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Abstract 

Background: People with macular disease often face difficulties using their 

preferred retinal locus (PRL) during visual tasks. These difficulties are due to 

impaired oculomotor control, amongst other causes. The aim of this work was 

to investigate whether stabilizing the visual target at the PRL is beneficial for 

visual acuity and reading. Methods: Control of retinal image instability at the 

PRL was achieved using an eyetracker that moved the target according to the 

eye movements. Crowded and uncrowded visual acuity was measured at the 

PRL in people with macular disease and in healthy peripheral retina of control 

subjects. RSVP reading speed was also measured using the same method of 

stabilization at the PRL and healthy peripheral retina. Results: Results of a 

series of experiments showed that stabilizing the visual target can improve 

visual performance in most cases. In healthy peripheral retina crowded visual 

acuity improved when the image was stabilized and reduced when fixation 

instability was over-compensated. At the PRL, in patients, no improvement in 

visual acuity was obtained under stabilized conditions and again visual acuity 

reduced for over-compensated fixation instability.  However, reading speed 

improved under stabilized conditions, by 20% in healthy peripheral retina of 

control subjects, and by up to 40% at the PRL of people with macular 

disease. Discussion: Good oculomotor control is critical for complex 

crowded tasks like reading. The improvement in reading speed found whilst 

compensating for oculomotor instability at the PRL is encouraging. These 

results indicate that training programs which aim to improve fixation control 

are likely to bring benefits for visual tasks. The observed increase in reading 

speed might be clinically relevant but the technique used to control instability 

needs simplification to be implemented outside the laboratory. 



- ii - 

Contents 

Abstract  ............................................................................. i 

Contents  ............................................................................ ii 

List of Figures ......................................................................... ix 

List of Tables ......................................................................... xv 

List of Appendix Tables ....................................................... xvi 

Acknowledgements ............................................................ xviii 

Chapter 1. The retina: visual function and eye movements

  ............................................................................ 1 

1.1 The Retina ............................................................................. 1 

1.1.1 Anatomy .................................................................................. 1 

1.1.2 Visual function ......................................................................... 7 

1.2 Retinal image stability and eye movements ........................ 12 

1.2.1 Miniature eye movements ..................................................... 13 

1.2.2 Smooth Pursuit ..................................................................... 14 

1.2.3 Saccades .............................................................................. 15 

1.3 Cortical processes involved in controlling orienting eye 

movements ................................................................................... 16 



- iii - 

Chapter 2. Macular disease .............................................. 21 

2.1 Causes, types and treatments ............................................. 21 

2.1.1 Age-related macular degeneration ........................................ 22 

2.1.2 Treatment of AMD ................................................................. 22 

2.1.3 Early Onset Macular Degeneration ....................................... 24 

2.1.4 Treatment for JMD ................................................................ 25 

2.2 Visual function in macular disease ...................................... 26 

2.2.1 Impact of macular disease on the individual ......................... 26 

2.2.2 Factors affecting reading speed ............................................ 27 

2.2.3 Eccentric viewing and the preferred retinal locus .................. 42 

2.3 Rehabilitation in macular disease ........................................ 48 

2.3.1 Magnification and light modulation ........................................ 48 

2.3.2 Training ................................................................................. 50 

Chapter 3. Oculomotor control and vision ...................... 53 

3.1 Saccade control in macular disease .................................... 57 

3.2 Implications of fixation instability ......................................... 61 

3.3 Thesis hypothesis and justification ...................................... 63 

3.3.1 Hypothesis ............................................................................ 63 

3.3.2 Rationale ............................................................................... 63 

3.3.3 Aims ...................................................................................... 64 

3.3.4 Thesis plan ........................................................................... 64 

Chapter 4. General methods ............................................. 66 

4.1 Participants .......................................................................... 66 

4.1.1 Control subjects .................................................................... 67 

4.1.2 Macular Disease Patients ..................................................... 68 



- iv - 

4.2 Clinical tests ........................................................................ 69 

4.2.1 Visual acuity .......................................................................... 69 

4.2.2 Eye Dominance ..................................................................... 69 

4.2.3 Critical print size .................................................................... 70 

4.3 Control of retinal image stability .......................................... 72 

4.3.1 The eyetracker ...................................................................... 72 

4.3.2 Monitor .................................................................................. 75 

4.3.3 Procedure and MATLAB programs ....................................... 76 

4.4 Microperimetry ..................................................................... 82 

4.4.1 Instrument ............................................................................. 82 

4.4.2 Microperimetry strategy ........................................................ 83 

4.5 Data analysis ....................................................................... 84 

4.5.1 Repeated measures analysis ................................................ 84 

4.5.2 Fixation stability quantification .............................................. 85 

4.5.3 Multiple PRL assessment ..................................................... 86 

Chapter 5. Development of method ................................. 87 

5.1 Qualitative analysis of the eyetracker .................................. 87 

5.2 Selection of appropriate screen refresh rate ....................... 90 

5.3 Selection of most appropriate target flankers ...................... 91 

Chapter 6. Peripheral visual acuity with compensation for 

fixation instability .................................................................. 93 

6.1 Specific method ................................................................... 95 

6.1.2 Apparatus ............................................................................. 95 

6.1.3 Procedure – experiment 1 ..................................................... 96 

6.1.4 Procedure – experiment 2 ..................................................... 99 



- v - 

6.1.5 Statistical analysis ............................................................... 100 

6.2 Results ............................................................................... 101 

6.2.1 Experiment 1 – Peripheral visual acuity without crowding .. 101 

6.2.2 Experiment 2 – Peripheral visual acuity with crowding ....... 104 

6.3 Discussion ......................................................................... 106 

6.4 Conclusion ......................................................................... 111 

Chapter 7. Visual acuity at the PRL ............................... 112 

7.1 Specific method ................................................................. 114 

7.1.1 Participants ......................................................................... 114 

7.1.2 Apparatus and procedure ................................................... 114 

7.1.3 Statistical analysis ............................................................... 115 

7.2 Results ............................................................................... 116 

7.2.1 Variation of visual acuity with gain ...................................... 117 

7.2.2 Variation of fixation stability with gain ................................. 118 

7.2.3 Effect of gain on retinal image speed .................................. 120 

7.3 Discussion ......................................................................... 121 

7.3.1 Effect of gain on visual acuity ............................................. 121 

7.3.2 Effect of gain on fixation stability ......................................... 123 

7.3.3 Limitations of the study ....................................................... 124 

7.4 Conclusion ......................................................................... 125 

Chapter 8. Reading with simulated scotoma ................ 126 

8.1 Specific method ................................................................. 128 

8.1.1 Participants ......................................................................... 128 

8.1.2 Apparatus ........................................................................... 128 

8.1.3 Stimuli ................................................................................. 129 



- vi - 

8.1.4 Procedure ........................................................................... 130 

8.1.5 Data analysis ...................................................................... 132 

8.2 Results ............................................................................... 133 

8.2.1 Reading speed .................................................................... 133 

8.2.2 Retinal image speed during fixations .................................. 135 

8.2.3 Fixation duration ................................................................. 136 

8.3 Discussion ......................................................................... 137 

8.3.1 Limitations ........................................................................... 140 

8.4 Conclusion ......................................................................... 140 

Chapter 9. Reading with compensation for fixation 

instability at the PRL ........................................................... 141 

9.1 Specific method ................................................................. 142 

9.1.1 Participants ......................................................................... 142 

9.1.2 Clinical tests ........................................................................ 143 

9.1.3 Apparatus ........................................................................... 143 

9.1.4 Stimuli ................................................................................. 144 

9.1.5 Procedure ........................................................................... 145 

9.1.6 Data analysis ...................................................................... 147 

9.2 Results ............................................................................... 147 

9.2.1 Reading speed .................................................................... 147 

9.2.2 Retinal image speed ........................................................... 150 

9.2.3 Saccade rate ....................................................................... 151 

9.2.4 Fixation duration and drift amplitude ................................... 151 

9.3 Discussion ......................................................................... 153 

9.3.1 Limitations ........................................................................... 155 



- vii - 

9.4 Conclusion ......................................................................... 156 

Chapter 10. General discussion ....................................... 157 

10.1 Primary purpose of this work ............................................. 158 

10.1.1 Visual function assessment ................................................ 158 

10.1.2 Real and simulated scotoma ............................................... 159 

10.2 Main findings ..................................................................... 160 

10.2.1 The best condition with simulated scotoma ........................ 162 

10.2.2 The best condition with macular disease ............................ 163 

10.2.3 Retinal image speed reduction: oculomotor consequences 164 

10.3 Why does stabilization work? ............................................ 165 

10.4 Text formats compensating for poor oculomotor control ... 166 

10.5 Factors interfering with oculomotor control ....................... 168 

10.5.1 Simulated vs pathological scotoma ..................................... 168 

10.5.2 Age-related vs juvenile macular degeneration .................... 168 

10.5.3 Eccentricity of the PRL ........................................................ 169 

10.5.4 The PRL location ................................................................ 170 

10.5.5 Multiple PRLs ...................................................................... 172 

10.5.6 Binocular vision ................................................................... 173 

10.6 Limitations ......................................................................... 173 

Chapter 11. Thesis conclusion and suggestions for future 

research  ........................................................................ 175 

11.1 Thesis conclusion .............................................................. 175 

11.2 Implications of this study ................................................... 176 

11.3 Suggestions for future research ........................................ 177 

References  ........................................................................ 178 



- viii - 

Appendix A  ........................................................................ 204 

Participants in the experiments described in Chapter 6 ............. 204 

Participants in the experiment described in Chapter 7 ............... 205 

Participants in the experiments described in Chapter 8 ............. 206 

Appendix B  ........................................................................ 207 

Consent form for normal subjects .............................................. 207 

Consent form for patients ........................................................... 211 

Appendix C  ........................................................................ 215 

Additional results for Chapter 6 .................................................. 215 

Additional results for Chapter 7 .................................................. 218 

Additional results for Chapter 9 .................................................. 220 

Publications ................................................................................ 221 

Papers  ............................................................................................ 221 

Abstracts ......................................................................................... 258 

Appendix D  ........................................................................ 266 

Example of a Matlab program to run the peripheral visual acuity 

experiment .................................................................................. 266 

Example of a Matlab program to run the reading experiments in 

patients ....................................................................................... 280 

Example of a Matlab program to select eye movements information 

during reading ............................................................................ 296 



- ix - 

List of Figures 

Figure 1.1: The retina as it appears through the Ophthalmoscope. The 
macula lutea can be seen as a distinct area at the centre where 
vasculature is absent. The fovea is a depression or pit about 
1.5 mm in diameter that lies at the centre of the macula 
(Purves, Augustine, Fitzpatrick, Hall, LaMantia, McNamara & 
Williams, 2004). ........................................................................ 2 

Figure 1.2: The structure of the retina with three nuclear layers. The outer 
nuclear layer (photoreceptors), the inner nuclear layer (bipolar, 
horizontal and amacrine cells) and the ganglion cell layer 
(ganglions). Between the inner and outer nuclear layers is the 
outer plexiform layer where lateral connections are formed 
between photoreceptors, bipolar cells and horizontal cell 
processes. Between the inner nuclear layer and the ganglion 
cell layer is the inner plexiform layer where lateral connections 
are formed between bipolar, amacrine and ganglion cells. 
Information flows from photoreceptors to ganglion cells but 
there are also many lateral interactions (Clifford & Ibbotson, 
2002). ........................................................................................ 3 

Figure 1.3: Illustration showing the receptive field limits of an optic disc 
nerve fibre (frog). When the illuminated spot is moved outside 
the limits the cell stops firing (Hartline, 1940). .......................... 4 

Figure 1.4: Variation of optical, psychophysical and anatomical data for the 
human eye. The data symbols show achromatic acuity (square 
symbols) and chromatic acuity (round symbols) as a function of 
retinal eccentricity along the horizontal meridian. The various 
continuous, dashed and dotted lines show the maximum spatial 
resolution (cycles.deg-1) afforded by: the eye's optical 
properties, the aperture size of individual cones, and the 
Nyquist limits dictated by cone density and ganglion cell 
density. All data sources can be seen in the original publication, 
adopted from Anderson (Anderson, Mullen & Hess, 1991). ...... 6 

 



- x - 

Figure 1.5: Comparison of interference fringe acuity and cone-to-cone 
separation. Open symbols corresponde to acuity of two 
observers and closed circles show the cone separation. 
Adopted from Green (Green, 1970). ......................................... 7 

Figure 1.6: Schematic diagram of two receptive fields located at different 
eccentricities. According to Kelly it is possible to obtain the 
same temporal output at different eccentricities by inverse 
scaling of the local velocity and the spatial frequency (Kelly, 
1985). ...................................................................................... 10 

Figure 1.7: Troxler fading phenomenon. During a sustained fixation of the 
red dot part of the grey circle will fade or disappear. The circle 
will be perceived again if sustained fixation is interrupted. ...... 12 

Figure 1.8: Main actions of the different ocular motor cortical areas in 
saccade initiation, FEF: frontal eye field; LIP: lateral 
intraparietal area; PFC: prefrontal cortex; PPC: posterior 
parietal cortex; SC: superior colliculus; SMA: supplementary 
motor area; 7a: area 7a. Adapted from Pierrot-Deseilligny 
(Pierrot-Deseilligny, 1991). ..................................................... 17 

Figure 1.9: Schematic motor map of the intermediate layers of the monkey 
superior colliculus (SC). Maps of the right and left SC show 
isodirection lines running from rostrolateral to caudomedial SC 
(positive numbers represent upward directions, negative 
represent downward) and isoamplitude lines. The question 
mark at the rostral pole shows the location of cells with a clear 
relation to fixation. Adapted from Robinson (1972) by Munoz 
(Munoz & Wurtz, 1993a, Robinson, 1972). ............................. 19 

Figure 2.1: The effect of scotoma size on reading speed. Results from 
Cummings and colleagues plotted by Whittaker (Cummings & 
Rubin, 1992, Cummings, Whittaker, Watson & Budd, 1985, 
Whittaker & Lovie-Kitchin, 1993b). The Pepper test measures 
unconstrained reading of unconnected words. The Gray test 
measures reading of continuous text. The dashed line 
represents the upper performance limit that was estimated 
visually on the basis of the highest recorded performance of 
individual subjects. .................................................................. 30 

Figure 2.2: Typical eye movements for normal subject during reading text, 
showing fixations (F), forward saccades (S) and regressive 
saccades (R). Horizontal axis shows time, vertical axis shows 
horizontal position on the page. (After Carpenter, (1988) & 
Crossland (2004)) ................................................................... 34 

 

 



- xi - 

Figure 2.3: Stripchart recording of horizontal and vertical eye positions 
over a 12s period in a subject with macular disease. The 
scotoma was above the target, thus a down drift would move 
the target into the scotoma. The upward saccades directed the 
target image to functioning retina. Adapted from Whittaker et al. 
(1988). .................................................................................... 38 

Figure 2.4: Perceptual and oculomotor characteristics of the peripheral 
visual system that contribute to reduced reading speed in 
patients with macular disease. The dashed lines show 
hypothesis that are not fully proven. ....................................... 41 

Figure 2.5: Preferred retinal locus in a patient with JMD characterized 
using the microperimeter MP1 (the technique is described in 
detail in section 4.4). The patient was fixating a red cross whilst 
the retinal sensitivity was tested, the blue dots show fixation 
positions. The dark area, left of the cross, corresponds to the 
damaged macula. ................................................................... 43 

Figure 4.1: Example of MRS and CPS calculations, adapted from Patel et 
al. (2011). The mean of the 3 largest reading speeds,173 wpm, 
corresponds to the MRS, and 90% of that (156 wpm) is used to 
determining the CPS (0.2 logMAR). ........................................ 71 

Figure 4.2: Eyelink Setup. Attached to the headband there are two high-
speed cameras to track both eyes simultaneously and a third 
camera tracks four infrared markers mounted on the visual 
stimulus display. The Eyelink Operator PC communicates via a 
high-speed ethernet connection with the Eyelink Subject PC 
that performs the stimulus display. ......................................... 73 

Figure 4.3: Landolt C surrounded by four flankers. ................................... 80 

Figure 4.4: (A) Convention used to describe PRL location with respect to 
the scotoma in visual field space (right eye). (B) How the 
convention translates when the patients looks at the Amsler 
grid. In this example, a patient with a right PRL would fixate 
things that are straight ahead by moving the scotoma to the left 
field of view (obscuring the left field with the scotoma). .......... 84 

Figure 5.1: Latency of a simulated scotoma. According to Aguilar & Castet 
(2011) there is a shift between the eye and scotoma positions 
during saccades that is caused by the inherent delay of the 
gaze contingent window controlled by infrared eyetrackers. The 
latency (L1) of the scotoma is relevant for the experiments 
reported here as described in the text above. ......................... 89 

 

 



- xii - 

Figure 6.1: Details of target window and presentation sequence. A - 
Landolt C (orientation – right), the dotted circle delimits the 
artificial scotoma; g – represents the gap, equivalent to 1/5 of 
the Landolt C size; d – represents the maximum distance that 
Landolt C could move before entering the area of the artificial 
scotoma. The size of the scotoma was varied such that: target 
size / d = 0.5. B – Sequence of stimulus presentation; the 
Landolt C was presented with and without flankers. ............... 98 

Figure 6.2: Variation of peripheral acuity, measured with a noncrowded 
Landolt C, for the four motion conditions of the target. Gain 0 
corresponds to the non gaze contingent measurements. Each 
panel shows results for a different screen position. Black 
circles: 5º eccentricity. Red circles: 10º eccentricity. Error bars 
show one standard error. ...................................................... 102 

Figure 6.3: The interaction between (A) gain × position and (B) gain × 
eccentricity for experiment 1. A: each curve corresponds to one 
position, mean values for positions in the horizontal meridian 
are shown in black and mean values for positions in the vertical 
meridian are shown in red. B: each curve corresponds to one 
eccentricity. Black circles: 5º eccentricity. Red circles: 10º 
eccentricity. Error bars show one standard error in A and B. 103 

Figure 6.4: Variation of peripheral acuity, measured with a crowded 
Landolt C, for the four motion conditions of the target. Gain 0 
corresponds to the non gaze contingent measurements. Each 
panel shows results for a different screen position. Black 
circles: 5º eccentricity. Red circles: 10º eccentricity. Error bars 
show one standard error. ...................................................... 104 

Figure 6.5: The interaction between (A) gain × position and (B) gain × 
eccentricity for experiment 2. A: each curve corresponds to one 
position, mean values for positions in the horizontal meridian 
are shown in black and mean values for positions in the vertical 
meridian are shown in red. B: each curve corresponds to one 
eccentricity. Black circles: 5º eccentricity. Red circles: 10º 
eccentricity. Error bars show one standard error in A and B. 105 

Figure 7.1: Sequence of stimuli in each trial. The optotype was preceded 
by a cue reducing spatial uncertainty and followed by a noise 
mask, visible until a response was given. ............................. 115 

Figure 7.2: Variation of noncrowded (A) and crowded (B) visual acuity with 
gain. Symbols show the mean for all participants for each gain 
as estimated by mixed models, the error bars show the 95% 
confidence interval. All acuities were normalized prior to 
statistical analysis against noncrowded acuity obtained with 
gain 0. ................................................................................... 117 

 



- xiii - 

Figure 7.3: Variation of fixation stability with gain during noncrowded (A) 
and crowded (B) visual acuity measurements. The length of the 
box is the interquartile range (25th – 75th percentiles) and 
whiskers represent the 5th – 95th percentiles. Inside the box: 
squares show the means and the horizontal lines show the 
median. BCEA was calculated in minarc2 and log10 
transformed before statistical analysis to approximate a normal 
distribution. ........................................................................... 119 

Figure 7.4: Profile of the eye speed (thick line) and retinal image speed 
(thin line) of the target during a typical trial for gain 10. ........ 120 

Figure 8.1: Distributions of word lengths in the sentence database. ....... 129 

Figure 8.2: The sequence of stimuli in the monitor in a complete trial during 
RSVP. Text was white against a black background. The cartoon 
in the first panel shows the distance, in visual angle, between 
the eye and the word centre that was kept constant at 5º. .... 130 

Figure 8.3: Reading rate for 6 conditions, rates shown were obtained after 
dividing results for each condition by results for condition 1. 
condition 1: baseline - no compensation; condition 2: gain 1 & 
screen blanked during saccades; condition 3: gain 10 & screen 
blanked during saccades; condition 4: gain 0.1 & screen not 
blanked during saccades; condition 5: gain 1 & screen not 
blanked during saccades; condition 6: gain 10 & screen not 
blanked during saccades. ..................................................... 134 

Figure 8.4: Retinal image speed for the 6 conditions. condition 1: baseline - 
no compensation; condition 2: gain 1 & screen blanked during 
saccades; condition 3: gain 10 & screen blanked during 
saccades; condition 4: gain 0.1 & screen not blanked during 
saccades; condition 5: gain 1 & screen not blanked during 
saccades; condition 6: gain 10 & screen not blanked during 
saccades. .............................................................................. 135 

Figure 8.5: Fixation duration for the 6 conditions. condition 1: baseline - no 
compensation; condition 2: gain 1 & screen blanked during 
saccades; condition 3: gain 10 & screen blanked during 
saccades; condition 4: gain 0.1 & screen not blanked during 
saccades; condition 5: gain 1 & screen not blanked during 
saccades; condition 6: gain 10 & screen not blanked during 
saccades. .............................................................................. 137 

Figure 9.1: Distribution of word lengths in the sentence database. ........ 144 

Figure 9.2: The sequence of stimuli in the monitor in a complete trial during 
RSVP. Text was presented white against a black background. 
The first word was preceded by a row of Xs and the last word 
was followed by a noise mask. ............................................. 146 

 



- xiv - 

Figure 9.3: Individual reading speeds for the four conditions. The black 
columns represent slow readers, S1 & S3, and white columns, 
fluent readers. A fluent reader was defined as someone reading 
more than 80 words per minute and a slow reader as someone 
reading less than that.  See Table 2.1. ................................. 148 

Figure 9.4: Variation of reading speed with condition. Condition 1: baseline 
- no compensation; condition 2: gain 1 & screen blanked during 
saccades; condition 3: gain 1 & screen not blanked during 
saccades; condition 4: gain 10 & screen not blanked during 
saccades. .............................................................................. 149 

Figure 9.5: Variation of retinal image speed (RIS) during fixation. Condition 
1: baseline - no compensation; condition 2: gain 1 & screen 
blanked during saccades; condition 3: gain 1 & screen not 
blanked during saccades; condition 4: gain 10 & screen not 
blanked during saccades. ..................................................... 150 

Figure 9.6: Variation of drift amplitude with condition. Condition 1: baseline 
- no compensation; condition 2: gain 1 & screen blanked during 
saccades; condition 3: gain 1 & screen not blanked during 
saccades; condition 4: gain 10 & screen not blanked during 
saccades. .............................................................................. 151 

Figure 9.7: Variation of fixation duration with condition. Condition 1: 
baseline - no compensation; condition 2: gain 1 & screen 
blanked during saccades; condition 3: gain 1 & screen not 
blanked during saccades; condition 4: gain 10 & screen not 
blanked during saccades. ..................................................... 152 

Figure 10.1: Convention used to describe PRL location with respect to the 
scotoma in visual field space (right eye). .............................. 172 

 



- xv - 

List of Tables 
 

Table 2.1: Summary of the visual requirements for reading. Visual acuity 
reserve, contrast reserve and other factors such as the size of 
the scotoma (eccentricity of fixation) and field of view (Whittaker 
& Lovie-Kitchin, 1993b). .......................................................... 29 

Table 2.2: Fixation stability of two subjects (AS and RS) summarized by 
bivariate-contour-ellipse areas (BCEA in minarc2) and standard 
deviations, in minarc, on the horizontal (H) and vertical (V) 
meridians during fixation for seven target arrays. Modified from 
Sansbury et al. (1973)............................................................. 36 

Table 7.1: Mean visual acuity, in logMAR, obtained for different conditions 
for crowded and noncrowded targets. Values in brackets show 
the 95% confidence interval. ................................................. 118 

Table 8.1: The 6 conditions in which reading speed was measured ....... 131 

Table 8.2: Summary of the effects of each condition on reading speed. 
Differences were obtained by subtracting results for conditions 
in the first column from the condition defined in the remaining 
columns headings. ................................................................ 133 

Table 8.3: Comparison of the retinal image speed in all conditions. 
Differences were obtained by subtracting results for conditions 
in the first column by the condition defined in the remaining 
columns headings. ................................................................ 136 

Table 9.1: Participants’ characteristics including PRL location. PRL 
location was defined according to the convention defined in 
section 4.4. The images of microperimetry can be seen in 
Appendix C. CPS: Critical Print Size at 20 cm; MRS: Maximum 
Reading Speed. .................................................................... 143 

Table 9.2: Conditions in which reading speed was measured ................ 146 

Table 9.3: Summary of the main results. The summary includes mean 
value for: retinal image speed (RIS), reading speed in words 
per minute (wpm) and the RSVP gain compared with MNread in 
the last column. Numbers in square brackets show 95% 
confidence intervals. ............................................................. 149 



- xvi - 

List of Appendix Tables  

Appendix Table 1: Additional information for participants in experiments of 
Chapter 6………………………………………………………… 204 

Appendix Table 2: Additional information for participants in experiments of 
Chapter 7. PRL: preferred retinal locus. The PRL location is 
defined in visual field space determined according to the 
convention defined in section 4.4.2. VA: visual acuity. AMD: 
age-related macular disease. JMD: Juvenile macular disease.
……………………………………………………………………..205 

Appendix Table 3: Additional information for participants in experiments of 
Chapter 8………………………………………………………… 206 

Appendix Table 4: Individual mean values of peripheral visual acuity in 
logMAR for each observer (S), gain and position for experiment 
1……………………………………………………………………215 

Appendix Table 5: Individual mean values of peripheral visual acuity in 
logMAR for each observer (S), gain and position for experiment 
2……………………………………………………………………216 

Appendix Table 6: Summary of the main differences in visual acuity 
between positions of the two experiments described in Chapter 
6. Differences were obtained by subtracting results for 
conditions in the first column by the condition defined in the 
remaining columns headings…………………………………...217 

Appendix Table 7: Microperimetry results for participants with macular 
disease in the visual acuity experiment, Chapter 7…………. 218 

Appendix Table 8: Microperimetry results for participants with macular 
disease in the reading experiment, Chapter 9……………….. 220 



- xvii - 

 

 

 

SUPERVISORS 

Professor Gary S. Rubin 

Dr. Michael D. Crossland 

UCL – Institute of Ophthalmology 

Department of Visual Neuroscience  

11-43 Bath Street,  

London, EC1V 9EL, UK 

 

************************************************** 

Funding 

Antonio Filipe T. Macedo was supported by Fundação para a Ciência e a 

Tecnologia (FCT) - Portugal - SRFD/BD/27975/2006 and University of 

Minho. The project was only possible due to the generous contribution of 

the Department of Visual Neuroscience of the UCL-Institute of 

Ophthalmology. 

 

************************************************** 

 



- xviii - 

Acknowledgements 

I would like to express my deepest gratitude to my supervisors, Professor 

Gary Rubin and Dr. Michael Crossland. It was a privilege to be supervised 

by these two inspiring scientists. I want to thank them for believing my 

potential to do this project, for supporting my work, for their guidance and 

for being patient with my English. With both I learned much more than how 

to conduct research.   

 

Nothing would be the same without my two girls, Ligia and Nicole. Ligia 

never complained and was always there for me, no matter what. Little 

Nicole, who I just met as she is one month old, is making this moment 

much more precious. 

 

I would like to thank my friends Liz Pearce and Hannah Dunbar. First I 

need to thank them for their friendship and for making the time I spent in 

London so much better. Second, thanks to Liz for being brave enough to 

read this thesis and Hannah Dunbar for all the help through the project. 

 

I would like to express my gratitude to all members of the former 

Department of Vision Rehabilitation, now Department of Visual 



- xix - 

Neuroscience, for the pleasant working atmosphere. Mary Feely helped 

recruiting participants for my experiments; Heather Kneale proofread my 

first paper. Nick, Dinu, Hannah Roche, Kavitha thanks for the collaboration 

and for listen to my repetitive and not always funny jokes. Thanks to Dr. 

Tony Redmond, for always being in a good mood and willing to participate 

in my experiments. Thanks to Dr. Steven Dakin and Dr. John Greenwood, 

for interesting discussions. Thanks to Dr. Helle Falkenberg for her 

friendship and good company over early coffee in the lab. 

. 



- 1 - 
 

Chapter 1. The retina: visual 
function and eye 
movements 

The human visual system is one of the most complex in nature. It provides 

‘snap shots’ of the surrounding world forming vision, the richest source of 

sensorial information. The optical structures capture and focus light which 

triggers a photochemical reaction in the photoreceptors of the retina. The 

signals travel through a complex neural network where they are processed 

and perceived as an image of the visual scene when they reach the brain. 

1.1 The Retina 

1.1.1 Anatomy  

The retina is nervous tissue that lines the back of the eye. The innermost 

layer of the functional part is made up of photoreceptors and their neural 

connections to retinal ganglion cells, amacrine cells, bipolar cells and 

horizontal cells. The retinal pigment epithelium together with its basal 

membrane and Bruch’s membrane forms a structure that maintains the 
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integrity of the barrier between the choroid and the retina. The choroid, 

mainly a vascular tunic, is sandwiched between the retina and the sclera 

and forms the main source of blood supply to the outer half of the retina. 

The retina as it appears when visualized through direct observation of the 

back of the eye is shown in Figure 1.1. 

 

 

Figure 1.1: The retina as it appears through the Ophthalmoscope. The 

macula lutea can be seen as a distinct area at the centre where 

vasculature is absent. The fovea is a depression or pit about 1.5 mm in 

diameter that lies at the centre of the macula (Purves, Augustine, 

Fitzpatrick, Hall, LaMantia, McNamara & Williams, 2004). 

 

The photoreceptors transform light into nervous impulses which are 

conducted through the network of cells in the retina. There are two main 

types of photoreceptors: cones, sensitive to high levels of illumination, and 
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rods, sensitive to low levels of illumination. According to spectral tuning, 

cones are divided into 3 types: short, medium and long-wavelength 

sensitive.  

 

 

Figure 1.2: The structure of the retina with three nuclear layers. The outer 

nuclear layer (photoreceptors), the inner nuclear layer (bipolar, horizontal 

and amacrine cells) and the ganglion cell layer (ganglions). Between the 

inner and outer nuclear layers is the outer plexiform layer where lateral 

connections are formed between photoreceptors, bipolar cells and 

horizontal cell processes. Between the inner nuclear layer and the 

ganglion cell layer is the inner plexiform layer where lateral connections 

are formed between bipolar, amacrine and ganglion cells. Information 

flows from photoreceptors to ganglion cells but there are also many lateral 

interactions (Clifford & Ibbotson, 2002). 

Ganglion cells with their receptive fields receive information from the 
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receptors and transmit to the optic nerve. A receptive field corresponds to 

the area of the retina which, when illuminated, produces a response in 

specific nerve fibres, as shown in Figure 1.3.  

 

 

 

Figure 1.3: Illustration showing the receptive field limits of an optic disc 

nerve fibre (frog). When the illuminated spot is moved outside the limits the 

cell stops firing (Hartline, 1940). 

 

 

Receptive fields of the ganglion cells can be of two types: type “on” 

(responsive when the centre is illuminated or the intensity of light 

increases) and type “off” (responsive when the illumination extinguishes or 

the intensity of light reduces). In both types there is a surround whose 

response works in the opposite direction of the centre. These cells respond 

vigorously to small and sudden movements of the retinal image. For 
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example, a moving spot of light with constant intensity causes a response 

in visual neurons by alternation between adjacent receptive fields (Hartline, 

1940).  

 

The macula is the central part of the retina which subtends approximately 

5 degrees of visual field. This area is characterized by an exceptionally 

high density of neural cells and absence of retinal blood supply (Provis, 

Penfold, Cornish, Sandercoe & Madigan, 2005). The centre of the macula, 

the fovea, consists of only two cone types: medium and long wavelength 

sensitive. With increasing distance from the centre of the fovea 

(eccentricity) the number of rods increases, as it does the number of short 

wavelength cones. Figure 1.4 shows the density of cones, rods, and 

ganglion cells from the centre to the periphery of the retina. 

 

In general, acuity decreases rapidly with eccentricity as can be seen in 

Figure 1.4. The next section describes in detail how visual function varies 

with eccentricity and what limits central and peripheral resolution. 
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Figure 1.4: Variation of optical, psychophysical and anatomical data for the 

human eye. The data symbols show achromatic acuity (square symbols) 

and chromatic acuity (round symbols) as a function of retinal eccentricity 

along the horizontal meridian. The various continuous, dashed and dotted 

lines show the maximum spatial resolution (cycles.deg-1) afforded by: the 

eye's optical properties, the aperture size of individual cones, and the 

Nyquist limits dictated by cone density and ganglion cell density. All data 

sources can be seen in the original publication, adopted from Anderson 

(Anderson, Mullen & Hess, 1991).  

 

In Figure 1.4 the Nyquist limit is defined as the highest sinusoidal spatial 

frequency (colour or luminance modulation) that can be reconstructed 

unambiguously from an array of spatially discrete sampling elements 
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(Anderson et al., 1991). Fringe acuity measurements were based on 

Young's double-slit interference experiment. Young's interference fringes 

on the retina are unaffected by optical defocus of the eye or by aberrations 

in the usual sense (Westheimer, 1960). 

1.1.2 Visual function 

In the centre of the macula visual acuity reaches its maximum value and 

finer than 1 minarc-1 (Green, 1970). At  5º eccentricity visual acuity is 

already less than half of this value and the decline continues to the 

periphery where the density of receptors is lower. Figure 1.5 shows the 

relationship between cone density and visual resolution. 

 

Figure 1.5: Comparison of interference fringe acuity and cone-to-cone 

separation. Open symbols correspond to acuity of two observers and 

closed circles show the cone separation. Adopted from Green (Green, 

1970).  
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Limits of resolution in the central retina are imposed by the organization of 

the mosaic of photoreceptors and by the density of ganglion cells. In the 

fovea the maximum angle of resolution is proportional to the distance 

between two adjacent receptors (Williams & Coletta, 1987). In the 

periphery of the retina the density of photoreceptors is not the main 

limitation of resolution, here the reduction in the number of ganglion cells 

per photoreceptor is the main limiting factor. The number of ganglion cells 

per photoreceptor changes from 3 at around 2º eccentricity to less than 1 

at 11º eccentricity (Curcio, Allen, Sloan, Lerea, Hurley, Klock & Milam, 

1991). The size of the receptive fields of ganglion cells changes to 

compensate for the reduction of the ratio ganglion cells/receptor. At the 

fovea receptive fields are the size of one photoreceptor but they increase 

with: eccentricity, the area of the retina and the number of receptors 

connected to each ganglion cell (Sjöstrand, Olsson, Popovic & Conradi, 

1999). Thus, the spacing between ganglion cells poses the fundamental 

limit on the spatial resolution of the peripheral retina (Anderson et al., 

1991). 

1.1.2.1 Primary visual cortex and cortical magnification 

Each point of the retina corresponds to an area of the visual cortex, this is 

known as retinotopic correspondence. The area of the visual cortex 

devoted to the analysis of a constant-size region of the visual field 

diminishes progressively for more peripheral locations. The change is 

defined by the cortical magnification factor, which indicates the linear 
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extent of cortex in millimetres corresponding to one degree of visual field at 

various eccentricities (angular distances from the middle fovea). The 

cortical magnification factor can predict the resolution of the peripheral 

retina for scaled gratings (Rovamo, Virsu & Nasanen, 1978). 

1.1.2.2 Temporal aspects of vision 

In the central retina the visual system integrates information over 

approximately 120 msec (Barlow, 1958), which is enough time for a 

moving object to alternate between receptive fields. This movement can 

produce motion smear or motion blur (Burr, 1980). The amount of blur 

depends on: the size of the receptive field, the target’s velocity and the 

target’s spatial frequency. Kelly proposed a mathematical equation using 

these variables to predict the temporal output of receptive fields (Figure 

1.6). According to Kelly, if the velocity of the target increases ‘within limits’ 

to compensate for reduction in spatial frequency of the target, the visual 

system can resolve finer patterns with the target moving than when the 

target is static (Kelly, 1985). The limits of velocity are probably imposed by 

the integration period. According to Burr (1980) target exposures of 30 

msec produce more blur than 100 msec exposures. For moving targets, 

the higher the velocities the shorter the exposure and higher the amount of 

motion blur expected. However, the amount of blur is less than would be 

expected based on this model. Burr (1980) considered that the visual 

system has mechanisms to detect motion, which only act when the 

exposure time is long enough to trigger these actions (deblurring 
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mechanism). For brief exposures the mechanisms are not activated and a 

moving target is perceived as static and blurred due to motion blur.  

 

  

Figure 1.6: Schematic diagram of two receptive fields located at different 

eccentricities. According to Kelly it is possible to obtain the same temporal 

output at different eccentricities by inverse scaling of the local velocity and 

the spatial frequency (Kelly, 1985). 

 

In the peripheral retina, the receptive fields are bigger than in the central 

retina. According to Kelly’s model, resolution should be higher for moving 

targets. This prediction has been confirmed by several studies (Bex, Dakin 

& Simmers, 2003, Bex, Edgar & Smith, 1995, Brown, 1972b, Falkenberg, 

Rubin & Bex, 2007). Resolution would be improved, according to Burr, if 

the moving target is exposed for long enough to trigger the debluring 

mechanism and it should be sharper than a static target (Bex, Edgar & 

Smith, 1995). However, for very high velocities the target will be seen as 
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blurred. In brief, the peripheral retina has reduced motion sensitivity for 

moving targets which, within limits, can be seen sharper than static targets 

(McKee & Nakayama, 1984).  

 

The visual system has a built in mechanism to move the retinal image from 

one receptive field to another. The fixational eye movements or miniature 

eye movements (see below) keep the eye moving incessantly during 

fixation (Barlow, 1952). Different studies have shown that these small 

displacements of the retinal image are beneficial for central vision (Berry, 

1948, Keesey, 1960, Tulunay-Keesey, 1982). Fixational eye movements 

cause fast changes in illumination on the receptive fields of the visual 

neurons preventing adaptation (Coppola & Purves, 1996, Ditchburn, 1959, 

Martinez-Conde, Macknik & Hubel, 2004, Rucci, Iovin, Poletti & Santini, 

2007). In other words, fixational eye movements prevent a decline in 

response of the visual neurons due to the presence of a constant 

stimulation on the receptive fields of the ganglion cells. In the periphery 

these miniature eye movements are not enough to prevent image 

disappearance as demonstrated by Troxler fading, Figure 1.7. Troxler 

fading consists of the disappearance of the images in the peripheral retina 

during a steady, prolonged fixation and is due to adaptation of the 

peripheral visual neurons (Clarke, 1960, Clarke, 1961, Clarke & Belcher, 

1962). The occurrence of this phenomenon is consistent with Kelly’s model 

described in the last two paragraphs. 

 

The mechanism responsible for fixational eye movements is still unknown 
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but recent findings suggest a connection between perception and the 

generation of fixational eye movements (Engbert & Mergenthaler, 2006, 

Martinez-Conde, Macknik, Troncoso & Dyar, 2006). Visual information 

originating in the retina continuously feeds the mechanism controlling the 

eye movements and is the main source of information for oculomotor 

control. Section 1.2 describes eye movements and the visual information 

used to control them. 

 

Figure 1.7: Troxler fading phenomenon. During a sustained fixation of the 

red dot part of the grey circle will fade or disappear. The circle will be 

perceived again if sustained fixation is interrupted. 

1.2 Retinal image stability and eye 
movements 

The eye movements are responsible for stabilizing the image on the retina 

and for shifting the gaze to the object of interest. The stability of the retinal 
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image in natural conditions is achieved by interaction between the 

oculomotor system controlling the eye movements, and other systems. For 

example, the vestibulo-ocular and optokinetic systems are responsible for 

the vestibulo-ocular reflex that stabilizes the gaze during head turns (Leigh 

& Zee, 1999a). A full description of the stabilization process is beyond the 

scope of this thesis, so only the orienting eye movements will be 

considered. Orienting eye movements are divided into three types: 

saccades, smooth pursuit and fixation. The role of these eye movements, 

together with other systems, is to keep the retinal image stable and aligned 

with the fovea. In certain eye conditions such as nystagmus the control of 

eye movements is impaired leading to a significant reduction in vision. 

1.2.1  Miniature eye movements 

During fixation the fovea is aligned with the object of interest and three 

types of eye movements occur: tremor, drift and microsaccades. Tremor is 

an aperiodic wave-like motion with velocities of approximately 20 minarc.s-

1 and amplitude smaller than the diameter of a foveal cone. Drift 

movements occur simultaneously with tremor and are larger and slower 

than tremor, with velocities in the order of 4 minarc.s-1 and mean 

amplitudes of around 2 – 5 minarc. This amplitude corresponds to a 

movement of the retinal image across a dozen photoreceptors. Fixational 

microsaccades, also called ‘flicks’ in early studies, are small and fast eye 

movements that occur during voluntary fixation. Typically with peak 

velocities above 600 minarc.s-1, their amplitude ranges from 1 to 120 
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minarc and they carry the retinal image across a width of between several 

dozen and several hundred photoreceptors (Carpenter, 1988, Martinez-

Conde et al., 2004). 

1.2.2 Smooth Pursuit 

Smooth pursuit is the eye movement which follows moving targets. 

Approximately 100 msec after a target starts to move, fixation is 

interrupted by a saccade, which reduces the error between the eye and the 

target positions accumulated during the latency period. After the saccade 

the eye moves smoothly in the direction of the target in order to keep it 

close to the fovea. Visual information is constantly used to guide the eye in 

the target’s direction. The smooth pursuit system is influenced by 

instantaneous visual information: in other words, it is controlled by a closed 

loop mechanism (Blohm, 2004, Leigh & Zee, 1999a). The closed loop 

mechanism uses negative feedback to reduce the relative speed between 

the eye and the visual stimulus, also called retinal slip. Retinal image slip is 

considered the main input to smooth pursuit control but positional error and 

target acceleration also have some influence on smooth pursuit control 

(Robinson, Gordon & Gordon, 1986). 

 

Smooth pursuit eye movements are slow, with typical velocities below 

100ºs-1, and are characterized by gain, the ratio between eye and target 

velocities. During smooth pursuit the eye acceleration increases to reduce 

retinal image slip and gain is close to 1. Eye acceleration saturates 
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between 200ºs-2 and 400ºs-2 and positional error starts to accumulate. To 

reduce the error a saccade is generated to maintain the target close to the 

fovea (Morris & Lisberger, 1987, Segraves & Goldberg, 1994). 

1.2.3 Saccades 
 

Saccades are eye movements used to move the direction of the fovea 

from one visual target to another. Saccades can be made to visual, 

remembered, tactile, auditory or even imaginary targets. The main input 

used by the saccadic system to program the amplitude of a saccade is the 

retinal error (the distance between the retinal location of an image and the 

fovea) (Leigh & Zee, 1999b). 

