries of A that preserves N=1 supersymmetry in four dimensions) the operators V and V* are simply given
by
V ~ empg™ AP V* ~ empgh™ AP
where m,p, ¢ are SU(3) indices. Note that, as we mentioned, V has U(1) charge 2 (and V* has charge —2).
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Figure 20
The distribution of the vertex operators and of the PCOs chosen for the computation.

same spot where the integrated vertex operator I, was located; clearly, in our correlation function, this
corresponds to setting o = 1, because I_; is inserted at z = y, whereas xM is inserted at z = ay.

One can ask whether the form of the moving PCO that is not acting precisely at the spot of an integrated
vertex operator is different from the xy™ that we found in . The answer is yes, they enter the
correlation functions in a slightly different way. Unfortunately, to understand the “more general version
of the moving PCO”, one should resort to a heavy formalism, that is discussed, for example, in [4]. We
haven’t found an intuitive way to present it, so we only say that the starting point for our computation

is not , but
[ 7 [y (bben(an) s 00.0)[xten) + adten)en] 110 ) (7.13

The reader should note the tiny difference between (7.13) and (7.12)), which lies in the substitution

c(ay) — ac(y)

and which vanishes for o = 1, as expected.

Only in the second case (with ac(y)) we get a result (the right one) which is independent of the value
of . We are going to perform the calculation with , because we like the reassuring idea of a PCO
that can be located on the worldsheet wherever we want (as long as we respect the degeneration limit).
The reader who doesn’t like to take “God-given” expressions can set a = 1, start with and find the
same final result, by following precisely the same steps that we are going to present below.

Fou our convenience, here we write again all the formulae that we will need for the computation:

TXw(w) = —0XH"(w)0X,(w) + Y (w)0Y,(w)
T(w) = TX (w) + T (w)

T (w) = — 3 Bw)d () — 505(w)y(w)

T (w) = 20¢c(w)b(w) + c(w)db(w)

T w) = TXY (w) + T (w) + TP (w) + T (w)

X (w) = —# ()DX,, (w) (7.14)
G(w) = GX¥ (w) + G (w)
3(w) = X @p(w)
B(w) = e~ g (w)



jg(w) =: c(w) <TXw(w) + T (w) 4+ TP (w) + 8c(w)b(w)> t4

(7.15)

E(z)n(w) = ﬁ + ...

eN19(2) e120(2) — (5 _ )N ; glata)e(w) L

0X(z2) : ethX(w) . — —Z’OLk . etk X (w) b + o
2 z—w
. /k2/4 ) 8 )
TXV () . kX (w) . — YFT2 ikx(w) . Gw L ikX(w)
(2)ze (z —w)? ‘ +(z—w) © +
etk X(2) L ke X (w) . (2 — w)a/(klkz) . ei(k1+k2)X(11;)(1 L O(z— w)) :

Note that we have slightly changed the conventions. In particular, we will refer with X* and ¢* only to
the non-compact directions (p = 0,1,2,3); then, the energy-momentum tensor 7" for the matter sector
splits as T = TX¥ + T and analogous relations hold for its superpartner (G = GX¥ + G'™'), where we
labeled with “int” the contributions coming from the internal CFT.

We stress that now we are working on the torus, so the Green functions among the fields are in general
different (much more complicated!) from those that we have in the complex plane and that we used to
study each CFT; this is nothing strange, since Green‘s functions are the solutions to particular PDEs and
the latter are sensitive to the boundary conditions of the problem. This implies that the OPEs among
fields on the torus will be different from the OPEs among the same fields on the sphere/complex plane.
Nevertheless, we expect the divergent parts of the OPEs to be independent of the worldsheet, because
they arise only when two vertex operators come together. This is the reason why the OPEs that we have
just written look like the same of those ones that we have already met when we studied conformal field
theories on the complex plane/sphere. Locally one should not feel the boundary conditions and this is a
great advantage for our calculations, because all the result will come from a Dirac delta; this is a lucky
case: for this scattering amplitude, we don’t have to be worried by the (non-singular) corrections to the
OPEs due to the periodic boundary conditions of the torus and we can use the (divergent parts of the)
OPES as if we were on the sphere.

7.1 The bone of the calculation

The most important step to get the right result is the following simple and seemingly innocent one: in
the correlation function, we substitute x(u1) with

x(u1) = x(0) + [x(u1) = x(0)] - (7.16)
We'll separately analyze the x(0) and the x(u1) — x(0) contributions.

Let’s start with the first one. When x/(0) is inserted in the correlation function, it changes the picture
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number of F_1(0,0) and we obtain F(0), namely (see Appendix [A]for the computation)

F5(0) =x(0)F_1(0,0) = x(0)&(0)c(0)e~ OV (0,0)e* X (©0) =

1

=:¢(0)c(0) |:‘~/(07 0) - %kl - (0)V (0, 0)] etk X(0,0) -1 E(O)U(O)e¢(O)V(O, O)Gikl-X(o,O) : (7.17)

In other words, x(0) transforms the correlation function into
. 1 .
/ d*r / d?y <b bs { (0)c(0 )[V(O 0) — 7k1 V(0)V (0,0)}61’“1’“070) : —E:a(o)n(o)e¢(°>V(0,o)e“ﬂ'X@vO):
Fo Fy
 [x(an) + ad€(an)elw)| 11 1))
(7.18)

As we will show later, the correlation function (7.13) is independent of the value of a, so we can take the
limit & — 1 in (7.18). As we know, this correspond to changing the picture number of I*;(y, %) and we
get (see Appendix [B))

I5(y) = lim [x (o) + ad§(ay)e(y) 1171 (0,0) = x"(0)1%,(0,0) =

% ; . (7.19)
- [V*(y’ -3 e V)V, y)] ek X(w.0)

This means that (7.18) becomes
_ ~ ) . 1 .
/ d27'/ d*y <bTbT{ :2(0)c(0) [V(0,0) - %k’l -w(O)V(0,0)} th1-X(0,0) vk &(0)n(0)e? @V (0,0)e*r-X(0.0)
Fo Py

8 [f/*(y’?) - %kz YY)V (y, y)}e“@'X(yvy)>
(7.20)

from this expression, we can drop the terms that don’t respect the constraint given by the anomaly of
the B~ system, which requires - as we know- that the ¢-charge of the insertions must be 2g — 2 = 0, so

