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Robuste und verteilte
Cluster-Enumeration und Objektkennzeichnung

Kurzfassung

Diese Dissertation leistet einen Beitrag zum Bereich der Cluster-Analyse durch die Bereitstel-
lung grundsätzlicher Methoden zur Bestimmung der Cluster-Anzahl und -Zugehörigkeiten,
die auch in Anwesenheit von Ausreißern zuverlässig funktionieren. Die wichtigsten theoreti-
schenBeiträge sind in zweiTheoremenüberdieBayes’scheCluster-Enumeration zusammenge-
fasst, die auf derModellierung derDaten als Familie vonGauß- und tν -Verteilungen basieren.
Die praktische Relevanz wird durch die Anwendung auf fortgeschrittene Probleme der Sig-
nalverarbeitung, wie beispielsweise verteilte Kameranetze und radarbasierte Personenidenti-
fikation, demonstriert.

Insbesonderewird ein neuesKriterium zurCluster-Enumeration, das auf eine breiteKlasse
von Datenverteilungen anwendbar ist, unter Verwendung des Bayes-Theorems sowie asymp-
totischer Approximationen hergeleitet. Dies dient als Ausgangspunkt für die Formulierung
von Kriterien zur Cluster-Enumeration bei spezifischen Datenverteilungen. In diesem Zu-
sammenhang wird ein Bayes’sches Kriterium zur Cluster-Enumeration hergeleitet, indem die
Daten als eine Familie multivariater Gauß-Verteilungen modelliert werden. In der Praxis
sind die beobachteten Daten oft starkem Rauschen und Ausreißern ausgesetzt, wodurch die
eigentliche Struktur der Daten nur schwer erkennbar ist. Daher ist es schwierig, die Anzahl
der Cluster robust zu schätzen. In dieser Arbeit wird ein robustes Kriterium zur Cluster-
Enumeration entwickelt, das auf Modellierung der Daten als Familie multivariater tν -Vertei-
lungen beruht. Die Familie der tν -Verteilungen ist, durch Variation ihres Freiheitsgrads (ν),
flexibel und enthält als Sonderfälle die Cauchy-Verteilung mit schweren Rändern für ν = 1
sowie die Gauß-Verteilung für ν → ∞. Unter der Annahme, dass ν hinreichend klein ist,
berücksichtigt das robuste Kriterium Ausreißer, indem es ihnen weniger Gewicht in der Ziel-
funktion gibt. Ein weiterer Beitrag dieser Dissertation liegt in der Weiterentwicklung der
Strafterme sowohl des robusten als auch des Gauß’schen Kriteriums für eine endliche Stich-
probengröße. Die hergeleiteten Kriterien zur Cluster-Enumeration erfordern einen Cluster-
ing-Algorithmus, der die Daten entsprechend der Anzahl der durch jedes potentielle Modell
spezifizierten Cluster aufteilt und eine Schätzung der Cluster-Parameter liefert. Hierbei wird
eine modellbasierte, unüberwachte Lernmethode angewendet, um die Daten vor der Berech-
nung eines Enumerationskriteriums zu partitionieren, was zu einem zweistufigen Algorith-
mus führt. Der vorgeschlagene Algorithmus stellt ein vereinheitlichtes methodisches Rah-
menwerk zur Schätzung der Cluster-Anzahl und -Zugehörigkeiten bereit.

Die entwickelten Algorithmen werden auf zwei anspruchsvolle Probleme der Signalverar-
beitung angewendet. Im Speziellen werden die Kriterien zur Cluster-Enumeration für die
Anwendung in einem verteilten Sensornetz um zwei verteilte und adaptive Bayes’sche Al-
gorithmen zur Cluster-Enumeration erweitert. Die vorgestellten Algorithmen werden auf

vii



ein Kameranetz-Szenario angewendet, bei dem die Aufgabe darin besteht, die Anzahl der
Fußgänger basierend auf eingehenden Datenströmen zu schätzen. Die Datenströme werden
von mehreren Kameras, die eine nicht-stationäre Szene aus verschiedenen Blickwinkeln fil-
men, aufgenommen. Ein weiterer Forschungsschwerpunkt dieser Dissertation ist die Zuord-
nung einzelner Datenpunkte zu Clustern und der zugehörigen Cluster-Bezeichnungen unter
der Voraussetzung, dass die Anzahl der Cluster entweder vom Anwender vorab festgelegt
oder durch eines der zuvor beschriebenen Verfahren geschätzt wird. Die Lösung dieser Auf-
gabe ist bei einer Vielzahl von Anwendungen, wie z.B. verteilten Sensornetzen und radar-
basierter Personenidentifikation erforderlich. Zu diesem Zweck wird ein adaptiver Algorith-
mus zur gemeinsamen Objektkennzeichnung und -verfolgung vorgeschlagen und auf einen
realen Datensatz zur Fußgängerkennzeichnung in einer unkalibierten Mehrobjekt-Mehrka-
mera-Anordnung mit geringer Videoauflösung und häufigen Objektverdeckungen angewen-
det. Der vorgeschlagene Algorithmus eignet sich gut für Ad-hoc-Netze, da er weder eine Re-
gistrierung der Kameraansichten noch ein Fusionszentrum erfordert. Schließlich wird ein
Algorithmus zur gemeinsamen Cluster-Enumeration und -Bezeichnung vorgeschlagen, um
das kombinierte Problem der gleichzeitigen Schätzung von Cluster-Anzahl und -Zugehörig-
keiten zu lösen. In einer Echtdatenanwendung wird der vorgestellte Algorithmus auf die
Personenkennzeichnung anhand von Radar-Daten angewendet, ohne vorherige Informatio-
nenüber dieAnzahl der Personen. Er erreicht eine vergleichbareLeistungwie einüberwachter
Ansatz, der Kenntnis über die Anzahl der Personen sowie eine beträchtliche Menge an Trai-
ningsdatenmitbekanntenCluster-Bezeichnungen erfordert. Die vorgeschlageneunüberwach-
te Methode ist bei der betrachteten Anwendung eines intelligenten, betreuten Wohnens von
Vorteil, da sie die fehlenden Informationen aus den Daten extrahiert. Basierend auf diesen
Beispielen und unter Berücksichtigung der vergleichsweise niedrigen Rechenkosten kann da-
von ausgegangen werden, dass die vorgeschlagenen Methoden nützliche Werkzeuge für die
robuste Cluster-Analysemit vielen potenziellenAnwendungsbereichen – auch außerhalb des
Ingenieurwesens – darstellen.
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Robust and Distributed
Cluster Enumeration and Object Labeling

Abstract

This dissertation contributes to the area of cluster analysis by providing principled methods
to determine the number of data clusters and cluster memberships, even in the presence of
outliers. The main theoretical contributions are summarized in two theorems on Bayesian
cluster enumeration based on modeling the data as a family of Gaussian and tν distributions.
Real-world applicability is demonstrated by considering advanced signal processing applica-
tions, such as distributed camera networks and radar-based person identification.

In particular, a new cluster enumeration criterion, which is applicable to a broad class
of data distributions, is derived by utilizing Bayes’ theorem and asymptotic approximations.
This serves as a starting point when deriving cluster enumeration criteria for specific data dis-
tributions. Along this line, a Bayesian cluster enumeration criterion is derived by modeling
the data as a family of multivariate Gaussian distributions. In real-world applications, the
observed data is often subject to heavy tailed noise and outliers which obscure the true under-
lying structure of the data. Consequently, estimating the number of data clusters becomes
challenging. To this end, a robust cluster enumeration criterion is derived by modeling the
data as a family of multivariate tν distributions. The family of tν distributions is flexible by
variation of its degree of freedom parameter (ν) and it contains, as special cases, the heavy
tailed Cauchy for ν = 1, and the Gaussian distribution for ν → ∞. Given that ν is suffi-
ciently small, the robust criterion accounts for outliers by giving them less weight in the ob-
jective function. A further contribution of this dissertation lies in refining the penalty terms
of both the robust and Gaussian criterion for the finite sample regime. The derived cluster
enumeration criteria require a clustering algorithm that partitions the data according to the
number of clusters specified by each candidate model and provides an estimate of cluster pa-
rameters. Hence, a model-based unsupervised learning method is applied to partition the
data prior to the calculation of an enumeration criterion, resulting in a two-step algorithm.
The proposed algorithm provides a unified framework for the estimation of the number of
clusters and cluster memberships.

The developed algorithms are applied to two advanced signal processing use cases. Specif-
ically, the cluster enumeration criteria are extended to a distributed sensor network setting
by proposing two distributed and adaptive Bayesian cluster enumeration algorithms. The
proposed algorithms are applied to a camera network use case, where the task is to estimate
the number of pedestrians based on streaming-in data collected by multiple cameras filming
a non-stationary scene from different viewpoints. A further research focus of this disserta-
tion is the cluster membership assignment of individual data points and their associated clus-
ter labels given that the number of clusters is either prespecified by the user or estimated by
one of the methods described earlier. Solving this task is required in a broad range of appli-
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cations, such as distributed sensor networks and radar-based person identification. For this
purpose, an adaptive joint object labeling and tracking algorithm is proposed and applied to a
real data use case of pedestrian labeling in a calibration-free multi-object multi-camera setup
with low video resolution and frequent object occlusions. The proposed algorithm is well
suited for ad hoc networks, as it requires neither registration of camera views nor a fusion
center. Finally, a joint cluster enumeration and labeling algorithm is proposed to deal with
the combined problem of estimating the number of clusters and cluster memberships at the
same time. The proposed algorithm is applied to person labeling in a real data application
of radar-based person identification without prior information on the number of individu-
als. It achieves comparable performance to a supervised approach that requires knowledge of
the number of persons and a considerable amount of training data with known cluster labels.
The proposed unsupervised method is advantageous in the considered application of smart
assisted living, as it extracts the missing information from the data. Based on these examples,
and, also considering the comparably low computational cost, we conjuncture that the pro-
posed methods provide a useful set of robust cluster analysis tools for data science with many
potential application areas, not only in the area of engineering.
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1
Introduction

1 . 1 Introduction and Motivat ion

Cluster analysis is the task of finding the underlying groupings (or clusters) in a set of
unlabeled data. It is an unsupervised learning task, where the goal is to create distinct clusters
such that data points that belong to the same cluster are more similar to each other compared
to those belonging to a different cluster. A major challenge in cluster analysis is that the no-
tion of a cluster is not consistently defined. On a very high level, a cluster is easily defined
as a group of similar data points. However, this definition raises many questions regarding
which similarity measure to use and how similar data points should be in order to belong to
the same cluster. Consequently, among other reasons, the lack of unique definition for a clus-
ter has paved the way for the development of various clustering algorithms which differ in
their understanding of what a cluster is and how to find it. Nevertheless, most clustering al-
gorithms have a common strategy, which is, to divide cluster analysis into two subtasks. The
first subtask is to estimate the number of clusters (or partitions) that best describe the underly-
ing structure of the data based on some predefined measure. However, this task is non-trivial
since theremight exist many possible ways of clustering the same data set as shown in the illus-
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I n t roduct i on

trative example in Figure 1.1. As a result, without prior knowledge of the underlying structure
of the data, different methods can come up with different ways to partition the data. Once
the number of clusters is estimated, the next subtask is to provide a common label to data
points that are grouped together based on some similarity measure. In case there is an overlap
between clusters, the labeling task becomes challenging and differentmethodsmight result in
different labeling solutions for the same data set. As an example, Figure 1.2 shows the labeling
results of a data set which contains two features from the Fisher’s Iris data set [Fisher, 1936;
Lichman, 2013] using the K-means [Lloyd, 1982; Arthur & Vassilvitskii, 2007] and the expec-
tation maximization (EM) [Dempster et al., 1977] algorithm. Even though two out of three
clusters are overlapping and difficult to partition for a human observer, the EM algorithm
partitions the data almost perfectly.
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Figure 1.1: Based on the number of clusters the same data set can be interpreted in different ways.
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1 . 1 I n t roduct i on and Mot i vat i on
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(d) Labeling result of EM

Figure 1.2: Labeling results of different clustering algorithms on a data set comprised of two features from the
Fisher’s Iris data set.

Cluster analysis plays a crucial role in a wide variety of fields of study, such as social sciences,
biology, medical sciences, statistics, machine learning, pattern recognition, and computer vi-
sion [Kaufman& Rousseeuw, 1990; King, 2015; Davé& Krishnapuram, 1997; Xu& Wunsch,
2005]. In this dissertation, the importance of cluster analysis techniques in real-world applica-
tions is demonstrated using two use cases. The first use case is concerned with object labeling
in uncalibrated distributed camera networks, which is a common problem, among others, in
video surveillance and sports analysis. In such applications, the number of objects is mostly
unknown and possibly time-varying. After extracting valuable information from the video
recorded by the distributed camera network, we propose to solve the object labeling problem
by treating it as a data clustering task. The number of clusters is estimated, and a unique and
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I n t roduct i on

consistent label is provided to objects across camera views and time frames. The second use
case deals with person labeling using gait measurements recorded by a radar. In applications
such as smart homes and assisted living radar is preferable to cameras since it preserves privacy,
can penetrate common materials, and is insensitive to lighting conditions. Similar to the first
use case, clustering algorithms perform person labeling requiring neither prior information
on the number of individuals nor training data with known labels.

In real-world applications, the observed data is often subject to noise and outliers [Davé &
Krishnapuram, 1997; Gallegos & Ritter, 2005; Garcá-Escudero et al., 2011; Zoubir et al., 2012;
Zoubir et al., 2018] which obscure the true underlying structure of the data. Consequently,
cluster analysis becomes even more challenging when either the data are contaminated by a
fraction of outliers or there exists deviations from the distributional assumptions. This calls
for robust clustering algorithms which can withstand small deviations from distributional
assumptions and are insensitive to noise and outliers. However, designing cluster analysis
techniques for contaminated data sets raises evenmore questions, such as, how much contami-
nation and outliers should a clustering algorithm tolerate before it is forced to open a new cluster
that explains the additional data?, and how should the clustering algorithm behave when out-
liers form their own cluster?.

1 . 2 A ims of this Doctoral Project

The aimof this doctoral project is to develop, analyze, and improve cluster analysis techniques
that enable us to solve advanced statistical signal processing problems. The main research
questions raised and addressed in this dissertation are the following.

• Proposing principled methods to estimate the number of clusters and cluster member-
ships in the presence of cluster overlap and outliers. A particular emphasis is given to
robust statistical methods that can deal with heavy tailed noise and outliers. Bayes’ the-
orem and asymptotic approximations are utilized to arrive at closed-form expressions.

• Developing algorithms and demonstrating their applicability in advanced signal pro-
cessing problems. The algorithms are required to have small computational cost, and,
at the same time, estimate the desired parameters with small error.
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1 . 3 D i s s e rtat i on Overv i ew

1 . 3 D i s sertat ion Overv iew

Themain body of the dissertation is organized into three parts. Part I presents the derivation,
numerical analysis, and practical application of novel cluster enumeration methods. It con-
tains Chapter 2 and Chapter 3. In Chapter 2, a Bayesian cluster enumeration criterion, which
is applicable to a broad class of data distributions, is derived. A criterion with a closed-form
expression is obtained bymodeling the data as a family ofmultivariate Gaussian distributions.
The expectation maximization algorithm is applied to partition the data prior to the calcula-
tion of an enumeration criterion, resulting in a two-step approach. The penalty term of the
new criterion is further refined for the finite sample regime. Finally, the derived criteria are
extended to a distributed sensor network setup. A detailed performance evaluation of the
proposed algorithms is provided using numerical and real data experiments.

In Chapter 3, the focus lies on deriving robust Bayesian cluster enumeration criteria by
modeling the data as a family ofmultivariate tν distributions. Similar to Chapter 2, a two-step
algorithm that provides a unified framework for the estimation of the number of clusters and
cluster memberships is developed. The performance of the proposed algorithm is evaluated
and compared to existing methods on challenging experimental scenarios.

Part II develops object labeling and tracking algorithms in the context of uncalibrated dis-
tributed camera networks in the absence of a fusion center that can collect and process the
data in one place. Particularly, Chapter 4 presents a robust and distributed object labeling
algorithm for a camera network whose nodes are interested in a static scene. Next, the al-
gorithm is extended to the case where the nodes are interested in a time-varying scene. The
performance of the proposed algorithms is evaluated using real data use cases onmulti-object
and multi-camera network application.

Part III fuses the ideas fromPart I and Part II. In Chapter 5, the simultaneous estimation of
the number of clusters and clustermemberships is discussed and, consequently, a joint cluster
enumeration and labeling algorithm is proposed. Theperformanceof theproposed algorithm
is analyzed using numerical experiments. In addition, the proposedmethod is applied to a real
data example of person labeling using radar-based human gait measurements.

Finally, the dissertation is summarized and concluding remarks are made in Chapter 6 and,
future research directions are briefly discussed in Chapter 7.
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Part I

Cluster Enumeration





2
Bayesian Cluster Enumeration

2 . 1 Introduction

Standard clustering methods, such as the K-means and the expectation maximization (EM)
algorithm, can be used to partition data only when they are provided with a value for the
number of clusters. In this chapter, we propose an estimator for the number of clusters using
newly derived Bayesian cluster enumeration criteria, as detailed in the sequel.

Specifically, the state-of-the-art on cluster enumeration is discussed in Section 2.2 and the
main contributions made in this chapter are summarized in Section 2.3. In Section 2.4, the
problemof estimating the number of data clusters is formulated. The generic Bayesian cluster
enumeration criterion is introduced in Section 2.5. In Section 2.6, first, a new criterion that
models the data as a family of multivariate Gaussian distributions is derived. Then, a two-
step approach which uses the EM algorithm to partition the data prior to the calculation of
the new criterion is presented. The penalty term of the new criterion is further refined in Sec-
tion 2.7 by replacing an asymptotic approximation with the exact expression. In Section 2.8,
the derived cluster enumeration criteria are extended to a sensor network setupwhere the task
is to estimate the number of clusters in a streaming-in data collected by spatially distributed
sensors. Finally, the chapter is summarized in Section 2.9.
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2 . 2 State -of -the -art

Statistical model selection is concerned with choosing a model that adequately explains the
observed data from a family of candidate models. Over the years, many model selection cri-
teria have been proposed in the literature, see for example [Jeffreys, 1961; Akaike, 1969; Akaike,
1970;Akaike, 1973; Allen, 1974; Stone, 1974;Rissanen, 1978; Schwarz, 1978;Hannan&Quinn,
1979; Shibata, 1980; Rao& Wu, 1989; Breiman, 1992; Kass& Raftery, 1995; Shao, 1996; Djurić,
1998; Cavanaugh & Neath, 1999; Zoubir, 1999; Zoubir & Iskander, 2000; Brcich et al., 2002;
Morelande& Zoubir, 2002; Spiegelhalter et al., 2002; Claeskens& Hjort, 2003; Lu& Zoubir,
2013b; Lu & Zoubir, 2013a; Lu & Zoubir, 2015] and the review in [Rao & Wu, 2001]. One
of the prominent fields of study where statistical model selection criteria are extensively used
is cluster analysis. A major challenge in cluster analysis is that the number of data clusters is
mostly unknown and it must be estimated prior to clustering the observed data. The estima-
tion of the number of clusters, also called cluster enumeration, has been intensively researched
for decades, see [Kalogeratos& Likas, 2012;Hamerly& Charles, 2003; Pelleg& Moore, 2000;
Shahbaba & Beheshti, 2012; Ishioka, 2005; Zhao et al., 2008a; Zhao et al., 2008b; Feng &
Hamerly, 2007; Constantinopoulos et al., 2006; Huang et al., 2017; Fraley & Raftery, 1998;
Mehrjou et al., 2016; Dasgupta & Raftery, 1998; Campbell et al., 1997; Mukherjee et al., 1998;
Krzanowski & Lai, 1988; Tibshirani et al., 2001; Teklehaymanot et al., 2016; Binder et al.,
2018; Dolatabadi et al., 2017; Caliński& Harabasz, 1974; Rousseeuw, 1987; Davies& Bouldin,
1979; Dunn, 1973] and the surveys in [Xu & Wunsch, 2005; Arbelaitz et al., 2013; Milligan &
Cooper, 1985; Maulik & Bandyopadhyay, 2002; Halkidi et al., 2001]. A popular approach for
cluster enumeration is to apply the Bayesian information criterion (BIC) [Ishioka, 2005; Fra-
ley & Raftery, 1998; Zhao et al., 2008a; Zhao et al., 2008b; Pelleg & Moore, 2000; Mehrjou
et al., 2016; Dasgupta & Raftery, 1998; Campbell et al., 1997; Mukherjee et al., 1998; Teklehay-
manot et al., 2016; Dolatabadi et al., 2017].

The BIC finds the large sample limit of the Bayes’ estimator which leads to the selection of
a model that is a posteriori most probable. It is consistent if the true data generating model
belongs to the family of candidate models under investigation [Schwarz, 1978]. The BIC was
originally derived by Schwarz in [Schwarz, 1978] assuming that (a) the observations are inde-
pendent and identically distributed (iid), (b) they arise from an exponential family of distribu-
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tions, and (c) the candidate models are linear in parameters. Ignoring these rather restrictive
assumptions, the BIC has been used in a much larger scope of model selection problems. A
justification of thewidespread applicability of the BICwas provided in [Cavanaugh& Neath,
1999] by generalizing Schwarz’s derivation. In [Cavanaugh & Neath, 1999], the authors drop
the first two assumptionsmade by Schwarz given that some regularity conditions are satisfied.

One of the prominent cluster enumeration algorithms that use theBIC is theX-means algo-
rithm [Pelleg & Moore, 2000]. TheX-means algorithm attempts to extendK-means with an
estimation of the number of clusters by assuming that each cluster contains iid Gaussian data
points and all clusters are spherical with an identical variance. These assumptions greatly sim-
plify computation but are far from reality. Extensions of the X-means algorithm that replace
the BICwith either theminimumnoiseless description length (MNDL) or univariate hypoth-
esis tests are presented in [Shahbaba & Beheshti, 2012], and [Hamerly & Charles, 2003; Feng
& Hamerly, 2007], respectively.

TheBIC is a generic criterion in the sense that it doesnot incorporate information regarding
the specific model selection problem at hand. As a result, it penalizes two structurally differ-
ent models the sameway if they have the same number of unknown parameters. The work in
[Djurić, 1998] has shown thatmodel selection rules that penalize formodel complexity have to
be examined carefully before they are applied to specific model selection problems. Neverthe-
less, despite the widespread use of the BIC for cluster enumeration, very little effort has been
made to check the appropriateness of the original BIC formulation [Cavanaugh & Neath,
1999] for cluster analysis. One noticeable work towards this direction was made in [Mehrjou
et al., 2016] by providing a more accurate approximation to the marginal likelihood for small
sample sizes. This derivation was made specifically for mixture models assuming that they are
well separated. The resulting expression contains the original BIC term plus some additional
terms that are based on the mixing probability and the Fisher information matrix (FIM) of
each partition. The method presented in [Mehrjou et al., 2016] requires the calculation of
the FIM for each cluster in each candidate model, which is computationally very expensive
and impractical in real-world applications with high-dimensional data. This greatly limits its
applicability. Other than the above mentioned work, to the best of our knowledge, no one
has thoroughly investigated the derivation of the BIC for cluster analysis using large sample
approximations.
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2 . 3 Contribut ions in this Chapter

Our first contribution lies in the derivation of a new BIC by formulating the problem of es-
timating the number of clusters as maximization of the posterior probability of candidate
models. Under some mild assumptions, we provide a general expression for the BIC, which
is applicable to a broad class of data distributions. This serves as a starting point when de-
riving the BIC for specific data distributions in cluster analysis. Along this line, we derive a
closed-form BIC expression by modeling the data as a family of multivariate Gaussian distri-
butions. Further more, to mitigate the shortcomings of clustering methods that require the
number of clusters as an input, we present a two-step cluster enumeration algorithm which
provides a principled way of estimating the number of clusters by utilizing existing cluster-
ing algorithms. The two-step algorithm uses amodel-based unsupervised learningmethod to
partition the data into the number of clusters provided by the candidate model prior to the
calculation of the new BIC for that particular model. A major advantage of the new BIC is
that it can be used as a wrapper around any clustering algorithm.

The second contribution is the refinement of the penalty term of the newBIC for the finite
sample regime, which results in a cluster enumeration criterion with a strong penalty term.
Hence, it is able to estimate the correct number of clusters in data sets with small sample sizes.
In the asymptotic regime, both criteria behave in the same way.

The third contribution lies in proposing two distributed and adaptive Bayesian cluster enu-
meration algorithms by extending the newly derived criteria to a distributed sensor network
setup where the nodes exchange valuable information via the diffusion principle [Sayed et al.,
2013]. The proposed methods are applied to a camera network use case, where multiple users
film a non-stationary scene from different angles using their camera equipped portable de-
vices. The number of pedestrians is estimated based on streaming-in feature vectors without
assuming prior information, such as known positions of the devices, registration of camera
views or the availability of a fusion center.

The first and second contributions have been published in [Teklehaymanot et al., 2018a]
and [Teklehaymanot et al., 2018d], respectively. The third contribution has been published
in [Teklehaymanot et al., 2018b], while some preliminary work in the area has been published
in [Teklehaymanot et al., 2016].
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(b) Data partitioned into two clusters
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(c) Data partitioned into three clusters
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(d) Data partitioned into four clusters

Figure 2.1: Partitioning of a data set based on the number of clusters specified by different candidate models.

2 . 4 Problem Formulat ion

Given a set of r-dimensional vectors X , {x1, . . . ,xN}, let {X1, . . . ,XK} be a partition
ofX intoK clustersXk ⊆ X for k ∈ K , {1, . . . , K}. The subsets (clusters)Xk, k ∈ K,

are independent, mutually exclusive, and non-empty. Let M , {MLmin
, . . . ,MLmax} be

a family of candidate models. Each candidate model Ml ∈ M represents the partitioning
of X into l ∈ {Lmin, . . . , Lmax} subsets, where l ∈ Z+. The parameters of each model
Ml ∈ M are denoted byΘl = [θ1, . . . ,θl] which lies in a parameter space Ωl ⊂ Rq×l. An
example that illustrates the partitioning of a synthetic data set according to the number of
clusters specified by different candidate models is displayed in Figure 2.1. Our research goal is
to choose the model MK̂ ∈ M, where K̂ ∈ {Lmin, . . . , Lmax}, which is most probable a
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posteriori assuming that

(A-2.1) the true number of clusters (K) in the observed data set X satisfies the constraint
Lmin ≤ K ≤ Lmax.

2 . 5 Gener ic Bayes ian Cluster Enumerat ion Crite -
r ion

In the considered Bayesian setting, estimating the number of clusters in a given data set corre-
sponds to choosing themodelMK̂ ∈ Mwhich is a posteriorimost probable [Teklehaymanot
et al., 2018a]. Mathematically, this corresponds to solving

MK̂ = argmax
M

p(Ml|X ), (2.1)

where p(Ml|X ) is the posterior probability of Ml ∈ M given the observations X . The
selected modelMK̂ explains how the data setX should be partitioned.