 

The saccadic system uses an undershooting strategy whereby the initial 

saccade covers approximately 90% of the distance towards the target 

(Becker, 1988, Troost, Weber & Daroff, 1974). The time between the 

trigger and execution of saccade (latency) is typically under 200 msec 

(Robinson, 1965). Once started the amplitude of a saccade cannot be 

modified by visual information. The independence of the visual feedback 

means they are executed in open-loop. Saccades are the fastest 

movements of the eye with extremely high acceleration and deceleration 

(up to 30 000ºs-2) and velocities up to around 500ºs-1 (Bahill, Clarke & 

Stark, 1975).  

 

The fovea is the retinomotor centre, therefore its coordinates play a key 

role in the planning and execution of eye movements. Macular disease 
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normally causes fovea destruction and consequently impairs the 

mechanisms controlling eye movements. Chapter 2 gives an overview of 

macular disease, implications to visual function and eye movements. 

Cortical processes involved in controlling orienting eye movements 

The neural control of the orienting eye movements is complex because it 

requires input from difference sources and computation of information in 

several areas of the brain. Fundamental input for controlling eye 

movements originates in the retina. The previous section described how 

the retina provides essential information about the positional error between 

the target and the fovea. Visual information is transferred from low visual 

areas (retina and LGN) to the primary visual cortex (V1) almost without any 

division. Once visual information reaches the brain it divides to different 

areas as shown in Figure 1.8. 

 

The neuroanatomical areas associated with the eye movements have 

been extensively studied in animals, but only a few studies involved 

healthy humans. A study from Anderson and colleagues in 1994, used 

PET (positron emission tomography) to study the areas of the brain 

involved in eye movements control. They monitored the changes in 

regional cerebral blood flow in humans during two tasks: (1) reflexive 

saccades and fixation, (2) remembered saccades and fixation. The 

findings from Anderson’s in intact humans were consistent with animal 

studies. Saccades (reflexive - visually guided) are triggered primarily by 

the posterior parietal cortex (PPC) and secondarily by frontal eye field 

(FEF), with inhibition of such saccades by the prefrontal cortex. Single 
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remembered saccades are thought to be controlled by three successive 

regions, the PPC (visuospatial integration), dorsolateral prefrontal cortex 

(memorization and decision) and FEF (triggering) (Anderson, Jenkins, 

Brooks, Hawken, Frackowiak & Kennard, 1994, Pierrot-Deseilligny, 1991). 

Anderson’s findings also gave evidence that active fixation is mediated by 

extensive areas of the ventromedial and anterolateral frontal cortex. 

 

 

Figure 1.8: Main actions of the different ocular motor cortical areas in 

saccade initiation, FEF: frontal eye field; LIP: lateral intraparietal area; 

PFC: prefrontal cortex; PPC: posterior parietal cortex; SC: superior 

colliculus; SMA: supplementary motor area; 7a: area 7a. Adapted from 

Pierrot-Deseilligny (Pierrot-Deseilligny, 1991). 

 

 

The anatomical pathways underlying saccades and fixation, discussed 

above, are different from the pathways underlying pursuit. However, 
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saccades and smooth pursuits are synchronized when, for example, 

following a moving target. Smooth pursuit control includes such cortical 

regions as the middle temporal area and medial superior temporal sulcus 

and such subcortical regions as the basilar pons and cerebellum (Ilg, 

1997). Some authors speculate that there must be a shared mechanism to 

target selection for saccades and smooth pursuit (Krauzlis, Basso & Wurtz, 

1997). The superior colliculus (SC), a laminated midbrain structure known 

to be important for the generation of saccadic eye movements, 

represented in Figure 1.9, is a candidate to be part of the shared 

mechanism for target selection. The superficial layers of the SC contain 

visually responsive neurons that form a retinotopic map of visual space, 

whereas the deeper layers contain saccade-related neurons that form a 

corresponding motor map. Much importance has been attributed to the SC 

since the publication of Robinson’s classic study in 1972 where he showed 

that characteristics of the saccade are dependent on the area of the SC 

actived (Robinson, 1972). 
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Figure 1.9: Schematic motor map of the intermediate layers of the monkey 

superior colliculus (SC). Maps of the right and left SC show isodirection 

lines running from rostrolateral to caudomedial SC (positive numbers 

represent upward directions, negative represent downward) and 

isoamplitude lines. The question mark at the rostral pole shows the 

location of cells with a clear relation to fixation. Adapted from Robinson 

(1972) by Munoz (Munoz & Wurtz, 1993a, Robinson, 1972). 

 

Particular functions in controlling saccades, such as generating express 

saccades, have been attributed to the SC. Express saccades are short-

latency eye movements (typically below than 200 msec) that form the first 

mode of a bimodal distribution of saccadic latencies, while the second 

mode is formed of latencies of regular saccades (typically above 200 

msec). If the SC is removed, planned saccades are possible while express 

saccades are not. Conversely, express saccades are possible without 

frontal eye fields, but regular saccades are not. Without both structures all 
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become impossible (Schiller, 1998). If we consider the retinotopic 

organization of the SC and its role in controlling saccades together, we 

would expect impaired eye movement control when using the peripheral 

retina to fixate a “straight ahead target”. As the observer looks at a target 

with the peripheral retina, the SC plans a saccade to move the fovea to the 

target. In people with central scotoma, saccades might be planned in the 

wrong part of the SC, leading to frequent and erratic saccades. Also 

important is the effect of this structure on controlling steady fixation by 

inhibition of the saccade system (Munoz & Wurtz, 1993b). The 

consequences of using the peripheral retina to maintain sustained fixation 

are discussed in section 2.2.3.3. 
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Chapter 2. Macular disease 

The first part of this chapter describes the most common causes of macular 

disease and currently available treatments. The second part describes the 

impact of macular disease on visual function, and the last section describes 

current rehabilitation tools. 

2.1 Causes, types and treatments 

Macular disease is the primary cause of legal blindness in the developed world 

(Friedman, O'Colmain, Munoz, Congdon, Klaver, Klein, Kempen, Taylor, 

Mitchell & Hyman, 2004). According to its aetiology macular degeneration can 

be divided into two categories: juvenile (or early onset) macular disease (JMD), 

and age-related macular degeneration (AMD).  

 

The macula has a high density of photoreceptors that consume more oxygen 

than any other cell type in the body. Paradoxically, these cells have a restricted 

blood supply from the retina, depending on oxygen supplied by the 

choriocapillaris (Linsenmeier & Padnick-Silver, 2000). Choroidal blood flow is 

independent of metabolism at the photoreceptor level and because of that is 
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unable to alter blood flow in response to an increase in metabolic demand 

(Delaey & Van de Voorde, 2000). With aging there is a decrease in the density 

and volume of the choriocapillaris and a consequential reduction in choroidal 

blood flow.  

2.1.1 Age-related macular degeneration 

Characteristics of the macula, such as its high demand of oxygen and restricted 

blood supply, make it vulnerable to degenerative changes. In the long term, 

there is accumulation of insoluble substances in Bruch’s membrane and in the 

sub-retinal epithelial space, which then acts as a barrier to the effective diffusion 

of oxygen and nutrients to the photoreceptors. Oxidative stress and an 

inflammatory response are the most likely sequelae of such changes, leading, 

in many cases, to a degenerative process. This degenerative process is known 

as age-related maculopathy (ARM) which is the precursor to AMD (Neelam, 

Nolan, Chakravarthy & Beatty, 2009). AMD is subdivided into: neovascular 

AMD (wet) and geographic atrophy (dry), and is the most prevalent type of 

macular disease (Bird, 2003, Bjornsson, Syrdalen, Bird, Peto & Kinge, 2006, 

Jonasson, Arnarsson, Sasaki, Peto, Sasaki & Bird, 2003, Vingerling, 

Dielemans, Hofman, Grobbee, Hijmering, Kramer & Dejong, 1995). 

2.1.2 Treatment of AMD 

Treatment options for wet AMD have expanded over the past two decades. 

Former treatments such as laser photocoagulation proved to be of low benefit in 
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controlling neovascularisation whilst reducing patients’ vision and enlarging the 

central scotoma (Macular photocoagulation study group, 1991).  

 

The first widely used effective treatment for AMD was photodynamic therapy. 

This treatment consists of injecting an intravenous infusion of a photosensitive 

drug (verteporfin). The drug is then activated by a non-thermal light at the 

wavelength absorbed by the photosensitizer which shrinks neovascularization 

(Manyak, Russo, Smith & Glatstein, 1988). Photodynamic therapy proved to be 

relatively efficient in stopping disease progression, but visual acuity rarely 

improved (Bressler & Bressler, 2000). 

 

More recently, therapies have been developed to control vascular endothelial 

growth factor (VEGF). VEGF is the principal agent responsible for the 

development of neovascularisation. Currently available agents include 

pegaptanib sodium (Macugen; OSI/Eyetech Pharamaceuticals, New York, 

USA), ranibizumab (Lucentis; Genentech Inc, California, USA) and 

bevacizumab (Avastin, Genentech Inc, California, USA). These drugs have 

proved to be safe and effective in slowing down the disease and in some 

studies improvement of visual acuity has been reported (Rattner & Nathans, 

2006, Smith, Joseph & Grand, 2007).  

 

Currently, there is no widely available effective treatment for dry AMD. Extra 

intake of anti-oxidants may slow the progression of dry AMD (Age-Related-Eye-

Disease-Study-Res-Group, 2001, Coleman & Chew, 2007). Surgical treatment 

such as macular translocation, the shifting of the fovea away from the area of 
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the choroidal neovascularisation, has been tried in pathological myopia and 

AMD. Results of this treatment are highly variable with some patients showing 

little or no improvement (Aisenbrey & Bartz-Schmidt, 2003, Chen, Patel, Uppal, 

Rubin, Coffey, Aylward & Da Cruz, 2009, MacLaren, Bird, Sathia & Aylward, 

2005) and others showing a significant improvement in visual acuity of 3 or 

more lines (Glacet-Bernard, Benyelles, Dumas, Haddad, Voigt, Razavi, Roquet, 

Coscas & Soubrane, 2007). These procedures have a significant number of 

serious post-operative complications such as diplopia, retinal detachment and 

macular oedema (Chen et al., 2009). Future treatment options for AMD are 

likely to include gene and stem cell therapy. 

2.1.3 Early Onset Macular Degeneration  

Macular degeneration of early onset can have a primary genetic cause or can 

be the consequence of other ocular conditions. Those with a primary genetic 

cause include: Stargardt disease, photoreceptor dystrophies (Kim & Fishman, 

2006, Maia-Lopes, Silva, Silva, Reis, Faria & Castelo-Branco, 2008, Walia & 

Fishman, 2009), Best disease (Arora, Das, Shroff, Narula & Chauhan, 2007, 

Goodwin, 2008, Spaide, Noble, Morgan & Freund, 2006, Vedantham & 

Ramasamy, 2005) and X-linked retinoschisis (George, Yates & Moore, 1995, 

Pimenides, George, Yates, Bradshaw, Roberts, Moore & Trump, 2005). Of 

these, Stargardt disease is the most prevalent (Allikmets, Singh, Sun, Shroyer, 

Hutchinson, Chidambaram, Gerrard, Baird, Stauffer, Peiffer, Rattner, 

Smallwood, Li, Anderson, Lewis, Nathans, Leppert, Dean & Lupski, 1997, 

Moradi & Moore, 2007, Sikkink, Biswas, Parry, Stanga & Trump, 2007). Macular 
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degeneration at a young age can also result from eye disease such as 

pathological myopia (Glacet-Bernard et al., 2007, Tano, 2002) and punctate 

inner choriodopathy (Gerstenblith, Thorne, Sobrin, Do, Shah, Foster, Jabs & 

Nguyen, 2007, Quillen, Davis, Gottlieb, Blodi, Callanan, Chang & Equi, 2004). 

For simplicity those with any form of early onset macular degeneration will be 

referred to as having Juvenile Macular Disease (JMD) throughout this thesis. 

2.1.4 Treatment for JMD 

The aims of treating inherited diseases are: to replace abnormal genes, to 

prevent progression; to replace dead retinal cells and to restore vision. 

Treatment for genetic retinal conditions is being tried using genetic therapy in 

patients with Leber’s Congenital Amaurosis (an early-onset, severe retinal 

dystrophy but not a form of JMD). Studies are evaluating the safety and efficacy 

of subretinal recombinant adeno-associated virus vector for gene-replacement 

therapy in patients with RPE65 mutations. Study participants have already been 

treated in the UK (Al-Karmi & Markowitz, 2006, Bainbridge, Smith, Barker, 

Robbie, Henderson, Balaggan, Viswanathan, Holder, Stockman, Tyler, 

Petersen-Jones, Bhattacharya, Thrasher, Fitzke, Carter, Rubin, Moore & Ali, 

2008, MacLaren, Pearson, MacNeil, Douglas, Salt, Akimoto, Swaroop, Sowden 

& Ali, 2006 ) and the USA (Cideciyan, Hauswirth, Aleman, Kaushal, Schwartz, 

Boye, Windsor, Conlon, Sumaroka, Roman, Byrne & Jacobson, 2009). Results 

from the few patients treated are promising, ranging from improvement in visual 

acuity (Bainbridge et al., 2008) to subjective and microperimetric changes, and 

self reported improvements (Cideciyan et al., 2009). These procedures remain 
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at the beginning of their clinical use. 

 

In summary, macular disease can be divided into early onset and age-related 

form. Wet AMD remains the only form of macular degeneration with effective 

treatment available. 

2.2 Visual function in macular disease 

2.2.1 Impact of macular disease on the individual 

Macular disease is a very common cause of low vision. The World Health 

Organization defines a person with low vision as one who has impairment of 

visual functioning even after full treatment and/or refractive correction but who 

uses, or is potentially able to use, vision for the planning and/or execution of a 

task for which vision is essential (Prevention-Blindness, 2010). Visual acuity is 

typically between 6/18 and light perception, or the visual field is less than 10º 

from the point of fixation in the better eye. An alternative definition is the one 

advocated by Dr Gordon Legge in Minnesota who defines low vision as: “The 

inability to read regular newsprint with optimal refractive correction”. This is 

better in that it includes a functional statement, but may exclude people who 

have good reading acuity but are unable to perform other tasks using vision – 

such as to safely cross a street or to watch television. Leat and colleagues 

consider low vision as the visual impairment are sufficient to cause a disability 

and that should be when one or more conditions is satisfied: visual acuity < 

6/12; Pelli-Robson contrast less than 1.5 log units; visual field less than 120º 
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(Leat, Legge & Bullimore, 1999a). 

 

The most common complaint of patients with macular disease is difficulty in 

reading newsprint and essential correspondence (Dickinson & Fotinakis, 2000, 

Elliott, TrukoloIlic, Strong, Pace, Plotkin & Bevers, 1997, Farrel, 1991, Faye, 

1970, Faye, 1984, Hazel, Petre, Armstrong, Benson & Frost, 2000). Difficulty in 

reading cannot be fully explained by a reduction in visual acuity as reading is a 

complex task, requiring significant high and low-level visual resources. Sensory, 

oculomotor and perceptual deficits of the peripheral visual system (Bedell, 

1986, Seiple, Szlyk, McMahon, Pulido & Fishman, 2005) compromising reading 

are discussed in the next section. Educational and cognitive factors surrounding 

difficulty in reading are beyond the scope of this thesis and will not be 

discussed. 

2.2.2 Factors affecting reading speed  

2.2.2.1 Sensory deficits: contrast sensitivity and visual acuity 

Contrast 

Contrast threshold can be used to predict the optimum print contrast for 

reading. Contrast reserve (CR) is the ratio between text contrast and threshold 

contrast sensitivity (Whittaker & Lovie-Kitchin, 1993b). Text contrast of less than 

10 times contrast threshold will reduce reading rate and if less than 4 times 

contrast threshold it will significantly impair reading rate and accuracy (see 

Table 2.1). Threshold contrast sensitivity rises when the velocity of the visual 
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target increases (Burr & Ross, 1982), and loss in contrast sensitivity can lead to 

a reduction in visual span (the number of letters in a line of text that can be 

recognized reliably during one fixation) and reading speed (Legge, Ahn, Klitz & 

Lubker, 1997). 

Visual acuity 

In a study by Legge et al (1985) logMAR visual acuity explained 36% of the 

variance in reading speed, and Snellen acuity explained 8% of the variance in 

reading speed (Legge, Pelli, Rubin & Schleske, 1985, Legge, Ross, Isenberg & 

Lamay, 1992). Legge concluded that visual acuity can predict the best print size 

but not the reading rate. According to Whittaker & Lovie-Kitchin (1993b) for 

fluent reading, text must be at least 3× the threshold near visual acuity size: that 

is, the acuity reserve must be at least 3:1 to read continuous text (Whittaker & 

Lovie-Kitchin, 1993b). In their results, obtained in a general low vision 

population, they found that in some cases the optimal character size to read 

continuous text can be as large as 18× the acuity threshold.  

 

Legge and colleagues developed a new test that assesses reading acuity, 

reading speed and critical print size, the MNREAD (Legge, Ross, Luebker & 

Lamay, 1989). Critical print size is the smallest print size which patients can 

read at their maximum reading speed. This test was used in this thesis to 

calculate the critical print size. Subramanian’s studies provide a detailed 

discussion of the test results (Subramanian & Pardhan, 2006, Subramanian & 

Pardhan, 2009).
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Table 2.1: Summary of the visual requirements for reading. Visual acuity 

reserve, contrast reserve and other factors such as the size of the scotoma 

(eccentricity of fixation) and field of view (Whittaker & Lovie-Kitchin, 1993b). 

Visual requirement Reading rates words per minute (WPM)    
 Spot Fluent High Fluent Optimum 
 Standard text equivalent    
 40 WPM 80 WPM 160 WPM  
     
 Observed (6th grade level)    
 44 WPM 88 WPM 174 WPM  
Contrast reserve 3:1 4:1 10:1 >30:1 
    
Field of view 
(characters) 

With scrolled text   

 1 2-5 4-6 4-6 
 With stationary text    
 2 5 12 16-20 
    
Acuity reserve 1:1 1.5:1 3:1 6-18:1 
Eccentricity of fixation 
(distance from the fovea) 

>15º <11º <2º 0º 

Scotoma diameter  >30º 22º 4º none 

The effect of scotoma size 

The eccentricity of the retina used for reading is normally related to the scotoma 

size; thus, people with larger scotomas have more difficulties with reading 

(Chung, 2002, Higgins, Arditi & Knoblauch, 1996, Legge, Mansfield & Chung, 

2001). Cummings et al (1985) found that reading speed is inversely proportional 

to scotoma area. Fixation instability also increases with eccentricity of the target 

(Sansbury, Skavensk.Aa, Haddad & Steinman, 1973) but it is not clear if it 

increases with scotoma size (Timberlake, Mainster, Peli, Augliere, Essock & 

Arend, 1986, White & Bedell, 1990, Whittaker, Budd & Cummings, 1988). It has 

been established that for eccentricities of fixation of 15º from the fovea, 
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equivalent to a symmetrical scotoma of 30º, reading is extremely difficult as 

shown in Figure 2.1 (Whittaker & Lovie-Kitchin, 1993b).  

 

Figure 2.1: The effect of scotoma size on reading speed. Results from 

Cummings and colleagues plotted by Whittaker (Cummings & Rubin, 1992, 

Cummings, Whittaker, Watson & Budd, 1985, Whittaker & Lovie-Kitchin, 

1993b). The Pepper test measures unconstrained reading of unconnected 

words. The Gray test measures reading of continuous text. The dashed line 

represents the upper performance limit that was estimated visually on the basis 

of the highest recorded performance of individual subjects. 

2.2.2.2 Perceptual deficits 

Perceptual limitations of the peripheral visual system that are known to impose 

limitations for reading speed are: crowding, slow visual processing and reduced 

visual span. These limitations that increase with eccentricity may explain why 

scotoma size is a key variable in predicting reading speed (see Table 2.1). 
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The effect of crowding 

Most visual tasks are crowded and even when the resolution of a single letter is 

possible it can become impossible if surrounded by other letters. This effect is 

known as crowding and affects predominantly the peripheral retina (Bouma, 

1970, Leat, Li & Epp, 1999b, Levi, 2008). It is known that crowding does not 

scale with visual acuity in the peripheral retina (Tripathy & Cavanagh, 2002). It 

is also known that crowding increases when target and flankers have similar 

shape, attention reduces the effect of crowding (Leat et al., 1999b) and 

crowding zones are asymmetric (Toet & Levi, 1992). For moving targets the 

size of the crowding zone varies with target speed (Bex, Dakin & Simmers, 

2003). 

 

Crowding predicts that reading with the peripheral retina would be facilitated 

when letters are more spaced out. However, in the normal peripheral retina, the 

optimal separation between letters is equivalent to one character (Bernard, 

Anne-Catherine & Eric, 2007, Chung, 2002). A possible explanation is that the 

beneficial effect of increasing letter separation would be counteracted by the 

detrimental effect of declining acuity, contrast sensitivity and visual span. In this 

thesis I have assessed the effect of fixation instability on crowded and 

noncrowded acuity to investigate possible interactions between these factors. 

The effect of visual span 

Visual span is defined as the number of letters in a line of text that can be 

recognized reliably during one fixation (Legge et al., 1997). Legge found that 
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visual span reduces when eccentricity increases (Legge et al., 2001). In normal 

peripheral retina, with low contrast text, or in low vision, reduced visual span 

imposes a fundamental limitation for reading (Legge, Cheung, Yu, Chung, Lee 

& Owens, 2007, Levi, 2008). Visual span can reduce by a factor of 10 when 

contrast changes from 100% to 1.5%. People with low vision usually have 

reduced visual span even for text at very high contrast and it can reduce to one 

letter or less in many cases (Legge et al., 1997). Visual span in people with 

macular disease is more reduced than in normal peripheral retina at the same 

eccentricity (Cheong, Legge, Lawrence, Cheung & Ruff, 2007, Crossland & 

Rubin, 2006). This may be due to reduced visual processing speed that has 

been found in the peripheral retina of people with macular disease (Cheong, 

Legge, Lawrence, Cheung & Ruff, 2008). 

The effect of slow visual processing 

The speed of visual processing varies with eccentricity and stimulus features. 

For stimuli limited by low-level visual mechanisms processing is faster in the 

periphery than in the centre of the retina. That has been verified with tilt 

experiments using Gabor patches (Carrasco, McElree, Denisova & Giordano, 

2003), with critical frequency for flicker fusion (Raninen, Franssila & Rovamo, 

1991, Rovamo & Raninen, 1988), and with pulse detection thresholds 

(Westheimer, 1983). However, for stimuli such as letters, digits and words 

which require high-level visual processing, processing is slower in the periphery 

(Higgins et al., 1996, Seiple, Holopigian, Shnayder & Szlyk, 2001).  

 

Patients with macular disease have slower visual processing than controls. 
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Cheong et al found slower reading speeds for patients than for controls when 

reading at the same eccentricity and attributed the findings to slow visual 

processing and reduced span (Cheong et al., 2007). Reading speed can be 

affected by temporal and spatial characteristics of the visual span. To capture 

both these attributes in a single measure, Cheong et al. (2008) defined the rate 

of information transfer through the visual span as the visual-span size in bits 

divided by the exposure time in seconds. The later study Cheong found that 

even with normal visual span patients still having reduced reading speed, with 

49% of that reduction being attributed to slow visual processing (Cheong et al., 

2008). 

 

It is thought that slower processing and the shrinkage of visual span observed 

in patients with macular disease can be caused by, among other factors, spread 

of the disease outside the scotoma area and by poor oculomotor control 

(Cheong et al., 2007, Cheong et al., 2008). 

2.2.2.3 Oculomotor control 

Oculomotor impairment: saccades 

When reading with good vision, forward (left-to-right) saccades are necessary to 

move along the line of text. The information necessary to guide reading 

saccades is obtained by the parafovea and extends from 7 to 14 characters to 

the right of the gaze position (Rayner, Inhoff, Morrison, Slowiaczek & Bertera, 

1981). Regressive (right-to-left) saccades occur more frequently in macular 
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disease than in normal reading (Bullimore & Bailey, 1995, McConkie, Kerr, 

Reddix & Zola, 1988, Rayner et al., 1981, Rayner, Well & Pollatsek, 1980). 

 

A reduction in reading speed is normally accompanied by a rise in the number 

of forward (left-to-right) and regressive (right-to-left) saccades (Figure 2.2). 

Rayner & Bertera found that reading with a mask centred on the macula 

(equivalent to a central scotoma) covering 7 to 9 characters makes reading 

impossible (Rayner & Bertera, 1979). In a similar experiment Fine & Rubin 

(1999) found that when text is scaled to overcome the reduction of acuity in the 

retinal periphery it is possible to read with a scotoma covering more than 9 

characters. This study also showed that the number of letters hidden by the 

simulated scotoma is more important than the size of the scotoma in degrees 

(Fine & Rubin, 1999a). 

 

 

Figure 2.2: Typical eye movements for normal subject during reading text, 

showing fixations (F), forward saccades (S) and regressive saccades (R). 

Horizontal axis shows time, vertical axis shows horizontal position on the page. 

(After Carpenter, (1988) & Crossland (2004)) 

 

In people with macular scotoma, reading speed is correlated with the number of 
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saccades. McMahon et al (1991) found a correlation of 0.79 between reading 

speed and the number of saccades. Using a different approach, Bullimore et al 

(1995) also found that reading speed is highly correlated with the number of 

letters per forward saccade. A more recent study by Rubin & Feely found similar 

results (Rubin & Feely, 2009).  

 

In normal reading regressive saccades are rare and are thought to be due to 

difficulties in comprehension or failures in recognition (Reichle, Rayner & 

Pollatsek, 2003). In the case of people with central scotoma they are more 

frequent, as it are progressive saccades, and it has been suggested they serve 

to compensate for reduced visual span (Bullimore & Bailey, 1995, Crossland & 

Rubin, 2006). Another possible function of saccades observed in patient is to 

align the PRL with the text (Safran, 1999).  

Oculomotor impairment: fixation 

Fixation stability, sometimes referred as fixation accuracy, refers to the 

precision of gaze position during a sustained fixation. A very precise fixation 

would be a zero deviation from the attended position; however, normally some 

deviation occurs due to fixational eye movements. Different authors quantified 

stability by different metrics. For example, Rattle (1969) quantified fixation 

stability with the root mean square of the angular deviation of the eye (Rattle, 

1969) and Sansbury (1973) used the bivariate contour ellipse (area), also 

known as BCEA, expressed in minarc2. BCEA corresponds to the solid angle 

subtended at the eye by an ellipse projected on the plane parallel to Listing’s 

plane (Sansbury et al., 1973). It became one of the most popular methods of 
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quantifying fixation stability in people with macular disease (Crossland, 2011) 

and in normal vision as well (Epelboim & Kowler, 1993). Table 2.2 shows values 

of fixation stability in normally sighted subjects quantified by BCEA and 

standard deviations on the horizontal and vertical meridians during fixation for 

seven different targets. This study gives an example of some of the factors that 

can cause variability in fixation stability: type of target, eccentricity of target or 

no fixation target. Also important to consider when analysing fixation stability is 

the technique used to monitor the eye movements. For example, results from 

infrared eye trackers produce higher instability than retinal imaging devices 

such as the scanning laser ophthalmoscope (Crossland & Rubin, 2002). 

 

Table 2.2: Fixation stability of two subjects (AS and RS) summarized by 

bivariate-contour-ellipse areas (BCEA in minarc2) and standard deviations, in 

minarc, on the horizontal (H) and vertical (V) meridians during fixation for seven 

target arrays. Modified from Sansbury et al. (1973). 

Target array  AS    RS  
 H V BCEA  H V BCEA

Centred 1.3º -diameter disk 3.5 7.4 174 3.4 7.5 182
H & V disks, separated 10º 13.3 11.3 1087 8.0 13.8 788
H & V disks, separated 21.8º 11.2 14.8 1142 11.7 17.2 1332
H & V disks, separated 29.5º 16.1 19.5 2060 15.2 23.6 2406
H disks, separated 21.8º 34.4 19.6 3601 14.4 16.7 1676
V disks, separated 21.8º 9.8 12.1 851 12.6 23.7 2134
Complete darkness 30.5 26.1 5591 41.3 28.9 8262

 

Fixation instability is a common finding in people with macular scotoma which 

might have a detrimental effect on visual function (Crossland, Culham & Rubin, 

2004a, Culham, Fitzke, Timberlake & Marshall, 1993, Schuchard, 2005, 

Timberlake et al., 1986). Position error caused by fixation instability might also 

trigger excessive corrective saccades during detailed visual tasks (Whittaker et 
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al., 1988). In a recent study Crossland et al (2004) measured reading speed in 

people with macular disease and found that people with good fixation stability 

can read faster than people with the same acuity but with poor fixation. That 

suggests a detrimental effect of fixation instability on visual performance. 

 

Stable gaze can be maintained exclusively with drift.  Saccades are considered 

unnecessary. This mechanism is known as slow control (Steinman, Cunitz, 

Timberlake & Herman, 1967). It is accepted that fixating with the peripheral 

retina impairs slow control, leading to increased fixation instability (Epelboim & 

Kowler, 1993). Fixation instability, in the case of people with macular disease, 

results from increased drift speed and amplitude, and from excessive and 

imprecise fixational (micro)saccades. Saccades normally correct positional 

errors caused by large drift that take the eye away from the target. In people 

with MD saccades are more imprecise; therefore spatial uncertainty of the 

landing positions increases and contributes to the overall fixation instability 

(McMahon, Hansen, Stelmack, Oliver & Viana, 1993). Figure 2.3 shows the 

recording of fixational eye movements in a subject with a macular scotoma. 

Drifts are followed by saccades to correct eye position (Whittaker et al., 1988). 

 

Increased drift speed and amplitude may be due to a mixture of factors such as: 

ineffectiveness of the (micro)saccades system, ineffectiveness of the smooth 

pursuit velocity-correcting system, and/or normal drift characteristics for 

nonfoveal fixation (Martinez-Conde & S. Martinez-Conde, 2006). Timberlake et 

al. speculated that macular disease might impair visual function, e.g. velocity 

discrimination, in the peripheral as well as central retina, leading to slow control 
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impairment (Timberlake et al., 1986). Heinen, studied the effect of macular 

scotoma in fixation stability in monkeys and speculated whether increased drift 

speed would be required for optimal visibility (Heinen & Skavenski, 1992). 

Additionally, Whittaker et al. suggested that increased drift speed in simulated 

and pathological scotomas could be caused by the eccentric position of the eye 

in the orbit plus the fact that the target is the peripheral retina (Whittaker et al., 

1988). It is probable that a combination of these factors lead to impaired 

oculomotor control in people with macular disease. 

 

 

Figure 2.3: Stripchart recording of horizontal and vertical eye positions over a 

12s period in a subject with macular disease. The scotoma was above the 

target, thus a down drift would move the target into the scotoma. The upward 

saccades directed the target image to functioning retina. Adapted from 

Whittaker et al. (1988). 
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Control of fixation by higher cortical areas  

Electrophysiological studies have provided evidence that fixation and smooth 

pursuit activate cells of the rostral pole of the superior colliculus. Here I describe 

findings relevant to this thesis, see Leigh for a full description of this topic (Leigh 

& Zee, 1999c). In 1993, Munoz et al. showed in monkeys and cats that a group 

of cells located in the rostral pole of the SC corresponding to the foveal and 

parafoveal areas that are responsible for controlling fixation (Munoz & Wurtz, 

1993a, Munoz & Wurtz, 1993b). Cells corresponding to the fovea and perifovea 

increase their firing during fixation and reduce firing during saccades. The 

authors designated these cells, “fixation cells”. To prove the fixation cell 

hypothesis Munoz et al. showed that when fixation cells were artificially 

activated, the monkey was unable to initiate saccades. Conversely, when these 

cells were inhibited, the monkey exhibited saccades with very low latency, 

similar to express saccades. Also, the monkey was unable to suppress 

unwanted intrusive saccades (Munoz & Wurtz, 1993a, Munoz & Wurtz, 1993b). 

The authors concluded that this group of cells in the rostral pole of the SC were 

responsible for controlling fixation and for preventing unwanted saccades. 

Interestingly, fixation cells indentified by Munoz et al. also fired during smooth 

pursuit.  

 

The idea that the function of fixation cells is exclusively fixation control, as 

proposed by Munoz and colleagues in 1993, was challenged a few years later. 

Krauzlis and colleagues recorded the activity of fixational neurons in the rostral 

SC whilst a monkey fixated a target that was unexpectedly displaced in a 

stepped manner to an eccentric position (Krauzlis et al., 1997). Such steps 
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caused changes in the firing rate that began 50 to 70 ms after the target was 

displaced and often resulted in small corrective saccades. This change in firing 

rate suggests a mismatch between the eye and target positions, defined as 

motor error, in a similar fashion to rest of the motor map of the SC associated 

with saccade control. To add evidence, they recorded the firing rate of fixation 

cells during pursuit. The firing rate during pursuit displayed a dependence on 

motor error that was not different from that observed with small target steps 

imposed during fixation. The authors concluded that neurons in the rostral pole 

of the SC might encode a more general form of motor error rather than 

commands for maintaining fixation. According to these findings, involuntary 

fixational microsaccades and voluntary saccades would have the same purpose 

(reduce motor error) similar triggering mechanisms. Krauzlis’s hypothesis has 

been reinforced by Hafed and colleagues (Hafed, Goffart & Krauzlis, 2009). 

Hafed described a model assuming that the rostral pole of the SC is directly 

involved in the generation of microsaccades during fixation and, as Krauzlis 

hypothesized, microsaccades during fixation share neural mechanisms with 

voluntary saccades. A piece of evidence for this hypothesis are the findings by 

Steinman et al. in the seventies that microsaccades, as voluntary saccades, can 

be suppressed (Steinman et al., 1967).  

 

Findings arriving from basic eye movement research need to be considered 

when studying the consequences of macular disease on oculomotor control. As 

studies above shown, increased motor error in the rostral pole of the SC or 

reduction in neural activity in this part of the SC would lead to an increased 

difficulty to control fixation and increased number of unnecessary saccades. 
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This is likely to be part of the explanation for the impaired fixation control and 

excessive saccades that can be found in people with macular disease 

(McMahon, Hansen & Viana, 1991). Further discussion on fixation and 

oculomotor control can be found in Chapter 3. Figure 2.4 summarizes the 

factors discussed in the sections above that contribute to the poor visual 

performance of the peripheral retina and the way these factors interact. 

 

 

Figure 2.4: Perceptual and oculomotor characteristics of the peripheral visual 

system that contribute to reduced reading speed in patients with macular 

disease. The dashed lines show hypothesis that are not fully proven. 
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In summary, visual function in general and reading in particular is reduced in 

people with macular scotoma. Apart from the inevitable sensory deficits, 

imposed by the physiology of the peripheral retina, perceptual and oculomotor 

factors can, independently or together, contribute to further reduction of visual 

function. 

2.2.3 Eccentric viewing and the preferred retinal locus 

Eccentric viewing is a technique used to look at targets using the peripheral 

retina (Timberlake, Peli, Essock & Augliere, 1987). When looking at a face, for 

example, people with macular disease may direct their gaze slightly away from 

it in order to see the facial contours; otherwise, they would be hidden by the 

central scotoma. In the vast majority of cases, a certain area of the peripheral 

retina is used more often than others. This area is known as the preferred 

retinal locus (PRL) (Timberlake et al., 1986, Timberlake et al., 1987, Whittaker 

et al., 1988). The PRL of a patient with macular scotoma is shown in Figure 2.5. 

 

Eccentric viewing is a technique which can develop spontaneously or with 

formal training. The technique normally improves during adaptation to the 

disease either by training or simply by practice (Crossland, Culham, Kabanarou 

& Rubin, 2005). Studies using animals with bilateral lesions showed that they 

adopted eccentric viewing after one day post-lesion and improved fixation 

stability after two days (Heinen & Skavenski, 1992). Humans with newly 

developed macular disease can adopt eccentric viewing in approximately 6 

months, without formal training (Crossland et al., 2005). 
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Figure 2.5: Preferred retinal locus in a patient with JMD characterized using the 

microperimeter MP1 (the technique is described in detail in section 4.4). The 

patient was fixating a red cross whilst the retinal sensitivity was tested, the blue 

dots show fixation positions. The dark area, left of the cross, corresponds to the 

damaged macula. 

 

The preferred retinal locus can be located in different positions relative to the 

damaged macula. If the macular scotoma was perfectly symmetrical around the 

damaged macula the theoretically ideal location to develop a PRL would be in 

the lower visual field, due to physiological and ecological advantages (Previc, 

1990). Positioning the PRL in the lower visual field (using superior retina), would 

be advantageous because the upper retina has a higher density of 

photoreceptors, the lower field is mostly used for locomotion (Anderson et al., 

1991) and has higher attentional resolution (He, Cavanagh & Intriligator, 1996). 

Further, important visual information for programming the horizontal eye 

movements would never be hidden by the scotoma or the physiological blind 

spot at the optic nerve head (Rayner et al., 1980, Rayner, Well, Pollatsek & 

Bertera, 1982).  
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2.2.3.1 PRL location and reading 

People do not always adopt the theoretically most favourable PRL position. A 

number of studies have shown that the PRL can be in any location relative to 

the macula. In approximately 3/4 of the cases the PRL is located at the left or 

below the scotoma, with higher predominance to the left than below (Crossland 

et al., 2005, Culham et al., 1993, Fletcher & Schuchard, 1997, Fletcher, 

Schuchard, Walker, Wing & Raskauskas, 2001, Guez, Legargasson, Rigaudiere 

& Oregan, 1993, Nilsson, Frennesson & Nilsson, 1998, White & Bedell, 1990). 

 

Reading speed is independent of the location of the preferred retinal locus. Two 

separate studies using a significant number of subjects (Fletcher et al (1999), 

99 participants and Crossland et al (2005), 25 participants) failed to find 

correlation between the PRL quadrant and reading speed (Crossland et al., 

2005, Fletcher, Schuchard & Watson, 1999). A similar result has been found by 

Rubin & Feely (2009). That might be because patients use a PRL for reading 

which is different from the PRL they use to fixate a single target. When the PRL 

is defined by using small stimuli such as crosses or single letters they are 

normally adjacent to the scotoma boundary or even within the lesion 

(Cummings et al., 1985, Guez et al., 1993). In visual tasks such as reading a 

PRL away from the scotoma boundary has the disadvantage of poorer 

resolution than that adjacent to the scotoma. However, this disadvantage would 

be suppressed by the benefit of avoiding characters being hidden by the 

scotoma, allowing information essential for reading to be seen (Duret, Issenhuth 

& Safran, 1999, Fine & Rubin, 1999b).  
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2.2.3.2 Eccentric viewing and binocularity 

Visual performance is normally better with both eyes than with the better-seeing 

eye, due to a phenomenon known as binocular summation. Binocular inhibition 

occurs when binocular visual function is worse than with the better eye alone. 

When both eyes have similar vision (i.e., inter-ocular difference of 1.0 ETDRS 

line or less) binocularity normally causes summation (Rubin, Munoz, Bandeen-

Roche & West, 2000). Measurements with neutral density filters inducing 

unequal monocular contrast sensitivity have shown that summation, which 

happens when both eyes have similar contrast, switches to inhibition when the 

difference between the eyes increases. Inhibition starts when the contrast 

difference between eyes is 0.7 log units and is maximal when the difference is 

1.5-2.0 log units (Pardhan, Gilchrist, Douthwaite & Yap, 1990). 

 

People with binocular MD normally have significant inter-ocular differences in 

acuity and contrast and that might cause binocular inhibition instead of 

summation. Some studies, measuring contrast sensitivity, found evidence of 

binocular inhibition when compared with monocular viewing (Faubert & 

Overbury, 2000, Valberg & Fosse, 2002). More recently, a study by Tarita-

Nistor assessed visual acuity at different contrast levels. This study showed that 

there is a slight advantage of binocular vision for visual acuity. Results from this 

study also showed that the outcome can be affected by many factors such as 

unequal scotomas in both eyes, loss of fixation or asymmetrical PRLs (Tarita-

Nistor, Gonzalez, Markowitz & Steinbach, 2006a). 
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The existence of asymmetrical scotomas and acuities might lead to changes in 

eye dominance in bilateral macular disease. Kabanarou et al (2006) found that 

most patients shift gaze position in one or both eyes when viewing binocularly 

compared with monocularly (Kabanarou, Crossland, Bellmann, Rees, Culham & 

Rubin, 2006). Tarita-Nistor found that patients with MD spend less time using 

the input of the worse eye than a group of control subjects (Tarita-Nistor et al., 

2006a, Tarita-Nistor, Gonzalez, Markowitz & Steinbach, 2006b). In terms of 

visual function, Kabanarou found no significant differences between monocular 

and binocular reading speeds (Kabanarou & Rubin, 2006). In line with Tarita-

Nistor’s results, Kabanarou found that the binocular PRL position is driven by 

the better eye.  

 

In summary, macular disease induces changes in binocular vision that vary 

according to individual factors. Studies showed that binocular visual function is 

mostly determined by the better-seeing eye. Experiments in this thesis were 

conducted using the better eye. I speculate that the results would be very 

similar if experiments were conducted binocularly. 

2.2.3.3 PRL location and non-visual factors 

Non-visual factors such as sustained attention influence PRL location. Altpeter 

et al tested the effect of sustained attention in visual performance in the four 

quadrants and found better attentional performance in the horizontal meridian 

than in the vertical meridian either for patients and controls (Altpeter, 2000). 

Patients in this study were tested in the better eye, with central fixation, for 
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attention and the poorer eye was tested to define the PRL location using the 

SLO. They found that the quadrant of the PRL in the poorer eye corresponds to 

the quadrant with better attentional performance in the good eye (Altpeter, 

2000). This and other studies gave evidence that PRL location is correlated with 

the pre-disease attentional capabilities of the patient (MacKeben, 2009). 

2.2.3.4 The use of multiple PRLs (mPRL) 

In some cases it has been found that patients can have multiple PRLs. For 

example, it has been found that the used PRL can change according to: 

illumination (Lei & Schuchard, 1997), size of the target (Guez et al., 1993) and 

task (Duret et al., 1999). It has been proposed that this is due to an automatic 

mechanism which aims to maximize patients’ vision. Accordingly, if a PRL has 

the best visual acuity but is too small to accommodate the target, patients may 

automatically select another healthy retinal area where the entire target can be 

visualized (Deruaz, Whatham, Mermoud & Safran, 2002, Duret et al., 1999, 

Fine & Rubin, 1999b). 

 

Multiple PRLs can also be caused by poor adaptation to the disease. With 

newly developed macular disease fixation control is difficult. The eye alternates 

between retinal locations stopping when the visual target falls on a healthy area 

of the retina (Reinhard, Messias, Dietz, MacKeben, Lakmann, Scholl, 

Apfelstedt-Sylla, Weber, Seeliger, Zrenner & Trauzettel-Klosinski, 2007). It is 

expected that with longer adaptation, practice, or training, only one PRL would 

develop. This hypothesis is supported by previous results, in a longitudinal 



Chapter 2 

- 48 - 

study Crossland et al (2005) observed the development of the PRL(s) in a 

group of patients with central scotomas caused by recent onset MD. The 

number of patients with multiple PRLs reduced from 67% at the baseline to 44% 

at the end of the study, 12 months after they enrolled. 

 

In summary, a preferred retinal locus usually develops spontaneously in a 

period of approximately 6 months. Some patients can have more than one PRL 

and may alternate between PRLs depending on the task and viewing 

conditions. PRL location is normally in the area of best visual acuity but this is 

not always in the most favourable, for example, to control the eye movements 

during reading. 