F20) i

/FO d>r /Fb a2y <b b= : ¢(0)c(0 )[V(O 0) — fkl p(0)V (0, 0)} th1-X(0,0) ;5 -

X : {V*(y,ﬂ) - %7@ w(y)V*(y@)} etk X(w.9) >

In this expression, we can distinguish three components: the contribution without any ¥*, a piece which
is linear in ¥* and a bit with quadratic dependence on *. The first term vanishes because of the sum
over the spin structure, that, in our formalism, is hidden in (...); this claim is true because of the “usual”
GSO cancellation between spin structures that also leads to the vanishing of the 1-loop cosmological
constant for superstrings iIFEl R'9. Also the contribution with linear dependence on " vanishes, this
time because of the four-dimensional Lorentz invariance of the two dimenional field theory. In other
words, reduces to the contribution quadratic in ¥*, which is

[ [y (bebe c0)0)| = G HOVO.0)] X0 s | = Lo i) ) X0,
(7.22)

By Lorentz invariance, the " correlator is proportional to n*”, so ([7.22) contains an

Ky - ko

13In our case, we have compactified six dimensions, but it can be shown that this difference doesn’t matter: the fermionic
partition function still vanishes after the sum over spin structures.
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overall factor. We have to remember that p; is massless at the tree level, so the on-shell condition (which
comes from the BRST invariance of the vertex operator) gives kf = 0 and - obviously - the same holds
for ko, k3 = 0. As in QFT, also in string theory we have a Dirac delta in front of the S-matrix element
that forces the momentum conservation, so we are actually working with k)" + k5 = 0. This means that

0= (ki + k)2 = k3 4+ k2 + 2k - ko = 2k1 -k (7.23)

and must vanish.

We have thus shown that the contribution to our original correlation functlon of the X O) coming from
formula is zero. All the result must come from the term y(u;) — x(0) of ( as we are now
going to show

In other words, we are left with computing

[ [y bbe [xt) = XO 0.0 [x(o) + o€t s m)) ()

provided that we take the limit & — 1, because only in this case we are sure that this term is all the
contribution that the result gets. Clearly, we are free to take this limit when we want so we postpone
it till the end of the computation, so as to avoid - in the meantime - dealing with a variety of terms
resulting from changing the picture of I*,(y, 7).

We rewrite x(u1) — x(0) as

X(u1) = x(0) = {QF, (u1) — £(0)} (7.25)

and we deform the BRST-contour so as to get BRST commutators/anticommutators for the other inser-
tions. We obtain (see Appendix |C))

[ [y (b0 60m) — €0} 0.0)xten) + 00€(ane)] 1)) -

}
}

£(un) = €(0)] F-1(0,0) [x(ay) + ad€(ay)e(y) | 1%, (4,9)

== [ [y ({QBb e etm) — €0)] P 0.0)[xton) + ade(an)cly) +

I (y, )
_|_
b [sr) = €00)] [ @5, F10.0)][xtaw) + @0€(ane(n] 1710 )+

brbr [£(u1) — £(0)| P4 (0,0)x(ay) [ Q. I (v, y>]>+

<
<
<
+/ dQT/ d2y<b7b7 :g(ul)—g(O):F_l(o,O) [Q§7X(ay)}fi1(y,y)>+
<
<

+/ dQT/F &2y { b.b- :g(ul)_g(o):F_l(o,o)a{Qﬁ,aﬁ(ay)}C(y)ﬁl(y,y)>+

- [ [y (b [stun) - )] Fa(0. 00008 {@ et )} )
0 b B -
(7.26)
Clearly, from the definition of the PCO, we get

Q. x(ay)] =0
{QF, 0¢(ay)} = Ox(aw)

moreover, from the BRST characteristics of the fixed and integrated vertex operators, we know that
[QE, F-1(0,0)] =0
(QF. 1%, (5,7)) =[Q, e *WV* (y, )= X)) = o, (c<y>e*¢<y>v*<y, P X0 =0, (eI (4. 1))
{QF, c) 21 (y,9)} ={QE, c(y)e "V (y, e W} =0 |

(7.27)

(7.28)
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which are formulae that we also explicitly show in Appendix
Finally, there are the BRST anticommutators with the b-ghost insertions. Obviously,

{QF.b-} =0, (7.29)

becuase the left and right sector of the theory are independent. It’s more involved, instead, to show that

{QF,b-} (7.30)

generates a total derivative with respect to 7 which vanishes after the integration over the fundamental
domain of the metric moduli space@
Thus, the net contribution that we get from (7.26) is

[ [y bt eun) - €0)] Fa0.0) (@, (e 0.5) + adxanetn) I (5] )
(7.32)

where, as always, we have been careful to distinguish the partial derivative with respect to the argument
(0) with the partial derivative 0, with respect to y; it is then immediate to see that([7.32) can be written
as a total derivative, namely as

[ [ o, Kw (€)= £O)] F1(0, 0)x(ap)ew) "1 v y>>] , (7.3)

which is a compact expression corresponding to (let’s insert the formulae for F_1(0,0) and I*,(y,9))

/ d’r / d*y o, Km [€(w) = €(0)] e(0)e(0)e= OV (0,0)e™ X O (ay)e(y)e WV (y, y)d””'”y’@)ﬂ
Fy Fy
(7.34)

Because of the constraint on the ¢-charge, only the components of x(ay) with ¢-charge equal to 2 can

contribute to (7.33); according to (6.75)), these are

x(a) = — 3 On(0y)eVb(ay) — {n(ay)( P Vb(ay)) (7.3)

¢- charge=2

114We don’t give the proof, we only roughly outline it. By using the fundamental relation {QE,b(2)} = T°%(2) we get

that (rewrite br as in (5.39)))
1 A 1 A
{QF.b-} = {QF, — (o)} = —(T%,0:h) ~ 0,5%"
47 4
where, in the last step, we used the fact that Tt ~ % (here St is the total action, namely the sum of the action of

the superstring and the actions of the ghost systems). So the first line of the right-hand side of ({7.26)) can be written as
(we hide be d?y and the presence of the other operators in the dots)

P < {QE,b;}.. >~ [ d?r <88t >~/ d%/D[@]e*S“”[‘I’lafstot[cp}.,, =
Fy Fy Fy
~ d%/D[cp}aT (e*S“"[‘N)... ,
Fo

where we denoted with D[®] the path-integral measure of all the fields ® of the theory. Then, with some work (read around
formula (2.194) of [6] to get an idea), it is possible to show that we can bring the derivative dr out of < ... > and we end
up with