Solving (2.1) starts with writing p(Ml|X ) as

p(Ml|X ) =

∫
Ωl

f(Ml,Θl|X )dΘl, (2.2)

where f(Ml,Θl|X ) is the joint posterior density ofMl andΘl givenX . According to Bayes’
theorem

f(Ml,Θl|X ) =
p(Ml)f(Θl|Ml)f(X|Ml,Θl)

f(X )
, (2.3)

where p(Ml) is the discrete prior on the model Ml ∈ M, f(Θl|Ml) is a prior on the pa-
rameter vectors inΘl givenMl, f(X|Ml,Θl) is the probability density function (pdf) of the
observation set X given Ml and Θl, and f(X ) is the pdf of X . Substituting (2.3) into (2.2),
we obtain

p(Ml|X ) = f(X )−1p(Ml)

∫
Ωl

f(Θl|Ml)L(Θl|X )dΘl, (2.4)

where L(Θl|X ) , f(X|Ml,Θl) is the likelihood function. Since log is a monotonic func-
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tion,MK̂ can also be determined via

argmax
M

log p(Ml|X ) (2.5)

instead of (2.1). Hence, taking the logarithm of (2.4) results in

log p(Ml|X ) = log p(Ml) + log

∫
Ωl

f(Θl|Ml)L(Θl|X )dΘl − log f(X ). (2.6)

Since the partitions (clusters) Xm ⊆ X ,m = 1, . . . , l, are independent, mutually exclusive,
and non-empty, f(Θl|Ml) andL(Θl|X ) can be written as

f(Θl|Ml) =
l∏

m=1

f(θm|Ml) (2.7)

L(Θl|X ) =
l∏

m=1

L(θm|Xm). (2.8)

Substituting (2.7) and (2.8) into (2.6) results in

log p(Ml|X ) = log p(Ml) +
l∑

m=1

log

∫
Rq

f(θm|Ml)L(θm|Xm)dθm − log f(X ). (2.9)

Maximizing log p(Ml|X ) over all candidate models Ml ∈ M involves the computation of
the logarithm of amultidimensional integral. Unfortunately, the solution of themultidimen-
sional integral does not possess a closed analytical form formost practical cases. This problem
can be solved using either numerical integration or approximations that allow a closed-form
solution. In the context of model selection, closed-form approximations are known to pro-
vide more insight into the problem than numerical integration [Djurić, 1998]. Following this
line of argument, we use Laplace’s method of integration [Djurić, 1998; Stoica & Selen, 2004;
Ando, 2010] to simplify the multidimensional integral in (2.9).

Laplace’s method of integration makes the following assumptions.

(A-2.2) logL(θm|Xm), for m = 1, . . . , l, has first- and second-order derivatives which are
continuous over the parameter spaceΩl.
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(A-2.3) logL(θm|Xm), for m = 1, . . . , l, has a global maximum at θ̂m, where θ̂m is an
interior point ofΩl.

(A-2.4) f(θm|Ml), form = 1, . . . , l, is continuously differentiable and its first-order deriva-
tives are bounded onΩl with f(θ̂m|Ml) ̸= 0.

(A-2.5) The negative of the Hessian matrix of 1
Nm

logL(θm|Xm)

Ĥm , − 1

Nm

d2 logL(θm|Xm)

dθmdθ⊤m

∣∣∣∣
θm=θ̂m

∈ Rq×q, (2.10)

whereNm is the number of data points in themth cluster, is positive definite. That is,
mins,m λs(Ĥm) > ϵ for s = 1, . . . , q and m = 1, . . . , l, where λs(Ĥm) is the sth
eigenvalue of Ĥm and ϵ is a small positive constant.

The first step in Laplace’s method of integration is to write the Taylor series expansion of
f(θm|Ml) and logL(θm|Xm) around θ̂m, for m = 1, . . . , l. We begin by approximating
logL(θm|Xm) by its second-order Taylor series expansion around θ̂m as follows:

logL(θm|Xm) ≈ logL(θ̂m|Xm) + θ̃
⊤
m

d logL(θm|Xm)

dθm

∣∣∣∣
θm=θ̂m

+
1

2
θ̃⊤m

[
d2 logL(θm|Xm)

dθmdθ⊤m

∣∣∣∣
θm=θ̂m

]
θ̃m

= logL(θ̂m|Xm)−
Nm

2
θ̃⊤mĤmθ̃m, (2.11)

where θ̃m , θm − θ̂m, form = 1, . . . , l. The first derivative of logL(θm|Xm) evaluated at
θ̂m vanishes because of assumption (A-2.3). With

U ,
∫
Rq

f(θm|Ml) exp (logL(θm|Xm)) dθm, (2.12)

substituting (2.11) into (2.12) and approximating f(θm|Ml) by its Taylor series expansion
yields

U≈
∫
Rq

(
f(θ̂m|Ml)+ θ̃

⊤
m

df(θm|Ml)

dθm

∣∣∣∣
θm=θ̂m

+HOT
)
L(θ̂m|Xm)exp

(
−Nm

2
θ̃⊤mĤmθ̃m

)
dθm,

(2.13)
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whereHOTdenotes higher order terms and exp
(
−Nm

2
θ̃⊤mĤmθ̃m

)
is aGaussian kernelwith

mean θ̂m and covariance matrix (NmĤm)
−1. Ignoring the higher order terms, (2.13) can be

simplified to

U ≈ f(θ̂m|Ml)L(θ̂m|Xm)

∫
Rq

exp

(
−Nm

2
θ̃⊤mĤmθ̃m

)
dθm

+ L(θ̂m|Xm)

∫
Rq

θ̃⊤m
df(θm|Ml)

dθm

∣∣∣∣
θm=θ̂m

exp

(
−Nm

2
θ̃⊤mĤmθ̃m

)
dθm

= f(θ̂m|Ml)L(θ̂m|Xm)

∫
Rq

exp

(
−Nm

2
θ̃⊤mĤmθ̃m

)
dθm

= f(θ̂m|Ml)L(θ̂m|Xm)

∫
Rq

(2π)q/2
∣∣∣N−1

m Ĥ−1
m

∣∣∣1/2
(2π)q/2

∣∣∣N−1
m Ĥ−1

m

∣∣∣1/2 exp
(
−Nm

2
θ̃⊤mĤmθ̃m

)
dθm

= f(θ̂m|Ml)L(θ̂m|Xm)(2π)
q/2
∣∣∣N−1

m Ĥ−1
m

∣∣∣1/2 (2.14)

given thatNm → ∞, where | · | stands for the determinant. The term in the second line of
(2.14) vanishes because it simplifies to κE[θm − θ̂m] = 0, where κ < ∞ is a constant (see
[Ando, 2010, p. 53] for more detail). Now, substituting (2.14) into (2.9), we arrive at

log p(Ml|X ) ≈ log p(Ml) +
!∑

m=1

log
(
f(θ̂m|Ml)L(θ̂m|Xm)

)
+

lq

2
log 2π

− 1

2

l∑
m=1

log |Ĵm| − log f(X ), (2.15)

where
Ĵm , NmĤm = −d2 logL(θm|Xm)

dθmdθ⊤m

∣∣∣∣
θm=θ̂m

∈ Rq×q (2.16)

is the Fisher information matrix (FIM) of the data vectors from themth partition.

In the derivation of log p(Ml|X ), so far, we have made no distributional assumption on
the data set X except that the log-likelihood function logL(θm|Xm) and the prior on the
parameter vectors f(θm|Ml), for m = 1, . . . , l, should satisfy some mild conditions under
each modelMl ∈ M. Hence, (2.15) is a general expression of the posterior probability of the
model Ml given X for a general class of data distributions that satisfy assumptions (A-2.2)–
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(A-2.5). The BIC is concernedwith the computation of the posterior probability of candidate
models and thus (2.15) can also be written as

BICG(Ml) , log p(Ml|X )

≈ log p(Ml) + log f(Θ̂l|Ml) + logL(Θ̂l|X ) +
lq

2
log 2π

− 1

2

l∑
m=1

log |Ĵm| − log f(X ). (2.17)

After calculating BICG(Ml) for each candidate modelMl ∈ M, the number of clusters inX
is estimated as

K̂BICG = argmax
l=Lmin,...,Lmax

BICG(Ml). (2.18)

However, calculating BICG(Ml) using (2.17) is a computationally expensive task as it requires
the estimation of the FIM, Ĵm, for each cluster m = 1, . . . , l in the candidate model Ml ∈
M. Our objective is to find an asymptotic approximation for |Ĵm|, for m = 1, . . . , l, in
order to simplify the computation of BICG(Ml). We solve this problem by imposing specific
assumptions on the distribution of the data setX . In the next section, we provide an asymp-
totic approximation for |Ĵm|, form = 1, . . . , l, assuming that each cluster Xm contains iid
multivariate Gaussian data points.

2 . 6 Bayes ian Cluster Enumerat ion Algorithm for
Multivar iate Gauss ian Data

In this section, we first derive an asymptotic cluster enumeration criterion by modeling the
data as a family ofGaussian distributions. Then, we present a two-step approach that uses the
EMalgorithm to partition the data according to each candidatemodel prior to the calculation
of an enumeration criterion. In addition,we conductnumerical and real data experiments and
demonstrate the performance of the proposed cluster enumeration algorithm in comparison
to existing methods.
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2 . 6 B a y e s i an C lu s t e r Enumer at i on Algor i thm for Mult i va r i at e
Gau s s i an Data

2 .6 . 1 Bayesian Cluster Enumeration Criterion for
Multivariate Gaussian Data

LetX , {x1, . . . ,xN}denote theobserveddata setwhich canbepartitioned intoK clusters
{X1, . . . ,XK}. Each cluster Xk, k ∈ K, containsNk data vectors that are realizations of iid
Gaussian random variables xk ∼ N (µk,Σk), whereµk ∈ Rr×1 andΣk ∈ Rr×r represent
the centroid and the covariance matrix of the kth cluster, respectively. Further, let M ,
{MLmin

, . . . ,MLmax} denote a set of Gaussian candidate models and let there be a clustering
algorithm that partitions X into l independent, mutually exclusive, and non-empty subsets
(clusters) Xm, for m = 1, . . . , l, by providing parameter estimates θ̂m = [µ̂m, Σ̂m]

⊤ for
each candidate model Ml ∈ M, where l ∈ {Lmin, . . . , Lmax} and l ∈ Z+. Assume that
(A-2.1)–(A-2.6) are satisfied.

Theorem 2.1. The posterior probability of Ml ∈ M given X can be asymptotically approxi-
mated as

BICN(Ml) , log p(Ml|X )

≈
∑l

m=1Nm logNm − 1
2

∑l
m=1Nm log |Σ̂m| − q

2

∑l
m=1 logNm,

(2.19)
where q = 1

2
r(r + 3) is the number of estimated parameters per cluster and Nm is the

number of data points in the mth cluster, which satisfies the condition N =
∑l

m=1Nm.

Proof. Proving Theorem 2.1 requires finding an asymptotic approximation to |Ĵm| in (2.17)
and, based on this approximation, deriving an expression for BICN(Ml). A detailed proof is
given in Appendix B.1. �

OnceBICN(Ml) is computed for each candidatemodelMl ∈ M, the number of partitions
(clusters) inX is estimated as

K̂BICN = argmax
l=Lmin,...,Lmax

BICN(Ml). (2.20)

Remark. The proposed criterion, BICN, and the original BIC as derived in [Schwarz, 1978;
Cavanaugh & Neath, 1999] differ in terms of their penalty terms. A detailed discussion is
provided in Section 2.6.4.
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The first step in calculating BICN(Ml) for each modelMl ∈ M is the partitioning of the
data setX into l clustersXm,wherem = 1, . . . , l, and the estimation of the associated cluster
parameters using an unsupervised learning algorithm. Since the approximations in BICN(Ml)

are basedonmaximizing the likelihood functionofGaussiandistributed randomvariables, we
use a clustering algorithm that is based on the maximum likelihood principle. Accordingly, a
natural choice is the EM algorithm for Gaussian mixture models.

2 .6 . 2 The Expectation Maximization Algorithm for Gaussian
Mixture Models

TheEMalgorithm findsmaximumlikelihood solutions formodelswith latent variables [Dem-
pster et al., 1977; Bishop, 2006]. In our case, the latent variables are the cluster memberships
of the data vectors inX , given that the l-component Gaussian mixture distribution of a data
vector xn can be written as

f(xn|Ml,Θl) =
l∑

m=1

τmg(xn;µm,Σm), (2.21)

where g(xn;µm,Σm) represents the r-variate Gaussian pdf and τm is the mixing coefficient
of themth cluster. The goal of the EM algorithm is to maximize the log-likelihood function
of the data setX with respect to the parameters of interest as follows:

argmax
Φl

logL(Φl|X ) = argmax
Φl

N∑
n=1

log
l∑

m=1

τmg(xn;µm,Σm), (2.22)

whereΦl = [τl,Θ
⊤
l ] and τl = [τ1, . . . , τl]

⊤. Maximizing (2.22) with respect to the elements
ofΦl results in coupled equations. The EM algorithm solves these coupled equations using
a two-step iterative procedure. The first step (E step) evaluates υ̂(i)

nm, which is an estimate of
the probability that data vector xn belongs to the mth cluster at the ith iteration, for n =

1, . . . , N andm = 1, . . . , l. υ̂(i)
nm is calculated as

υ̂(i)
nm =

τ̂
(i−1)
m g(xn; µ̂

(i−1)
m , Σ̂

(i−1)
m )∑l

j=1 τ̂
(i−1)
j g(xn; µ̂

(i−1)
j , Σ̂

(i−1)
j )

, (2.23)
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where µ̂(i−1)
m and Σ̂(i−1)

m represent the centroid and covariance matrix estimates, respectively,
of themth cluster at the previous iteration (i− 1). The second step (M step) re-estimates the
cluster parameters using the current values of υ̂nm as follows:

µ̂(i)
m =

∑N
n=1 υ̂

(i)
nmxn∑N

n=1 υ̂
(i)
nm

(2.24)

Σ̂(i)
m =

∑N
n=1 υ̂

(i)
nm(xn − µ̂(i)

m )(xn − µ̂(i)
m )⊤∑N

n=1 υ̂
(i)
nm

(2.25)

τ̂ (i)m =

∑N
n=1 υ̂

(i)
nm

N
(2.26)

The E andM steps are performed iteratively until either the cluster parameter estimates Φ̂l or
the estimate of the log-likelihood function logL(Φ̂l|X ) converges.

A summary of the estimation of the number of clusters in an observed data set using the
two-step approach is provided in Algorithm 2.1. Note that the computational complexity
of BICN(Ml) is only O(1), which can easily be ignored during the run-time analysis of the
proposed two-step cluster enumeration algorithm. Hence, since the EM algorithm is run
for all candidate models in M, the computational complexity of the proposed algorithm is
O(Nr2 (Lmin + . . .+ Lmax) imax), where imax is a fixed stopping threshold of the EM algo-
rithm.

2 .6 . 3 Existing BIC-Based Cluster Enumeration Methods

As discussed in Section 2.2, existing cluster enumeration algorithms that are based on the orig-
inal BIC use the criterion as it is known fromparameter estimation tasks without questioning
its validity on cluster analysis. Nevertheless, since these criteria have been widely used, we
briefly review them to provide a comparison to our criterion BICN, which is given by (2.19).

The original BIC, as derived in [Schwarz, 1978; Cavanaugh & Neath, 1999], evaluated at a
candidate modelMl ∈ M is written as

BICO(Ml) = logL(Θ̂l|X )− ql

2
logN, (2.27)

whereL(Θ̂l|X ) denotes the likelihood function, q is the number of estimated parameters in
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Algorithm 2.1 Two-step cluster enumeration algorithm
Inputs: X , Lmin, and Lmax

for l = Lmin, . . . , Lmax do
Step 1: model-based clustering
Step 1.1: the EM algorithm
form = 1, . . . , l do

Initializeµm using K-means++ [Arthur & Vassilvitskii, 2007]
Σ̂m = 1

Nm

∑
xn∈Xm

(xn − µ̂m)(xn − µ̂m)
⊤

τ̂m = Nm

N

end for
for i = 1, 2, . . . , imax do

E step:
for n = 1, . . . , N do

form = 1, . . . , l do
Calculate υ̂(i)

nm using (2.23)
end for

end for
M step:
form = 1, . . . , l do

Determine µ̂(i)
m , Σ̂(i)

m , and τ̂ (i)m via (2.24)-(2.26)
end for
Check for convergence of either Φ̂(i)

l or logL(Φ̂(i)
l |X )

if convergence condition is satisfied then
Exit for loop

end if
end for
Step 1.2: hard clustering
for n = 1, . . . , N do

form = 1, . . . , l do

ιnm =

1, m = argmax
j=1,...,l

υ̂
(i)
nj

0, otherwise

end for
end for
form = 1, . . . , l do

Nm =
∑N

n=1 ιnm
end for
Step 2: calculate BICN(Ml) via (2.19)

end for
Estimate the number of clusters, K̂BICN , inX via (2.20)
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Algorithm 2.2 Cluster enumeration using BICOS

Inputs: X , Lmin, and Lmax

for l = Lmin, . . . , Lmax do
form = 1, . . . , l do

EstimateNm andµm using K-means++ [Arthur & Vassilvitskii, 2007]
Calculate σ̂2 using (2.30)

end for
Calculate BICOS(Ml) via (2.29)

end for
Estimate the number of clusters inX as
K̂BICOS = argmax

l=Lmin,...,Lmax

BICOS(Ml)

the candidate model Ml, and N = #X . In (2.27), logL(Θ̂l|X ) denotes the data fidelity
term, while ql

2
logN is the penalty term. Under the assumption that the observed data is

Gaussian distributed, the data fidelity terms of BICO and the ones of our criterion, BICN, are
exactly the same. The only deference between the two is the penalty term. Hence, we use a
similar procedure as in Algorithm 2.1 to implement the original BIC as a wrapper around the
EM algorithm.

Moreover, the original BIC is commonly used as a wrapper around K-means by assuming
that the data points that belong to each cluster are iid as Gaussian and all clusters are spherical
with an identical variance, i.e. Σm = Σj = σ2Ir for m ̸= j, where σ2 is the common
variance of the clusters inMl [Pelleg & Moore, 2000; Zhao et al., 2008a; Zhao et al., 2008b].
Under these assumptions, the original BIC is given by

BICOS(Ml) = logL(Θ̂l|X )− α

2
logN, (2.28)

where BICOS(Ml) denotes the original BIC of the candidate model Ml derived under the as-
sumptions stated above andα = (rl + 1) is the number of estimatedparameters inMl ∈ M.
Ignoring the model independent terms, BICOS(Ml) can be written as

BICOS(Ml) =
l∑

m=1

Nm logNm − rN

2
log σ̂2 − α

2
logN, (2.29)
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where

σ̂2 =
1

rN

l∑
m=1

∑
xn∈Xm

(xn − µ̂m)
⊤ (xn − µ̂m) (2.30)

is the maximum likelihood estimator of the common variance. Algorithm 2.2 summarizes
cluster enumeration using BICOS.

2 .6 .4 Comparison of the Penalty Terms of Different Bayesian
Cluster Enumeration Criteria

Comparing (2.19), (2.27), and (2.28), we notice that they have a common form [Stoica& Selen,
2004; Rao & Wu, 1989], that is,

logL(Θ̂l|X )− η, (2.31)

but with different penalty terms, where

BICN : η =
q

2

l∑
m=1

logNm (2.32)

BICO : η =
ql

2
logN (2.33)

BICOS : η =
1

2
(rl + 1) logN. (2.34)

Remark. BICO and BICOS carry information about the structure of the data only on their data
fidelity term, which is the first term in (2.31). On the other hand, as shown in (2.19), both the
data fidelity and penalty terms of our criterion, BICN, contain information about the structure
of the data.

The penalty terms of BICO and BICOS depend linearly on l, while the penalty term of our
criterion, BICN, depends on l in a non-linear manner. Comparing the penalty terms in (2.32)-
(2.34), BICOS has the weakest penalty term. In the asymptotic regime, the penalty terms of
BICN andBICO coincide. But, in the finite sample regime, for values of l > 1, the penalty term
ofBICO is stronger than thepenalty termofBICN. Note that thepenalty termofBICN depends
on the number of data vectors in each cluster,Nm, form = 1, . . . , l, of each candidatemodel
Ml ∈ M, while the penalty term of the original BIC depends only on the total number of

24



2 . 6 B a y e s i an C lu s t e r Enumer at i on Algor i thm for Mult i va r i at e
Gau s s i an Data

data vectors in the data set. Hence, the penalty termof our criterionmight exhibit sensitivities
to the initialization of cluster parameters and the associated number of data vectors per cluster.

2 .6 . 5 Experimental Results

We compare the cluster enumeration performance of our criterion, BICN given by (2.19), with
BICO and BICOS, which are given by (2.27) and (2.29), respectively, using five synthetic and
four real data sets. The considered data sets are diverse in the sense that the number of features
ranges from r = 2 up to r = 79, the number of samples ranges fromN = 150 up toN =

16, 800 and the number of clusters ranges fromK = 2up toK = 20. For all simulations, we
set Lmin = 1 and Lmax = 2K , whereK is the true number of clusters in the data setX . All
simulation results are an average of 1000 Monte Carlo experiments unless stated otherwise.
The compared cluster enumeration criteria are based on the same initial cluster parameters in
each Monte Carlo experiment, which allows for a fair comparison. The MATLAB code that
implements the proposed two-step algorithm and the Bayesian cluster enumerationmethods
discussed in Section 2.6.3 is available in [Teklehaymanot et al., 2018c].

In this section, we first describe the performance measures used to compare the different
cluster enumeration criteria. Then, the numerical experiments performed on synthetic data
sets and the results obtained from real data sets are discussed in detail.

2 .6 . 5 . 1 Performance Measures

The main performance measures are the empirical probability of detection (pdet), the empir-
ical probability of underestimation (punder), the empirical probability of selection, and the
mean absolute error (MAE). The empirical probability of detection is defined as the probabil-
ity with which the correct number of clusters is selected and it is calculated as

pdet =
1

I

I∑
i=1

1{K̂i=K}, (2.35)

where I is the total number ofMonte Carlo experiments, K̂i is the estimated number of clus-
ters in the ith Monte Carlo experiment, and 1{K̂i=K} is the indicator function which is de-
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Figure 2.2: Synthetic data sets

fined as

1{K̂i=K} ,

1, if K̂i = K

0, otherwise
. (2.36)

The empirical probability of underestimation (punder) is the probability that K̂ < K and the
empirical probability of overestimation (pover) can be easily computed as

pover = 1− pdet − punder. (2.37)

The empirical probability of selection is defined as the probability with which the number
of clusters specified by each candidate model Ml ∈ M is selected. The last performance
measure, which is the mean absolute error (MAE), is computed as

MAE =
1

I

I∑
i=1

∣∣∣K − K̂i

∣∣∣ . (2.38)

2 .6 . 5 . 2 Numerical Experiments

The numerical experiments are based on five synthetic data sets out of which three have been
already used in the literature for cluster analysis tasks [Fränti & Virmajoki, 2006; Kärkkäinen
& Fränti, 2002; Fränti et al., 2016]. We perform three experiments where we study the impact
of cluster overlap, cluster unbalance, and initialization of cluster parameters on the overall
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Table 2.1: The empirical probability of detection in%, the empirical probability of underestimation in%, and
the mean absolute error (MAE) of various Bayesian cluster enumeration criteria as a function of γ for Data-2.1.

γ 1 3 6 12 48

pdet(%)
BICN 55.2 74.3 87.4 95.7 100
BICO 43.6 69.7 85.1 94.9 100
BICOS 53.9 50.5 49.4 42.4 31.8

punder(%)
BICN 44.5 25.7 12.6 4.3 0
BICO 56.4 30.3 14.9 5.1 0
BICOS 0 0 0 0 0

MAE BICN 0.449 0.257 0.126 0.043 0
BICO 0.564 0.303 0.149 0.051 0
BICOS 0.469 0.495 0.506 0.576 0.682

performance of different cluster enumeration methods.

In the first experiment, we consider a data set, referred to as Data-2.1 and depicted in Fig-
ure 2.2a, which contains realizations of the random variables xk ∼ N (µk,Σk), where k =

1, 2, 3, with cluster centroids µ1 = [2, 3.5]⊤,µ2 = [6, 2.7]⊤,µ3 = [9, 4]⊤, and covariance
matrices

Σ1=

[
0.2 0.1

0.1 0.75

]
,Σ2=

[
0.5 0.25

0.25 0.5

]
,Σ3=

[
1 0.5

0.5 1

]
.

The first cluster is linearly separable from the others, while the remaining clusters overlap. The
number of data vectors per cluster is specified as N1 = γ × 50, N2 = γ × 100, and N3 =

γ × 200, where γ is a constant. Data-2.1 is particularly challenging for cluster enumeration
criteria because it has not only overlapping but also unbalanced clusters. Cluster unbalance
refers to the fact that different clusters have a different number of data vectors, which might
result in some clusters dominating the others.

The impact of cluster overlap and unbalance on pdet and MAE is displayed in Table 2.1.
This table shows pdet and MAE as a function of γ, where γ is allowed to take values from the
set {1, 3, 6, 12, 48}. The cluster enumeration performance of BICOS is lower than the other
methods because it is designed for spherical clusters with identical variance, while Data-2.1
has one elliptical and two spherical clusters with different covariance matrices. Our criterion,
BICN, performs best in terms of pdet and MAE for all values of γ. As γ increases, which corre-
sponds to an increase in the number of data vectors in the data set, the cluster enumeration
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Figure 2.3: The total criteria and penalty terms of different Bayesian cluster enumeration criteria for Data-2.1
when γ = 1.

performance of BICN and BICO greatly improves, while the performance of BICOS deteriorates
because of the increase in overestimation. The total criterion (BIC) and penalty term of differ-
ent Bayesian cluster enumeration criteria as a function of the number of clusters specified by
the candidatemodels for γ = 1 is shown in Figure 2.3. The BICplot in Figure 2.3a is the result
of one Monte Carlo run. It shows that BICN and BICO have a maximum at the true number
of clusters (K = 3), while BICOS overestimates the number of clusters to K̂BICOS = 4. As
shown in Figure 2.3b, our criterion, BICN, has the second strongest penalty term. Note that,
the penalty term of our criterion shows a curvature at the true number of clusters, while the
penalty terms of BICO and BICOS are uninformative on their own.

In the second numerical experiment, we consider a data set, referred to as Data-2.2, which
contains realizations of the random variables xk ∼ N (µk,Σk), where k = 1, . . . , 10, with
cluster centroids µ1 = [0, 0]⊤, µ2 = [3,−2.5], µ3 = [3, 1]⊤, µ4 = [−1,−3]⊤, µ5 =

[−4, 0]⊤, µ6 = [−1, 1]⊤, µ7 = [−3, 3]⊤, µ8 = [2.5, 4]⊤, µ9 = [−3.5,−2.5], µ10 =

[0, 3]⊤, and covariance matrices

Σ1=

[
0.25 −0.15

−0.15 0.15

]
,Σ2=

[
0.5 0

0 0.15

]
,Σi=

[
0.1 0

0 0.1

]
,

where i = 3, . . . , 10. As depicted in Figure 2.2b, Data-2.2 contains eight identical and spheri-
cal clusters and two elliptical clusters. There exists an overlap between two clusters, while the
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Table 2.2: The empirical probability of detection in%, the empirical probability of underestimation in%, and
the mean absolute error (MAE) of various Bayesian cluster enumeration criteria as a function of the number of
data vectors per cluster (Nk) for Data-2.2.

Nk 100 200 500 1000

pdet(%)
BICN 56.1 66 81 85.3
BICO 41 57.1 78 84.9
BICOS 2.7 0.9 0.1 0

punder(%)
BICN 37.6 30.2 18.2 13.5
BICO 58.6 41.7 21.4 14.1
BICOS 0 0 0 0

MAE BICN 0.452 0.341 0.19 0.148
BICO 0.59 0.429 0.22 0.151
BICOS 1.613 1.659 1.745 1.8

rest of the clusters are well separated. All clusters in this data set have the same number of data
vectors. Table 2.2 shows pdet andMAE as a function of the number of data vectors per cluster,
Nk, k = 1, . . . , 10, where Nk is allowed to take values from the set {100, 200, 500, 1000}.
Our criterion, BICN, consistently outperforms the cluster enumerationmethods that arebased
on the original BIC for the specified number of data vectors per cluster (Nk). BICO tends to
underestimate the number of clusters to K̂BICO = 9whenNk is small since it merges the two
overlapping clusters. Even thoughmajority of the clusters are spherical, BICOS rarely finds the
correct number of clusters.

The overall performance of the two-step approach presented in Algorithm 2.1 depends on
how well the clustering algorithm in the first step is able to partition the given data set. Clus-
tering algorithms such as K-means and EM are known to converge to a local optimum and
exhibit sensitivity to initialization of cluster parameters. The simplest initializationmethod is
to randomly select cluster centroids from the set of data points. However, unless the random
initializations are repeated sufficiently many times, the algorithms tend to converge to a poor
local optimum. K-means++ [Arthur & Vassilvitskii, 2007] attempts to solve this problem by
providing a systematic initialization to K-means. One can also use a few runs of K-means++
to initialize the EM algorithm. An alternative approach to the initialization problem is to use
random swap [Fränti, 2018; Zhao et al., 2012]. Unlike repeated random initializations, ran-
dom swap creates random perturbations to the solutions of K-means and EM in an attempt
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Table 2.3: Summary of synthetic data sets in terms of their number of features (r), number of samples (N ),
number of samples per cluster (Nk), and number of clusters (K).

