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Introduction

There are several reasons for studying stacks. One is for sure to construct

a moduli space for certain mathematical objects, like elliptic curves and G-

bundles.

Another motivation comes from the quotient of a manifold by the action

of some Lie group. Indeed, suppose a Lie group G acts on a complex manifold

X. Then, X/G is not necessarily a manifold. For example, if X = D∗ is the

punctured unit disc, acted on by a rotation group by some irrational angle τ

such that τ
π
/∈ Q, then the quotient is not Hausdorff. We want to construct

an object, which we are going to call the quotient stack [X/G], which carries

all the information of the naive quotient X/G, but can be manipulated in a

similar way as complex manifolds.

According to the Quotient Manifold Theorem, if G is a Lie group acting

properly and freely on X, then the quotient X/G is a manifold and [X/G] ∼=
X/G. In general, the quotient stack [X/G] carries all the information of

the naive quotient X/G (which is its coarse moduli space), together with

an additional structure: points are allowed to have automorphisms. In the

example of elliptic curves, SL2(Z)\H is a Riemann Surface, but it is not

isomorphic to the quotient stack [H/SL2(Z)], for the latter has non-trivial

inertia groups.

All the complex manifolds can be regarded as stacks, thanks to a fully

faithful embedding Comp → Stacks which we construct in Section 1.1.

The converse is not true (for example, as mentioned above, points of a stack

carry the additional structure of the inertia groups). In order to manipulate
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stacks as complex manifolds, we need the notion of an atlas. An atlas for

a stack M is a morphism of stacks from (a stack equivalent to) a complex

manifold to M, satisfying some surjectivity properties. The data of a stack

M together with such an atlas is called an analytic stack. In Section 1.3 we

make this definition more precise. Our definition will allow us to generalize

some properties of morphisms of complex manifolds for the case of morphisms

of stacks, in such a way that these definitions agree with the classical ones

whenever the stacks are equivalent to a manifolds, and that they do not

depend on the choice of an atlas.

Analytic stacks might be very hard to study, but quotient stacks are much

easier to deal with, because their geometry is, in some sense, equivalent to the

G-equivariant geometry of the manifold. In fact, points are G-orbits, inertia

groups are stabilizers, and so forth. That is why one would like to always

think of stacks as of quotient stacks.

This thesis provides two structure results which allow us to study stacks

as quotient stacks: the first one is a classical theorem due to Deligne and

Mumford claiming that any stack satisfying the Deligne-Mumford hypotheses

is locally a quotient stack by the action of a finite Lie group on a simply

connected complex manifold. The proof allows us to determine precisely how

the action is made, in terms of the source and target maps of the groupoid

associated with the stack. The second result is due to Behrend and Noohi,

and is a generalization of the Uniformization Theorem for Riemann Surfaces

for the case of Deligne-Mumford analytic stacky curves. This result allows

us to classify the uniformizable Deligne-Mumford curves as global quotient

stacks of a discrete group (which is precisely the fundamental group of the

curve). Since we know the discrete groups acting on the simply connected

Riemann Surfaces, this is enough to classify all the uniformizable Deligne-

Mumford curves.

The first chapter of the thesis contains some basic theory about stacks.

Section 1.4 deals with the Deligne-Mumford local quotient characterization.

The second chapter develops some homotopy theory for analytic stacks, and
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links it to the theory of covering spaces for them. We also mention a gener-

alization of Van Kampen theorem for analytic stacks. The third chapter is

about the uniformization result proven by Behrend and Noohi in [1].

Chapter 4 deals with a slightly different case: we consider stacks with

proper diagonal, and try to prove that, locally around any point, they can

be regarded as quotient stacks by come action of the inertia group at the

point (which we prove to be a compact Lie group). The result fails if we

consider stacks of groupoids over the category Comp of complex manifolds

(see Example 4.1). We thus change our setting by looking at stacks over the

category Diff of differentiable real manifolds. All the theory developed in

Chapter 1 still holds true, and the counterexample above fails. I was not able

to complete the proof, which is left as a conjecture.
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Chapter 1

Basics on analytic stacks

1.1 Stacks as pseudo-functors

In this chapter, we will mostly follow [2] and [7]. Let Gpd be the category

of groupoids and Comp be the category of complex manifolds.

Definition 1.1. A prestack (of groupoids) over Comp is a pseudo-functor

M : Comp→ Gpd

i.e. a contravariant functor Compop → Gpd such that:

- id∗X
∼= idM(X) for any complex manifold X (where f ∗ := M(f) for any

morphism f in Comp)

- for any pair of composable morphisms (f : Y → X, g : Z → Y ), there is a

natural transformation φf,g : f ∗ ◦ g∗ ∼= (g ◦ f)∗ which is associative on any

triple of composable morphisms.

Definition 1.2. A stack (of groupoids) over Comp is a prestack M satis-

fying the following gluing conditions∗:

1. on objects: Given an open covering (Ui)i of a manifold X, objects Pi ∈
M(Ui) and isomorphisms ϕij : Pi|Ui∩Uj

→ Pj|Ui∩Uj
which satisfy the

cocycle condition ϕjk ◦ ϕij = ϕik on the threefold intersection Ui ∩
Uj ∩ Uk, there is an object P ∈ M(X) together with isomorphisms

ϕi : P |Ui
→ Pi such that ϕij = ϕj ◦ ϕ−1

i .

5



6 1. Basics on analytic stacks

2. on morphisms: Given a complex manifold X, objects P, P ′ ∈ M(X),

an open covering (Ui)i of X and isomorphisms ϕi : P |Ui
→ P ′|Ui

such

that ϕi|Ui∩Uj
= ϕj|Ui∩Uj

, then there exists a unique ϕ : P → P ′ such

that ϕi = ϕ|Ui
.

∗ Notation: as for sheaves, for simplicity, one writes |U instead of j∗(•), when-

ever j : U ↪→ X is an open embedding. For double and triple intersections,

in order for the notation to make sense, one needs to consider the double and

triple inclusions.

Example 1.1. The functor

BG : Comp→ Gpd

assigning to any complex manifold X the groupoid BG(X) of G-bundles on

it is a stack over Comp. More precisely, at the level of objects

BG(X) = 〈P → X G-bundle〉

where a morphism from P → X to P ′ → X is a G-equivariant isomorphism

P → P ′. At the level of morphisms, given a map f : Y → X in Comp, we

have

BG(f) = f ∗ : BG(X)→ BG(Y )

sending a G-bundle P → X to its pullback P ×X Y → Y given by the

following cartesian square

P // X

P ×X Y

OO

// Y

f

OO

Since objects and morphisms glue, this is indeed a stack.

Remark 1.1. Stacks over Comp form a 2-category, which we denote by

Stacks. Morphisms of stacks F :M→N are given by collections of functors
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FX :M(X)→ N (X), and, for any morphism f : Y → X in Comp, there is

a natural transformation Ff : FY ◦Mf ∼= N f ◦ FX

M(X)
Mf //

FX

��

Ff
w�

M(Y )

FY

��
N (X)

Nf
// N (Y )

Remark 1.2. Given a complex manifold X, one can construct a stack

X associating to any complex manifold Y the groupoid given by the set

X(Y ) := HomComp(Y,X), endowed with the trivial groupoid structure, i.e.

fixing the identities to be the only possible morphisms. X is indeed a stack,

since morphisms of complex manifolds can be glued. This construction gives

a fully faithful embedding Comp ↪→ Stacks. One often drops the underline

in the notation, and says that a stack is a complex manifold when it corre-

sponds to a complex manifold by this embedding. It is common to use normal

letters (e.g. X, Y ...) to denote stacks corresponding to complex manifolds,

and curly letters (e.g. M, N ...) otherwise.

Example 1.2. Let G be a Lie group acting on a complex manifold X. One

defines the quotient stack

[X/G](T ) :=

〈 P is acted on by G

(P, p : P → T, f : P → X) p is a G-bundle

f is G-equivariant

〉

for any complex manifold T . The morphisms in this groupoid are defined

to be the G-equivariant isomorphisms commuting with the maps to X.

Later on this chapter we will see that quotient stacks form a very nice

class of stacks. Indeed, the geometry of a quotient stack [X/G] is strictly

related to the G-equivariant geometry of X.

Remark 1.3. For X = pt and G acting trivially on it, the quotient stack
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[X/G] is the stack BG classifying G-bundles. Indeed:

[pt/G](T ) =

〈 P is acted on by G

(P, p : P → T, f : P → pt) p is a G-bundle

f is G-equivariant

〉
∼=

∼=

〈
(P, p : P → T ) P is acted on by G

p is a G-bundle

〉
= BG(T )

Remark 1.4. If a Lie group G acts properly and freely on the complex

manifold X, then X/G is also a complex manifold, and the natural projection

X → X/G is a G-bundle. In this case, [X/G] ∼= X/G, i.e. for any complex

manifold T ,

[X/G](T ) ∼= Hom(T,X/G).

Indeed, given

(p : P → T, f : P → X) ∈ [X/G](T )

f induces a map f : P/G = T → X/G. Note that the following diagram is

cartesian

P //

��

X

��
P/G // X/G

thus P ∼= P/G ×X/G X. So the inverse map sends f : T → X/G to the two

projections

(T ×X/G X → T, T ×X/G X → X).

Definition 1.3. We say that m is a point of a stackM, and write m ∈M,

if there exists a singleton ∗ (thought of as a complex manifold) such that

m ∈M(∗).

As a 2-category, the category of stacks satisfies the 2-Yoneda lemma. In

fact:
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Lemma 1.1.1. (Yoneda Lemma for Stacks)

For any M ∈ Stacks and X ∈ Comp, there is a canonical equivalence of

categories

M(X) ∼= HomStacks(X,M)

Proof. (Idea)

Given P ∈M(X), we define a morphism of stacks FP : X →M sending any

object f ∈ X(Y ) (which is simply a morphism Y → X) to f ∗(P ) ∈ M(Y ).

For any morphism φ : P → P ′ inM(X), we define a natural transformation

FP → FP ′ by f ∗ϕ : f ∗P → f ∗P ′.

Conversely, given a morphism F : X → M, we just send it to the object

F (idX) ∈M(X).

To prove the Lemma one needs to make sure that the compositions of these

two maps are equivalent to the two identity functors.

Example 1.3. By Yoneda, a point m ∈ M canonically corresponds to a

∗-point of M, i.e. a morphism of stacks ∗ →M.

Example 1.4. The points of a quotient stack [X/G] are in correspondence

with the points ofX/G (the naive quotient, thought of as a topological space).