/ &7 < {QF,b,}... >~/ d%/D[@]aT(e*S“”‘"]...) ~ d276T<< >> : (7.31)
Fy Fo Fo

where | < ... > | is shown to be zero for 72 — +oco. Thus, (7.31]) vanishes, because the only boundary that Fy has is at

T9 — +00, where the integrand is zero.
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By taking the limit o — 1, we get (see Appendix @D)

— * —\ tko- 7] 1 * —\ ika- 7]
X(ay)‘¢- Charge:QC(y)e (W), (y,79)e k2 X(y,9) _ _Zn(y)eaﬁ(y)v (y,7)e k2 X (y,9) : (7.36)

which can be inserted into (7.34) to obtain

1 = _ _ ik1-X (0, D o ik X (.7
4/Fo 2T /Fh d2y8y l<b767 [f(m) *5(0)} ¢(0)c(0)e ¢(O)V(070)e k1-X (0 O)U(y)e¢( W (y, §)et® X( )>]
(7.37)

This is a total derivative in y. The torus has no boundary, so we get a non-vanishing result only if the
integrand contributes with a singularity like

)

Q=

because in this case we can use the well-known formula
1
83,5 =27m(y,y) - (7.38)

In particular, this means that all the result to our correlation function comes from the limit y — 0 and
we can use the OPEs to understand what the integrand of (7.37) will become in this limit. Because of
the on-shell condition on ki, ko and because of (7.23)), we have

: ek X(0.0) . ik X(y.0) . — | y|a/k1'k2 el Mtk XWT) L O(y) =14+ 0(y) . (7.39)

The other possible OPEs in the game are

[é(w) = £)]a) = - +0w)

(7.40)
e POetW) — _y 4 O(y?)
and, most importantly, the OPE (7.9), namely
* — q
V(0,00V*(y,5) = 5‘63(0,0) +0(y) - (7.41)

The only way to get, in the integrand, a Dirac delta that is not multiplied by a positive power of y is to
pick up the first terms from all these OPEs:

i [ [ e, <bTch(o>c<0>[£<u1>—s<0>}n<y>e—¢<°>e¢<y>v<o,o>V*<y7y)e"’“‘X“”’em'X(%y)> B
4 Jp, F,

=1/ @ [ e, [<bTch<o>c<o> [€(u1) = £0) | ) # @DV (0,00 (y, e X O0) ik X(w) >] _

y

3 X (=) x LVp(0,0)x1==2 V5 (0,0)
B 1
= _g/ d*r <b7brC(O)C(O)Vﬁ(OvO)> X/ deayj =
4 F, Fy Yy

— _%q /F d>r <bTETE(0)C(0)Vf)(O, 0)>
(7.42)

We have thus found that at one-loop level a mass term p;p; is generated and this is proportional to the
expectation value of the D-term.

The computation explicitly shows that the perturbation theory around the vacuum < p; >= 0 (that
is supersymmetric at the tree-level) leads - at one-loop level - to a mass splitting affecting the chiral
multiplet S,,. Note that our calculations have been performed around the vacuum < p; >= 0, because
we supposed p; to be massless at the tree-level (according to formulae and , if < p; ># 0 then
the field p; would be massive already at tree level).
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7.2 The independence of «

More times we have mentioned that we are free to distribute the PCOs as we prefer, as long as the
degeneration limit is respected. With our calculation, we can explicitly check that this is the case.
Indeed:

e the final result doesn’t depend on the fixed position u; of the PCO x(u;). We note that all the
dependence on w; is erased at the very end of the calculation, thanks to the first line of .
Actually, at this comment, the careful reader should be very upset. All the computation was based
on the innocent (innocent not at all) equation (7.16)), where we wrote x(u1) = x(0)+ (x(u1) — x(0))
and then we showed that the contribution coming from x(0) alone is zero (see the comments under
(7.22)). But we have just noted that all the contribution coming from x(u;)— x(0) is due to —x(0),
because of the first OPE in . It seems that we have reached an absurd: how is it possible for
x(0) to give zero contribution in the first case and, at the same time, to give all the non-vanishing
contribution in the second case? We have to be careful. It is wrong to say that in the second case
(when there is x(u1) — x(0) in the correlation function) all the result comes only from —x(0). Even
though the OPE seems to suggest that only £(0) is important for the calculations, the latter
are right only when £(0) is accompanied by &(u;) in &(u;)—£(0). This is because of the tricky nature
of the bosonization of the Sy system, which requires a lot of attention, in particular at loop levels,
where the distinction between the small and large algebra becomes essential. A detailed analysis
of this kind of issues is beyond the purposes of this thesis, so we refer to [4]. It turns out that
on surfaces with genus g > 1 the bosonization of the superconformal system brings into the game
unphysical singularities (the so-called spurious singularities) which make life harder. To avoid this
kind of problems, we should always work with the small algebra. This means that we have to plan
our manipulations so as to avoid working with the zero mode &y: the field £ can explicitly appear
only through its derivatives 0"¢(z) and through differences of &s (like £(u1) — £(0)). It is precisely
from this point of view that also x(u;) contributes to the final result, because £(u1) is necessary to
remove the zero mode &y from £(0);

e the correlation function ([7.13) is independent of the value of a. By taking the total derivative with
respect to « of formula (7.13), we get

% /F d27—/F d2y <bq—be(U1)F1(0, 0) :X(ay) + Ozaf(ay)c(y)} Iil(y, y)> =

/F d*r /F dy < brbrx(u1)F-1(0,0) :y{Qg,aé‘(ay)} + 0&(ay)c(y) +ayazg(ay)c(y)} I*l(y,y)>
= /FO d*r /Fb d*y <b757x(u1)F1(0,0

where we substituted, in the first line, x(ay) with its definition x(ay) = {QE, £(ay)}, because now
we want to deform the BRST—contour 0 as to obtain BRST anticommutators/commutators on the
other fields, as we did in (7.26). As before, the antlcommutor {QE,b.} gives a total derivative
which integrates to zero on the metric moduli space, and {Q%, b;} vanishes as also [Q%, F_1(0,0)]
does too; on the other hand, [Q%, I*,(y,§)] = 9, (c(y)I*1(y, 7)), as we saw in (7.28). Thus, we can

rewrite (7.43) as

/F P /F iy <b bex(u1) F-1(0,0) [yd€ (ay)d (<y>1*1<y,y>)+ay(yaaay))c(y)ﬂl(y,y)}> :
(7.44)