Data sets r N Nk K

S3 [Fränti & Virmajoki, 2006] 2 5000 333 15
A1 [Kärkkäinen & Fränti, 2002] 2 3000 150 20

G2-2-40 [Fränti et al., 2016] 2 2048 1024 2

to move the clustering result away from an inferior local optimum.

In the third experiment, we compare the performance of our criterion and the original
BIC as wrappers around the above discussed clustering methods using five synthetic data sets,
which include Data-2.1 with γ = 6, Data-2.2 with Nk = 500, and the ones summarized in
Table 2.3. The number of random swaps is set to 100 and the results are an average of 100
Monte Carlo experiments. To allow for a fair comparison, the number of replicates required
by the clustering methods that use K-means++ initialization is set equal to the number of
random swaps. The empirical probability of detection (pdet) of our criterion and the origi-
nal BIC as wrappers around the different clustering methods is depicted in Table 2.4, where
RSK-means is the random swap K-means and RSEM is the random swap EM. BICNS is the
implementation of our BIC as a wrapper around the K-means variants and is given by

BICNS =
l∑

m=1

Nm logNm − Nr

2
log σ̂2 − α

2

l∑
m=1

logNm, (2.39)

where α = r + 1 and σ̂2 is given by (2.30). For the data sets that are mostly spherical, the
K-means variants outperform the ones that are based on EM in terms of the correct estima-
tion of the number of clusters, while, as expected, EM is superior for the elliptical data sets.
Among the K-means variants, the gain obtained from using random swap instead of simple
K-means++ is almost negligible. On the other hand, for the EM variants, EM significantly
outperforms RSEM especially for BICN.

2 .6 . 5 . 3 Real Data Results

Here, we study the performance of different cluster enumerationmethods using real data sets.
Out of the considered data sets, the first three are standard machine learning data sets [Lich-
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Table 2.4: Empirical probability of detection in % of various Bayesian cluster enumeration criteria as wrappers
around different clustering algorithms.

Data-2.1 Data-2.2 S3 A1 G2-2-40

K-means++ BICNS 49 0 100 98 100
BICOS 48 0 100 98 100

RSK-means BICNS 49 0 100 100 100
BICOS 48 0 100 100 100

EM BICN 87 92 10 98 100
BICO 85 89 10 98 100

RSEM BICN 22 68 11 16 90
BICO 85 89 9 28 97

man, 2013] and the last one has already been used in the literature for cluster enumeration
[Binder et al., 2018; Teklehaymanot et al., 2016]. Although there is no randomness when re-
peating the experiments for the real data sets, we still use the empirical probabilities defined in
Section 2.6.5.1 as performance measures because the cluster enumeration results vary depend-
ing on the initialization of the EM and the K-means++ algorithm.

Iris Data Set

The Fisher’s Iris data set [Fisher, 1936] is a 4-dimensional data set collected from three species
of the Iris flower. It contains three clusters of 50 instances each, where each cluster corre-
sponds to one species of the Iris flower [Lichman, 2013]. One cluster is linearly separable
from the other two, while the remaining ones overlap. We have normalized the data set by
dividing the features by their corresponding mean.

Figure 2.4a shows the empirical probability of selection of different cluster enumeration
criteria as a function of the number of clusters specified by the candidate models inM. Our
criterion, BICN, is able to estimate the correct number of clusters (K = 3) 98.8% of the time,
while BICO always underestimates the number of clusters to K̂BICO = 2. BICOS completely
breaks down and, in most cases, goes for the specified maximum number of clusters. Even
though two out of three clusters are not linearly separable, our criterion is able to estimate the
correct number of clusters with a very high accuracy. Figure 2.5 shows the behavior of the BIC
curves of BICN, givenby (2.19), and the original BIC implemented as awrapper around theEM
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Figure 2.4: Empirical probability of selection of our criterion, BICN, and existing Bayesian cluster enumeration
criteria for the real data sets.

algorithm, BICO given by (2.27), for oneMonte Carlo experiment. From (2.31), we know that
the data fidelity terms of both criteria are the same and this can be seen in Figure 2.5a. But,
their penalty terms are quite different, see Figure 2.5b. Due to the difference in the penalty
terms of BICN and BICO, we observe a different BIC curve in Figure 2.5c. The total criterion
(BIC) curve of BICN has a maximum at the true number of clusters (K = 3), while BICO has
a maximum at K̂BICO = 2. Observe that, again, the penalty term of our criterion, BICN, has
a curvature at the true number of clusters K = 3. Just as in the simulated data experiment,
the penalty term of BICN gives valuable information about the true number of clusters in the
data set while the penalty terms of the other cluster enumeration criteria are uninformative
on their own.

32



2 . 6 B a y e s i an C lu s t e r Enumer at i on Algor i thm for Mult i va r i at e
Gau s s i an Data

1 2 3 4 5 6

Number of clusters specified by the candidate models

1600

1650

1700

1750

1800

1850

1900

D
at

a 
fi

d
el

it
y

 t
er

m

BIC
N

BIC
O

(a) Data fidelity terms

1 2 3 4 5 6

Number of clusters specified by the candidate models

0

100

200

300

400

500

P
en

al
ty

 t
er

m

BIC
N

BIC
O

(b) Penalty terms
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Figure 2.5: The data fidelity terms, penalty terms, and the total criteria of BICN and BICO for the Iris data set.

Yeast Data Set

The Yeast data set is an 8-dimensional data set with 1484 instances [Lichman, 2013]. It con-
tains ten clusterswith the followingdistributionofdata vectors in each cluster: N1 = 463, N2 =

429, N3 = 244, N4 = 163, N5 = 51, N6 = 44, N7 = 37, N8 = 30, N9 = 20, and
N10 = 5. Some clusters have very few data vectors compared to others. Hence, this data set
is very challenging for any cluster enumeration method.

Figure 2.4b depicts the empirical probability of selection as a function of the number of
clusters specified by the candidate models inM. BICOS overestimates the number of clusters
100% of the time and BICO underestimates the number of clusters 100% of the time. Our
criterion, BICN, estimates the correct number of clusters 6.1% of the time. Comparing the
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estimated number of clusters by BICO and BICN one notices a very interesting result. BICO

estimates four clusters majority of the time, while BICN finds seven clusters. Hence, for this
real data example, BICN is able to provide better cluster resolution than BICO.

Seeds Data Set

TheSeeds data set is a7-dimensional data setwhich containsmeasurements of geometric prop-
erties of kernels belonging to three different varieties of wheat, where each variety is repre-
sented by 70 instances [Lichman, 2013].

As shown in Figure 2.4c, BICN and BICO are able to estimate the correct number of clusters
100% of the time, while BICOS overestimates the number of clusters to K̂BICOS = 6. In cases
where either the maximum found from the BIC curve is very near to the maximum number
of clusters specified by the candidate models or no clear maximum can be found, different
post-processing steps that attempt to find a significant curvature in the BIC curve have been
proposed in the literature. One such method is the knee point detection strategy [Zhao et al.,
2008a; Zhao et al., 2008b]. For the Seeds data set, applying the knee point detection method
to theBIC curve generated byBICOS allows for the correct estimation of the number of clusters
100% of the time.

Multi -Object Multi -Camera Network Application

Themulti-objectmulti-camera network application [Teklehaymanot et al., 2016; Binder et al.,
2018] depicted in Figure 2.6 contains seven cameras that actively monitor a common scene of
interest from different viewpoints. There are six cars that enter and leave the scene of interest
at different time frames. The video captured by each camera in the network is 18 seconds long
and 550 frames are captured by each camera. Our objective is to estimate the total number of
cars observed by the camera network. This multi-object multi-camera network example is a
challenging scenario for cluster enumeration in the sense that each cameramonitors the scene
from different angles, which can result in differences in the extracted feature vectors (descrip-
tors) of the same object. Furthermore, as shown in Figure 2.6, the video that is captured by
the cameras has a low resolution.

We consider a centralized network structure where the spatially distributed cameras send
feature vectors to a fusion center for further processing. Hence, each camera ci ∈ C ,
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c1

c2

c3 c4

c5 c6

c7

Figure 2.6: A wireless camera network continuously observing a common scene of interest. The top image
depicts a camera network with seven spatially distributed cameras that actively monitor the scene from different
viewpoints. The bottom left and right images show a frame captured by cameras 1 and 7, respectively, at the
same time instant.

{c1, . . . , c7} first extracts the objects of interest, cars in this case, from the frames in the video
using a Gaussian mixture model-based foreground detector. Then, speeded up robust fea-
tures (SURF) [Bay et al., 2008] and color features are extracted from the cars. A standard
MATLAB implementation of SURF is used to generate a 64-dimensional feature vector for
each detected object. Additionally, a 10 bin histogram for each of the RGB color channels
is extracted, resulting in a 30-dimensional color feature vector. In our simulations, we apply
principal component analysis (PCA) to reduce the dimension of the color features to 15. Each
camera ci ∈ C stores its feature vectors in Xci . Finally, the feature vectors extracted by each
camera,Xci , are sent to the fusion center. At the fusion center, we have the total set of feature
vectorsX , {Xc1 , . . . ,Xc7} ⊂ R79×5213 based on which cluster enumeration is performed.

The empirical probability of selection for different Bayesian cluster enumeration criteria
as a function of the number of clusters specified by the candidate models in M is displayed
in Figure 2.4d. Even though there are six cars in the scene of interest, two cars have similar
colors. Our criterion, BICN, finds six clusters only 14.7% of the time, while the other cluster
enumeration criteria are unable to find the correct number of clusters (cars). BICN finds five
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Table 2.5: Comparison of cluster enumeration performance of different Bayesian criteria for the real data sets.
The performance metrics are the empirical probability of detection in%, the empirical probability of underesti-
mation in%, and the mean absolute error (MAE).

Iris Yeast Seeds Cars

pdet(%)
BICN 98.8 6.1 100 14.7
BICO 0 0 100 0
BICOS 0 0 0 0

punder(%)
BICN 0 91.6 0 85
BICO 100 100 0 100
BICOS 0 0 0 0

MAE BICN 0.024 2.61 0 0.853
BICO 1 5.649 0 1.012
BICOS 2.674 8.804 3 6

clusters majority of the time. This is very reasonable due to the color similarity of the two
cars, which results in the merging of their clusters. The original BIC, BICO, also finds five
clusters majority of the time. But, it also tends to underestimate the number of clusters even
more by detecting only four clusters. Hence, our cluster enumeration criterion outperforms
existing BIC-based methods in terms of MAE as shown in Table 2.5, which summarizes the
performance of different Bayesian cluster enumeration criteria on the real data sets.

2 . 7 Bayes ian Cluster Enumerat ion Criter ion with
Fin ite Sample Penalty Term

Likemanymodel selection criteria in the literature, BICN is derived under asymptotic assump-
tions on the size of the observed data. However, in the finite sample regime, the asymptotic
assumptions made by BICN are violated, which results in a weak penalty term. Having a weak
penalty term translates into having a BIC curve which has an increasing trend throughout the
considered range of number of clusters. In such cases, the criterion becomes prone to over-
estimation. To alleviate this problem, in this section, we extend the derivation of BICN by
providing an exact expression for its penalty term [Teklehaymanot et al., 2018d].

In the case where the data setX is composed of data vectors which are realizations of mul-
tivariate Gaussian distributed random variables, given that assumptions (A-2.1)-(A-2.6) are
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satisfied, the posterior probability of the candidate model Ml ∈ M given X can be written
as

log p(Ml|X ) ≈
l∑

m=1

logL(θ̂m|Xm)−
1

2

l∑
m=1

log |Ĵm| − log f(X ), (2.40)

where logL(θ̂m|Xm) is given by (A.1). Ignoring the model independent terms, (2.40) can be
simplified to

log p(Ml|X ) ≈
l∑

m=1

Nm logNm −
l∑

m=1

Nm

2
log |Σ̂m| −

1

2

l∑
m=1

log |Ĵm|. (2.41)

In (2.41), the first two terms in the right hand side of the approximation are the data fidelity
terms and the last term is the penalty term. In this section, our objective is to provide an exact
expression to the penalty term.

The determinant of the FIM, |Ĵm|, form = 1, . . . , l, is given by (B.15). Substituting (B.15)
into (2.41) results in

log p(Ml|X ) ≈
l∑

m=1

Nm logNm −
l∑

m=1

Nm

2
log |Σ̂m|

− 1

2

l∑
m=1

log

(∣∣∣NmΣ̂
−1
m

∣∣∣× ∣∣∣∣−Nm

2
D⊤F̂mD

∣∣∣∣)

=
l∑

m=1

Nm logNm −
l∑

m=1

Nm

2
log |Σ̂m| −

1

2

l∑
m=1

log
∣∣∣NmΣ̂

−1
m

∣∣∣
− 1

2

l∑
m=1

log

∣∣∣∣−Nm

2
D⊤F̂mD

∣∣∣∣ , (2.42)

whereD ∈ Rr2× 1
2
r(r+1) is the duplication matrix and

F̂m , Σ̂−1
m ⊗

(
Σ̂−1

m − 2

Nm

Σ̂−1
m ∆̂mΣ̂

−1
m

)
(2.43)

∆̂m ,
∑

xn∈Xm

(xn − µ̂m)(xn − µ̂m)
⊤. (2.44)
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From (A.5), we know that
∆̂m = NmΣ̂m. (2.45)

Substituting (2.45) into (2.43) results in

F̂m = Σ̂−1
m ⊗

(
Σ̂−1

m − 2Σ̂−1
m Σ̂mΣ̂

−1
m

)
= −Σ̂−1

m ⊗ Σ̂−1
m . (2.46)

Finally, substituting (2.46) into (2.42) results in

BICNF(Ml) , log p(Ml|X )

≈
l∑

m=1

Nm logNm −
l∑

m=1

Nm

2
log |Σ̂m| −

1

2

l∑
m=1

log
∣∣∣NmΣ̂

−1
m

∣∣∣
− 1

2

l∑
m=1

log

∣∣∣∣Nm

2
D⊤

(
Σ̂−1

m ⊗ Σ̂−1
m

)
D

∣∣∣∣
=

l∑
m=1

Nm logNm −
l∑

m=1

Nm

2
log |Σ̂m| −

1

4
r(r + 3)

l∑
m=1

logNm

+
1

4
r(r + 1)l log 2 +

1

2

l∑
m=1

log |Σ̂m| −
1

2

l∑
m=1

log
∣∣∣D⊤

(
Σ̂−1

m ⊗ Σ̂−1
m

)
D
∣∣∣ .

(2.47)

The duplication matrixD is calculated as [Magnus & Neudecker, 1980]

D⊤ =
∑
i≥j

vijvec (Yij)
⊤ , (2.48)

where 1 ≤ j ≤ i ≤ r and vij ∈ R 1
2
r(r+1)×1 is a unit vector with one at its ((j − 1)r + i−

1
2
j(j − 1))th entry and zero elsewhere. Yij ∈ Rr×r is given by

Yij =

Uii, i = j

Uij +Uji, i ̸= j
, (2.49)

whereUij contains one at its i, jth entry and zero elsewhere.
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Comparing (2.19) and (2.47) one notice that

BICNF(Ml) = BICN(Ml) +
1

4
r(r + 1)l log 2 +

1

2

l∑
m=1

log |Σ̂m|

− 1

2

l∑
m=1

log
∣∣∣D⊤

(
Σ̂−1

m ⊗ Σ̂−1
m

)
D
∣∣∣ . (2.50)

Unlike BICN and BICO, the penalty term of BICNF depends on the covariance matrix of the
individual clusters in Ml ∈ M. This allows BICNF to lower the penalty term when the de-
terminant of the covariance matrices are high and penalize more severely when they are low.
However, if the observations span a large range of values, then the covariance matrices of in-
dividual clusters are very large and their inverses become close to zero. As a result, the penalty
term of BICNF might go to infinity. Hence, in such cases, we recommend normalizing the data
prior to the estimation of cluster parameters.

Once BICNF(Ml) is computed for each candidate model Ml ∈ M, the number of parti-
tions (clusters) inX is estimated as

K̂BICNF = argmax
l=Lmin,...,Lmax

BICNF(Ml). (2.51)

Similar to BICN, the cluster parameters required by BICNF are estimated using the EM al-
gorithm. The additional complexity of BICNF(Ml) compared to BICN(Ml) comes from the
term

1

2

l∑
m=1

log
∣∣∣D⊤

(
Σ̂−1

m ⊗ Σ̂−1
m

)
D
∣∣∣ .

TheduplicationmatrixD is computedonly once, and thus it canbe ignored in the complexity
analysis. Hence, the excess computational cost isO(lr6).

2 .7 . 1 Experimental Results

In all simulations, we setLmin = 1 andLmax = 2K , whereK is the true number of clusters
inX . All simulation results are an average of1000MonteCarlo experiments. We compare the
proposed criterion, BICNF, with BICN and BICO using two synthetic data sets. The compared
criteria use the same implementation of the EM algorithm.
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Figure 2.7: Synthetic data sets

The first experiment is based on Data-2.3, depicted in Figure 2.7a, which contains realiza-
tions of the random variables xk ∼ N (µk,Σk), for k = 1, . . . , 5, with cluster centroids
µ1 = [−2, 0]⊤, µ2 = [5, 0]⊤, µ3 = [0, 7]⊤, µ4 = [8, 4]⊤, µ5 = [3, 10]⊤, and covariance
matrices

Σ1=

[
0.2 0

0 0.2

]
,Σ2=

[
0.6 0

0 0.6

]
,Σ3=

[
0.4 0

0 0.4

]
,Σ4=

[
0.2 0

0 0.2

]
,Σ5=

[
0.3 0

0 0.3

]
.

Comparison of the three Bayesian cluster enumeration criteria as a function of the number of
data vectors per cluster,Nk, for Data-2.3 is given in Table 2.6. The proposed criterion, BICNF,
outperforms the other criteria when the number of data vectors per cluster is small and it
exhibits a very smallmean absolute error (MAE).The empirical probability of overestimation,
pover, of BICN and BICO is very high especially when the number of data vectors per cluster
is small. As expected the cluster number estimates of all compared criteria converge to the
correct number of clusters,K = 5, when the number of data vectors per cluster increases. A
comparison of the total criteria and penalty terms of the different cluster enumeration criteria
for a single Monte Carlo experiment is shown in Figure 2.8a and Figure 2.8b, respectively.
BICNF penalizes complex models more severely than the other criteria.

In the second experiment, we consider Data-2.4, shown in Figure 2.7b, which contains real-
izations of the random variables xk ∼ N (µk,Σk), for k = 1, . . . , 6, with cluster centroids
µ1 = [−1, 0, 7]⊤, µ2 = [3, 0, 8]⊤, µ3 = [0, 5, 1]⊤, µ4 = [9, 4, 4]⊤, µ5 = [3, 9, 5]⊤,
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Table 2.6: The empirical probability of detection in %, the empirical probability of overestimation in %, and
the mean absolute error (MAE) of various Bayesian cluster enumeration criteria as a function of the number of
data vectors per cluster (Nk) for Data-2.3.

Nk 10 50 100 1000

pdet(%)
BICNF 77.6 100 100 100
BICN 0 77.8 96.2 100
BICO 26.4 99.3 99.7 100

pover(%)
BICNF 0 0 0 0
BICN 100 22.2 3.8 0
BICO 73.1 0.7 0.3 0

MAE
BICNF 0.228 0 0 0
BICN 4.768 0.483 0.043 0
BICO 2.461 0.007 0.003 0

Table 2.7: The empirical probability of detection in %, the empirical probability of overestimation in %, and
the mean absolute error (MAE) of various Bayesian cluster enumeration criteria as a function of the number of
data vectors per cluster (Nk) for Data-2.4.

Nk 50 100 250 1000

pdet(%)
BICNF 82.1 96.7 98.7 99.3
BICN 64.7 92.9 98.1 99.3
BICO 51.7 91.1 98.7 99.3

pover(%)
BICNF 0.6 0.6 0.6 0.2
BICN 30.9 5.7 1.3 0.2
BICO 0 0.2 0.2 0

MAE
BICNF 0.19 0.033 0.013 0.007
BICN 0.851 0.079 0.019 0.007
BICO 0.602 0.089 0.013 0.007

µ6 = [5, 5, 1.5]⊤, and covariance matrices

Σ1 =


0.6 0 0

0 1.2 0

0 0 0.6

,Σ2 =


1.8 0 0

0 0.9 0

0 0 1.5

,Σ3 =


1.2 0 0

0 0.6 0

0 0 0.3

,
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Figure 2.8: The total criteria and the penalty terms of different Bayesian cluster enumeration criteria forData-2.3
whenNk = 10.

Σ4 =


0.9 0 0

0 0.9 0

0 0 0.9

,Σ5 =


0.9 0 0

0 1.5 0

0 0 0.9

,Σ6 =


1.2 0 0

0 1.2 0

0 0 1.2

.
We compare the cluster enumeration performance of different criteria for Data-2.4 by setting
the number of data vectors per cluster to one of the values in {50, 100, 250, 1000}. As shown
inTable 2.7, BICNF outperforms theother criteriawhenNk is small and it exhibits a smallMAE.
For small values ofNk, BICN performs better than BICO, while BICO tends to underestimate
the number of clusters. Similar to the results of Data-2.3, asymptotically, all cluster enumera-
tion criteria behave satisfactorily.

2 . 8 Appl icat ion : Distr ibuted and Adapt ive
Bayes ian Cluster Enumerat ion

Distributed signal processing and communication networking are advancing rapidly. This
has led to new paradigms for signal and parameter estimation. one such paradigm is the so-
called multiple devices multiple tasks (MDMT) paradigm, where distributed heterogeneous
devices solve different signal processing tasks by cooperating in an ad hoc sensor networkwith-
out a fusion center [Plata-Chaves et al., 2017; Bogdanovic et al., 2014; Bertrand & Moonen,

42



2 . 8 A p p l i c at i on : D i s t r i b ut ed and Ada pt i v e Ba y e s i an C lu s t e r
Enumer at i on

2012; Chen et al., 2015; Plata-Chaves et al., 2015; Chouvardas et al., 2015]. A crucial first step
towards the successful cooperation of nodes is to answer the question: Who observes what?
For example, distributed node-specific image/video enhancement requires the common label-
ing of all objects within a camera network [Teklehaymanot et al., 2015; Teklehaymanot et al.,
2017], and distributed node-specific speech enhancement requires the common labeling of
all speakers [Chouvardas et al., 2015; Bahari et al., 2016]. Several distributed algorithms have
been proposed in the literature, which frame the labeling task in form of a data clustering
problem after extracting source-specific features [Teklehaymanot et al., 2015; Teklehaymanot
et al., 2017; Chouvardas et al., 2015; Bahari et al., 2016; Binder et al., 2015; Binder et al., 2016].
However, a major drawback of these state-of-the-art methods is that they assume the num-
ber of sources/objects, which translates into the number of clusters, to be known a priori.
The assumption is rather restrictive, since this information is mostly unavailable in real-world
source/object labeling applications. In addition, the number of sources/objects could be time-
varying, which calls for adaptivemethods. In the literature, only fewmethods exist that tackle
the problem of estimating data clusters from observation collected by distributed heteroge-
neous devices with node-specific interests [Teklehaymanot et al., 2016; Binder et al., 2018].
The work in [Teklehaymanot et al., 2016] presents diffusion-based X-means and PG-means
algorithms to estimate the number of clusters sequentially from streaming-in data collected
by a distributed sensor network.

In this section, we present two distributed and adaptive Bayesian cluster enumeration al-
gorithms. The performance of the presented methods is tested using numerical experiments
and real datamulti-objectmulti-camera network application. Comparison to themethod pre-
sented in [Teklehaymanot et al., 2016] is also provided.

2 .8 . 1 Problem Formulation

Consider awireless sensor networkwithJ nodeswhose topology is described by a graph. The
neighborhood of node j ∈ J , {1, . . . , J}, denoted asBj , is the set of all nodes, including
j, that node j can exchange information with. At time instant t, where t = 1, 2, . . ., each
node j ∈ J collects r-dimensional data vectors and stores them inXjt , {xj1, . . . ,xjNt} ∈
Rr×Nt , whereNt is the number of data vectors observed by node j ∈ J at time instant t. As
time progresses, each node j ∈ J stores its data in Sjt , {Xj1, . . . ,Xjt} ∈ Rr×Njt , where
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Njt =
∑t

i=1 Ni. Sjt containsKt independent, mutually exclusive, and non-empty clusters.
Assume that a set of candidate modelsMj , {MjLmin

, . . . ,MjLmax}, is given, where Lmin

and Lmax are the specified minimum and maximum number of clusters, respectively. Each
candidate model Mjl ∈ Mj represents a partitioning of Sjt into l ∈ {Lmin, . . . , Lmax}
clusters, where l ∈ Z+. Each data vector xjn ∈ Sjt, n = 1, . . . , Njt, has an associated class
label k ∈ K , {1, . . . , Kt}. Our goal is to enable each node j ∈ J to adaptively estimate
the number of clusters in the data set Sjt by cooperating with its neighbors in Bj .

2 . 8 . 2 Distributed and Adaptive Bayesian Cluster Enumeration
Algorithms

We present two distributed and adaptive Bayesian cluster enumeration algorithms, which esti-
mate the time-varying number of clustersKjt from streaming-in data Sjt [Teklehaymanot et
al., 2018b]. Based on the Gaussian data assumption, the cluster parameters are estimated via
the expectation maximization (EM) algorithm using the number of clusters specified by each
candidate model Mjl ∈ Mj , where l ∈ {Lmin, . . . , Lmax}. Given the parameter estimates
for all candidatemodels, the Bayesian cluster enumeration criteria derived in Section 2.6.1 and
Section 2.7determine thenumberof clusters in thedata setSjt at time instant t in adistributed
and cooperative manner by incorporating the diffusion principle [Sayed et al., 2013]. The
working principle of the distributed and adaptive Bayesian cluster enumeration algorithms,
depicted in Figure 2.9, is explained as follows.

1. Collect data: each node j ∈ J collectsNt data vectors at time instant t and stores them
in Xjt. The accumulated data vectors at node j at time instant t are stored in Sjt ,
{Xj1, . . . ,Xjt}. Optionally, each node j ∈ J exchangesXjt within its neighborhood
Bj . This exchange step significantly increases the communication and computation
costs, but may also provide a performance gain; see Section 2.8.3.

2. Estimate parameters: each node j ∈ J estimates cluster parameters for each candidate
model Mjl ∈ Mj using the EM algorithm. The estimated parameters are the cluster
centroids µ̂0

jml ∈ Rr×1, covariance matrices Σ̂0
jml ∈ Rr×r, and the number of data

vectors per cluster Njml ∈ Z+ for m = 1, . . . , l and l = Lmin, . . . , Lmax, where
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Njt =
∑l

m=1Njml. *

3. Exchange parameter estimates: each node j ∈ J exchanges µ̂0
jml and Σ̂0

jml for m =

1, . . . , l and l = Lmin, . . . , Lmax within its neighborhood Bj .

4. Synchronize parameter estimates: nodes assign labels to each cluster in an arbitraryman-
ner. Hence, each node j ∈ J should synchronize the label assigned to the parameter
estimates it received from its neighbors with respect to the label assigned to its own
parameter estimates. For each cluster m = 1, . . . , l and l = Lmin, . . . , Lmax, each
node j ∈ J uses the Euclidean norm as a metric to measure the distance between
its own cluster centroid estimates µ̂0

jml and the estimates of its neighbors µ̂0
bml, where

b ∈ Bj/{j}, as follows:
δjbm =

∣∣∣∣µ̂0
jml − µ̂0

bml

∣∣∣∣
2

(2.52)

This creates a matrix ∆jbl whose row and column vectors are δjbm for m = 1, . . . , l.
Now, the synchronization problem coincides with an assignment problem that can be
efficiently solved using the Hungarian algorithm [Munkres, 1957]. Using the assign-
ment results of the Hungarian algorithm, each node j ∈ J corrects the labels of the
parameter estimates received from its neighborhood Bj .