Indeed, by definition

[X/G](∗) = 〈(p : P → ∗ G-bundle, f : P → X G-equivariant)〉

but a G-bundle on a singleton has to be trivial, hence P ∼= G× ∗ ∼= G, and

we get

[X/G](∗) = 〈f : G→ X G-equivariant〉

Given a G-equivariant map f : G → X, we get a point x ∈ X given by

x = f(1). Viceversa, given a point x ∈ X, we have a G-equivariant map

f : G→ X given by f(g) = g.x. If, instead of x ∈ X, we take y = g′.x in the

G-orbit Gx of x, we get a G-equivariant map f ′ such that

f ′(g) = g.y = (gg′).x
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We claim that f and f ′ are isomorphic in the groupoid [X/G](∗). Indeed,

the morphism ϕ : G → G such that ϕ(g) = gg′ is a G-equivariant isomor-

phism commuting with the maps to X, meaning that the following triangle

commutes

G
ϕ //

f ′   

G′

f~~
X

1.2 Fibered products of Stacks

In the next sections, we will try to extend properties of complex manifolds

to stacks. The usual way to do it is by a base change. First, one needs the

notion of a pullback:

Definition 1.4. Given a diagram of morphisms of stacks

M
F
��

M′
G
// N

the fibered productM×NM′ is the stack given by, for every complex man-

ifold X, the groupoid

(M×N M′)(X) = 〈(f, g, ϕ)|f : X →M, g : X →M′, ϕ : F ◦ f ⇒ G ◦ g〉

where morphisms (f, g, ϕ)→ (f ′, g′, ϕ′) are pairs of morphisms

(ψf,f ′ : f → f ′, ψg,g′ : g → g′)

such that

ϕ′ ◦ F (ψf,f ′) = G(ψg,g′) ◦ ϕ.

Remark 1.5. SinceM,M′ and N are stacks, objects and morphisms glue,

so the fibered product is also a stack. In fact, it is a pullback in the 2-category

of stacks. The usual properties of pullbacks are satisfied, for example
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• M×MM′ ∼=M′

• (commutativity) M×N M′ ∼=M′ ×N M

• (associativity) (L ×X M)×Y N ∼= L ×X (M×Y N )

Example 1.5. Let (t1, t2) : T → M ×M, that we can view, thanks to

Yoneda, as t1, t2 ∈M(T ). Let ∆ :M→M×M be the diagonal morphism.

Then,

(T×M×MM)(S) ∼= 〈(f, s, ϕ)|f : S → T, s ∈M(S), ϕ(s, s)⇒ (f ∗t1, f
∗t2)〉 ∼=

∼= 〈(f, s, ϕ1, ϕ2)|f : S → T, s ∈M(S), ϕ1 : s⇒ f ∗t1, ϕ2 : s⇒ f ∗t2〉

By calling ψ := ϕ2 ◦ ϕ−1
1 , one gets

(T ×M×MM)(S) ∼= 〈(f, ψ)|f : S → T, ψ : f ∗t1 ⇒ f ∗t2〉

In the particular case of t1 = t2 =: t, one gets

(T ×M×MM)(S) ∼= 〈(f, ψ)|f : S → T, ψ ∈ Aut(f ∗t)〉

In the case T =M and (t1, t2) = ∆, one gets the fibers over ∆:

(M×M×MM)(S) ∼= 〈(x ∈M(S), ψ ∈ Aut(x))〉

which we call the inertia stack of M.

Example 1.6. Let (π, π) : X ×X →M×M be a morphism of stacks, and

let ∆ :M→M×M be the diagonal morphism. Then

(X ×M X)(S) ∼= 〈(f, g, ϕ)|f, g : S → X,ϕ : π ◦ f ⇒ π ◦ g〉 ∼=

∼= 〈((f, g) : S → X ×X, s : S →M, ψ : (x, x) ∼= (π ◦ f, π ◦ g))〉 ∼=

∼= ((X ×X)×M×MM) (S)
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1.3 Analytic Stacks

Up to now, stacks over Comp are still too crude to do geometry with.

One would like to manipulate them as if they were complex manifolds. In

order to make our categorical definition more geometrical, we need to give

sense to the notion of an atlas.

An atlas for a stackM will be a morphism of stacks of the form Y →M,

where Y is a manifold, satifsfying some surjectivity properties. In order to

make this more precise, one requires the definition

Definition 1.5. A morphism of stacks M→ N is said to be representable

if, for any morphism of stacks Y → N , the fibered product M×N Y is a

stack which is equivalent to some complex manifold.

The property of being representable is stable under composition and pull-

backs:

Lemma 1.3.1. 1. If F : L → M and G : M → N are representable,

then G ◦ F is representable

2. If F :M→ N is representable and G : L → N is arbitrary, then the

projection L ×N M→ L is representable

Proof. 1. Given a morphism Y → N , we want to check that the fibered

product Y ×N L is a complex manifold. But we know that Y ×NM is

a complex manifold, so also (Y ×NM)×M L is (because G and F are

representable).

(Y ×N M)×M L

��

// L
F
��

Y ×N M //

��

M
G
��

Y // N
The natural isomorphism Y ×N L ∼= (Y ×N M) ×M L completes the

proof.
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2. Given a morphism Y → L, we want to check that the fibered product

Y ×L (L ×N M) is a complex manifold.

Y ×N M
∼=

((
++

%%

Y ×L (L ×N M)

��

// L ×N M //

��

M
F
��

Y // L
G

// N

But Y ×N M is a complex manifold, for F is representable, hence,

again, the natural isomorphism Y ×L (L×NM) ∼= Y ×NM completes

the proof.

One can now give a surjectivity notion on a representable morphism, in

the following way:

Definition 1.6. A morphism of stacks f : M→ N is a submersion if it is

representable and if for any morphism Y → N from a complex manifold Y

the base extension Y ×N M→ Y is a submersion (in the sense of complex

manifolds: it is a map whose differential is surjective at any point).

Analogously, f is surjective if it is so for complex manifolds under any

such base change.

Remark 1.6. If the two stacks are manifolds, this definition agrees with

the classical one, for being a submersion is a property of complex manifolds

which is invariant under base change. In particular, the condition of being

a submersion of complex manifolds allows to give to the fiber product a

complex manifold structure.

Definition 1.7. A morphism Y →M from a complex manifold Y is said to

be an atlas for the stack M if it is a representable surjective submersion.

Definition 1.8. We say that a stack (over Comp) M is an analytic stack

if there exists an atlas p : Y →M for it.
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Example 1.7. If X is a complex manifold acted on by a Lie group G, the

quotient stack [X/G] is an analytic stack. An atlas for it is the morphism

X → [X/G] corresponding, by Yoneda, to

(G×X,G×X → X trivial G-bundle, G×X → X action) ∈ [X/G](X)

One directly checks that the diagram

G×X proj //

act
��

X

π
��

X π // [X/G]

is cartesian. Moreover, as we are going to see in Lemma 1.3.2, checking the

representability on one atlas is enough. Hence, π is a representable submer-

sion. We will often call π the canonical atlas for the quotient stack [X/G].

Remark 1.7. The reason why quotient stacks are so nice to study is that

their geometry is strictly related to the G-equivariant geometry of the com-

plex manifold. Indeed, giving a point m ∈ [X/G] is the same as giving an

orbit Gx ⊂ X, where π(x) = m. Moreover, the automorphism group of m is

Aut(m) = Ix = s−1({x}) ∩ t−1({x})

where s = proj : G × X → X and t = act : G × X → X (as will become

more clear in the section regarding analytic groupoids). Hence,

Aut(m) = proj−1({x}) ∩ act−1({x}) =

= (G× x) ∩ {(g, y) ∈ G×X|g.y = x} ∼=

∼= {g ∈ G|g.x = x} = StabG(x)

For a more complete characterization of how the two geometries are related,

the reader may look at the dictionary provided in section 3.1 of [8].

Remark 1.8. Analytic stacks form a full sub-2-category of the 2-category

of stacks.
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Definition 1.9. A morphism of stacks M → N is said to be weakly rep-

resentable (or spacelike representable) if, for any atlas Y → N , the fiber

product M×N Y is equivalent to some complex manifold.

Our definition of atlas is good, because it allows to check global properties

locally, i.e. on one atlas.

Lemma 1.3.2. A morphism of analytic stacks F :M→N is weakly repre-

sentable if and only if there exists one atlas Y → N such that the projection

M×N Y →M is again an atlas.

Proof. (Idea) One implication follows trivially by the natural isomorphism

T ×M (M×N Y ) ∼= T ×N Y for any T →M.

For the other, assume we are given another atlas Z → N for N , we need to

check that Z ×N M is a manifold. Let us distinguish between two cases:

Special case: Suppose that the atlas Z → N factors through Y → N . In this

case, the thesis follows by the natural isomorphism Z ×NM∼= Z ×Y (Y ×N
M).

Z ×N M
∼=

((
++

&&

Z ×Y (Y ×N M) //

��

M×N Y

��

//M

��
Z // Y // N

General case: The idea here is to use the fact that Y → N is an atlas to find

(locally) a section of Z ×N Y → Z. This will allow (locally) to get back to

the special case above. Then, one just glues.

Remark 1.9. The previous Lemma is false if one requires the morphism

F : M → N to be just representable. For example, consider the morphism

F : C2 → C given by (x, y) 7→ xy.

{0} ×C C2 //

��

C2

F

��
{0} // C
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The fiber product

{0} ×C C2 = F−1({0}) = {(x, y) ∈ C2|x = 0 ∨ y = 0}

is not a manifold, so F is not representable. But the Lemma tells us that F is

weakly representable, because the identity C → C pullbacks to the identity

C2 → C2, and they are both atlases.

C2 //

id
��

C
id
��

C2
F
// C

Example 1.8. For any analytic stack M, the diagonal morphism

∆M :M→M×M

is weakly representable, but it may not be representable. Indeed:

Given an atlas π : X →M, we have the cartesian diagram:

M×M×M (X ×X) //

p1

��

X ×X
(π,π)

��
M

∆
//M×M

where (π, π) is an atlas forM×M. By the previous Lemma, it is enough to

check that

p1 :M×M×M (X ×X)→M

is an atlas. Clearly

M×M×M (X ×X) ∼= X ×M X

is a complex manifold (because π is an atlas), and given any Y → M one

has the diagram

Y ×MM×M×M (X ×X)

��

//M×M×M (X ×X) //

��

X ×X
(π,π)

��
Y //M

∆
//M×M
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and one concludes thanks to the isomorphism

Y ×MM×M×M (X ×X) ∼= Y ×M×M (X ×X)

and the fact that (π, π) is an atlas.