=

W@ D)1 (0n1) + 0, (4060 )t I"1 9] )
(7.43)

which is simply

[ 7 [y 0, (b P 0.0 [sE e 00 ) (7.4

Again, the torus has no boundary so (7.45]) is non-zero only if a Dirac-delta is developed. We can
obtain a term ~ % in the integrand only when the two vertex operators F_;(0,0) ~ V(0,0) and
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I*,(y,g) ~ V*(y,y) come together, so we need to analyze what happens in the y — 0 limit:

F1(0,0) [y0€(ay)ey) I (4,9)] =
= yé(O)c(O)e“i’(O)V(O7 O)eikl'X(O’O)aé(ay)c(y)e_‘b(y)V*(y, gj)eik2‘X(y’y) =
= ye(0) c(0)e(y) ¢ ?Ve *W V(0,0)V*(y, g) ¢ X0k X WD) e (ay) =

~y+O(y?)  —51+0() 1V, +0(y.9) 1+0(y)

Q=

(7.46)

where, in the last step, we used the OPEs (7.39), (7.41), (7.40) and the fact that the ghost c is a
Grassmann odd variable (i.e. ¢(0)c(0) = 0 which means that ¢(0)c(y) = O(y)).

Thus, the integrand in doesn’t develop a Dirac delta and it integrates to zero: the correlation
function is independent of the value of «.

7.3 The old computation

We want to conclude this thesis by presenting how our correlation function used to be computed in the
80’s (see [26] and [3], for example).

At that time, it was not clear that the PCOs should be placed according to the degeneration limit and,
to compute the mass-term p;p;, they legitimately thought to locate one PCO on the top of each vertex
operator.

This choice corresponds, in our language, to set « = 1 and w3 = 0, so the starting point of the old
computation is precisely our formula (which - remember it! - was the “x(0)” contribution of
fomula ) Then, we can follow the same steps as before and arrive again at , namely at

= /F0d27 / bd2y<b7576(0)0(0){k1~¢(O)V(O,0)}eik1'x(0’o)[kz'¢(y)V*(y,ﬂ)}€ik2'X(y’g)> - (147)

Obviously, they knew that this term vanishes if we mantain both momentum conservation and the on-shell
(BRST-invariance) condition for our vertex operators, because is proportional to k; - k2. The Dirac
delta that forces the conservation of the momentum of the system comes, in the path integral approach,
from the integration of the zero modes of the field X*s, so they proposed to perform this integration as
the very last step of the computation. From a practical point of view, the right result should come, in
their opinion, from imposing the conditions

k? = k2 =0

7.48
k‘l . ]412 =€ ( )

on formula (7.47) and from performing the limit ¢ — 0 at the very end of the calculations. This strategy
will lead to a non-zero result because the ky - k2 factor coming from < ky - 9(0)k2 - ¢(y) > multiplies an
integral that diverges as 1/kj - ko. This singularity arises near y = § = 0, where the following OPEs hold

. Xl 1, X(ul o 1
etk1-X(0,0) yika- X (y,9) — — etktka) X)) (1 + O(|y|?)) =5 —(1+ O(ly»)
[y ke [y ke
g
YO () =~ -+ 0) (7.49)

V(0,00V* (y, ) = %%(0, 0) + O(y, 7)
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So, we have

3 o [y (b)) [ w0V 0.0)] X0 (30 ) -

1 _ ) ) _
:4/1fT/‘fy<@hdmdmkrwWWw¢@H4&®VW%wdhX@mahxmw _
Fo Fy

1
Mikz yo@y)  $Vp(0.0)+0(y.9) oz A0 (1y12)

. _ 1
0" [ B c0el0Vp(0.0) [ Py i + (sanishing terms for ky -y - 0) =
Fo By
ki-k - 2
= [ Prlb 00V 0.0)
4 Fo —ky - ko

(7.50)

note that the integra be d*y W is clearly positive and this is consistent with the result 27 /(—k; -
k2) because, in order to make it convergent, we have to take the k; - k2 — 0 limit from below, namely
ki-ky — 0.

The result of the amplitude is then

™

qg/Fd27<b75.;5(0)c(0)vb(070)> , (7.51)

which is precisely the result that we computed with our approach, see , except for a sign. Intuitively,
the results and differ for a sign because, according to our strategy, the final result comes
from the x(u1) — x(0) ~ —x(0) contribution (“only ”—x(0) gave a contribution!), whereas, according to
the old approach, it instead arises from the insertion of x(0).

Note that the sign is relevant because if mzi o+ < 0, then a tachyonic direction is developed and the

classical vacuum becomes, at one loop level, unstabldn_q If we want to pick up the right sign, we need
to distribute the PCOs according to the degeneration limit.
The reason why the old approach gives the right result (modulo a sign) despite the fact that momentum

Figure 21
The mass shift of the massless particle p; can be computed slightly off-shell
by treating p; as a resonance in a scattering amplitude with four external particles.

conservation was only imposed at the end can be understood by computing another correlation function.
One can consider a scattering amplitude in which the particle p; appears as a resonance or intermediate
state. Such an amplitude (see Figure is affected by the mass shift of the p; particle, but now the
latter can be slighlty off-shell. So k% and k3 are not properly zero and, correspondingly, we can consider
ki - ky # 0, as we have done throughout this section. The mass shift §m? of the p; particle appears in
the perturbative computation of the scattering amplitude of Figure 2] as the coefficient of a double pole,
because of the usual expansion

1 1 1
—_— = — — —0m?— + .. 7.52
k2 4+om?2 k2 k2 k2 ( )
115%We don’t compute the integral here because it is straightforward; it is enough to note that all the contribution in which
we are interested comes from the region around y = § = 0, so we can equivalently calculate the integral fB(o 5) d?y m,

where B(0,0) is a little ball of radius 0 centered in y = 0.