5. Adapt parameter estimates: the own and received cluster covariance matrix estimates
are adapted via

Σ̂jml = αΣ̂0
jml + (1− α)

∑
b∈Bj/{j}

abmlΣ̂
0
bml (2.53)

at each node j ∈ J for each candidate model Mjl ∈ Mj . α denotes the tradeoff
between the weight given to the own and neighboring node estimates. Here, we use
inverse distance norm combination weights [Sayed, 2014b], which are defined as

abml =
1

||Σ̂0
jml − Σ̂0

jmb||2
. (2.54)

*We use the EM algorithm to estimate cluster parameters because of its effectiveness in dealing with spheri-
cally as well as elliptically distributed data clusters. However, in principle, the proposed framework also allows
for using other parameter estimators.
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The combination weights are further normalized such that
∑

b∈Bj/{j} abml = 1. This
way erroneous nodes are given less weight compared to the good nodes in the neigh-
borhood.

6. Perform model order selection: using the adapted parameter estimates, each node j ∈
J selects themodelMjK̂0

jt
∈ Mj , with K̂0

jt ∈ {Lmin, . . . , Lmax}, thatmaximizes the
posterior probability given Sjt. For this purpose, the BIC is calculated using either

D-BICN(Mjl) =
l∑

m=1

Njml logNjml −
l∑

m=1

Njml

2
log |Σ̂jml| −

q

2

l∑
m=1

logNjml, or

(2.55)

D-BICNF(Mjl) = D-BICN(Mjl) +
1

4
r(r + 1)l log 2 +

1

2

l∑
m=1

log |Σ̂jml|

− 1

2

l∑
m=1

log
∣∣∣D⊤

(
Σ̂−1

jml ⊗ Σ̂−1
jml

)
D
∣∣∣ , (2.56)

whereD denotes the duplication matrix of Σ̂jml [Magnus & Neudecker, 1980] and
q = 1

2
r(r + 3) represents the number of estimated parameters per cluster. Once each

node j ∈ J computes eitherD-BICN(Mjl)orD-BICNF(Mjl) for each candidatemodel
Mjl ∈ Mj , the next task is to estimate the number of clusters in Sjt using either

K̂0
jt = argmax

l=Lmin,...,Lmax

D-BICN(Mjl), or (2.57)

K̂0
jt = argmax

l=Lmin,...,Lmax

D-BICNF(Mjl). (2.58)

7. Exchange cluster number estimates: at this point, each node j ∈ J exchanges its pre-
liminary estimate of the number of clusters, K̂0

jt, in Sjt at time instant t within its
neighborhood Bj .

8. Adapt cluster number estimates: finally, each node j ∈ J adapts its cluster number
estimate using

K̂jt = median
(
K̂0

jt, K̂
0
bt

)
, (2.59)
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Figure 2.9: Overview of the distributed and adaptive Bayesian cluster enumeration algorithm.

where K̂0
bt, b ∈ Bj/{j}, denotes the cluster number estimates that node j received

from its neighbors.

Algorithm 2.3 summarizes the distributed and adaptive Bayesian cluster enumeration algo-
rithms.

2 .8 . 3 Experimental Results

In this section, we evaluate the performance of the distributed and adaptive Bayesian cluster
enumeration algorithm using two synthetic and a real data set. A comparison to the DX-
means algorithm [Teklehaymanot et al., 2016], is given. All simulation results are an average
of 300Monte Carlo experiments and the minimum andmaximum number of clusters in the
candidate models is set to Lmin = 1 and Lmax = 2K , respectively, where K is the number
of clusters in the data set Sjt at the final time instant. Equal weight is given to the own and
neighborhood-based estimates by setting α = 0.5.
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Algorithm 2.3 Distributed and adaptive Bayesian cluster enumeration algorithm
Inputs: Lmin and Lmax

for t = 1, 2, . . . do
for j = 1, . . . , J do

CollectNt data vectors
Store data vectors inXjt

Update Sjt

end for
for j = 1, . . . , J do

for l = Lmin, . . . , Lmax do
form = 1, . . . , l do

EstimateNjml, µ̂0
jml, and Σ̂0

jml using the EM algorithm
Exchange µ̂0

jml and Σ̂0
jml within Bj

end for
end for

end for
for j = 1, . . . , J do

Synchronize parameter estimates
end for
for j = 1, . . . , J do

for l = Lmin, . . . , Lmax do
form = 1, . . . , l do

Adapt covariance matrix estimates using (2.53)
end for
Calculate BIC either via (2.55) or (2.56)

end for
Estimate K̂0

jt using either (2.57) or (2.58)
end for
for j = 1, . . . , J do

Exchange K̂0
jt within Bj

end for
for j = 1, . . . , J do

Combine K̂0
jt and K̂0

bt, b ∈ Bj/{j}, using (2.59)
end for

end for
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2 .8 . 3 . 1 Network-Wide Performance Measures

The network-wide empirical probability of detection and mean absolute error, which are de-
fined as

pnet
det =

1

JIT

J∑
j=1

I∑
i=1

T∑
t=1

1{K̂(i)
jt =Kt}

(2.60)

MAEnet =
1

JIT

J∑
j=1

I∑
i=1

T∑
t=1

∣∣∣Kt − K̂
(i)
jt

∣∣∣ , (2.61)

are used as performancemeasures. I is the total number ofMonte Carlo experiments,T is the
total number of time instances, K̂(i)

jt is the estimated number of clusters by the jth node at
time instant t and the ith Monte Carlo experiment, and 1{K̂(i)

jt =Kt}
is the indicator function.

2 .8 . 3 . 2 Numerical Experiments

We consider a wireless sensor network with J = 10 nodes and#Bj = 5. Two types of coop-
erative networks, namely coop-1 and coop-2, are distinguished, where coop-1 allows only the
exchange of estimates, while coop-2 additionally exchanges data vectors within the neighbor-
hood. Results are also reported for distributed non-cooperative (non-coop) and centralized
networks. In a centralized network, the fusion center solves the cluster enumeration task after
receiving data vectors from all nodes in the network.

In the first experiment, each node j ∈ J contains realizations of Data-2.3, which was de-
fined in Section 2.7.1. Each cluster contains Nk = 210 data points and each node j ∈ J
observes Nt = 30 data points at time instant t. The number of clusters is time-varying and
cluster unbalance appears, which mimics the real data application described in Section 2.8.3.3.
For example, at t = 8 one cluster contains 210 data vectors while the other cluster contains
only 30 data vectors. Table 2.8 summarizes the cluster enumeration performance of the pre-
sented distributed and adaptive algorithms and the DX-means algorithm [Teklehaymanot
et al., 2016] for this data set in terms of pnet

det and MAEnet. DX-means is consistently outper-
formed for all modes of cooperation. Perfect results are obtained in all cases with D-BICNF.
Cooperation among neighboring nodes enhances the performance of D-BICN compared to
the distributed non-cooperative scenario.
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Table 2.8: The network-wide empirical probability of detection in% and the network-widemean absolute error
of various distributed and adaptive Bayesian cluster enumeration methods for Data-2.3 in different network
setups.

non-coop coop-1 coop-2 centralized

pnetdet(%)
D-BICNF 100 100 100 100
D-BICN 89.69 97.16 98.7 99.95

DX-means 83.62 96.10 90.5 94.64

MAEnet D-BICNF 0 0 0 0
D-BICN 0.68 0.20 0.0131 0.0004

DX-means 0.17 0.04 0.124 0.0964

Table 2.9: The network-wide empirical probability of detection in% and the network-widemean absolute error
of various distributed and adaptive Bayesian cluster enumeration methods for Data-2.5 in different network
setups.

non-coop coop-1 coop-2 centralized

pnetdet(%)
D-BICNF 85.25 84.03 99.11 91.25
D-BICN 60.81 87.89 99.08 90.67

DX-means 0.14 5.67 0 0

MAEnet D-BICNF 0.32 0.34 0.0089 0.0894
D-BICN 1.68 0.53 0.0092 0.098

DX-means 4.80 3.59 5.95 6.64

In the second experiment, we use Data-2.5 [Binder et al., 2016], depicted in Figure 2.10,
which contains realizations of xk ∼ N (µk,Σk), for k = 1, . . . , 8 and j ∈ J , with
cluster centroids µ1 = [1, 0, 3],µ2 = [1, 4, 3],µ3 = [1, 0, 6],µ4 = [−1, 3, 3],µ5 =

[4, 4, 4],µ6 = [6, 3, 7],µ7 = [4.5, 7, 6],µ8 = [2, 4, 7], and covariance matrices

Σ1 =


0.1 0 0

0 0.1 0

0 0 1

 ,Σ2 =


0.1 0 0

0 0.4 0

0 0 1

 ,Σ3 =


2 0 0

0 0.1 0

0 0 0.5

 ,

Σ4 =


0.4 0 0

0 1.6 0

0 0 0.4

 ,Σ5 =


0.2 0 0

0 1.2 0

0 0 0.1

 ,Σ6 =


0.25 0 0

0 0.3 0

0 0 1.5

 ,

50



2 . 8 A p p l i c at i on : D i s t r i b ut ed and Ada pt i v e Ba y e s i an C lu s t e r
Enumer at i on

0

10
10

5F
e
a
tu

re
 3

5

10

5

Feature 2 Feature 1

15

0 0

-5 -5

Figure 2.10: Single node realization of Data-2.5

Σ7 =


0.8 0 0

0 0.5 0

0 0 0.2

 ,Σ8 =


0.5 0 0

0 0.5 0

0 0 0.3

 .

Each cluster k contains Nk = 150 data vectors and each node j ∈ J observes Nt = 100

data vectors, which are randomly drawn from the data set, at time instant t. Table 2.9 sum-
marizes the results for Data-2.5. In all network setups, the proposed distributed and adaptive
cluster enumeration algorithms outperform the DX-means algorithm by a large margin. As
time progresses, the DX-means algorithm consistently overestimates the number of clusters
despite the increase in number of data vectors. Interestingly, coop-2 outperforms the cen-
tralized network implementation for our two proposed algorithms. However, this increase
in performance comes at an expense of communication and computation cost compared to
coop-1.

2 .8 . 3 . 3 Multi -Object Multi -Camera Network Application

We use an outdoor video sequence that was recorded by J = 3 unsynchronized digital video
cameras on the campus of École Polytechnique Fédérale de Lausanne in Switzerland [Fleuret
et al., 2008; Berclaz et al., 2011] and set the neighborhood size to#Bj = 3. The cameras were
mounted at head level (≈ 1.80m), observing the scene of interest from different angles, and
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Figure 2.11: Frames captured by cameras 1, 2, and 3, respectively, at the same time instant [Berclaz et al., 2011;
Fleuret et al., 2008]. The bounding boxes are associated to the detected pedestrians and the color defines the
label, which is identical across all three views.

the captured videos were synchronized by hand. For pedestrian enumeration purposes, we
consider the first 550 frames that are captured by the cameras, where up to four people are
seen entering and exiting the scene at different time frames. The cameras monitor the scene
of interest from different angles which results in different cameras observing different num-
ber of pedestrians at the same time instance. To ensure correct estimation of the number of
pedestrians in the network we allow the cameras to exchange raw data vectors (features). Each
node provides an estimate of the number of clusters every two seconds which corresponds to
60 time frames.

We extract two color features from ground truth detections of pedestrians, see Figure 2.11.
The first color feature is obtained by dividing the detected bounding box into three concentric
circles and extracting a 10 bin histogram per color channel. The concatenation of the three
color channels, which correspond to red, green, and blue (RGB), results in a 90-dimensional
feature vector for each detected pedestrian. The second color feature is generated by cutting
the detected bounding box horizontally into four equal parts and computing the average of
each part for each color channel. This results in a 12-dimensional color feature. Finally, we
concatenate the two color features to create a 102-dimensional feature vector. The pedestri-
ans in the scene are dressed in relatively similar colors, which results in a sparse and linearly
dependent color feature vector. To solve this problem we reduce the dimension of the color
feature to 10 using principal component analysis (PCA).

Figure 2.12 depicts the average estimated number of clusters as a function of time frames for
the multi-object multi-camera network setup. The true number of clusters is represented by
the black staircase line, which increases every time a person that has not been observed by the
camera network enters the scene. On the other hand, if a person re-enters, the number of clus-
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Figure 2.12: Average estimated number of clusters as a function of time frames for themulti-object multi-camera
network setup.

ters is not incremented. The error bars show the fluctuations that are traced back to the ran-
dom initialization of the clustering algorithms. D-BICNF is able to continuously estimate the
correct number of clusters with an empirical probability of detection pnet

det = 77.09%, while
the remaining distributed cluster enumeration methods have pnet

det = 12.55% and severely
overestimate the number of pedestrians in the scene. D-BICNF is also the best cluster enumer-
ation method in terms of the mean absolute error with MAEnet = 0.26 followed by D-BICN

with MAEnet = 5.65 and DX-means with MAEnet = 6.32. Even in this challenging pedes-
trian enumeration problem, D-BICNF is able to estimate the correct number of pedestrians
with a high accuracy. In fact, errors can mainly be accounted to a delay in detecting a new
cluster due to the lack of feature vectors from this cluster.

2 . 9 Summary

In this chapter, we presented three main contributions. First, we derived a general expression
of the BIC for cluster analysis which is applicable to a broad class of data distributions. By
imposing the multivariate Gaussian assumption on the distribution of the observations, we
provided a closed-form BIC expression, referred to as BICN. We showed that the new BIC for
cluster analysis has a different penalty term compared to the original BIC [Schwarz, 1978; Ca-
vanaugh & Neath, 1999]. Moreover, BICN contains information about the structure of the
data in both its data fidelity and penalty terms because it is derived by taking the cluster analy-
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sis problem into account. Further, BICN is incorporated into a two-step cluster enumeration
algorithmwhichprovides a principledway of estimating the number of clusters in a given data
set. Numerical and real data experiments demonstrated the superiority of the proposed BIC
for cluster analysis over existing Bayesian cluster enumeration methods. Next, we extended
the two-step cluster enumeration algorithm by refining the penalty term of the new BIC for
the finite sample regime, which results in the criterion BICNF. Simulation results confirmed
the strength of BICNF for estimating the number of clusters in data sets with small sample sizes.
BICNF achieves good performance results with a small additional computational complexity
compared to BICN. Finally, we proposed two distributed and adaptive Bayesian cluster enu-
meration algorithms for an ad hoc sensor network where nodes communicate only with their
immediate neighbors. The proposed algorithms adaptively estimate the number of clusters
from streaming-in data. Experimental results demonstrated the superiority of the proposed
methods over the DX-means algorithm on synthetic data sets and a challenging real data ap-
plication.
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3
Robust Bayesian Cluster

Enumeration

3 . 1 Introduction

In real-world applications, the observed data is often subject to heavy tailed noise and outliers
[Davé & Krishnapuram, 1997; Gallegos & Ritter, 2005; Garcá-Escudero et al., 2011; Zoubir
et al., 2012; Zoubir et al., 2018] which obscure the true underlying structure of the data. Con-
sequently, cluster enumeration becomes challenging when either the data is contaminated by
a fraction of outliers or there exist deviations from the distributional assumptions.

In this chapter, we derive two robust Bayesian cluster enumeration criteria by modeling
the data as a family of multivariate tν distributions. Specifically, a review of the state-of-the-
art on robust cluster enumeration is given in Section 3.2 and the contributions made in this
chapter are summarized in Section 3.3. The problem of estimating the number of clusters in a
contaminated data set is formulated in Section 3.4 and a robust cluster enumeration algorithm
that uses a clustering method to partition the data prior to the calculation of either of the
derived robust criteria is presented in Section 3.5. A theoretical comparison of different robust
Bayesian cluster enumeration criteria ismade in Section 3.6. Theperformance of the proposed
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algorithm is evaluated and compared to state-of-the-artmethodsusingnumerical and real data
experiments in Section 3.7. Finally, the chapter is summarized in Section 3.8.

3 . 2 State -of -the -art

The estimation of the number of clusters in contaminated data has attracted interest in the
literature, see [Wang et al., 2018; Neykov et al., 2007; Gallegos & Ritter, 2009; Gallegos &
Ritter, 2010; Fraley & Raftery, 1998; Dasgupta & Raftery, 1998; Andrews & McNicholas,
2012; McNicholas & Subedi, 2012; Frigui & Krishnapuram, 1996; Hu et al., 2011; Binder et
al., 2018; Garcá-Escudero et al., 2011; Wu et al., 2009; Zemene et al., 2016; Ott et al., 2014;
García-Escudero et al., 2010] and the references therein. A popular approach in robust cluster
analysis is to use the BIC, as derived by Schwarz [Schwarz, 1978; Cavanaugh & Neath, 1999],
to estimate the number of data clusters after either removing outliers from the data [Neykov
et al., 2007; Gallegos & Ritter, 2009; Gallegos & Ritter, 2010; Wang et al., 2018], modeling
noise or outliers using an additional component in a mixture modeling framework [Fraley
& Raftery, 1998; Dasgupta & Raftery, 1998], or exploiting the idea that the presence of out-
liers causes the distribution of the data to be heavy tailed and, subsequently, modeling the
data as a mixture of heavy tailed distributions [Andrews & McNicholas, 2012; McNicholas
& Subedi, 2012]. For example, modeling the contaminated data using a family of tν distribu-
tions [McLachlan & Peel, 1998; Peel & McLachlan, 2000; Kotz & Nadarajah, 2004; Lange et
al., 1989; Liu & Rubin, 1995; Kibria & Joarder, 2005; Kent et al., 1994] provides a principled
way of dealing with outliers by giving them less weight in the objective function. The family
of tν distributions is flexible as it contains the heavy tailed Cauchy for ν = 1 and theGaussian
distribution for ν → ∞ as special cases. Consequently, we model the clusters using a family
of multivariate tν distributions and derive robust cluster enumeration criteria that account
for outliers given that the degree of freedom parameter ν is sufficiently small.

3 . 3 Contr ibut ions in this Chapter

A robust Bayesian cluster enumeration criterion, BICtν , is derived by formulating the prob-
lem of estimating the number of clusters as maximization of the posterior probability of mul-
tivariate tν candidate models. We show that BICtν has a different penalty term compared to
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the original BIC (BICOtν ) [Schwarz, 1978; Cavanaugh & Neath, 1999], given that the candi-
date models in the original BIC are represented by a family of multivariate tν distributions.
Interestingly, for BICtν both the data fidelity and the penalty terms depend on the assumed
distribution for the data, while for the original BIC changes in the data distribution only affect
the data fidelity term. Asymptotically, BICtν converges to BICOtν . As a result, our derivations
also provide a justification for the use of the original BIC with multivariate tν candidate mod-
els from a cluster analysis perspective. Further, we refine the derivation of BICtν by providing
an exact expression for its penalty term. This results in a robust criterion, BICFtν , which be-
haves better than BICtν in the finite sample regime and converges to BICtν in the asymptotic
regime. The derived robust cluster enumeration criteria require a clustering algorithm that
partitions the data according to the number of clusters specified by each candidate model and
provides an estimate of cluster parameters. Hence, we apply the expectation maximization
(EM) algorithm to partition the data prior to the calculation of an enumeration criterion, re-
sulting in a two-step approach. The proposed algorithmprovides a unified framework for the
estimation of the number of clusters and cluster memberships.

The main contributions have been submitted for publication in the IEEE Transactions on
Signal Processing [Teklehaymanot et al., 2018e].

3 . 4 Problem Formulat ion

LetX , {x1, . . . ,xN} ⊂ Rr×N denote the observed data set which can be partitioned into
K independent, mutually exclusive, and non-empty clusters {X1, . . . ,XK}. Each clusterXk,
for k ∈ K , {1, . . . , K}, contains Nk data vectors that are realizations of independent
and identically distributed (iid) multivariate tν random variables xk ∼ tνk(µk,Ψk), where
µk ∈ Rr×1, Ψk ∈ Rr×r, and νk ∈ R+ represent the centroid, the scatter matrix, and
the degree of freedom of the kth cluster, respectively. Let M , {MLmin

, . . . ,MLmax} be
a family of multivariate tν candidate models, where Lmin and Lmax represent the specified
minimum and maximum number of clusters, respectively. Each candidate model Ml ∈ M,
for l = Lmin, . . . , Lmax and l ∈ Z+, represents a partition ofX into l clusterswith associated
cluster parameter matrix Θl = [θ1, . . . ,θl], which lies in a parameter space Ωl ⊂ Rq×l.
Assuming that
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(A-3.1) the degree of freedom parameter νm, for m = 1, . . . , l, is fixed at some prespecified
value,

the parameters of interest reduce to θm = [µm,Ψm]
⊤ and q = r(r + 1). Our research goal

is to estimate the number of clusters inX givenM assuming that (A-2.1) is true.

3 . 5 Robust Bayes ian Cluster Enumerat ion Algo-
r ithm

Given that assumptions (A-2.2)-(A-2.5) are fulfilled, we have derived a general Bayesian cluster
enumeration criterion, referred to as BICG, in Section 2.5. However, since we assume multi-
variate tν candidate models, some of the assumptions made in the derivation of BICG require
mathematical justification [Teklehaymanot et al., 2018e].

In this section, first, mathematical justification is provided for some of the assumptions
in the case where each candidate model is represented by a multivariate tν distribution. Next,
robust cluster enumeration criteria are derived. Finally, a robust two-step cluster enumeration
algorithm is presented.

3 . 5 . 1 Robust Bayesian Cluster Enumeration Criteria for the
Multivariate tν Distribution

When the candidate models are represented by a family of multivariate tν distributions, as-
sumptions (A-2.3) and (A-2.5) require justification in order for BICG, given by (2.17), to be
valid. For the multivariate tν distribution, the log-likelihood function is known to have mul-
tiple local maxima [Kent et al., 1994; Liu & Rubin, 1995]. In order for assumption (A-2.3) to
hold, we have to show that θ̂m is the global maximum of logL(θm|Xm), for m = 1, . . . , l

and l = Lmin, . . . , Lmax. θ̂m is the maximum likelihood estimator of θm and its derivation
and the final expressions are given in Appendix A.2. We know that the global maximizer of
logL(θm|Xm), is θ0m, where θ0m is the true parameter vector. In [Maronna, 1976], it was
proven that

lim
Nm→∞

θ̂m = θ0m

with probability one, whereNm is the number of data points in themth cluster. As a result,
asymptotically, assumption (A-2.3) holds. Assumption (A-2.5) directly follows because θ̂m is
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a maximizer of logL(θm|Xm). Hence, (2.17) holds for the case where the data is modeled by
a family of tν distributions.

Now, assume that, for each candidate model Ml ∈ M, there is a clustering algorithm
that partitions X into l clusters and provides parameter estimates θ̂m = [µ̂m, Ψ̂m]

⊤, for
m = 1, . . . , l. Further, let (A-2.1)–(A-2.6) and (A-3.1) be fulfilled.

Theorem 3.1. The posterior probability of Ml given X can be asymptotically approximated by

BICtν (Ml) , log p(Ml|X )

≈ logL(Θ̂l|X )− q
2

∑l
m=1 log ϵ,

(3.1)

where q = 1
2
r(r + 3) represents the number of estimated parameters per cluster and

ϵ = max

( ∑
xn∈Xm

w2
n , Nm

)
. (3.2)

The likelihood function, also called the data fidelity term, is given by

logL(Θ̂l|X )≈
l∑

m=1

Nm logNm −
l∑

m=1

Nm

2
log |Ψ̂m|+

l∑
m=1

Nm log
Γ ((νm + r)/2)

Γ (νm/2) (πνm)r/2

− 1

2

l∑
m=1

∑
xn∈Xm

(νm + r) log

(
1 +

δn
νm

)
, (3.3)

whereNm = #Xm, Γ(·) denotes the gamma function, and δn = (xn−µ̂m)
⊤Ψ̂−1

m (xn−µ̂m)

is the squared Mahalanobis distance. The second term in the second line of (3.1) is referred to
as the penalty term.

Proof. Proving that (2.17) reduces to (3.1) for themultivariate tν distribution requires approx-
imating |Ĵm| and, consequently, writing a closed-form expression for BICtν (Ml). A detailed
proof is given in Appendix B.2. �

Once BICtν (Ml) is computed for each candidate modelMl ∈ M, the number of clusters
inX is estimated as

K̂BICtν
= argmax

l=Lmin,...,Lmax

BICtν (Ml). (3.4)
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Corollary 3.1. When the data size is finite, one can opt to compute log |Ĵm|, without asymptotic
approximations to obtain a more accurate penalty term. In such cases, the posterior probability
of Ml given X becomes

BICFtν (Ml) ≈ logL(Θ̂l|X )− 1

2

l∑
m=1

log |Ĵm|, (3.5)

where the expression for |Ĵm| is given in Appendix C. Then, the number of clusters in X is
estimated as

K̂BICFtν = argmax
l=Lmin,...,Lmax

BICFtν (Ml). (3.6)

Both BICtν and BICFtν should be implemented as wrappers around a clustering algorithm
since they require estimates of cluster parameters as an input. In the next section, we discuss
the expectationmaximization algorithmas apossible alternative to estimate cluster parameters
and present the robust two-step cluster enumeration algorithm.

3 . 5 . 2 The Expectation Maximization Algorithm for Mixture of
tν Distributions

The EMalgorithm iswidely used to estimate the parameters of the l-componentmixture of tν
distributions [Peel & McLachlan, 2000; McLachlan & Peel, 1998; Kotz & Nadarajah, 2004;
Nadarajah & Kotz, 2008], which is given by

f(xn|Ml,Φl) =
l∑

m=1

τmg(xn;µm,Ψm, νm), (3.7)

where g(xn;µm,Ψm, νm) denotes the r-variate tν pdf andΦl =
[
τl,Θ

⊤
l ,νl

]
. The mixing

coefficients, denoted by τl = [τ1, . . . , τl]
⊤, satisfy the constraints 0 < τm < 1 for m =

1, . . . , l, and
∑l

m=1 τm = 1. νl = [ν1, . . . , νl]
⊤ are assumed to be known or estimated, e.g.

using [Peel & McLachlan, 2000].

The EM algorithm contains two basic steps, namely the E step and the M step, which are
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performed iteratively until a convergence condition is satisfied. The E step computes

υ̂(i)
nm =

τ̂
(i−1)
m g(xn;µ

(i−1)
m ,Ψ

(i−1)
m , νm)∑l

j=1 τ̂
(i−1)
j g(xn;µ

(i−1)
j ,Ψ

(i−1)
j , νj)

(3.8)

ŵ(i)
nm =

νm + r

νm + δ
(i−1)
n

, (3.9)

where υ̂(i)
nm is the posterior probability that xn belongs to themth cluster at the ith iteration

and ŵ(i)
nm is the weight given toxn by themth cluster at the ith iteration. Once υ̂(i)

nm and ŵ(i)
nm

are calculated, the M step updates cluster parameters as follows:

τ̂ (i)m =

∑N
n=1 υ̂

(i)
nm

N
(3.10)

µ̂(i)
m =

∑N
n=1 υ̂

(i)
nmw

(i)
nmxn∑N

n=1 υ̂
(i)
nmw

(i)
nm

(3.11)

Ψ̂(i)
m =

∑N
n=1 υ̂

(i)
nmw

(i)
nm(xn − µ̂(i)

m )(xn − µ̂(i)
m )⊤∑N

n=1 υ̂
(i)
nm

(3.12)

As the name suggests, the robust two-step cluster enumeration algorithm contains two
steps, which are themodel-based clustering step and the cluster enumeration step. Themodel-
based clustering step performs iterations of the EM algorithm until convergence followed by
hard cluster membership assignments. In the cluster enumeration step, either BICtν (Ml) or
BICFtν (Ml) is computed for eachmodelMl ∈ M. The output of the algorithm is not only an
estimate of the number of clusters but also cluster membership assignments. A pseudo-code
that describes the working principle of the robust two-step cluster enumeration algorithm is
given in Algorithm 3.1.