To check that ∆ may not be representable, think at the diagram

C3 ×C2 C //

��

C3

F
��

C
∆

// C2

where F is given by (x, y, z) 7→ (x, yz). The fiber product is not a complex

manifold, hence ∆ is not representable.

Some properties of morphisms between complex manifolds are invariant

under base change by a submersion, meaning that, if a morphism of complex

manifolds Y → X satisfies the property P (for example, P =local homeo-

morphism, open embedding, closed embedding, submersion, covering map,

finite fibers, proper...), then for any submersion Z → X the base extension

Y ×X Z → Z satisfies P.

In the stack case, we want to define properties as generalizations of the

ones of complex manifolds. For properties which are invariant under base

change by a submersion, the usual way to do it is by the following definition:

Definition 1.10. Let P be a property of morphisms of complex manifolds

which is invariant under base change by a submersion. We say that a mor-

phism of stacksM→N satisfies P if it is weakly representable and for any

atlas Y → N the base extension Y ×N M→ Y satisfies P (as a morphism

of complex manifolds).

Definition 1.11. We say that a stack M is an open substack (resp. closed

substack) of a stack N if there exists an open (resp. closed) embeddingM ↪→
N (in the sense of the previous definition).

Remark 1.10. With an argument analogous to the one used in the proof

of Lemma 1.3.2, one proves that checking the above properties after a base

change along one single atlas is enough.
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Definition 1.12. We define an open substack (resp. closed substack) of a

stack N to be an open (resp. closed) embedding M ↪→ N (in the sense of

the previous definition). By abuse of notation, we will sometimes just say

that M is an open substack of N .

Example 1.9. The quotient stack [X/G] is an open substack of [Y/G] if and

only if X is an open submanifold of Y .

Remark 1.11. It follows from the previous considerations that atlases are

stable under pullbacks, meaning that, given a morphism of analytic stacks

M → N and an atlas X → N , the projection X ×N M →M is again an

atlas.

Definition 1.13. Given a morphism of analytic stacksM→N and an atlas

π : X → N , the projection X ×N M→M is called a base change atlas for

M along π.

Definition 1.14. Given a point m : ∗ →M and an open immersion i : U →
M, we say that m ∈ U if m factors through the open immersion

U
i
��

∗ m
//

>>

M

Remark 1.12. The previous definition is equivalent to saying that, given an

atlas π : X →M, a base change atlas π′ : X ×M U → U and a lift x ∈ X of

m, x also lies on X ×M U (viewed as a submanifold of X).

Definition 1.15. Given an analytic stack M and a point m ∈ M, we say

that an open substack U ofM is an open neighbourhood of m inM if m also

lies in U (as in the previous Remark and Definition).

Definition 1.16. We say that two open substacks U , V of a stackM intersect

(or have non-empty intersection) if there exists a point of V which also lies

in U (of course, the definition is symmetric in U and V).
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Definition 1.17. We say that an open analytic substack U of an analytic

stack M is dense in M if it is dense after a base change by an atlas.

Remark 1.13. Let U be an open dense substack of M, π : X → M an

atlas for M, m ∈ M and x ∈ X such that π(x) = m. Then, given an

open neighbourhood V of m inM, it follows from the above remarks that V
intersects U .

1.4 Deligne-Mumford analytic stacks

We previously pointed out that quotient stacks are particularly easy to

study. That is because the geometry of a quotient stack [X/G] is the same as

the G-equivariant geometry of X. The points of [X/G] are just G-orbits, the

inertia groups are just the stabilizers, the properties of the diagonal reflects

on the morphisms G × X → X × X sending (g, x) to (x, g.x). For this

reason, one would like to think of stacks as of quotient stacks. There is a

very well known class of stacks, namely the Deligne-Mumford stacks, which

happen to be, locally around every point, isomorphic to quotient stacks. In

this section, we will develop some theory about these stacks, and give them

a local characterization.

Definition 1.18. An analytic stack M is said to be a Deligne-Mumford

analytic stack (or DM-analytic stack) if the following two conditions are

satisfied:

- there exists an atlas π : X →M which is a local homeomorphism

- the diagonal morphism ∆M :M→M×M is closed with finite fibers

Example 1.10. Let G be a discrete Lie group acting on some manifold X,

and let M := [X/G]. Considering the canonical atlas π : X →M, we have

a natural isomorphism G × X ∼= X ×M X, which leads to the following
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cartesian diagram

G×X

��

(proj,act)// X ×X
(π,π)
��

M
∆M
//M×M

Hence, ∆M is closed and with finite fibers if and only if G×X → X ×X is.

It the latter is closed, then the orbits of G are closed, and it has finite fibers

if and only if G acts with finite stabilizers.

Coming to the atlas, it is clear from the definition and from the following

cartesian square

G×X
proj
��

act // X

π
��

X π
//M

that π is a local homeomorphism, for the projection and the action are (since

G is discrete).

Example 1.11. As a particular case of the previous example, one may take

the action of the group G = SL2(Z) acting on the Poincaré upper half-plane

X = H. This action is closed and with finite stabilizers, hence the moduli

stack of elliptic curves M1,1 := [H/SL2(Z)] is a Deligne-Mumford stack.

Example 1.12. Let D be the complex unit disk, and consider a group action

given by a rotation around the center. The center has infinite inertia group,

so the fibers are not finite and [D/G] cannot be Deligne-Mumford.

Example 1.13. Let D∗ be the punctured complex unit disk, and consider a

group action given by the rotation around the center by an irrational number

τ /∈ πQ. Then, the map Zτ × D∗ → D∗ × D∗ given by (nτ, x) 7→ (x, xeinτ ) is

not closed, hence [D∗/Zτ ] is not a DM-analytic stack.

Remark 1.14. Deligne-Mumford analytic stacks form a full sub-2-category

of the 2-category of analytic stacks.

The following definitions will come useful for stating the main result:
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Definition 1.19. An analytic stack M is said to be connected if it has no

proper open-closed substacks.

Definition 1.20. Let M be an analytic stack acted on by a Lie group G

which fixes a point m ∈ M. The action is said to be mild (or that G acts

mildly) at m if for any open neighbourhood U of m in M there exists an

open sub-neighbourhood U ′ of m in U which is G-invariant.

We will now prove the main result of this section. The slogan is that

Any Deligne-Mumford analytic stack is locally the quotient stack of an

action of some finite Lie group on a simply connected complex manifold.

The proof of the result is going to tell us precisely how this quotient is made.

The group will just be the inertia group, and the action will be determined

(locally) by the source and target maps of the groupoid associated with our

stack.

Theorem 1.4.1. Let M be a Deligne-Mumford analytic stack and π : X →
M be an atlas for it, given by a local homeomorphism. For any point m ∈
M and any U ′ open neighbourhood of m in M, then there exists an open

neighbourhood U of m in U ′ such that U ∼= [V/H], with V a simply connected

complex manifold and H := Ix the inertia group at x, where x is a point

lying above m (i.e. such that π(x) = m). Moreover, this action on V is mild

around x.

Proof. Consider the cartesian square

X ×M X

s
��

t // X

π
��

X π
//M

Define R := X ×M X. Since π is a local homeomorphism, s and t also are.

Now, consider the cartesian square (recall that R ∼= (X ×X)×M×MM)):

R

��

(s,t) // X ×X
(π,π)
��

M
∆
//M×M
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Since the diagonal ∆ is closed with finite fibers, ∆ := (s, t) also is. Hence,

H = s−1(x) ∩ t−1(x) = ∆
−1

(x, x) ⊂ R

is a finite group.

Thus, one can take, for any h ∈ H, some disjoint open neighbourhoods W ′
h

of h in R which are mapped homeomorphically by s into the neighbourhoods

s(W ′
h) of x in X. By taking

Wh := W ′
h ∩ s−1(V ′) ∀h ∈ H

where x ∈ V ′ := ∩h∈Hs(W ′
h), one gets an open covering

s :
∐
h∈H

Wh =: W → V ′.

Since W ⊆ s−1(V ′) = V ′ ×M X is an open subset, then

Z := (V ′ ×M X) \W

is a closed subset of V ′×MX. Since ∆ is closed onto its image, by definition,

∆ also is, so that ∆(Z) is closed in ∆(V ′ ×M X) = V ′ ×X, and it does not

contain (x, x), by construction. Hence, there exists an open neighbourhood

U of x in X (choose it to be simply connected) such that U × U is an open

neighbourhood of (x, x) in (V ′ × X) \ ∆(Z). Consider now ∆
−1

(U × U) =

U×MU , and call Uh := (U×MU)∩Wh. By construction, U×MU =
∐

h∈H Uh,

and [U ×M U ⇒ U ] is isomorphic to an action groupoid, as follows:∐
Uh

∼
ϕ
//

s

��
t
��

H × U
proj
��
act
��

U U

where ϕ is given by

Uh 3 (u→ u′) 7→ (h, u)

which is a homeomorphism, because it is a homeomorphism onto U for any

connected component Uh (given by s|Uh). The action is given by

act(h, u) = h.u = t(s−1(u) ∩ Uh)
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This is a well-defined action, and, by construction, it is mild around the fixed

point x.

Corollary 1.4.2. LetM be a DM-analytic stack such that the inertia groups

at any point are trivial. Then, M is (equivalent to) a complex manifold.

Proof. Locally around any point, our stack is of the form [V/H], with V a

complex manifold and H is the automorphism group at the point, which is

trivial by hypothesis.

Remark 1.15. The statement in the corollary does not hold for an arbitrary

analytic stack. Indeed, as in Example 1.13, we can take the punctured unit

disc D∗ acted on by a rotation group G inducing a rotation around the center

by an irrational number τ /∈ πQ. The quotient stack has only trivial inertia

groups, by construction, but is not Deligne-Mumford (the diagonal is not

closed). In fact, any G-orbit is not closed. Taking an orbit of a point, say

Gx, and a point in its boundary, say y ∈ Gx \ Gx, one has that any open

neighbourhood of Gy (which is just a neighbourhood for the class of y in the

quotient stack) also contains Gx. Hence, [D∗/G] is not Hausdorff.

1.5 Dimension of an analytic stack

As for complex manifolds, a very useful notion is the one of dimension.

Again, we are going to use the fact that the relative dimension of complex

manifolds is invariant under base change and extend this notion to analytic

stacks.

Definition 1.21. Given a representable submersion of analytic stacksM→
N , one defines the dimension of the fibers rel.dim(M/N ) to be the dimen-

sion of the fibers ofM×N X → X for one (equivalently, any) atlas X → N .