1161 this case, according to (7-6]) and (7-7)), we expect a supersymmetric stable vacuum to be developed at |p;|2 = —pg2/e;
provided that there are no D-terms for the other fields.
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Appendix A Calculation for (7.17)

In this appendix we will be very precise with the computations, because we want explicitly show that
if we are interested in a local issue (as changing the picture of a vertex operator is) then we don’t have
to worry about all the non-singular corrections that the OPEs get from the boundary conditions of the
surface and we can pretend to be on the sphere.

First of all, we clarify our conventions.
In QFT, Wick’s theorem states that a time ordered product of normal ordered bunches of fields can be
simplified to a sum over all possible contractions performed over fields evaluated at different time. In
radial quantization, we analogously have that radial ordered product of normal ordered bunches of fields
can be simplified to a sum over all possible contractions performed over fields positioned at different radii.
With the label “NER” we will precisely mean that we have to do all the contractions among Not Equal
Radii fields. Also,

e &(w)p(0) is the 2-fields contraction. It means that we have substitute these two fields with their

correlation function;

c
—_—~
o ¢(w)"#(0)™ will mean that we are taking into consideration all the possible terms that arise by

taking ¢ times the 2-fields-contractions out of the n copies of the field ¢(w) and the m copies of the
field ¢(0). For example,

$(w)"$(0)™ = ¢(w)"$(0)™

Finally, we say that in all the appendices we will write fc(z) dw instead of fC(Z) dw

5, where, as usual,

C(z) denotes a circle around z.

We need to compute

lim y(w) : €(0)e(0)e OV (0,0)e X0 ;= (A1)
= &(0)c(0){V(0,0) — %kl ~(0)V(0,0)}etkrX0.0) . *i - €(0)n(0)e? @V (0, 0)etkr X 0.0 . (A.2)
We have to use the definition 7] of
1 1
) = {Q, 6w} =+ | g +EG Jne— 10| (A3)
Y 2. \‘3,_/ \‘4,_/ w

So, when x(w) approaches : &(0)c(0)e=?©@V(0,0)e?*1X(0.0) . we get 4 contributions:

1. limy 0 @ c(w)dE(w) :: &(0)c(0)e=?@DV(0,0)e*1X(0:0) . here there are no possible contractions so
Wick theorem gives

Lim =+ c(w)dg(w) : 2(0)c(0)e=?@V (0, 0)etr X (0.0) . — (A.4)
= lim - c(w)dE(w)e(0)c(0)e~* OV (0, 0)eFrX(00) . = (A.5)
= lim [: ¢(0)9£(0)2(0)c(0)e DV (0,0)e X0 . LO(w)] = (A.6)
=0 (A.7)

where the we have exploited the standard fact ¢(0)c(0) = 0.

117Please note that, whenever not precised, 0 is a partial derivation with respect to the argument of the function on which
it is acting.
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2. limy, o : e?@G(w) :: &0)c(0)e=?DV(0,0)e* 1 X(0.0) . which we are going to compute by using

Wick theorem
: e¢(w)G(w) i E(O)C(O)E_¢(O)V(O’ O)Gikl.x(o,o) —

—[ 1 e G (w)e(0)e(0)e= OV (0,0)e X (00 }

(A.8)

NER

= |: : €¢(7")6_¢(0)G(w)E(O)C(O)V(O,O)eikl-X(O,o) : ]
NER

= { Z (—.1)”‘ : d(w)" $(0)™ G (w)e(0)c(0)V (0, 0)etFr+X (0.0 :}

e o NER
=— Z (7;1"): :¢(w)”¢(0)mG(w)é(0)c(0)V(O’O)eikyX(O,o) -
m,n=0 :

_Z Z (;172; ZWG(M)E(O)C(O)V(QO)GikyX(O,O) -
c—1

_ Z Z W : ¢(w)n¢(0)77L é(w)E(O)c(O){/(O, O)Bikl.X(O,o) .

c—1
>0 s (_1)m ;

_Z Z il :¢(w)n¢(0)mG('I,U)E(O)C(O)V(()?O)éikl‘X(O,O): _

X :¢(w)n_c+1¢(0)m_c+lm(o,O)Gikl'x(o’o) -
_Z Z (;277 (Cﬁ 1) <CT1> (C—l)'<¢(w)¢(0)>c—l y

X 3d)(w)”*C*l(z)(o)m*C*lé(w)E(O)C(O)V(O,O)éikl-X(O,o) A
:fi (= ($(w)¢(0)) ) i S

n!m!

c=0 mon—=0

x 1 p(w)"$(0)™ G (w)e(0
_ i (= {(P(w)g(0)))° i (—

c!

Je(0)V(0,0)er X O
nHm

I'm!

X

3

%+ ¢(w)" $(0)™ G(w)E(0)(0)V (0,0)es X O:0) ;1

,i(‘(cﬁ(w)cb(())))c i (—1)m

X+ $(w)" $(0)™ G (w)a(0)c(0)V (0, 0)eX(©0:0) ;

= —e= (9(W)eO) ; oF(w)=¢(0) {:G(w)E(O)C(O)V(O,O)eikl'x(o’o) :} (A.10)
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Now we can use the following relations
(6(w)e(0)) = —log(w) + O(w)
e?@e=90) . — 1 4 O(w)
G(w)V(0,0) = G™ (w)V(0,0) =
1 ~
G(w) . eikllX(0,0) - GXd)(w) : eikyX(0,0) -
=:—¢(w) - 0X(w) :: k1 X(0,0) .
= o k- p(0) X0 o)

so as to obtain

— en(@)+0w) (1 4 O(w)) | : G(w)&(0)e(0)V (0, O)eikl'X(o’O) :
( ) NER

NER

=(—w+ O(w)) (1 + O(w)) [ 1 G(w)e(0)c(0)V(0,0)e X (O:0) }

+ (—w + O(w)) (1 + O(w )) G(w)é(o)c(o)v(()’O)éz’kl.X(O,O) -

1 -~ )
—V(0,0)+ 0(1))elk1~x<070> : +

(A.12)
=(—w+O(w)) (1+O0(w)) : (0)c(0)<

+ (=w + O(w)) (1 + O(w)) : (0)e(0)V (0,0) x
x (‘ Sk p(0)e X 00 +O(1)) -

= : ¢(0)c(0)V(0,0)e™ X (0 : —: &(0)c(0 ) o $(0)V(0,0)e™ X0 +O(w)
Finally, taking the lim,, .o we end up with

limO e G(w) 11 &0)e(0)e OV (0,0)eFr X (00 . —
w—

. A.13
=:¢(0)¢(0) [ V(0,0) — %kl ~(0)V(0,0) | e X(©0.0) . (413

im0 1 20n(w)e??@b(w) 12 €(0)c(0)e~*OV(0,0)e?*1-X (0.0 ; here we can use Wick theorem to go
through similar calculations as we have just done for the previous contribution so as to obtain the
result analogous to (0.10):
1 :
5O (w) : e(0)e(0)e OV (0,0 X0
1 .
=|: 55‘77(11))624’(“’)1)(10) 21 ¢(0)c(0)e= OV (0, 0)etkr X (0.0) }