2.3 Rehabilitation in macular disease 

The use of low vision devices aims to compensate for sensory deficits of the 

peripheral visual system while training can be used for re-education of the 

visual system and better use of low vision devices. 

2.3.1 Magnification and light modulation 

Magnification compensates for poor resolution and allows to some extent 

periods of accurate reading producing significant subjective satisfaction in 

patients (Beckmann & Legge, 1996, Margrain, 2000, Scott, Smiddy, Schiffman, 

Feuer & Pappas, 1999, Temel & Kazokoglu, 1991). Fluent reading with high 

magnification is rarely achieved because page navigation is more difficult with 
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large text and the number of visible characters that can be seen in one fixation 

is reduced (Dickinson, 1998, Elliott et al., 1997, Faye, 1970, Faye, 1984, Hazel 

et al., 2000).  

 

There are four main techniques to increase the size of the retinal image 

(Dickinson, 1998, Wolffsohn, 2007). Relative size magnification involves 

increasing the size of the object while the working distance is kept constant. 

Relative distance magnification is the reduction in the object viewing distance 

(Crossland & Silver, 2005, Margrain, 2000). Angular magnification increases the 

angle subtense by the object at the eye by viewing through telescopic optical 

systems (Lowe & Rubinstein, 2000). Finally projection magnification is achieved 

by projecting or electronically increasing the size of the object. Adequate 

illumination is also helpful either alone or when combined with magnification 

(Bowers, Meek & Stewart, 2001, Bullimore & Bailey, 1995). 

 

In summary, light modulation and magnification are commonly prescribed and 

are of benefit in compensating for sensory deficits in patients with macular 

disease. In most cases minimal training is necessary to teach people how to 

use these devices. Other aims of training include re-education of the visual 

system to compensate for oculomotor deficits or increasing awareness of the 

PRL. 
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2.3.2 Training  

Reports of training programs for people with macular disease started around 

1960. Training aims to teach patients eccentric viewing, which can be achieved 

by increasing awareness of the PRL to improve gaze control. Evidence that 

training might be necessary for optimal use of low vision aids and residual 

vision has been given by better visual performance in people who receive 

training, compared with those who did not, despite presenting with similar 

clinical measures (Goodlaw, 1968, Goodrich & Mehr, 1986, Goodrich & 

Quillman, 1977, Inde, 1978). Prism relocation to redirect the image to the PRL 

has also been considered. However, results from different studies showed 

modest or no improvement in visual function with prism therapy (Al-Karmi & 

Markowitz, 2006, Verezen, VolkerDieben & Hoyng, 1996). A recent randomised 

control trial provided unequivocal evidence that prism relocation is no more 

effective than placebo (Smith, Dickinson, Cacho, Reeves & Harper, 2005). 

 

A PRL can be trained in a specific retinal location with the SLO. Timberlake et al 

(1987) measured reading speed in the adopted PRL and in the “trained PRL” 

(below the scotoma) and suggested that training a better PRL location might 

improve reading. This small study, of only 3 patients, was extended by Culham 

et al (1997). Culham failed to show any effect of training on reading speed 

(Culham, Fitzke & Marshall, 1996, Culham et al., 1993). In contrast, others have 

reported dramatic improvements after training (Nilsson et al., 1998, Nilsson, 

Frennesson & Nilsson, 2003). These contrasting results are probably due to 

limitations in Nilsson’s studies design which are discussed below. 
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Training eye movements, such as saccades, is also seen as a way to improve 

eccentric viewing. In a study involving 12 individuals trained over six weeks, 

McMahon et al (1993) found mixed results with modest improvements in some 

but no improvement in other participants. Recently Seiple et al (2005) trained 

eye movements in patients with MD through a series of exercises. The result 

was a small but significant improvement in reading speed of 25 words per 

minute, corresponding to approximately 27.5% of the initial reading speed. The 

authors suggested that their method of training eye movements could be more 

efficient than direct reading training. 

 

Visually guided training can be also performed using instruments such as the 

scanning laser ophthalmoscope (SLO) (Culham et al., 1996, Culham, Fitzke, 

Timberlake & Marshall, 1992, Culham et al., 1993, Duret et al., 1999, Nilsson et 

al., 2003, Timberlake et al., 1986, Timberlake et al., 1987). Culham trained 

patients for six weeks using an SLO leading to an improvement in visual acuity 

and fixation stability but not reading speed (Culham, Fitzke & Marshall, 1997). 

Thus, according to Culham’s results, training improvements were due to 

psychological benefits associated with training and the acquisition and 

perfection of new visual strategies. Very different results were obtained by 

Nilsson et al (2003) more recently. Nilsson trained a total of 18 patients of which 

12 learned how to use a trained PRL and increased reading speed from about 9 

wpm to 68 wpm. The remarkable improvement achieved in Nilsson’s study is 

confounded by many factors: for example, magnification was provided 

simultaneously with training and there was no control group.  
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Biofeedback training in patients with macular disease has been tried in the past 

but not pursued until recently (Zeevi, Peli & Stark, 1979). Biofeedback training is 

based on the principle that when the patient listens to an auditory signal he/she 

needs to do a certain task. A study in 2002 using an instrument called improved 

biofeedback integrated system (IBIS) reported improvements in fixation stability, 

visual acuity and contrast sensitivity, after training (Contestabile, Recupero, 

Palladino, De Stefanis, Abdolrahimzadeh, Suppressa & Gabrieli, 2002). More 

recently Vingolo et al (2008) trained patients with the MP1 using biofeedback 

and also reported improvement in visual function. The authors considered that, 

during training a “retina motor” PRL was effectively trained and that produced 

improvements in retinal sensitivity, fixation and saccades. They considered that 

the feedback sound increases attention, causing the individual to consciously 

search for the target leading to an effective “lock-in” of the visual target with the 

PRL. The ultimate consequence of this type of training would be neural changes 

with remapping of the visual function (Vingolo, Salvatore & Cavarretta, 2009). 

 

In summary, training aims to increase the ability to use a PRL or the best PRL 

and to achieve better control of eye movements. Better eye movement control 

would reduce retinal image motion and lead to an improvement in visual 

performance. The results from past studies are not consistent: more research is 

necessary to define what training is really effective in improving visual function. 
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Chapter 3. Oculomotor 
control and vision 

During fixation the oculomotor system maintains foveal alignment with the 

target by minimizing the visual error signal. Macular disease can cause a 

shift of fixation control to the peripheral retina due to the foveal damage. 

The implications for the oculomotor system are discussed here. 

 

When the visual target falls on the peripheral retina it generates an error 

signal that changes the pattern of eye movements and increases fixation 

instability. It is thought that fixation instability can be associated with 

increases of the size of both drift and (micro)saccades (Bedell, Barbeito & 

Aitsebaomo, 1984, Sansbury et al., 1973). Sansbury et al. suggested that 

the quality of visual and proprioceptive signals may cause changes in the 

ratio of saccades.  

 

The effects of macular damage in oculomotor control have been studied in 

animals. Heinen & Skavenski studied eye movements in monkeys with 

induced macular scotomas. They damaged the macula of three monkeys 

with a red krypton laser and monitored their adaptation to the use of 
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peripheral retina (Heinen & Skavenski, 1992). The size of the lesions was 

3 degrees of visual field. All three animals adopted eccentric PRLs and 

fixation stability increased, returning to almost normal levels in 2 days. Full 

control of saccades, the function of which is to direct the fovea to the visual 

target, was never achieved and the level of control varied from animal to 

animal. One of the animals always failed to reach the target with the PRL 

and needed saccades to correct the PRL position (Heinen & Skavenski, 

1992). These animals with a sudden and small lesion of the macula 

developed eccentric fixation without extra training in a short period of time, 

but the eye movements never recovered their original performance. 

 

There are reports of accidental damage to the macula in humans with 

similar consequences for fixation (Sakaguchi, Ohji, Kubota, Otori, Hayashi, 

Kusaka, Saito & Tano, 2000, Zwick, Ness, Molchany, Stuck & Loveday, 

1997, Zwick, Ness, Molchany, Stuck & Loveday, 1998). Adaptations to 

macular lesions caused by laser burns give valuable information about the 

consequences of macular damage. However, unlike macular disease, 

these lesions are not progressive, are normally small and are not scattered 

in the retina. Therefore, adaptation to accidental macular damage is not 

the ideal model to predict adaptation to macular disease. 

 

Many studies used simulated scotomas to predict adaptation to macular 

disease (Bernard et al., 2007, Cornelissen, 2005, Cummings & Rubin, 

1992, Fine & Rubin, 1999a, Fine & Rubin, 1999b, Fornos, Sommerhalder, 

Rappaz, Pelizzone & Safran, 2006, Petre, Hazel, Fine & Rubin, 2000, 
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Varsori, Perez-Fornos, Safran & Whatham, 2004). Results produced by 

studies with simulated scotoma might be different from those produced by 

pathological scotoma. For example, fixation stability in people with real 

scotoma is better than in people with equivalent simulated scotoma 

(Culham et al., 1993, Sansbury et al., 1973, Timberlake et al., 1986, 

Timberlake et al., 1987). This shows that real scotomas need always to be 

studied and also suggests that there is a learning process which improves 

fixation control in people with pathological scotomas (McMahon et al., 

1991) and reinforces the importance of studying real scotomas rather than 

simulations. 

 

Improvement in fixation stability is possible either with or without training. 

Better fixation stability has been a common finding from various training 

studies and has been associated with improvement in visual performance 

(Culham et al., 1997, Stelmack, Robert & Stelmack, 2004, Vingolo et al., 

2009). According to these studies, training increases awareness of the 

scotoma/PRL and allows effective use of the PRL in the peripheral retina 

leading to reduction in oculomotor instability. Spontaneous improvement is 

also possible, in a longitudinal study Crossland (2005) found that patients 

with newly diagnosed macular degeneration can adopt a stable PRL for 

eccentric viewing in 6 months with corresponding improvements in fixation 

stability.  

 

Even after long term adaptation to the disease and/or training, saccade 

control without a fovea remains difficult. Non-foveating saccades have 
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longer latencies, lower peak velocities and less precision than foveating 

saccades of same amplitude (Whittaker & Cummings, 1990, Whittaker, 

Cummings & Swieson, 1991, Zeevi & Peli, 1979). Whittaker et al (1991) 

suggested that people with macular disease must suppress the foveating 

saccade mechanism and depend on non-foveating saccades for saccade 

control. Given the reflexive nature and the limited plasticity of the foveating 

saccades, people with central scotoma should have a residual tendency to 

produce foveating saccades (Whittaker et al., 1991). Thus, the ability make 

non-foveating eye movements is essential to achieve good performance 

during eccentric viewing. 

 

Other adaptive changes which have been reported include patients 

describing themselves as looking straight ahead while using a peripheral 

PRL (White & Bedell, 1990). It was considered that these patients re-

referenced their oculomotor system to the PRL. In this study seven 

patients re-referenced their oculomotor system; however, only 1 out of 7 

had AMD, the remaining had JMD (White & Bedell, 1990). Crossland and 

colleagues followed a cohort of 25 patients (20 with AMD and 5 with JMD). 

At the 12-month follow-up visit the awareness of using peripheral retina 

was assessed. Eleven of the AMD and all 5 JMD patients lost awareness 

of using a PRL. People with juvenile macular disease seem to have faster 

and more efficient changes in the oculomotor system than AMD patients. 

This might be explained by the superior plasticity of the oculomotor system 

in young patients. 
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Although an almost total re-reference of the oculomotor system would 

seem possible, based on patients’ reports, objective assessments show 

that is uncommon. For example, some people with long standing disease 

use multiple PRLs. With a permanent “re-referencing” of the visual system 

patients should use one not multiple PRLs (Bellmann, Feely, Crossland, 

Kabanarou & Rubin, 2004, Deruaz et al., 2002, Duret et al., 1999, 

Whittaker et al., 1988). A recent study using fMRI evaluated cortical 

networks that underlie oculomotor control during saccades and smooth-

pursuit in patients with AMD (Little, Thulborn & Szlyk, 2008). This study 

showed that patients generally showed increased prefrontal cortex and 

intraparietal sulci activation, with decreased activation in visual cortex 

compared with the control subjects. The author concluded that eye 

movements in patients with AMD required greater involvement of the 

cortical regions generally implicated in attention and effort. 

 

In summary, people with macular disease exhibit difficulty in controlling 

saccades and fixation. These changes need to be considered when 

explaining the reduction in visual function. 

3.1 Saccade control in macular disease 

People with macular disease use an increased number of saccades when 

reading (Bullimore & Bailey, 1995, Crossland & Rubin, 2006). This has 

also been shown for control subjects reading with a simulated scotoma 

(Fine & Rubin, 1999b, Fornos et al., 2006, Rayner & Bertera, 1979, 
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Sommerhalder, Rappaz, de Haller, Fornos, Safran & Pelizzone, 2004). 

This increase is likely to compensate, for example, for the smaller visual 

span in people with central scotomas (Bullimore & Bailey, 1995, Crossland 

& Rubin, 2006). The cost of extra saccades is a reduction in reading speed 

(Bullimore & Bailey, 1995, Crossland & Rubin, 2006, McMahon et al., 

1991). 

 

Saccades are rare during fixation of eccentric targets (Sansbury et al., 

1973, Zeevi et al., 1979); however, for tasks such as reading with a PRL 

corrective saccades would be expected. Corrective saccades compensate 

for fixation selection deficits, caused by the poor definition of the peripheral 

retina, and for saccades inaccuracy, caused by the spatial error due to the 

lack of fovea (section 1.2.3).  

 

Impaired saccade control is considered the main oculomotor limitation for 

reading continuous text in people with central scotoma (McMahon et al., 

1993). Evidence that saccades impose an important limitation came from 

studies using words presented sequentially, which reduces the need for 

saccades. This method is called rapid serial visual presentation (RSVP) 

(Forster, 1970). Rubin & Turano (1994) found that people with macular 

disease read RSVP faster than continuous text but points out that, due to 

their reduced visual span patients may need saccades during reading 

RSVP. The authors reported that reading speed fell as the number of intra-

word saccades increased (Rubin & Turano, 1994). In the same study 

reading improved more in control subjects using peripheral retina than in 
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patients. The authors conclude that poor saccade control was responsible 

for a substantial fraction, but not all, of the reduction in reading. 

 

If intra-word saccades are a significant limitation on fast reading, scrolled 

text (which reduces the need for intra-word saccades) should improve 

reading more than RSVP. Fine & Peli (1995) compared reading speed for 

RSVP and scrolling text in patients with central scotoma and found no gain 

between scrolling text over RSVP (Fine & Peli, 1995). When reading from 

scrolling display optokinetic nystagmus (OKN) is elicited to maintain 

fixation on a single point. The fast phase of OKN behaves like a saccade; 

however, unlike a saccade in normal reading, the fast phase of OKN does 

not require high levels of saccade control (Whittaker & Lovie-Kitchin, 

1993a). Recently, Valsecchi and colleagues (2011), reported that reading 

scrolled text is performed with a combination of smooth tracking 

movements and fast saccadic movements, not exactly OKN (Valsechi, 

Schutz & Gegenfurtner, 2011). In any case eye movements would be 

reflexive, reducing cognitive demand for control and facilitating reading in 

patients with macular disease. Fine & Peli (1998) compared again RSVP 

and scrolling text reading and concluded that RSVP can be read faster 

than scrolling text as long as the text size is 6× or more the acuity reserve. 

Other studies failed to find any differences in reading speed produced by 

scrolling, RSVP and continuous text (Bowers, Woods & Peli, 2004, 

Harland, Legge & Luebker, 1998). It is still unclear if any alternative text 

format that minimizes saccades brings advantages compared with 

continuous text for readers with low vision and central scotoma. 
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Saccades are necessary to align the preferred retinal locus with the target 

(McMahon et al., 1993, McMahon et al., 1991). Saccades are also needed 

to select the “best” PRL and to alternate between PRLs (Bullimore & 

Bailey, 1995, Deruaz et al., 2002, Guez et al., 1993, Safran, 1999). The 

benefits of alternating PRLs using saccades during the execution of the 

same visual task, such as word recognition, are debatable. Signals coming 

from the retina are suppressed every time a saccadic eye movement is 

performed and that starts about 75 msec before the onset of the saccade 

(Vallines & Greenlee, 2006). Alternating between PRLs is therefore likely 

to reduce vision because it requires saccade programming and 

suppression. Both are likely to reduce visual input (Burr, Morrone & Ross, 

1994). Thus, the use of different PRLs for different tasks is more likely to 

have benefits for patients. 

 

In summary, more saccades are used by people with macular disease. 

These extra saccades compensate for reduced visual span and align the 

target with the PRL. An abnormally high saccade rate (saccades/word) 

reduces reading speed probably because it reduces visual input. Extra 

saccades require extra planning and execution time. More saccades mean 

more fixations which add at least 200 msec per fixation. Higher cognitive 

demands to suppress foveating saccades might also contribute by 

increasing saccade latency (Little et al., 2008, Whittaker et al., 1991). 
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3.2 Implications of fixation instability 

Excessive motion of the retinal image either due to eye instability or due to 

target motion is expected to reduce visibility. Blur increases with the 

velocity of the target and above critical limits, blur increases visual 

temporal integration (Paakkonen & Morgan, 1994) and reduces resolution 

(Badcock & Wong, 1990, Morgan & Benton, 1989). Conversely, it is 

possible to find, in well controlled experiments, conditions in which moving 

objects look sharper than static objects (Bex et al., 1995). Bex found that 

the perceived blur of sine-wave gratings and blurred edges is less when 

drifting than when static. The perceived blur of these images decreased 

with velocity. That might be because moving targets trigger the deblurring 

mechanism proposed by Burr (1980), discussed in section 1.1.2.2. 

 

Under normal conditions the retinal image is never perfectly still due to 

fixational eye movements. When good stabilization is achieved the retinal 

images fade (Clarke, 1957, Clarke, 1960, Clarke, 1961) (Kelly, 1985). In 

the peripheral retina this can be easily experienced during a prolonged and 

steady fixation. Recently, it has been suggested that fixational eye 

movements, particularly microsaccades are triggered when retinal image 

slip caused by inter-saccade drift is too low to prevent fading of the image 

in the fovea (Engbert & Mergenthaler, 2006, Martinez-Conde et al., 2006). 

Kelly (1985) demonstrated that in the peripheral retina fading is essentially 

prevented by inter-saccade drift (Kelly, 1985). In summary, normal fixation 
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instability caused by fixational microsaccades and drift are parts of a 

mechanism that prevents image fading and ensures sharp and continuous 

vision. 

 

Based in the explanation of the Troxler phenomenon, discussed in section 

1.1.2.2, Deruaz suggested that fixation instability, observed in patients with 

macular disease, might be beneficial during eccentric viewing (Deruaz, 

Matter, Whatham, Goldschmidt, Duret, Issenhuth & Safran, 2004). This 

suggestion is inconsistent with studies which have shown that instability is 

associated with a reduction in reading speed (Crossland et al., 2004a, 

Falkenberg, Rubin & Bex, 2007). 

 

In people with macular disease fixation instability is likely to enhance 

deficits of the peripheral visual system. For example, crowding increases 

for unstable targets (Bex & Dakin, 2005, Bex et al., 2003). Other 

interactions such as fixation instability and slow visual processing are also 

likely (Cheong et al., 2008). These interactions have been discussed in 

section 2.2.2. The text presentation formats used to reduce the effect of 

poor oculomotor control in reading, such as RSVP and scrolling text, do 

not compensate for fixation instability. That might be why these formats 

failed to produce consistent improvements in reading speed.  

 

In summary, oculomotor instability has the potential to increase motion blur 

and crowding which might slow visual processing speed leading to 

reduction in span and general visual performance.  
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3.3 Thesis hypothesis and justification 

3.3.1 Hypothesis 

The hypothesis investigated in this thesis is that: compensating for 

oculomotor instability will improve visual performance of people with 

macular disease; specifically it will improve visual acuity and reading 

speed. 

 

As discussed in the proceeding sections some amount of retinal image 

motion might be more beneficial for visual function in the peripheral retina 

than a motionless retinal image. In this thesis visual function is assessed 

with different degrees of compensation for fixation instability to determine 

which is most beneficial for patients’ acuity and reading speed.  

3.3.2 Rationale  

Compensating for fixation instability is likely to improve visual function in 

two ways. First, it may improve vision by reducing motion blur caused by 

excessive retinal image motion. Second, reduction in motion blur might 

improve visual processing speed and reduce crowding in the peripheral 

retina. 
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3.3.3 Aims 

The primary aim of this thesis is to clarify if fixation stability is causing a 

reduction in visual function. The secondary aim is to evaluate the best 

stabilization settings to compensate for oculomotor deficits and the tertiary 

aim is to drive conclusions about the possibility of using eye-tracking 

based stabilization technique to further training and/or devices to improve 

visual performance in people with macular disease. 

 

Visual performance in controlled fixation conditions is compared with 

performance in normal conditions to quantify the effect of compensating for 

fixation instability. The analysis included assessment of the retinal image 

speed, number of saccades and eye stability. 

3.3.4 Thesis plan 

Four experiments were conducted. In the first experiment, Chapter 6, 

visual performance is assessed by letter acuity and crowded letter acuity in 

normal control subjects with simulated scotomas under four conditions of 

fixation instability compensation. Here I report and discuss the effect of 

different conditions of stabilization for isolated and crowded letters and 

interactions between conditions, retinal eccentricity and retinal quadrant. 

 

In the second experiment, Chapter 7, letter acuity and crowded letter 

acuity is measured in patients with scotoma caused by macular 



Chapter 3 

- 65 - 

degeneration under four conditions of fixation instability compensation. In 

this chapter I report and discuss that visual acuity can get worse when 

retinal slip signal caused by fixation instability is very high. I also discuss a 

theoretical argument that fixation instability might be beneficial for 

eccentric viewing. This argument is refuted for this group of patients (AMD, 

and Stargardt's patients) and range of visual acuity. 

 

In the third experiment, Chapter 8, reading speed using rapid serial visual 

presentation is assessed in normal controls subjects with simulated 

scotoma under six conditions of text stabilization. In this chapter I report 

and discuss the effect of compensating fixation stability and the effect of 

intra-word saccades on reading speed. 

 

In the fourth experiment, Chapter 9, rapid serial visual presentation reading 

speed is measured in patients with pathological scotoma under four 

conditions of text stabilization. In this chapter I discuss again the effect of 

compensating fixation instability and intra-word saccades on reading 

speed. 
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Chapter 4. General methods 

This chapter has general information about participants and describes 

equipment and general protocols. Further details can be found in specific 

methods for each experiment. 

4.1 Participants 

This project involved participants with low vision due to macular disease 

(patients) and participants with normal vision (controls). All experiments 

reported here received ethics approval either from the UCL ethics 

committee or from the Moorfields & Whittington Research Ethics 

Committee and conformed to the tenets of the Declaration of Helsinki. All 

participants gave informed consent. A copy of the ethics forms is in 

Appendix B. 
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4.1.1 Control subjects 

Source  

Control subjects were recruited among work colleagues and students at 

UCL Institute of Ophthalmology. More information about all control 

participants is given in Appendix A. 

Inclusion criteria 

All control subjects had corrected visual acuity better than 0.00 logMAR, 

correction in glasses was below 4DS but could be above this limit in 

contact lenses. Whenever possible the testing was with contact lenses 

because that reduced noise during eye tracking. In total 15 subjects were 

recruited: 7 were involved in the visual acuity experiments (Chapter 6) and 

8 subjects involved in the reading experiment (Chapter 8). Some subjects 

participated in more than one experiment. 

Exclusion criteria 

For the reading experiment only subjects whose first language is English 

were recruited. Subjects were asked if they were affected by any condition 

that could affect reading such as dyslexia. If so they were excluded. 
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4.1.2 Macular Disease Patients 

Source  

Some participants were contacted by letter using information from a 

database of volunteers that participated in previous studies in the 

laboratory. They were asked about their willingness to participate in a new 

study, those who replied were recruited. The remaining participants were 

recruited in person from the Low Vision Clinic at Moorfields Eye Hospital.  

Inclusion criteria 

Participants with macular disease had been refracted in the Low Vision 

Clinic by a qualified Optometrist in the 12 months prior to the study and 

were asked before taking part if they noticed any changes in vision since 

the last eye test. 

 

In total 16 patients were recruited, aged between 24 and 89 years, best 

corrected visual acuity, in the better eye, ranged from 0.4 to 1.2 logMAR. 

Fixation data from the MP1 microperimeter were analysed to ensure that 

participants had only one PRL. All had binocular macular disease 

demonstrated with microperimetry and no secondary eye disease or 

relevant systemic illness. All spoke English fluently.  

 

Of the 16 patients, 5 had juvenile macular degeneration and the remaining 

had age-related macular degeneration. Ten patients took part in the visual 
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acuity experiment, Chapter 7 (8 with AMD and 2 with JMD), six took part in 

the reading experiment, Chapter 9 (2 with AMD and 4 with JMD). Two 

patients, one in each experiment, withdrew from the study before 

conclusion of all testing due to difficulties imposed by the task.  

Exclusion criteria 

If patients reported any changes in their vision, started any treatment or 

suffered from illness that could affect vision during the period of testing 

they were excluded. For the reading experiment only subjects whose first 

language is English were recruited. 

4.2 Clinical tests 

4.2.1 Visual acuity 

Best-corrected distance visual acuity was tested monocularly in both eyes 

with retro-illuminated ETDRS charts (Precision Vision, La Salle, IL) viewed 

at 4 or 2 m, as appropriate for the patient’s level of acuity (Bailey & Lovie, 

1976). 

4.2.2 Eye Dominance 

Control subjects used the dominant eye during experiments as verified by 

the pointing method. The subject was given a piece of cardboard in which 



Chapter 4 

- 70 - 

there was a central circular hole and was asked to hold the cardboard with 

both hands and to view a distant target away through the hole, with both 

eyes open. Each eye was then occluded in turn. When the dominant eye 

was covered, the target could not be seen through the hole. Alternatively, 

when the non-dominant eye was covered, the dominant eye continued to 

fix the target through the aperture. This test is a forced choice test of 

dominance, which allows only a right or left eye result (Porac & Coren, 

1976). 

4.2.3 Critical print size 

Critical print size (CPS) is the smallest print size which patients can read at 

their maximum reading speed (MRS). These two values were assessed 

monocularly in the eye with better acuity, with the normal near correction (if 

necessary), in the better eye using the MNread charts. This chart consists 

of 19 blocks of continuous text, approximately 85% contrast, with print 

sizes from 1.3 logMAR to - 0.5 logMAR at recommended viewing distance 

of 40 cm. Each block contains 60 characters including spaces which 

correspond to 10 standard length words and is printed on 3 lines with even 

left and right margins (Legge et al., 1989).  

 

The time to read each sentence was recorded with a stop watch. Reading 

speed is measured in words per minute, and in the case of the MNread 

charts is given by:  

Reading speed = 600 × (10 - errors) / (time in seconds) 
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When the number of errors for a print size is 10, reading speed is assumed 

to be zero. Alternatively, when the full block of 10 words was correctly 

read, the time can be recorded on a sheet which is marked with the 

corresponding reading speed. The MRS reported in this thesis was 

calculated using the mean of the three largest reading speeds. CPS was 

defined as the smallest print size that supports reading at 90% of the MRS, 

as shown in Figure 4.1 (Patel, Chen, Da Cruz, Rubin & Tufail). 

 

 

Figure 4.1: Example of MRS and CPS calculations, adapted from Patel et 

al. (2011). The mean of the 3 largest reading speeds,173 wpm, 

corresponds to the MRS, and 90% of that (156 wpm) is used to 

determining the CPS (0.2 logMAR). 
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4.3 Control of retinal image stability 

4.3.1 The eyetracker 

The eyetracker used was the Eyelink I Gazetracker (SMI, Tetlow, 

Germany, now represented by SR Research Ltd., Mississauga, Ontario, 

Canada). This eyetracker consists of two eye cameras mounted headband 

mounted and two infrared light sources plus one head camera and 4 

infrared light sources on the video monitor. Pupil position is tracked by an 

algorithm similar to a centroid calculation, with a noise-limited resolution of 

0.01º or less, and a velocity noise of less than 3º.s-1 (manufacturer’s 

specifications). The head camera tracks four infrared markers mounted on 

the visual stimulus display, so that head motion can be measured and 

gaze position can be computed.  

 

The cameras produce images at a sampling rate of 250 Hz (4 msec 

temporal resolution). The Eyelink is used with a PC with dedicated 

hardware for the image processing necessary to determine gaze position. 

The Eyelink communicates via a high-speed ethernet connection with a 

second PC that performs the stimulus display. The ethernet connection 

transfers information from the eye tracker allowing it to display stimulus 

gaze-contingent in the monitor connected to the Eyelink Subject PC 

(Figure 4.2). The average delays from eye movement to position data 

availability is 6 msec with heuristic filtering disabled, and 10 msec with 

filtering enabled (manufacturer’s specifications). In all experiments the filter 
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was enabled. With this it is possible to create near real-time gaze-

contingent experiments (Cornelissen & van den Dobbelsteen, 1999, Tant, 

Cornelissen, Kooijman & Brouwer, 2002).  

 

 

Figure 4.2: Eyelink Setup. Attached to the headband there are two high-

speed cameras to track both eyes simultaneously and a third camera 

tracks four infrared markers mounted on the visual stimulus display. The 

Eyelink Operator PC communicates via a high-speed ethernet connection 

with the Eyelink Subject PC that performs the stimulus display. 

 

According to the information provided by the manufacturer there is a delay, 

for a monitor running at 60 Hz, of 16 msec between the eye movement and 

the time it reflects in the stimulus monitor. In experiments reported here the 

monitor was running at 100 Hz, which corresponds to 10 msec of vertical 
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retrace. Before the vertical retrace the eyelink subject PC (Figure 4.2) 

controlling the monitor was collecting the newest sample, available through 

the ethernet, arriving from the eyelink PC. The time the sample takes to 

travel from one computer to the other is 10 msec (variable). Thus the total 

delay should be 16-20 msec (total of 4 to 5 eyetracker frames). 

 

The slippage of the head-mounted system can cause variability of the gaze 

estimate over time that can be minimized by performing drift correction 

between trials. Saccade parameters and fixation position estimates of the 

Eyelink have been shown to be highly correlated with those measured 

using a scleral coil system. The Eyelink’s relatively low sampling frequency 

of 250 Hz results in somewhat noisier parameter estimates in cases of 

small saccades (Cornelissen, Peters & Palmer, 2002, van der Geest & 

Frens, 2002). 

 

Reflections from eyeglasses sometimes interfered with the ability of the 

eye camera to detect the pupil. The effect of lens reflection was minimized 

by activating the anti-reflection mode (R-mode), a built-in mode of the 

Eyelink software that performs further image processing to detect the pupil. 

However, R-mode increases the inaccuracy of the head position detection 

and pupil-tracking noise. Because of this, it was used only after all other 

strategies, such as positioning the camera below the trial frame had failed. 

 

In people with macular disease difficulties calibrating the eye tracker 

increased due to the inaccuracy of fixation whilst looking at the calibration 
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points. To reduce the number of failed calibrations it was necessary to 

extend the exposure time of the calibration points from 1000 msec to 1500 

msec to ensure that participants were able to look at it. For some 

participants, calibration points were manually accepted by the 

experimenter after confirming with the participant that he or she was 

fixating at their best. The calibration was validated using the software 

algorithms that provide a qualitative classification of the calibration as 

“good”, “fair” or “poor”. Only trials where the calibration was categorised as 

“good” or “fair” were included. In accordance with manufacturer’s 

specifications, a “good” calibration means that errors are acceptable. “Fair” 

means that errors are moderate and calibration should be improved 

whenever possible. 

4.3.2 Monitor  

Stimuli were displayed on a 21-inch monitor (Trinitron GDM-F500R, Sony, 

Japan) with peak luminance of 98 cd.m-2
 set at a refresh frequency of 100 

Hz. The monitor resolution was 1280 × 1024 pixels for the visual acuity 

experiments and 1024 × 768 pixels for the reading experiments. 
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4.3.3 Procedure and MATLAB programs 

4.3.3.1 Procedure for eye movements collection 

Unless otherwise stated, the viewing distance was 50 cm and subjects 

were wearing their refractive correction. The eyetracker was adjusted to 

follow the eye over the entire monitor without losing tracking. The camera 

threshold was adjusted as it is dependent on the eye colour and room 

illumination. The room was normally illuminated for the control experiments 

but the lights were dimmed or switched off for experiments with patients to 

allow better detection of the target. 

4.3.3.2 General algorithm for data collection  

Programs for running the experiment were written in the Matlab 

programming environment using elements of the Psychophysics toolbox 

(Brainard, 1997; Cornelissen, Peters, & Palmer, 2002; Pelli, 1997). The 

Psychophysics toolbox (Brainard, 1997, Pelli, 1997) is a software package 

for precise stimulus specification with MATLAB, a high-level interpreted 

language with extensive support for numerical calculations (The 

MathWorks, 1993), allowing for rapid and flexible programming of 

psychophysical experiments. Examples of the programs can be found in 

Appendix D. 
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The Eyelink Toolbox, included in the Psychophysics toolbox, was 

developed by Cornelissen & Peters and is a high-level interface between 

MATLAB and the Eyelink Gazetracker. The toolbox enables one to 

measure eye movements while simultaneously executing stimulus 

presentation routines provided by the Psychophysics Toolbox as well as 

other MATLAB scripts (e.g., gaze-dependent displays) (Cornelissen et al., 

2002). 

 

A typical program would go through these steps: 

i) Calibration of the eye tracker 

ii) Drift correct  

Start recording / Start of a loop  

iii) Collect samples from the eye tracker 

iv) Instantaneous calculations (see below) 

v) Stimulus display until time limit was reached or response  

vi) Wait for response (if necessary) 

vii) Update psychometric function (Quest, see below) 

viii) Drift correct 

ix) Next trial: goes to iii) 

End of loop / Stop recording 

x)  Data saving 
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4.3.3.3 Calculations 

Eye velocity and acceleration 

Gaze position is recorded every 4 msec and used for calculations of eye 

velocity, acceleration and direction. 

 

Eye velocity (v) and eye acceleration (a) were calculated by equations 1 

and 2 below, where i is the index of the ith sample collected from the eye 

tracker and, x and y are the horizontal and vertical positions of the eye. t 

represents time of sample collection. 
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Gain 

Stimulus velocity during fixations was modulated by a gain factor: 

gain = vtarget / veye  

 

Changing the value of the ratio between the velocity of the stimulus and 

the velocity of the eye (gain) the amount of retinal image motion can be 

controlled. 

 

When the target was moving with the eye movements, gain 1.0, the retinal 
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image motion was at a minimum. Due to a delay between the movement of 

the eye and the availability of that information to update the target position 

on the screen, estimated to vary between 16 and 20 msec, the retinal 

image was not totally stabilized. Compared with normal fixation, retinal 

image motion was reduced (gain 0.1), fully compensated (gain 1) or 

overcompensated (gain 10). 

Quest 

The size of the stimulus, in visual acuity experiments, and the stimulus 

exposure time, in the reading experiments, was controlled by Quest 

staircases. Depending on the number of positions assessed, in one block, 

single or multiple Quests were used. (Brainard, 1997, Watson & Pelli, 

1983). The Quest adaptive algorithm uses a maximum likelihood 

procedure to estimate threshold letter size (acuity) or word exposure 

(reading). For each trial the value tested is based on the mode of the 

maximum likelihood function produced by the all of the preceding values 

tested.  

4.3.3.4 Stimuli 

Visual acuity 

Visual acuity was expressed in logarithm base 10 of the minimum angle of 

resolution in minutes of arc (logMAR), where 1.0 logMAR is equivalent to a 

minimum angle of resolution of 10 minarc (20/200) and 0.0 logMAR is 
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equivalent to a minimum angle of resolution of 1 minarc (20/20). 

 

Visual acuity was measured with a Landolt C with 80% Michelson contrast. 

This optotype consists of a ring with a thickness (stroke width) equal to 1/5 

of its diameter and a gap equal to stroke width. In each trial the gap was 

presented in one four positions: left, right, up, down. 

 

The crowded visual acuity was measured with the Landolt C described 

above but here four flankers (bars) were presented alongside the target, as 

shown in Figure 4.3. The bar width was equal to stroke of the ring, the 

length was equal to the diameter of the ring and the distance from C to 

flankers was two strokes. 

 

Figure 4.3: Landolt C surrounded by four flankers. 

4.3.3.5 Reading sentences 

Sentences used in Chapter 8 were randomly selected from a database 

supplied by Dr Elisabeth Fine of Harvard Medical School, MA., USA. This 

database is formed of sentences with similar properties to those used on 

the MNRead card (Legge et al., 1989). The number of words per sentence 
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was reduced to 4 in Chapter 9 because 5 word sentences caused 

memorization problems given the long exposure times.  

 

Sentences for the reading experiment in Chapter 9 were obtained from a 

sentence database with MNread type sentences and generated using a 

sentence generator described by Crossland et al (Crossland, Legge & 

Dakin, 2008). In brief, it consists of a corpus of words arranged into three 

categories: quantifiers, objects and descriptions. Each sentence is 

constrained to have the following structure: first, a noun is selected at 

random from one of 414 words currently in the corpus (such as 

"architects", "penknives", "ale" or "music"). Second, a grammatically 

appropriate two-word description (which may be true or false) is selected 

from a set constrained to the item or category in question: for example, a 

human trait ("read books"), a non-living-object trait ("don't breathe") or a 

specific trait ("design buildings", "aren't sharp", "is jazz"). At present there 

are over 1,000 unique descriptions in the database, although not all 

descriptions can be applied to all nouns. Finally a quantifier is chosen from 

the set "no", "some" or "all". The combination of quantifier and description 

is selected such that half of all of the sentences are true. Double negative 

sentences (e.g. "No alligators can't read") are prohibited (Crossland et al., 

2008). 

 

Examples of sentences used in the reading experiment with patients, 

Chapter 9: 

“some Audis are clever” 
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“some foxes have beaks” 

 

Words were presented as white letters in Courier New font against a black 

background. Courier is a fixed-width font in which each character occupies 

an equal amount of horizontal space. The text size was based on the x-

height. 

Rapid serial visual presentation - RSVP  

Sentences were presented using an RSVP paradigm, as introduced in 

section Chapter 3. With RSVP each word is presented sequentially at the 

same location. The exposure time was controlled by Quest. 

4.4 Microperimetry 

4.4.1 Instrument 

The MP-1 microperimeter (Nidek Technologies, Italy) was used to identify 

the PRL location using the convention shown in Figure 4.4. The 

Microperimeter is a device combining the capabilities of a fundus camera 

with live video, microperimetry and eye tracking. Visualization of the retina 

and tracking of the eye are fundamental for the correct characterisation of 

the retinal function in people without central fixation. 

 

The tracking system follows a landmark in the retina at 25 Hz that allows 
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the projection of the stimuli in the region with correspondence with the 

photography of the fundus. There is a delay of approximately 2 frames 

(~80 msec) in the tracking system. Currently, this device is used for 

classification and rehabilitation of macular disease (Seiple et al., 2005, 

Vingolo et al., 2009), Microperimetry with this device is also known as 

“fundus driven microperimetry”. 

4.4.2 Microperimetry strategy 

The MP-1 measures retinal sensitivity at each stimulus testing location in 

dB units. The background luminance is 1.27 cd.m-2, the brightest level of 

the stimuli corresponds to 0 dB attenuation (127 cd.m-2) or 100% contrast, 

and the dimmest level of the stimuli corresponds to 20 dB attenuation (1.27 

cd.m-2) or 1% contrast.  

 

Fixation location was determinate as shown in Figure 4.4. A quick 

microperimetry assessment was performed using a strategy that consisted 

of a pattern of 68 stimulus locations centred on the fovea and arranged 

over a 20º diameter. Stimuli used were Goldmann V (white, circular stimuli, 

104 minarc diameter), presented on a black background for 200 msec. 

During perimetry testing, stimuli locations were presented randomly once 

at 0 dB attenuation (that is, with the brightest stimulus only). Participants 

indicated detection of a stimulus by depressing a button on a handheld 

joystick. 
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A B 

Figure 4.4: (A) Convention used to describe PRL location with respect to 

the scotoma in visual field space (right eye). (B) How the convention 

translates when the patients looks at the Amsler grid. In this example, a 

patient with a right PRL would fixate things that are straight ahead by 

moving the scotoma to the left field of view (obscuring the left field with the 

scotoma). 

4.5 Data analysis 

Eye movements data were analysed using programs written in Matlab 

(Version R2007a, The MathWorks, Inc., Natick, MA). Prior to statistical 

analysis data were normalized and/or transformed using Microsoft Excel 

2007. Graphs were plotted using OriginPro 8 SR1 (Version 8.0773, 

OriginLab Corporation, Northampton, MA, USA). 

4.5.1 Repeated measures analysis 

Repeated measurements of variables in different conditions were analysed 
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with Linear Mixed Models using SPSS (versions 13 and 15; SPSS Inc., 

Chicago, IL, USA). Linear mixed models are an alternative to analysis of 

variance when the design is unbalanced, for example, when the number of 

repeated measurements was not the same for all the participants. Unlike 

ANOVA, linear mixed models do not require homogeneity of variance. 

4.5.2 Fixation stability quantification  

Fixation stability was quantified with the bivariate contour ellipse area 

(BCEA). The BCEA describes the region over which the eye is fixating for 

P% of the time (Crossland & Rubin, 2002, Steinman, 1965) and is given by 

the equation below. 

2
1

)1(2 ρσπσ −= VHKBCEA  

Where BCEA is the bivariate contour ellipse area, σH and σV are the 

standard deviation of point location over the horizontal meridian and 

vertical meridian, respectively, and ρ is the product-moment correlation of 

these two position components. The value K is dependent on the 

probability area chosen  

1 KP e−= −  

where e is the base of the natural logarithm. Therefore, P = 63.2 %, K = 1, 

and the BCEA measures the area where the eye was 63.2% of the time. 

Larger areas correspond to more instability. Different authors have used 

different values of P, such as 63.2% (Steinman, 1965), 68% (Crossland & 

Rubin, 2002, Culham et al., 1993) or 95% (Schuchard & Raasch, 1992a).  
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4.5.3 Multiple PRL assessment 

Multiple PRL assessment was made using the maximum likelihood and 

expectation maximization method. Mathematical details have been 

published by Crossland et al. (Crossland, Sims, Galbraith & Rubin, 2004b). 

In brief, the method looks for multimodality in the eye position distribution 

and uses an expectation-maximization algorithm to define clusters of 

fixation positions. The method computes mean, variance and number of 

fixation samples contained within the limits of the variance defined around 

the mean for each cluster. Multiple preferred retinal loci were defined when 

the number of samples in each cluster was higher than 20% of the total 

and the distance between clusters’ means was more than twice the sum of 

the standard deviations for each cluster. 
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Chapter 5. Development of 
method 

A series of preliminary experiments was performed to test instrumentation 

limits and experimental setup. 

5.1 Qualitative analysis of the eyetracker 

This project was devoted to study questions of retinal image stabilization in 

the peripheral retina of patients with impairment of oculomotor control. This 

preliminary test was performed to determine whether the eye-tracking 

system available in our laboratory is fast and precise enough to stabilize 

the retinal image in real time. The test consisted of generating a retinal 

afterimage and asking subjects to superimpose this afterimage on a gaze-

contingent target presented on the monitor (Barlow, 1963, Debie, 1985, 

Riggs & Schick, 1968).  