Definition 1.22. The dimension of a connected analytic stackM is defined

to be

dim(M) := dim(X)− rel.dim(X/M)
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for one atlas X →M, with X connected.

Remark 1.16. This definition is invariant on the choice of the atlas. Indeed,

locally any other atlas X ′ →M factors through X →M, and

dim(M) = dim(X)− rel.dim(X/M) =

= (dim(X ′)− rel.dim(X ′/X))− rel.dim(X/M) =

= dim(X ′)− rel.dim(X ′/M).

Example 1.14. SupposeM is a DM-analytic stack. Then, locally, it can be

written as a quotient stack [X/G], with X a complex manifold and G a finite

Lie group acting on it. Recall that, given the canonical atlas π : X → [X/G],

one has the cartesian diagram

G×X
proj
��

act // X

π
��

X π
//M

Then, by definition, dim([X/G]) = dim(X) − rel.dim(X/[X/G]), where

rel.dim(X/[X/G]) is the dimension of the fibers of the projectionG×X → X,

which is just the complex dimension ofG. SinceG is finite, dim(G) = 0, hence

dim([X/G]) = dim(X)

Definition 1.23. An analytic stacky curve (or just a curve) is a 1-dimentional

analytic stack.

In chapter, we are going to use the fact that, if M is a DM-curve, then

locally we can write it as [X/G], whereX is a 1-dimentional complex manifold

(i.e. a Riemann Surface) and G is a finite Lie group acting on it. Indeed, the

structure of local quotient [X/G] follows from Theorem 1.4.1, while the fact

that dim(X) = 1 follows from the previous Example.



1.6 Analytic stacks as groupoids 25

1.6 Analytic stacks as groupoids

Given an analytic stack M and an atlas π : X →M for it, we have the

cartesian diagram

X ×M X

s
��

t // X

π
��

X π
//M

The two projections s and t can be chosen to be the source and target maps

of a groupoid [X×MX ⇒ X]. The composition is given by the commutative

triangle

(X ×M X)×M (X ×M X)

∼
��

// X ×M X

X ×M X ×M X

p1,3

44

where p1,3 is the projection on the first and third factor. Since π is repre-

sentable, this is a well-defined analytic groupoid. In fact, the inverse is given

by

i : X ×M X → X ×M X

sending (f, g, ϕ) to (g, f, ϕ−1), while the identity is given by

e : X → X ×M X

sending f to (f, f, id).

One can actually reverse this construction, and get an analytic stack out

of any analytic groupoid. Both the constructions are functorial, and give rise

to an equivalence between the 2-category of analytic stack (with a fixed atlas)

and the 2-category of analytic groupoids (cfr. chapter 3 of [7]).

1.7 The coarse moduli space

One way to think of an analytic stack is to imagine a complex manifold

with an additional structure: a point is not just a point, but a cluster of
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equivalent points. The equivalences are just the 2-isomorphisms in the 2-

category of analytic stacks. Every point in a cluster comes naturally with

an inertia group of self-identifications, and all the points in the cluster have

isomorphic inertia groups. Imagining to cut by all these self-identifications,

one is left with a coarse moduli space.

The intuition suggests to think of stacks as of their coarse moduli space,

where every point has a group attached to it (the inertia group). Unfortu-

nately, this is not a faithful picture in general (for example, there are stacks

with only trivial inertia groups, but which are not equivalent to complex

manifolds), but it represents a nice way to think of stacks in most cases

(for example, for Deligne-Mumford orbifold curves, as we are going to see in

Remark 3.6).

In this section we will try to make the intuition provided above more

precise. First, note that, given an analytic stackM and an atlas π : X →M
for it, the analytic groupoid

[R := X ×M X ⇒ X]

induces a canonical relation ∼R on X, given by

x1 ∼R x2 ⇔ ∃r ∈ R such that s(r) = x1 and t(r) = x2 ∀x1, x2 ∈ X

where s and t are the source and target maps of the groupoid. Since on the

groupoid we have identity, inverse and multiplication, this is a well-defined

equivalence relation. CallMmod := X/ ∼R and p : X →Mmod the canonical

projection. Mmod is a topological space with the quotient topology induced

from X.

Thanks to the commutativity of the square

R
s //

t
��

X

π
��

X π
//M

we have that

x1 ∼R x2 ⇔ π(x1) = π(x2) ∀x1, x2 ∈ X



1.7 The coarse moduli space 27

Hence, p factors uniquely through π, meaning that there exists a unique map

πmod :M→Mmod such that the following triangle commutes:

X
π //

p

��

M

πmod{{
Mmod

More precisely, πmod(m) is defined by

πmod(m) = p(x)

for any x ∈ X such that π(x) = m.

Definition 1.24. We call the topological space Mmod defined above the

coarse moduli space associated with (or the underlying space of) M.

Remark 1.17. One checks that the definition of πmod does not depend on

the choice of the atlas π : X →M.

Remark 1.18. πmod is functorial, meaning that if F :M→N is a morphism

of analytic stacks, πN : Y → N is an atlas and πM : X → N is the

corresponding base change atlas for M, then F induces Fmod : Mmod →
Nmod. Indeed, if x1, x2 ∈ X are equal in Mmod (meaning that πM(x1) =

πM(x2)), then also (f ◦ πM)(x1) = (f ◦ πM)(x2). By the commutativity of

the cartesian square

X
πM //

f
��

M
F
��

Y πN
// N

one gets F ◦ πM = πN ◦ f . Hence, (πN ◦ f)(x1) = (πN ◦ f)(x2), meaning that

f(x1) and f(x2) are equivalent in Nmod.

A priori, Mmod is just a topological space, but there are some cases in

which it is actually a manifold. For example, in the case of an orbifold curve

(cfr Remark 3.8).
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Example 1.15. The coarse moduli space of a quotient stackM = [X/G] is

the naive quotient Mmod = X/G. Indeed, in this setting, R ∼= G × X, the

source map is the action and the target map is the projection. The equivalence

relation is given by

x1 ∼R x2 ⇔ ∃g ∈ G such that g.x1 = x2.

Example 1.16. The two quotient stacks [H/SL2(Z)] and [H/PSL2(Z)] have

the same coarse moduli space, but they are different as stacks (the inertia

groups are different).



Chapter 2

Homotopy theory and covering

spaces for analytic stacks

In this chapter we are going to develop some homotopy theory for analytic

stacks. One can define the homotopy groups in a similar way to the case of

topological spaces, and prove that classical results, like the Van Kampen

theorem, also hold in the stack setting. The fundamental group will also

come handy in order to classify the covering spaces of an analytic stack.

2.1 Homotopy groups of pointed analytic stacks

In stacks, points are allowed to have automorphisms. That is why to

develop some homotopy theory for analytic stacks we are going to need to

consider the inertia groups at the points. First, let me introduce some nota-

tion from [4], for I like it a lot.

Notation 1. Given two points m,m′ : ∗ → M of an analytic stack M,

we call a hidden path a 2-morphism m ⇒ m′, and we denote it by squiggly

arrows: m m′.

Remark 2.1. The term hidden paths refers to the fact that these paths are

not visible on the coarse moduli space of M.

29
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Notation 2. Given a point m ∈ M, we will call the set of automorphisms

of m the hidden fundamental group (or inertial fundamental group) ofM at

m, and denote it by πh1 (M,m).

Remark 2.2. We will see (Remark 2.9) how to build a loop out of the hidden

fundamental group. In fact, these loops will correspond to constant loops at

the point.

According to our previous notation, if π : X →M is an atlas and x ∈ X
such that π(x) = m,

πh1 (M,m) = AutM(m) = Ix = s−1({x}) ∩ t−1({x})

where s and t are given by the following cartesian square

X ×M X

s
��

t // X

π
��

X π
//M

Definition 2.1. We define a triple to be a triple (M,A, i), where i : A →M
is a morphism of stacks (not necessarily an embedding). We may say that A
is a base stack for M. We usually drop i from the notation.

Notation 3. When A = ∗ is (equivalent to) a point, we drop it from the

notation and say that (M,m) is a pointed analytic stack, where m : ∗ →M
is a ∗-point of M. We may say that m is a base point for M.

Definition 2.2. A map of triples is a triple (f, g, φ) : (M,A, i)→ (N ,B, j),
where f :M→N and g : A → B are morphisms of stacks and φ : j◦g ⇒ f◦i
is a 2-morphism. We will usually drop g and φ in the notation.

A g //

i

��

φ
z�

B

j

��
M

f
// N
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Notation 4. For pointed stacks, we just need to give a pair (f, φ) : (M,m)→
(N , n) with f : M → N and φ : n  f(m) (just look at m : ∗ → M and

n : ∗ → N as ∗-points over the same ∗). We will usually drop φ in the

notation.

Definition 2.3. Given two morphisms of triples (f, g, φ), (f ′, g′, φ′) : (M,A, i)→
(N ,B, j), an identification from f to g will be a pair (ψ, ψ′), where ψ : f ⇒ f ′,

ψ′ : g ⇒ g′ are such that the following diagram commutes

A
g

⇓ψ′ ++

i

��

g′
33 B

j

��

φ

φ′

z�
M

f

⇓ψ ++

f ′
33 N

Again, we may drop ψ′ in the notation.

Remark 2.3. Pointed analytic stacks naturally form a 2-category.

Definition 2.4. Let f, g : (M,A, i) → (N ,B, j) be maps of triples. A ho-

motopy from f to g is a triple (H, ε0, ε1) as follows:

• H : (I ×M, I × A) → (N ,B) is a map of triples, where I stands for

(the stack associated to) the real interval [0, 1].

• Denoting by H0 and H1 the maps of triples obtained by restrincting H

to {0} ×M and {1} ×M, respectively, ε0 : f ⇒ H0 and ε1 : H1 ⇒ g

are identifications.

Remark 2.4. It is straightforward to check that homotopy gives a well-

defined equivalence relation between maps of triples. We denote by

[(M,A), (N ,B)]

such an equivalence class.
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Remark 2.5. An identification ψ between two maps of pairs

f, g : (M,A)→ (N ,B)

can be regarded as a homotopy, simply by defining H = f ◦ proj

(I ×M, I ×A) H //

proj ''

(N ,B)

(M,A)

f

99

Clearly H0 = H1 = f , so one can define ε0 := id : f ⇒ f and ε1 := ψ : f ⇒ g

Remark 2.6. Given a ∗-point m : ∗ → M, we have a natural morphism of

triples (which we call again m, by slight abuse of notation) m : (∗, ∗, id) →
(M, ∗,m).