: NER (A.14)

: Ean(w)b(w)é(o)c(o)v(o,O)eikl‘x(o,o) :]

1 )
= — ¢ 2(0(w)g(0)) . 20(w)—0(0) .. §8n(w)b(w)é(0)c(0)V(0, 0)etk1-X(0.0) .

_ o 29@)(0)) ., (26(w) ,—(0) .

NER

By using the standard relations

(9(w)9(0)) = —log(w) + O(w)

A15
(b(w)e(0)) = -+ O(1) )
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this contribution reads

— (w? +0(w?)) : (@ + O(w)) : ;( — % + O(w)) : On(w)e(0)V (0, 0)etkr X (00) . —
(A.16)

=5 (w+0@?) : (?” + O(w)) : : (9n(0) + O(w))e(0)V (0, 0)e ¥ (O0)

[\3\)—!

and we see that it vanishes by taking the w — 0 limit.

im0 0 29(w)8y, (€2?Wb(w)) 11 ¢(0)c(0)e= OV (0,0)er X (0 : as first step, we are going to use
Leibniz rule to split it into 2 terms, that is

00 () ) 0)e(0)e OV (0,06 X0 s

% £ 0,2 e Oy (w)b(w)&(0)e(0)V (0, 0)e™F- X (0.0) 4 (A.17)

4+ O w)e(0)c(O)V (0,0)c™ X0

With both of these terms we could go through all the possible contractions as we have done when
computing the second contribution and end up with results analogous to (0.10), that is:

: in(w)aw <e2¢<w>b(w)) &(0)c(0)e=? @V (0,0)e™1 X 00) ;=
1{:31”6%)(“})6¢(O)n(w)b(w)5(0) (0)V(0,0)etkrX(0:0) H +
4 NER
1 )
+ 1 [ : 2200 e=90) (1)) Ab(w)E(0)e(0)V (0, 0) kX (0:0) } (A.18)
NER
_law (6—2(¢(w)¢(0)> . o20(w) ,—9(0) . ) { . n(w)b(w)E(O)c(O)V(QO)eikl'X(O’O) : } ‘ +
4 NER
L2600 ; 26(w) =00 . {; 17(w)db(w)e(0)c(0)V (0, 0)etrr X (©0:0) ;]
4 NER
And using the usual formulae for the contractions (see 0.15) we obtain
fﬁ .
78 ( Ae(w)g(0) ; o26(w)g=9(0) ) - n(w)b(w)&(0)e(0)V (0, 0)etkrX©:0) . 4
+ le—2<¢(w)¢(0)> . g2¢(w) o —o(0 w)ab )2(0)c(0)V (0, 0)e1 X (0:0) . —
4
1 1 )
=—0y ((w2 +0(w?) : e?® + O(w ) ( — ) :(w)E(0)V(0,0)etkr X004
4 w A.19)
1 1 -
+ Z((w2 +O0w?) e 8( E > - (w)E(0)V (0, 0)etkrX(00)  —
1 )
=— 5+ " On(0)e(0)V(0,0)e™ ¥ ON 42+ e O (0)e(0)V(0,0)e™ ¥V s +O(w) =
1
=1 1 ¢"On(0)e(0)V (0,0)e™ OO +O(w)
This means that after taking the w — 0 limit we end up with
lim : 1n(w)aw(e2¢><W>b(w)) 22 ¢(0)c(0)e=? OV (0,0)ehX(00) . =
=7 1 c0)n(0)e” OV (0, 0)e X0
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Coming to a conclusion, we can sum all these contributions together and we finally obtain

lim y(w) : @0)c(0)e=*©@V(0,0)e*r-X 0.0 . —

w—0

1 1 .
= limO : [caf +¢e2G — 567762% - 4778w(€2¢b):| . 2(0)c(0)e=?OV (0, 0)etkr X (00) =
w—>

w

(A.21)

w—0

1 .
= lim : [e¢(w)G(w) - 4778w(e2¢(w)b(w))} 21 2(0)c(0)e=? OV (0,0)ek1 X 00 . —

=:¢(0)c(0) [V(o, 0) — %kl P(0)V (0, 0)] etk X(0.0) —i £ 2(0)n(0)e” @V (0,0)e’r X (00,

Note that, as expected, when we compute the OPE among the PCO and a vertex operator, we get a
non-zero contribution only from the divergent part of the OPEs, because any vertex operator (regardless
of its picture) is something local and should not contain any information on the world sheet on which it
is inserted. Locally, one should not feel the boundary conditions.

Appendix B Calculation for ([7.19)
We have to compute

lim (x(ay) + ad¢(ay)e(y)) : e WV (y, g)et 00 . = (B.1)
In this limit, the c¢(ay)0¢(ay) term from y(ay) cancels the adé(ay)c(ay) term and this means that if
we want to change the picture number of an integrated vertex operator, we have to act on it with the

moving operator xM:

XM () = x(y) + 0 (y)e(y) =

= PWG(y) 2 () Vbly) 1 1(4)Dy (Vbly) B2
1. 2. 3.

Given that the operator : e~ ?WV*(y, 7)e'*>X(¥:9) : has no ¢ insertions, the contributions 2. and 3.
vanishes in the lim,,_,, and we are left with

lim :e¢(w)G(w) . e—¢(y)V*(y7g)eikzvX(y,ﬂ) -— lim :e¢(w)G(w)e_¢(y)V*(y7y)eikTX(y@ : -

o o NER
NN ) _
= lim (—1)e (G0 ; ()00 GV, p)ets XKW ) ;4
+ Jim (~1)e (@90 PP G () (y, )R X WD) ¢ =
= |V(y.9) - %kg YY) V*(y, g) | ek X W)
(B.3)

Appendix C BRST-contour deformation

Here we show how the deformation of the BRST-contour integral should be done. We illustrate this with
a general example, then the application to (7.26)) will be straightforward.