 

After fitting the eyetracker to the observer, a retinal afterimage was 

produced by activating a camera flash unit with a dot shaped mask, 

approximately 3 mm diameter. A gaze linked grey dot (0.3º of visual angle) 
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was displayed on the monitor against a white background. A qualitative 

analysis of the dot superimposition with the after image was done by 2 

experienced observers. 

 

The afterimage was superimposed on the target for the first 3 s to 5 s and 

was aligned throughout normal fixational eye movements. However, large 

saccades, from one extreme of the monitor to the other (~30º), and blinks 

disrupted this effect. Recently, Aguilar and Castet (2011) tested the 

limitations of gaze contingent experiments using an infrared eye tracker, 

similar to the one used in these experiments (Aguilar & Castet, 2011). The 

comprehensive analysis of the gaze contingent window limitations agreed 

with the preliminary tests of this thesis. The questions raised by Aguilar’s 

work are more important for experiments that involve continuous reading 

or long target exposures. Eye tracker compensation gets worse for large 

saccades. Spatial shift is approximately 1 deg at the time of the first 

monitor refresh (L1, Figure 5.1, first vertical arrow) and approximately 4 

deg at the second refresh of the monitor (L2) during the saccade flight. In 

the experiments of Chapter 6 and Chapter 8 the crucial moment was L1, 

because that was the time when the program would make an action. The 

actions were: (1) blanking the screen if a saccade was detected or (2) 

repeating the trial. Thus I believe that results are not significantly 

influenced by this spatial shift. Another limitation the authors point out is 

the disruption of tracking caused by blinks. Again, in experiments reported 

here, if a blink occurred during target exposure the trial was repeated. 
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Figure 5.1: Latency of a simulated scotoma. According to Aguilar & Castet 

(2011) there is a shift between the eye and scotoma positions during 

saccades that is caused by the inherent delay of the gaze contingent 

window controlled by infrared eyetrackers. The latency (L1) of the scotoma 

is relevant for the experiments reported here as described in the text 

above. 

 

In short, the preliminary results of the testing agreed with the limitations 

reported recently by Aguilar e Castet (2011). Extra care was needed 

during the planning of these experiments. For example, in the experiment 

measuring visual acuity in the peripheral retina, trials during which the eye 

velocity went above 100º.s-1 were repeated
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5.2 Selection of appropriate screen refresh 
rate 

Visual persistence is the apparent visibility of the stimulus that extends 

beyond its physical duration (Coltheart, 1980, Farrell, 1984). In simple 

terms, visual persistence consists of the visualization of stimuli that are not 

physically present. Visible persistence in cases of static stimulus is about 

100 msec. Persistence is dependent of the spatial and temporal separation 

of the stimulus and increases with the distance between successive stimuli 

(Allport, 1968, Farrell, 1984). 

 

In some of conditions tested, gain 10, the amplitude of the target’s jitter 

was large. Even when the eye was fixating that would lead to perception of 

multiple targets due to visual persistence. We determined the optimum 

image update frequency (monitor refresh rate) that minimized visual 

persistence effects.  

 

The monitor was set at different refresh rates between 60 and 150 Hz. A 

gaze contingent Landolt C was presented with motion modulated by gain 

10 during fixations. The displacement of the visual target in the screen was 

analysed and the number of perceived targets registered. 

 

The optimum rate was found to be 100 Hz. This frequency minimized the 

number of stimuli visible during high velocities of the visual target and no 
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significant spatial error between the visual target position and the real eye 

position was observed. In these conditions the visual target position was 

updated every 8 or 12 msec. 

 

This experiment established the refresh rate of monitor to be used in 

experiments using gaze contingent targets. Visual persistence was 

reduced but not totally avoided. 

5.3 Selection of most appropriate target 
flankers 

Previous research has shown that the effect of oculomotor instability in 

visual acuity is not always evident when a single letter is presented (Leat 

et al., 1999b). Further, the real world is not made of single characters or 

objects. In order to obtain more realistic results in the experiment where 

fixation instability was overcompensated crowding should be introduced. 

Crowding can be added by placing four flankers (bars) around the visual 

target. Unlike in the central retina the crowding effect in the periphery is not 

uniquely dependent on the physical characteristics of the stimulus. An 

experiment was conducted to determine the optimal distance between the 

stimulus and flankers to test crowded letters in peripheral retina. 

 

Visual acuity was measured under two crowding conditions. In condition 1, 

the distance between the stimulus and the flanking bars was maintained at 

a constant visual angle. This angle was selected according to previous 
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measures made in this laboratory and reported in the literature (Bex et al., 

2003, Toet & Levi, 1992). In condition 2, the distance between the 

optotype and the flanking bars changed with the size of the optotype. The 

separation between the optotype-centre and the flankers-centre was equal 

to the size of the optotype (Toet & Levi, 1992), section 4.3.3.4 (Figure 4.3). 

 

Feature interaction was noticeable in both conditions, with a reduction in 

visual acuity for all gains. The effect obtained with condition 2 was 

consistent at all eccentricities and positions tested, whilst the results for 

condition 1 showed inconsistency amongst positions.  

 

Therefore, the flanking bars used in this thesis were scaled with optotype 

size. This has the added benefit of being more similar to target-flanker 

separation in normal text, so this crowding technique is also the most 

suitable to predict the effects of fixation instability during reading. 
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Chapter 6. Peripheral visual 
acuity with 
compensation for 
fixation instability 

The contents of this chapter have been published in Journal of Vision. A 

copy of the paper can be seen in Appendix C. 

 

Fixational eye movements move the visual target across groups of 

receptors on the retina. These movements generate a signal which is a 

mean of the combined activity of all receptors stimulated and not only 

those corresponding to the size of the visual target (Andersen & 

Weymouth, 1923, Keesey, 1960). This mechanism explains why it is 

possible to discriminate Vernier offset of about 1-secarc while the finest 

foveal receptors subtend about 24-secarc (Berry, 1948, Keesey, 1960). 

The visual system must cope with the eventual blur resulting from the 

retinal image slip caused by these movements (Ahissar & Arieli, 2001). 

When the amount of retinal movement is above the capacity of 

neutralization of the visual system the image is perceived as blurred due to 

motion smear (Burr, 1980). An immediate consequence of blur is a 
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reduction of resolution (Burr & Ross, 1982, Morgan & Benton, 1989). 

 

Several studies have measured resolution in the peripheral retina with 

static (Banks, Sekuler & Anderson, 1991, Green, 1970, Mandelbaum & 

Sloan, 1947, Toet & Levi, 1992) and moving targets (Bex et al., 2003, 

Brown, 1972b, Falkenberg et al., 2007). Brown found that in the peripheral 

retina visual resolution can be improved when a target has a velocity of 

approximately 10º.s-1. The linear or rotational movement used in these 

studies is likely to be less effective than the more random movement 

caused by fixational eye movements (Ditchburn & Drysdale, 1977, Rucci et 

al., 2007, Sharpe, 1972).  

 

A limitation of these previous studies is that retinal image movement has 

been simulated by asking subjects to fixate a central target whilst a 

peripheral target is jittered (Bex et al., 2003, Falkenberg et al., 2007), 

whereas fixational eye movements cover a large range of directions and 

velocities (Barlow, 1952, Ditchburn, 1959, Hubel & Wiesel, 1959, Martinez-

Conde et al., 2004) that cannot be accurately simulated by simple target 

jitter. It is known that resolution in the peripheral retina is strongly affected 

by crowding (Leat et al., 1999b, Toet & Levi, 1992) and that crowding 

increases for unstable targets (Bex & Dakin, 2005, Bex et al., 2003). Thus, 

another question investigated here is the effect of fixation instability, 

causing large retinal image slip, on crowded acuity. 

 

Studying the implications of fixation instability on visual performance of the 
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normal peripheral retina will help to explain its role in patients relying on 

the peripheral retina during eccentric viewing. In this chapter I report 2 

experiments measuring peripheral visual acuity for a crowded and 

noncrowded target moving in synchrony with the fixational eye 

movements. The aim was to assess the effect of different levels of retinal 

image slip on peripheral visual acuity.  

6.1 Specific method 

6.1.1 Participants 

Seven observers participated: 2 subjects were aware of the purpose and 5 

subjects were naïve to the purpose of this study. Five observers 

participated in each experiment; 3 were common to both experiments. All 

had normal or corrected to normal vision; further information can be found 

in section Chapter 4 and Appendix A, Appendix Table 1. 

6.1.2 Apparatus 

The general algorithm to run the experiment has been described in section 

4.3.3.2 and an example of the program is in Appendix D. The stimulus was 

displayed on the monitor described in section 4.3.2 within a central square 

window of 30 × 30 cm with a black background. The stimulus was a 

Landolt “C” with 80% Michelson contrast. The size of the stimulus was 

controlled by multiple Quest staircases, applied to each position 

independently (Brainard, 1997, Watson & Pelli, 1983).  
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Eye position was measured with an eyetracker using Eyelink software 

(version 2.04). During each block, drift correction was performed every five 

trials. During stimulus presentation the velocity of the target was 

modulated by gain, see section 4.3.3.3. Four gain factors were used: 0 (no 

compensation, corresponds to the baseline condition), 0.1 (reduced retinal 

image slip), 1.0 (null retinal image slip) and 10 (increased retinal image 

slip). For each frame a circular artificial scotoma was centred on the point 

of gaze. This ensured that the target could not be seen if it came closer to 

the fovea than the specified eccentricity. Figure 6.1A shows the target 

window. The distance between the scotoma boundary and the target, d, 

remained constant in relation to the size of the gap (d = 2.5 × g). 

Responses were given via a response box. 

6.1.3 Procedure – experiment 1 

Observers sat 60 cm from the monitor and a chin rest was used to 

minimize head movements and to maintain a constant viewing distance. 

Observers viewed the display monocularly with an eye patch covering their 

non-dominant eye. Participants practiced the task until they were able to 

finish an entire block of trials with fewer than 10% of trials having large 

saccades (defined below).  

 

Visual acuity was measured at four isoeccentric positions: right, left, up 

and down, at two eccentricities, 5º and 10º. The minimum number of 



Chapter 6 

- 97 - 

blocks for each subject for the gaze contingent conditions was: 2 

(eccentricities) × 4 (gains) × 3 (repetitions) = 24 blocks. In each block 

acuity was tested in four positions and each position was tested 60 times 

per block. The gain and the order of positions tested in each block were 

selected randomly. Each block started with an observer’s button press and 

the first trial for each position was preceded by an auditory signal. The 

orientation of the Landolt C was generated at random with the gap in one 

of four cardinal positions: up, down, right or left. Participants were asked to 

report the orientation of the target by means of a button press. Observers 

were instructed to respond after the target disappeared to reduce the 

number of large saccades being made. The sequence of events during 

each trial is shown in Figure 6.1B. The cue, a gaze contingent grey circle 

of 33% contrast and of the same size as the target, was present at the 

eccentricity being tested. This cue duration was selected to maximize 

discrimination in the periphery (Cheal & Lyon, 1991). The cue disappeared 

after 100 msec and was replaced by the gaze contingent Landolt C 

presented up to a maximum of 500 msec. If during target presentation no 

response was given it was abruptly replaced by a mask (not gaze 

contingent) that remained visible until a response was received.  

 

The target was visible only during fixations; it was replaced by a black 

screen during saccades. During frames in which the monitor was blanked 

the target position was updated based on the real eye movement (not 

modulated by gain), to avoid possible positional errors in the first frame 

after a saccade. A saccade was defined when eye velocity was greater 
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than 30º.s-1 and/or acceleration was greater than 8500º.s-2. These saccade 

detection criteria were used to allow small microsaccades during the 

measurements, given their useful role in central vision (Martinez-Conde et 

al., 2006, Rucci et al., 2007).  

 

Figure 6.1: Details of target window and presentation sequence. A - 

Landolt C (orientation – right), the dotted circle delimits the artificial 

scotoma; g – represents the gap, equivalent to 1/5 of the Landolt C size; d 

– represents the maximum distance that Landolt C could move before 

entering the area of the artificial scotoma. The size of the scotoma was 

varied such that: target size / d = 0.5. B – Sequence of stimulus 

presentation; the Landolt C was presented with and without flankers.  

 

The delay between eye movement and screen update is 20 msec or less 

(Cornelissen, 2005). This means that the distance between the eye and 

the target could be significantly reduced if a fast eye movement (large 

saccade) occurred during this period. Trials where a “large saccade” 

occurred were repeated. “Large saccades” were defined when the velocity 
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was higher than 100º.s-1, corresponding to a saccade of approximately 1º 

amplitude and 25 msec duration (van der Geest & Frens, 2002). An 

auditory alert was played to signal the occurrence of these saccades. 

Blocks were stopped if the number of trials repeated reached 10% of the 

total number of trials.  

 

For the baseline condition, observers were instructed to fixate a white dot 

(size: 0.3º) presented in the centre of the monitor. The fixation target was 

needed to “anchor” participants’ gaze. Without a fixation target the eye 

would move around the screen and the target would be presented at 

random retinal locations. The eyetracker was used to monitor fixation, but 

not to change the target position. To avoid saccades towards the target 

(and therefore multiple repetitions of each trial) the optotype duration was 

reduced to 200 msec (Carpenter, 1988, Keesey, 1960). According to 

Keesey, the short exposure time used here, 200 msec, would not 

significantly alter the final resolution obtained. The implications of dividing 

attention while attending two locations on the screen are discussed in 

section 6.3. 

6.1.4 Procedure – experiment 2 

Experiment 2 was similar to experiment 1 but the target was presented 

with flankers. Four flankers (bars) were presented alongside the target, as 

shown in Figure 6.1B. The bar width was equal to g, length was equal to 

the Landolt C, and the distance from target to flankers was equal to 2 × g. 
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The viewing distance for this experiment was 50 cm. The size of the target 

was adjusted for the viewing distance. 

6.1.5 Statistical analysis 

For statistical analysis, the mean value of visual acuity obtained for gain 0 

(baseline visual acuity) was computed. Visual acuity for each eccentricity 

and position was normalized by the mean baseline visual acuity for each 

observer. Linear mixed models were used to determine the effects of gain, 

position, eccentricity, and their interactions, on peripheral visual acuity. For 

right dominant participants, right position corresponds to nasal retina and 

left position to temporal retina. Subject (S1) was left dominant, therefore 

data from right and left positions were swapped before analysis. 
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6.2 Results  

6.2.1 Experiment 1 – Peripheral visual acuity without 
crowding  

Mean visual acuity results for each gain value at each position and 

eccentricity are summarised in Figure 6.2 (variation of visual acuity with 

gain, means of all observers). Individual results are presented in Appendix 

C, Appendix Table 4. 

 

Visual acuity improved when the target was presented under gaze 

contingent conditions (gain: 0.1, 1.0, 10) compared with the no gaze 

contingent condition (gain 0). The mean improvement from gain 0 to gain 

0.1 was 0.04 logMAR (p = 0.013). In the gaze contingent conditions 

peripheral visual acuity improved slightly with increased retinal image slip: 

visual acuity with gain 10 was significantly better than that for gain 0.1 

(mean improvement = 0.04 logMAR, p < 0.001). There was no 

improvement in VA from gain 0.1 to gain 1.0 (p = 1.00) but an improvement 

was seen for gain 10 compared to gain 1.0 (mean improvement = 0.03 

logMAR, p = 0.01). 
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Figure 6.2: Variation of peripheral acuity, measured with a noncrowded 

Landolt C, for the four motion conditions of the target. Gain 0 corresponds 

to the non gaze contingent measurements. Each panel shows results for a 

different screen position. Black circles: 5º eccentricity. Red circles: 10º 

eccentricity. Error bars show one standard error.  

 

 

There was no interaction of gain × position or gain × eccentricity. These 

results are shown in Figure 6.3A and Figure 6.3B, respectively. Thus, the 

effect of gain was not significantly different at 5º and 10º eccentricity and it 

was also not significantly different between the four positions tested.  
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The interaction eccentricity × position was not significant, demonstrating 

that the variation in acuity with position was not significantly different from 

5º to 10º eccentricity.  

 

 

Figure 6.3: The interaction between (A) gain × position and (B) gain × 

eccentricity for experiment 1. A: each curve corresponds to one position, 

mean values for positions in the horizontal meridian are shown in black 

and mean values for positions in the vertical meridian are shown in red. B: 

each curve corresponds to one eccentricity. Black circles: 5º eccentricity. 

Red circles: 10º eccentricity. Error bars show one standard error in A and 

B. 
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6.2.2 Experiment 2 – Peripheral visual acuity with crowding 

 

Figure 6.4: Variation of peripheral acuity, measured with a crowded 

Landolt C, for the four motion conditions of the target. Gain 0 corresponds 

to the non gaze contingent measurements. Each panel shows results for a 

different screen position. Black circles: 5º eccentricity. Red circles: 10º 

eccentricity. Error bars show one standard error. 

 

Mean visual acuity results for each gain value at each position and 
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eccentricity are summarised in Figure 6.4. Individual data are presented in 

Appendix C, Appendix Table 5. Gain, position and eccentricity all had 

significant effects on peripheral visual acuity. The difference between gain 

0, gain 0.1 and gain 1 was not statistically significant. In contrast with 

experiment 1 for gain 10 visual acuity reduced significantly compared to all 

other gains.  

 

 

Figure 6.5: The interaction between (A) gain × position and (B) gain × 

eccentricity for experiment 2. A: each curve corresponds to one position, 

mean values for positions in the horizontal meridian are shown in black 

and mean values for positions in the vertical meridian are shown in red. B: 

each curve corresponds to one eccentricity. Black circles: 5º eccentricity. 

Red circles: 10º eccentricity. Error bars show one standard error in A and 

B.  

 

The interaction of gain × position was significant (p = 0.002) indicating that 
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the effect of gain was different depending on the position. The interaction 

is shown in Figure 6.5A. The interaction of gain × eccentricity was also 

significant (p < 0.001), indicating that the effect of gain was different for 

different eccentricities. This interaction is shown in Figure 6.5B. All values 

are presented in Appendix C, Appendix Table 6. 

6.3 Discussion 

In these two experiments I investigated the effect of increasing, reducing 

and nullifying the retinal image slip generated by fixational eye movements 

on peripheral visual acuity. Visual acuity under these conditions was 

compared to visual acuity measured with no compensation for fixational 

eye movements.  

 

Peripheral visual acuity measured without crowding (experiment 1) 

improved slightly with increased retinal image slip, when compared with 

the other motion conditions. In contrast, under crowded conditions 

(experiment 2), peripheral visual acuity decreased markedly with increased 

retinal image slip. Different effects of retinal image slip on crowded and 

noncrowded conditions have previously been reported in people with 

nystagmus (equivalent to an increased retinal image slip) (Chung & Bedell, 

1995, Pascal & Abadi, 1995).  

 

In both experiments increased retinal image slip would cause blur due to 

motion smear. In the crowded condition this would lead to superimposition 
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of the flankers on the target, impairing the ability of observers to detect the 

gap position within the target. In the noncrowded condition, there are no 

flankers to interfere with target detection. Other authors investigating the 

effect of target motion on central visual acuity have found that the effect of 

motion depends on target configuration: a task that involves a component 

of localization, such as a Vernier task, is only minimally affected by 

stimulus motion (Bedell, Chung & Patel, 2000, Carpenter, 1988, 

Westheimer & McKee, 1975), whereas the ability to discriminate the 

spacing between two moving bars is greatly impaired by the same amount 

of motion (Burr & Ross, 1982, Morgan & Benton, 1989). Morgan (1989) 

suggested this happens because, unlike the Vernier targets, the two lines 

are very close and their trajectory falls in the same part of the retina 

reducing the luminance-valley cue to a single-peaked distribution that is no 

longer resolvable.  

 

Peripheral visual acuity was worse when observers were instructed to 

fixate the central dot (baseline condition). VA for gain 0 might have been 

reduced due to the presence of two objects on the monitor compared with 

the other gains where only the peripheral target was visible. When 

performing peripheral resolution tasks with foveal vision observers were 

less likely to orient their attention to the peripheral target than when there 

was no fixation target. This can induce variability in the peripheral visual 

performance as is the case with the baseline condition compared with all 

other conditions (Posner, 1980). 
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In both experiments peripheral visual acuity measured under reduced and 

null retinal image slip was similar. These results are in agreement with 

other authors who have measured central (Keesey, 1960) and peripheral 

(Millodot, 1966) visual acuity with non stabilized and stabilized retinal 

images.  

 

Increased retinal slip can improve peripheral vision. Previous studies have 

found a slight improvement in peripheral visual acuity for targets with 

velocities above the limit imposed by normal fixational eye movements 

(Bex et al., 2003, Brown, 1972b). Recent research has reinforced the 

fundamental role of normal fixational eye movements in central vision 

(Martinez-Conde et al., 2006, Rucci et al., 2007) yet they cannot prevent 

visual adaptation in the peripheral retina (Clarke, 1960, Clarke, 1961). 

Results from experiment 1 are in agreement with these findings. 

The effect of gain changed with eccentricity. It has previously been shown 

that the effect of image stabilisation gets smaller with increasing 

eccentricity (Millodot, 1966). The second experiment also shows that the 

change in visual acuity with different gains is more pronounced at 5º than 

10º eccentricity, suggesting that retinal image slip is better tolerated with 

eccentricity. This may be due to the increased size of more peripheral 

receptive fields (Drasdo, 1989, Hubel & Wiesel, 1960) and changes in the 

size of spatial interference zones (Bex et al., 2003, Toet & Levi, 1992, 

Tripathy & Cavanagh, 2002). 

 

In both experiments, peripheral visual acuity in horizontal positions was 

different from vertical positions (Figure 6.3 A, Figure 6.5A and Appendix 
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C). This asymmetry between positions is in agreement with other studies 

and can be caused by anatomical properties of the human retina (Curcio & 

Allen, 1990), attentional factors (Cameron, Tai & Carrasco, 2002, Talgar & 

Carrasco, 2002, Yeshurun & Carrasco, 1999) and/or crowding 

asymmetries (Toet & Levi, 1992). An offline analysis was performed to 

analyse the possible interaction between the orientation of the gap and the 

meridian of the position. These results showed no consistent relationship 

between these two variables. 

 

A limitation of the experimental setup is that the stabilization system with 

gain 1.0 does not reduce retinal image slip to zero due to the imprecision 

of head-mounted video eyetrakers and the delay between the movement 

of the eye and the movement of the target on the screen. One sign of 

perfect stabilisation is image fading, which was not reported under any 

condition. However, image fading would have been unlikely given the very 

high target contrast: even with perfect stabilization it requires exposures far 

longer than 500 msec for the image to fade (Keesey, 1960, Tulunay-

Keesey, 1982). 

 

To quantify the error in the system, an offline analysis was performed to 

determine if the eye was moving towards or away from the target between 

each monitor retrace. In periods during which the eye moved away from 

the target the value of gain would effectively be reduced, whereas when 

the eye moved towards the target the gain would effectively increase 

compared to the initially defined value. Despite some variance, for all three 

gains the value of the mean differed by no more than 1/10 of the defined 
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value. For a typical set of 4 repetitions per gain for the same observer, the 

mean and 95% confidence interval was: 0.099 ± 0.0008 for gain 0.1; 0.99 

± 0.005 for gain 1.0; and 10.53 ± 0.5 for gain 10. 

 

A further consequence of system delay would be a time lag between the 

onset of a saccade and screen blanking. The maximum distance the eye 

could travel during a saccade is approximately 0.12º every 4 msec. Thus, 

the maximum distance the eye could travel towards the target during a 

saccade before the blanking of the monitor was less than 0.5º. I 

retrospectively computed typical target amplitude, measured between 

monitor frames, for the non-zero gain conditions. The mean amplitudes of 

the target movements for 5º eccentricity were 1.8 minarc for gain 0.1; 18 

minarc for gain 1.0 and 33.6 minarc for gain 10. The amplitude for gain 0.1 

was many times below the limit of 1 pixel. Therefore, the difference in the 

mean amplitude of the target movement between gain 0.1 and gain 1.0 

was not large enough to produce changes in peripheral visual acuity 

(Brown, 1972b, Westheimer & McKee, 1975). However, performance 

differences between these two gains would exist if there was a systematic 

difference in the number of microsaccades due to different amounts of 

retinal image slip (Engbert & Mergenthaler, 2006). This was not the case: 

no systematic change was found in the number of microsaccades with 

increasing gain. At 5º eccentricity the mean number of microsaccades was 

107.5 (range 272 – 53) at gain 0.1, 98.0 (range 289 – 13) at gain 1.0 and 

110.1(range 489 – 18) at gain 10.  

 

A further potential limitation of the experimental technique is that subjects 
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wore the same refractive correction for 5º and 10º eccentricity. Whilst it is 

known that there are small differences in refractive error with increasing 

eccentricity (Gustafsson & Unsbo, 2003, Millodot, Johnson, Lamont & 

Leibowitz, 1975, Millodot & Lamont, 1974) this effect would have the same 

impact under each gain and would not alter the results systematically. 

 

Previous studies in people with macular scotomas caused by diseases 

such as age-related macular degeneration have shown that they have poor 

fixation stability (increased retinal image slip) (Bellmann et al., 2004, 

Culham et al., 1993) and that their reading speed decreases if instability 

increases (Bellmann et al., 2004, Seiple et al., 2005). These results 

confirm that fixation instability has a significant effect on peripheral visual 

acuity. 

6.4 Conclusion 

Increased retinal image slip improves peripheral visual acuity for isolated 

targets but worsens acuity when targets are crowded. These results have 

two important implications: first, measurements of peripheral visual acuity 

performed with isolated letters are not likely to be good predictors of visual 

function under normal crowded conditions; second, in real visual tasks 

poor fixation stability may be a limiting factor for visual function in the 

peripheral retina.
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Chapter 7. Visual acuity at 
the PRL 

The content of this chapter has been accepted for publication in 

Investigative Ophthalmology and Vision Science. The paper can be found 

in Appendix C. 

 

In Chapter 6 I assessed the effect of fixation instability on visual acuity of 

the normal peripheral retina. Here I explore the same in people with 

macular disease. In section 2.2 and Chapter 3 I reviewed the 

consequences of macular disease for visual function.  

 

In brief, in advanced macular disease patients use eccentric viewing 

(Crossland et al., 2005, von Noorden & Mackensen, 1962). Most of them 

develop a preferred retinal locus (PRL) and have increased fixation 

instability (Crossland et al., 2005, Culham et al., 1993, Fletcher & 

Schuchard, 1997, Timberlake et al., 1986, Timberlake et al., 1987, 

Whittaker et al., 1988). In normal vision tolerance to retinal image motion is 

relatively low: resolution starts to reduce for velocities above 2.5º.s-1 

(Morgan & Benton, 1989, Westheimer & McKee, 1975). In the peripheral 
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retina, where retinal stabilized images fade easily, linear velocities of up to 

10.0º.s-1 can improve resolution (Bex et al., 2003, Brown, 1972b, 

Falkenberg et al., 2007). 

 

In 2004 Deruaz and colleagues suggested that fixation instability could be 

part of a beneficial adaptation mechanism to improve peripheral visual 

function (Deruaz et al., 2004). Two studies, investigating the trigger for 

microsaccades in central vision, showed that when retinal image slip drops 

to values close to zero a dynamic triggering mechanism generates a 

microsaccade that increases instability (Engbert & Mergenthaler, 2006) 

and avoids perceptual fading (Martinez-Conde et al., 2006). If a similar 

mechanism exists during eccentric viewing, eye instability would be 

beneficial and instability would increase when retinal motion is reduced.  

 

In this experiment I investigated the effect of fixation instability on visual 

acuity for crowded and noncrowded letters in patients with central 

scotomas caused by macular disease. The amount of retinal image motion 

was controlled by an eye tracking system. I anticipated that the results 

would be similar to those for control subjects: acuity would improve by 

reducing the amount of retinal image motion caused by fixation instability 

and the effect would be more pronounced for crowded letters. However, if 

Deruaz’s hypothesis is correct, increased retinal image motion might 

improve visual acuity. Additionally, if fixation instability is caused by a 

mechanism triggered by low retinal image motion the eye stability would 

change during measurements under different conditions. I quantified 
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fixation stability to verify if the eye instability was affected by retinal image 

motion. In other words, compensation for instability should improve acuity 

but would lead to more eye instability. 

7.1 Specific method 

7.1.1 Participants 

Participants were recruited from the Low Vision Clinic at Moorfields Eye 

Hospital in London. All subjects gave their informed consent to participate, 

see Chapter 4 for more information. All participants had a central scotoma 

identified by microperimetry (MP1 microperimeter, Nidek Technologies, 

Italy). The MP1 microperimeter was also used to determine the location of 

the preferred retinal locus, the complete protocol has been described in 

section 4.4. Microperimetry images can be seen in Appendix C, Appendix 

Table 7. 

7.1.2 Apparatus and procedure 

The stimuli and procedure were the same as for control subjects in 

Chapter 6 except for the following: positions tested - visual acuity was 

measured only at the PRL; exposure time - the target was presented for 

700 msec (Figure 7.1); calibration - the eyetracker was calibrated using a 5 

point grid; number of blocks (16) - 4 gains × 2 acuities × 2 repetitions (in 

random order); trials per run - 40 trials; practice - before the first session of 
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data collection crowded and noncrowded visual acuity was measured for 

two different gains per visual acuity. 

 

Figure 7.1: Sequence of stimuli in each trial. The optotype was preceded 

by a cue reducing spatial uncertainty and followed by a noise mask, visible 

until a response was given. 

7.1.3 Statistical analysis 

Eye movements were analyzed offline to measure fixation stability. Periods 

when the optotype was visible were isolated from raw data; trials 

containing blinks or outliers (data collected outside the calibration area) 

were excluded from analysis. Eye positions from inter-saccadic intervals 

were used to calculate the bivariate contour ellipse area (BCEA), in 

minarc2, containing 68% of the eye positions (Crossland & Rubin, 2002, 
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Timberlake et al., 1986), mathematical details have been described in 

section 4.5.2. Prior to statistical analysis all visual acuities were normalized 

against noncrowded visual acuity for gain 0. 

7.2 Results 

Eleven subjects were recruited, two subjects had been diagnosed with 

juvenile macular degeneration and the remainder had age-related macular 

degeneration. One subject with age-related macular disease withdrew from 

the study due to the difficulties imposed by the task. The condition was 

bilateral in all participants and all subjects had dense central scotomas on 

microperimetry, with the exception of S9 who had relative central 

scotomas. Age ranged from 25 to 89 yr old and visual acuity in the better 

eye was between 0.7 and 1.2 logMAR. No patient had more than one PRL 

identified on either the eyetracker or the MP1 fixation data. A summary of 

the clinical characteristics of the participants are in Appendix A - Appendix 

Table 2 and Appendix C- Appendix Table 7. There was a trend for people 

with JMD to have slightly better visual acuity although this did not reach 

statistical significance (p =0.06) perhaps due to the small sample size. 

Mean fixation stability was not significantly different between the JMD and 

AMD subjects (p = 0.49). 
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7.2.1 Variation of visual acuity with gain 

Figure 7.2 shows visual acuity obtained for each condition: A – 

noncrowded acuity and B – crowded acuity. The effects of gain and 

crowding on visual acuity were tested using linear mixed models. Both 

crowding (p < 0.001) and gain (p < 0.001) had significant effects on visual 

acuity and the interaction gain × crowding was not significant (p = 0.601). 

Non-crowded visual acuity was better than crowded acuity for all gains, 

with mean difference of 0.071 logMAR (p < 0.001). 

 

 

Figure 7.2: Variation of noncrowded (A) and crowded (B) visual acuity with 

gain. Symbols show the mean for all participants for each gain as 

estimated by mixed models, the error bars show the 95% confidence 

interval. All acuities were normalized prior to statistical analysis against 

noncrowded acuity obtained with gain 0.  
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Acuity for gain 10 (overcompensation condition) was reduced compared to 

the no compensation condition by 0.10 logMAR (p<0.001), for both 

crowded and noncrowded stimuli. These results show that reducing retinal 

image motion (gains 0.1 and 1) had no effect on patients’ visual acuity; 

however, increased retinal image motion (gain 10) had a detrimental effect 

on acuity. All results are summarised in Table 7.1. 

 

Table 7.1: Mean visual acuity, in logMAR, obtained for different conditions 

for crowded and noncrowded targets. Values in brackets show the 95% 

confidence interval. 

 gain 0 
(baseline) 

gain 1 gain 2 gain 3 

     

noncrowded 1.27 (±0.14) 1.27 (±0.13) 1.27 (±0.13) 1.37 (±0.17) 
     

Crowded 1.31 (±0.16) 1.33 (±0.14) 1.34 (±0.11) 1.45 (±0.12) 
     

 

7.2.2 Variation of fixation stability with gain 

Figure 7.3 shows the variation of fixation stability with gain during visual 

acuity measurements: A – noncrowded acuity and B – crowded acuity. 

Gain had a significant effect on fixation stability (p < 0.001), but there was 

no effect of crowding (p = 0.23) or interaction of gain × crowding (p = 0.18). 

 

Fixation stability for crowded and noncrowded stimuli gain 0 (mean BCEA: 

9795 minarc2) was significantly better than all other gains (mean BCEA: 

21748 minarc2, p = 0.001 for gain 0.1; mean BCEA: 21748 minarc2; p < 
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0.001 for gain 1; mean BCEA: 17783 minarc2; p = 0.014 for gain 10). 

There was no significant difference in fixation stability between gain 0.1, 

1.0, and 10. BCEA values were in the same range as those found in 

previous studies (mean: 20361 minarc2, 95 %: 10160 minarc2 - lower limit: 

30561 minarc2 - upper limit ) (Bellmann et al., 2004, Crossland et al., 

2004b, Fletcher & Schuchard, 1997, Macedo, Nascimento, Gomes & 

Puga, 2007). 

 

 

Figure 7.3: Variation of fixation stability with gain during noncrowded (A) 

and crowded (B) visual acuity measurements. The length of the box is the 

interquartile range (25th – 75th percentiles) and whiskers represent the 5th 

– 95th percentiles. Inside the box: squares show the means and the 

horizontal lines show the median. BCEA was calculated in minarc2 and 

log10 transformed before statistical analysis to approximate a normal 

distribution. 
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7.2.3 Effect of gain on retinal image speed 

Figure 7.4 shows the variation of the eye speed and retinal image speed 

calculated offline during a typical trial for gain 10. In this trial no saccades 

were detected by our criteria. Frames when the retinal image speed was 

very high correspond to large overshoots of the target in the monitor that 

sometimes caused the perception of multiple targets. 

 

Retinal image speed was calculated for the inter-saccadic drift. 

Microsaccades were included because they were not detected by the 

saccade detection criteria. The baseline retinal image speed (gain 0) was 

8.7º.s-1, significantly higher than gain 0.1 (v = 4.8º.s-1) and gain 1 (v = 

3.0º.s-1); but significantly lower than gain10 (v = 12.4º.s-1). 

 

Figure 7.4: Profile of the eye speed (thick line) and retinal image speed 

(thin line) of the target during a typical trial for gain 10. 



Chapter 7 

- 121 - 

7.3 Discussion 

In this experiment I measured crowded and noncrowded visual acuity 

whilst compensating for fixation instability by controlling retinal image 

motion in patients with macular scotomas. The effects of controlling retinal 

image motion on visual acuity and on fixation stability are discussed 

separately.  

7.3.1 Effect of gain on visual acuity 

Compensating for fixation instability in people with macular disease failed 

to improve visual acuity: no compensation (gain 0), partial compensation 

(gain 0.1) and total compensation (gain 1) all produced similar acuity. 

These results suggest that fixation instability of these patients does not 

reduce visual acuity for briefly exposed stimuli. 

 

These results are in agreement with studies showing no reduction or some 

improvement in normal peripheral visual acuity for moving targets. In these 

studies retinal image motion was caused by normal fixational eye 

movements or was increased by manipulating the target’s velocity (Brown, 

1972b, Falkenberg et al., 2007, Millodot, 1966). In people with macular 

scotoma I expected improvement of visual acuity when motion was 

compensated because retinal image motion is naturally increased due to 

their fixation instability. The lack of a difference across gain 0, gain 0.1, 

and gain 1 for both crowded and uncrowded visual acuities might indicate 
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that:  

(i) Patients have adapted to the amount of retinal image motion caused by 

their “normal” fixation instability;  

(ii) Independently of any adaptation, fixation instability in patients is within 

the tolerance of the part of the retina they use during eccentric viewing 

(and that might be part of the reason why that area is used as the PRL);  

(iii) Limitations of our stabilization system reduced the size of any observed 

effect (see below). 

 

Crowded visual acuity was worse than noncrowded visual acuity. The 

difference of 0.071 logMAR units between acuities is within values found in 

previous studies. In other studies involving patients, the reduction for 

crowded acuity varied from 0.006 logMAR units (Pardhan, 1997) to 0.11 

logMAR units (Cacho, Dickinson, Reeves & Harper, 2007). Other studies 

found higher differences, up to 0.15 logMAR units, in healthy peripheral 

retina (Leat et al., 1999b).  

 

The effect of gain did not differ between crowded and noncrowded acuity. 

Previous studies showed that visual acuity measured with isolated letters 

would be minimally affected by very high levels of retinal image motion 

(Badcock & Wong, 1990, Deruaz et al., 2004). However, I expected higher 

variation between gains under crowded conditions because crowding 

would increase blur for high levels of retinal image motion (Morgan & 

Benton, 1989). In a study measuring peripheral acuity in healthy retina with 

jittering targets, Falkenberg et al. (2007) failed to find any interaction 
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between jitter and crowding. In the same study, reading speed for 

sequentially presented words reduced when jitter increased. The authors 

suggested that this occurred because jittering words increased crowding. 

 

Another contribution to the lack of interaction between gain and crowding 

is likely to be the characteristics of the participants. The group was small 

and heterogeneous regarding the PRL location. PRLs were in different 

directions from the fovea and at different eccentricities (as indicated by the 

visual acuity that can be seen in Appendix C), and it is known that retinal 

location changes the effect of crowding (Toet & Levi, 1992, Tripathy & 

Cavanagh, 2002). The number of patients was not sufficient to test the 

interaction between gain, PRL eccentricity and PRL direction (Fine & 

Rubin, 1999a, Fine & Rubin, 1999b, Petre et al., 2000).  

7.3.2 Effect of gain on fixation stability 

When retinal image motion was controlled by the eyetracker, the 

magnitude of eye movement during fixation increased when compared to 

no compensation (gain 0). However, it remained constant under all 

compensation conditions (gains 0.1, 1.0, and 10). Reduction in eye stability 

under compensation conditions was probably caused by target motion. 

Atypical smooth pursuit can occur when the target is perceptually moving 

despite the retinal image speed is zero, for example, when following an 

after image (Dubois & Collewijn, 1979, Wyatt & Pola, 1983). 
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Under the three compensation conditions eye instability (BCEA) remained 

constant. If fixation instability was caused by a mechanism to increase 

retinal image motion in order to maintain target’s visibility, the three gains 

should yield variation in eye stability. Accordingly, reduced retinal motion 

(gain 0.1 and gain 1) would increase eye instability and increased retinal 

motion (gain 10) would reduce eye instability. Based on their results, 

Deruaz et al. (2004) argued that training fixation control, leading to a 

reduction in retinal image motion, might reduce patients’ vision. They 

considered that fixation instability could be part of a mechanism to 

maintain the visual target moving between adjacent or separated loci in the 

retina. Our results show that eye instability was independent of the retinal 

image motion imposed by the 3 gains. This argues against a possible 

mechanism increasing eye instability to prevent low retinal image motion 

leading to improvements in patients’ vision. Recently, Reinhard et al (2007) 

observed that patients with macular disease tend to use separated or 

adjacent loci during visual tasks but they attributed that to patients’ poor 

adaptation to the disease (Reinhard et al., 2007). These results add 

evidence that fixation instability is a consequence of poor oculomotor 

control and not a strategy to enhance eccentric viewing. 

7.3.3 Limitations of the study 

The stabilization system has limitations due to the delay between the real 

eye movement and the time its effect is visible in the screen. Due to this 

delay the mean retinal image velocity for gain 0, gain 0.1 and gain 1 was 
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always below 10º.s-1, which might have reduced the size of any effect of 

these gains on visual acuity. Also, unstable fixation is likely to affect the 

overall effect of stabilization because relatively widely separated retinal 

areas might have been used for different eyetracker calibrations and/or 

drift corrections. This would lead to the optotype being stabilized in the 

peripheral retina but not always in the same area. 

 

A further limitation is that measurements were performed monocularly. 

These effects are likely to be applicable when viewing binocularly because 

binocular oculomotor behaviour is thought to be driven by the better eye 

(Kabanarou et al., 2006, Tarita-Nistor et al., 2006b). 

7.4 Conclusion 

This experiment shows that stabilizing the retinal image does not improve 

visual acuity in patients with macular disease. Increasing retinal image 

motion reduces visual acuity for crowded and noncrowded targets. This 

study gives further evidence that fixation instability is a consequence of 

impaired oculomotor control rather than an adaptation made to improve 

visual function. Training oculomotor control can improve reading speed 

without a significant improvement in acuity (Seiple et al., 2005). The next 2 

experiments explore the effects of correcting fixation instability in reading. 
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Chapter 8. Reading with 
simulated scotoma 

The ability to read with the peripheral retina is reduced by its poor 

resolution (Banks et al., 1991, Green, 1970, Mandelbaum & Sloan, 1947), 

reduced visual span (Cheong et al., 2008, Crossland & Rubin, 2006, 

Legge et al., 1997, Legge et al., 2007) and crowding (Bex et al., 2003, Leat 

et al., 1999b, Levi, 2008, Toet & Levi, 1992). Peripheral retina is also less 

able to control eye movements although the effect of this oculomotor 

impairment remains under scrutiny. 

 

There is evidence that poor saccade control leads to a reduction in reading 

speed (Bullimore & Bailey, 1995, Crossland & Rubin, 2006, McMahon et 

al., 1991, Rubin & Feely, 2009). People with macular scotoma make more 

forward and more regressive saccades than normal readers. Reading 

RSVP, instead of continuous text, reduces the need for saccades and 

leads to faster reading in simulated (Chung, Mansfield & Legge, 1998, Fine 

& Rubin, 1999b) and pathological scotoma (Rubin & Turano, 1994). RSVP 

reading can be faster when the exposure time is modulated by word size 

(Aquilante, Yager, Morris & Khmelnitsky, 2001, Arditi, 1999). Arditi et al 
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(1999) suggested that effect is caused as the time needed to read the 

word is based on its size and difficulty. RSVP reading is slower in people 

with pathological scotomas than in control subjects reading at similar 

eccentricities. People with pathological scotomas need to make intra-word 

saccades during RSVP and this might be due to their reduced visual span. 

Different authors proposed that occurs because peripheral retina used by 

normal-vision subjects is healthier than the peripheral retina used by low-

vision subjects (Cheong et al., 2007, Legge et al., 1997 350, Rubin & 

Turano, 1994). 