∗
=

��

= // ∗
m
��

∗ m
//M

Definition 2.5. In the notation of the previous remark, a path from m to n

in M is defined to be a homotopy between m and n. A loop at m is simply

a path from m to itself.

Definition 2.6. An analytic stackM is said to be path connected if for any

pair of points (m,n) there is a path from m to n in M.

Remark 2.7. One checks, just writing down the definitions, that giving a

loop at m in M is essentially the same as giving a morphism of pointed

stacks (S1, x) → (M,m). In fact, the former is the data of a map of triples

H : (I × ∗, I × ∗) → (M, ∗), together with 2-morphisms ε0 : m ⇒ H0 and

ε1 : H1 ⇒ m (so that we get H0 ⇒ H1), while the latter is given by a

morphism f : S1 → M (which is the same as a morphism F : I → M
such that F (0) = F (1)) and a 2 morphism m  f(x) (which, by choosing

x = F (0) = F (1), is the same as m⇒ F (0) = F (1)).

This justifies the following definition.



2.1 Homotopy groups of pointed analytic stacks 33

Definition 2.7. The fundamental group of a pointed analytic stack (M,m)

is defined as π1(M,m) := [(S1, x), (M,m)].

In view of the previous remark, a representative for a class is essentially

a loop at m, i.e. a homotopy from m to itself.

Remark 2.8. One checks that π1(M,m) is actually a group (see, for exam-

ple, [2], §17). Moreover, π1 gives a well-defined functor from the category of

pointed stacks to the category of groups.

Remark 2.9. There is a natural morphism ωm : πh1 (M,m) → π1(M,m).

Indeed, we already pointed out that an identification between maps of pairs

can be regarded as a homotopy. More precisely, given a hidden path at m

γ : m m in πh1 (M,m), we define ωm(γ) ∈ π1(M,m) to be the class of the

constant loop at m. A representative for this class is a homotopy from m to

itself, as follows:

• H is given by the following commutative triangle

(I × ∗, I × ∗) H //

proj ''

(M, ∗)

(M, ∗)
m

99

• H0 = H1 = m, hence one defines

ε0 := id : m m

and

ε1 := γ : m m.

The maps ωm are also functorial with respect to pointed maps, meaning that,

if f : (M,m)→ (N , n) is a map of pointed stacks and f∗ is the induced map

on the hidden fundamental groups, then the following square commutes:

πh1 (M,m)

f∗
��

wm // π1(M,m)

π1f

��
πh1 (N , n)

wn // π1(N , n)
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Remark 2.10. Note that, when the stack is path connected, the fundamental

group does not depend on the choice of the base point (to see it, as for

topological spaces, just compose with a path from two different base points

to get an isomorphism between the two corresponding fundamental groups).

In this case, we will often omit the point in the notation, and just write

π1(M).

Definition 2.8. A path connected analytic stack M is said to be simply

connected if its fundamental group is trivial.

Later on this chapter, we will use hidden fundamental groups to study

the covering spaces of pointed analytic stacks.

2.2 Covering spaces of analytic stacks

In this section we will study covering spaces for analytic stacks.

Definition 2.9. We say that a morphism of connected analytic stacksM→
N is a covering map (or that M is a covering space for N ) if it is a local

homeomorphism and if for any point m ∈M there is a local homeomorphism

ψ : U →M such that m ∈ Im(ψ) and such that the fiber product U ×M N
is isomorphic to a disjoint union of copies of U itself∐

U ∼= U ×M N //

��

N
f
��

U //M

A covering space is said to be a universal covering space if it is simply con-

nected.

Definition 2.10. LetM be a connected analytic stack, m : ∗ →M a point

of M. We define the category CM associated with M as follows:

Ob(CM) = {(N , f)|N analytic stack, f : N →M covering map}
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HomCM((N , f), (L, g)) = {(a : N → L, φ : f ⇒ g ◦ a)}/ ∼

where ∼ is defined by

(a, φ) ∼ (b, φ)⇔ ∃Γ : a⇒ b such that g(Γ) ◦ φ = ψ

One can also define a functor

Fm : CM → π1(M,m)− Sets

as follows

Fm(N , f) = {(n, φ)|n : ∗ → N point of N , φ : m f(n) hidden path}/ ∼F

where ∼F is defined by

(n, φ) ∼F (l, ψ)⇔ ∃β : n l such that f(β) ◦ φ = ψ

The action of π1(M,m) on Fm(N , f) is defined as follows. Let γ : I →M,

together with hidden paths ε0 : m  γ(0) and ε1 : γ(1)  m, represent a

loop at m. Consider the cartesian diagram

E //

��

N
f
��

I γ
//M

with E := I ×MN . Since f is a covering map, the projection E → I also is,

hence E is isomorphic to a disjoint union of copies of I. The pullback of ε0

and ε1 gives us natural bijections ε0 : E0 → Fm(N , f) and ε1 : Fm(N , f) →
E1. Hence, ε0 ◦ ε1 : Fm(N , f) → Fm(N , f) gives a well-defined action on

Fm(N , f). Indeed, the same argument, applied to I × I, one shows that this

action is independent of the choice of the representative in the homotopy class

of γ, and it is straightforward to check that the action respects composition

of loops.

Remark 2.11. The category CM above, together with the fundamental func-

tor Fm, forms a Galois category. The interested reader may find [4] a good

reference for the studying of this functor in the algebraic setting.
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Remark 2.12. In the definition of the action of π1(M,m) on Fm(N ), let γ

be a constant loop, coming from an element α ∈ πh1 (M,m), as in Remark

2.9. Then, γ : I → M is represented by the constant loop at m, together

with identifications ε0 = id : m m and ε1 = α : m m. Hence, the action

will send (n, φ) ∈ Fm(N , f) to (n, φ ◦ α).

Lemma 2.2.1. Let f : (N , n) → (M,m) be pointed covering map, γ : I →
M a loop at m in M (with identifications ε0 : m γ(0) and ε1 : γ(1) m,

as above). Then, the following are equivalent:

1. (n, id) is a fixed point for the action of γ on Fm(N , f)

2. there exists a loop γ̃ at n in N lying over γ

3. the class of γ in π1(M,m) is in π1f(π1(N , n))

Proof. [1⇒ 2] As before, we have the cartesian square

E
pN //

pI
��

N
f
��

I γ
//M

with E := I ×M N . Let n0 ∈ E0 and n1 ∈ E1 be such that ε̃0(n0) = n and

ε̃1(n) = n1. Since the action of γ leaves n invariant (i.e. (ε̃0 ◦ ε̃1)(n, id) =

(n, id)), n0 and n1 must lie in the same layer of E, meaning that there must

exist a section s : I → E of pI such that s(0) = n0 and s1 = n1. γ̃ := s ◦ pN
will be the sought loop at n.

[2⇒ 3] Just think at the commutative triangle

N
f
��

I γ
//

γ̃
>>

M

[3 ⇒ 1] Since the action of γ on fm(N , f) is independent of the choice of

the homotopy class of γ, we may assume that there is a lift γ̃. The argument

1⇒ 2 reversed gives the proof.
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Lemma 2.2.2. Let f : (N , n) → (M,m) be pointed covering map. Then,

the induced map π1f : π1(N , n)→ π1(M,m) is injective.

Proof. Let α, β be loops at n in N whose images in M are homotopic,

meaning that there exists a homotopy H(I × S1, I × ∗)→ (M,m) between

f ◦α and f ◦β. If A := ∪({1}×S1)∪ (I ×∗), one can glue and get a natural

map g : A → N whose restriction to ({0} × S1) (resp. ({1} × S1), (I × ∗))
is naturally identified with α (resp. β, the constant map), and such that

f ◦ g : A → M is naturally identified with H|A [for example, see Theorem

16.2 of [2]]. Now, set Z := (I×S1)×MN and consider the cartesian diagram

Z h //

q
��

N
f
��

I × S1
H

//

s

HH
F

;;

M

This base change gives us a covering map q : Z → I × S1, where Z is a

manifold. This gives us (locally) a section s : I × S1 → Z, and F = H ◦ s is

the sought homotopy.

Corollary 2.2.3. Let f : (N , n)→ (M,m) be pointed covering map. Then,

π1f(π1(N , n)) ≤ π1(M,m).

There is actually a more general result:

Theorem 2.2.4. Let (M,m) be a connected pointed analytic stack. Then,

there is a correspondence between the subgroups of π1(M,m) and the isomor-

phism classes of pointed covering maps for (M,m) (as objects of CM).

The correspondence is simply given by π1f , where f : (N , n) → (M,m)

is a covering map. For a proof, see Theorem 18.19 and Corollary 18.20 of [2].

Corollary 2.2.5. Any connected pointed analytic stack has a universal cover

(corresponding to the trivial subgroup in Theorem 2.2.4).
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Proposition 2.2.6. Let f : (M,m) → (N , n) be a map of pointed stacks.

According to Remark 2.9, we have a commutative square

πh1 (M,m)

f∗
��

wm // π1(M,m)

π1f

��
πh1 (N , n)

wn // π1(N , n)

If f is a covering map, the square is cartesian.

Proof. We claim that for any γ ∈ πh1 (N , n), if ωm(γ) ∈ Im(π1f), then there

exists a unique α ∈ πh1 (M,m) such that f∗(α) = γ. The uniqueness follows

from the injectivity of f∗. As for the existence, the fact that ωm(γ) ∈ Im(π1f)

implies that the action of γ on Fm(N ) leaves (n, id) invariant (thanks to

Lemma 2.2.1). This means, thanks to Remark 2.12, that (n, id) ∼F (n, γ),

i.e. (Definition 2.10) there exists α : n n such that f(α) ◦ id = γ.

Corollary 2.2.7. Let (N , n) be a pointed analytic stack and Ñ a universal

cover for it. Then, for any ñ lying over n there is an isomorphism πh1 (Ñ , ñ) ∼=
ker(ωn).

Proof. Follows directly from Proposition 2.2.6 applied to the cartesian square

πh1 (M,m)

f∗
��

// 1

π1f

��
πh1 (N , n) // π1(N , n)

2.3 The importance of the hidden fundamen-

tal groups

Hidden fundamental groups will be crucial in the local discussion of orb-

ifolds in the next chapter. First, let us mention a result which will come

useful later:
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Theorem 2.3.1. Suppose f : N →M is a covering map of analytic stacks,

with M Deligne-Mumford. Then, N is also Deligne-Mumford.

For a proof, see Proposition 18.25 of [2].