Let’s consider a correlation function like

(A(z4)B(z5){QF. C(zc) } D(zp) ) :j{

), W {ACOBERBWOEDED) O

where Q£ is the holomorphic bit of the BRST charge and the capital letters I(z;) denote local operators
inserted at the positions z; on (the fundamental region of) the torus. In the second expression, we used
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e}

®0
o'olld®
Q)

SO,

Figure 22
Deformation of the contour integral on the torus.

(4.35) to write the anticommutator in terms of the BRST-integral along a circle C,, that is centered on
zc and which is counterclockwise oriented.

We can deform C. as depicted in Figure 22] to obtain

fc A0 {ACOBEREWCEADED) = - /

), 1w {Ae0BERBWICGEDED) )

_j{ dw <A(zA)B(ZB)jg(w)C(zc)D(zD)>+
C(zB)

~f  dw(A)BERIBWICEDED) |
C(zp)

(C.2)
where all the contours C,, are counterclockwise oriented around the insertion at z;. If we want to rewrite
this expression in terms of BRST- commutators/anticommutators of the fields A, B, D, we need to bring
JE to the close left of each operator, so then we can appply again. In doing so, we have to be

careful, because swapping j& with a fermionic operator brings a sign into the game. To be more concrete,

let’s consider the case in which A, B, C are Grassmann odd and D is Grassmann even. Then, (C.4) reads
as

(A(za)B(z5){@F, Cec) } D(ep) ) = - ]{

), Qo {iB@)AG) BEn)Cee)Dn) )+

o dw(AGB@BERCCEDC) (€

+7€(2D) dw <A(ZA)B(ZB)C(ZC)jg(w)D(zD)> :
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now, by using (4.35) we reach the final expression

(A(24)B(z5){QF, C(20) } Dep) ) = _j{

C(za)

; ji‘ Ao {40 {Qf Bew}Ceabeo)+  (Ca

dw ({ @B, A(z4)} B(zsC(ac) D(zp) )+

N 740 (ZD) dw (A(24)B(z5)C(xc) |QF. D(=p)] )

We mention that this kind of mannipulations can be done also for (compact, oriented) higher genus
surfaces, because these can be represented - as the torus - as spaces obtained by introducing proper
identifications on the complex plane.

Appendix D Calculation for ([7.28)

We have to compute the commutator of the first vertex operator with the holomorphic bit of the BRST-
charge, that is _
QR - 2(0)c(0)e=?OV(0,0)etk X (00 ] =2 (D.1)

where

Qi = ]4 dwjB(w)

<

[Ssj=)

£
I

s e(w) (TX"Z’(w) + T (w) 4+ TPV (w) + 8c(w)b(w)) D+

1. ’ 3.

Here, T*°t is the holomorphic part of the sum of all the energy momentum tensors (matter, bc ghost
system, v system) and G is the holomorphic matter part of the worldsheet supersymmetry current. To
be more precise:

T4 (w) = TX (w) + T (w) + T (w) + T (w)
T (w) = —0X (w) - 0X (w) + P(w) - 4 (w)
T%(w) = =3 5(w)r(w) — 508w (w) .
T (w) = 20c(w)b(w) + c(w)db(w)
Gw) = G (w) + G (w) = —th(w) - IX (w) + G (w)

Turning back to the computation of (D.1)), we have three contributions, which correspond to the three
terms which j&(w) consists of. These are:

L [$dw : c(w) <Tt°t(w) - 8(c(w)b(w))> 5 ¢(0)e(0)e=?OV(0,0)e1X(©0.0) ] of course, here it is

essential to remember that we fixed the position of the first vertex operator (as the presence of
¢(0)c(0) in it testifies) so : ¢(0)c(0)e=?@V(0,0)e*1 X0 . is a primary operator of conformal
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dimension 0; said another way, the most singular term of its OPE with T goes like a simple pole.
[% dw : e(w) (th(w) - c’)(c(w)b(w))) 2, 1 €(0)e(0)e=?OV(0,0)ehX00) ) =
:}1{ dw : e(w)T* (w) = ¢0)e(0)e~ DV (0,0)e*r X0+ 4
c(0)
—j{ dw : e(w)d(c(w)b(w)) :: &0)c(0)e~ OV (0,0)ekrX©.0) . —
c(0)

:j{ dw[ : e(w) T (w)E(0)e(0)e OV (0, 0)etkr X (0.0) ] +
c(0) NER

- 7{ dw [ s e(w)A(c(w)b(w))&(0)e(0)e =DV (0, 0)e*r-X(0.0) ] =
€(0) NER

e

:7{ dw : ¢(w) {Ttat(w)c(o)c(o)e¢(0)V(0,0)eik1-X(0,0):| .
¢ NER

- 7{ dw : c(w)d(c(w)b(w))e(0)c(0)e= OV (0,0)ek X 0.0 . — (D.4)
C(0)
:7{ dw : c(w) {18<C(O)C(O)e_¢(O)V(O,O)eikl'x(o’o)) + 0(1)} D+
C(0) w

_ 7{ dw c(w)a< L) + O(w)) 2(0)e=* OV (0, 0)ekrX(©00) , _
C(0) w

:c(O)a(E(O)c(O)e¢(0)V(070)6ik1-X(0,0)> -

— 7{ dw : ¢(w) < - l8c(w) + O(l))c(0)6_¢(O)V(0, 0)etkr-X(0.0), —
C(0) w

= ¢(0)&(0)dc(0)e OV (0,0)eFr X (00 . 4
+ : ¢(0)0c(0)&(0)e =DV (0, 0)ei*1-X(0:0) ; —
=0
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2. [§ dw : y(w)G(w) :,: €(0)c(0)e= OV (0,0)et*rX(©0.0) ] which is
[ ?{ dw : Y (w)Gw) 5,2 70)e(0)e= 4OV (0, 0)eH1 X ©0) ] —

2% dw : y(w)G(w) == €(0)e(0)e~? @V (0, 0)etkX(00) .=
c(0)