 

The need to make intra-word saccades can be reduced by presenting 

scrolling text. However, there is no difference between scrolled reading 

speed and RSVP reading speed for a low vision populations (Fine & Peli, 

1995, Fine & Peli, 1998). Neither RSVP nor scrolled text eliminates the 

effect of fixation instability that has been linked with reduced reading 

performance (Crossland et al., 2004a, Rubin & Feely, 2009, Seiple et al., 

2005). Unstable fixation might increase motion blur (Chung & Levi, 1997) 

to levels that lead to a reduction in contrast (Burr & Ross, 1982), reduction 

of visual span (Cheong et al., 2007, Cheong et al., 2008) and an increase 

of crowding (Bex et al., 2003, Falkenberg et al., 2007).  

 

In this experiment reading speed was measured in subjects with simulated 

scotoma whilst modulating the retinal image speed by presenting gaze-

contingent words. Reading speed was also assessed when intra-word 

saccades were possible (the screen was not blanked during saccades), 
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and when intra-word saccades were not possible (the screen was blanked 

during saccades) with words visible always left justified during fixations. 

Reading was assessed in upper and lower visual field to verify the optimal 

region of retina to read with. 

 

My expectation was that the fastest reading speed would be achieved 

when fixation instability was compensated and the screen was not blanked 

during saccades, in the lower visual field. 

8.1 Specific method 

8.1.1 Participants 

Eight normally sighted subjects served as observes in this experiment. All 

were naïve to the purpose of the study. One subject participated in the 

acuity experiment (Chapter 6). Subjects were aged between 25 and 31 

years old and no participants had any eye or neurological disease. All were 

native English speakers. See section Chapter 4 for further participants 

information. 

8.1.2 Apparatus 

The eyetracker and monitor settings have been described in sections 4.3 

and Chapter 6. The exposure time was controlled by two Quest staircases, 

applied to the upper and the lower field independently, as described in 

section 4.3.3.3. 
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8.1.3 Stimuli 

Sentences were presented using RSVP. Font size was selected based on 

the resolution obtained in Chapter 6. At 5 deg eccentricity, crowded visual 

acuity was 1.3 logMAR at 50 cm, (x-height 1.8 cm, equivalent to a visual 

angle of 1.7º). This text size has been used in other reading studies at the 

same eccentricity (Chung, 2002). The sentence database was generated 

using the method described in section 4.3.3.5. Sentences were 

constructed of 5 words (Crossland, 2008). The profile of word length, in 

characters, is shown in Figure 8.1.  

 

 

Figure 8.1: Distributions of word lengths in the sentence database. 
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Words were presented, left justified at 5º (distance gaze position-centre of 

the letter) above or below the fovea as shown in Figure 8.2. The first word 

was preceded by a row of capital Xs and a beep. The last word was 

followed by a noise mask. No feedback was given. 

 

Figure 8.2: The sequence of stimuli in the monitor in a complete trial during 

RSVP. Text was white against a black background. The cartoon in the first 

panel shows the distance, in visual angle, between the eye and the word 

centre that was kept constant at 5º. 

8.1.4 Procedure  

Observers were positioned 50 cm away from the monitor resting the chin in 

a chinrest. Reading speed was measured using the dominant eye and the 

fellow eye was patched. To read aloud subjects were allowed to raise their 

chin, slippage of the eyetracker headband was corrected by drift correction 
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before every trial. Two blocks of practice was performed, under randomly 

chosen conditions, before data collection. In addition, one block of practice 

was performed each day that new data were collected. Different sets of 

sentences were used for data collection and practice. 

 

Six blocks were performed in each data collection session, with the two 

sessions being separated by one week or more. A break was given every 

two blocks. Sentences did not repeat within a session. 

 

Table 8.1: The 6 conditions in which reading speed was measured 

Condition word velocity gain screen during saccades 

1 0 NA (0) not blanked
2 eye vel. 1 blanked
3 10 × eye vel. 10 blanked
4 0.1 × eye vel 0.1 not blanked
5 eye vel. 1 not blanked
6 10 × eye vel. 10 not blanked

 

Word motion was modified according to the conditions in Table 8.1. 

Baseline data (condition 1) were collected with stationary words being 

presented in the monitor centre. In all other conditions words were 

presented under gaze-contingent conditions using the eyetracker. Eye 

movements were modulated by gain as described in section 4.3.3.3 to 

change the stability of the words during fixations. Saccades were detected 

by the criteria described is section Chapter 6. Briefly, gain 1 corresponds 

to compensated fixation instability, gain 10 corresponds to over-

compensated fixation instability, and gain 0.1 corresponds to semi-
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compensated fixation instability. 

 

In conditions 2 & 3 the screen was blanked during saccades. During 

fixations words were visible and moved in accordance with the fixation 

compensation level of the condition. The screen was blanked during 

saccades. During frames in which the monitor was blanked the word 

position was updated based on the real eye position (not modulated by 

gain), to avoid possible positional errors in the first frame after a saccade.  

 

In conditions 4-6 intra-word saccades were possible because the screen 

was not blanked. As in the previous conditions, during fixations words 

moved in accordance with the fixation compensation level of the condition. 

During saccades, words remained fixed on the screen horizontally but 

were moved vertically to compensate the vertical component of saccades. 

Trials were repeated if the vertical amplitude of saccade was >1º or any 

part of the word was placed outside the screen. Drift correction was 

applied between sentences. 

 

Sentences were considered as correct when four of five words were 

reported correctly (80% accuracy criterion). 

8.1.5 Data analysis 

Eye movements were computed offline using a program written in Matlab 

which computed the number of saccades per run, drift amplitude, drift 



Chapter 8 

- 133 - 

velocity, and retinal image speed during periods when the words were 

visible. Saccades were detected by the eyetracker algorithm according to 

the criteria defined in Chapter 6 and were selected from the raw data file 

using a Matlab program, see Appendix D for a program example. 

8.2 Results 

8.2.1 Reading speed  

Reading speed for condition 2 (compensated fixation instability, screen 

blanked during saccades) was significantly higher than baseline, with a 

mean improvement of 23% (p = 0.039). Reading speed was not 

significantly different to baseline for all other conditions. Results for each 

condition are summarized from Table 8.2 and Figure 8.3. 

 

Table 8.2: Summary of the effects of each condition on reading speed. 

Differences were obtained by subtracting results for conditions in the first 

column from the condition defined in the remaining columns headings. 

 Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 Cond. 6
Cond. 1 - -0.23* 0.15 -0.076 -0.21 0.14 
Cond. 2 - - 0.38*** 0.16 0.018 .037*** 
Cond. 3 - - - -0.23* -0.36*** 0.01 
Cond. 4 - - - - -0.14 0.22 
Cond. 5 - - - - - -0.35*** 

§ Significance levels are: 0.05 (*), 0.01 (**), and 0.001 (***) 
 

 

Reading speed improved from the first to the second data collection 
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session, mean improvement 20.9% (p = 0.01). Reading speed in the upper 

field was similar to that in the lower field (p = 0.41). 

 

 

Figure 8.3: Reading rate for 6 conditions, rates shown were obtained after 

dividing results for each condition by results for condition 1. condition 1: 

baseline - no compensation; condition 2: gain 1 & screen blanked during 

saccades; condition 3: gain 10 & screen blanked during saccades; 

condition 4: gain 0.1 & screen not blanked during saccades; condition 5: 

gain 1 & screen not blanked during saccades; condition 6: gain 10 & 

screen not blanked during saccades. 
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8.2.2 Retinal image speed during fixations 

As expected retinal image speed was much higher than baseline for 

conditions with gain 10 and reduced to about ½ of baseline RIS for 

conditions with gain 1. RIS for gain 0.1 was not significantly different from 

baseline. All results are summarized in Figure 8.4 and Table 8.3 

 

 

Figure 8.4: Retinal image speed for the 6 conditions. condition 1: baseline - 

no compensation; condition 2: gain 1 & screen blanked during saccades; 

condition 3: gain 10 & screen blanked during saccades; condition 4: gain 

0.1 & screen not blanked during saccades; condition 5: gain 1 & screen not 

blanked during saccades; condition 6: gain 10 & screen not blanked during 

saccades.
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Table 8.3: Comparison of the retinal image speed in all conditions. 

Differences were obtained by subtracting results for conditions in the first 

column by the condition defined in the remaining columns headings. 

 Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 Cond. 6
Cond.1 - 0.49*** - 0.68*** 0.23 0.48*** -0.59*** 
Cond. 2 - - -1.17 -0.26 -0.01 -1.08*** 
Cond. 3 - - - 0.91*** 1.16*** 0.08 
Cond. 4 - - - - -0.25 -0.82*** 
Cond. 5 - - - - - 1.07*** 

§ Significance levels are: 0.05 (*), 0.01 (**), and 0.001 (***) 

8.2.3 Fixation duration 

The effect of gain was significant for fixation duration (p = 0.002) as it was 

the effect of session (p < 0.001). Fixation duration for conditions 3 & 6 was 

significantly prolonged compared with condition 5, mean difference was 

15% in both cases (p = 0.02). The mean reduction in fixation duration from 

session 1 to session 2 was 10%. 
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Figure 8.5: Fixation duration for the 6 conditions. condition 1: baseline - no 

compensation; condition 2: gain 1 & screen blanked during saccades; 

condition 3: gain 10 & screen blanked during saccades; condition 4: gain 

0.1 & screen not blanked during saccades; condition 5: gain 1 & screen not 

blanked during saccades; condition 6: gain 10 & screen not blanked during 

saccades. 

8.3 Discussion 

This experiment investigated the effect of fixation instability when reading 

with simulated central scotoma. Reading speed increased when fixation 



Chapter 8 

- 138 - 

was compensated (gain 1)1 and reduced when fixation was over-

compensated (gain 10).  

 

When fixation was over-compensated retinal image speed was ~60% more 

than the limit that observers would experience normally. Unstable fixation 

is likely to cause a reduction in reading due to motion blur by:  

i) Increasing spatial thresholds (Burr, 1980, Burr & Ross, 1982, 

Chung & Bedell, 2003, Chung & Levi, 1997) as seen in Chapter 6 

for crowded letters;  

ii) Increasing spatial interference (Bex et al., 2003, Chung & Bedell, 

1995, Chung, Legge & Tjan, 2002, Falkenberg et al., 2007, Levi, 

Klein & Aitsebaomo, 1985);  

iii) Indirectly, by reducing contrast sensitivity (Burr & Ross, 1982) 

that reduces visual span (Legge et al., 1997). 

 

It is surprising that in condition 5 reading speed was not different from 

baseline. Here fixation was compensated and intra-word saccades were 

allowed, which should allow scanning of longer words and effective 

reading. Legge et al (2001) estimated that visual span at 5º eccentricity in 

normal retina should be 10 or more characters (Legge et al., 2001). Given 

the size of the words used (10 characters or less, Figure 8.1), scanning 

should not be necessary because the visual span covered all characters. 

In these conditions intra-word saccades were not important for reading. 

 
                                            
1 Fixation compensated and screen blanked during saccades 
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Fixation duration was higher for gain 10 (condition 3 & 6) than for all other 

conditions. Legge et al (1997) found that prolonged fixations occur when 

contrast is reduced. In the current experiment over-compensating fixation 

instability might also have caused contrast reduction due to motion blur. 

Falkenberg et al (2007) speculated that the additional time it takes to read 

scaled text has to do with moving “peripheral attention” along the word due 

to a limited visual span. These two explanations are linked because, as 

Legge et al (1997) showed, contrast reduction results in shrinkage of visual 

span, leading to prolonged viewing (Legge et al., 1997).  

 

No difference has been found between the upper and the lower visual field. 

The distribution of retinal ganglion cells implies better resolution in the 

lower field (Curcio & Allen, 1990, Green, 1970), but reading does not 

correlate with resolution and cannot be predicted by cell density (Legge et 

al., 1992, Petre et al., 2000). Factors such as attention (Altpeter, 2000, He 

et al., 1996) and oculomotor control (Skrandies, 1987) also influence 

reading rates. An additional source of variability in reading speed is word 

information from the upper part of a word (Fiset, Blais, Ethier-Majcher, 

Arguin, Bub & Gosselin, 2008). The lack of control for these variables may 

explain the reason why the field effect was not visible in this experiment. 

 

Reading speed improved from session 1 to session 2. Practice normally 

leads to better performance in the peripheral retina. This is due a 

combination of improvements in attention, oculomotor control (Fornos et 

al., 2006, He et al., 1996, Lee, Kwon, Legge & Gefroh, 2010, Zeevi & Peli, 
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1979) and, eventually, perceptual learning (Yu, Legge, Park, Gage & 

Chung, 2010).  

8.3.1 Limitations 

The limitations of our stabilization system have been discussed in section 

6.3. 

8.4 Conclusion 

In summary, when fixation instability was compensated reading speed 

increased and reduced when fixation instability was over-compensated. 

Fixation instability increases retinal image motion which might be causing 

motion blur leading to worse visual performance. 
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Chapter 9. Reading with 
compensation for 
fixation instability 
at the PRL 

People with central scotoma read RSVP more slowly than control subjects, 

reading at the same eccentricity, or subjects with low vision but without 

central scotoma. While comparing page reading with RSVP, Rubin & 

Turano (1994) found that in patients with central scotoma RSVP reading 

speed increases by a factor of 1.5 and in patients without central scotoma, 

it increases by a factor of 2.1. The modest improvement observed in 

patients was justified by the time that patients need for planning and 

execute intra-word saccades and by a possible extension of the retinal 

lesion outside the visible area. It has been suggested that scrolling text, 

that does not require saccades planning, could be more beneficial than 

RSVP. Fine & Peli (1995) compared RSVP with scrolling text and failed to 

found differences in reading speed in these two formats. Fixation instability 

is likely to have a role on reducing reading speed but none of these 

formats compensates for it. Results of the previous experiment (Chapter 8) 

showed that fixation instability can be detrimental for RSVP in normal 
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control subjects. 

 

In this experiment reading speed was measured in subjects with macular 

disease whilst modulating retinal image speed by presenting gaze-

contingent words. The aim was to assess the effect of compensating for 

fixation instability on RSVP reading speed. It was expected that reading 

speed would improve for conditions where fixation instability was 

compensated, particularly, when intra-word saccades were permitted. 

9.1 Specific method 

9.1.1 Participants 

Five patients with macular disease and dense central scotomas in both 

eyes were recruited. Two subjects had also participated in the acuity 

experiment (Chapter 7). No participants had any eye or neurological 

disease and all were native English speakers. Relevant clinical information 

about these subjects is summarized in Table 9.1. 
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Table 9.1: Participants’ characteristics including PRL location. PRL 

location was defined according to the convention defined in section 4.4. 

The images of microperimetry can be seen in Appendix C. CPS: Critical 

Print Size at 20 cm; MRS: Maximum Reading Speed. 

ID Age/Sex VA 
(LogMAR) 

Eye 
tested 

CPS 
(LogMAR) 

MRS 
(wpm) 

PRL 
location 

S1 71/F 1.0 RE 1.7 80 Left 

S2 54/F 0.7 LE 1.5 120 Below 

S3 86/F 0.9 RE 1.5 60 Right/Below 

S4 57/M 0.8 RE 1.2 150 Left 

S5 54/M 1.0 RE 1.4 150 Right 

9.1.2 Clinical tests 

Distance visual acuity measurements were made with an ETRDS chart. 

Critical print size was assessed using the MNREAD acuity chart at 20 cm. 

For testing at 20 cm appropriate refractive correction was provided. Clinical 

tests have been described in section 4.2. 

9.1.3 Apparatus  

The eyetracker and monitor settings have been described in section 4.3. 

Participants had their PRL location characterized by microperimetry as 

described in section 4.4, microperimetry results can be seen in Appendix 

C, Appendix Table 8. Word exposure time was controlled by a Quest 

staircase (section 4.3.3.5). 
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9.1.4 Stimuli  

Words were presented centred with respect to gaze position. Text size was 

scaled according to the critical print size measured by the MNREAD test 

(Table 9.1, see section 4.2.3 for details).  

 

Figure 9.1: Distribution of word lengths in the sentence database. 

 

The sentence database was generated using the method described in 

section 4.3.3.5 (Crossland et al., 2008). The original set of sentences was 

filtered to exclude those with maximum word length of more than six 

characters. This was needed to reduce the number of times the word 

reached the boundaries of the monitor given the large size of the text. The 

distribution of word length is shown in Figure 9.1. The number of 
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characters per sentence was between 16 and 20 plus spaces. The first 

word was preceded by a row of capital Xs and a beep; the last word was 

followed by a noise mask (Figure 9.2). No feedback was given. 

9.1.5 Procedure 

The eye with the best visual acuity was tested at a viewing distance of 50 

cm. The fellow eye was occluded with an eye patch. The procedure for 

data collection and pre-experiment practice were the same as those 

described in section 8.1.4. In brief, in condition 1, words appeared at a 

fixed location at the centre of the screen (no compensation). In condition 2 

the word location was updated every 10 msec to compensate for fixation 

instability. If the patient made a saccade the screen was blanked and the 

eye and word velocities were the same (gain 1, screen blanked during 

saccades). Condition 3, compensation for fixation instability and during 

saccades the text remained visible (gain 1; screen not blanked during 

saccades). In condition 4, instability was over-compensated, the text 

velocity was 10× the eye velocity. During saccades the text remained 

visible and static (gain 10; screen not blanked during saccades). Reading 

speed was assessed twice under each of the four conditions (Table 9.2), 

for a total of 8 blocks of 30 sentences each.  

 

Trials were repeated when the eyetracker lost eye position or the word 

went out of the screen. Sentences were considered as correct when 3 out 

of 4 words were read correctly (75% accuracy criterion). 
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Figure 9.2: The sequence of stimuli in the monitor in a complete trial during 

RSVP. Text was presented white against a black background. The first 

word was preceded by a row of Xs and the last word was followed by a 

noise mask. 

 

Table 9.2: Conditions in which reading speed was measured 

Condition word velocity gain screen during saccades 

1 0 NA (0) Not blanked
2 eye vel. 1 Blanked
3 eye vel. 1 Not blanked
4 10 × eye vel. 10 Not blanked
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9.1.6 Data analysis 

As in the previous experiment (Chapter 8) a Matlab programme was used 

to select the eye movements data (see Appendix D). Results for conditions 

2, 3 & 4 were normalized with respect to condition 1 (no compensation), 

prior to statistical analysis to factor out differences in baseline reading 

speed across subjects. 

9.2 Results 

9.2.1 Reading speed 

Figure 9.3 shows individual reading speed for all conditions. Inter-

individual results are variable but results for each condition are consistent. 

Figure 9.4 shows the comparison between conditions considering mean 

results from all participants. 

 

Reading with gain 1 (condition 3) was 40% faster (p = 0.034) than baseline 

(condition 1), and 55% (p = 0.01) faster than in condition 4 (gain 10). 

Reading speed for condition 4 (gain 10) was not significantly different from 

baseline. Values are given in Table 9.3. 
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Figure 9.3: Individual reading speeds for the four conditions. The black 

columns represent slow readers, S1 & S3, and white columns, fluent 

readers. A fluent reader was defined as someone reading more than 80 

words per minute and a slow reader as someone reading less than that.  

See Table 2.1. 

 

The Ratio RSVP/MNREAD in the last column of Table 9.3 does not aim to 

show any advantage of RSVP over MNREAD because these values are 

not directly comparable. The most evident difference is in the metric. 

MNREAD was measured at 100% correct while RSVP was measured at 

75% correct. This ratio only reassures that in this experiment RSVP 

reading was generally faster. The opposite would contradict the 

assumptions of this thesis (Chapter 3).  
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Figure 9.4: Variation of reading speed with condition. Condition 1: baseline 

- no compensation; condition 2: gain 1 & screen blanked during saccades; 

condition 3: gain 1 & screen not blanked during saccades; condition 4: gain 

10 & screen not blanked during saccades. 

 

Table 9.3: Summary of the main results. The summary includes mean 

value for: retinal image speed (RIS), reading speed in words per minute 

(wpm) and the RSVP gain compared with MNread in the last column. 

Numbers in square brackets show 95% confidence intervals.  

Condition
 

Vel. drift 
(ºs-1) 

Amp. drift 
(minarc) 

RIS 
(ºs-1) 

Reading 
(wpm) 

Ratio 
RSVP/MNREAD 

1 5.8 [±1.2] 18.0 [±5.0] 5.8 [±1.2] 161.0 [±71.1] 1.4  
2 6.9 [±1.6] 42.9 [±17.3] 3.0 [±0.7] 189.4 [±98.5] 1.5 
3 6.5 [±1.7] 42.0 [±19.4] 2.9 [±0.7] 215.8 [±96.3] 1.8 
4 6.7 [±1.8] 40.1 [±16.6] 12.4 [±2.9] 110.9 [±29.3] 1.0 
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9.2.2 Retinal image speed 

Retinal image speed was calculated offline by computing the slip of the 

retinal image during fixation. RIS for conditions 2 and 3 were 48% lower 

than for condition 1 (p = 0.004). RIS for condition 4 was 114% higher than 

condition 1, more than twice the normal RIS. RIS for condition 4 

(overcompensation) was 162% higher than condition 2 and 3, that is, 

almost three times RIS for the compensated conditions (see  

Table 9.3 for a summary) 

 

Figure 9.5: Variation of retinal image speed (RIS) during fixation. Condition 

1: baseline - no compensation; condition 2: gain 1 & screen blanked during 

saccades; condition 3: gain 1 & screen not blanked during saccades; 

condition 4: gain 10 & screen not blanked during saccades. 
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9.2.3 Saccade rate  

Saccade rate (saccades per word) remained constant for all conditions 

with a mean value of 1.45 saccades per word (range 0.6 - 2.7). The ratio of 

saccades per word was correlated with word length (Pearson's correlation 

coefficient = 0.131, p = 0.032). 

9.2.4 Fixation duration and drift amplitude 

 

Figure 9.6: Variation of drift amplitude with condition. Condition 1: baseline 

- no compensation; condition 2: gain 1 & screen blanked during saccades; 

condition 3: gain 1 & screen not blanked during saccades; condition 4: gain 

10 & screen not blanked during saccades.  
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Drift amplitude for conditions 2, 3 and 4 was higher than for baseline. The 

mean difference for condition 2 was 1.3 (p = 0.001), for condition 3 was 1.2 

(p = 0.004) and for condition 4 was 1.2 (p = 0.005). 

 

Fixation duration for condition 4 was higher than in condition 2 (mean 

difference: 0.25; p = 0.013). Fixation duration for conditions 2, 3 and 4 

were not significantly different from baseline.  

 

 

Figure 9.7: Variation of fixation duration with condition. Condition 1: 

baseline - no compensation; condition 2: gain 1 & screen blanked during 

saccades; condition 3: gain 1 & screen not blanked during saccades; 

condition 4: gain 10 & screen not blanked during saccades.  
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9.3 Discussion 

In this experiment RSVP reading speed of five patients with macular 

disease was measured under four conditions. Reading speed improved, 

compared with baseline, for condition 3, where fixation instability was 

compensated (gain 1) and the screen was not blanked during saccades. 

That is in agreement with the results obtained in Chapter 8 with normal 

sighted subjects reading with the peripheral retina; unlike in Chapter 8, for 

people with real scotoma intra-word saccades were necessary. All 

participants improved in condition 3. Slow readers did not seem to slow 

further in condition 4 but read slower in condition 2. Fluent readers 

improved in condition 2, but reduced in condition 4. These results seem to 

indicate that slow readers rely more on intra-word saccades and are more 

tolerant to high RIS than fluent readers. 

 

Improvement in reading speed is likely to be due to reduction in motion 

blur achieved through reduction in retinal image speed. The difference 

between normal RSVP and condition 3, where patients read faster, is 

essentially retinal image speed, because in both cases intra-word 

saccades were possible. There is further evidence that high RIS is 

detrimental for reading. For example results obtained in condition 4 (gain 

10, high RIS) where the difference condition 4-condition 3 increased by 

15% compared with the difference baseline-condition 3. Also, it is known 

that fixation duration increases with decreasing visibility of the content, that 

might the reason for prolonged fixations found in condition 4 (Hooge & 
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Erkelens, 1996). 

 

Compensating for fixation instability might help to maintain the alignment of 

the PRL with the word but that alone could not explain the improvement in 

reading (Bullimore & Bailey, 1995, Deruaz et al., 2002). For example, in 

condition 4 where words were aligned with the PRL but RIS was high, 

reading speed reduced compared with condition 3. Therefore, fixation 

instability has a role to play and that is consistent with previous studies 

showing detrimental effects of fixation instability for reading (Crossland, 

2004, Crossland et al., 2004a, Falkenberg et al., 2007). 

Intra-word saccades were important during RSVP. Condition 2, with RIS 

similar to condition 3 but without intra-word saccades, failed to produce 

higher reading speed than baseline. The ratio of character size to saccade 

amplitude was approximately: 1 character per saccade (maximum: 2 

char/sac; minimum = 0.6 char/sac). Saccade ratio per word and characters 

per saccade were the same for all conditions. These results are similar to 

previous studies (Bullimore & Bailey, 1995). Reading rates for the 

MNREAD test (Table 9.1) show that some participants were below or 

borderline for fluent reading (80 wpm) which is thought to correspond to a 

visual span of four characters (Whittaker & Lovie-Kitchin, 1993b). About 

80% of the words used in this experiment had 4 or more characters (see 

Figure 9.1); thus, it is likely that saccades served to scan the words. 

Previous studies also showed that intra-word saccades are likely to be a 

consequence of patients’ reduced visual span (Cheong et al., 2008, Legge 

et al., 1997). The number of saccades per word was the same under all 
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conditions and was correlated with word length, which is in agreement with 

the hypothesis that patients need intra-word saccades because they have 

reduced visual span (Crossland & Rubin, 2006, Legge et al., 1997). 

 

Previous studies using scrolling or/and RSVP text showed that it is 

possible to improve reading by reducing the effect of impaired saccades. 

Here we extended these findings by showing that further gains in reading 

speed can be obtained by reducing RIS caused by fixation instability. This 

contradicts the idea of a beneficial effect of fixation instability for patients, 

as suggested by Deruaz et al (2004), and is in agreement with studies 

showing that patients with good fixation normally read faster than patients 

with similar acuity but poorer fixation (Crossland et al., 2004a). 

9.3.1 Limitations  

The compensation technique used in this experiment is likely to elicit 

atypical smooth pursuit as evidenced by the increased drift amplitude 

found in all stabilized conditions (2-4). As discussed in section 7.3.3, 

atypical smooth pursuit that can occur when the target is moving despite 

retinal image speed is close to zero (Dubois & Collewijn, 1979, Wyatt & 

Pola, 1983). This limitation is in part caused by the limitations of the 

stabilization instruments discussed in section 6.3. It is particularly 

important to emphasise the fact that our stabilization system relies in 

calibration using point targets. Recently, Crossland et al (2010) showed 

that patients use different PRLs for point targets and reading using the 
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MP1 microperimeter, although it is not possible to know if the same 

happens with the eyetracker (Crossland, Crabb & Rubin, 2010).  

9.4 Conclusion 

This experiment showed that gaze-contingent text can reduce the effect of 

oculomotor impairment with benefits for reading in patients with macular 

disease. Reading speed was improved by correcting fixation instability 

whilst allowing intra-word saccades. 
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Chapter 10. General 
discussion 

Poor oculomotor control reduces visual function in people with macular 

scotoma. While saccadic control has been extensively studied and some 

solutions have been proposed, fixation instability has received 

considerably less attention. It is possible that fixation has received less 

attention because it had been considered less detrimental to visual 

function or because these experiments are technically complex.  

  

Several authors in the 80’s and early 90’s noticed that people with macular 

disease have unstable fixation when compared with healthy controls 

(Culham et al., 1993, McMahon et al., 1991, Timberlake et al., 1986, 

Whittaker et al., 1988). Whittaker for example stated that for fixations 

above 300 msec, given the typical drift velocities that he found, the PRL 

could be moved away from the target. Schuchard (1994) suggested that 

fixation instability would be a limiting factor for reading and in 2004 

Crossland (2004) found that 25% of the variability in reading speed among 

patients with MD was explained by fixation instability (Crossland, 2004, 

Schuchard & Fletcher, 1994). Further evidence regarding the importance 
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of fixation (in)stability was given by Seiple and colleagues in 2005. Seiple 

administered a training protocol aiming to improve oculomotor control; no 

direct reading training was provided. Patients improved their reading speed 

significantly, compared to the baseline. Progress was attributed to 

improvements in oculomotor control and not due to practice reading 

(Seiple et al., 2005). 

10.1 Primary purpose of this work 

The aim of this thesis was to investigate whether compensating for 

oculomotor instability would improve visual performance for people with 

macular disease. The primary objective was to illustrate whether fixation 

instability reduces visual function. Additional aims included the evaluation 

of the best stabilization settings to compensate for oculomotor deficits. 

10.1.1 Visual function assessment 

The effect of oculomotor control has been assessed in two visual tasks: 

visual acuity and RSVP reading. These have different visual, oculomotor 

and cognitive requirements (Thorndyke, 1977). Cognitive requirements are 

beyond the scope of this thesis and will therefore not be discussed. Visual 

acuity requires identification of the visual target and good fixation control 

(Thibos & Bradley, 1993), whereas reading requires visual input and 

cognitive processing. In the latter, oculomotor control is more critical, and 

both good saccade control as well as fixation are necessary (Bouma & 
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Voogd, 1974, Rayner & Pollatsek, 1987, Starr & Rayner, 2001). 

 

Acuity is reduced by the poor resolution of the peripheral retina, by 

crowding, and by high retinal image speed (Bex & Dakin, 2005, Bex et al., 

2003, Chung & Bedell, 1995, Pascal & Abadi, 1995). Reading, however, is 

susceptible to further limitations of the peripheral retina, such as reduced 

visual span (Bouma, 1970, Legge et al., 2007), slow visual processing 

(Cheong et al., 2007), and poor oculomotor control (Bouma & Voogd, 

1974, Bullimore & Bailey, 1995, Oregan, 1980, Rayner & McConkie, 1976). 

The different requirements for acuity and reading limit the comparisons 

between experiments. Results from reading and acuity are generally 

discussed separately. 

10.1.2 Real and simulated scotoma 

This thesis studied peripheral visual function with simulated scotoma and 

scotoma caused by macular disease. There are several differences 

between simulated and real scotoma, one principal difference is its 

awareness. In many cases simulated scotoma is visible to the subjects; 

however, it is believed that people with real scotoma do not see it neither 

see its contours (Fletcher & Wichita, 2010). Furthermore, people with 

central scotomas caused by macular disease are often unaware that they 

use a PRL in the peripheral retina (Crossland et al., 2005, Schuchard & 

Raasch, 1992b, White & Bedell, 1990).  
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Simulated scotoma are different from those caused by macular disease 

because they correspond to an acute change in vision. Contrary to 

simulated, scotoma caused by dry macular disease cause progressive loss 

of central vision giving people time to develop new viewing strategies. 

People performing visual tasks with simulated scotoma do not have time to 

develop equivalent viewing skills. Additionally, in simulated scotoma the 

peripheral retina is completely healthy while in macular disease that might 

not be the case (as discussed below). Simulated scotoma used in this 

thesis was invisible so as to minimize the visual cues to our normal sighted 

participants. Despite these limitations, results from simulated scotoma 

remain the best way to study functional changes in macular disease when 

it is not desirable or possible to involve patients. 

10.2 Main findings 

In normal peripheral retina compensation of fixation instability caused by 

simulated scotoma (gain 0) had distinct effects on reading and on visual 

acuity. In the case of the positions and eccentricities tested, acuity 

improved very slightly in some of the gaze contingent conditions compared 

with gain 0 (the baseline condition). For noncrowded acuity there was an 

improvement of 0.04 logMAR for gain 0.1 and gain 1 compared with gain 

0. For crowded acuity no significant difference was found between gains: 

0, 0.1 and 1. Interestingly, gain 10 caused improvement in nonwcrowded 

visual acuity of 0.03 logMAR compared with gain 1 and gain 0.1. 

Conversely the same gain 10 resulted in an equivalent reduction for 



Chapter 10 

- 161 - 

crowded acuity (the amount of reduction varied with eccentricity and 

position).  

 

For reading, a detrimental effect of typical fixation instability was found 

(typical fixation instability corresponds to condition 1 - gain 0). By 

comparing condition 1 to conditions 2 and 5 (conditions with gain 1) in 

Chapter 8, an improvement in reading speed of 23% was observed for 

condition 2 (instability compensated and screen blanked during saccades). 

Interestingly the difference between condition 1 and 5, where the screen 

was not blanked during saccades (intra-word saccades were possible), 

was not statistically significant. Possible causes of the lack of improvement 

in condition 5 have been discussed in Chapter 8. 

 

In people with macular disease the effect of compensating for fixation 

instability was also different for visual acuity and reading. No significant 

improvement in acuity was obtained when comparing fully compensated 

fixation instability (gain 1), to no compensation (gain 0 corresponds to 

typical fixation instability). This result was similar for both acuities: crowded 

and nonwcrowded. For reading, compensating for fixation instability 

(condition 3, gain 1 and screen not blanked during saccades) led to an 

improvement in reading speed of 40%. In condition 3 intra-word saccades 

were permitted. This was fundamental to the obtained consistent 

improvements for all participants (Chapter 9). When intra-word saccades 

were not permitted (condition 2) poor readers read slower compared with 

normal RSVP reading(condition 1), probably because saccades are 
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necessary to compensate for their narrow visual span. Fluent readers only 

reduced reading speed when fixation instability was over-compensated 

(gain 10 - condition 4), though this did not cause poor readers read slower 

(compared with condition 1). The resistance that poor readers showed to 

high levels of retinal image speed might be explained by their baseline 

poor reading speed. The longer word exposures they require make motion 

blur less detrimental to reading than it does to fluent readers. 

 

In brief, fixation instability was compensated for by using three main 

conditions full-compensation of instability (gain 1), over-compensation of 

instability (gain 10) and semi-compensation of instability (gain 0.1). In the 

reading experiments further conditions were introduced by making intra-

word saccades permitted or not permitted. The condition that produced the 

best visual performance was different for participants with macular disease 

and participants with simulated scotoma. Similarities and differences 

between these experiments are discussed below. 

10.2.1 The best condition with simulated scotoma 

The most interesting result in nonwcrowded visual acuity was the 

improvement observed when fixation instability was over-compensated 

(gain 10). Despite being statistically significant this improvement is 

clinically irrelevant (less than half a line difference on an ETDRS acuity 

chart (Bailey & Lovie, 1976)). As reported above, there was also 

improvement for gain 0.1 and gain 1 compared with gain 0. These results 
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are not totally comparable because for gain 0, acuity was measured with a 

fixation target and the optotype was exposed only for 200 msec. The 

reasons for using these settings and their implications have been 

discussed in Chapter 4 and Chapter 6. Essentially, in the baseline 

condition it was always necessary to use a fixation target though this 

eliminated the principle of a simulated scotoma.  

 

Reading improved significantly in only one of the five conditions: when 

fixation instability was compensated and intra-word saccades were not 

possible (Condition 2). The effect of allowing intra-word saccades was not 

visible in control subjects (condition 5), presumably due to their fast 

reading speed. The word exposure time was between 120-160 msec, less 

than the typical saccadic latency (Carpenter, 1988). All this provides 

evidence that the combination of simulated scotoma size and word length 

permits the processing of all word information during one fixation. As 

discussed before, the number of characters of most words was within the 

visual span expected for 5º eccentricity, as it was found in previous 

research (Legge et al., 2001). 

10.2.2 The best condition with macular disease 

In macular disease neither crowded nor noncrowded acuity improved 

under the conditions that were tested. The resolution (visual acuity) 

obtained for participants in the experiment described in Chapter 7 was very 

low compared with the resolution of the simulated scotoma (Chapter 6). As 
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a consequence of poor resolution the visual system gets more tolerant to 

higher amounts of retinal image motion. This has previously been 

discussed by Kelly and in section 1.2.2 of this thesis (Kelly, 1985). Given 

these characteristics of the visual system, even with more efficient 

stabilization the effect would probably not be visible for such reduced 

resolutions.  

 

Reading speed improved when fixation was compensated and intra-word 

saccades were possible. With full compensation, gain 1, a reduction of 

approximately 50% in retinal image speed was obtained, Figure 9.5. 

Reading is a more complex task than resolution thus here, reduction in 

retinal image motion blur was beneficial. Reduction in motion blur might 

help to relieve deficits of the peripheral retina that influence reading 

(previously discussed in section 2.2). The need for saccades, contrary to 

what was found in simulated scotoma, is likely to be due to the reduced 

visual span that is typical in people with macular disease (Cheong et al., 

2008, Rubin & Turano, 1994).  

10.2.3 Retinal image speed reduction: oculomotor 
consequences 

Some authors have suggested that low retinal image speed in the central 

retina could trigger a mechanism that disrupts eye stability (Engbert & 

Mergenthaler, 2006, Martinez-Conde et al., 2006). These findings would 

give some credit to the suggestion made by Deruaz in 2004 that fixation 

instability observed in people with a macular scotoma might be part of the 
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strategy of the visual system to improve perception (Deruaz et al., 2004). 

However, contrary to what Deruaz suggested, compensating instability 

(gain 0.1 or gain 1) did not reduced acuity and in fact over-compensating 

instability did (Chapter 7). Additionally, when retinal image speed was 

reduced by stabilization, the visual system did not seem to try to 

“unstabilize” the eye. As seen in Chapters 1 and 2, people with macular 

disease might have disturbances in the flow of information through the 

pathways responsible for fixation control. An eventual attempt by the visual 

system to increase retinal image speed would enhance oculomotor 

impairment. These predictions do not agree with BCEA values found in 

Chapter 7.  

 

Results of this thesis are not in agreement with what has been found in 

central retina by Engbert and Mergenthaler (2006) nor with the suggestion 

made by Deruaz et al. (2004) for people with macular disease. Fixation 

instability measured under different conditions gives evidence that 

instability is not a strategy of the visual system but a consequence of poor 

oculomotor control.  

10.3 Why does stabilization work?  

Previous studies have shown that patients with macular disease improve 

performance by reading text formats where saccades are not necessary or 

are kept to a minimum (Forster, 1970, Rubin & Turano, 1994). This thesis 

shows that further gains can be achieved if fixation instability is 
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compensated. These findings agree with the initial hypothesis that 

compensating for fixation instability is beneficial for people with poor 

oculomotor control. The main reason for the improvement is likely to be a 

reduction in motion blur (Georgeson & Hammett, 2002, Hammett, 1997, 

Packer & Williams, 1992).  

 

Visual performance is reduced by motion blur because it enhances the 

deficits of the peripheral retina. It is understood that motion blur is 

responsible for reducing resolution (Badcock & Wong, 1990, Morgan & 

Benton, 1989) and contrast (Burr & Ross, 1982) and for increasing 

crowding (Bex & Dakin, 2005, Bex et al., 2003). Consequently, when 

contrast reduces saccades become less precise (Brown, 1972a) and visual 

span shrinks (Legge et al., 1997). Thereby, contrast reduction enhances 

the oculomotor difficulties of the peripheral retina to plan saccades. Poor 

contrast also increases fixation time in normal reading (Rayner, 1978, 

Rayner, 1998). In people with central scotoma, prolonged fixations 

increase the probability of taking the PRL away from the target. A positive 

effect in the various deficits would thereby be expected from a reduction in 

fixation instability. 

10.4 Text formats compensating for poor 
oculomotor control 

The two most common text formats experimentally used to reduce poor 

oculomotor control are RSVP and scrolled text. The gain in reading speed, 
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compared with page reading, is about 40% in both formats (Fine & Peli, 

1995). The results reported in Chapter 9 corroborate these findings, 

despite the use of different metrics for MNREAD and RSVP. It is expected 

that voluntary saccades are not necessary for reading scrolled text. 

However, in normal sighted readers scrolled text causes a combination of 

smooth tracking movements and saccades (Valsechi et al., 2011). 

According to some authors eye movements whilst reading scrolled text are 

reflexive (do not require programming) and because of that, they are less 

likely to interfere with reading speed (Bowers et al., 2004). Bowers and 

colleagues tried to reduce the interference of poor oculomotor control in 

reading by presenting vertically scrolled text for horizontally shifted PRLs, 

that is, perpendicular to the PRL. They failed to show differences between 

reading scrolled texts presented orthogonally or radially to the PRL. 

Recent work by Yu and colleagues also explored the effect of reducing 

oculomotor deficits of the peripheral retina by presenting text in vertical 

format. They studied whether vertical text could be beneficial for lateral 

PRLs (right or left of the scotoma) in people with simulated central 

scotoma. Yu found much slower reading speed in the vertical format than 

the horizontal (Yu, Park, Gerold & Legge, 2010).  

 

In summary, various attempts to compensate for poor oculomotor in 

people with scotoma during reading were not successful. Since 1994 when 

Rubin & Turano showed that people with scotoma read faster text 

presented as RSVP, there have been no progress in techniques to reduce 

the effect of poor oculomotor control. None of the attempts described 
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above reduced the effects of fixation instability. This thesis shows that 

further gains in RSVP are possible if a stabilization system is used. The 

technique was not tested in continuous text and the possibility of its 

implementation needs therefore to be confirmed.  

10.5 Factors interfering with oculomotor control 

10.5.1 Simulated vs pathological scotoma 

 

The relevant aspects interfering with compensation that vary from 

simulated to pathological scotoma have been discussed in section 10.1.2.  

10.5.2 Age-related vs juvenile macular degeneration 

The time onset of the macular disease might be important for oculomotor 

control adaptation. People with early onset diseases start to develop 

oculomotor strategies when the visual system has more plasticity than 

people with age related macular degeneration. Hence, White & Bedell 

hypothesised that people with early onset macular disease (JMD) shift 

their oculomotor reference more easily than people with AMD (White & 

Bedell, 1990). In the experiments reported in this thesis, due to a small 

number of participants with JMD, it was not possible to verify whether 

compensation of oculomotor instability in AMD differed from JMD. 

Interestingly, Calabrese et al. found differences in visual performance 
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(reading) between people with wet and dry AMD. Those with wet AMD 

performed better than those with dry.(Calabrese, Bernard, Hoffart, Faure, 

Barouch, Conrath & Castet, 2010). This goes against the general idea that 

people with dry AMD should have better performance because they have 

had more time to adapt to central vision loss. Therefore, the effect of 

compensating oculomotor instability as shown in this thesis may also be 

affected by the level of plasticity of the oculomotor system and/or by the 

type of disease (Tita-Nistor, Gonzalez, Mkowitz & Steinbach, 2009). These 

are questions that need to be addressed by future studies. 

10.5.3 Eccentricity of the PRL 

People with MD normally develop their PRL close to the boundary of the 

scotoma in the area with the best visual acuity (Cacho et al., 2007). It is 

expected that patients with good visual acuity have a PRL close to the 

fovea and better fixation stability than patients with poorer vision (Ergun, 

Maar, Radner, Barbazetto, Schmidt-Erfurth & Stur, 2003, Whittaker et al., 

1988). At large eccentricities fixation instability causes less blur due to the 

enlarged receptive fields of the far periphery of the retina (Drasdo, 1989). 

Therefore, a patient with a PRL relatively close to the fovea but poor 

fixation, is more likely to have reduction in visual performance caused by 

poor fixation than patients using more eccentric PRL. In the experiment 

reported in Chapter 6, fixation instability was less detrimental for crowded 

visual acuity measured at 10º than for the same measure at 5º. That is in 

agreement with Kelly’s model for moving targets in the periphery, as 
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discussed in section 1.1.2.2. According to Kelly, if the velocity of the target 

increases ‘within limits’ to compensate for reduction in spatial frequency of 

the target, the visual system can resolve finer patterns with a moving target 

than with a static target (Kelly, 1985).  