Theorem 2.3.2. LetM be a connected Deligne-Mumford analytic stack, and

let M̃ be its universal cover. Then, the following are equivalent:

1. The morphisms ωm : πh1 (M,m) → π1(M,m) are injective for any

m ∈M.

2. M̃ is a manifold

3. M∼= [V/G] for some manifold V acted on by a discrete group G.

Proof. [1⇒ 2] By Corollary 2.2.7, πh1 (M̃,m) ∼= ker(ωm) ∼= 1 for any m ∈ M̃.

SinceM is Deligne-Mumford, by Theorem 2.3.1 M̃ also is Deligne-Mumford,

and so it has to be a manifold (Corollary 1.4.2).

[2⇒ 3] Consider R := M̃ ×M M̃.

R
s //

t
��

M̃

��
M̃ //M

The groupoid [R⇒ M̃] has source and target maps which are covering maps,

and M̃ is simply connected. Hence, R can be written as a disjoint union of

copies of M̃, indexed by π1(M), each of which mapping homeomorphically

to M̃ via the source and target maps. Hence, with an argument analogous to

the one used at the end of the proof of Theorem 1.4.1, one gets that [R⇒ M̃]

is isomorphic to the action groupoid of an action of π1(M) on M̃. Just define

V := M̃ and G := π1(M).

[3 ⇒ 1] M = [V/G] has a covering stack V with only trivial hidden fun-

damental groups (because it is a manifold). By Corollary 2.2.7, all the mor-

phisms ωm have trivial kernel, i.e. they are injective.
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Remark 2.13. Note that the proof of [2⇒ 3] gives us a precise characteriza-

tion of a case when a connected Deligne-Mumford analytic stack is (globally)

a quotient stack. More explicitly, if M has a universal cover M̃ which is a

manifold, then M is a global quotient stack stack of the form [M̃/π1(M)].

Remark 2.14. If M is globally a quotient stack of the form [V/G], with V

simply connected and G discrete, then the argument in the proof of [2⇒ 3]

(taking the universal cover V → [V/G]) tells us that G is isomorphic to

π1(M).

2.4 Van Kampen Theorem for analytic stacks

In this section we will discuss how the Van Kampen Theorem can be

generalized for analytic stacks. As for topological spaces, one defines the

fundamental groupoid:

Definition 2.11. Let M be an analytic stack. The fundamental groupoid

Π(M) of M is the groupoid given by

Ob(Π(M)) = {x : ∗ →M}

HomΠ(M)(x, y) = {homotopy classes of paths from x to y}

Since homotopy is an equivalence relation, Π(M) is a well defined groupoid.

As for topological spaces, the following holds:

Theorem 2.4.1. LetM be an analytic stack, let X ,Y be two open substacks

such that X ∪ Y =M. Then, the diagram

Π(X ∩ Y) //

��

Π(X )

��
Π(Y) // Π(M)

is a pushout square in the category Gpd of groupoids.
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Proof. See Theorem 5.10 of [3] for a proof.

The idea is to take an atlas π : M → M which is a classifying space for

M (it always exists, thanks to Theorem 6.3 of [6]). By base change, one

gets atlases X, Y,X ∩ Y for X ,Y ,X ∩ Y which are still classifying spaces.

Since for M,X, Y,X ∩Y the classical version of the result holds, then all the

above-mentioned classifying spaces induce equivalences among the funda-

mental groupoids (because classifying spaces induce an equivalence between

the fundamental groupoids).

In a completely analogous way as for topological spaces (see, for example,

[13]), the previous result allows to prove the Van Kampen Theorem:

Corollary 2.4.2 (Van Kampen Theorem). Let M be an analytic stack, let

X ,Y be two open substacks such that X ∪ Y = M. Assume X ∩ Y is path

connected, and choose an arbitrary point m : ∗ → X ∩ Y. Then, there is a

natural isomorphism:

π1(M,m) ∼= π1(X ,m) ∗π1(X∩Y,m) π1(Y ,m)

This version of Van Kampen Theorem will come useful in the next chap-

ter, for calculating the fundamental group of orbifolds.
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Chapter 3

Uniformization of

Deligne-Mumford curves

For Riemann Surfaces, the Uniformization Theorem states:

Theorem 3.0.1. Any Riemann Surface has a universal cover given by a

simply connected Riemann Surface. The simply connected Riemann Surfaces

are conformally equivalent to either C (the complex plane), H (the Poincaré

upper half-plane) or P1
C (the complex projective line).

Proof. See, for example, Theorem 4.17.2 of [16].

A similar result holds for simply connected DM-stacky curves:

Theorem 3.0.2. Any Deligne-Mumford curve has a universal cover given by

a simply connected Deligne-Mumford curve. The simply connected Deligne-

Mumford curves are equivalent to either C, H or P(m,n) (the weighted pro-

jective line of type (m,n)), for m,n ∈ Z≥1.

In this chapter, we will study this result, which was proven by K. Behrend

and B. Noohi in [1]. First, we will give a proof for the case of an orbifold.

Then, we are going to extend the result to any DM-curve.

43
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3.1 Orbifolds

A nice class of analytic stacks is given by orbifolds, which are stacks that

resemble manifolds almost everywhere.

Definition 3.1. An analytic stack M is an orbifold if there exists an open

dense substack X ↪→M which is a manifold (we may say thatM is generi-

cally a manifold).

Definition 3.2. A point m of a stack M is said to be an orbifold point if

for any open neighbourhood U of m in M there exists a point m′ ∈ U such

that the inertia groups at m and m′ are different.

Remark 3.1. A point m of an orbifold M is an orbifold point if, and only

if, it has non-trivial inertia group. Indeed, all the inertia groups of a manifold

are trivial.

Example 3.1. The moduli stack of elliptic curvesM1,1 := [H/SL2(Z)] is not

an orbifold, because of the trivial action of {±1}. But by quotienting SL2(Z)

by the group {±1}, one gets PSL2(Z), and [H/PSL2(Z)] has an open dense

substack with trivial inertia groups. In fact, we only have two points with

non-trivial inertia group. Since the stack is Deligne-Mumford, this is enough

to conclude that it is an orbifold.

Definition 3.3. Given m,n ∈ Z≥1, consider the action of C× on C2 \ (0, 0)

given by t.(x, y) := (tmx, tny). We define the weighted projective line of type

(m,n)

P(m,n) :=

[
C2 \ (0, 0)

C×

]
.

Remark 3.2. The points of the coarse moduli space of a weighted projective

line are just the points of the (classical) complex projective line P1
C. Indeed,

according to Section 1.7,

P(m,n)mod = C2 \ {(0, 0)}/ ∼
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where (x1, y1) ∼ (x2, y2) if and only if there exists

(t, (x, y)) ∈ C× × (C2 \ {(0, 0)})

such that

proj(t, (x, y)) = (x, y) = (x1, y1)

and

act(t, (x, y)) = (tmx, tny) = (x2, y2).

Equivalently, (x1, y1) ∼ (x2, y2) if and only if there exists t ∈ C× such that

(tmx1, t
ny1) = (x2, y2). A bijection between P(m,n)mod and P1

C is given by

the map

P(m,n)mod −→ P1
C

(x, y) 7−→ [x
n
d : y

m
d ]

where d = gcd(m,n).

But the points of a weighted projective line come with an additional struc-

ture, i.e. they are allowed to have automorphisms. More precisely, given

x, y ∈ C×, the stabilizer group of (x, y) is

StabC×(x, y) = {t ∈ C×|(tmx, tny) = (x, y)} = {t ∈ C×|tm = 1 = t = n} ∼= Z/dZ

with d = gcd(m,n). Analogously,

StabC×(x, 0) = {t ∈ C×|tm = 1} ∼= Z/mZ

and

StabC×(0, y) = {t ∈ C×|tn = 1} ∼= Z/nZ

Hence, for m 6= n, (1, 0) and (0, 1) are the only possible orbifold points.

P(m,n) is an orbifold if, and only if, m and n are coprime (so that all the

inertia groups are trivial, except for at most the two orbifold points above).

By quotienting C× by the rotation group Z/dZ, with d = gcd(m,n), we get[
C2 \ (0, 0)

C×/Zd

]
∼= P

(m
d
,
n

d

)
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which is always an orbifold.

Moreover, P(m,n) is simply connected. Indeed, if P̃(m,n) is a universal

cover and

C2 \ {(0, 0)} → P(m,n)

is the canonical atlas, call

Z := (C2 \ {(0, 0)})×P(m,n) P̃(m,n)

the fiber product. If by absurd P̃(m,n) 6= P(m,n), then Z would be home-

omorphic to a non-trivial disjoint union of copies of C2 \ {(0, 0)}.∐
C2 r {(0, 0)}p1 //

p2

��

P̃(m,n)

ϕ

��
C2 r {(0, 0)} π

// P(m,n)

Note that π is a representable surjective submersion with fibers isomorphic

to C× (hence, connected), so also p1 has these properties, which implies that

P̃(m,n) is not connected (for Z is not). This is a contradiction, since P̃(m,n)

is simply connected. This statement can also be proven by a homotopy fiber

sequence argument.

Definition 3.4. Given a complex manifold X and a Lie group G acting triv-

ially on it, we define BXG := [X/G] to be the trivial gerbe (or the classifying

gerbe) of G over X.

Definition 3.5. Given an analytic stack N , we say that an analytic stack

M is a gerbe over N if we are given a surjective submersion f : M → N
such that:

• f has local sections, meaning that there exists an atlas X → N and a

section s : X →M for f |X .

• locally over N all the objects of M are isomorphic, meaning that for

any complex manifold X, ∀n ∈ N (X) and lifts m1,m2 ∈ M(X) there

exists an open covering (Ui)i of X such that m1|Ui ∼= m2|Ui
∀i
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Remark 3.3. Any trivial gerbe is a gerbe. Indeed, when a Lie group G acts

trivially on a complex manifold X, the map [X/G]→ X makes the classifying

gerbe BXG into a gerbe in a natural way.

Definition 3.6. Given a a morphism of analytic stacksM→N , we say that

M is a G-gerbe over N if it is locally (on N ) equivalent to the classifying

stack of G.

Example 3.2. The moduli stack of elliptic curves M1,1 = [H/SL2(Z)] is a

Z2-gerbe over the orbifold [H/PSL2(Z)].

Example 3.3. The weighted projective line P(m,n) is a Zd-gerbe over the

orbifold P(m
d
, n
d
), with d = gcd(m,n).