Given that the degree of freedom parameter ν is fixed at some finite value and the cluster
enumeration criterion used is BICtν , the computational complexity of Algorithm 3.1 is the
sum of the run times of the two steps. Since the initialization, i.e., the K-medians algorithm
is performed only for a few iterations, the computational complexity of the first step is domi-
nated by the EM algorithm and it is given byO(Nr2limax) for a single candidate modelMl,
where imax is a fixed stopping threshold of the EM algorithm. The computational complexity
of BICtν (Ml) isO(Nr2), which is much smaller than the run-time of the EM algorithm and,
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as a result, it can easily be ignored in the run-time analysis of the proposed algorithm. Hence,
the total computational complexity of Algorithm 3.1 is O(Nr2(Lmin + . . . + Lmax)imax).
Note that if BICFtν is used in Algorithm 3.1 instead of BICtν , the computational complexity
of the algorithm increases significantly with the increase in the number of features (r) due
to the calculation of the determinant of the Fisher information matrix of each cluster in each
candidate model, which is given by (C.1).

3 . 6 Compar i son of Different Robust Bayes ian
Cluster Enumerat ion Criter ia

Model selection criteria that are derived bymaximizing the posterior probability of candidate
models given data are known to have a common form [Stoica & Selen, 2004; Rao & Wu,
1989] that is consistent with

logL(Θ̂l|X )− η, (3.13)

where logL(Θ̂l|X ) is the data fidelity term and η is the penalty term. The proposed robust
cluster enumeration criteria, BICtν and BICFtν , and the original BIC with multivariate tν can-
didate models, BICOtν , [Andrews & McNicholas, 2012; McNicholas & Subedi, 2012] have an
identical data fidelity term. The difference in these criteria lies in their penalty terms, which
are given by

BICtν : η =
q

2

l∑
m=1

log ϵ (3.14)

BICFtν : η =
1

2

l∑
m=1

log |Ĵm| (3.15)

BICOtν : η =
ql

2
logN, (3.16)

where ϵ and |Ĵm| are given by (3.2) and (C.1), respectively. Note that BICFtν calculates an exact
value of the penalty term, while BICtν and BICOtν compute its asymptotic approximation. In
the finite sample regime the penalty term of BICFtν is stronger than the penalty term of BICtν ,
while asymptotically all three criteria have an identical penalty term.
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Algorithm 3.1 Robust two-step cluster enumeration approach
Inputs: X , Lmin, Lmax, and ν
for l = Lmin, . . . , Lmax do

Step 1: model-based clustering
Step 1.1: the EM algorithm
form = 1, . . . , l do

Initialize µ̂0
m using the K-medians algorithm

Initialize Ψ̂0
m using the sample covariance estimator

τ̂ 0m = Nm

N

end for
for i = 1, 2, . . . , imax do

E step:
for n = 1, . . . , N do

form = 1, . . . , l do
Calculate υ̂(i)

nm and ŵ(i)
nm using (3.8) and (3.9), respectively

end for
end for
M step:
form = 1, . . . , l do

Determine τ̂ (i)m , µ̂(i)
m , and Ψ̂(i)

m via (3.10)-(3.12)
end for
Check for the convergence of either Φ̂(i)

l or logL(Φ̂(i)
l |X )

if convergence condition is satisfied then
Exit for loop

end if
end for
Step 1.2: hard clustering
for n = 1, . . . , N do

form = 1, . . . , l do

ιnm =

1, m = argmax
j=1,...,l

υ̂
(i)
nj

0, otherwise

end for
end for
form = 1, . . . , l do

Nm =
∑N

n=1 ιnm
end for
Step 2: calculate either BICtν (Ml) or BICFtν (Ml) using (3.1) or (3.5), respectively

end for
Estimate the number of clusters inX via (3.4) or (3.6)
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Remark. A modification of the data distribution of the candidate models only affects the data
fidelity term of the original BIC [Schwarz, 1978; Cavanaugh & Neath, 1999]. However, given
that the BIC is specifically derived for cluster analysis, we showed that both the data fidelity
and penalty terms change as the data distribution of the candidate models changes, see (3.1)
and (2.19).

Remark. When the degree of freedom parameter ν → ∞, BICtν converges to BICN, where
BICN is given by (2.19).

A related robust cluster enumeration method that uses the original BIC to estimate the
number of clusters is the trimmed BIC (TBIC) [Neykov et al., 2007]. The TBIC estimates
the number of clusters using the original BICwithGaussian candidatemodels after trimming
some percentage of the data. In TBIC, the fast trimmed likelihood estimator (FAST-TLE)
is used to obtain maximum likelihood estimates of cluster parameters. The FAST-TLE is
computationally expensive since it carries out a trial and a refinement step multiple times, see
[Neykov et al., 2007] for details.

3 . 7 Exper imental Results

We compare the performance of the proposed robust two-step algorithmwith state-of-the-art
cluster enumeration methods using numerical and real data experiments. In addition to the
methods discussed in Section 3.6, we compare our cluster enumeration algorithm with the
gravitational clustering (GC) [Binder et al., 2018] and the X-means [Pelleg & Moore, 2000]
algorithm. All experimental results are an average of 300 Monte Carlo runs. The degree of
freedom parameter is set to ν = 3 for all methods that have multivariate tν candidate models.
We use the author’s implementation of the gravitational clustering algorithm [Binder et al.,
2018]. For the TBIC, we trim 10% of the data and perform 10 iterations of the trial and
refinement steps. The minimum and maximum number of clusters is set to Lmin = 1 and
Lmax = 2K , where K denotes the true number of clusters in the data under consideration,
whenever required. The performance measures that were defined in Section 2.6.5.1 are used
here.
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(b) Data-3.2 with α = 10%

Figure 3.1: Data-3.1 and Data-3.2 with α = 10%, where filled circles represent clean data and an open circle
denotes an outlier.

3 .7 . 1 Numerical Experiments

We study the performance of different cluster enumeration methods as a function of the
amount of outliers in the data, the number of features, the amount of overlap between clus-
ters, and cluster heterogeneity.

Analysis of the sensitivity of different cluster enumeration
methods to outliers

We generate two data sets which contain realizations of 2-dimensional randomvariablesxk ∼
N (µk,Σk), where k = 1, 2, 3, with cluster centroids µ1 = [0, 5]⊤, µ2 = [5, 0]⊤, µ3 =

[−5, 0]⊤, and covariance matrices

Σ1 =

[
2 0.5

0.5 0.5

]
,Σ2 =

[
1 0

0 0.1

]
,Σ3 =

[
2 −0.5

−0.5 0.5

]
.

The first data set (Data-3.1), depicted in Figure 3.1a, replaces a randomly selected data point
with an outlier that is generated from a uniform distribution over the range [−20, 20] on
each variate at each iteration. The sensitivity of different cluster enumeration methods to a
single replacement outlier over 100 iterations as a function of the number of data vectors per
cluster (Nk) is displayed inTable 3.1. Fromthe comparedmethods, our robust criterionBICFt3
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Table 3.1: The sensitivity of different cluster enumerationmethods to the presence of a single replacement outlier
as a function of the number of data points per cluster.

Nk 50 100 250 500

BICt3
pdet 43.20 92.18 99.77 100
MAE 1.28 0.11 0.002 0

BICFt3
pdet 96.89 100 100 100
MAE 0.03 0 0 0

BICOt3
pdet 88.13 99.5 99.98 100
MAE 0.18 0.005 0.0002 0

TBIC pdet 98.75 99.26 98.92 98.8
MAE 0.013 0.008 0.01 0.01

GC pdet 73.07 94.85 99.80 100
MAE 0.29 0.05 0.002 0

BICN
pdet 10.92 15.60 33.82 42.20
MAE 1.25 1.13 0.99 0.83

X-means pdet 1.24 1.17 1.38 0.17
MAE 2.69 2.67 2.33 2.13

has the best performance in terms of both pdet andMAE. Except for BICFt3 and the TBIC, the
performance of allmethods deteriorateswhenNk, fork = 1, 2, 3, is small and, notably, BICt3

performs poorly. This behavior is attributed to the fact that BICt3 is an asymptotic criterion
and in the small sample regime its penalty term becomes weak which results in an increase
in the empirical probability of overestimation. BICN and X-means are very sensitive to the
presence of a single outlier because theymodel individual clusters asmultivariateGaussian. X-
means performs even worse than BICN since it uses the K-means algorithm to cluster the data,
which is ineffective in handling elliptical clusters. An illustrative example of the sensitivity of
BICFt3 and BICN to the presence of an outlier is displayed in Figure 3.2. Despite the difference
in Nk, when the outlier is either in one of the clusters or very close to one of the clusters,
both BICFt3 and BICN are able to estimate the correct number of clusters reasonably well. The
difference between the two methods arises when the outlier is far away from the bulk of data.
While BICFt3 is still able to estimate the correct number of clusters, BICN starts to overestimate
the number of clusters.

The seconddata set (Data-3.2), shown inFigure 3.1b, containsNk = 500datapoints in each
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(a) BICFt3 forNk = 50
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(b) BICN forNk = 500

Figure 3.2: Sensitivity curves of BICFt3 and BICN at different values of Nk. The sensitivity curve demonstrates
the sensitivity of a method to the presence of an outlier relative to the position of the outlier.

cluster k and replaces a certain percentage of the data set with outliers that are generated from
a uniformdistribution over the range [−20, 20] on each variate. Data-3.2 is generated in away
that no outlier lies inside one of the data clusters. In this manner, we make sure that outliers
are points that do not belong to the bulk of data. Figure 3.3a shows the empirical probability
of detection as a function of the percentage of outliers (α). GC is able to correctly estimate
the number of clusters for α > 3% at the cost of increased computation compared to the
other methods. The proposed robust criteria, BICt3 and BICFt3 , and the original BIC, BICOt3 ,
behave similarly and are able to estimate the correct number of clusters when α ≤ 3%. The
behavior of these methods is rather intuitive because as the amount of outliers increases, then
the methods try to explain the outliers by opening a new cluster. A similar trend is observed
for TBIC even though its curve decays slowly. BICN is able to estimate the correct number
of clusters 99% of the time when there are no outliers in the data set. However, even 1% of
outliers is enough to drive BICN into overestimating the number of clusters.
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Figure 3.3: The empirical probability of detection in % as a function of different parameters.

Impact of the increase in the number of features on the perfor-
mance of cluster enumeration methods

We generate realizations of the random variables xk ∼ t3 (µk,Ψk) whose cluster centroids
and scatter matrices are given by

µk = c1r×1

Ψk = Ir,

with c ∈ {0, 15}, 1r×1 denoting an r-dimensional all one column vector, Ir representing an
r× r-dimensional identity matrix, and k = 1, 2. For this data set, referred to as Data-3.3, the
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number of features r is varied in the range r = 2, 3, . . . , 55 and the number of data points
per cluster is set to Nk = 500. Because ν = 3, Data-3.3 contains realizations of heavy tailed
distributions and, as a result, the clusters contain outliers. The empirical probability of de-
tection as a function of the number of features is displayed in Figure 3.3b. The performance
of GC appears to be invariant to the increase in the number of features, while the remaining
methods are affected. But, compared to the other cluster enumeration methods, GC is com-
putationally very expensive. BICOt3 outperforms BICt3 and the TBIC when the number of
features is low, while the proposed criterion BICt3 outperforms bothmethods in high dimen-
sions. BICFt3 is not computed for this data set because it is computationally expensive and it
is not beneficial given the large number of samples.

Analysis of the sensitivity of different cluster enumeration
methods to cluster overlap

To study the sensitivity to cluster overlap, we consider Data-3.2 with 1% outliers and vary
the distance between the second and the third centroid such that the percentage of overlap
between the two clusters takes on a value from the set {0, 5, 10, 25, 50, 75, 100}. As an ex-
ample, Figure 3.4a and Figure 3.4b show Data-3.2 with 25% and 75% overlap, respectively,
between the second and the third cluster. The empirical probability of detection as a func-
tion of the amount of overlap is depicted in Figure 3.3c. The best performance is achieved
by BICt3 and BICOt3 and, remarkably, both cluster enumeration criteria are able to correctly
estimate the number of clusters even when there exists 75% overlap between the two clusters.
As expected, when the amount of overlap is 100%, most methods underestimate the number
of clusters to two. While it may appear that the enumeration performance of BICN increases
for increasing amounts of overlap, in fact BICN groups the two overlapping clusters into one
and attempts to explain the outliers by opening a new cluster. A similar trend is observed
for X-means. GC is inferior in performance to the other robust methods, and experiences an
increase in the empirical probability of underestimation.
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Figure 3.4: Data-3.2 with 1% outliers and varying percentage of overlap.

Analysis of the sensitivity of cluster enumeration methods to
cluster heterogeneity

To analyze the sensitivity to cluster heterogeneity, we generate realizations of 2-dimensional
random variables xk ∼ t3 (µk,Ψk), where the cluster centroids µk are selected at random
from a uniform distribution in the range [−200, 200] in each variate and the scatter matrices
are set toΨk = Ir for k = 1, . . . , 5. The data set is generated in away that there is no overlap
between the clusters. The number of data points in the first four clusters is set to Nk =

500, whileN5 is allowed to take on values from the set {5, 25, 50, 125, 250, 375, 500}. This
data set (Data-3.4) contains multiple outliers since each cluster contains realizations of heavy
tailed t3 distributed random variables. The empirical probability of detection as a function
of the number of data points in the fifth cluster is shown in Figure 3.3d. The proposed cluster
enumeration methods, BICt3 and BICFt3 , are able to estimate the correct number of clusters
with a high accuracy even when the fifth cluster contains only 1% of the data available in
the other clusters. A similar performance is observed for BICOt3 . TBIC and GC are slightly
inferior in performance to the other robust cluster enumerationmethods. When the number
of data points in the fifth cluster increases, all robust methods perform well in estimating the
number of clusters. Interestingly, X-means outperforms BICN since the considered clusters
are all spherical. BICN overestimates the number of clusters and possesses the largest MAE.
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Figure 3.5: Clean and contaminated versions of the Old Faithful geyser data set.

3 .7 . 2 Real Data Results

Old Faithful geyser data set

Old Faithful is a geyser located in YellowstoneNational Park inWyoming, United States. This
data set, depicted in Figure 3.5a, was used in the literature for density estimation [Izenman,
2008], time series analysis [Azzalini & Bowman, 1990], and cluster analysis [Bishop, 2006;
Hennig, 2003]. The performance of different cluster enumeration methods on the clean and
contaminated versions of theOld Faithful data set is reported in Table 3.2. The contaminated
version, shown in Figure 3.5b, is generated by replacing a randomly selected data point with
an outlier similar to the way Data-3.1 was generated. Most methods are able to estimate the
correct number of clusters 100% of the time for the clean version of the Old Faithful data
set. Our criteria, BICt3 and BICFt3 , and BICOt3 are insensitive to the presence of a single re-
placement outlier, while TBIC exhibits slight sensitivity. In the presence of an outlier, the
performance of BICN deteriorates due to an increase in the empirical probability of overesti-
mation. In fact, BICN finds 3 clusters 100% of the time. GC shows the worst performance
and possesses the highest MAE.

Next, we replace a certain percentage of the Old Faithful data set with outliers and study
the performance of different cluster enumeration methods. The outliers are generated from
a uniform distribution over the range [−20, 20] on each variate. The empirical probability of
detection as a function of the percentage of replacement outliers is depicted in Figure 3.6. Our

71



Robu s t Ba y e s i an C lu s t e r Enumer at i on

Table 3.2: The performance of different cluster enumeration methods on a clean and a contaminated version of
the Old Faithful data set.

Old Faithful Old Faithful with
a single outlier

BICt3
pdet 100 100
MAE 0 0

BICFt3
pdet 100 100
MAE 0 0

BICOt3
pdet 100 100
MAE 0 0

TBIC pdet 100 92.03
MAE 0 0.09

GC pdet 0 0
MAE 10.34 10.26

BICN
pdet 100 5.08
MAE 0 1.36

X-means pdet 0 0
MAE 2 2
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Figure 3.6: Empirical probability of detection in % for the Old Faithful data set as a function of the percentage
of replacement outliers.

criterion BICFt3 outperforms the other methods by a considerable margin. Although BICt3 ,
BICOt3 , andTBIC are able to estimate the correct number of clusters reasonably well for clean
data, their performance deteriorates quickly as the percentage of outliers increases. X-means
and GC overestimate the number of clusters for 100% of the cases.
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3 . 8 Summary

In this chapter, we focused on the challenges in robust cluster analysis and derived a robust
cluster enumeration criterion. Further, we refined the penalty term of the robust criterion
for the finite sample regime. Since both robust criteria require cluster parameter estimates as
an input, we proposed a two-step cluster enumeration algorithm that uses the EM algorithm
to partition the data and estimate cluster parameters prior to the calculation of either of the
robust criteria. The following two statements can be made with respect to the original BIC:
First, the asymptotic criterion derived specifically for cluster analysis has a different penalty
term compared to the original BIC based on multivariate tν candidate models. Second, since
the derived asymptotic criterion converges to the original BIC as data size goes to infinity, we
are able to provide a justification for the use of the original BICwithmultivariate tν candidate
models. The performance of the proposed cluster enumeration algorithm is demonstrated
using numerical and real data experiments. We showed superiority of the proposed algorithm
in estimating the number of clusters in contaminated data sets.
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Part II

Object Labeling





4
Object Labeling in Distributed

Sensor Networks

4 . 1 Introduction

Driven by a wide range of applications, distributed and adaptive signal processing has at-
tractedmuch attention recently, see [Al-Sayed et al., 2017; Schizas et al., 2009; Lopes & Sayed,
2007; Cattivelli et al., 2008; Lorenzo et al., 2017; Szurley et al., 2015; Li & Fang, 2007; Chou
et al., 2003] and the references therein. As a result, new paradigms for signal and param-
eter estimation have been developed. One such paradigm is the multiple devices multiple
tasks (MDMT) paradigm where multiple devices communicate with in some neighborhood
to solve multiple complex signal processing tasks [Bertrand & Moonen, 2012; Chen et al.,
2015; Plata-Chaves et al., 2017; Plata-Chaves et al., 2015; Chouvardas et al., 2015; Bogdanovic
et al., 2014]. This is different from other information and communication technology (ICT)
paradigms, where stand-alone devices merely focus on individual tasks or multiple devices
perform one single joint task, as it is typically assumed in a classical wireless sensor network.

Among themany sensingmodalities, our focus lies on camera networks. Adistributed cam-
era network containing multiple heterogeneous devices, such as smart phones, tablets and/or
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handheld cameras, which neither has a predefined network structure nor a centralized com-
puting unit can make use of the MDMT paradigm. Nodes in a distributed camera network
can be interested in, for example, image enhancement, object detection, pose analysis, and
object tracking. In most real-world applications, the signal received by these nodes is contam-
inated by noise, contains frequent object occlusions, and lacks visibility in densely crowded
scenes. Under theMDMTparadigm, such nodes can benefit from cooperation with their im-
mediate neighbors to solve their signal processing task of interest given that the nodes share
common interests or observations. For cooperation to be successful, it is thus necessary to
account for a distributed labeling scheme that allows to uniquely identify every object of in-
terest observed by the nodes in the network. Only in this way, a node can make sure that the
information it received from its neighbors refers to its object of interest. Furthermore, from a
communication cost perspective, knowledge about which node sees which object allows the
formation of interest specific clusters.

In this chapter, we present distributed labeling algorithms in the context of wireless camera
networks where no central unit is available to fuse the information collected by the nodes in
the network. In Section 4.2, the state-of-the-art on object labeling and tracking in distributed
sensor networks is discussed. In Section 4.3, the contributions made in this chapter are sum-
marized. The proposed distributed object labeling algorithm for camera networks whose
nodes monitor a stationary scene is presented in Section 4.4. In Section 4.5, the proposed
adaptive object labeling and tracking algorithm for camera networks whose nodes monitor
a non-stationary scene is discussed and applied to a real data use case. Finally, the chapter is
summarized in Section 4.6.

4 . 2 State -of -the -art

Several methods have been proposed in the last years that frame object labeling in form of
a data clustering and classification problem after extracting source-specific features [Brooks
et al., 2003; Hai et al., 2012; Kokiopoulou & Frossard, 2011; Malhotra et al., 2008; Nowak,
2003; Forero et al., 2011; Tu & Sayed, 2014; Wang et al., 2009; Binder et al., 2015; Bahari et al.,
2016; Binder et al., 2016]. However, some of them still assume the presence of a fusion center
[Hai et al., 2012; Malhotra et al., 2008], are hardly real-time capable [Brooks et al., 2003] or
require a set of prelabeled training data [Kokiopoulou & Frossard, 2011; Wang et al., 2009].
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In terms of distributed signal processing without a fusion center, several adaptive strategies,
such as incremental, consensus, and diffusion algorithms have been developed in the last few
years, see [Sayed, 2014a] for an overview and a comparison of these methods. In [Forero et
al., 2011], a distributed K-means algorithm that uses the consensus strategy was proposed. An
alternative hybrid diffusion-based approach which consists of a classification method based
on preliminary clustering of the data has been presented in [Binder et al., 2015; Binder et al.,
2016].

Object labeling becomes evenmore challengingwhen the scene of interest is non-stationary.
In such cases, the distributed nodes require to not only label objects of interest but also track
them over time. The tracking and labeling of multiple objects in multiple cameras is funda-
mental, e.g. for applications such as video surveillance, autonomous driving, and sports anal-
ysis. Multi-objectmulti-camera tracking systemsmustmaintain consistent labels of objects of
interest across camera views and over time to take advantage of the information available from
different camera views in the network. Previous approaches to the labeling ofmultiple objects
across camera views include principal axis-based integration ofmulti-camera information [Du
& Piater, 2007], nonlinear manifold learning and system dynamics identification [Morariu
& Camps, 2006], and approaches that either use homography or camera calibration informa-
tion to register stationary camera views on top of a known ground plane [Kang et al., 2004;
Khan & Shah, 2006; Taj & Cavallaro, 2009; Berclaz et al., 2011; Fleuret et al., 2008]. These
state-of-the-art methods are centralized approaches in the sense that camera views are aggre-
gated into a ground plane to make sure that unique and consistent labels are assigned to the
objects in the scene of interest.

4 . 3 Contribut ions in this Chapter

The first contribution concerns two aspects. First, considering that a common planar scene is
observed by distributed cameras with different viewpoints, we present the use of histograms
of oriented gradients (HOG) [Dalal & Triggs, 2005] and histogram of color descriptors for
the task of object labeling. Second, we adapt the hybrid classification scheme that was devel-
oped in [Binder et al., 2015; Binder et al., 2016] so that it is capable of labeling objects that are
captured by hand held cameras. This is a new application, andwe demonstrate using real data
that high labeling rates can be achieved. Since many areas of engineering today concern prob-
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lems where the distribution of the measurements is far from Gaussian as it contains outliers,
which cause the distribution to be heavy tailed [Zoubir et al., 2012; Zoubir et al., 2018], we
demonstrate that the use of a robust technique as in [Binder et al., 2015; Binder et al., 2016]
(K-medians) provides higher labeling rates as compared to the distributedK-means algorithm.
We also compare the distributed strategies to their respective centralized counterparts, where
all information is available and computing is done at a fusion center.

The second contribution lies in developing a fully distributed algorithm which does not
require camera view registration to ensure that the same object is provided with the same
identity in a multi-camera network. This is radically different from state-of-the-art methods
[Kang et al., 2004; Khan & Shah, 2006; Taj & Cavallaro, 2009; Berclaz et al., 2011; Fleuret et
al., 2008; Du& Piater, 2007;Morariu& Camps, 2006]which require the aggregation of cam-
era views in order to label objects of interest. The information available in a neighborhood
of cameras is exploited to provide unique and consistent labels to multiple objects across mul-
tiple camera views and time frames. Each node solves a regularized cost function during the
assignment of a label to a particular object to exploit both the information obtained from a
local (single node) Kalman filter-based tracker and a diffusion-based labeling algorithm. The
advantage of such an approach is that it is applicable to ad hoc networks of mobile cameras.
Furthermore, the approach is robust against a single node failure and since it is based on the
diffusion principle [Sayed, 2014a] it is adaptive and scalable.

The first and second contributions have beenpublished in [Teklehaymanot et al., 2015] and
[Teklehaymanot et al., 2017], respectively.

4 . 4 Object Label ing in a Stat ionary Scene

In this section, we present distributed labeling strategies in cases where the scene observed
by the distributed camera network is stationary over time [Teklehaymanot et al., 2015]. In
particular, we consider a common planar scene, which is observed by cameras with different
viewpoints, and demonstrate the use of a robust data clustering algorithm in order to provide
unique identity to objects of interest.
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Figure 4.1: Example of a camera network observing a common planar scene.

4 .4 . 1 Problem Formulation

Consider a wireless camera network as the one depicted in Figure 4.1, where the nodes have
overlapping observations of some scene. Each node might be interested in a particular part
or object in the scene that needs to be enhanced, e.g., in terms of resolution or removal of
occlusions. We assume that

(A-4.1) more than one node is interested in every object or region of interest,

(A-4.2) the observed scene can be well approximated by a planar scene (e.g., the captured
scene is far from the cameras), and

(A-4.3) every node is only interested in one object or region.

Under this setting, nodes would like to label the objects or regions of interest in order to iden-
tify common interests among them. For such a task, each node extracts a window patch that
contains the object of interest and computes a descriptor of it. Using these descriptors (or
feature vectors), we then seek to reach a global labeling scheme through the local interaction
of nodes.

More formally, consider a camera network with J nodes. The neighborhood of node j ∈
J , {1, . . . , J}, which is denoted by Bj , contains nodes that are directly connected with

81



Ob j e ct La b e l i ng i n D i s t r i b ut ed S en sor Network s

node j ∈ J . Let xj ∈ Rr×1 denote the r-dimensional descriptor extracted at the jth node
which belongs to class Ck ∈ {1, . . . , K}, where k is the class (cluster) label. K denotes the
number of objects of interest in the scene, which is assumed to be known or estimated via the
cluster enumerationmethod discussed in Section 2.6.1, Section 2.7, or Section 3.5.1. Let Ĉjk =
F (xj) be the predicted class of feature vector xj , where F : Rr×1 7→ {1, . . . , K}, F ∈ F
is some prediction function within the family of functions F . Then, our goal is to solve the
following optimization problem

min
F∈F

1{F (xj)−Ck}, (4.1)

where 1{F (xj)−Ck} is the indicator function defined as

1{F (xj)−Ck} =

{
0 F (xj) = Ck
1 otherwise,

(4.2)

which penalizes wrong class assignments. In order to solve the labeling problem in (4.1) in a
distributed fashion, we rely on K-means and K-medians based clustering schemes.

4 .4 .2 Robust Diffusion-Based Image Labeling Methodology

In this section, we present the diffusion K-medians and K-means algorithms which are used
to cluster the set of feature vectors into K clusters and provide objects or regions of interest
with a unique label.

4 .4 .2 . 1 Diffusion K-Medians Algorithm

The diffusion K-medians, depicted in Figure 4.2, is a hybrid classification/labeling method
which contains a local clustering phase and a real time distributed classification or labeling
phase [Binder et al., 2015; Binder et al., 2016]. In the local clustering phase, the camera at node
j ∈ J captures a predefined number of images. Then, each node j ∈ J extractsNn feature
vectors from the regions of interest in the images and collect them inXjn, wheren is a discrete
time index. Next, eachnode j ∈ J exchangesXjn within its neighborhoodBj . The ownand
received feature vectors are stored in the matrix Sjn ,

[
sj1, . . . , sjNjn

]
∈ Rr×Njn , where

Njn =
∑

b∈Bj
Nn. Then, K-medians is performed to minimize the ℓ1-distance between sji,
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Figure 4.2: An overview of the diffusion K-medians algorithm.

i = 1, . . . , Njn, and the randomly initialized cluster centroids:

argmin
µ0

jkn

K∑
k=1

Njn∑
i=1

∥sji − µ0
jkn∥1 (4.3)

Each feature vector is assigned to class Ĉ0
jkn based on theminimal ℓ1-distance. The labeled fea-

ture vectors are stored in thematrixVjkn ∈ Rr×Njkn , fork = 1, . . . , K , where
∑K

k=1Njkn =

Njn. Next, as a robust local initial estimate of the cluster centroids, the row-wise median of
Vjkn is computed as

µ̂0
jkn = median (Vjkn) . (4.4)

The order of the initial centroid estimates is random at different nodes. Synchronization
is therefore necessary when exchanging cluster centroid estimates and the re-sorting is per-
formed by computing the Euclidean distance relative to the cluster centroid estimates of an
arbitrary reference node in the neighborhood Bj . This completes the initial clustering phase.