10.5.4 The PRL location 

From a theoretical perspective the most appropriate place to develop a 

PRL for reading is below the scotoma in the visual field of view (Figure 

10.1). A PRL below the scotoma does not mask text information and would 

give visual information in order to programme the eye movements 

orthogonal to the fixation point (Bowers et al., 2004, Peli, 1986). Similar 

oculomotor conditions would be found above the scotoma but the upper 

retina (lower field) has some physiological and ecological advantages.  

These include a higher density of photoreceptor and better attentional 

deployment (Altpeter, 2000, Curcio & Allen, 1990, He et al., 1996). Vertical 

PRLs also minimise text eccentricity, for example, for a circular scotoma 

with 10º diameter centred on the fovea and a word subtending 5º, the 

middle of the word (where gaze normally lands) for a vertical PRL, would 

be at 5º eccentricity. For the same conditions, but for a horizontal PRL the 

middle of the word would be at 7.5º eccentricity and would fall easily into 

the scotoma (Petre et al., 2000). Thus, horizontal PRLs would be less 

favourable for reading than vertical PRLs.  
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Regarding PRL location, results of thesis can not be generalized because 

only five participants with macular disease participated in the reading 

experiment. However, it is still interesting to discuss what was observed. 

Subjects S4 and S5 had horizontal PRLs and relatively poor acuity 

compared with S2 (vertical PRL), but S4 and S5 achieved higher reading 

speed. These findings are not in full agreement with the theoretical 

considerations above. Studies with more participants (99) showed that it is 

not possible to predict reading ability based on PRL location (Fletcher, 

1999). Fletcher pointed that other variables such as oculomotor abilities 

(related with the PRL location) and/or cognitive factors are key to 

determine reading ability.  

 

The oculomotor abilities of people with horizontal PRLs between the 

scotoma and the physiological blind spot (for example: right PRL in the 

right eye) are probably more compromised than in all other locations. In 

Chapter 9, S3 and S5 had PRLs between the scotoma and the blind spot. 

Subject S3 complained frequently of missing the first characters of the 

word during the stabilized condition, curiously S5 never complained. A 

possible explanation is that, S3 was calibrating the eye tracker with a PRL 

very close to the scotoma.  With the middle of the word centred with on the 

PRL the first characters would certainly fall into the scotoma. Eventually 

S5, who had a smaller scotoma (see Appendix Table 8) and healthier 

retina around the PRL, missed fewer characters. Also as subject S3 read 

larger print, the word would go further into the scotoma than for patient S5. 

In theory, PRLs located between the scotoma and the blind spot are also 
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disadvantageous for using the eye tracking technique to compensate for 

instability. However, this thesis does not provide enough evidence of that. 

Previous studies showed that for some persons with PRLs at unfavourable 

locations, training a new PRL is possible and leads to significant visual 

improvement (Tita-Nistor et al., 2009). 

 

 

Figure 10.1: Convention used to describe PRL location with respect to the 

scotoma in visual field space (right eye). 

10.5.5 Multiple PRLs 

The use of multiple PRLs (mPRLs) is frequently reported in literature, but 

the definition of multiple PRLs varies significantly from author to author 

(Crossland et al., 2004b, Deruaz et al., 2002, Duret et al., 1999, Guez et 

al., 1993, Macedo et al., 2007, Whittaker et al., 1988). To date there is no 

evidence to suggest that without using mPRLs this group of people would 

have worse performance. The use of multiple PRLs is not compatible with 

the compensation technique used here because: firstly, multiple PRLs 

would cause errors during calibration and, secondly, because the system 
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keeps the targets permanently in the same retinal area making it 

impossible to alternate between PRLs. 

10.5.6 Binocular vision 

All experiments reported in this thesis were performed monocularly in the 

better eye, despite in daily life most people with macular disease use both 

eyes. Kabanarou and colleagues have found that oculomotor control is 

dominated by the eye with better vision in people with binocular AMD 

(Kabanarou et al., 2006). However, they noticed a shift in gaze position in 

one or both eyes when viewing binocularly compared with monocularly. If 

scotoma size and visual acuity is similar in both eyes, it is possible that 

oculomotor dominance could be less consistent and monocular 

experiments might not be predictive of visual performance under binocular 

conditions.  

10.6 Limitations 

The limitations regarding the stabilization setup have been explained in 

detail in previous chapters. To summarise, errors may have been induced 

by the delay between the eye movements and the update of the image 

position in the monitor and the fact that the eyetracker relies on calibration 

with the PRL. Further, presenting words at the PRL used for fixation might 

not be an appropriate strategy for all patients. It has recently been shown 

that one retinal area is used for fixating single calibration dots and a 
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different PRL is used for reading (Crossland et al., 2010). 

 

It was only possible to test a relatively small number of people with 

macular disease and the patients were clinically heterogeneous. Therefore 

it was impossible to determine the effect of the compensation strategy for 

people with different types of scotoma or different durations of vision loss. 

More participants would be required to generalise the findings in relation to 

everyone with macular disease or even to predict for whom this technique 

would be advantageous. 
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Chapter 11. Thesis 
conclusion and 
suggestions for 
future research 

11.1 Thesis conclusion 

Oculomotor instability is detrimental to visual performance for both normal 

peripheral retina and for people with macular disease. For people with 

macular disease, RSVP reading speed improves when fixation instability is 

compensated. This study has further shown that compensating for fixation 

instability is possible using an infrared eyetracker. This technique has the 

potential to be part of future assistive devices for people with macular 

disease. 
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11.2 Implications of this study 

The results of this thesis might have implications for three aspects of the 

macular disease rehabilitation. First, eccentric viewing training protocols 

should focus more on oculomotor training, in particular training fixation 

control. As Seiple and colleagues showed, a protocol based on eye 

movements control can improve visual tasks without direct practice of the 

tasks (Seiple et al., 2005). It is expected that better control of fixation will 

also lead to better adaptation to low vision aids (Dickinson & Fotinakis, 

2000, Goodrich & Mehr, 1986).  

 

Second, the introduction of gaze-contingent PRL training may be useful. 

This type of training would avoid people frequently losing the target, 

making the use of the peripheral retina more constant during practice.  

 

Finally, this study has shown that new assistive devices should 

compensate for poor oculomotor control. Eye-trackers can be easily 

incorporated in devices such as head mounted displays, but more 

research is necessary to define the best way to integrate this fixation 

compensation with devices for the visually impaired (Efron, David, Apter, 

Thirer, Zedaka, Bogillo, Weyl, Levy & Salasnik, 2008, Levy, Apter & Efron, 

2006). 
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11.3 Suggestions for future research  

Future research investigating oculomotor control in people with macular 

disease should aim to compensate for oculomotor deficits of the peripheral 

retina using cost-effective techniques. Cost-effect techniques would be,for 

example, more effective training offered by therapists or more 

technologically elaborate devices that compensate for fixation instability. 

 

In order to consolidate the results of this thesis and future development of 

techniques based on eye-tracking, the effect of practising RSVP reading 

under stabilized conditions should be examined. The impact of this training 

on conventional page mode reading is another potential area for future 

study. 

 

A significant advancement in compensation would be a technique that 

does not rely on calibration to ensure text stabilization at the correct PRL. 

A similar system to that of the scanning laser ophthalmoscope, where the 

stimulated area could be visualized by the experimenter, would be ideal if 

that could transfer to clinical practice. However, before further effort is 

expended in training PRLs, it is important to ensure PRL training is 

absolutely beneficial. Further research in this area is warranted. 
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Appendix A 

 Participants in the experiments described in 
Chapter 6 

 

Appendix Table 1: Additional information for participants in experiments of 

Chapter 6. 

Subject ID Experiment Age/Sex Glasses Contact lens 
S1 1 & 2 32 / M No Yes 
S2 1 & 2 35 / F No No 
S3 1 & 2 31 / M No No 
S4 1 41 / F No No 
S5 1 32 / M No No 
S6 2 41 / F No No 
S7 2 26 / M Yes No 
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Participants in the experiment described in 
Chapter 7 

 

Appendix Table 2: Additional information for participants in experiments of 

Chapter 7. PRL: preferred retinal locus. The PRL location is defined in 

visual field space determined according to the convention defined in 

section 4.4.2. VA: visual acuity. AMD: age-related macular disease. JMD: 

Juvenile macular disease. 

Sub. ID Age/Sex Diagnosis Eye VA PRL 
location 

S1 84 / F AMD LE 0.7 logMAR Left 
S2 87 /F  AMD RE 1.0 logMAR Above 
S3 89 / M AMD RE 1 logMAR Left 
S4 72 / F AMD RE 1 logMAR Left 
S5 54 / F JMD LE 0.7 logMAR Below 
S6 73 / M AMD RE 1.2 logMAR ** 
S7 88 / M AMD RE 1.1 logMAR Below 
S8 89 / F AMD RE 1.0 logMAR Below 
S9 81 / M AMD RE 0.4 logMAR Central 

S10 24 / F JMD LE 0.8 logMAR Below 
** PRL was not clearly defined 

 

 

 



 

- 206 - 

Participants in the experiments described in 
Chapter 8 

Appendix Table 3: Additional information for participants in experiments of 

Chapter 8. 

Subject ID Sex age Glasses Contact 
lens 

S1 M 26 Yes No 
S2 F 25 No No 
S3 F 27 No Yes 
S4 F 31 No No 
S5 F 31 No Yes 
S6 M 27 Yes No 
S7 F 30 No Yes 
S8 F 26 No Yes 
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Appendix B 

 

Consent form for normal subjects 
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Consent form for patients 
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Appendix C 

Additional results for Chapter 6 

Appendix Table 4: Individual mean values of peripheral visual acuity in logMAR for each 

observer (S), gain and position for experiment 1. 

 Gain  5º 10º  
  Right Up Left Down  Right Up Left Down 

S1 0 0.75 0.85 0.66 0.82  0.94 1.10 0.93 1.02 
 0.1 0.60 0.79 0.56 0.73  0.87 1.04 0.84 0.98 
 1 0.55 0.74 0.53 0.76  0.78 1.03 0.81 0.97 
 10 0.57 0.70 0.57 0.70  0.76 0.97 0.77 0.88 
S2 0 0.71 0.91 0.72 0.81  0.97 1.12 0.95 1.02 
 0.1 0.62 0.83 0.64 0.72  0.91 1.06 0.92 1.04 
 1 0.69 0.90 0.66 0.75  0.89 1.02 0.81 0.98 
 10 0.66 0.87 0.70 0.80  0.88 1.03 0.98 0.98 
S3 0 0.69 0.81 0.73 0.84  0.87 1.17 0.99 1.13 
 0.1 0.77 0.93 0.72 0.93  0.89 1.19 0.96 1.12 
 1 0.69 0.88 0.67 0.87  0.92 1.18 0.97 1.14 
 10 0.72 0.84 0.71 0.91  0.92 1.13 0.93 1.07 
S4 0 0.69 0.81 0.64 0.80  0.95 1.10 0.92 1.06 
 0.1 0.61 0.76 0.61 0.75  0.91 1.08 0.89 1.12 
 1 0.64 0.78 0.68 0.79  0.90 0.99 0.81 1.02 
 10 0.61 0.68 0.58 0.72  0.86 0.93 0.81 1.05 
S5 0 0.71 0.87 0.73 0.81  1.00 1.13 0.97 1.14 
 0.1 0.72 0.92 0.64 0.86  0.96 1.11 0.91 1.12 
 1 0.70 0.94 0.65 0.83  0.99 1.13 0.98 1.10 
 10 0.67 0.85 0.58 0.79  0.91 1.07 0.90 1.08 
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Appendix Table 5: Individual mean values of peripheral visual acuity in logMAR for each 

observer (S), gain and position for experiment 2. 

 Gain  5º     10º   
  Right Up Left Down  Right Up Left Down 
S1 0 0.80 1.00 0.83 1.08  1.16 1.29 1.06 1.40 
 0.1 0.80 0.93 0.84 0.94  1.04 1.25 0.98 1.23 
 1 0.83 0.97 0.84 0.97  1.05 1.24 0.98 1.25 
 10 1.05 1.13 0.98 1.16  1.28 1.41 1.23 1.42 
S6 0 0.90 1.12 0.99 1.02  1.09 1.35 1.24 1.24 
 0.1 0.90 1.12 0.93 1.02  1.07 1.26 1.22 1.31 
 1 0.87 1.12 0.88 0.96  1.13 1.35 1.17 1.28 
 10 1.03 1.24 0.92 1.11  1.21 1.40 1.24 1.34 
S7 0 0.91 1.10 0.89 0.96  1.11 1.40 1.26 1.32 
 0.1 0.84 1.07 0.89 0.95  1.12 1.34 1.12 1.33 
 1 0.84 1.06 0.86 1.03  1.29 1.39 1.15 1.25 
 10 1.03 1.17 1.05 1.11  1.26 1.42 1.27 1.33 
S4 0 0.73 0.83 0.75 0.94  0.91 1.17 0.97 1.29 
 0.1 0.78 0.91 0.84 0.90  1.00 1.16 1.07 1.21 
 1 0.79 0.92 0.83 0.90  1.02 1.19 1.09 1.17 
 10 0.96 1.02 0.98 1.06  1.19 1.29 1.19 1.33 
S5 0 0.88 1.12 0.87 0.91  1.11 1.40 1.15 1.33 
 0.1 0.89 1.12 0.91 0.95  1.07 1.39 1.15 1.31 
 1 0.88 1.13 0.86 0.92  1.10 1.36 1.17 1.33 
 10 1.02 1.17 1.00 1.05  1.20 1.40 1.16 1.37 
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Appendix Table 6: Summary of the main differences in visual acuity between positions of 

the two experiments described in Chapter 6. Differences were obtained by subtracting 

results for conditions in the first column by the condition defined in the remaining 

columns headings. 

  Noncrowded   
 Right Up Left Down 

Right - -0.20 0.09 -0.31* 
Up - - 0.29 -0.11 
Left - - - -0.40** 
  Crowded   

 Right Up Left Down 
Right - 0.34** 0.23 0.53*** 
Up - - -0.11 0.18 
Left - - - 0.30* 
§ Significance levels are: 0.05 (*), 0.01 (**), and 0.001 (***) 
 

 



 

- 218 - 

 

Additional results for Chapter 7 

Appendix Table 7: Microperimetry results for participants with macular disease 

in the visual acuity experiment, Chapter 7. 

S1 S2 

S3 S4 

S5 S6 

Appendix Table 7 (continued)  
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S7 S8 

S9 S10 
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Additional results for Chapter 9 

Appendix Table 8: Microperimetry results for participants with macular disease 

in the reading experiment, Chapter 9. 

S1 S2 

S3 S4 

S5 
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Appendix D 

Example of a Matlab program to run the peripheral 
visual acuity experiment 

function Crowded2Bars 
try 
clear all;home; tic 
fprintf('*PERIPHERAL VA FOR UNSTABLE TARGETS*\n'); 
fprintf('Performed on ''%s''\n', datestr(now)); 
 % initialize eyelink            home; 
if EyelinkInit()~= 1; %                                
    return; 
end;  
fprintf('\n');option='n';%dir('*.mat'); 
% difining header 
while ~strcmp('y',option) 
[matFileName,t_index,current_s,h,i_done]= trialsOrder; 
h.distance=50; 
h.sizeM=[40.5 30] ; 
switch h.eccentricity 
    case 0 
    h.start_va=0.3; 
    case 5 
    h.start_va=0.8; 
    h.crowd_d=0.5; 
    case 10 
    h.start_va=1.3; 
    h.crowd_d=1; 
end 
% if strcmp(h.initials,'CA'); h.crowd_d='2bars';end 
h.start_sd=0.3;h.crowd_d='2bars'; 
if strcmp(h.initials,'TT') 
    h.trialsDesired=20; 
else 
    h.trialsDesired=60; 
end 
look4file=exist( matFileName,'file'); 
fprintf('\n\tPlase make sure the distance is "%g" 
cm\n\n\t',h.distance); 
if ~strcmp(h.initials,'TT') 
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    if look4file==2;fprintf('\tTHIS FILE ALREADY 
EXIST!...REPLACE?\n\n\t') 
    else fprintf('New file!\n\n\t');end 
    option=input('PROCEED?  [y/n]:     ','s' ); 
else 
  fprintf('\tDEMO TRIAL!\n\n\t');option='y';end  
end %while option='n'  
if 
(h.distance~=50&&h.eccentricity==10)||(h.distance~=125&&h.eccentricity
==0)||(h.distance~=50&&h.eccentricity==5); 
    error('This is not the correct distance for this test');end 
% Do filename i/o 
screenNumber=max(Screen('Screens')); 
[h.filename,eyefilename,myerr] = getfilenames(h,screenNumber); 
% prompt for file name 
if myerr                                 
% exit on errors in inputs 
    shutdown(oldRes); error('Filename Input Fatal Error'); 
end; 
% SET UP TRACKER CONFIGURATION 
eyelink('command','calibration_type = HV5'); 
eyelink('command','enable_automatic_calibration = YES'); 
eyelink('command','automatic_calibration_passing = 1500'); 
eyelink('command', 'saccade_velocity_threshold = 30'); 
eyelink('command', 'saccade_acceleration_threshold = 8500'); 
eyelink('command', 'file_sample_data  = LEFT,RIGHT,GAZE,AREA'); 
eyelink('command', 'file_event_data = GAZE,GAZERES,AREA, VELOCITY'); 
eyelink('command', 'file_event_filter = LEFT, RIGHT, FIXATION, 
SACCADE, BLINK, MESSAGE'); 
eyelink('command', 'link_sample_data = GAZE,GAZERES,HREF,AREA');  
eyelink('command', 'link_event_data = 
GAZE,GAZERES,HREF,AREA,VELOCITY'); 
AssertOpenGL 
doublebuffer=1; 
%because we reseized the useful space of the monitor we need to set 
that here to avoid conversion mistakes 
[blackBack,blackR] = Screen('OpenWindow', screenNumber, 0,[], 32, 
doublebuffer+1); 
if blackR(3)~=1280&& blackR(4)~=1024;error('Check 
resolution');return;end  
windowRectSizeH=blackR(3)*h.sizeM(2)/h.sizeM(1);               
% calculating the horizontal size-small square 
windowBegin=[(blackR(3) -windowRectSizeH)/2 1];                   
windowEnds=[blackR(3)-(blackR(3)-windowRectSizeH)/2 blackR(4)-1];  
[w, wRect] = Screen('OpenWindow', screenNumber, 0,round([windowBegin 
windowEnds]), 32, doublebuffer+1); 
sm=[29.4 30.4];%size monitor   
res=[wRect(3) wRect(4)]; %screen resolution 
KbName('UnifyKeyNames'); 
priorityLevel=MaxPriority(w); 
home 
Screen('BlendFunction', w, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 
if ~IsLinux 
    Screen('TextFont', w, 'Arial'); 
    Screen('TextSize', w, 40); 
end 
white=WhiteIndex(screenNumber); 
el=EyelinkInitDefaults(w); 
windowSize = Screen(w,'Rect'); 
xwcenter=windowSize(3)/2; 
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ywcenter=windowSize(4)/2;    
Eyelink('openfile', eyefilename); 
sendheader(h); 
HideCursor 
text_ecc=sprintf('TESTING "%g" DEGREES',h.eccentricity); 
Screen('DrawText', w, text_ecc,xwcenter-195,ywcenter-60,white*0.5); 
Screen('DrawText', w, 'LOOK DOT (S) -- PRESS TOP BUTTON',xwcenter-
325,ywcenter+10,white*0.5) ;  
Screen('Flip',w); 
while KbCheck;end; 
KbWait; 
while KbCheck;end;  
EyelinkDoTrackerSetup(el); 
EyelinkDoDriftCorrection(el); 
while Eyelink('ButtonStates');end 
prev_state=Eyelink('ButtonStates'); 
while Eyelink('ButtonStates')==prev_state; 
Screen('DrawText', w, 'ANY BUTTON TO START',xwcenter-
195,ywcenter,white*0.5); 
Screen('Flip',w); 
end 
while Eyelink('ButtonStates');end 
if h.eccentricity==0;n_pos=1;else n_pos=4;end 
% control the number of positions tested/number of quest's created 
    tGuess=h.start_va; 
    tGuessSd=h.start_sd; 
    pThreshold=0.82; 
    beta=3.5;delta=0.01;gamma=0.5; 
    for i=1:n_pos 
        
q(i)=QuestCreate(tGuess,tGuessSd,pThreshold,beta,delta,gamma);%,grain,
4 
        q(i).normalizePdf=1;  
    end 
    trialsDesired=h.trialsDesired; 
% gap positions 
    orientation=Shuffle(repmat((1:4)',trialsDesired/n_pos,1)); 
    orientation=repmat(orientation,n_pos,1); 
% position randon selection 
    for 
i=1:n_pos;testpos.(strcat('p',num2str(i)))=ones(trialsDesired,1)*i;end 
    rand_sel=Shuffle(randperm(n_pos)); 
    for i=0:n_pos-1;    ini=i*trialsDesired+1;fini=ini+trialsDesired-
1; 
        
positions2testRand(ini:fini,1)=[testpos.(strcat('p',num2str(rand_sel(i
+1))))]; 
    end 
trials=1; % controling the number of trials 
time2rest=GetSecs; 
switch positions2testRand(trials) 
            case 1; writePosition='RIGHT =>'; 
            case 2;writePosition='TOP ^ '; 
            case 3;writePosition='<= LEFT '; 
            case 4;writePosition='BOTTOM '; 
end                
while GetSecs-time2rest<3  
    if n_pos==1; text1=sprintf('CENTRAL TEST      WAIT  "%1.0g" ', 4-
(GetSecs-time2rest));text2=sprintf(''); 
    else 
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    text1=sprintf('"%s"         WAIT  "%1.0g" ', writePosition,4-
(GetSecs-       time2rest)); 
    end   
    Screen('DrawText', w, text1,xwcenter-195,ywcenter,white); 
    Screen('Flip',w); 
end 
sound_sacc(3000,0.1) 
% convertion factores 
    px2cm=[sm(1)/res(1) sm(2)/res(2)]; % converts px to cm 
% converting sizeM from cm to deg 
    sm_d=[atand((sm(1)/2)/h.distance)*2 
atand((sm(2)/2)/h.distance)*2];  
% size of the monitor in deg 
    px2deg=[sm_d(1)/res(1) sm_d(2)/res(2)]; % converts px to deg 
 
    WaitSecs(0.1); 
    Eyelink('StartRecording'); 
    eyetracked = Eyelink('EyeAvailable');  
    
[oldxe,oldye,oldxt,oldyt,oldve,tLastS]=dummyConnected(el,eyetracked); 
    xe=oldxe;ye=oldye; 
%initial values for the loop --- external function 
    Eyelink('message','SYNCTIME'); 
    Eyelink('command', 'begin_realtime_mode'); 
 
    countT=0;% table with importante values to control de experiement 
setup 
    send2driftcorrection=0; % send to drift correct every 5 trials 
    fps=Screen('FrameRate',w);% now defining the time for correct 
presentations 
    if fps<95;  
        Eyelink('shutdown') 
        error('The frame rate is below 100 Hz!'); 
    end 
    ifi=Screen('GetFlipInterval',w); 
    if fps==0 
        fps=1/ifi; 
    end 
    waitframes=1;   
    vbl=Screen('Flip',w); 
    Priority(priorityLevel); 
    for i=1:n_pos;        drawMessage(i)=trialsDesired*(i)+1;    end 
    
prev_result=0;prev_state=Eyelink('ButtonStates');count_vs=1;repeat=0; 
%  Trial loop starts here 
while trials<=trialsDesired*n_pos 
%------------------------------------- 
    ini_time=GetSecs; 
    sendNewTargMsg=1; 
    sendEndTargMsg=1; 
    loops=0;hideT=3; 
    %-----------------------------gap  
    gaps=randperm(4);orientation2test=gaps(1); 
    if repeat==0 
    orientation2test=orientation(trials); 
    pos=positions2testRand(trials);%-gap   
    tTest=QuestQuantile(q(pos)); 
    send2driftcorrection=send2driftcorrection+1; 
    Eyelink('message',strcat('Pos',num2str(pos))); 
    Eyelink('message',num2str(tTest));    
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    %---/calculating the size of "C"/--- 
    angDeg=(10^tTest*5)*0.0167;%--/equivalent /60;  
    st_px=[angDeg angDeg]./px2deg; %size t_arget H and V (total) 
    rectCircle=[0 0 st_px]; 
    r_gaph=ScaleRect(rectCircle,0.4,0.2); 
    r_gapv=ScaleRect(rectCircle,0.2,0.4); 
    size_d= mean(rectCircle(3:4)); 
    s_Sides=[h.eccentricity h.eccentricity].*(1./px2deg); 
% size of S from centre2centre    
    sel_d=[cosd((pos-1)*90) -sind((pos-1)*90)];  
% dist in px for each position 
    dtc=s_Sides.*sel_d;   
    rectScotoma=floor(s_Sides-st_px); %give S with tolerance  
    noise_size=ceil(max(rectCircle)); 
    end 
% it repeats the question if a fast saccade is made 
    repeat=0;  
    prev_state= 
Eyelink('ButtonStates');pen=(r_gaph(4)+r_gapv(3))/2;vlimit=30; 
            while  Eyelink('ButtonStates')==prev_state; %LOOP 
CONDITION 
                        [control,secs,keyCode]=KbCheck; 
                        loops=loops+1;loopTime=0;   pupil=0; blink=0; 
                        if control==1;   

error('Keyboard pressed 
illegaly');return;end    

                         errorEl=Eyelink('checkrecording'); 
                        if (errorEl~=0) 
                            return 
                        end   
%----/EYE---EYE---EYE---EYE/----          
                         if Eyelink('isconnected') == el.connected 
                             while ~IsInRect(xe,ye,wRect)||pupil==0        
                                sample = Eyelink( 
'newfloatsampleavailable'); 
                                if sample 
% get the sample in the form of an event structure 
% get current gaze position from sample                       
                                evt = Eyelink( 'newestfloatsample');   
                                xe = evt.gx(eyetracked+1);  
% +1 as we're accessing MATLAB array 
                                ye = evt.gy(eyetracked+1); 
                                tS = evt.time(1); 
                                pupil=evt.pa(eyetracked+1); 
                                if pupil==0; 
                                    blink=1; 
                                end 
                                end % if sample 
                             end 
                         else     
%DEMO MODE --- MOUSE----MOUSE ----MOUSE----MOUSE 
                                tS=GetSecs;countT=countT+1; 
                                [xe,ye]=GetMouse;pupil=1; 
                         end %eyelink('isconnected') == el.connected 
        countT=countT+1; 
%---/vlimit= ... & alimit= .../--- 
        time=(tS-tLastS)*0.001; invtime=1/time;tLastS=tS; 
%---/calculating eye movement in deg(ped=position-eye-degrees/--- 
        ped=[xe ye].*px2deg;     
        oldped=[oldxe oldye ].*px2deg; 
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        vxe=(ped(1)-oldped(1))*invtime; vye=(ped(2)-
oldped(2))*invtime;  
        ve=sqrt(vxe^2+vye^2);ae=(ve-oldve)*invtime; 
%---/target movements/--- 
        xt=(xe-oldxe)*h.gain+oldxe;  yt=(ye-oldye)*h.gain+oldye;       
        hideT = ve>30||ae>8500; 
        if vbl-ini_time<=0.6; % condition 1 
                if vbl-ini_time<=0.1;%  condition 1.1 
                    xy_e=[xe,ye]+dtc;xt=xe;yt=ye; 
                    
r_cue=CenterRectOnPoint(rectCircle,xy_e(1),xy_e(2)); 
                    Screen('FillOval', w,white*0.4,r_cue);%cueing 
                else %condition 1.2 
                        if sendNewTargMsg==1;xt=xe;yt=ye; 

Eyelink('message','TargetVisible');sendNewTargMsg=0;
end   

                        switch hideT 
                            case 1     %    condition 1.2.1 

            Screen('FillRect',w,white*0);xt=xe; yt=ye; 
%that insures the reset position after saccades 
                                    if ve>100  
                                        if repeat==0; 

                      sound_sacc(1000,0.1);  
fastSac(count_vs,:)=[ve,ae,tS,trials,tTest];  

fprintf('\n\t# Fast saccade during trial "%g" velocity "%g"--size 
"%1.2g" will be repeated',trials,ve,tTest);  
                                      count_vs=count_vs+1-blink; 
                                        end; repeat=1; 
                                  if 
length(fastSac))>trialsDesired*n_pos*0.10; 
error('Please repeat the run, but looking the centre of the 
monitor');end  
                                  end                
                            case 0    %    condition 1.2.2 

xy_t=[xt,yt]+dtc;cf_g=rectCircle(3)*0.15;vlimit=30; 
%this factor correct the centring of gap 
rectArc=CenterRectOnPoint(rectCircle,xy_t(1),xy_t(2)); 
                  switch orientation2test 

case 1                                                
r_gap=CenterRectOnPoint(r_gaph,rectArc(3)-
cf_g,xy_t(2)); 
case 2                                                
r_gap=CenterRectOnPoint(r_gapv,xy_t(1),rectArc(2)+cf
_g); 
case 3                                              
r_gap=CenterRectOnPoint(r_gaph,rectArc(1)+cf_g,xy_t(
2)); 
case 4                                               
r_gap=CenterRectOnPoint(r_gapv,xy_t(1),rectArc(4)-
cf_g); 

                 end                  
    if noise_size>63 
    Screen('FrameArc',w,white,rectArc,0,360,pen,pen);   

                else 
                Screen('DrawDots', w,xy_t',size_d,white,[],1); 
                Screen('DrawDots', w,xy_t',size_d*0.6,white*0,[],1); 
                end 

crowding(rectCircle,xy_t,rectArc,white,w,px2deg); 
% PLEASE COMMENT HERE TO AVOID CROWDING 
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rectScotoma=[([xe ye]-floor(s_Sides-1.5*st_px)) ([xe 
ye]+floor(s_Sides-1.5*st_px))]; %give S with tolerance  

 Screen('FillRect',w,white*0.0,r_gap); 
if 

n_pos>1&&RectWidth(rectScotoma)>5&&RectHeight(rectScotoma)>5 
      Screen('FillOval', w,white*0.0,rectScotoma);end %SCOTOMA 
      Screen('DrawingFinished',w);      loopTime=  vbl-ini_time;  
                end % end of condition 1.2.1 and condition 1.2.2 
                end % end of condition 1.1 and condition 1.2 
       else %   condition 2 
                        if sendEndTargMsg==1; 
                           Eyelink('message','TargetNotVisible'); 

                  if ~IsInRect(xy_t(1),xy_t(2),wRect); 
    [xt,yt]=RectCenter(wRect);end  

                            xy_noise=[xt,yt]+dtc;sendEndTargMsg=0;end    
                           noise_in(xy_noise,w,noise_size,1) 
       end   % end of condition 1 and condition 2            
       vbl=Screen('Flip',w,vbl+(waitframes-0.5)*ifi); 
       timeControl(countT,:)= [tS time ve ae xe xt ye yt loops 
loopTime]; 
                oldxe=xe;    oldye=ye;   oldxt=xt;   oldyt=yt;   
oldve=ve; 
end % END OF LOOP CONDITION 
            if 
sendEndTargMsg==1;Eyelink('message','TargetNotVisible');end 
            prev_result=Eyelink('ButtonStates'); 
            while Eyelink('ButtonStates');end 
            prev_state=Eyelink('ButtonStates'); 
            switch prev_result 
                case 4 
                    result =2; 
                case 1 
                    result =3; 
                case 8 
                    result=4; 
                case 2 
                    result=1; 
            end 
            response=isequal(result,orientation2test); 
            gapDirection=num2str(orientation2test); 
fprintf('\n\tposition"%g"gap"%c"response"%g"result"%g"trial 
number"%g"\n',pos,gapDirection,result,double(response),trials);              
            if repeat==0 
            answer=num2str(result);  
            results2edfAns=strcat(answer);        
Eyelink('message',results2edfAns); 
            results2edfGap=strcat(gapDirection);  
Eyelink('message',results2edfGap);               
            q(pos)=QuestUpdate(q(pos),tTest,response) ; 
            trials=trials+1;         
%   do a drift correction every five trials 
                    if send2driftcorrection==5 
                        if 
trials>=length(positions2testRand);break;end 
                        send2driftcorrection=0; 
                        EyelinkDoDriftCorrect(el);  
                        while Eyelink('ButtonStates');end 
                            if ismember(trials,drawMessage) 
                                time2rest=GetSecs; 
                                    switch positions2testRand(trials) 
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                                             case 1; 
writePosition='RIGHT =>'; 
                                             case 2;writePosition='TOP 
^ '; 
                                             case 3;writePosition='<= 
LEFT '; 
                                             case 
4;writePosition='BOTTOM '; 
                                    end                  

while GetSecs-time2rest<3 
text1=sprintf('"%s"         WAIT  "%1.0g" ', writePosition,4-
(GetSecs-time2rest)); 
text2=sprintf(' "%g" per cent done', ((trials-

1)/(trialsDesired*4))*100); 
Screen('DrawText', w, text1,xwcenter-195,ywcenter,white); 
Screen('DrawText', w, text2,xwcenter-195,ywcenter+60,white*0.7); 
Screen('Flip',w); 
end 

                                sound_sacc(3000,0.1) 
end 

                        WaitSecs(0.1); 
                        Eyelink('StartRecording'); 
                        eyetracked = Eyelink('EyeAvailable');   
                   end %end do drift correction  
            end %repeat==0 
          clear ini_time 
end %while trials desired 
%---AFTER ALL TRIALS---- 
for j=1:n_pos 
    t(j)=QuestMean(q(j)); 
%Add the new datum (actual test% intensity and observer response) to 
the database. 
    sd(j)=QuestSd(q(j));%the after your trial loops (they suggest 60) 
put this 
end 
sound_sacc(1000,1) 
    home;fprintf('TEST DURATION: "%1.2g" minutes\n\n',toc/60)  
    text_final=sprintf('\nEND OF TEST \n WELL DONE! \n'); 
    Screen('DrawText', w, text_final,xwcenter-250,ywcenter,white); 
    Screen('Flip',w); 
    WaitSecs(1); 
    Eyelink('closefile'); 
    Eyelink('Stoprecording'); 
    wd=cd;d_edf=strcat(wd,'\EDF_FILES'); 
        if Eyelink('isconnected') == el.connected  
            cd(d_edf); 
            status = Eyelink('receivefile',eyefilename,eyefilename); 
            if status < 0, fprintf('Error in receiveing file!\n'); 
end;            
            cd .. 
        end 
    Eyelink('Shutdown');     
    Screen('CloseAll'); 
    avFinalResults_logMAR=extractVaThreshold(q); 
    [file,path]=uiputfile(matFileName,'Save Workspace As'); 
    save(h.filename); 
     
    colour=['rgbk']; 
    for i=1:n_pos 
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        set(gca,'YGrid','on'); ylabel('VA (logMAR)');xlabel('Trials'); 
        axis([0 60 0.4 2]); 
        plot(q(i).intensity,colour(i)); 
        hold on 
    end 
     
    [PATHSTR,NAME,EXT,VERSN] = fileparts(matFileName); 
    nome=sprintf('%1.8s.fig',NAME);  
    d_plots=strcat(wd,'\PLOTS'); 
    cd(d_plots) 
    saveas(gcf,nome);close() 
    cd ..     
fprintf('\n\t');warning('MAKE SURE THIS IS A VALID TRIAL BEFORE 
PROCEED!!'); 
    proceed1=0;proceed2=0; 
    while proceed1==proceed2 
valid_t=input('PROCEED TO DELETE IN YOUR DATA BASE?  [y/n]: ','s' ); 
        proceed1=strcmp(valid_t,'y'); 
        proceed2=strcmp(valid_t,'n'); 
    end 
    d_subjects=strcat(wd,'\SUBJECTS_FILES '); 
    if  proceed1 
        cd(d_subjects);   
        load(current_s); 
        t_order=(Tant et al., 2002); 
        t_done{i_done,1}=matFileName;%t_done=t_done'; 
        save(h.initials,'t_order','t_done'); 
        cd .. 
    else 
        warning('THIS RUN WAS NOT VALID!!'); 
fprintf('\n\t'); 
error('ERASE MANUALLY THE DATABASE OTHERWISE THIS RUN WILL BE 
REPEATED!!!') 
        return 
    end 
    clear all 
    return 
catch 
    Eyelink('Shutdown'); 
    Screen('CloseAll'); 
    clear all  
    rethrow(lasterror) 
end %try 
end % end of the program 
% %-------------------------------------------------------------------
----- 
function 
[oldxe,oldye,oldxt,oldyt,oldve,tLastS]=dummyConnected(el,eyetracked) 
if   Eyelink('isconnected') == el.connected    
%     if Eyelink( 'newfloatsampleavailable') 
        % get the sample in the form of an event structure 
        evt = Eyelink( 'newestfloatsample'); 
        %                     if we do, get current gaze position from 
sample 
        oldxe = evt.gx(eyetracked+1); % +1 as we're accessing MATLAB 
array 
        oldye  = evt.gy(eyetracked+1); 
        oldxt = evt.gx(eyetracked+1); % +1 as we're accessing MATLAB 
array 
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        oldyt  = evt.gy(eyetracked+1); 
        tLastS = evt.time(1); 
        oldve = 0;         
%     end 
    else 
        tLastS=GetSecs; 
        [oldxe, oldye]=GetMouse; 
        [oldxt, oldyt]=GetMouse; 
        oldve = 0; 
end 
  
end 
%---------------------------------------------------------------------
--- 
function sendheader(h) 
% sends header structure to eyelink as a series of messages 
% empty strings not allowed 
  
names = fieldnames(h);                  % get list of field names 
n = size(names);                        % figure number of fields 
n = n(1,1);                             % must be better way? 
  
for i= 1:n, 
    myfield = names(i); 
    myvalue = getfield(h,myfield); 
    if ischar(myvalue)                  % handle strings and numbers 
separately 
        m = strcat('HEADER <>  ',myfield{i},' "',myvalue,'"'); 
        Eyelink('message',m); 
%       fprintf('%s\n',m); 
    elseif isnumeric(myvalue) 
        m = strcat('HEADER <>  ',myfield{1},':  ',num2str(myvalue)); 
        Eyelink('message',m); 
%       fprintf('%s\n',m); 
    else 
        fprintf('ERROR: Sendheader: must use strings or numeric 
values'); 
    end 
end 
end 
%---------------------------------------------------------------------
--- 
function [filename,eyefilename,myerr] = getfilenames(h,window) 
% getfilenames returns file names for main data and eye data. 
% strict error checking on file names 
  
myerr = 0; eyefilename = ''; 
  
% get main file name 
[shortfilename, filepath] = uiputfile(h.filename, 'Data file name?');    
cd(filepath);                           % update current path 
         
if isempty(shortfilename) | 0 == shortfilename  % if empty, exit 
program 
    fprintf('File name required.\n'); 
    myerr = 1; 
    return 
end; 
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if isempty(filepath) 
    filepath = pwd; end;                % use default path if empty 
     
filename = strcat(filepath,shortfilename); 
  
% figure default for eye data file name 
place = findstr('.mat',shortfilename);  % based on main datafile 
if isempty(place)                       % if no .mat, exit program 
    fprintf('Suffix .mat required in file name.\n'); 
    myerr = 1; 
    return 
end 
  
% create name for eye data file 
eyefilename = strcat(shortfilename(1:place),'edf'); 
end 
%---------------------------------------------------------------------
--- 
function avFinalResults_logMAR=extractVaThreshold(q) 
    start_column=(1:2:7);avFinalResults_logMAR=zeros(1,4);  writeWs=0; 
for i=1:length(q) 
    if ~isempty(q(i).intensity) 
        writeWs=1;%if all the trial are wrong there is an error in 
/line 514 
        
avAllResults(1:length(q(i).intensity),start_column(i):start_column(i)+
1)=[q(i).intensity',q(i).response']; 
        
avFinalResults_logMAR(1,i)=avAllResults(max(find(avAllResults(:,start_
column(i)+1)==1)),start_column(i)); 
    else  
        i=i+1; 
    end 
end 
end 
%---------------------------------------------------------------------
--- 
function noise_in(xy_noise,w, rectSize,scale) 
xc=xy_noise(1);yc=xy_noise(2); 
  
objRect = SetRect(0,0, rectSize, rectSize); 
  
dstRect(1,:)=CenterRectOnPoint(objRect*scale, xc, yc); 
  
noiseimg=(50*randn(rectSize, rectSize) + 128); 
tex=Screen('MakeTexture', w, noiseimg); 
Screen('DrawTexture', w, tex, [], dstRect(1,:), [], 0); 
Screen('Close', tex); 
end 
%---------------------------------------------------------------------
--- 
function crowding(rectCircle,xy_e,rectArc,white,w,px2deg,crowd_d) 
  
bar_v=ScaleRect(rectCircle,0.2,1); 
bar_h=ScaleRect(rectCircle,1,0.2); 
if nargin <7 
    crowd_d='2bars'; 
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   dist_px=ceil([(RectWidth(bar_v)*2) (RectHeight(bar_h)*2)]); 
%change *3 to change boundaries separation 
else  
    dist_px=crowd_d./px2deg; 
end 
dist_px=dist_px+[(RectWidth(bar_v)*0.5) (RectHeight(bar_h)*0.5)];  
rc.r=CenterRectOnPoint(ceil(bar_v),rectArc(3)+dist_px(1),xy_e(2)); 
rc.u=CenterRectOnPoint(ceil(bar_h),xy_e(1),rectArc(2)-dist_px(2)); 
rc.l=CenterRectOnPoint(ceil(bar_v),rectArc(1)-dist_px(1),xy_e(2)); 
rc.d=CenterRectOnPoint(ceil(bar_h),xy_e(1),rectArc(4)+dist_px(2)); 
Screen('FillRect',w,white*1,rc.r); 
Screen('FillRect',w,white*1,rc.u); 
Screen('FillRect',w,white*1,rc.l); 
Screen('FillRect',w,white*1,rc.d); 
end 
%---------------------------------------------------------------------
--- 
function [matFileName,t_index,current_s,h,i_done]= trialsOrder 
try 
    correctName=0; 
        while correctName==0 
                fprintf('\t') ;h.initials=input('Subject initials:   
', 's'); 
                letter2number=double(h.initials); 
                if length(letter2number)>2; fprintf('\t\tOnly 2 
initials please!\n\n');continue;end 
                for i=1:length(letter2number) 
                    if letter2number(i)>=97&& letter2number(i)<=122 
                       letter2number(i)=letter2number(i)-
32;correctName=1; 
                    elseif letter2number(i)>=65 && 
letter2number(i)<=90 
                        
letter2number(i)=letter2number(i);correctName=1; 
                    else correctName=0;    end %if 
                end;%for 
        end; 
        initials=char(letter2number);  
wd=cd;d_subjects=strcat(wd,'\SUBJECTS_FILES ');         
  
cd(d_subjects); 
current_s=strcat(initials,'.mat'); 
look4file=exist(current_s,'file'); 
  
if look4file==0 
    fprintf('\n\tYou are creating the trials database\n') 
    gain={'M1' 'Z0' 'P1'}; 
    trial_nc={'T1' 'T2' 'T3'}; 
%     trial_nc={'T1' 'T2'}; 
    ecc={'10' '05' '00'}; 
ii=1; 
for i_ecc=1:length(ecc) 
    for i_trial=1:length(trial_nc) 
        for i_gain=1:length(gain) 
            
t_order{ii,1}=strcat(initials,ecc{i_ecc},gain{i_gain},trial_nc{i_trial
}); 
            ii=ii+1; 
        end 
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    end 
end 
save(initials,'t_order'); 
end 
%  
load(current_s); 
all_done=1;t_remaining=0; 
for i_test=1:length(t_order) 
    if ~ 
isempty(t_order{i_test});all_done=0;t_remaining=t_remaining+1;end 
end 
%test if all are done 
if all_done==1;fprintf('\n\tTHIS PERSON HAS DONE ALL RUNS 
ALREADY!\n\t'); error('All tests completed');end  
if ~exist('t_done') 
    i_done=0; 
else 
    i_done=length(t_done); 
end 
if i_done<(length(t_order)*2/3) 
%randonly selection of a different run 
            allt_index=randperm(length(t_order)*2/3); 
            t_index=allt_index(1); 
        while isempty(t_order{t_index}) 
            allt_index=randperm(length(t_order)*2/3); 
            t_index=allt_index(1); 
        end 
else 
            allt_index=randperm(length(t_order)-length(t_order)*2/3); 
            t_index=allt_index(1); 
        while isempty(t_order{t_index}) 
            allt_index=randperm(length(t_order)-length(t_order)*2/3); 
            t_index=allt_index(1)+length(t_order)*2/3; 
        end 
end 
%now we now all the data we need  
matFileName=strcat(t_order{t_index},'.mat'); 
h.initials=matFileName(1:2); 
h.filename=matFileName; 
h.trialNumber=matFileName(8); 
h.eccentricity=str2double(matFileName(3:4)); 
signal=matFileName(5); 
switch double(signal) 
    case 77  
        h.logGain=str2double(strcat('-',matFileName(6))); 
    case 80 
        h.logGain=str2double(matFileName(6)); 
    case 90 
       h.logGain=str2double(matFileName(6)); 
end 
h.gain=10^h.logGain; 
h.daterun=datestr(now); 
i_done=i_done+1; 
fprintf('\n\tTHIS IS RUN "%g" FOR "%s" -- NAME "%s"\n\n\tTHERE ARE 
"%g" RUNS REMAINING\n',length(t_order)-(t_remaining-
1),initials,matFileName,t_remaining-1); 
if length(t_order)-(t_remaining-
1)>20;fprintf('\n\t');warning('"%g"\tTESTS TO FINISH AT 
NEAR!',t_remaining-1-(length(t_order)*1/3));fprintf('\t');end 
catch 
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    cd .. 
    rethrow(lasterror) 
    return; 
end 
cd .. 
end 
% 
function sound_sacc(type,dur) 
freq = 44100; 
mynoise(1,:) = 0.9 * MakeBeep(type, dur, freq); 
mynoise(2,:) = mynoise(1,:); 
Snd('Play', mynoise, freq, 16); 
end 
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Example of a Matlab program to run the reading 
experiments in patients 

 
function readv4pat 
% MODIFIED VERSION -- INITIAL CODE FOR CONTROLS' 
% Author: Filipe Macedo 
% Version: 02.09 
% Started, long time ago... 
% updated, 29 Jan 08 
% Updated, 7 Jan 2009 
% Updated, 6 Jan 2009 
try 
clear all;home; tic 
fprintf('\n\n\t\t**READING** \n\t\t'); 
fprintf('\n\t\tPerformed on ''%s''\n\n\t', datestr(now)); 
% initialize eyelink     
if EyelinkInit()~= 1; %                                
    return; 
end;  
fprintf('\n');option='n';%dir('*.mat'); 
  