One can actually prove that all the simply connected H-gerbes over an orb-

ifold P(m,n), with m,n coprime positive integers, are the weighted projective

lines P(m′, n′), with m′, n′ arbitrary positive integers (see Corollary 6.3 of

[1]).

The construction of the previous two examples can always be done for

DM-analytic stacks, as we are about to see.

Proposition 3.1.1. Any connected Deligne-Mumford analytic stack M is

an H-gerbe over an orbifold N , for some finite group H.

Proof. Assume M = [X/G] for some complex manifold X and some finite

group G acting on it. Let H := ∩x∈XStabG(x) be the subgroup of G given by

elements acting trivially on X. H is finite, because G is, and it is a normal

subgroup of G. We claim that there exists an open dense submanifold U ⊂ X

such that G/H acts freely on it. Take U := X \ ∪g∈GXg, where Xg are the

points of X fixed by g. Xg is closed, so U is open in X. U is also dense in

X: indeed, if by absurd it were not dense, there would exist a point x ∈ X
with an open neighbourhood V ⊂ Xg. But the action of g fixes ∅ 6= V ⊂ X,

so g = id. This proves that [ U
G/H

] is an open dense substack of [ X
G/H

] given

by a manifold, hence [ X
G/H

] is an orbifold, and M is an H-gerbe over it.
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In the general case, one just proves the statement locally (the Deligne-

Mumford hypothesis allows us to describe M locally as a quotient stack

by a finite group action). One just has to check that the group H is the same

everywhere, meaning that if U1 and U2 are non-empty open substacks of M
which are respectively an H1-gerbe and an H2-gerbe over some orbifold, then

H1 = H2. But since the stack is connected, U1 and U2 intersect, so H1 = H2

in the intersection, hence everywhere.

Remark 3.4. IfM is an H-gerbe over a connected complex manifold T (i.e.,

the orbifold N in the previous proposition is a connected manifold), then

M ∼= BXG. Indeed, locally M ∼= [X/G], and we constructed N = [ X
G/H

],

where H was the normal subgroup of G given by the elements acting trivially

on M. If N = T is a manifold, then in the proof above G = H (because all

the elements of G act trivially onM), so N ∼= T ∼= X andM∼= BXG. Since

the manifold is connected, we can extend the construction everywhere on X

(as in the proof, we can patch the H’s) and get that M ∼= BXG, i.e. M is

globally a trivial gerbe.

Remark 3.5. The previous Proposition fails to be true if one does not require

M to be connected. For example, if M is the disjoint union of the two

trivial gerbes BXG1 and BXG2, for some manifold X, with G1 and G2 not

isomorphic.

3.2 The orbifold case

Definition 3.7. Given the manifold D (resp. C) and the action of the

rotation group µn on it, with n ∈ Z≥1, we define Dn := [D/µn] (resp.

Cn := [C/µn]).

Theorem 3.2.1. LetM be a DM-analytic orbifold whose coarse moduli space

is D (resp. C), with at most one orbifold point. Then, M is isomorphic to

Dn (resp. Cn) for some n ∈ Z≥1.
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Proof. Assume that the coarse moduli space of M is D (the other case is

proven analogously).

If M has no orbifold points, then all its inertia groups are trivial, hence M
is simply a manifold (Corollary 1.4.2). This means that M∼= D ∼= D1.

Suppose M has precisely one orbifold point, say m. Since it is Deligne-

Mumford, there exists an open neighbourhood U of m in M such that U ∼=
[V/G], for some simply connected manifold V and some action of the finite

group G = Im. By Theorem 2.3.2, the morphism ωm : Im → π1(U ,m) is

injective (in fact, it is also an isomorphism, thanks to Remark 2.14). But by

Van Kampen

π1(M) ∼= π1(M\ {m}) ∗π1(U\{m}) π1(U) ∼= π1U

where the second isomorphism follows from the fact that bothM\{m} and

U \ {m} are isomorphic to a punctured disc (since they are orbifolds with

only orbifold point m). Hence Im → π1(M,m) is also injective. Since Ix is

trivial for any x 6= m, Ix → π1(M, x) is injective ∀x ∈ M, hence M is

uniformizable (again, by Theorem 2.3.2). By the Uniformization Theorem

of Riemann Surfaces, its universal cover has to be either D, C or P1(C).

But C and P1(C) cannot occur, for otherwise we would have surjections

C→M→Mmod
∼= D or P1(C)→M→Mmod

∼= D, which cannot happen.

Hence, M ∼= [D/H]. Since M has a unique orbifold point, the action has

a unique orbit O whose elements have non-trivial stabilizers. By removing

this orbit from D, we find a covering space for the punctured disk D∗. But

the only possible covering spaces for D∗ are D and D∗, hence O is either

empty or a singleton. But O has to be non-empty, since we assumed that

there is at least one orbifold point, so it is just a point. After some change

of coordinates, we can assume that it is the center of the disc. Now, H is a

finite group acting on a disk and fixing only the center, hence it has to be

a rotation group µn for some n ∈ Z≥2, thanks to the Schwarz Lemma. It

follows that M∼= [D/µn] ∼= Dn.

Remark 3.6. Thanks to the previuos proposition, one can now uniquely

define an orbifold curve M simply by giving its coarse moduli space M
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(which has to be a 1-dimentional complex manifold, i.e. a Riemann Surface),

and a finite collection of points on it (the orbifold points), together with some

positive integers (the orders of each orbifold point).

Remark 3.7. If an orbifold curve M has at least one orbifold point m, it

cannot be simply connected. Indeed, one can just apply Van Kampen and

use an induction on the orbifold points.

Remark 3.8. In Section 1.7 we contructed the coarse moduli space of an

analytic stack M: if [R ⇒ X] is the groupoid associated with M, then

Mmod := X/ ∼R, as a topological space with the quotient topology. In the

case of orbifold curves, the coarse moduli space inherits a natural structure

of complex manifold. Indeed, since it is an orbifold, there is an open dense

substack equivalent a manifold, and this gives us a complex structure away

from the orbifold points. Given an orbifold point m ∈ M, by the Theorem

there is an open neighbourhood of m given by Dn ∼= [D/µn]. Its coarse

moduli space (around m) is just the naive quotient D/µn, which has a natural

structure of Riemann Surface induced by the one on D.

Remark 3.9. In Remark 3.3 we showed that the points of the coarse moduli

space of a weighted projective line P(m,n) are in bijection with the points of

the complex projective line P1
C. If (m,n) = 1, P(m,n) is an orbifold, hence

its coarse moduli space has a Riemann Surface structure, thanks to Remark

3.8. Since the coarse moduli space of a simply connected Riemann Surface is

simply connected (we will give an argument for this later on this chapter),

we get that P(m,n)mod is a simply connected Riemann Surface whose points

are in correspondence with the ones of P1
C. Hence, it has to be conformally

equivalent to P1
C.

Theorem 3.2.2. Let M be a simply connected orbifold curve. Then, M is

equivalent to either C, H or P(m,n), for some coprime m,n ∈ Z≥1.

Proof. First of all, note that Mmod must also be simply connected, for oth-

erwise a non trivial covering spaceMmod →Mmod would pull back to a non
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trivial covering space for M which contradicts the simply connectedness of

M. Indeed, a non trivial covering space for Mmod would give us a cartesian

square

M̃ //

��

M̃mod

��
M πmod

//Mmod

and the fact thatM is simply connected implies that M̃ →M has a section.

This gives us a map

M̃ //

��

M̃mod

��
M πmod

//

<<

Mmod

But M̃mod is a manifold, hence the map M → M̃mod must factor through

the coarse moduli space. This means that the non-trivial covering space has

a section

Now, by the Uniformization Theorem for Riemann Surfaces, Mmod has

to be isomorphic to either C, H or P1
C. If there are no orbifold points, the

statement follows from the Uniformization Theorem for Riemann Surfaces

(Theorem 3.0.1). Suppose there are some orbifold points P1, ..., Pn. Then, the

coarse moduli space ofM cannot be neither C or H, otherwise, by Remark 3.7

the fundamental group would not be trivial. Hence, the coarse moduli space

is P1
C. Let X :=M\{P1, ..., Pn}. Then, X is just a manifold, isomorphich to

P1
C minus n points. Its fundamental group has the form:

π1(X) ∼=< ρ1, ..., ρn|Πρi = 1 >

where the ρi’s are loops around the Pi’s. By sticking the orbifold points back

in, we introduce the relations ρni
i = 1 ∀i, hence

1 = π1(M) ∼=< ρ1, ..., ρn|Πρi = 1, ρni
i = 1 ∀i >

We have the following possibilities:
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• If there is precisely one orbifold point, of order n, then M is natu-

rally isomorphic to P(1, n) ∼= P(n, 1). Indeed, an automorphism of

πmod(P(m,n)) ∼= P1
C pull backs to an automorphism of P(m,n), hence

we can change coordinates on P1
C and send the orbifold point to the ori-

gin (resp. to∞). We know that P(1, n) and P(n, 1) have coarse moduli

space P1
C and only one orbifold point at the origin (resp. at∞), and by

Remark 3.6 this is enough to conclude

• If there are two orbifold points, of order m and n, then

π1(M) ∼=< ρ, τ |ρτ = 1, ρm = 1, τn = 1 >∼=< ρ|ρd = 1 >

where d = gcd(m,n), hence the only possibility for π1(M) to be trivial

is that d = 1, i.e. m and n are coprime. Again, Remark 3.6 allows us

to conclude.

• If there are more than two orbifold points, π1(M) has no chance of

being trivial (as before, one can exibit an element with order ≥ 1).

3.3 The general case

We can now discuss the general proof for Theorem 3.0.2.

Proof. (Theorem 3.0.2)

Assume M is a simply connected DM-analytic curve. Then, by Proposition

3.1.1, M is an H-gerbe over some orbifold U , for some finite group H. The

orbifold U has to be simply connected. Indeed, if Ũ is a universal cover

for U and M̃ := Ũ ×U M, then M̃ is a universal cover for M. But M is

simply connected, hence M̃ ∼= M, so also Ũ ∼= U . By Theorem 3.2.2, U is

isomorphic to either C, H or P(m,n), for some coprime m,n ∈ Z≥1. If U is

C or H, then M ∼= U . Indeed, by Remark 3.4, M ∼= U × [∗/H] and, since

M is simply connected, [∗/H] also has to be, and this can only happen if
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H is trivial (thanks to Theorem 2.3.2).If U ∼= P(m,n), with m,n coprime

positive integers, then M has to be isomorphic to P(m′, n′), for some m′, n′

arbitrary positive integers (Corollary 6.3 of [1]).