The distributed labeling phase is performed for every feature vector extracted from new
images recorded by the cameras and is summarized as follows.

1. Exchange step: each node j ∈ J broadcasts the new feature vector to its neighbors
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and accumulates the own and received feature vectors in the matrix X̃jn. Then, each
node j ∈ J updates its data matrixSjn by adding X̃jn to it, such thatSjn ∈ Rr×Njn ,
where Njn = Nj(n−1) + #Bj , where #Bj denotes the size of the neighborhood of
node j.

2. Adaptation step: at this stage, two important procedures are under taken by each node
j ∈ J . First, K-medians is performed tominimize the ℓ1-distance between the feature
vectors inSjn and the current centroid estimates using (4.3). Then, using the new class
labels,Vjkn is updated and preliminary cluster centroid estimates µ̂0

jkn are obtained by
solving (4.4).

3. Exchange step: each node j ∈ J broadcasts the preliminary centroid estimates µ̂0
jkn,

for k = 1, . . . , K , within the neighborhood Bj .

4. Combination step: each node j ∈ J adapts its cluster centroid estimates using

µ̂jkn = αµ̂0
jkn + (1− α)

∑
b∈Bj/{j}

abkµ̂
0
bkn, (4.5)

where α denotes the tradeoff between the weight given to the own and the neighbor-
hood estimates. We use uniform combination weights, which are given by

abk =
1

(#Bj − 1)
. (4.6)

5. Labeling step: using the newly estimated cluster centroids µ̂jkn, each node j ∈ J
assigns the new feature vectors in X̃jn by computing the Euclidean distance as follows:

d(xji, µ̂jkn) = ∥xji − µ̂jkn∥2

=
√

(xji − µ̂jkn)⊤(xji − µ̂jkn) (4.7)

where xji is the ith feature vector in X̃jn. Then, the new feature vectors are assigned
to class Ĉjkn, k = 1, . . . , K with minimum Euclidean distance. Based on the new
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cluster membership of the feature vectors, the final estimate of the cluster centroids is
calculated using (4.4).

Algorithm 4.1 summarizes the diffusion K-medians algorithm.

4 .4 .2 . 2 Diffusion K-Means Algorithm

The diffusion K-means is computed analogously to the diffusion K-medians, the differences
are the following: Whenever ameasure of central tendency is required, the diffusionK-means
uses the mean instead of the median. Further, the diffusion K-means algorithm minimizes
the ℓ2-distance between sji, i = 1, . . . , Njn, and the randomly initialized centroids:

argmin
µ0

jkn

K∑
k=1

Njn∑
i=1

∥sji − µ0
jkn∥2 (4.8)

The initial cluster centroids are estimated as

µ̂0
jkn = mean (Vjkn) . (4.9)

All other steps of the diffusion K-means are identical to the ones of the diffusion K-medians.
Hence, the diffusion K-means can be implemented in a similar manner as Algorithm 4.1 by
replacing (4.3) and (4.4) by (4.8) and (4.9), respectively.

4 .4 . 3 Experimental Results

In this section, a comparison of the labeling performance of the diffusion K-medians and K-
means algorithm is provided. All experimental results are an average of 1000Monte Carlo ex-
periments and for each experiment a different random topology of the network is considered.
As a benchmark, we compare our results to a centralized implementation, where all nodes for-
ward their feature vectors to a fusion center. The fusion center computes the K-medians or
K-means based labeling, having available the data of the entire camera network.
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Algorithm 4.1 The diffusion K-medians algorithm
Input: K
Local clustering phase
for j = 1, . . . , J do

Record a predefined number of images
ExtractNn feature vectors
Store feature vectors inXjn

BroadcastXjn to all nodes in Bj

end for
for j = 1, . . . , J do

Store the own and received feature vectors inSjn

Perform K-medians according to (4.3)
Store labeled data inVjkn

Calculate µ̂0
jkn via (4.4)

end for
for j = 1, . . . , J do

Synchronize cluster centroid estimates
end for
Distributed labeling phase
for every new feature vector do

for j = 1, . . . , J do
Broadcast the new feature vector to all nodes in Bj

end for
for j = 1, . . . , J do

Accumulate the own and received feature vectors in X̃jn

Update data matrixSjn by adding X̃jn to it
Perform K-medians according to (4.3)
UpdateVjkn based on the new class labels
Calculate µ̂0

jkn via (4.4)
end for
for j = 1, . . . , J do

Broadcast µ̂0
jkn to all nodes in Bj

end for
for j = 1, . . . , J do

Calculate µ̂jkn via (4.5)
Compute distance from new feature vectors to all centroids by evaluating (4.7)
Assign new feature vectors to class Ĉjkn which minimizes (4.7)
Re-estimate cluster centroids µ̂jkn using (4.4)

end for
end for
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4 .4 . 3 . 1 Network-Wide Performance Measure

The network-wide average labeling rate is used as a performance measure, which is computed
as

ALRnet =
1

JINj

J∑
j=1

I∑
i=1

Nj∑
n=1

1{Ĉ(i)
jkn=Ck}

, (4.10)

where I represents the total number ofMonte Carlo experiments,Nj denotes the number of
feature vectors that were available at node j ∈ J during the distributed labeling phase, and
1{·} is the indicator function. Ĉ(i)

jkn represents the label thatwas given to thenth feature vector
at the ith Monte Carlo experiment.

4 .4 . 3 . 2 Feature Extraction

For thepurpose of unsupervised labeling of the detected regions of interest across thenetwork,
we extract two different descriptors namely, histograms of oriented gradients (HOG) [Dalal
& Triggs, 2005] and color histograms. These two types of features are used in the distributed
labeling phase in order to identify common interests among the nodes. It is important to
mention that for a consistent representation, all extracted regions of interest are scaled into a
patch of size 24×24 pixels prior to the feature extraction process. For resizing the patches we
used bicubic interpolation preceded by an anti-aliasing filter when shrinking the patches.

For the color histogram, the image patch (region of interest) is subdivided into three con-
centric rings and a 10-bin histogramper color channel is computed for every region in a cumu-
lative manner (i.e., adding the previous region). The concatenation of these three histograms
gives us the descriptor of each color channel. The resulting feature vector for the color is
the concatenation of the three color channels resulting in a vector of dimension 90. For the
extraction of theHOGdescriptor, we use theMATLAB implementationwith default param-
eters which results in a 144-dimensional feature vector. In our experiments, we consider both
descriptors separately as well as their concatenation which yields a 234-dimensional feature
vector. Note that, unless otherwise stated, the experimental results are generated using the
concatenation of both the HOG and color histogram feature vectors.
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Figure 4.3: The planar scene that was used in the simulations. The yellow rectangles contain the three different
regions of interest.

Figure 4.4: Identical region of interest for two different nodes.

4 .4 . 3 . 3 Real Data Results

As depicted in Figure 4.3, we have considered a planar scene containing K = 3 different
regions of interest. From this scene, we have randomly generated a total of J = 20 different
views (each one corresponding to a different node)which are related by affine transformations.
That is, if we consider our original scene as a 2-dimensional function g : R2×1 7→ R we
generate the different views according to

gj(x) = g(Ajx+ tj), (4.11)

for each node j ∈ J , whereAj ∈ R2×2 is non-singular and tj ∈ R2×1 is some translation
vector. It is important to realize that, due to the affine warping, the extracted patches between
nodes will be different, even when they are interested in the same region of the object. This
effect is illustrated in Figure 4.4, where two nodes are interested in the clock of the building,
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Figure 4.5: Average labeling rate as a function of the weight given to the own estimates (left) and the number of
neighbors per node (right).

however the regions that contain this object are different, since they observe the scene from
different viewpoints. Thismeans that, even in thenoiseless case, feature vectors corresponding
to the same region or object of interest will be different for different nodes. For this reason, to
some extent, the chosen feature vectors should provide a representation that is robust against
scene transformations (affine in this case).

Noise samples drawn from a zero mean Gaussian distribution are added to the feature vec-
tors tomake a first step at simulating real time streaming data. Each node j ∈ J has a total of
80 feature vectors and the first 20 feature vectors are used for the local clustering phase, unless
mentioned otherwise. The remaining 60 feature vectors are used for real time labeling. The
neighborhood size is set to#Bj = 5 and α = 0.1.

Figure 4.5a displays the average labeling rate as a function of the weight given to the own
estimates (α) by each node for the diffusion K-medians and K-means algorithms. Clearly, co-
operation improves the results, and best performance is achieved when a high weight is given
to the neighborhoods estimates (α = 0.1). The average labeling rate versus the number
of neighbors per node is shown in Figure 4.5b. In general, an increase of the neighborhood
size leads to a higher labeling accuracy, at the cost of an increase in node communication. Fig-
ure 4.6a depicts the average labeling rate as a function of the number of clustering samples per
node for a distributednetwork setup. This experiment shows that only a small number of clus-
tering samples are required, which makes the method suitable for real time applications. The

89



Ob j e ct La b e l i ng i n D i s t r i b ut ed S en sor Network s

5 10 15 20 25 30

Number of clustering samples per node

0.85

0.9

0.95

1

A
v
er

ag
e 

la
b
el

in
g
 r

at
e

K-medians for =0.1

K-medians for =0.5

K-means for =0.1

K-means for =0.5

(a) Distributed network setup

5 10 15 20 25 30

Number of clustering samples per node

0.85

0.9

0.95

1

A
v

er
ag

e 
la

b
el

in
g

 r
at

e

K-medians

K-means

(b) Centralized network setup

10 20 30 40 50 60

Number of labeling samples per node

0.85

0.9

0.95

1

A
v

er
ag

e 
la

b
el

in
g

 r
at

e

K-medians for =0.1

K-medians for =0.5

K-means for =0.1

K-means for =0.5

(c) Distributed network setup

10 20 30 40 50 60

Number of labeling samples per node

0.85

0.9

0.95

1

A
v
er

ag
e 

la
b
el

in
g
 r

at
e

K-medians

K-means

(d) Centralized network setup

Figure 4.6: Average labeling rate as a function of the number of clustering and labeling samples for the dis-
tributed (left) and the centralized (right) network setups.

diffusion K-medians algorithm outperforms the diffusion K-means algorithm specially when
α = 0.1. As displayed in Figure 4.6c, the average labeling rate of the diffusion K-Medians is
higher than that of the K-Means and it achieves a good performance even for a small number
of available labeling samples. Again, a smaller value of α produces better labeling rates for
both algorithms. Comparing Figure 4.6a and Figure 4.6c with Figure 4.6b and Figure 4.6d,
respectively, one notices that the centralized network setup outperforms its distributed coun-
terpart. However, this improvement in performance comes at the cost of having a single point
of failure.

The average labeling rate as a function of the noise variance for the distributed and cen-
tralized network setups are shown in Figure 4.7a and Figure 4.7b, respectively. Note that the
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Figure 4.7: Average labeling rate as a function of noise variance and percentage of outliers for the distributed
(left) and the centralized (right) network setups.

noise is added to the feature vectors whose elements take values between zero and one. As
expected, for a variance bigger than 0.1, there is a gradual decrease in performance. The lower
performance for a variance equal to zero can be contributed to the fact that the algorithms
are designed for real time streaming data and not for a static picture. The performance loss is
less pronounced for the distributed implementations. Figure 4.7c and Figure 4.7d depict the
average labeling rate as a function of the percentage of outliers for distributed and centralized
network setups, respectively. For this experiment, additive outliers at random positions were
generated from a zeromeanGaussian distribution with a variance that is five times that of the
nominal noise. The expressions “K-medians Both” and “K-means Both” in the figures repre-
sent theusage ofHOGand color features. “HOG”and “color”, on the other hand, refer to the
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usage of a single feature. The figures clearly show the superiority of the diffusion K-medians
over the diffusion K-means in the presence of outliers. Furthermore, using both feature vec-
tors is beneficial, especially for low amounts of outlier contamination. In general, the color
outperforms the HOG descriptor, and the distributed solutions approach the performance
of the centralized ones.

4 . 5 Ob ject Label ing in a Non-Stat ionary Scene

In this section, we study object labeling when the scene observed by a distributed camera net-
work is time-varying. To this end, we develop a distributed and adaptivemulti-object labeling
algorithmfor amulti-cameranetworkwithout assuming any formof camera calibrationoruti-
lizing a centralized computing unit that fuses all information collected fromdifferent cameras
[Teklehaymanot et al., 2017].

4 . 5 . 1 Problem Formulation

Consider a wireless camera network with J nodes distributed over some geographic region
as the one shown in Figure 4.8. The set of nodes that communicates directly with node j ∈
J , {1, . . . , J} is called the neighborhood of node j and is denoted by Bj ⊆ J . Let
Xjn ∈ Rr×mjn represent the r-dimensional feature vectors extracted at the jth node from
the mjn objects that are observed by the camera of node j at time instant n. Each feature
vector belongs to a certain cluster Ck, k ∈ {1, . . . , Kn}, where k is the cluster label. The
total number of objects (clusters)Kn at time instant n is assumed to be known or estimated
via the cluster enumeration method discussed in Section 2.6.1, Section 2.7, or Section 3.5.1.
Due to the different viewpoints of the cameras, even at the same time instant, the number
of objects observed by different cameras differs. Our research goal is to adaptively estimate
cluster centroids and enable cameras with different viewpoints to assign the same identity to
the same object in the scene of interest.
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Scene

1

2

3

Figure 4.8: Awireless camera network [Berclaz et al., 2011; Fleuret et al., 2008] observing a scene of interest. The
top image shows a camera networkwithJ = 3nodes continuouslymonitoring a scene of interest fromdifferent
observation angles. The bottom images show frames captured at the same time instant by cameras 2, 1, and 3,
respectively.

4 . 5 . 2 Adaptive Diffusion-Based Track Assisted Multi -Object La-
beling Algorithm

Wepropose a distributed and adaptive track assistedmulti-object labeling algorithm formulti-
camera networks, which is based on the adapt then combine (ATC)diffusionprinciple [Sayed,
2014a]. An overview of the algorithm is shown in Figure 4.9. The general procedure involved
in the proposed framework is summarized as follows.

1. Record: the camera at node j ∈ J captures a frame from the scene of interest at time
instant n.

2. Detect and extract: if there are objects of interest in the frame, then each node j extracts
feature vectors from thedetectedboundingboxes of the objects and stores them inXjn.
Otherwise, the camera at node j ∈ J continues to record at time instant n+ 1.

3. Exchange features: each node j ∈ J exchanges its feature vectorsXjn within its neigh-
borhood Bj . The own and received feature vectors are stored in the matrix X̃jn ∈
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Figure 4.9: An overview of the distributed and adaptive diffusion-based track assistedmulti-object labeling algo-
rithm.

Rr×
∑

b∈Bj
mbn , where mbn represents the number of objects detected by node b ∈ Bj

at time instant n. Next, each node j accumulates X̃ji, i = 1, . . . , n, inside the matrix
Sjn ∈ Rr×Njn , where Njn = Nj(n−1) +

∑
b∈Bj

mbn is the total number of feature
vectors at node j at time instant n.

4. Cluster: each node j ∈ J performsK-means++ [Arthur& Vassilvitskii, 2007] tomin-
imize the ℓ2-distance between the feature vectors inSjn and the initial cluster centroids
µ0

jkn ∈ Rr×1

argmin
µ0

jkn

Kn∑
k=1

Njn∑
i=1

∥sji − µ0
jkn∥2, (4.12)

where sji denotes the ith column of Sjn. This results in a unique cluster label Ĉ0
jkn

for each feature vector inSjn. The feature vectors that belong to the same cluster k ∈
{1, . . . , Kn} are saved in Vjkn ∈ Rr×Njkn , where

∑Kn

k=1Njkn = Njn. Then, the
row-wise mean ofVjkn is computed as

µ̂0
jkn = mean (Vjkn) . (4.13)
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The minimization of the ℓ2-distance using µ0
jkn in (4.12) is performed only if Kn >

Kn−1. Otherwise,µ0
jkn is replaced with µ̂jk(n−1) in (4.12).

5. Exchange estimates: each node j ∈ J exchanges its intermediate centroid estimates
µ̂0

jkn within its neighborhood Bj . Synchronization of µ̂0
bkn, b ∈ Bj, is necessary be-

cause the order of µ̂0
jkn is random at different nodes. The re-ordering of the interme-

diate centroid estimates is performed by computing the Euclidean distance relative to
an arbitrarily chosen neighborhood head in Bj .

6. Combine estimates: each node j ∈ J adapts its centroid estimates using

µ̂jkn = αµ̂0
jkn + (1− α)

∑
b∈Bj\{j}

abkµ̂
0
bkn, (4.14)

where α controls the tradeoff between the weight given to the own and neighborhood
estimates. Here, uniform combination weights, given by (4.6), are used.

7. Assign: at this step, each node j ∈ J assigns unique labels Ĉjkn to objects of interest
in the current frame. We propose a regularized cost function that aggregates the infor-
mation obtained froma localKalman filter-based tracker and a diffusion-based labeling
algorithm. In particular,

Zjn(t,m) = λ∥d̂jnm − p̂jnt∥2 + (1− λ)∥xjm − µ̂jtn∥2, (4.15)

where λ is the regularization parameter, d̂jnm and p̂jnt are detected and predicted
bounding box center positions for m = 1, . . . ,mjn and t = 1, . . . , tjn, respectively,
andxjm is themth feature vector inXjn. The total number of open tracks in the jth
node at time instant n is denoted by tjn and µ̂jtn represents the cluster centroid that
belongs to the tth track. The two ℓ2-distances in (4.15) are normalized by their respec-
tivemaximum tomake sure that they are comparable. Then, theHungarian algorithm
[Munkres, 1957] is applied on Zjn to assign unique labels Ĉjkn to feature vectors in
Xjn.

Algorithm 4.2 summarizes the adaptive diffusion-based track assisted multi-object labeling
algorithm.
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Algorithm 4.2 Distributed and adaptive diffusion-based track assisted multi-object labeling
algorithm

Input: K
for n = 1, 2, . . . do

for j = 1, 2, . . . , J do
Record frame
if objects are detected then

Extract feature vectors and store them inXjn

else
Proceed with record step at n+ 1

end if
end for
for j = 1, 2, . . . , J do

ExchangeXjn within Bj

Store own and received feature vectors in X̃jn

Accumulate X̃ji, i = 1, . . . , n, inSjn

end for
for j = 1, 2, . . . , J do

Perform K-means++ according to (4.12)
Calculate µ̂0

jkn via (4.13)
end for
for j = 1, 2, . . . , J do

Exchange µ̂0
jkn within Bj

end for
for j = 1, 2, . . . , J do

Synchronize µ̂0
bkn, b ∈ Bj

Combine µ̂0
bkn, b ∈ Bj, via (4.14)

Solve (4.15) using the Hungarian algorithm [Munkres, 1957]
Assign unique labels Ĉjkn to feature vectors inXjn

end for
end for

4 . 5 . 3 Experimental Results

In this section, we first describe the network-wide performance measures used to evaluate the
labeling performance of Algorithm 4.2. Then, real data results of the diffusion-based track
assisted multi-object labeling algorithm are provided.
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4 . 5 . 3 . 1 Network-Wide Performance Measures

We define two network-wide performance measures, i.e., the average labeling rate (ALRnet)

and the average mislabeling rate (AMRnet) as follows:

ALRnet =
1

JNj

J∑
j=1

Nj∑
n=1

1{Ĉjkn=Ck} (4.16)

AMRnet =
1

JNj

J∑
j=1

Nj∑
n=1

1{Ĉjkn ̸=Ck}, (4.17)

where Ck is the set of ground truth labels,Nj is the total number of detected objects over the
span of the observed video, and 1{·} is the indicator function. ALRnet indicates if object k is
provided with the correct label k and AMRnet indicates if object k is provided with a wrong
label h, where h ̸= k. To evaluate the performance of the proposed algorithm, ALRnet and
AMRnet are placed in the diagonal and off-diagonal, respectively, of a confusion matrix. In
the confusion matrix, both ALRnet and AMRnet are given in percentage.

4 . 5 . 3 . 2 Real Data Results

Here,weuse thewhole video sequence thatwas described in Section 2.8.3.3. Themulti-camera
video sequence contains J = 3 stationary cameras and a neighborhood size of #Bj = 3 is
considered. Each video sequence contains 2000 frames and up to five people are seen enter-
ing and exiting the scene of interest at different times. The multi-camera video sequence is
challenging in the sense that the videos have low resolution, the cameras monitor pedestrians
from different angles, and there are frequent pedestrian occlusions.

To detect pedestrians in the scene of interest, we use an already trained MATLAB imple-
mentation of the aggregate channel features (ACF) pedestrian detector [Dollár et al., 2014].
The ACF pedestrian detector uses boosting to train decision trees over features and a multi-
scale sliding window approach to distinguish objects of interest from the background. Two
color features, whose concatenation results in a 102-dimensional feature vector, are extracted
for each detected object using the method described in Section 2.8.3.3. The weight parameter
is set to α = 0.5 and the regularization parameter is λ = 0.4. The number of pedestrians
seen until the nth time instant,Kn, is assumed to be known.
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Figure 4.10: A comparison of the estimated and true labels for pedestrian 1 in the video sequence captured by
three cameras.

The labeling performance of cameras 1, 2, and 3 for pedestrian 1 is depicted in Figure 4.10a,
Figure 4.10b, and Figure 4.10c, respectively. A zero label indicates that either the pedestrian
is not detected in the current frame or he/she is no longer in the scene of interest. For these
multi-camera video sequences, the ACF pedestrian detector has a high misdetection rate and
the position of the bounding boxes is unstable. In some frames, multiple bounding boxes are
detected for a single pedestrian in the scene, see for example the second raw in Figure 4.11 for
camera 3. These problems affect the performance of the Kalman filter-based tracker and the
diffusion-based labeling algorithm. The blue spikes in Figure 4.10 indicate mislabels which
are partly due to identity (label) switches between two pedestrians and multiple detections
for a single pedestrian. However, even under such conditions, the proposed diffusion-based
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Figure 4.11: An example of thenetwork-widemislabeling results of the proposed algorithmusingACFpedestrian
detector. Each row displays frames captured by different cameras at the same time instant. The color of each
bounding box and the number displayed on it show the identity that is given to the particular pedestrian.

multi-object labeling algorithm performs reasonably well.

Figure 4.12 shows an example of the network-wide labeling results of the proposed algo-
rithm using ACF pedestrian detector. The bounding box of each pedestrian is provided with
a unique color and number. We define the multi-object labeling algorithm to be performing
well if the samepedestrian is providedwith the same color of boundingbox andnumber across
different camera views and time frames. The proposed algorithm is able to provide unique
and consistent labels to pedestrians in the scene evenwhen there are partial occlusions. On the
contrary, Figure 4.11 depicts the frames where the proposed multi-object labeling algorithm
fails to label the pedestrians correctly.

Table 4.1 shows the confusion matrix of the multi-object labeling algorithm averaged over
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Figure 4.12: An example of the network-wide correct labeling results of the proposed algorithmusingACFpedes-
trian detector. Each row displays frames captured by different cameras at the same time instant. The color of
each bounding box and the number displayed on it show the identity that is given to the particular pedestrian.
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Table 4.1: Confusion matrix in percentage with ALRnet in the diagonal and AMRnet in the off-diagonal using
ACF pedestrian detector.

Estimated Labels

1 2 3 4 5
Tr

ue
La

be
ls 1 88.75 3.56 0.93 0.96 5.80

2 0 95.12 1.56 0.07 3.18
3 0.79 3.36 83.66 4.57 8.12
4 0 3.89 5.03 91.08 0
5 4.66 8.65 48.59 18.33 19.77

Table 4.2: Confusion matrix in percentage with ALRnet in the diagonal and AMRnet in the off-diagonal using
ground truth pedestrian detections.

Estimated Labels

1 2 3 4 5

Tr
ue

La
be

ls 1 96.25 0.79 1.31 0.10 1.55
2 0.54 97.26 1.11 0.85 0.24
3 1.24 1.80 89.44 1.48 6.05
4 0 0.21 1.88 97.92 0
5 0 0 0.29 1.11 98.60

all cameras and all time frames. The confusion matrix shows the network-wide average la-
beling rate in the diagonal and the network-wide average mislabeling rate in the off-diagonal
as defined in Section 4.5.3.1. The proposed algorithm performs well in providing unique and
consistent labels to the first four pedestrians in the scene. Lower labeling performance is exhib-
ited for the fifth pedestrian because he is only visible for a short time and is not well detected
by the ACF pedestrian detector, see Figure 4.11.

Table 4.2 shows the confusionmatrix of the proposed algorithmwhen we replace the ACF
pedestriandetectorwith the ground truthpedestriandetectionswhichprovides thebest achiev-
able performance of our algorithm. If a good pedestrian detector is used, the multi-object la-
beling algorithm achieves a very high labeling performance even when the color features have
strong similarities, which is the case when pedestrians are dressed similarly.
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4 . 6 Summary

In this chapter, we discussed object labeling for wireless camera networks in the presence of
static and time-varying scenes of interest and presented two main contributions. First, we
developed a robust distributed labeling strategy in the context of camera networks where the
cameras are interested in a static scene. The robust distributed labelingmethod achieved high
labeling rates and the loss compared to a centralized solution is small. Then, we studiedmulti-
object labeling in multi-camera networks whose cameras monitor a time-varying scene. To
this end, we developed a distributed and adaptive diffusion-based track assisted multi-object
labeling algorithm. The proposed algorithm is able to provide unique and consistent labels
to multiple objects across camera views and time frames requiring neither camera view reg-
istration nor a fusion center. The performance of the proposed algorithm was tested on a
real multi-camera network use case. In both the static and time-varying scenes, good labeling
performance was achieved given that the number of objects in the scene is known a priori.

However, specially when the scene of interest is time-varying, assuming that the number
of objects, which could also be time-varying, is known a priori is impractical in real-world
applications. In thenext chapter, we exploremulti-object labelingby automatically estimating
the number of objects in the scene.
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Cluster Enumeration and Labeling





5
Joint Cluster Enumeration

and Labeling

5 . 1 Introduction

Joint cluster enumeration and labeling refers to a broad spectrum of methods that automat-
ically estimate the number of clusters in a given data set and, subsequently, provide unique
labels to individual clusters. Cluster enumeration and labeling methods are unsupervised in
the sense that parameters of interest are learned from the data without requiring training data
with known class labels.

In this chapter, we present a joint cluster enumeration and labeling algorithm that is able
to determine the intrinsic structure of clustered data when no information other than the
observed values is available. The state-of-the-art on cluster enumeration and labeling is dis-
cussed in Section 5.2 and a summary of the main contributions in this chapter is provided
in Section 5.3. Section 5.4 formulates the cluster enumeration and labeling problem and Sec-
tion 5.5 details a new joint cluster enumeration and labeling algorithm. Experimental results,
including a real data application of person labeling using radar measurements of the human
gait, are discussed in Section 5.6. Finally, the chapter is summarized in Section 5.7.
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5 . 2 State -of -the -art

Over the past four decades, abundance of algorithms for the simultaneous determination
of the number of clusters and cluster memberships have been developed. The vast interest
in the area partly emanates from the lack of a unique definition for a cluster [Kaufman &
Rousseeuw, 1990]. On top of this, a variety of applications, such as characterizing customer
groups based on purchasing patterns, categorizing web documents, grouping genes and pro-
teins that have similar functionality, and so on [Karypis et al., 1999], have attracted researchers
to the area of cluster enumeration and labeling.

Most cluster enumeration and labeling strategies are composed of two separate methods,
namely a cluster enumeration method and a clustering algorithm. State-of-the-art clustering
algorithms can be roughly divided into methods that follow hierarchical strategy [King, 1967;
Karypis et al., 1999; Boley, 1998; Zhao & Karypis, 2005; Murtagh, 1983; Everitt, 2011; Sibson,
1973; Defays, 1977] and those that are based on partitioning (or relocation) of data points into
clusters [Lloyd, 1982; Hartigan& Wong, 1979; Dempster et al., 1977; Kaufman& Rousseeuw,
1987; Zadeh, 1965; Bezdek, 1981; Kaufman & Rousseeuw, 1990]. Neither hierarchical nor
partitioning-based methods directly address the issue of determining the number of groups
(or clusters) in a given data set. As a result, the estimation of the number of clusters in a given
data set has been widely researched, see Section 2.2 and Section 3.2 for a review of the state-of-
the-art on cluster enumeration.