  
% difining header 
while ~strcmp('y',option) 
[matFileName,t_index,current_s,h,i_done,t_i] = trialsOrder; 
h.distance = 50; 
% is that really necessary? 
switch h.eccentricity 
    case 0 
    h.start_time = 2;fprintf('\n\t') 
    visualAc = input('Reading Acuity?.: ','s'); 
    fprintf('\n')  
    h.visualAc = str2num(visualAc); 
    case 5 
    h.start_time = 2; 
    h.visualAc = 1.10; 
    case 1 
    h.start_time = 0.5;     
    h.visualAc = 1.38; 
end 
% deals with the plot window to display the graph 
screenNumber=max(Screen('Screens')); 
scrsz = get(0,'ScreenSize'); 
FIGNAME = strcat('BLOCK CONTROL','--', matFileName(1:8)); 
if screenNumber == 2; 
width = scrsz(3)- 400; height = 600; 
figure('Name', FIGNAME,'NumberTitle','off','Position',[scrsz(1) 
scrsz(4)-(height+80) width height]);  
else 
  figure('Name', FIGNAME,'NumberTitle','off') 
end 
% conversion factors  
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px2pt = 1.6922; 
px2cm = [0.0393 0.0393]; 
px2deg = [0.0428 0.0437]; 
angleMAR = 10^str2num(visualAc); 
angleDEG = angleMAR/60; 
sizeCm = tand(5*angleDEG)*h.distance; % 1/5 of the total size 
sizePx = sizeCm*(1/px2cm(1)); 
sizePt = floor(sizePx*px2pt); 
fprintf('\n text Size is.: %g - size cm.: %g - size px.: 
%g\n',sizePt,sizeCm,sizePx); 
h.ts = sizePt; 
h.start_sd = h.start_time; 
if strcmp(h.initials,'TT') 
    h.trialsDesired = 5; 
else 
    h.trialsDesired = 30; 
end 
% deals with file to save in the current directory 
look4file = exist( matFileName,'file'); 
fprintf('\n\tPlase make sure the distance is "%g" 
cm\n\n\t',h.distance); 
if ~strcmp(h.initials,'TT') 
        if look4file == 2 
                fprintf('\tTHIS FILE ALREADY EXIST!...REPLACE?\n\n\t') 
        else 
                fprintf('New file!\n\n\t') 
        end 
            option=input('PROCEED?  [y/n]:     ','s' ); 
else 
            fprintf('\tDEMO TRIAL!\n\n\t'); 
            option='y'; 
end  
end %while option  
  
AssertOpenGL; 
doublebuffer=1; 
[h.filename,eyefilename,myerr] = getfilenames(h,screenNumber);  
% prompt for file names 
if myerr                                % exit on errors in inputs 
    shutdown(oldRes);  
    error('Filename Input Fatal Error'); 
end; 
%  TRACKER CONFIGURATION 
eyelink('command','calibration_type = HV5'); 
eyelink('command','enable_automatic_calibration = NO'); 
eyelink('command','automatic_calibration_passing = 1500'); 
eyelink('command', 'saccade_velocity_threshold = 30'); 
eyelink('command', 'saccade_acceleration_threshold = 8500'); 
eyelink('command', 'file_sample_data  = LEFT,RIGHT,GAZE,AREA'); 
eyelink('command', 'file_event_data = GAZE,GAZERES,AREA, VELOCITY'); 
eyelink('command', 'file_event_filter = 
LEFT,RIGHT,FIXATION,SACCADE,BLINK,MESSAGE'); 
eyelink('command', 'link_sample_data = GAZE,GAZERES,HREF,AREA');  
eyelink('command', 'link_event_data = 
GAZE,GAZERES,HREF,AREA,VELOCITY'); 
%  
doublebuffer=1; 
oldVisualDebugLevel = Screen('Preference', 'VisualDebugLevel', 3); 
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oldSupressAllWarnings = Screen('Preference', 'SuppressAllWarnings', 
1); 
[w, wRect] = Screen('OpenWindow', screenNumber, 0,[], 32, 
doublebuffer+1); 
  
m = 21;     
% PLEASE SET THE MONITOR SIZE IN -- inches    
% warning('PLEASE VERIFY THE MONITOR SIZE, NOW SET AT:  "%g" ',m) 
if m == 19   
   hvratio = 5/4; 
elseif m == 21 
    m = 19.8; 
    hvratio = 4/3; 
else 
    error('Monitor dimensions unknown'); 
end 
  
  monitorSize_cm = m* 2.54; 
  sm(2) = sqrt(monitorSize_cm^2/(1 + hvratio^2)); 
  sm(1) = sm(2)*hvratio; 
  h.sizeM = sm; 
%  
res = [wRect(3) wRect(4)]; %screen resolution 
fps = Screen('FrameRate',w);% frame rate 
  
KbName('UnifyKeyNames'); 
priorityLevel = MaxPriority(w); 
Screen('BlendFunction', w, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 
  
 
if ~IsLinux 
    Screen('TextFont', w, 'courier new'); 
    Screen('TextSize', w, floor(h.ts*0.8)); 
    Screen('TextStyle', w,1) 
end 
 
white = WhiteIndex(screenNumber); 
red = [255 0 0]; 
green = [0 255 0]; 
el = EyelinkInitDefaults(w); 
  
if Eyelink('isconnected') == el.connected 
    if res ~= [1024 768] % resolution check 
        error('Check resolution'); 
        return 
    end      
    if fps<95;  % verify frame rate 
        Eyelink('shutdown') 
        error('The frame rate is below 100 Hz!'); 
    end; 
end 
 
windowSize = Screen(w,'Rect'); 
[xwcenter ywcenter] = WindowCenter(el.window); 
Eyelink('openfile', eyefilename); 
sendheader(h); 
% 
testC = 'TEST INFO.'; 
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testC1 =strcat('RES..: ', num2str(res(1)), 'x' ,num2str(res(2))); 
testC2 =strcat('DIST.: ', num2str(h.distance),' cm'); 
testC3 =strcat('ECC..: ', num2str(h.eccentricity),' deg'); 
testC4 =strcat('FILE.: ',matFileName(1:8)); 
cTx  = Screen('TextBounds',w,testC);     
  
Screen('DrawText', w, testC ,10,0.25*cTx (4),red);  
Screen('DrawText', w, testC1,10,1.25*cTx (4),white);  
Screen('DrawText', w, testC2,10,2.25*cTx (4),white);  
Screen('DrawText', w, testC3,10,3.25*cTx (4),white); 
Screen('DrawText', w, testC4,10,4.25*cTx (4),white);  
Screen('Flip',w); 
while KbCheck;end; 
KbWait; 
while KbCheck;end;  
% 
text1 =  'LOOK AT DOT'; 
cTx  = Screen('TextBounds',w,text1);   
Screen('DrawText', w, text1,10,ywcenter-cTx(4)*0.5,white); 
Screen('Flip',w); 
  
while KbCheck;end; 
KbWait; 
while KbCheck;end;  
 
EyelinkDoTrackerSetup(el); 
if Eyelink('isconnected') == el.connected   
% EyelinkDoDriftCorrection(el,wRect(3)/4,ywcenter); 
EyelinkDoDriftCorrection(el,xwcenter,ywcenter); 
end 
 
% number of position measured/number of quest(s) created 
if h.eccentricity == 0; 
    n_pos = 1; 
else 
    n_pos = 2; 
end 
     
    tGuess = h.start_time; 
    tGuessSd = h.start_sd; 
    pThreshold = 0.82; 
    beta=3.5; 
    delta = 0.01; 
    gamma = 0.5; 
    for i = 1:n_pos 
        q(i) = 
QuestCreate(tGuess,tGuessSd,pThreshold,beta,delta,gamma); 
        q(i).normalizePdf = 1;  
    end 
trialsDesired = h.trialsDesired; 
trials = 1; % controling the number of trials 
oldymax = tGuess; oldymin =tGuess; 
time2rest = GetSecs;          
while GetSecs - time2rest < 2  
     text1 = sprintf('WAIT %g', round (2 - (GetSecs-time2rest))); 
     cTx  = Screen('TextBounds',w,text1);   
    Screen('DrawText', w, text1,xwcenter-cTx(3)*0.5,ywcenter-
cTx(4)*0.5,white); 
    Screen('Flip',w); 
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end 
%--convertion factores 
    px2cm=[sm(1)/res(1) sm(2)/res(2)]; 
% given a measure in px,converts to cm 
%--converting sizeM from cm to deg 
    sm_d=[atand((sm(1)/2)/h.distance)*2 
atand((sm(2)/2)/h.distance)*2]; 
% size of the monitor in deg 
    px2deg=[sm_d(1)/res(1) sm_d(2)/res(2)]; 
% given a measure in px,converts to deg 
%----//----   
if ~IsLinux 
    Screen('TextSize', w, h.ts); 
end 
    WaitSecs(0.1); 
    Eyelink('StartRecording'); 
    eyetracked = Eyelink('EyeAvailable');  
    [oldxe,oldye,oldxt,oldyt,oldve,tLastS] = 
dummyConnected(el,eyetracked); 
    xe = oldxe;ye = oldye; 
     %initial values for the loop --- external function 
    Eyelink('message','SYNCTIME'); 
    Eyelink('command', 'begin_realtime_mode'); 
% now defining the time for precise presentations 
    ifi = Screen('GetFlipInterval',w); 
    if fps == 0 
        fps = 1/ifi; 
    end 
    waitframes=1;   
    vbl = Screen('Flip',w); 
    Priority(priorityLevel); 
     
    for i=1:n_pos; 
        drawMessage(i) = trialsDesired*(i)+1; 
    end 
  
% defining some keys 
stopkey=KbName('DELETE');    
right = KbName('Return');   
wrong = KbName('0'); 
yes = KbName('y'); 
no = KbName('n'); 
% load text before presenting 
load('sentences.mat') 
words = d; 
% words = new6cstcs-- ini some variables  
workd = cd; % working directory 
cd(strcat(workd,'\SUBJECTS_FILES '));  % save information about the 
subject  
load(strcat(h.initials,'.mat')); % load existing information 
line1= lastLine;  
cd .. 
% variables in use to control the loop 
wd = 1; 
prev_result=0; 
count_vs=1; 
wordCount = 0; 
nThres = 1; 
show = 0; 
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pos_op = randperm(1); 
pos = pos_op(1); 
add = 0; 
countT = 0; 
%  
gazeArea = CenterRectOnPoint([0 0 2./px2deg],xwcenter, ywcenter); 
ecc = str2num(matFileName(3)); 
loops = 0; 
oldClueSize = [ 0 0 0 0]; 
stFrame = 1; 
repeat = 0; 
% opens a text file to save bolck information 
fid = fopen(strcat(matFileName(1:8),'.txt'),'wt+'); 
fprintf(fid,'date.:\t%s\nfile name.:\t%s\n', 
datestr(now),matFileName(1:8)); 
fprintf(fid,'tS\ttime\tve\tae\txe\txtar\tasac\tye\tytar\tloops\tcond\t
[vbl-ini_time]\tword\n'); 
%  ---Trial loop starts here---  
while trials <= trialsDesired*n_pos 
% 
myword = textscan(words{1,1}{randstc(line1),1},'%s','delimiter','% '); 
word = myword{1,1}{wd,1};  
wordCount = wordCount +1; 
  
if nThres 
    tTest = QuestQuantile(q(pos)); 
    ymax = max(tTest,oldymax); 
    ymin = min(tTest,oldymin); 
    nThres = 0; 
end 
  
textmask(1,1:size(word,2)) = '+'; 
clueSize = Screen('TextBounds',w,word);  
vbl = Screen('Flip',w); 
% this is a key moment in time for the experiment during this frame, 
the target will never be presented thus the "ini_time" needs to be add 
"ifi" because if conditions are satisfied the target will be presented 
in the next frame 
ini_time = vbl + ifi; 
if wd ~=1 
    Eyelink('message',strcat('StartOf',num2str(wd),'-',num2str(vbl))); 
end 
  
sSac = 0; % end of the saccade 
eSac = 1; % start of the saccade 
xsSac = 0; % "x" here saccade starts 
xeSac = 0; % "x" here saccade lands 
aSac =[0 0]; % aSac is zero every new word 
stS = 0; 
while 1  
                        hideT = 0;                   
                        pupil = 0; %this reset pupil var while pupil 
== 0 loop 
                        errorEl = Eyelink('checkrecording'); 
                        if (errorEl~=0) 
                            return 
                        end   
%---EYE---EYE---EYE---EYE/----          
                         if Eyelink('isconnected') == el.connected 
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                                sample = Eyelink( 
'newfloatsampleavailable'); 
                                if sample 
%get the sample in the form of an event structure                    
                                evt = Eyelink( 'newestfloatsample');   
%get current gaze position from sample                                    
                                xe = evt.gx(eyetracked+1);  
% +1 as we're accessing MATLAB array 
                                ye = evt.gy(eyetracked+1); 
                                tS = evt.time(1); 
                                pupil = evt.pa(eyetracked+1); 
                                end % if sample 
%                              end %while 
                         Else 
%----/MOUSE----MOUSE ----MOUSE----MOUSE   
                                tS = vbl; 
                                [xe,ye] = GetMouse; 
                                pupil = 1; 
                         end %eyelink('isconnected') == el.connected 
% vlimit & alimit 
        time = (tS - tLastS)*0.001; 
        if Eyelink('isconnected') ~= el.connected 
            time = time*1000; 
        end 
         
        invtime = 1/time; 
        tLastS = tS; 
%---/calculating eye movement in deg(ped=position-eye-degrees/--- 
        ped = [xe ye].*px2deg;     
        oldped = [oldxe oldye ].*px2deg; 
        vxe = (ped(1)-oldped(1))*invtime; 
        vye = (ped(2)-oldped(2))*invtime;  
        ve = sqrt(vxe^2+vye^2); 
        ae = (ve-oldve)*invtime; 
        repCriteria = 2*(ve > 700); 
%---/target movements/--- 
       if strcmp(matFileName(4:5),'NN'); 
           xt = xwcenter; yt = ywcenter; 
       end 
        
       if strcmp(matFileName(4:5),'FN') 
        xt = (xe-oldxe)*h.gain+oldxe; 
        yt = (ye-oldye)*h.gain+oldye;      
        hideT = ve > 30 || ae > 8500; 
        aSac = [0 0]; 
        if hideT 
          xt = xe; 
          yt = ye; 
          hideT = 0; 
        end 
       end 
        
        if strcmp(matFileName(4:5),'FS') 
        hideT = ve > 30 || ae > 8500;  
            if hideT 
                xt = oldxt; 
                yt = oldyt; 
                if ~sSac 
                    sSac = 1; 
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                    xsSac = xe; 
                    eSac = 0; 
                end 
                hideT = 0; 
                aSac = [0 0];stS = 1; 
            elseif ~hideT 
                xt = (xe-oldxe)*h.gain+oldxe; 
                yt = (ye-oldye)*h.gain+oldye; 
                if ~eSac && sSac && stS 
                   eSac = 1; 
                   xeSac = xe; 
                   aSac = [xeSac-xsSac 0]; 
                   sSac = 0;             
                end            
            end 
        end 
 
tg = [xt yt] - [clueSize(3:4)]*0.5 - [aSac];%"tg" is the target 
position 
inScreen = IsInRect(xe,ye,wRect); 
% this bit is only to avoid "flicker" during cond "11" see below 
if stFrame 
    hideT = 0; 
end 
if [xe ye] == el.MISSING_DATA  % need ???? 
    inScreen = 0; 
end 
  
switch hideT 
case 0 % case hide T is zero starts - shows target/op1 
                if wd == 1    % wd = 1 / op.1 
                    if stFrame % if 1st frame - op1 
                       show = IsInRect(xe,ye, gazeArea);   
                       ini_time = vbl + ifi;% please see notes in the 
start of this loop about "ifi" 
                        if show 
                            stFrame = 0; 
                            cond = 11;      
                        elseif ~show 
                            Screen('DrawDots', w,[xe 
ye],10,white,[],1);  
                            Screen('DrawDots', w,[xwcenter ywcenter] , 
30, red, [],1); 
                           cond =12; 
                        end 
                    elseif ~stFrame % if 1st frame - op2 
                        if vbl-ini_time < tTest % if time < tTest op1 
                            noise_in(tg,w,clueSize,1); 
                           Screen('DrawText', w, 
textmask,tg(1),tg(2),red); 
                         cond = 13;  sendmsg = 1; 
                        elseif vbl-ini_time  < 2*tTest  % if time < 
tTest op2 
                            if sendmsg 
Eyelink('message',strcat('Pos',num2str(pos),'tTest',num2str(tTest))); 
                                Eyelink('message','TargetVisible'); 
Eyelink('message',strcat('StartOf',num2str(wd),'-
',num2str(ini_time)));  
                                sendmsg = 0; 
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                            end 
                          Screen('DrawText', w, 
word,tg(1),tg(2),white); 
                          cond = 14;   
                        else % if time < tTest op3 
                            
Eyelink('message',strcat('EndOf',num2str(wd),'-',num2str(vbl-
ini_time))); 
                            break 
                        end 
                    end    % if 1st frame - end!! 
               elseif 2 < wd <= 4 % wd = 1/op.2 
                   if(vbl-ini_time) < tTest % test Time/op.1 
                     Screen('DrawText', w, word,tg(1),tg(2),white);  
                     cond = 21; 
                   else % test Time/ op.2 
                     Eyelink('message',strcat('EndOf',num2str(wd),'-', 
num2str(vbl-ini_time))); 
                     break 
                   end      % test Time/ends     
                else % wd = 1/op.3 
                   break 
                end % wd = 1 --- ends!! 
case 1       % case hide T is 1 - blank monitor/op2 
  xt = xe; 
  yt = ye; 
  Screen('FillRect',w,white*0) 
  cond = 31; 
end  % case hide T -- ends !!                                                  
        loops = loops +1; 
fprintf(fid,'%.0f\t%.5f\t%.2f\t%.2f\t%.2f\t%.2f\t%.0f\t%.2f\t%.2f\t%.0
f\t%.0f\t%.4f\t%s\n',tS,time,ve,ae,xe,xt,aSac(1),ye,yt, loops,cond, 
(vbl-ini_time),word); 
        vbl = Screen('Flip',w,vbl+(waitframes-0.5)*ifi);      
        oldxe = xe;    oldye = ye;   oldxt = xt;   oldyt = yt;   oldve 
= ve; 
end % END OF LOOP CONDITION 
clear textmask cond 
% now! -- new sentence if wd = 4; new word otherwise 
if wd == 4  
Eyelink('message',strcat('TargetNotVisible','R',num2str(repCriteria+(~
inScreen)))); 
noiseSize = clueSize; 
if oldClueSize(3) > clueSize(3) 
   noiseSize = oldClueSize; 
end   
oldClueSize = clueSize; 
                hold on  
                if trials == h.trialsDesired + 1;  
                    oldymin = tGuess;  
                    ymax = tTest;  
                end 
                % axis off 
                if trials <= h.trialsDesired 
                    t_plot = trials + add; 
                end  
                set(gca,'xlim',[(t_plot - 2) (t_plot + 2)], 'ylim', 
[(oldymin - oldymin*0.1) (ymax + 
ymax*0.05)],'XColor','w','YColor','w'); 
                if repeat 
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                       title(strcat('POS - ','PRL')); 
                       plot(t_plot,tTest,'-
r*','LineWidth',2,'MarkerSize',12);   
                    str2graph = num2str(randstc(line1)); 
                else 
                       plot(t_plot,tTest,'-
g*','LineWidth',2,'MarkerSize',6); 
                       str2graph = 
strcat(num2str(randstc(line1)),':',sprintf('%s-%s-%s-%s-%s', 
(myword{1,1}{1:wd,1}))); 
                end   
            text(t_plot,tTest,str2graph,'FontSize',8); 
            drawnow 
            oldymax = ymax; oldymin = ymin;       
    if ~repeat 
        fprintf('\nLINE n.: %g - Trial %g || %s  - %s - %s - %s -%s 
\n\n', randstc(line1),trials,(myword{1,1}{1:wd,1})); 
        while 1         
                [touch, secs, keyCode] = KbCheck; 
                noise_in(tg,w,noiseSize,1); 
                if keyCode(wrong); % wrong 
                    result = 0; % wrong 
                    break 
                elseif keyCode(right); % right 
                    result = 1; % right 
                    break 
                elseif keyCode(stopkey); 
                       fprintf('\n\n'); error('STOP KEY PRESSED'); 
                        return; 
                end 
                Screen('Flip',w); 
        end 
        % update quest 
            q(pos)=QuestUpdate(q(pos),tTest,result) ;    
            assignin('base','quest',q);  
        % move to another sentence -- new trial 
            trials = trials + 1;  
            line1 = line1 + 1; 
            add = 0; 
            wd = 1; 
            nThres = 1; 
            show = 0; 
    end % end of ~ repeat 
        if repeat 
            line1 = line1 + 1; 
            add = add + 1; 
            wd = 1; 
        end 
         
        if ~rem(trials,(h.trialsDesired+1)) && n_pos > 1 
            vbl = Screen('Flip',w); 
            pos = pos_op(2); 
            Screen('DrawText', w,'position change',50,ywcenter,green); 
            vbl = Screen('Flip',w); 
            WaitSecs(1.5) 
        end 
  
        if trials <= trialsDesired*n_pos 
            repeat = 0; wd = 1; show = 0; 
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            EyelinkDoDriftCorrection(el,xwcenter,ywcenter); 
            WaitSecs(0.1); 
            Eyelink('StartRecording'); 
            eyetracked = Eyelink('EyeAvailable'); 
            [oldxe,oldye,oldxt,oldyt,oldve,tLastS] =       
dummyConnected(el,eyetracked); 
            clear keyCode 
            stFrame = 1;             
            vbl = Screen('Flip',w); 
        end    
else 
    wd = wd+1; 
end 
  
clear ini_time 
end %while trials desired 
%---AFTER ALL TRIALS---- 
for j=1:n_pos 
    t(j)=QuestMean(q(j));%Add the new datum (actual test% intensity 
and observer response) to the database. 
    sd(j)=QuestSd(q(j));%the after your trial loops (they suggest 60) 
put this 
end 
    fprintf('\n\nTEST DURATION: "%1.2g" minutes\n\n',toc/60) 
    sound_sacc(1000,0.05); 
    WaitSecs(0.25);  
    sound_sacc(1000,0.05); 
    Screen('Flip',w); 
    text1='thank you'; 
    cTx  = Screen('TextBounds',w,text1);   
    Screen('DrawText', w, text1,10,ywcenter-0.5*cTx(4),green); 
    Screen('Flip',w); 
    Eyelink('closefile'); 
    Eyelink('Stoprecording');    
while KbCheck;end; 
KbWait; 
while KbCheck;end; 
    workd = cd; 
    d_edf=strcat(workd,'\EDF_FILES'); 
        if Eyelink('isconnected') == el.connected  
            cd(d_edf); 
            status = Eyelink('receivefile',eyefilename,eyefilename); 
            if status < 0, fprintf('Error in receiveing file!\n'); 
end;            
            cd .. 
        end 
    Eyelink('Shutdown');     
    Screen('CloseAll'); 
while KbCheck;end; 
KbWait; 
while KbCheck;end;  
  
    [file,path]=uiputfile(matFileName,'Save Workspace As'); 
    save(h.filename); 
 
    colour=['rgbk']; 
    hold on 
    for i=1:n_pos 
        plot(q(i).intensity,colour(i)); 
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        set(gca,'xlim',[1 (h.trialsDesired)], 'ylim', 
[min(q(i).intensity) max(q(i).intensity)],'XColor','w','YColor','w'); 
        hold on 
    end 
    [PATHSTR,NAME,EXT,VERSN] = fileparts(matFileName); 
    nome=sprintf('%1.8s.fig',NAME);  
    d_plots=strcat(workd,'\PLOTS'); 
    cd(d_plots) 
    saveas(gcf,nome); 
    close('all') 
    cd .. 
     fprintf('\n\tVALIDE BLOCK?\n\t') 
     fprintf('\n\tDELETE BASE? \n\t PRESS - - (y)es OR (n)o - - to 
finish\n\n\n\t' ); 
     while KbCheck; end 
     KbWait; 
     while KbCheck; end 
     clear keyCode 
      while 1 
            [touch, secs, keyCode] = KbCheck; 
            while KbCheck; end 
            if keyCode(yes); 
               proceed1 = 1; 
               warning('This block is now completed'); 
               break 
            elseif keyCode(no); 
               proceed1 = 0; 
                warning('This block will be REPEATED!'); 
                break                         
            end 
      end 
% proceed1 = strcmp(proceed,'y'); 
%     proceed1 =1; 
    d_subjects = strcat(workd,'\SUBJECTS_FILES '); 
    if  proceed1 
        cd(d_subjects);   
        load(current_s); 
        t_done{i_done,1} = matFileName; 
        t_i(1)=[];  
        lastLine = trials+line1; 
       save(h.initials,'t_order','t_i','t_done','lastLine','randstc'); 
        cd .. 
    elseif ~proceed1 
        fprintf('\n\t'); 
        warning('ERASE MANUALLY THE DATABASE OTHERWISE THIS RUN WILL 
BE REPEATED!!!') 
    end 
    clear all 
    return 
catch 
    Eyelink('Shutdown'); 
    Screen('CloseAll'); 
    ShowCursor; 
    workd = cd; 
        cd(strcat(workd,'\SUBJECTS_FILES')); 
        load(current_s); 
        lastLine = trials + line1; 
       save(h.initials,'t_order','t_i','lastLine','randstc'); 
        cd .. 
    % Restore preferences        
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    Screen('Preference', 'VisualDebugLevel', oldVisualDebugLevel); 
    Screen('Preference', 'SuppressAllWarnings', 
oldSupressAllWarnings);   
    clear all  
    fprintf('\n\n'); 
    rethrow(lasterror) 
end %try 
end % end of the program 
% %-------------------------------------------------------------------
----- 
function [oldxe,oldye,oldxt,oldyt,oldve,tLastS] = 
dummyConnected(el,eyetracked) 
if   Eyelink('isconnected') == el.connected    
%     if Eyelink( 'newfloatsampleavailable') 
        % get the sample in the form of an event structure 
        evt = Eyelink( 'newestfloatsample');% if we do, get current 
gaze position from sample 
        oldxe = evt.gx(eyetracked+1); % +1 as we're accessing MATLAB 
array 
        oldye  = evt.gy(eyetracked+1); 
        oldxt = evt.gx(eyetracked+1); % +1 as we're accessing MATLAB 
array 
        oldyt  = evt.gy(eyetracked+1); 
        tLastS = evt.time(1); 
        oldve = 0;         
%     end 
    else 
        tLastS=GetSecs; 
        [oldxe, oldye]=GetMouse; 
        [oldxt, oldyt]=GetMouse; 
        oldve = 0; 
end 
end 
%---------------------------------------------------------------------
--- 
function sendheader(h) 
% sends header structure to eyelink as a series of messages 
% empty strings not allowed 
names = fieldnames(h);                  % get list of field names 
n = size(names);                        % figure number of fields 
n = n(1,1);                             % must be better way? 
  
for i= 1:n, 
    myfield = names(i); 
    myvalue = getfield(h,myfield{1}); 
    if ischar(myvalue)                  % handle strings and numbers 
separately 
        m = strcat('HEADER <>  ',myfield{1},' "',myvalue,'"'); 
        Eyelink('message',m); 
    elseif isnumeric(myvalue) 
        m = strcat('HEADER <>  ',myfield{1},':  ',num2str(myvalue)); 
        Eyelink('message',m); 
    else 
        fprintf('ERROR: Sendheader: must use strings or numeric 
values'); 
    end 
end 
end 
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%---------------------------------------------------------------------
--- 
function [filename,eyefilename,myerr] = getfilenames(h,window) 
% getfilenames returns file names for main data and eye data. 
% strict error checking on file names 
myerr = 0; eyefilename = ''; 
% get main file name 
[shortfilename, filepath] = uiputfile(h.filename, 'Data file name?');    
cd(filepath);                           % update current path 
if isempty(shortfilename) | 0 == shortfilename  % if empty, exit 
program 
    fprintf('File name required.\n'); 
    myerr = 1; 
    return 
end; 
if isempty(filepath) 
    filepath = pwd; end;                % use default path if empty 
     
filename = strcat(filepath,shortfilename); 
% figure default for eye data file name 
place = findstr('.mat',shortfilename);  % based on main datafile 
if isempty(place)                       % if no .mat, exit program 
    fprintf('Suffix .mat required in file name.\n'); 
    myerr = 1; 
    return 
end 
% create name for eye data file 
eyefilename = strcat(shortfilename(1:place),'edf'); 
end 
%---------------------------------------------------------------------
--- 
function prev_state = wait4buttonpress(el,prev_state) 
            if Eyelink('isconnected') == el.connected 
               while prev_state==Eyelink('ButtonStates');end; 
               prev_state=Eyelink('ButtonStates'); 
            else 
                while KbCheck;end; 
                prev_state=rand(1); 
            end 
end 
%---------------------------------------------------------------------
--- 
function noise_in(xy_noise,w, rectSize,scale) 
  
objRect = SetRect(0,0,rectSize(3),rectSize(3)); 
dstRect =[xy_noise xy_noise] + rectSize; 
noiseimg=(10*randn(rectSize(3), rectSize(3))); 
tex = Screen('MakeTexture', w, noiseimg); 
Screen('DrawTexture', w, tex,[],dstRect,[], 0); 
Screen('Close', tex); 
end 
%---------------------------------------------------------------------
--- 
function crowding(rectCircle,xy_e,rectArc,white,w) 
cf_h= ceil(rectCircle(3)*0.4); % rc-means rect to 
crowding(r_right,l_left...)                     
cf_v= ceil(rectCircle(4)*0.4);  
bar_v=ScaleRect(rectCircle,0.2,1); 
bar_h=ScaleRect(rectCircle,1,0.2);  
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rc.r=CenterRectOnPoint(ceil(bar_v),rectArc(3)+cf_h,xy_e(2));                   
rc.u=CenterRectOnPoint(ceil(bar_h),xy_e(1),rectArc(2)-cf_v);                   
rc.l=CenterRectOnPoint(ceil(bar_v),rectArc(1)-cf_h,xy_e(2));                   
rc.d=CenterRectOnPoint(ceil(bar_h),xy_e(1),rectArc(4)+cf_v);                   
Screen('FillRect',w,white*1,rc.r); 
Screen('FillRect',w,white*1,rc.u); 
Screen('FillRect',w,white*1,rc.l); 
Screen('FillRect',w,white*1,rc.d);     
end 
%---------------------------------------------------------------------
--- 
function [matFileName,t_index,current_s,h,i_done,t_i]= trialsOrder 
try 
    correctName=0; 
        while correctName==0 
                fprintf('\t') ;h.initials=input('Subject initials:   
', 's'); 
                letter2number=double(h.initials); 
                if length(letter2number)>2; fprintf('\t\tOnly 2 
initials please!\n\n');continue;end 
                for i=1:length(letter2number) 
                    if letter2number(i)>=97&& letter2number(i)<=122 
                       letter2number(i)=letter2number(i)-
32;correctName=1; 
                    elseif letter2number(i)>=65 && 
letter2number(i)<=90 
                        
letter2number(i)=letter2number(i);correctName=1; 
                    else correctName=0;    end %if 
                end;%for 
        end; 
        initials=char(letter2number);  
workd=cd; 
% opensentence database 
load('sentences.mat') 
words = d; 
  
d_subjects=strcat(workd,'\SUBJECTS_FILES ');         
cd(d_subjects); 
current_s = strcat(initials,'.mat'); 
%first chechs -- skips this procedure if the file is already there** 
look4file=exist(current_s,'file'); 
% 
if look4file==0 %sC1 
     fprintf('\n\tNEW BLOCK DATABASE\n')    
ecc={'0'}; 
t_order(1,1) =strcat(initials,ecc,'NN','Z0','1'); 
t_order(2,1) =strcat(initials,ecc,'FN','Z0','1'); 
t_order(3,1) =strcat(initials,ecc,'FS','Z0','1'); 
t_order(4,1) =strcat(initials,ecc,'FS','P1','1'); 
t_i = randperm(length(t_order)); 
randstc = Shuffle([1:1:size(words{1},1)])'; 
lastLine = 1; 
save(initials,'t_order','t_i','lastLine','randstc'); 
end %eC1 -- if there is a file already** 
load(current_s); 
% test if all are done 
if isempty(t_i);fprintf('\n\tTHIS PERSON HAS DONE ALL TRIALS 
ALREADY!\n'); error('All tests completed');end 
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if ~exist('t_done') 
    i_done = 0; 
else 
    i_done = length(t_done); 
end 
t_i = Shuffle(t_i); 
t_index = t_i(1); 
save(initials,'t_order','t_i','lastLine','randstc'); 
%now we now all the data we need  
matFileName = strcat(t_order{t_index},'.mat'); 
h.initials=matFileName(1:2); 
h.filename=matFileName; 
h.trialNumber=matFileName(8); 
h.eccentricity=str2double(matFileName(3)); 
signal=matFileName(6); 
switch double(signal) 
    case 77  
        h.logGain=str2double(strcat('-',matFileName(7))); 
    case 80 
        h.logGain=str2double(matFileName(7)); 
    case 90 
       h.logGain=str2double(matFileName(7)); 
end 
h.gain = 10^h.logGain; 
h.startLine = lastLine; 
h.daterun = datestr(now); 
i_done = i_done+1; 
fprintf('\n\tTHIS IS BLOCK "%g" FOR "%s" -- NAME "%s"\n\n\tTHERE ARE 
"%g" BLOCKS AFTER THIS\n',(length(t_order)-
length(t_i)+1),initials,matFileName,length(t_i)-1); 
%  
catch 
    cd .. 
    rethrow(lasterror) 
    return; 
end % end of try 
cd .. 
end  % end of function 
%---------------------------------------------------------------------
----- 
function sound_sacc(type,dur) 
freq = 44100; 
mynoise(1,:) = 0.9 * MakeBeep(type, dur, freq); 
mynoise(2,:) = mynoise(1,:); 
Snd('Play', mynoise, freq, 16); 
end 
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Example of a Matlab program to select eye 
movements information during reading  

function read4ctrl 
%Version.: 2.10  
%05MAR10 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - -  
%This program reads the file with reading eye movements info. 
%Reads all files starting with the initials inserted in the command 
window %If you want read a specific file please insert the full 
name 
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - -  
%Program needs 4 folders in the working directory 
%"EYEMOV_RESULTS" - to save information off all valid eye movements  
%"MAIN_SEQUENCES" - to save graphs with the main sequences 
%"TxTR" - to save text files with reading speed and saccades 
results 
%"DRIFT"  
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - -  
clear 'global' 
version = 'Patients'; 
author= 'Filipe Macedo'; 
modified= '28-APR-2010 @ 20:00'; 
% 
fprintf('\n\tOFFLINE_DATA_ANALYSIS \n\tVERSION %s -- %s @ READING 
analysis\n\tWritten by %s\n', version,modified ,author) 
fprintf('\tPerformed on ''%s'' \n', datestr(now)); 
    home 
    d=dir; 
    L=length(d); 
    count=0; 
% 
prompt={'Enter de full name [1 file analysis] or two initials [all 
files analysis]'}; 
name='file Name Input'; 
numlines=1; 
defaultanswer={'KT'}; 
answer = inputdlg(prompt,name,numlines,defaultanswer);  
if ~isempty(answer);  nome_de_referencia=answer{1}; else; 
error('error1:badInput','\nerror1\nno file name inserted');end      
    wd=cd; 
    list={}; 
    totalFiles = 0; 
    for i=1:L 
                if regexp(d(i).name,nome_de_referencia) 
                    if regexp(d(i).name,'.ASC') 
                            home 



 