As for Riemann Surfaces, we have:

Definition 3.8. A Deligne-Mumford curve is said to be

• Euclidean, if its universal cover is C

• Hyperbolic, if its universal cover is H

• Spherical, if its universal cover is P(m,n)

Example 3.4. As pointed out in Example 3.1, the moduli stack of elliptic

curves

M∼=M1,1 = [H/SL2(Z)]

is a Z/2Z-gerbe over U := [H/PSL2(Z)]. Its universal cover is H, and the

covering map is given by the canonical atlas H → U . Hence, M1,1 is hyper-

bolic.

Definition 3.9. A Deligne-Mumford analytic curve is said to be uniformiz-

able if its universal cover is a manifold (in fact, a Riemann Surface, thanks

to Example 1.14).

Remark 3.10. It follows from Theorem 2.3.2 and Remark 2.13 that any

uniformizable Deligne-Mumford curve M has the form [M̃/π1(M)], where

M̃ is a Riemann Surface. More explicitly:

• Any Euclidean DM-curve M has the form [C/π1(M)]

• Any hyperbolic DM-curve M has the form [H/π1(M)]

• Any spherical DM-curve M with universal cover P1
C has the form

[P1
C/π1(M)]

Remark 3.11. This is a very nice result, because we know how such actions

are made. Indeed:
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• Aut(C) = {z 7→ az + b|a, b ∈ C, a 6= 0}

• Aut(H) = PSL2(R)

• Aut(P1
C) = PSL2(C)

(see, for example, Theorem 4.17.3 of [16]). Hence, studying the discrete sub-

groups of these groups is enough to classify all the uniformizable DM-analytic

curves.



Chapter 4

Differentiable stacks with

proper diagonal

This chapter deals with an approach to a generalization of the Deligne-

Mumford result discussed in Chapter 1 (Theorem 1.4.1). From now on, we

are going to change our setting, and work with differentiable real manifolds,

instead of with the complex ones. The reason why we do this will become

clear later on in this chapter (see Example 4.1).

All the theory developed so far for complex manifolds can be rewritten

in terms of real manifolds. For instance, a prestack of groupoids over the

category Diff of differentiable real manifolds is going to be a pseudo-functor

Diff → Gpd.

The gluing axioms are the same as in Definition 1.2. A differentiable stack is

going to be the data of a stack (of groupoids over Diff)M together with an

atlas, i.e. a surjective submersion X → M, where X is a real manifold. As

for complex manifolds, the property of being a submersion has to be checked

after a base change with any other Y →M, with Y ∈ Diff .

The theory in this chapter will regard differentiable stacks with proper

diagonal. Let us start with a result:

55
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Lemma 4.0.1. Let M be a differentiable stack with proper diagonal, and let

X →M be an atlas for it. Then, the inertia group Im at any point m ∈ M
is a compact Lie group.

Proof. Lift a point m ∈ M to a point x ∈ X such that π(x) = m. Let

K := Ix = s−1(x) ∩ t−1(x) = x×M x be the inertia group at m. We want to

show that K can be equipped with the structure of a manifold.

Consider the cartesian square

X ×M X

s
��

t // X

π
��

X π
//M

Since π is a surjective submersion, s and t also are. Thanks to the submersion

theorem for differentiable manifolds, x ×M X = s−1(x) can be naturally

equipped with the structure of a manifold. We can thus choose a connected

open neighbourhood Bε(x) ⊂ Rm of x×M x in x×M X.

Let t be the restriction of t to x ×M X. Since t is a submersion, there

exists an open subset U ⊂ Bε(x) where the rank rk(t) is constant. By the

rank theorem (see, for example, Theorem 5.4 of [14]) t|−1
U (y) ⊂ U is a man-

ifold ∀y ∈ X. In particular, there exists y ∈ X such that x ×M y has a

neighbourhood V := t|−1
U (y) which is a manifold. If we are able to trans-

late this neighbourhood and make it into a neighbourhood of the identity

id : x → x ∈ K, then we can conclude that the group K has a manifold

structure.

Fix an element ϕ : x → y in V. For any other element ψ : x → y in V,

by precomposing with ϕ−1 we get the sought translation. In fact, ϕ−1(V ) it

a neighbourhood of the identity x→ x, and it is given by a manifold.

Hence, K is a Lie group. The fact that it is compact follows from the fact
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that the diagonal ∆ :M→M×M is proper

K� _

��

// (x, x)� _

��
R

��

(s,t) // X ×X
(π,π)
��

M
∆
//M×M

Remark 4.1. In Chapter 1 we saw that, if an analytic stack has diagonal

which is closed and with finite fibers, the inertia groups are finite (complex)

Lie groups. The previous Lemma shows that, if a differentiable stack has

diagonal which is closed and with compact fibers (i.e. the diagonal is proper),

the inertia groups are compact (real) Lie groups.

In the complex case, the Deligne-Mumford result (Theorem 1.4.1) assures

that, whenever an analytic stack has an atlas given by a local homeomor-

phism, if the diagonal is closed and with finite fibers, then the stack is locally

(around any point) a quotient stack, by some action of the inertia group at

the point (which is a finite Lie group). We are trying to generalize this result

in the case of differentiable stacks. The question is the following:

QUESTION: Is any differentiable stack with proper diagonal locally

the quotient stack of an action of some compact Lie group on a real

manifold?

Example 4.1. The claim is false if we work with (complex) analytic stacks.

For instance, let H be the Poincaré upper half-plane, and let EH be the family

of all the elliptic curves. Consider the map

ϕ : EH → H
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associating to any elliptic curve Eτ := C
Z+τZ the point τ ∈ H.

Take the groupoid

[EH ⇒ H]

with source and target maps given by ϕ. LetM be the associated (complex)

analytic stack. We thus have a cartesian square:

EH
ϕ //

ϕ

��

H

π
��

H π
//M

In this setting, the QUESTION above cannot be true, since a point τ ∈ H

is mapped by the canonical atlas π : H → M to [τ/Eτ ], and there is no

way Eτ could act in a neighbourhood of the point τ . Indeed, if τ 6= τ ′, the

automorphism groups Eτ and E ′τ are non-isomorphic elliptic curves. Hence,

there is no neighbourhood of π(τ) which can be of the form [X/Eτ ], since in

such a quotient all the stabilizer groups are subgroups of Eτ .

Vice versa, in the real setting, EH is diffeomorphic to S1 × S1, and the

problem above does not occur.

First steps towards answering the QUESTION

Let M be a differentiable stack with proper diagonal, π : X → M being

an atlas for it. Let s and t be the source and target maps of the associated

groupoid. Fix a point m ∈ M, and a lift x ∈ X such that π(x) = m. By

Lemma 4.0.1, the inertia group K at m is a compact Lie group. We would like

to show that there exists a neighbourhood U ofm inM such that U ∼= [Ux/K]

for some action of K on an open neighbourhood Ux of x in X.

Since π is a surjective submersion, s and t also are. Hence, by the sub-

mersion theorem, Ox := X ×M x = t−1(x) is a manifold, containing K as

a submanifold. Let sx := s|Ox : Ox → X. Pick a disc Dx ⊂ X containing x

which is transversal to sx, i.e. such that

TxDx ⊕ im(dsx) = TxX.
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This disc is going to have dimension dim(Dx) = dim(M) + dim(K). Indeed,

dim(Dx) = dim(TxDx) = dim(TxX)− dim(im(dsx))

where dim(im(dsx)) = dim(Ox)− dim(ker(sx)).

But

dim(ker(dsx)) = dim(T(id:x→x)K) = dim(K),

while

dim(Ox) = rel.dim(X/M) = dim(X)− dim(M).

Hence,

dim(Dx) = dim(X)− (dim(X)− dim(M)− dim(K)) =

= dim(M) + dim(K),

as we wanted.

We now claim that the map tx := t|Dx×MX : Dx×MX → X has surjective

differential at the point (id : x → x) ∈ K. In order to check it, it is enough

to show that

T(id:x→x)X ×M {x}+ T(id:x→x)Dx ×M X = T(id:x→x)X ×M X,

which follows directly from a dimension count. Indeed,
dim(T(id:x→x)X ×M {x}) = dim(X)− dim(M)

dim(T(id:x→x)Dx ×M X) = dim(Dx) + dim(X)− dim(M) = dim(K) + dim(X)

dim(T(id:x→x)X ×M X) = 2dim(X)− dim(M)

The equality now follows from the fact that

dim(T(id:x→x)X ×M {x} ∩ T(id:x→x)Dx ×M X) = dim(K),

which is true, since Dx was chosen to be transversal to sx (see, for example,

Theorem 5.5.3 of [15]).

Since we showed that tx has surjective differential at the point (id : x→
x) ∈ K, we can conclude that there exists a neighbourhood Ux of x in Dx such
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that the composition ϕU : Ux ↪→ X → M is a submersion (not necessarily

surjective!). Now, we choose a neighbourhood U of m in M such that the

image of ϕU is precisely U . Thus, we have constructed a surjective submersion

Ux → U , which is an atlas for M around the point m.

To complete the proof, we would like to find an action of K on Ux such

that U ∼= [Ux/K]. I conjecture that it is possible to do so. More precisely:

Conjecture: It is possible to shrink Ux and U further so that U ∼= [Ux/K]

for some action of K on Ux. If this were true, we would get a cartesian

square

K //

��

x

��
Ux // U

Let us discuss one example:

Example 4.2. Let (S1)2 act on C2 as

(t1, t2).(z1, z2) = (t1z1, t2z2),

and consider the quotient stack M := [C2/(S1)2]. The stabilizers are as

follows:

Stab(S1)2(z1, z2) ∼=


(S1)2 if z1 = z2 = 0

S1 if z1z2 = 0 and z1 + z2 6= 0

0 if z1 6= 0 6= z2

Hence, every point has compact inertia group. We want to write M, locally

around every point, as a quotient stack by some action of the stabilizer group

at the point.

• For the points (z1, z2) ∈ C2, with z1 6= 0 6= z2 (i.e. far from the axis),

the action is free, hence the stack is locally a differentiable manifold.
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• Around the origin, we can just take M = [C2/(S1)2] (or any open

substack given by the quotient of the action of (S1)2 on some ball

around the origin).

• Given a point of the form (z, 0), with z 6= 0 [and analogously for (0, z)],

we can take, for example, a slice X = Rz×C ∼= R3, where the stabilizer

{1} × S1 ∼= S1 acts as

t.(rz, w) = (rz, tw),

where r ∈ R, w ∈ C. The quotient stack [X/S1] is the open neighbour-

hood that we are looking for.
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