5 . 3 Contr ibut ions in this Chapter

In this chapter, we propose a joint cluster enumeration and labeling algorithm that auto-
matically estimates the number of clusters in a given data set and labels individual clusters
at the same time by incorporating the cluster enumeration criteria derived in Section 2.6.1,
Section 2.7, and Section 3.5.1. The proposed algorithm is unsupervised since it requires nei-
ther training data nor prior knowledge of the number of clusters. Further more, we apply the
proposed method to a real data application of person labeling using radar measurements of
the human gait. In this context, person (or target) enumeration and labeling is achieved by ex-
ploiting the fact that feature vectors extracted from the gait of the same target create a cluster
in feature space. Using radar data of normal human walk, we are able to estimate the cor-
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rect number of targets and label them with a high accuracy despite short observation times.
To the best of our knowledge, this is the first work towards utilizing unsupervised learning
methods to jointly estimate the number of targets and to label them using radar-based gait
measurements.

Themain contributions in this chapter havebeenpublished in [Teklehaymanot et al., 2018f].

5 . 4 Problem Formulat ion

Given a set of r-dimensional vectors X , {x1, . . . ,xN}, let {X1, . . . ,XK} be a partition
of X into K clusters, such that Xk ⊆ X , for k ∈ K , {1, . . . , K}. The clusters Xk, for
k ∈ K, are independent, mutually exclusive, and non-empty. Assume that a family of can-
didate models M , {MLmin

, . . . ,MLmax} is given, where Lmin and Lmax are the specified
minimum and maximum number of clusters, respectively. Each candidate model Ml ∈ M,
for l = Lmin, . . . , Lmax and l ∈ Z+, represents a partition of X into l clusters with asso-
ciated parameters Θl = [θ1, . . . ,θl] ∈ Rq×l. Our research goal is to estimate the number
of clusters in X given that assumption (A-2.1) is fulfilled. Once the number of clusters is es-
timated, we provide unique labels to the clusters. This way, we are able to accomplish joint
cluster enumeration and labeling in an unsupervised learning framework.

5 . 5 Jo int Cluster Enumerat ion and Label ing Algo-
r ithm

The joint cluster enumeration and labeling algorithm estimates the number of data clusters
and, subsequently, provides individual clusterswithunique labels [Teklehaymanot et al., 2018f].
We use the two-step cluster enumeration algorithm presented in Section 2.6 to estimate the
number of clusters in X . Since the two-step cluster enumeration algorithm produces a clus-
ter number estimate, K̂ , as well as an estimate of cluster parameters, we can provide labels to
cluster centroid estimates µ̂m, form = 1, . . . , K̂ . Hence, the data vectors that are associated
with a specific centroid receive the label given to that centroid. This way, we are able to es-
timate the number of clusters and, at the same time, provide unique labels to clusters. The
proposed joint cluster enumeration and labelingmethod, which uses either BICN or BICNF for
cluster enumeration, is summarized in Algorithm 5.1.
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Algorithm 5.1 Joint cluster enumeration and labeling algorithm
Inputs: X , Lmin, and Lmax

Cluster enumeration
for l = Lmin, . . . , Lmax do

form = 1, . . . , l do
Estimateµm andΣm using the EM algorithm
CalculateNm via hard clustering, see Algorithm 2.1

end for
Calculate either BICN(Ml) or BICNF(Ml) via (2.19) or (2.50), respectively

end for
Estimate the number of clusters inX using either (2.20) or (2.51)
Cluster labeling
form = 1, . . . , K̂ do

Assign unique labels to the data vectors that belong to µ̂m

end for

In cases where robustness against heavy tailed noise and outliers is required, one can re-
place the Bayesian cluster enumeration criteria which are based on the Gaussian distribution,
namely BICN and BICNF, by the robust cluster enumeration criteria derived in Section 3.5.1.
Hence, Algorithm 5.1 can be robustified by calculating the BIC using either (3.1) or (3.5) and
estimating the number of clusters via (3.4) or (3.6), respectively.

5 . 6 Exper imental Results

In this section, we perform numerical and real data experiments to compare the performance
of the proposed joint cluster enumeration and labeling algorithmwith theX-means algorithm
[Pelleg & Moore, 2000] and a robust implementation of the original BIC (BICOtν ). In the
experiments, we show the performance of the cluster enumeration criteria that were derived
in the dissertation, namely BICN, BICNS, BICNF, and BICtν which are given by (2.19), (2.39),
(2.47), and (3.1), respectively. Note that BICN, BICNF, BICtν , and BICOtν are implemented as
wrappers around the EM algorithm, while BICNS and X-means are implemented as wrappers
around theK-means++algorithm. All experimental results are an average of300MonteCarlo
runs and the minimum and maximum number of clusters specified by the candidate models
are set toLmin = 1 andLmax = 2K , whereK is the true number of clusters in the considered
data set. The degree of freedom parameter for BICtν and BICOtν is set to ν = 3.
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5 .6 . 1 Performance Measures

We use the empirical probability of detection (pdet) and the mean absolute error (MAE), as
defined in Section 2.6.5.1, to compare the cluster enumeration performance of the different
methods. The cluster labeling performance of the different methods is compared using the
average labeling rate (ALR), which is defined as

ALR =
1

IN

I∑
i=1

N∑
n=1

1{Ĉ(i)
kn=Ck}

, (5.1)

where I denotes the total number of Monte Carlo experiments, Ĉ(i)
kn represents the estimated

cluster label of the nth data point at the ith experiment, Ck denotes the set of ground truth
labels, and 1{·} is the indicator function. ALR is computed only if the particular method is
able to estimate the correct number of clusters.

5 .6 . 2 Numerical Experiments

In the first experiment,weuseData-2.1, which is a three cluster data set defined inSection 2.6.5.2,
and set the number of data points per cluster asN1 = 100,N2 = 200, andN3 = 400. This
data set is particularly challenging for cluster enumeration and labeling algorithms because it
contains not only overlapping but also unbalanced clusters. Table 5.1 shows the cluster enu-
meration and labeling performance of different methods. In terms of the estimation of the
correct number of clusters, the robust methods, whose BIC curve is shown in Figure 5.1b,
achieve the best performance, while BICNS and X-means perform the worst. As depicted in
Figure 5.1a, the performance loss in BICNS and X-means emanates from overestimation, while
the performance loss in BICN and BICNF is attributed to underestimation. The criteria that
are implemented as wrappers around the EM algorithm have higher ALR as compared to the
once which are implemented as wrappers around the K-means++ algorithm. This result is
in line with our expectation since the data set contains elliptical as well as spherical clusters.
An example of the labeling result of BICNF and BICNS is shown in Figure 5.2. Comparing Fig-
ure 5.2c and Figure 5.2e, we notice that the EM algorithm is able to capture the underlying
structure of the data, while the K-means++ algorithm simply cuts the two overlapping clus-
ters.
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Table 5.1: Comparison of the cluster enumeration and labeling performance of our criteria and two state-of-the-
art methods, namely the X-means algorithm and a robust implementation of the original BIC. The empirical
probability of detection in %, the mean absolute error (MAE), and the average labeling rate (ALR) are used as
performance measures.

Data-2.1 Data-2.5 Data-3.3 Data-3.2
Nk = 150 varyingNk

BICN

pdet 63 98 44.67 0.33 0
MAE 0.3733 0.03 0.56 1.30 1.36

ALR 96.84 98.52 94.79 99.3 −

BICNS

pdet 53 0 0 73.33 7.67
MAE 0.47 6.76 6.09 0.2933 1.82

ALR 92.67 − − 99.57 99.18

BICNF

pdet 60 99.33 45 0.33 0
MAE 0.40 0.01 0.56 1.36 1.33

ALR 96.87 98.54 95.12 99.3 −

X-means
pdet 52 0 0 73.33 7.67
MAE 0.48 6.25 5.65 0.29 1.82

ALR 92.67 − − 99.57 99.18

BICt3

pdet 100 85.67 14 99.33 100
MAE 0 0.17 1.04 0.007 0

ALR 96.55 97.99 85.62 99.56 99.35

BICOtν

pdet 100 92.67 12.67 99.67 100
MAE 0 0.07 1.16 0.003 0

ALR 96.55 97.69 84.44 99.56 99.35

In the second experiment, we use Data-2.5, which is defined in Section 2.8.3.2. Data-2.5
is a 3-dimensional data set and it contains eight clusters. Here, we generate single node real-
izations of Data-2.5 by setting Nk = 150, for k = 1, . . . , 8. As shown in Table 5.1, BICNF

is the best method in terms of both cluster enumeration and labeling. BICNS and X-means
severely overestimate the number of clusters, which is clear from their respective MAEs. The
robust methods are inferior to BICN and BICNF due to a slight overestimation. To make this
experiment even more challenging we varied the number of data points per cluster as follows:
N1 = 100, N2 = 200, N3 = 50, N4 = 300, N5 = 200, N6 = 400, N7 = 50, and
N8 = 100. As shown in Table 5.1, all methods perform poorly and tend to underestimate the
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Figure 5.1: BIC curves of different criteria for Data-2.1.

number of clusters. This behavior arises due to the big difference in the number of data points
in different clusters. BICN and BICNF have higher ALR compared to the robust methods. An
example of the labeling performance of BICNF and BICt3 in comparison to the ground truth
labels is displayed in Figure 5.2.

To test the performance of the proposed joint cluster enumeration and labeling algorithm
on a data set generated from a heavy tailed distribution, in our third experiment, we use Data-
3.3, which is defined in Section 3.7.1. We set the number of features to r = 2 and the number
of samples per cluster to Nk = 500, for k = 1, 2. The cluster enumeration and labeling
performance of the different methods for this particular data set is displayed in Table 5.1. As
expected, the robustmethods outperform the others in terms of cluster enumeration,while all
methodsperformequallywell in termsof theALR. Interestingly, BICNS andX-means estimate
the correct number of clustersmore often thanBICN andBICNF, see Figure 5.3 for a comparison
of the BIC curves of the different criteria.

Finally, we test the performance of the different cluster enumeration and labeling meth-
ods in the presence of outliers by using Data-3.2, which is defined in Section 3.7.1, with 1%

replacement outliers. As reported in Table 5.1, the robust methods are able to estimate the
correct number of clusters 100% of the time, while BICN and BICNF overestimate the num-
ber of clusters 100% of the time. Given that the number of clusters is estimated correctly, all
methods perform equally well in terms of theALR.This is expected since only 1% of the data
is contaminated with outliers and the remaining data form three well separated clusters.

113



J o i n t C lu s t e r Enumer at i on and Lab e l i ng

0 2 4 6 8 10 12

Feature 1

0

2

4

6

8

F
e
a
tu

re
 2

(a) Ground truth labels

0

10

5

10

F
e
a
tu

re
 3 10

Feature 2

0 5

Feature 1

15

0

-10 -5

(b) Ground truth labels

0 2 4 6 8 10 12

Feature 1

0

2

4

6

8

F
e
a
tu

re
 2

(c) Labeling result of BICNF

0

10

5

10

F
e
a
tu

re
 3 10

Feature 2

0 5

Feature 1

15

0

-10 -5

(d) Labeling result of BICNF

0 2 4 6 8 10 12

Feature 1

0

2

4

6

8

F
e
a
tu

re
 2

(e) Labeling result of BICNS

0

10

5

10

F
e
a
tu

re
 3 10

Feature 2

0 5

Feature 1

15

0

-10 -5

(f) Labeling result of BICt3

Figure 5.2: Comparison of the labeling performance of different methods on Data-2.1 (left) and Data-2.5 (right).
The ground truth labels (top plots) are given as references. In the figures shown in the last two rows shapes
indicate ground truth labels and colors represent the estimated labels.
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Figure 5.3: BIC curves of different criteria for Data-3.3.

5 .6 . 3 Real Data Application: Target Enumeration and Labeling
Using Radar Data of Human Gait

Previous works on radar-based sensing of humans are mostly concerned with detection or ac-
tivity recognition, see for example [Amin, 2017; Chen et al., 2014; Amin, 2010]. On the other
hand, identification of humans by the use of radar is relatively recent [Mokhtari et al., 2017;
Ricci & Balleri, 2015; Garreau et al., 2011; Tahmoush & Silvious, 2009; Vandersmissen et al.,
2018], where we note that there are similar works based on sonar data [Zhang & Andreou,
2008; Kaustubh & Bhiksha, 2007]. However, state-of-the-art methods on human identifi-
cation require knowledge of the number of targets and availability of training data. These
requirements are stringent in real-world applications, where the number of observed targets
is mostly unknown and possibly time-varying. That is why, amongst other reasons (see [Teix-
eira et al., 2010] for a survey on human sensing), automatic identification of human subjects
remains a challenging task for many ambient intelligent systems with application to surveil-
lance, security, and smart homes.

In this section, we first describe data acquisitionusing an experimental radar setup and then
discuss the feature extraction technique. Next, using two experiments, we demonstrate that
joint cluster enumeration and labeling canbe a valuable entity for advanced radar technologies
that monitor human gait.
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Figure 5.4: Examples of micro-Doppler stride signatures of two individuals.

5 .6 . 3 . 1 Experimental Radar Setup

Using a 24GHz radar system [Ancortek Inc, 2018], the experimental data was collected in an
office environment at Technische Universität Darmstadt. The antenna feed point was posi-
tioned at approximately 1.15m above the floor. Five test subjects were asked to walk toward
the radar system starting at approximately 4.5m in front of the radar, where only one person
was present in front of the radar at a time. Data were collected at a 0◦ angle relative to the
radar line-of-sight and with a non-oblique view on the targets. The volunteers were asked to
walk slowly and without swinging their arms. In total, 65 radar measurements of 6 seconds
duration are considered. The number of measurements are equal among the test subjects, i.e,
the data set contains 13 gait samples per person.

5 .6 . 3 . 2 Feature Extraction

The recorded radar return signals are processed to obtain the spectrogram, see [Seifert et al.,
2017] for more details. In order to detect single strides, the maxima of the envelope signal of
the micro-Doppler signatures are utilized. The part of the spectrogram that shows a pair of
strides, i.e., a full gait cycle, is extracted and converted to a gray scale image. All images are
resized to have the same dimension, i.e., each image Sn ∈ Rf×t, for n = 1, . . . , N , with
f = 100 and t = 128. Examples of extracted stride pairs for two individuals are shown in
Figure 5.4. Each image Sn, for n = 1, . . . , N , is vectorized to create a long column vector
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sn ∈ Rd×1, where d = ft, which is referred to as feature vector. In the set of feature vectors
S , {s1, . . . , sN} ⊂ Rd×N , d > N , which creates a sample scarce scenario.

To mitigate the curse of dimensionality, we reduce the dimension of our set of feature vec-
tors S from d to r, where r < d, using a probabilistic PCA [Tipping & Bishop, 1999] that
approximates the likelihood function of S as

p(S|c) ≈ N− 1
2
(z+c)

(∑d
a=c+1 λa

d− c

)− 1
2
N(d−c)( c∏

a=1

λa

)− 1
2
N

, (5.2)

where c denotes the number of principal components, λa, for a = 1, . . . , d, are the eigenval-
ues, and z = d(d−1)/2−(d−c)(d−c−1)/2 [Minka, 2001]. Once the likelihood function
is evaluated for each candidate number of principal components c = Cmin, . . . , Cmax, the
correct number of principal components is selected as [Minka, 2001]

r = argmax
c=Cmin,...,Cmax

log p(S|c). (5.3)

Then, the new set of feature vectors with reduced dimensions is given by

X = V ⊤S, (5.4)

where X ⊂ Rr×N and the column vectors of V ∈ Rd×r are the eigenvectors of S corre-
sponding to the first r eigenvalues such that λ1 > λ2 > . . . > λr > 0. This way, a small
number of descriptive features is automatically extracted for each spectrogram.

5 .6 . 3 . 3 Person Enumeration and Labeling

Scenario- 1

Considering the first four persons,N = 187 stride pairs are obtained from 52 radar measure-
ments, where person A, B, C, and D are represented by N1 = 40, N2 = 38, N3 = 62, and
N4 = 47 samples, respectively. Using (5.3), 5 principal components are selected, such that the
original set of vectorized spectrogram images,S ⊂ R12800×187, is reduced toX ⊂ R5×187. As
an example, Figure 5.5 shows a scatter plot of principal component scores using three principal
components. Note that estimating the number of clusters inX is very challenging becauseX
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Figure 5.5: Principal component scores for radar-based human gait data of four different persons using the first
three principal components (PC).
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Figure 5.6: BIC curves of different criteria for the radar data set.

has few feature vectors which results in even fewer feature vectors per cluster.

Figure 5.6 shows theBIC computedby thedifferentmethods as a functionof thenumber of
clusters specified by the candidate models. Only BICNF is able to estimate the correct number
of clusters (or persons), which corresponds to K̂BICNF = 4, 96% of the time, while the other
methods overestimate the number of clusters 100% of the time. The asymptotic methods,
BICN, BICNS, BICt3 , BICOt3 , andX-means, stand at a disadvantagewhen the number of feature
vectors is small because they are derived assuming that the number of feature vectorsN → ∞.
In such cases, BICNF ismore appropriate because its penalty term is refined for the finite sample
regime.
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Table 5.2: Confusionmatrix in percentage for person labeling using the proposed joint cluster enumeration and
labeling algorithm.

Estimated labels

A B C D

Tr
ue

lab
els A 100 0 0 0

B 0 100 0 0
C 0 6.45 93.55 0
D 2.13 6.38 2.13 89.36

Table 5.3: Confusion matrix in percentage for person recognition using a NN classifier.

Estimated labels

A B C D

Tr
ue

lab
els A 100 0 0 0

B 0 97.25 2.75 0
C 0 1.33 98 0.62
D 0.3 0.1 6.1 93.50

Since BICNF is the only criterion that results in the correct estimate of the number of clus-
ters in X , we show the labeling performance of the proposed joint cluster enumeration and
labeling algorithm using the cluster enumeration result of BICNF. Table 5.2 shows the confu-
sion matrix generated by the proposed method. The first two persons are correctly labeled
100% of the time, while person D is often confused with the remaining targets, but is still
recognized in approximately 89% of the cases. Overall, we achieve a high labeling rate using
the proposed method. Note that we get an average labeling rate of 95.73% without a prior
knowledge of the number of clusters (or targets) and no training data.

In order to underscore the performance of the joint cluster enumeration and labeling algo-
rithm, we also present results obtained using the same set of feature vectorsX , but a trained
classifier for discriminating the four different persons. Using a simple nearest neighbor (NN)
classifier, we obtain the confusionmatrix shown in Table 5.3, where 80% of the data was used
to train the classifier and the remainder was used for testing. The reported numbers are the av-
erage rates over 100 classifications, where training and test data were randomly chosen. The
overall accuracy is 97.19%, where person A is correctly classified in all cases and person D
shows the lowest labeling rate with 93.5%.
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Figure 5.7: Estimated number of clusters (or persons) for the radar data set as a function of the number of ob-
served images.

We note that, the results obtained using a trained classifier and the proposed unsupervised
cluster enumeration and labeling algorithm are comparable, despite the fact that 80% of the
datawas available to the classifier for training. In some real-world applications, however, train-
ing data is unavailable. In such cases, joint cluster enumeration and labeling algorithms, such
as the one presented in this chapter, can provide a high target labeling rate without training
data and prior knowledge of the number of clusters.

Scenario-2

In this scenario, we consider a different measurement setup. First, we observe person A and
collect N1 = 40 images. Next, we do the same for person B, where N2 = 38. Every time a
new person is observed, in total,N =

∑K
k=1 Nk, whereK is the number of persons already

observed. We do this for five persons in a sequential manner, resulting in N = 252 images.
Whenever a set of images is available, we re-estimate the total number of targets observed by
the radar so far. For this, the number of principal components is also re-estimated based on
the current set of feature vectors.

Figure 5.7 shows the number of estimated clusters (or persons), K̂ , as a function of the
number of observed images n, where n = 1, . . . , N . Due to the setup described above, the
true number of clusters forms a staircase. Among the compared Bayesian cluster enumeration
criteria BICNF is the only criterion that is able to correctly estimate the number of persons and
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track the change in the number of persons as we observemore images. The second best perfor-
mance is achieved by BICOt3 . Due to the small number of available features, BICN and BICt3

do not correctly estimate the number of persons even though they respond to the change in
thenumber of observedpersons. BICNS andX-means are able to correctly estimate thenumber
of persons in the beginning but quickly overestimatesK and choose the specified maximum
number of clusters as we observe more images.

5 . 7 Summary

In this chapter, we proposed a joint cluster enumeration and labeling algorithm by extending
the cluster enumeration criteria that were derived in Part I of the dissertation. The perfor-
mance of the proposed method in estimating the number of clusters and providing individ-
ual clusters with unique labels was demonstrated using five numerical experiments. Further,
the proposedmethodwas applied to person labeling using radarmeasurements of the human
gait. Despite short observation times, the persons were labeled with a high accuracy in the ab-
sence of training data and knowledge of the number of persons. The proposed method also
showed promising result in tracking the change in the number of persons.
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Conclusions and Outlook





6
Summary and Conclusions

The dissertation contributes to the area of cluster analysis by developing statistical methods
that determine the number of clusters and cluster memberships. The developed methods
tackled challenging data clustering scenarios, such as the presence of outliers, cluster overlap,
or cluster heterogeneity in the observed data set. Use cases in distributed camera networks and
radar-based person identification demonstrated the applicability of the developedmethods in
advanced signal processing problems.

In particular, a new Bayesian cluster enumeration criterion was derived by formulating the
problem of estimating the number of clusters as maximization of the posterior probability
of candidate models. In a nutshell, this formulation transformed cluster enumeration into a
model selection problem where the model with the highest posterior probability is selected
among a family of candidate models. The new criterion is applicable to a broad class of data
distributions and, consequently, serves as a starting point when deriving cluster enumeration
criteria for specific data distributions. Following this line of argument, a robust and a Gaus-
sian criterion were derived by modeling the data as a family of multivariate tν and Gaussian
distributions, respectively. Further, the penalty terms of both criteria were refined for the fi-
nite sample regime. In contrast to Schwarz’s BIC [Schwarz, 1978], which is a generic criterion,
the new robust and Gaussian criterion can be interpreted as the BIC derived specifically for
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cluster analysis. Interestingly, as the data distribution of the candidate models changes, the
data fidelity and penalty terms of our criteria also change, while for the original BIC changes in
the data distribution only affect the data fidelity term. Our derivation of the BIC for cluster-
ing problems supports the statements made by the author in [Djurić, 1998] who came to the
conclusion that the original BIC should be carefully analyzed before being applied to specific
model selection problems.

Thederived cluster enumeration criteriawere incorporated into two-step algorithmswhere
the cluster assignment andmodel parameter estimation taskswere separated from the enumer-
ation. While the EM algorithm was used in this dissertation to provide a unified framework,
the proposed enumeration criteria can be used as a wrapper around any clustering algorithm.
This allows for selecting the clustering algorithm according to the application’s demandswith-
out affecting the cluster enumeration strategy. Numerical and real data experiments demon-
strated the superiority of the proposed algorithms over existing cluster enumerationmethods.

Real-world applicability of theproposed cluster enumeration frameworkwasdemonstrated
on use cases in the area of distributed sensor networks and radar technologies for assisted liv-
ing. Specifically, the cluster enumeration criteria were extended to a distributed sensor net-
work setup where the nodes exchange valuable information via the diffusion principle. Two
distributed and adaptive Bayesian cluster enumeration algorithmswere proposed and applied
to a camera network use case, where multiple cameras film a non-stationary scene from differ-
ent angles. The number of pedestrians was estimated based on streaming-in data requiring
neither registration of camera views nor a fusion center. Good performance was achieved
compared to an existing distributed cluster enumeration algorithm.

A further research goal of the dissertation was the cluster membership assignment of in-
dividual data points and their associated cluster labels assuming that the number of clusters
is either prespecified by the user or estimated via the above described methods. Solving this
problem is relevant for real-world applications, such as video surveillance and sports analysis,
since object labeling can be formulated as a data clustering and labeling task after extracting
valuable features from the observed data. To this end, a robust object labeling algorithm was
proposed for a distributed camera network whose nodes are interested in a static scene. In
addition, an adaptive object labeling and tracking algorithmwas developed for the case where
nodes in an ad hoc camera network monitor a time-varying scene from different viewpoints
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in the absence of a fusion center. Both algorithms were shown to provide good labeling per-
formance using images and videos recorded by uncalibrated distributed camera networks.

Finally, the simultaneous estimation of the number of clusters and cluster memberships
was tackled by proposing a joint cluster enumeration and labeling algorithm. The proposed
unsupervised method was applied to person enumeration and labeling in a real data appli-
cation of radar-based person identification. The proposed approach performed as good as
a supervised learning method which requires knowledge of the number of individuals and
training data.
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7
Future Research Directions

Possible extensions of the developed cluster enumeration and labeling framework and open
research directions are summarized below.

7 . 1 Extens ion of the Robust Bayes ian Cluster Enu -
merat ion Criter ia

InChapter 3, we have assumed that the degree of freedomparameter ν is fixed at someprespec-
ified value in order to simplify the theoretical derivations. Ideally, one can extend the deriva-
tions by treating the degree of freedomof each cluster in each candidatemodel as an unknown
parameter. Such an extension allows the robust cluster enumeration criteria tomodel the data
with a family of tν distributions, which ranges from the Cauchy distribution for ν = 1 all the
way to the Gaussian distribution for ν = ∞. This means that we can drop the assumption
that the distribution of all clusters has the same degree of freedom. Consequently, in the same
data set, some clustersmay be heavy tailed, while others areGaussian. However, the extension
is not straightforward as it requires the justification of assumption (A-2.3)when the parameter
vector of themth cluster is given by θm = [µm,Ψm, νm]

⊤.
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7 . 2 Theoret ical Analys i s of the Proposed
Bayes ian Cluster Enumerat ion Criter ia

In this dissertation, we have tested the performance of the proposed Bayesian cluster enumer-
ation criteria using numerical and real data experiments. Specifically, the performance of the
proposed criteria in estimating the correct number of clusters is tested using the empirical
probability of detection and the mean absolute error as performance metrics. The original
BIC is known to be consistent if the true data generating model belongs to the family of can-
didatemodels under investigation [Schwarz, 1978]. Since the proposed criteria asymptotically
converge to the original BIC, we empirically conjuncture that our criteria are also consistent.
However, a formal proof of consistency for our criteria that carefully checks all the assump-
tions made in the proof of consistency for the original BIC would provide an interesting fu-
ture work. In addition, establishing the concepts of qualitative and quantitative robustness
for the robust criteria discussed in Chapter 3 is an open problem. In particular, defining the
breakdownpoint of the robust cluster number estimator for increasing percentages of outliers
requires a careful analysis that takes into account the clustermemberships. This is because, for
example, a consistent overestimation of the number of clusters that simply groups all outliers
into a separate cluster should not be considered as a breakdown of the method. However, for
this example, the probability of detection of the true number of clusters is zero. This example
shows that in the context of robust cluster enumeration caremust be takenwhen defining the
error metrics. Also, it is not fully clear what the true number of clusters should be in this case.
Finding robustness and performance measures that take such problems into account consti-
tutes an intriguing line of future research, as it raises fundamental questions, such as, what is
a cluster?, and what are outliers?.

7 . 3 Eff ic iency of Cluster ing Algorithms in Part i -
t ion ing Data

Standard clustering algorithms, such as the K-means and the EM algorithm, solve a non-
convex problem and, consequently, chances of the algorithms converging to a local optimum
is very high. These algorithms are iterative in nature, and, depending on the starting point,
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they can end up with different solutions for the same data set. This problem is known in the
literature and different remedies have been proposed [Arthur & Vassilvitskii, 2007; Fränti,
2018; Zhao et al., 2012; Blömer & Bujna, 2016]. Local convergence of the clustering algo-
rithms becomes even more amplified when there are outliers in the data set. As discussed in
Section 2.6.5.2, the clustering method is the backbone of the proposed two-step cluster enu-
meration algorithms. If the clustering method used in the first step fails at partitioning the
data set correctly, then the performance of the second step, which is the calculation of one of
the proposed criteria, is bound to be bad. Hence, investigating better clustering algorithms
or even improving the ones that were used in the dissertation is a valuable extension of our
work.