- 297 - 
 

                            count=count+1; 
                            list(count,1)=strcat({d(i).name(1:8)}); 
                            f_n = (strcat(d(i).name(1:8))); 
                            read_file_1(f_n) %using version 1.1 
                    totalFiles = totalFiles +1; 
                    end 
                end;%length-r2           
  end;%for 
fprintf('\n\n [ALL LIST FINISHED] %g files analysed \n\n', 
totalFiles); 
givefeedback(1); waitSecs(.25); givefeedback(1); 
end 
%new function - - - - - - - - - - - - - - - - - - - - - - - - - - - 
- - -  
function read_file_1(f_n) 
wd = cd;  
fprintf('**now reading the file with function "read_file_1"**') 
type='E'; 
fid = fopen(strcat(f_n,type,'.ASC'), 'r'); 
file_name=strcat(f_n,'--',type); 
if ~fid 
    error('Erro na abertura do ficheiro!') 
    return  
end 
% 
fprintf('\nNOW READING   " %s\n"',file_name) 
tic 
% 
CellOne= textscan(fid,'%q%q %q%q%q%q%q%q%q%q%q%q','delimiter',' 
\b\t','multipleDelimsAsOne' ,1); 
close('all') 
n_lines=length(CellOne{1,1}); 
% 
z_Matrix=zeros([n_lines,1],'single'); 
Time=num2cell(z_Matrix,1); 
msgTimeAndx=num2cell(z_Matrix,1); 
msgAndTime=num2cell(z_Matrix,1); 
msgInfoAndy=num2cell(z_Matrix,1); 
CellTimeMsg=num2cell(z_Matrix,1); 
msgAndTime=CellOne{1,1}; 
msgTimeAndx=CellOne{1,2}; 
msgInfoAndy=CellOne{1,3}; 
clear n_lines z_Matrix CellTimeMsg sheetNumber temp 
fprintf('\n\treading...') 
idxv1 = 0; idxv = []; sBk = []; 
%new stuff: 12Fev2010 
idxsBk = 0; 
idxeSac  = 0; 
idxsSac = 0; newTrial = 0; trial =0; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~ 
for idxt = 1:length(msgInfoAndy) 
    if strncmp(msgInfoAndy{idxt},'Pos',3)  
        idxv1 = idxt;  
        position(idxv1,1) = str2num(msgInfoAndy{idxv1}(4)); 
%21march.ed2 
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        if newTrial ==0; last_pos = str2num(msgInfoAndy{idxt}(4)); 
end 
        newTrial = 1; 
       while  idxv1 <= length(msgInfoAndy) 
                idxv (idxv1,1) = idxv1; 
% this 'if' records the start of the 'trial' and stores it in 
'blockBounds' column '1' 
                if strncmp(msgInfoAndy{idxv1},'TargetVisible',13) 
                    blockBounds(idxv1,1) = idxv1; trial = trial +1; 
                end 
if strcmp(msgAndTime{idxt},'SBLINK') 
    idxsBk = idxsBk + 1;  
    sBk(idxsBk,1) = [idxt]; 
    idxsBk2 = idxt + 1; 
    while ~strcmp(msgAndTime{idxsBk2},'EBLINK') 
          idxsBk2 = idxsBk2 +1; 
    end   
    sBk(idxsBk,2) = [idxsBk2]; 
end  
% -- saccades  
if strcmp(msgAndTime{idxt},'SSACC')  
  idxsSac = idxsSac +1;   idxeSac = 1; %write = 1; % ed@22Set09 
  sSac(idxsSac,[1 2 4]) = [idxt, idxeSac, last_pos];  
  idxSearch = idxt +1; 
  while ~strcmp(msgAndTime{idxSearch},'ESACC')  
        idxSearch = idxSearch+1; 
      if strncmp(msgInfoAndy{idxSearch},'TargetNotVisible',16) || 
strcmp(msgAndTime{idxSearch},'SBLINK')     
          sSac(idxsSac,3) = -1; % if saccade finished outside 
exposure   sSac(idxsSac,[6,9]) = [idxSearch,trial];   
      end 
  end 
  sSac(idxsSac,5) = [idxSearch];                                       
end   
if strcmp(msgAndTime{idxt},'ESACC')  % only if a starting of saccad 
existed col.6 is updated  
   if idxeSac 
      sSac(idxsSac,[6,9]) = [idxt,trial];  
%sSac.col6 = frame -- end of saccade 
      idxeSac =0; %  this bit resets saccade index and ensures  
   elseif idxeSac == 0 
       searchBk = idxt; 
       while ~strcmp(msgAndTime{idxt},'SSACC')  
               searchBk = searchBk -1; 
                 if 
strncmp(msgInfoAndy{searchBk},'TargetVisible',13) 
                    idxsSac = idxsSac + 1; 
                    sSac(idxsSac,1:4) = [searchBk, 0, -2,last_pos]; 
                    sSac(idxsSac,[6,9]) = [idxt,trial];break  
% to prevent crash!  
                 end 
             sSac(idxsSac,1) = [searchBk];    
       end % because 'TargetVisible' has been reached  
   end  % before the 'SSACC' is maked -2 in col.3 
end    
           idxt = idxv1 + 1; 
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           if strncmp(msgInfoAndy{idxv1},'TargetNotVisible',16)  
% till TargetNotVisible - 16 characters 
% 'blockBounds', col 2 - index of last frame; col 3 - 'flag' - [1] 
if block repeated [0] otherwise 
              newTrial = 0; 
              blockBounds(idxv1,2) = idxv1-1;    
              blockBounds(idxv1,3) = 
strncmp(msgInfoAndy{idxv1},'TargetNotVisibleR1',18);       
              idxv1 = length(msgInfoAndy); %breaks the 'while' loop 
           end%if 
             idxv1 = idxv1 + 1; 
       end %while 
    end%if 
end%for  
fprintf('\n\tcalculating...') 
% to clean 'blockBounds' 
[idx col val1] = find(blockBounds(:,1)); 
[idx col val2] = find(blockBounds(:,2)); 
val3 = blockBounds(idx,3);  
%21march.c1 (position information is recorded) 
[idx col val4] = find(position~=0);%21march.ed1 
blockBounds=[val1 val2 val3 position(idx)]; 
repTrial = find(blockBounds(:,3) == 1) ; 
blockBounds(repTrial,:) = []; 
clear idxv1 idxt col val1 val2 val3 val4 idx 
clear i j 
%blinks 4by4 msec 
if size(sBk,1) >=1  
    for i = 1: size(sBk,1) 
        bkCell{i,1} = CellOne{1,1}{sBk(i,1),1};%  message 
        bkCell{i,2} = CellOne{1,3}{sBk(i,1),1}; %   start of blink 
        bkCell{i,3} = CellOne{1,4}{sBk(i,2),1}; %   end of blink 
        bkCell{i,4} = CellOne{1,1}{sBk(i,2),1}; % message 
    end 
    % 
    tBk = [str2num(str2mat(bkCell(:,2))) 
str2num(str2mat(bkCell(:,3)))]; 
    tBk(:,1) = tBk(:,1)-4;tBk(:,2) = tBk(:,2)+8; 
    tBk(:,3) = tBk(:,2) - tBk(:,1); 
        last = 1; 
        for i=1:size(tBk,1) 
            n4ms = ( tBk(i,2) - tBk(i,1) ) /4+1;%this "+1" is OK 
            j = 0; 
            while j < n4ms %corrected 24Set09 
                    sbkBy4(last+j,1) = tBk(i,1) + 4*j; 
                     sbkBy4(last+j,2) = tBk(i,3); 
                    j = j+1; 
            end 
            last= last + n4ms; 
        end 
    clear last 
end 
% 
eyeMovPositions = {}; 
load(strcat(f_n,'.mat'),'px2deg','t','q','h')  
assignin('base','px2deg',px2deg); 
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assignin('base','t',t); 
% 
for i = 1: size(blockBounds,1); 
    st =  blockBounds(i,1);    ed = blockBounds(i,2);    ist = 
size(eyeMovPositions, 1); 
    rg = ed - (st) +1;    aa = [ist+1:ist+rg]';    bb = [st:ed]'; 
    for j = 1:size(aa,1)  
        eyeMovPositions{aa(j),1} = CellOne{1,1}{bb(j),1}; 
        eyeMovPositions{aa(j),2} = CellOne{1,2}{bb(j),1}; 
        eyeMovPositions{aa(j),3} = CellOne{1,3}{bb(j),1}; 
        eyeMovPositions{aa(j),4} = num2str(i); 
        eyeMovPositions{aa(j),5} =  num2str(0); 
        eyeMovPositions{aa(j),6} =  blockBounds(i,3); 
        eyeMovPositions{aa(j),7} =  num2str(blockBounds(i,4)); 
    end 
end  
% 
[line col]=size(eyeMovPositions); 
eyeMovDataNum=zeros([line col],'single'); 
eyeMovDataNum=str2double(eyeMovPositions); 
% 
rawFsac=sSac;   rawFsac(:,7:8)=0; 
for i = 1: size(rawFsac,1) 
    rawFsac(i,7)= str2double(CellOne{1,3}{rawFsac(i,1),1}); 
    if isnan(rawFsac(i,7)) 
       rawFsac(i,7)= str2double(CellOne{1,2}{rawFsac(i,1),1}); 
    end 
    tmax = max( rawFsac(i,6), rawFsac(i,5) );    
    rawFsac(i,8)= str2double(CellOne{1,4}{tmax,1}); 
end 
% 
last = 1; 
for i=1:size(rawFsac,1)    
    tmax = max( rawFsac(i,6), rawFsac(i,5) ); 
    n4ms = (rawFsac(i,8)-rawFsac(i,7))/4+1;%this "+1" is OK  
    if tmax > rawFsac(i,1) && ~rem(n4ms,1)   
        j = 0; 
        while j < n4ms %corrected 24Set09 
                rawFsacBy4(last+j,1) = rawFsac(i,7) + 4*j; 
                rawFsacBy4(last+j,2) = i; 
                j = j+1; 
        end 
        last= last + n4ms; 
    else 
        rawFsac(i,4) = -3; 
        sSac(i,4) = -3; 
    end 
end 
clear last n4ms 
% 
if size(repTrial,1)>0 
    for i = 1:size(repTrial,1) 
        idxnSac= find(sSac(:,9) == repTrial(i) ); 
        fprintf('\nlast report.:\nsaccade non-valid(REPEATED!) @ 
trial.: %g\n',idxnSac); 
        sSac(idxnSac,:)=[]; 
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    end 
end 
idxnSac= find(sSac(:,4) == -3); % why del col.6 == 0 
sSac(idxnSac,:)=[];  
% col.3 has a control var which tells if saccade was valid or not 
idxnSac= find(sSac(:,3) == -1); % why del col.6 == 0 
sSac(idxnSac,:)=[];          % col.6:end of saccades,if "0" saccade 
ended out of presentation time  
idxnSac= find(sSac(:,3) == -2); % why del col.6 == 0 
sSac(idxnSac,:)=[];          % col.6:end of saccades,if "0" saccade 
ended out of presentation time  
for i = 1:size(sSac,1) 
    %ALL START 
    sacCell{i,1} = CellOne{1,1}{sSac(i,1),1};%MSG 
    sacCell{i,2} = CellOne{1,3}{sSac(i,1),1};%TIME START %ALL END 
    sacCell{i,3} = CellOne{1,1}{sSac(i,5),1};%MSG 
    sacCell{i,4} = CellOne{1,4}{sSac(i,5),1};%TIME END 
    sacCell{i,5} = CellOne{1,5}{sSac(i,5),1};%DURATION - TIME 
    sacCell{i,6} = CellOne{1,10}{sSac(i,5),1};%AMPLITUDE 
    sacCell{i,7} = CellOne{1,11}{sSac(i,5),1};%PEAK VEL. 
    sacCell{i,8} = CellOne{1,6}{sSac(i,5),1};%X.START 
    sacCell{i,9} = CellOne{1,7}{sSac(i,5),1};%Y.START 
    sacCell{i,10} = CellOne{1,8}{sSac(i,5),1};%X.END 
    sacCell{i,11} = CellOne{1,9}{sSac(i,5),1};%Y.END 
    sacCell{i,14} = num2str(sSac(i,4));%Y.END 
end 
%it is time 2 delete saccades from the eyeMovDataNum matrix: 
22DEZ09 
[vints irawSac iEm1] = 
intersect(rawFsacBy4(:,1),eyeMovDataNum(:,1)); 
eyeMovDataNum(iEm1,7)= -2; 
% tag blinks 
if size(sBk,1)> 1 
    [vintb ibK iEm2] = intersect(sbkBy4(:,1),eyeMovDataNum(:,1)); 
    eyeMovDataNum(iEm2,7)= -3; 
end 
% 
if size(sSac,1)>0 %if saccades are detected 
    timeSac= [str2num(str2mat(sacCell(:,2))) 
str2num(str2mat(sacCell(:,4))) str2num(str2mat(sacCell(:,6))) ... 
                     str2num(str2mat(sacCell(:,8))) 
str2num(str2mat(sacCell(:,9))) str2num(str2mat(sacCell(:,10))) ... 
                     str2num(str2mat(sacCell(:,11))) 
str2num(str2mat(sacCell(:,14))) str2num(str2mat(sacCell(:,7))) 
str2num(str2mat(sacCell(:,5)))];%[3x3x4] 
direction = rad2deg(atan2(timeSac(:,6)-timeSac(:,4),timeSac(:,5)-
timeSac(:,7))); 
for i = 1:size(direction,1) 
    if direction(i)<0;  val = direction(i);   direction(i) = 
360+val;   end 
end; clear val; sdir =  direction;  
    for i = 1: size(timeSac,1) 
        idx_pos = find(eyeMovDataNum(:,1) == timeSac(i,1) ); 
        pos_sac(i,1) = eyeMovDataNum(idx_pos,4); 
    end 
%update saccade cell with direction 
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    for i = 1:size(direction,1) 
        sacCell{i,12}=direction(i); 
        sacCell{i,13}=pos_sac(i); 
    end  
timeSac(:,6) = pos_sac;% trial 
% 
    for i = 1:size(sacCell,1)  
        ctrlVar(i,1)= str2num(sacCell{i,5}); 
        ctrlVar(i,2)= str2num(sacCell{i,6});%AMPLITUDE 
        ctrlVar(i,3)= str2num(sacCell{i,7});%PEAK.VEL 
    end        
%METHODS NOTE 
%saccades need to be deleted from drift: variable "sacBy4" stores 
all the info for further deletion 
    last = 1; 
    for i=1:size(timeSac,1) 
        n4ms = (timeSac(i,2)-timeSac(i,1))/4+1;%this "+1" is OK 
        j = 0; 
        while j < n4ms %corrected 24Set09 
                sacBy4(last+j,1) = timeSac(i,1) + 4*j; 
                sacBy4(last+j,2) = i; 
                sacBy4(last+j,3) = timeSac(i,8); 
                j = j+1; 
        end 
        last= last + n4ms; 
    end 
% 
plot(ctrlVar(:,2),ctrlVar(:,3),'r*'); % main sequence! 
% 
cd(strcat(wd,'\SACCADES')); 
saveas(gcf,strcat('MS_',f_n(1:8),'.fig')); 
close() 
% 
fid = fopen(strcat('sac',f_n(1:2),'.txt'),'at+'); 
fprintf(fid,'date.:\t%s\nfile name.:\t%s\n', 
datestr(now),f_n(1:8)); 
fprintf(fid,'sac count.:\t%.0f\n\n',size(sacCell,1)); 
fprintf(fid,'this time the number of trials 
was:\t%g\n\n',h.trialsDesired); 
% 
    cd .. 
else 
    fid = fopen(strcat(f_n(1:2),'.txt'),'at+'); 
    fprintf(fid,'date.:\t%s\nfile name.:\t%s\n', 
datestr(now),f_n(1:8)); 
    fprintf(fid,'sac count.:\t%s\n\n','NO SACCADES!'); 
end 
fprintf('\n\tcalculating...') 
clear reading idxvnz 
load(strcat(f_n,'.mat'),'reading')  
starr = size(reading(1,1).w,2)-10; 
if starr>1; 
    warning('...MORE THAN 11 COL') 
end 
  
i=1; 
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while size(reading(i,1).w,2) == size(reading(1,1).w,2) 
    lctrol(i,1:11) = reading(i,1).w(starr:starr+10 
    i=i+1; 
end 
clear i 
% **lctrol' columns: ** 
% (1) eye tracker raw time % (2) time between samples [ms]  
% (3) vel. eye [deg/sec] % (4) acel. eye [deg/sec/sec]  
% (5) xe [px] % (6) xt [px] % (7) horizontal component of saccades 
[px] 
% (8) ye [px] % (9) yt [px]  % (10) loops [no units] % (11) cond 
[no units]  
% (12) presntation duration 'vbl-ini_time' [ms]% (13) word 
%** Important information during the process of reading data** 
% (a) when reading data from 'xxxxxxxx.mat',info. is in 'reading' 
structure 
% or the txt file with name: 'xxxxxxxx.txt' [in the case of 
patients 
% (b) 'cond 11' = blank frame, target was visible in next 
frame;'TargetVisible' msg sent to file.EDF/ASCI 
% (c) 'cond 12' = gaze position not in the red dot 
% (d) 'cond 13' = presenting the clue  
% (e) 'cond 14' = 'st' word presented; 'cond 21' = remaining words 
presented 
% (f) 'cond 31' = blank frame due to saccade or missing data % now 
using 'cond 11' and 'cond 14' to know the samples corresponding to 
the 'clue' 
% these sample might contain (31) or (12), these are also deleted; 
% %ed.30March 
lctrol(:,12)= -4;   lctrol(:,13)= -5; 
clueidx_b = zeros(length(lctrol),14); 
last = 1; stc = 0; 
for i = 1:size(lctrol,1) 
    if lctrol(i,10) == 11;  % c1 % 
word = 1; 
clueidx_b(i,2) = -1;%selects clue frames  
        while lctrol(i,10) ~= 14 % c2 % 18July.c1: now column 11 
            clueidx_b(i,1) = last;             
            i=i+1; 
        end % c2 % 
clueidx_b(i-1,2) = 1;%last clue frame 
stc = stc + 1; %update sentence / trial number 
% ed.19July % tags for W1 
clueidx_b(i,11) = -1; 
stcSeq(stc,word)=lctrol(i,13); % selects first word/first frame 
        while lctrol(i,10) ~= 21 % c3 % 
                clueidx_b(i,word+2) = 1; 
%                 clueidx_b(i,15) = rep; 
                clueidx_b(i,word+6) = lctrol(i,1); 
                i = i+1; 
        end % c3 %      
clueidx_b(i-1,11) = 1; % last frame of 1st word 
word = word+1; %update word number 
i = i + 1; % cx.22July, needs to exist to avoid the 1st=blank frame 
% tags for W2 - W? % selects word 1 for w>1 ... number of words in 
the sentence 
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        while lctrol(i,10) == 21         % c4 % 
            clueidx_b(i,10+word) = -1; 
            stcSeq(stc,word)=lctrol(i,13); 
                while lctrol(i,11) <= lctrol(i+1,11) % c5 % 
                    clueidx_b(i,word+2) = word; 
                    clueidx_b(i,word+6) = lctrol(i,1); 
%                     clueidx_b(i,15) = rep; 
                    i = i+1;    if i+1 > length(lctrol); break; end 
                end % c5 % 
             clueidx_b(i,word+2) = word;% cx.22July, needs to take 
the last frame 
             clueidx_b(i,word+6) = lctrol(i,1); % cx.22July, needs 
to take the last frame 
             clueidx_b(i,10+word) = 1;  
             word = word + 1;%update word number inside the while % 
c4 % 
             i = i+2;    if i > length(lctrol); break; end 
                % cx.22July, i+2 needs to exist to avoid the 
1st=blank frame 
        end % c4 % 
           
last = last +1;   
    end % c1 % 
end 
% 
a(:,1:6)= [lctrol(:,1), lctrol(:,6), lctrol(:,8),lctrol(:,11), 
lctrol(:,2), lctrol(:,10) ]; 
idx_a_clue = find(clueidx_b(:,1) >=1); 
a(idx_a_clue,4) = NaN; 
idx_a_dot = find(a(:,6)==12); 
a(idx_a_dot,4) = NaN; 
% 
aizero = find(a(:,1)==0);   a(aizero,:)=[]; 
idx = 1; 
limit = 1; 
by4= zeros(300000,6); 
for i = 2:size(a,1)/limit 
    n4s = (a(i,1)-a(i-1,1))/4; 
    j = 0; 
    while j < n4s+1 
        by4(idx+j,1) = a(i-1,1)+4*j; %col1.time 
        by4(idx+j,2) = a(i-1,2); %col2.position of target xx 
        if idx+j > 2 
            by4(idx+j,3) = by4(idx+j-1,2) - by4(idx+j,2); 
%col3.horizontal mov 
        end 
        by4(idx+j,4) = a(i-1,3); %col4.position of target yy 
        if idx+j > 2 
            by4(idx+j,5) = by4(idx+j-1,4) - by4(idx+j,4); 
%col5.vertical mov 
        end        
         by4(idx+j,6) = a(i-1,4);%col6.var [0/1]:this tells me when 
the screen was blanked due to saccades 
             j = j+1; 
    end 
    idx = idx + n4s; 
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end 
idx2del =  (idx+1):1:size(by4,1); 
by4(idx2del,:) = []; 
clear idx2del; 
%NOW ALL DRIFT INFO. FROM THE MAT FILE IS IN A 4 BY 4 MSEC FORMAT 
b(:,[1 2 4 6 7 8]) = eyeMovDataNum(:,[1:4 6 7]); % column 5 is "0" 
but is not necessary! 
idxM1 = find(b(:,1)==-1); 
b(idxM1,:)=[]; 
% 
idxNan = find(isnan(b(:,1))); 
b(idxNan,:)=[]; 
% to clean repeated blocks data before drift analysis 
for i = 2:max(size(b)) 
    if b(i,6) == b(i-1,6) 
        b(i,3)=b(i,2)-b(i-1,2); 
        b(i,5)=b(i,4)-b(i-1,4); 
    else 
        b(i,3)=0; 
        b(i,5)=0; 
    end 
         
end 
[time,idxEye,idxTgt]=intersect(b(:,1),by4(:,1)); 
[tTE,iT,iE] = intersect(a(:,1),b(idxEye,1)); 
% 
gainCtrl(:,[1 2 3 4 5 6 7 10 11 12 16 22]) = [b(idxEye,[1 2]) 
by4(idxTgt,2) zeros(size(idxEye,1),1) b(idxEye,4) ... 
                                            by4(idxTgt,4)  
zeros(size(idxEye,1),1) by4(idxTgt,6)  zeros(size(idxEye,1),1)... 
                                            b(idxEye,7) b(idxEye,6)  
b(idxEye,8)];% b.col.8 corresponds to eyeMovDataNum.col.7 
gainCtrl(:,17)= 0.004;  
[tGC, iGC, itTE] = intersect(gainCtrl(:,1),tTE); 
gainCtrl(iGC,17)= a(iT,5); 
gainCtrl(:,18)=gainCtrl(:,17)/0.004-1; 
col18 = gainCtrl(:,18); 
type = f_n(6:7);  
if strcmp(type,'M1') 
    gain = .1;  elseif strcmp(type,'Z0'); 
    gain = 1;   elseif strcmp(type,'P1'); 
    gain = 10; 
end 
%x  
col2 = gainCtrl(:,2);   col3 = gainCtrl(:,3); 
%y 
col5 = gainCtrl(:,5);   col6 = gainCtrl(:,6);         
% 
for i = 2:length(gainCtrl) 
%     
    if isnan(gainCtrl(i,12)) 
    % 
        if col18(i) == 0 
            gainCtrl(i,4) = col2(i)-col2(i-1); 
            gainCtrl(i,7) = col5(i)-col5(i-1); 
            gainCtrl(i,19) = col2(i)-col2(i-1); 
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            gainCtrl(i,20) = col5(i)-col5(i-1); 
        elseif  col18(i) ~= 0 && gain ~= 1 
            colBack = i-col18(i); if colBack < 1; colBack = i-1;end 
            gainCtrl(i,4) = col3(i)-col2(colBack); 
            gainCtrl(i,7) = col6(i)-col5(colBack); 
            gainCtrl(i,19) = ( col2(i)-col2(colBack) )*gain; 
            gainCtrl(i,20) = ( col5(i)-col5(colBack) )*gain; 
        elseif col18(i) ~= 0 && gain == 1 
            gainCtrl(i,4) = 0; 
            gainCtrl(i,7) = 0; 
            gainCtrl(i,19) = 0; 
            gainCtrl(i,20) = 0; 
        end; 
     % 
    else 
            gainCtrl(i,4) = 0; 
            gainCtrl(i,7) = 0; 
            gainCtrl(i,19) = 0; 
            gainCtrl(i,20) = 0; 
    end 
% 
end 
col4 = gainCtrl(:,4);   col7 = gainCtrl(:,7); col17 = 
gainCtrl(:,17); 
delta_x = col4*px2deg(1); delta_y = col7*px2deg(2); 
delta_s = sqrt( delta_x.^2 +delta_y.^2); gainCtrl(:,8) = delta_s; 
vel = delta_s./col17; gainCtrl(:,13)= vel; 
  
col19 = gainCtrl(:,19); col20 = gainCtrl(:,20); 
delta_x1 = col19*px2deg(1); 
delta_y1 = col20*px2deg(2); 
delta_s1 = sqrt( delta_x1.^2 +delta_y1.^2);  gainCtrl(:,8) = 
delta_s; 
vel1 = delta_s1./col17; gainCtrl(:,21)= vel1; 
% test? 06FEBRUARY2010 
for i = 1: size(gainCtrl,1)  
%formula.: xe-(xt)^2 + ye-(yt)^2     
        gainCtrl(i,8) = 
sqrt((gainCtrl(i,4)*px2deg(1))^2+(gainCtrl(i,7)*px2deg(2))^2);%*60; 
% slip amplitude 
        gainCtrl(i,9) = 
rad2deg(atan2(gainCtrl(i,7),gainCtrl(i,4))); 
end 
% 
for i = 2:size(gainCtrl,1) 
    if isnan(gainCtrl(i,12)); delta_xd(i,1) = ( col2(i)-col2(i-1) 
)*px2deg(1); delta_yd(i,1) = ( col5(i)-col5(i-1) )*px2deg(2); 
    else delta_xd(i,1) = 0; delta_yd(i,1) = 0; end 
end  
delta_sd = sqrt(delta_xd.^2 + delta_yd.^2);   gainCtrl(:,14) = 
delta_sd; 
gainCtrl(:,15) = gainCtrl(:,14)./.004;     
% 
idxZ=find(gainCtrl(:,10)==0); 
if idxZ 
    gainCtrl(idxZ,:) = []; 
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end 
% 
idxM2=find(gainCtrl(:,12)==-2); 
if size(idxM2,1) 
    gainCtrl(idxM2,:) = []; 
end 
idxM2=find(gainCtrl(:,22)==-2); 
gainCtrl(idxM2,:) = []; 
idxM3=find(gainCtrl(:,22)==-3); 
gainCtrl(idxM3,:) = []; 
idxNan = find(isnan(gainCtrl(:,14) ) ); 
gainCtrl(idxNan,:) = []; 
% 
sac = timeSac; 
isp1 = find(timeSac(:,8) == 1); 
isp2 = find(timeSac(:,8) == 2); 
% 
sac1 = timeSac(isp1,:); 
sac2 = timeSac(isp2,:); 
% 
timeOfsac = zeros(size(timeSac,1),10); 
  
timeOfsac(:,1:10) = timeSac(:,[1 2 4 5 6 7 8 3 9 10]); 
fprintf('\nNumber fo saccades: %g\n',size(timeOfsac,1)); 
% 
% timeOfsac(idxSac,1) =timeOfsac(idxSac,10);  %TIME 
% timeOfsac(idxSac,2) = wordBy4(idxWord,1);   %TIME 
% timeOfsac(idxSac,3) = wordBy4(idxWord,2);   %WORD.N 
% timeOfsac(idxSac,4) = wordBy4(idxWord,3);   %WORD SIZE (CHAR) 
% timeOfsac(idxSac,5) = wordBy4(idxWord,3);   %RESERVED! TIME WORD 
"ON" 
% timeOfsac(idxSac,6) = wordBy4(idxWord,3);   %RESERVED! LATENCY! 
% timeOfsac(idxSac,7) = wordBy4(idxWord,4);   %TRIAL N. 
% timeOfsac(idxSac,8) = wordBy4(idxWord,5);   %TRIAL RESULT 
assignin('base','timeOfsac',timeOfsac); 
clear idxouts 
load(strcat(f_n,'.mat'),'t','h')  
% 
%::NOW CALLING ANOTHER FUNC. DO FINISH THE DRIFT JOB!:: 
[drift2 dist2 distb] = driftcal(gainCtrl,b,by4,px2deg,f_n,t); 
% 
TxTdir = strcat(wd,'\TxTR'); 
cd(TxTdir) 
% 
nf = strcat(f_n(1:2),'-rSpeed','.txt'); 
fid = fopen(nf,'at+'); 
count = fprintf(fid,'Function.:\t%s\n','olreadda'); 
count = fprintf(fid,'Directory.:\t...%s\t%s\n',wd(size(wd,2)-
10:size(wd,2)-5),wd(size(wd,2)-6:size(wd,2))); 
count = fprintf(fid,'Date analysed.:\t%s\t%s\nFile name.:\t%s\tDate 
recorded.:\t%s\t%s\n\n',datestr(now,1),datestr(now,15),f_n,h.dateru
n(1:11),h.daterun(13:17)); 
count = fprintf(fid,'x.time[U].:\t%.4f\tsecs\nr.spd[U].:\t%.0f 
\twpm\n\n' ,t(1),60/t(1)); 
%ed.26March - to keep information about saccades 
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count = 
fprintf(fid,'sac[U].:\t%.0f\tsac[D].:\t%.0f\tsac[UD].:\t%.0f\n', 
size(sac1,1),size(sac2,1),size(sac,1)); 
% mean amplitude 
if size(sac1,1)~=0 && size(sac2,1)~=0 
count = 
fprintf(fid,'amp.[U].:\t%.2f\tamp.[D].:\t%.2f\tamp.[UD].:\t%.2f\n',
mean(sac1(:,4)),mean(sac2(:,4)),mean(sac(:,4))); 
% mean peak velocity 
count = 
fprintf(fid,'p.vel[U].:\t%.1f\tp.vel[D].:\t%.1f\tp.vel[UD].:\t%.1f\
n',mean(sac1(:,3)),mean(sac2(:,3)),mean(sac(:,3))); 
else 
count = 
fprintf(fid,'amp.[U].:\t%.2f\tamp.[D].:\t%.2f\tamp.[UD].:\t%.2f\n',
'--','--',mean(sac(:,4))); 
% mean peak velocity 
count = 
fprintf(fid,'p.vel[U].:\t%.1f\tp.vel[D].:\t%.1f\tp.vel[UD].:\t%.1f\
n','--','--',mean(sac(:,3)));   
end 
% 
fclose(fid); 
% saccades info 
nfs = strcat(f_n(1:7),'-SACinfo','.txt'); 
fid = fopen(nfs,'at+'); 
fprintf(fid,'saccades dir.:\t...%s\n',wd(size(wd,2)-
10:size(wd,2))); 
fprintf(fid,'Date analysed.:\t%s\t%s\nFile name.:\t%s\tDate 
recorded.:\t%s\t%s\n',datestr(now,1),datestr(now,15),f_n,h.daterun(
1:11),h.daterun(13:17)); 
fprintf(fid,'sframe\teframe\tpeakvelo.\tamplitude\tangularori\tcomp
x\tcompy\tduration\tposition\n'); 
for i=1:size(sac,1); 
fprintf(fid,'%.0f\t%.0f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.0f\n',sac(
i,1),sac(i,2),sac(i,3),sac(i,4),sac(i,5),sac(i,6),sac(i,7),sac(i,8)
); 
end 
fclose(fid); 
cd .. 
% 
cd(strcat(wd,'\SACCADES')); 
fidsac =  fopen(strcat('tOs',f_n(1:8),'.txt'),'w'); 
legends={'time.start', 
'time.end','x.start','y.start','x.end','trial.n','position','amp[de
g]','p.vel[ded/sec]','duration'}; 
for i=1:size(timeOfsac,2); fprintf(fidsac,'%s\t',legends{i} ); end; 
fprintf(fidsac,'date.:\t%s\tfile name.:\t%s\n', 
datestr(now),f_n(1:8)); 
% send the file to a txt file 
for i=1:size(timeOfsac,1) 
    for j = 1:size(timeOfsac,2) 
    fprintf(fidsac,'%.2f\t', timeOfsac(i,j) ); 
    end 
    fprintf(fidsac,'\n'); 
end 
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% 
save(strcat('S_',f_n(1:8)),'sacCell','timeSac','timeOfsac'); 
cd .. 
clear CellOne Time msgTimeAndx eyeMovPositions 
% 
% Please keep this bit below to make sure the file is recorded 
cd(strcat(wd,'\EYEMOV_RESULTS')); 
save(strcat('R_',f_n)); 
cd .. 
% end of function 
fprintf('\n END OF ANALYSIS \n') 
% fprintf(fidrpt,'\n\nlast report.:\nEND OF ANALYSIS'); 
status = fclose('all');  
givefeedback(1); %waitSecs(.25); givefeedback(1); 
%END OF THE MAIN FUNCTION 
end 
%% 
%AUXILIAR FUNCTION HERE 
% 
%new function here 
function [drift2 dist2 distb] = 
driftcal(gainCtrl,b,by4,px2deg,f_n,t) 
modified= '28-APR-2010 @ 20:00'; 
%Update.: 30 September 2009 
%Update.: 18 September 2009 
%Update.: 03 September 2009 
%what is this program doing? 
%imports drift information  
%first loop goes trough the file and selects,based in the 4 ms 
separation, 
%the start and end of each fixation 
%output var is: drift %col1.start time %col2.end time 
%col3.frame start %col4.frame end %col5.fix duration 
%EYE 
%col6.xx start fix %col7. yy end fix %col8. xx start fix %col9. yy 
end fix 
%TARGET 
%col10.xx start fix %col11. yy end fix %col2. xx start fix %col13. 
yy end fix 
wd = strcat(cd,'\DRIFT'); 
px2mina = px2deg*60; 
drift = [gainCtrl(1,1),0];  j=1;    i=1; 
% 
for  i = 1:size(gainCtrl,1)-1 
% drift is a small matrix with information about the firt and last 
frame of fixation, now i can use drift to calculation about the 
maximum slippage 
    if gainCtrl(i+1,1)-gainCtrl(i,1)==4 
        drift(j,2)= gainCtrl(i+1,1); 
        drift(j,4)=i+1;%FRAME.FIX.ENDED 
    else            
        j=j+1;  
        drift(j,1)=gainCtrl(i+1,1); 
        drift(j,3) = i+1; %FRAME.FIX.STARTED 
    end 
%    
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end 
% 
drift(:,5) = drift(:,2) -drift(:,1);%FIX.DURATION 
idxDz = find (drift(:,2)==0);%::needed to avoid errors:: 
drift(idxDz,:)=[]; 
%eye movement goes to b using drift times and localizes START 
% goes to b using drift times and localizes END 
[e_tSfix e_idxSb e_idxSdrift] = intersect(b(:,1),drift(:,1)); 
[e_tEfix e_idxEb e_idxEdrift] = intersect(b(:,1),drift(:,2)); 
%::to avoid an error::last fix sometimes does not end! 
if size(e_idxSb,1)-size(e_idxEb,1) ==1 
    e_idxEb( (size(e_idxEb,1))+1,1)=length(b); 
end 
% 
drift(:,6:7) = [b(e_idxSb,2) b(e_idxSb,4)];%EYE.FIX.STAR 
drift(:,8:9) = [b(e_idxEb,2) b(e_idxEb,4)];%EYE.FIX.END 
drift(:,14) = [b(e_idxEb,8)];%10FEB10: POSITION 
%slippage: i_idxSCtrl / i_idxECtrl::THIS BIT IS CLUCIAL AND I NEED 
TO KNOW 
ddir = rad2deg(atan2(drift(:,8)-drift(:,6),drift(:,7)-drift(:,9))); 
for i = 1:size(ddir,1) 
    if ddir(i)<0;  val = ddir(i);   ddir(i) = 360+val;   end 
end; clear val;  
drift(:,15) = ddir;  
%slippage: i_idxSCtrl / i_idxECtrl::THIS BIT IS CLUCIAL AND I NEED 
TO KNOW 
%ACTUAL SLLIPAGE! 
[i_tSfix i_idxSCtrl i_idxSdrift] = 
intersect(gainCtrl(:,1),drift(:,1)); 
[i_tEfix i_idxECtrl i_idxEdrift] = 
intersect(gainCtrl(:,1),drift(:,2)); 
%target movement 
[t_tSfix t_idxSb t_idxSdrift] = intersect(by4(:,1),drift(:,1)); 
[t_tEfix t_idxEb t_idxEDrift] = intersect(by4(:,1),drift(:,2)); 
% 
drift(:,10:11) = [by4(t_idxSb,2) by4(t_idxSb,4)];%TARGET.FIX.START 
drift(:,12:13) = [by4(t_idxEb,2) by4(t_idxEb,4)];%TARGET.FIX.END 
%new block here: maximum drift amplitude:  
%e_idxSb -- index starting frame %e_idxEb -- index end frame 
%b col.2 gives the xx %b col.4 gives the yy 
dist1 = []; dist2 = []; idxorig = 0; idxdist2 = 0; 
for i = 1: size(e_idxEb,1) 
    ii = 0;idxorig = 0;  
    frmIni = e_idxSb(i); 
    frmFini = e_idxEb(i)-1; 
    for idxorig = frmIni:frmFini 
        ii = ii+1;idxorig =  idxorig+1; 
        dist1(ii,:) = sqrt(((b(frmIni,2)-
b(frmIni+ii,2))*px2mina(1))^2 + ((b(frmIni,4)-
b(frmIni+ii,4))*px2mina(2))^2);      
    end   
    idxdist2 = idxdist2+1;  
    if max(dist1)~=0         
       dist2(idxdist2,1) = log10(max(dist1)); 
    else 
        dist2(idxdist2,1) = 0; 
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    end 
    dist3{i,1} = dist1; %this is a control var -- no point to save 
it 
    dist1 = [];i= i+1; 
end  
%end of the new block 
drift2(:,1:4)=[drift(:,8)-drift(:,6) drift(:,9)-drift(:,7) 
drift(:,12)-drift(:,10) drift(:,13)-drift(:,11)]; 
drift2(:,5:6)=[drift2(:,1)-(drift2(:,3)) drift2(:,2)-
(drift2(:,4))]; 
drift2(:,9) = drift(:,14); 
% 
for i=1:size(drift2,1)  

drift2(i,7)=log10(sqrt((drift2(i,1)*px2deg(1))^2+(drift2(i,2)
*px2deg(2))^2)*60); 
drift2(i,8)=rad2deg(atan2(drift2(i,1),drift2(i,2)));     

end 
% now about slippage 
dista = []; distb = []; idxorig = 0; idxdistb = 0; 
%col.8 from gain is already in min of arc! 
for i = 1:size(i_idxECtrl,1)-1 
    ii = 0;  
    frmIni = i_idxSCtrl(i); 
    idxorig = 0; 
    frmFini = i_idxECtrl(i); 
    for idxorig = frmIni:frmFini 
        ii = ii+1; 
        idxorig =  idxorig+1;         
        dista(ii,:) = gainCtrl(idxorig,8)*60;    
    end   
    idxdistb = idxdistb+1; 
    if max(dista)~=0    % ADD TO CONTROLS!! 
        distb(idxdistb,1) = log10(max(dista)); 
    else 
        distb(idxdistb,1)  = 0; 
    end 
    distc{i,1} = dista; %this is a control var - no point to save 
it 
    dista = [];i= i+1; 
end  
% mean slippage 
hist(distb); 
mean(distb); 
title(strcat('max4slip',f_n,'...mean of max slip =', 
num2str(mean(distb)),'...min of arc')); 
cd(strcat(wd,'\hist')); 
saveas(gcf,strcat('max4slip',f_n,'.fig')); 
close() 
% 
hist(drift2(:,7)); 
mean(drift2(:,7)); 
title(strcat('s2e',f_n,'   mean amplitude 
=',num2str(mean(drift2(:,7) ) ),' minarc')); 
cd(strcat(wd,'\hist')); 
saveas(gcf,strcat('s2e',f_n,'.fig')); 
close() 
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% 
hist(dist2); 
mean(dist2); 
title(strcat('max2',f_n,'   mean amplitude =',num2str(mean(dist2) 
),' minarc')); 
cd(strcat(wd,'\hist')); 
saveas(gcf,strcat('max2',f_n,'.fig')); 
close() 
cd .. 
%file info 
fid = fopen(strcat('drift',f_n(1:2),'.txt'),'at+'); GG = 
[size(cd,2)-20:size(cd,2)];CD=cd; 
fprintf(fid,'\n\n%s\n\ndate.:\t%s\nfile name.:\t%s\n',CD(GG), 
datestr(now),f_n(1:8)); 
fprintf(fid,'\n * * code version date: %s* * \n',modified); 
%drift info 
i3=find(gainCtrl(:,14)~=0); i4=find(gainCtrl(:,15)~=0); 
%  
a1 = find(drift2(:,7)~=-Inf );a2 = find(dist2(:,1)~=-Inf ); 
% %slip info 
i1=find(gainCtrl(:,13)~=0); i2=find(gainCtrl(:,8)~=0); 
% 10FEB10 
for i = 1:4 
fprintf(fid,'\n\n * *position: [%g] * * \n',i);     
ip = find( gainCtrl(:,22)==i); 
 if isempty(ip) == 0 
    fprintf(fid,'\nMEDIAN-EyeDriftAmplitude:\t%g\tmin-of-
arc',median(gainCtrl(ip,14))*60); 
    fprintf(fid,'\nMEANlog-EyeDriftAmplitude:\t%g\tmin-of-arc', 
10^mean( log10(gainCtrl( intersect(ip,i3),14)*60)) ); 
    fprintf(fid,'\nMEAN-EyeDriftAmplitude:\t%g\tmin-of-
arc',mean(gainCtrl(ip,14))*60); 
  
    fprintf(fid,'\n\nMEDIAN-
EyeDrifVel:\t%g\tdeg/sec',median(gainCtrl(ip,15))); 
    fprintf(fid,'\nMEANlog-
EyeDrifVel:\t%g\tdeg/sec',10^mean(log10(gainCtrl(intersect(ip,i4),1
5)) ) ); 
    fprintf(fid,'\nMEAN-
EyeDrifVel:\t%g\tdeg/sec',mean(gainCtrl(ip,15))); 
    ipd2 = find(drift2(:,9) == i); 
    fprintf(fid,'\n\nmeanOfS2E-EyeDriftAmplitude:\t%g\tmin-of-
arc\n* * * *\nmean-DRIFT-max:\t%g\tmin-of-arc\n',... 
        10^mean( drift2(intersect(ipd2,a1) ,7) ),10^mean( 
dist2(intersect(ipd2,a2),1) ) ); 
    fprintf(fid,'\n\nMEDIAN-
RIVel:\t%g\tdeg/sec',median(gainCtrl(ip,13))); 
fprintf(fid,'\nMEANlog-RIVel:\t%g\tdeg/sec',10^mean( 
log10(gainCtrl( intersect(ip,i1),13)) ) ); 
fprintf(fid,'\nMEAN-
RIVel:\t%g\tdeg/sec\n**',mean(gainCtrl(ip,13))); 
fprintf(fid,'\n\nMEDIAN-slippage.:\t%g\tmin of arc', 
median(gainCtrl(ip,8))*60); 
fprintf(fid,'\nMEANlog-slippage.:\t%g\tmin of arc', 
10^mean(log10(gainCtrl( intersect(ip,i2),8)*60)) ); 
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fprintf(fid,'\nMEAN-slippage.:\t%g\tmin of arc', 
mean(gainCtrl(ip,8))*60); 
fprintf(fid,'\nreadingSpeed:\t%g\tseconds\t=\t%g\twpm\n*\n\n',t(i),
60/t(i)); 
 end 
% 
end 
% 
% send the file to a txt file 
fiddft =  fopen(strcat('tD',f_n(1:8),'.txt'),'w'); 
legends={'fix.start', 
'fix.end','frame.s','frame.e','fix.dur(msec)','xe.start','ye.start'
,'xe.end','ye.end','xt.start','yt.start','xt.end','yt.end','positio
n','dir[0-360]','drift.s2e[min arc]'};% 1 extra columns from drift 
2 
for i=1:size(drift,2)+1; fprintf(fiddft,'%s\t',legends{i} ); end; 
fprintf(fiddft,'date.:\t%s\tfile name.:\t%s\n', 
datestr(now),f_n(1:8)); 
for i=1:size(drift,1) 
    for j = 1:size(drift,2) 
    fprintf(fiddft,'%.0f\t',drift(i,j) );  
    end 
    fprintf(fiddft,'%.1f\t',10^drift2(i,7) ); 
    fprintf(fiddft,'\n'); 
end 
% 
save(strcat('D_',f_n),'gainCtrl','by4','b','drift2','drift','dist2'
,'dist3','distb','distc'); 
cd .. 
end  
%this bit of code calculates saccades latency 
%this function is not retriving any resulst because all the info 
about  
%saccades has been deleted from the "b" - - in the future I can use 
%this function but I need to use eyMovDataNum instead 
function [lat] = latency(b,timeSac,f_n) 
idxTs=find(b(:,7)==1); 
%got time target visible and trial number 
tT(:,1:2) = b(idxTs,[1 6]); 
  
for i = 1: length(timeSac) 
    [t4s itimeSac iB] = intersect(timeSac(:,1),b(:,1)); 
% can use this index to know where this sac. belongs(trial) 
end 
n = [b(iB,6) timeSac(itimeSac,1)]; 
%now doing latency calculations 
%n.col.1 = trial n. 
%       .2 = time saccade started 
%       .3 = time target was exposed 
%       .4 = latency first saccade since time col.3 (-) if is the 
second saccade 
%       .5 = latency second saccades since first 
%       .6 = latency since the "clue" exposure (previous +100 msec) 
for i = 1:size(tT,1) 
    in = find(n(:,1)==tT(i,2)); %find time of expose 4 trial with 
saccades 
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    n(in,3) = tT(i,1); 
    j = 1; 
    n(in,4) =  n(in,2) -tT(i,1) ;%does the latency calculations 
    if size(in,1) == 2 %if there is more than 1 sac per trial 
        j=j+1; 
        n(in(j),5) =  n(in(j),2)-n(in(j-1),2) ; 
        n(in(j),4) = - n(in(j),4) ; 
    elseif  max(size(in)) > 2 
        warning('3 saccades in one trial is ridiculus') 
    end 
end 
idxRub = find(n(:,3)==0); 
n(idxRub,:) = []; 
n(1:size(n,1),5:6) = 0; 
  
for i =1:size(n,1) 
    if n(i,4)>0 
       n(i,6)=n(i,4)+100; 
    elseif n(i,4)<0 
         n(i,6)=n(i,5)+100; 
    end 
end 
lat = n; 
wd = cd; 
cd(strcat(wd,'\SACCADES')); 
save(strcat('L_',f_n(1:8)),'lat'); 
cd .. 
% 
end  
 
 
 
 
 
 