:f dw[ : n(w)e? ™ G(w)e(0)e(0)e =DV (0, 0)eFX(0:0) } =
NER

= f dw e~ (¢ O], (@(w)=4(0) n(w)G(w)E(O)c(O)V(O,O)eikl'X(O’O)] P=
c(0) NER

:% dw €7<¢(w)¢(0)> . 6¢(w)*¢(0)n(w)G(w)é(O)C(O)V(O’O)ezklX(O,O) -4
C(0)

r ‘ .
+j{ dw e~ (@ISO . @)= O) (1)) G (w)E(0)e(0)V (0, 0)e*r- X (00 . —
c(0)

(D.5)
- fcm) dw(w + O(w?) : (1+ 0(w))(1(0) + O(w))&(0)c(0) x
+ jé dw(w 4+ O(w?)) : (14 O(w))(n(0) + O(w))&(0)c(0)V(0,0) x
c(0)
< (g kv TON 0] i
2% dwO(1) =
C(0)
-0
3. [ dwl : b(w)y?(w) 1,1 €(0)c(0)e=? @V (0, 0)etr-X(0:0) 1] which is
[7{ dwi :b(w)y2 (w) 1, : €(0)e(0)e=?OV(0,0)ekr X 0.0) ) —
:i ?{dw { :b(w)n?(w)e2?E(0)c(0)e=? OV (0, 0)etkr X (0.0) =
NER
=— i%dw e~ 2O . 20(w)=¢O)p(1)n2 (w)&(0)e(0)V (0, 0)eFrX 00 . —
_ i%dw (w? + Ow?) : (¢*© + O(w)) (D-6)

x (i + 0(1)> (7%(0) + O(w))&(0)e(0)V (0, 0)etkr X (00) . —
Z%dw O(w) =
=0

In this computations, the ¢ ghost of the vertex operator has been a spectator. We have never con-
tracted it with something else, becuase we are computing the commutator of the vertex operator with
the holomorphic bit of the BRST-charge. We can drop it and the final result of the (anti)commutator
will not change, so we have actually provedlzgl both

118More formally, we have
[QF , : e)e(y)e * WV (y,g)e*2 X W) . ] —{QF , &)} : c(y)e *WV* (y, e’k X WD) . 4
—eW{QF, : cly)e ?WV* (y, gle’t X WD) 1} = (D.7)
=—e){QF, : cy)e *WV*(y, gtk X WD) .}
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[QF, - 2(0)c(0)e*OV(0,0)e™ X0 1 ] =0 (D.8)

and )
{QF, : cy)e ?@V*(y, g)e*= W)} =0 (D.9)
It is useful to understand how this anticommutator changes if we remove also the ¢ ghost from it,

which is equivalent to understand how an integrated vertex operator behaves under the action of the
holomorphic part of the BRST charge:

[QF . : e ?WV*(y, g)et> X9 | =2 (D.10)

As we have just done, we are going to perform this computation by splitting it into three contributions,
that is

[Qg , ot eid)(y)v* (y’ g)eikg‘X(y,g) . ] _

= 7{ dw : c(w) <T“’t(w) —8(c(w)b(w))> e WV (y, et X W)
C(y)

1.

—-7{ dw : y(w)G(w) :: e *WV*(y, glethz X W7 . 4 (D.11)
Cy)

2.

1 ) _
- - 7{0( )dw cb(w)y(w) = e WV (y, g)etk X W)
Y

3.
where

1. given that : e*‘z’(y)V*(y,gj)eik?'X(y*g) : is a primary operator of conformal dimension 1 without any
b or ¢ dependece, the first contribution simplifies to

74 dw : c(w)T (w) :: e *WV*(y, glethz X W) . =
C(y)

:% dw : c(w) [TtOt(w)e_¢(y)V*(y, y)eikz'X(y’y)] 1=
Cy) NER

1 ) _
= dw : c(w)————e WV (y, g)eh> X W) . 4
jé}(y) (w—y)?

1 ) _
+ dw : c(w)——09, (e_¢(y)V*(y,y)elk’-"X(y’y) : ) +0(1)
C(y) w=y
1 . i
:% dw : c(w)—— 67¢(y)V*(y7gj)elk2'X(y’y) :+
Cly) (w—y)
1 ) _
+ dw : ¢(w)——0, (e_¢(y)V*(y,y)elk"“X(y’y) : ) +
Cy) w-y (D.12)

+ fc@) dw : c(w)O(1) : =

= w:|c w —y)dc w—y)?* S
_ji(y)d .((y)+( y)oc(y) + O((w — y) )>(w_y)2x
X Yy, et X W)
9 1
+?{C(y) dw : <c(y) + (w —y)oc(y) + O((w — y) ))w_yx

X 3y( ce WV (y, g)ett X W) ) =

0, (s ct)e Vet X0 )
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2. to compute the second term we have to go through the same computations that we did to arrive at
the result [D-5] Nothing changes, because there both ¢ and ¢ were spectators. So this contribution
vanishes again.

3. following the same procedure that lead us to the the result it is immediate to see that also this
contribution vanishes.

So we have proved that

[QF, : e ?WV*(y, g)etr= X WD) 1] = 8y( Le(y)e P WV (y, getrr X WD) ) (D.13)

Appendix E Calculation for ([7.36)

Now we will be very sloppy, given that we showed in Appendix [A] how computations should be done in
a diligent way.

We have to compute

— * —\ tka- y 1 * —\ tko- y
x(w)| s arargena POV DTN = —In(y)et WV (y, gl XD (E.1)

in the w — y limit.

We have two contributions, because

X(w)‘qﬁ_ charge_2 = —%8n(w)62¢(“’)b(w) - in(w)a(ew(w)b(w)) ) (E.2)

e The first one is zero, because

1 . _
— §8n(w)62¢(w)b(w)c(y)efﬂy)V*(y’g)ezk2~X(y,y) _

1 — 1 * =\ ,ika- y
= —50n(w) : [(w=y)** =W L O((w —y))] | ==+ Ow — )| V* (g g™ ¥ =
=O0(w—1y) =0
(E.3)
e instead, the second one reads as
1 ) _
— ()0, <e2¢(w)b(w))C(y)e—aﬁ(y)v*(y’ g)etke X(w:9) =
- —%(w)%{ [ =200 4 0w - )]+ [ + 0w - y)] }V (et XD
4 w—y
1 ) _
— (), {<w — )4 O((w - y>2>} V(e X0
vy —in(y)e“y)V*(y, g)eth> X ()
(E4)
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