7 . 4 Cluster analys i s in High -Dimens ional Spaces

In high-dimensional spaces, the relative distance fromanydata point to its nearest and farthest
neighbor tend to be almost identical [Klawonn et al., 2015; Zimek et al., 2012]. Consequently,
cluster analysis becomes a complicated task due to the distance concentration effect and the
presence of irrelevant features hiding relevant information. In this dissertation, we focused
on the case where the number of features (r) is smaller than the number of samples (N).
Whenever, r > N , we used dimension reduction techniques prior to estimating the number
of clusters and cluster memberships. However, the extension of the proposed methods to
high-dimensional spaces where r ≥ N is an open problem, and future research in this area is
essential. A possible, and very interesting research direction is that of regularizing the cluster-
ing method to account for the sparsity of the high-dimensional spaces. On the other hand, a
non-asymptotic derivation of a cluster enumeration criterion that considers r

N
→ c, where

c > 0 is a constant, would be relevant.
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A
Maximum Likelihood Estimators

A. 1 The Maximum Likel ihood Est imators of the
Parameters of Multivar iate Gauss ian
Distr ibuted Random Variables

Given that the data points that belong to themth cluster (Xm) are realizations of iidGaussian
random variables xm ∼ N (µm,Σm), the log-likelihood function is written as

logL(θm|Xm)=log
∏

xn∈Xm

p(xn ∈ Xm)f(xn|θm)

=
∑

xn∈Xm
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Nm
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(A.1)
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where x̃n , xn − µm, Nm denotes the number of data points in the mth cluster, and N

represents the total number of data points in the data set. As the name implies, themaximum
likelihood estimator attempts to maximize the likelihood function. To accomplish this, (A.1)
is first derivated with respect to its parameters, which results in

∂ logL(θm|Xm)

∂µm

=
∑

xn∈Xm

x̃⊤
nΣ

−1
m (A.2)

∂ logL(θm|Xm)

∂Σm

= −Nm

2
Σ−1

m +
1

2

∑
xn∈Xm

Σ−1
m x̃nx̃

⊤
nΣ

−1
m . (A.3)

Then, setting (A.2) and (A.3) to zero and solving the resulting expressions result in

µ̂m =
1

Nm

∑
xn∈Xm

xn (A.4)

Σ̂m =
1

Nm

∑
xn∈Xm

x̃nx̃
⊤
n (A.5)

A.2 The Maximum Likel ihood Est imators of the
Parameters of Multivar iate tν Distr ibuted
Random Variables

If the data points that belong to themth cluster (Xm) are realizations of iid multivariate tνm
distributed random variables xm ∼ tνm(µm,Ψm), then the log-likelihood function is given
by

logL(θm|Xm) = log
∏

xn∈Xm

p(xn ∈ Xm)f(xn|θm)

=
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xn∈Xm

log

(
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, (A.6)
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where δn = (xn − µm)
⊤Ψ−1

m (xn − µm) is the squared Mahalanobis distance, Γ(·) is the
gamma function,Nm denotes the number of data points in themth cluster, andN represents
the total number of data points in the data set. To find the maximum likelihood estimators
of the centroid µm and the scatter matrix Ψm, we first derivate the log-likelihood function
with respect to each parameter, which results in

∂ logL(θm|Xm)

∂µm
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2
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d
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m (A.7)
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m , (A.8)

where x̃n = xn − µm and
wn =

νm + r

νm + δn
(A.9)

is the weight given to xn. Then, setting (A.7) and (A.8) to zero and simplifying the resulting
expressions result in

µ̂m =

∑
xn∈Xm

wnxn∑
xn∈Xm

wn

(A.10)

Ψ̂m =
1

Nm

∑
xn∈Xm

wnx̃nx̃
⊤
n . (A.11)
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Proofs

B . 1 Proof of Theorem 2 . 1

ProvingTheorem 2.1 requires finding an asymptotic approximation of the FIM, Ĵm, form =

1, . . . , l, and, based on this approximation, showing how (2.17) is simplified to come up with
the expression for BICN in (2.19). To obtain an asymptotic approximation of Ĵm, we first
express the log-likelihood function of the data points that belong to themth cluster by (A.1).
The first-order derivative of logL(θm|Xm)with respect to θm is given by

d logL(θm|Xm)

dθm
= −Nm

2
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(
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+
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)
,

(B.1)

where x̄m , 1
Nm

∑
xn∈Xm

xn is the sample mean of the data points that belong to themth
cluster, x̃n , xn − µm,∆m ,

∑
xn∈Xm

x̃nx̃
⊤
n , andEm , ∆m − NmΣm. To make the
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dissertation self contained, we have included the most important vector and matrix differen-
tiation rules in Appendix D (see [Magnus & Neudecker, 2007] for details).

Differentiating (B.1) with respect to θ⊤m results in
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(B.2)

Next, we exploit the symmetry of the covariancematrixΣm to come upwith a final expres-
sion for the second-order derivative of logL(θm|Xm). The unique elements of Σm can be
collected into a vectorum ∈ R 1

2
r(r+1)×1 as defined in [Magnus & Neudecker, 2007, pp. 56–

57]. Hence, incorporating the symmetry of the covariance matrix Σm and replacing the pa-
rameter vector θm by θ̌m = [µm,um]

⊤ in (B.2) results in the following expression:
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)
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where

Vm , Σ−1
m ⊗Σ−1

m ∈ Rr2×r2 (B.4)

Wm , Σ−1
m ⊗Σ−1

m ∆mΣ
−1
m ∈ Rr2×r2 (B.5)

Zm , Σ−1
m ⊗Σ−1

m (x̄m − µm) ∈ Rr2×r. (B.6)

For the symmetric matrix Σm, the duplication matrixD ∈ Rr2× 1
2
r(r+1) transforms um

into vec(Σm)using the relation vec(Σm) =Dum [Magnus& Neudecker, 2007, pp. 56–57].
Hence, (B.3) can be further simplified into
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A compact matrix representation of the second-order derivative of logL(θm|Xm) is given
by

d2 logL(θm|Xm)

dθ̌mdθ̌⊤m
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The individual elements of the above matrix can be written as

∂2 logL(θm|Xm)
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m (B.9)

∂2 logL(θm|Xm)
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⊤
mD (B.10)

∂2 logL(θm|Xm)
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⊤Zm (B.11)

141



Proo f s

∂2 logL(θm|Xm)

∂um∂u⊤
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2
D⊤FmD, (B.12)

whereFm , Σ−1
m ⊗
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∈ Rr2×r2 .

The FIM of themth cluster is given by
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The maximum likelihood estimators of the mean and covariance matrix of themth Gaussian
cluster are given by (A.4) and (A.5), respectively (see Appendix A.1 for details). Hence, Ẑm ,
Σ̂−1

m ⊗ Σ̂−1
m (x̄m − µ̂m) = 0r2×r. Consequently, (B.13) can be further simplified to
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The determinant of the FIM, Ĵm, can be written as∣∣∣Ĵm

∣∣∣ = ∣∣∣NmΣ̂
−1
m

∣∣∣× ∣∣∣∣−Nm
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AsN → ∞,Nm → ∞ given that l << N , it follows that∣∣∣∣ 1

Nm

Ĵm

∣∣∣∣ ≈ O(1), (B.16)

where O(1) denotes Landau’s term which tends to a constant as N → ∞. Using this re-
sult, we provide an asymptotic approximation to (2.17), in the case where X is composed of
Gaussian distributed data vectors, as follows:

log p(Ml|X ) ≈ log p(Ml) + log f(Θ̂l|Ml) + logL(Θ̂l|X ) +
lq

2
log 2π

− 1

2
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log
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∣∣∣∣− log f(X )
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= log p(Ml) + log f(Θ̂l|Ml) + logL(Θ̂l|X ) +
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where q = 1
2
r(r + 3).

Assume that

(A-2.6) p(Ml) and f(Θ̂l|Ml) are independent of the data lengthN .

Then, ignoring the terms in (B.17) that do not grow asN → ∞ results in

BICN(Ml) , log p(Ml|X ) ≈ logL(Θ̂l|X )− q

2

l∑
m=1

logNm − log f(X ). (B.18)

SinceX is composed ofmultivariate Gaussian distributed data, BICN(Ml) can be further sim-
plified as follows:

BICN(Ml)=logL(Θ̂l|X ) + pl

=
l∑

m=1

(
Nm log

Nm

N
− rNm

2
log 2π − Nm

2
log |Σ̂m| −

1

2
Tr
(
NmΣ̂

−1
m Σ̂m

))
+pl

=
l∑

m=1

Nm logNm −N logN − rN

2
log 2π −

l∑
m=1

Nm

2
log |Σ̂m| −

rN

2
+ pl,

(B.19)

where

pl , −q

2

l∑
m=1

logNm − log f(X ). (B.20)

Finally, ignoring the model independent terms in (B.19) results in (2.19) which concludes the
proof.
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B . 2 Proof of Theorem 3 . 1

ProvingTheorem 3.1 requires finding an asymptotic approximation to |Ĵm| in (2.17) and, con-
sequently, deriving an expression for BICtν (Ml). We start the proof by taking the first deriva-
tive of the log-likelihood function, given by (A.6), with respect to θm, which results in
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wherewn is given by (A.9), x̃n = xn − µm, δn = x̃⊤
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Substituting (B.22) into (B.21) results in
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(B.23)

where
Zm =

∑
xn∈Xm

wnx̃nx̃
⊤
n . (B.24)

Derivating (B.23), once again, with respect to θ⊤m results in
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From (B.25), the Fisher information matrix of observations from themth cluster is given by
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where wn, x̃n, dwn

dθ⊤
m
, and dZm

dθ⊤
m

are also evaluated at θ̂m, but the hat is removed for ease of
notation. Note that, evaluated at θ̂m, (B.25) reduces to (B.26) because

Ẑm −NmΨ̂m = 0∑
xn∈Xm

wnx̃
⊤
n = 0.

(B.26) can be written in a compact matrix form as

Ĵm =

[
−∂2 logL(θ̂m|Xm)

∂µm∂µ⊤
m

−∂2 logL(θ̂m|Xm)
∂µm∂Ψ⊤

m

−∂2 logL(θ̂m|Xm)
∂Ψm∂µ⊤

m
−∂2 logL(θ̂m|Xm)

∂Ψm∂Ψ⊤
m

]
. (B.27)

The individual elements of the block matrix in (B.27) are given by

∂2 logL(θ̂m|Xm)

∂µm∂µ⊤
m

= Tr

( ∑
xn∈Xm

dwn

dµ⊤
m

x̃⊤
n Ψ̂

−1
m

dµm

dµm

)
− Tr

( ∑
xn∈Xm

wn
dµ⊤

m

dµ⊤
m

Ψ̂−1
m

dµm

dµm

)
(B.28)

∂2 logL(θ̂m|Xm)

∂µm∂Ψ⊤
m

= Tr

( ∑
xn∈Xm

dwn

dΨ⊤
m

x̃⊤
n Ψ̂

−1
m

dµm

dµm

)
(B.29)

∂2 logL(θ̂m|Xm)

∂Ψm∂Ψ⊤
m

=
1

2
Tr

(
dΨm

dΨm

Ψ̂−1
m

dZm

dΨ⊤
m

Ψ̂−1
m

)
− Nm

2
Tr

(
dΨm

dΨm

Ψ̂−1
m

dΨm

dΨ⊤
m

Ψ̂−1
m

)
,

(B.30)

where

dwn

dµ⊤
m

=
d

dµ⊤
m

(
νm + r

νm + δn

)
= − (νm + r)

(νm + δn)2
dδn
dµ⊤

m
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=
2w2

n

νm + r

dµ⊤
m

dµ⊤
m

Ψ̂−1
m x̃n ∈ Rr×1 (B.31)

dwn

dΨ⊤
m

=
d

dΨ⊤
m

(
νm + r

νm + δn

)
= − (νm + r)

(νm + δn)2
dδn
dΨ⊤

m

=
w2

n

νm + r
x̃⊤
n Ψ̂

−1
m

dΨm

dΨ⊤
m

Ψ̂−1
m x̃n ∈ Rr×r (B.32)

dZm

dΨ⊤
m

=
d

dΨ⊤
m

( ∑
xn∈Xm

wnx̃nx̃
⊤
n

)

=
∑

xn∈Xm

dwn

dΨ⊤
m

x̃nx̃
⊤
n ∈ Rr2×r2 . (B.33)

Note that, due to the symmetry of the Fisher information matrix, the following holds:

∂2 logL(θ̂m|Xm)

∂ψm∂µ⊤
m

=

(
∂2 logL(θ̂m|Xm)

∂µm∂Ψ⊤
m

)⊤

(B.34)

Using (B.31)-(B.33), (B.28)-(B.30) can be simplified to

∂2 logL(θ̂m|Xm)

∂µm∂µ⊤
m

=Tr

( ∑
xn∈Xm

dwn

dµ⊤
m

x̃⊤
n Ψ̂

−1
m

dµm

dµm

)
−Tr

( ∑
xn∈Xm

wn
dµ⊤

m

dµ⊤
m

Ψ̂−1
m

dµm

dµm

)

=
2

νm + r

∑
xn∈Xm

w2
nTr

(
dµ⊤

m

dµ⊤
m

Ψ̂−1
m x̃nx̃

⊤
n Ψ̂

−1
m

dµm

dµm

)
−
∑

xn∈Xm

wnTr

(
dµ⊤

m

dµ⊤
m

Ψ̂−1
m

dµm

dµm

)
=

2

νm + r

∑
xn∈Xm

w2
nΨ̂

−1
m x̃nx̃

⊤
n Ψ̂

−1
m −

∑
xn∈Xm

wnΨ̂
−1
m

=
2

νm + r
Ψ̂−1

m

( ∑
xn∈Xm

w2
nx̃nx̃

⊤
n

)
Ψ̂−1

m − Ψ̂−1
m

∑
xn∈Xm

wn (B.35)

∂2 logL(θ̂m|Xm)

∂µm∂Ψ⊤
m

= Tr

( ∑
xn∈Xm

dwn

dΨ⊤
m

x̃⊤
n Ψ̂

−1
m

dµm

dµm

)
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=
1

νm + r

∑
xn∈Xm

w2
nTr

(
dµm

dµm

x̃⊤
n Ψ̂

−1
m

dΨm

dΨ⊤
m

Ψ̂−1
m x̃nx̃

⊤
n Ψ̂

−1
m

)

=
1

νm + r

∑
xn∈Xm

w2
nvec

(
dµm

dµm

)⊤(
Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m ⊗x̃⊤

n Ψ̂
−1
m

)
vec
(
dΨm

dΨ⊤
m

)
(B.36)

∂2 logL(θ̂m|Xm)

∂Ψm∂Ψ⊤
m

=
1

2
Tr

(
dΨm

dΨm

Ψ̂−1
m

dZm

dΨ⊤
m

Ψ̂−1
m

)
− Nm

2
Tr

(
dΨm

dΨm

Ψ̂−1
m

dΨm

dΨ⊤
m

Ψ̂−1
m

)
=
1

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dZm

dΨ⊤
m

)
−Nm

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dΨm

dΨ⊤
m

)
=
1

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec

( ∑
xn∈Xm

dwn

dΨ⊤
m

x̃nx̃
⊤
n

)

−Nm

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dΨm

dΨ⊤
m

)
=

1

2(νm + r)
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
×vec

( ∑
xn∈Xm

w2
nx̃

⊤
n Ψ̂

−1
m

dΨm

dΨ⊤
m

Ψ̂−1
m x̃nx̃nx̃

⊤
n

)

−Nm

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dΨm

dΨ⊤
m

)
=

1

2(νm + r)
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
×
∑

xn∈Xm

w2
n

(
x̃nx̃

⊤
n ⊗ Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m

)
vec
(
dΨm

dΨ⊤
m

)

−Nm

2
vec
(
dΨm

dΨm

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dΨm

dΨ⊤
m

)
. (B.37)

The scatter matrixΨm,m = 1, . . . , l, is a symmetric and positive definite matrix. Hence,
vec(Ψm) = Dum, where vec(Ψm) ∈ Rr2×1 represents the stacking of the columns ofΨm

into a long column vector, D ∈ Rr2× 1
2
r(r+1) denotes the duplication matrix, and um ∈

R 1
2
r(r+1)×1 contains the unique elements of Ψm [Magnus & Neudecker, 2007, pp. 56–
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57]. Taking the symmetry of the scatter matrix into account and replacing θm by θ̌m =

[µm,um]
⊤, (B.36) and (B.37) simplify to

∂2 logL(θ̂m|Xm)

∂µm∂u⊤
m

=
1

νm + r

∑
xn∈Xm

w2
nvec

(
dµm

dµm

)⊤(
Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m ⊗ x̃⊤

n Ψ̂
−1
m

)
vec
(
dΨm

du⊤
m

)

=
1

νm + r

∑
xn∈Xm

w2
nvec

(
dµm

dµm

)⊤(
Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m ⊗ x̃⊤

n Ψ̂
−1
m

)
D

dum

du⊤
m

=
1

νm + r

∑
xn∈Xm

w2
n

(
Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m ⊗ x̃⊤

n Ψ̂
−1
m

)
D (B.38)

∂2 logL(θ̂m|Xm)

∂um∂u⊤
m

=
1

2(νm + r)
vec
(
dΨm

dum

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
×
∑

xn∈Xm

w2
n

(
x̃nx̃

⊤
n ⊗ Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m

)
vec
(
dΨm

du⊤
m

)

−Nm

2
vec
(
dΨm

dum

)⊤ (
Ψ̂−1

m ⊗ Ψ̂−1
m

)
vec
(
dΨm

du⊤
m

)
=

1

2(νm + r)

(
dum

dum

)⊤

D⊤
(
Ψ̂−1

m ⊗ Ψ̂−1
m

)
×
∑

xn∈Xm

w2
n

(
x̃nx̃

⊤
n ⊗ Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m

)
D

(
dum

du⊤
m

)

−Nm

2

(
dum

dum

)⊤

D⊤
(
Ψ̂−1

m ⊗ Ψ̂−1
m

)
D

(
dum

du⊤
m

)
=

1

2(νm + r)
D⊤
(
Ψ̂−1

m ⊗ Ψ̂−1
m

)∑
xn∈Xm

w2
n

(
x̃nx̃

⊤
n ⊗ Ψ̂−1

m x̃nx̃
⊤
n Ψ̂

−1
m

)
D

−Nm

2
D⊤

(
Ψ̂−1

m ⊗ Ψ̂−1
m

)
D. (B.39)

In face of (B.35), (B.38), and (B.39) threenormalization factors exist, which are
∑

xn∈Xm
w2

n,∑
xn∈Xm

wn, andNm. While the relationship between
∑

xn∈Xm
w2

n and
∑

xn∈Xm
wn is non-

trivial, starting from (A.11) and doing straight forward calculations the authors in [Kent et al.,
1994] showed that ∑

xn∈Xm

wn = Nm. (B.40)

As a result, we end up with only two normalization factors, namely
∑

xn∈Xm
w2

n and Nm.
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Given that l ≪ N , N → ∞ indicates that ϵ → ∞, where ϵ = max
(∑

xn∈Xm
w2

n, Nm

)
.

Hence, asN → ∞ ∣∣∣∣1ϵ Ĵm

∣∣∣∣ ≈ O(1), (B.41)

where O(1) denotes Landau’s term which tends to a constant as N → ∞. Using the result
in (B.41), (2.17) can be simplified to

log p(Ml|X ) ≈ log p(Ml) +
l∑

m=1

log
(
f(θ̂m|Ml)L(θ̂m|Xm)

)
+

lq

2
log 2π − 1

2

l∑
m=1

log

∣∣∣∣∣ϵ Ĵm

ϵ

∣∣∣∣∣− log f(X )

= log p(Ml) +
l∑

m=1

log
(
f(θ̂m|Ml)L(θ̂m|Xm)

)
+

lq

2
log 2π − q

2

l∑
m=1

log ϵ− 1

2

l∑
m=1

log

∣∣∣∣∣ Ĵm

ϵ

∣∣∣∣∣− log f(X ), (B.42)

where q = 1
2
r(r + 3) is the number of estimated parameters per cluster. Note that the value

of q changed from q = r(r + 1) to q = 1
2
r(r + 3) because we estimate only the unique

elements of the scatter matrix Ψ̂m.

Assuming that (A-2.6) is satisfied and ignoring the terms in (B.42) that do not grow as
N → ∞ results in

BICtν (Ml) , log p(Ml|X )

≈
l∑

m=1

logL(θ̂m|Xm)−
q

2

l∑
m=1

log ϵ− log f(X ). (B.43)

Substituting the expression of logL(θ̂m|Xm), given by (A.6), into (B.43) results in

BICtν (Ml) =
l∑

m=1

(
Nm log

Nm

N
+Nm log

Γ ((νm + r)/2)

Γ (νm/2) (πνm)r/2
− Nm

2
log |Ψ̂m|

)

−
l∑

m=1

∑
xn∈Xm

(νm + r)

2
log

(
1 +

δn
νm

)
− q

2

l∑
m=1

log ϵ− log f(X )
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=
l∑

m=1

Nm logNm −N logN −
l∑

m=1

Nm

2
log |Ψ̂m|

+
l∑

m=1

Nm log
Γ ((νm + r)/2)

Γ (νm/2) (πνm)r/2
− 1

2

l∑
m=1

∑
xn∈Xm

(νm + r) log

(
1 +

δn
νm

)

− q

2

l∑
m=1

log ϵ− log f(X ). (B.44)

Finally, ignoring the model independent terms in (B.44) results in (3.1). This concludes the
proof.
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C
Calculation of the Determinant of

the Fisher Information Matrix

The Fisher information matrix, given by (B.27), is a block matrix and its determinant is calcu-
lated as

|Ĵm|=
∣∣∣∣− ∂2 logL(θ̂m|Xm)

∂µm∂µ⊤
m

+
∂2 logL(θ̂m|Xm)

∂µm∂u⊤
m

(
∂2 logL(θ̂m|Xm)

∂um∂u⊤
m

)−1
∂2 logL(θ̂m|Xm)

∂um∂µ⊤
m

∣∣∣∣
×
∣∣∣∣− ∂2 logL(θ̂m|Xm)

∂um∂u⊤
m

∣∣∣∣, (C.1)

where ∂2 logL(θ̂m|Xm)
∂µm∂µ⊤

m
, ∂

2 logL(θ̂m|Xm)
∂µm∂u⊤

m
, and ∂2 logL(θ̂m|Xm)

∂um∂u⊤
m

are givenby (B.35), (B.38), and (B.39),
respectively.
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D
Vector and Matrix

Differentiation Rules

Part V uses the numerator layout of derivatives. Given that y ∈ R, y ∈ Rp×1, Y ∈ Rp×q,
x ∈ Rm×1, andX ∈ Rm×n, the numerator layout of derivatives states that

dy

dx
∈ R1×m (D.1)

dy

dX
∈ Rn×m (D.2)

dx

dy
∈ Rm×1 (D.3)

dx

dy
∈ Rm×p. (D.4)

In addition, we have used the following matrix and vector differentiation rules (see [Magnus
& Neudecker, 2007] for details):

d

dy
y⊤y = 2y⊤ (D.5)

d

dY
Y −1 = −Y −1dY

dY
Y −1 (D.6)
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d

dY
log |Y | = Tr

(
Y −1dY

dY

)
(D.7)

We have also exploited properties of the trace (Tr) and vectorization (vec) operators. Given
matricesA,B,C , andD with matching dimensions, the following hold true:

Tr(AB) = Tr(BA) (D.8)
d

dA
Tr (A) = Tr

(
dA

dA

)
(D.9)

dTr(BA)

dB
= Tr

(
dB

dB
A

)
= Tr

(
dB

dB

)
A = A (D.10)

Tr(A⊤B) = vec(A)⊤vec(B) (D.11)

Tr(A⊤CDB⊤) = vec(A)⊤(B ⊗C)vec(D) (D.12)

vec(ABC) = (C⊤ ⊗A)vec(B) (D.13)
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List of Acronyms

ACF aggregate channel features
ALR average labeling rate
AMR average mislabeling rate
ATC adapt then combine
BIC Bayesian information criterion
DX-means distributed X-means
EM expectation maximization
FAST-TLE fast trimmed likelihood estimator
FIM Fisher information matrix
GC gravitational clustering
HOG histogram of oriented gradients
HOT higher order terms
iid independent and identically distributed
ICT information and communication technology
MAE mean absolute error
MDMT multiple devices multiple tasks
MNDL minimum noiseless description length
NN nearest neighbor
PCA principal component analysis
pdf probability density function
RGB red, green, and blue
RSEM random swap expectation maximization
RSK-means random swap K-means
TBIC trimmed Bayesian information criterion
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List of Notation and Symbols

The following list contains the most important notation, operators, and symbols. The re-
maining once are introduced where they are used.

Notation

n normal-font lowercase letter denotes a scalar
N normal-font uppercase letter denotes a scalar
x boldface lowercase letter denotes a column vector
X boldface uppercase letter denotes a matrix
X calligraphic letter denotes a set
R set of real numbers
R+ set of positive real numbers
Z+ set of positive integers
Rr×1 set of column vectors of size r onR
Rr×r set of matrices of dimension r × r onR
1{·} the indicator function
exp(·) the exponential function
Γ(·) the gamma function
f(·) probability density function
p(·) probability mass function
N (µ,Σ) Gaussian distribution with meanµ and covariance matrixΣ
tν (µ,Ψ) t distributionwith location parameterµ, scattermatrixΨ, and degree

of freedom ν

(A.) assumption
argmax

x
F (x) returns the value of x that maximizes F (x)

argmin
x

F (x) returns the value of x that minimizes F (x)
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O(1) Landau’s termwhich tends to a constant as the data size goes to infinity
x , y x is defined as y
x ≡ y x is equivalent to y
x ∼ y x is distributed as y

Operators

(·)−1 matrix inverse
(·)⊤ vector or matrix transpose
| · | determinant of a matrix or the absolute value of a scalar
Tr(·) trace of a matrix
vec(·) vectorizes its argument by stacking the columns on top of each other
#X cardinality of the setX
X/{x} the setX without the element x
⊗ Kronecker product
|| · ||1 l1-norm
|| · ||2 l2-norm
E expectation operator
log natural logarithm
lim limit

Symbols

0r×r all zero matrix of dimension r × r

1r×1 all one column vector of size r
Ir identity matrix of dimension r × r

L the likelihood function
θ̂ estimator (or estimate) of the parameter θ
µm centroid of themth cluster
Σm covariance matrix of themth cluster
Ψm scatter matrix of themth cluster
νm degree of freedom of themth cluster
Ĵm Fisher information matrix of the data points in themth cluster
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K true number of clusters in the data set
Nm number of data points in themth cluster
N total number of data points in the data set
M set of candidate models
Ml candidate model that clusters the data set into l clusters
Lmin specified minimum number of clusters
Lmax specified maximum number of clusters
ALRnet network-wide average labeling rate
AMRnet network-wide average mislabeling rate
MAEnet network-wide mean absolute error
BICG generic BIC which is applicable to a broad class of data distributions
BICN asymptotic BIC derived by modeling the data as a family of Gaussian

distributions
BICNF extension of BICN with an exact computation of its penalty term
BICtν asymptotic BIC derived by modeling the data as a family of tν distri-

butions
BICFtν extension of BICtν with an exact computation of its penalty term
BICO the original BIC which models the data as a family of Gaussian distri-

butions
BICOS the original BIC which models the data as a family of Gaussian distri-

butions with the constraint that the clusters are identical and spherical
BICOtν the original BIC which models the data as a family of tν distributions
D-BICN distributed implementation of BICN

D-BICNF distributed implementation of BICNF

K̂BICG number of clusters estimated using BICG

K̂BICN number of clusters estimated using BICN

K̂BICNF number of clusters estimated using BICNF

K̂BICtν
number of clusters estimated using BICtν

K̂BICFtν number of clusters estimated using BICFtν

K̂BICO number of clusters estimated using BICO

K̂BICOS number of clusters estimated using BICOS
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pdet empirical probability of detection
pnet
det network-wide empirical probability of detection
punder empirical probability of underestimation
pover empirical probability of overestimation
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