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Abstract 
 

Metabolic syndrome significantly increases the risk of developing chronic inflammatory diseases including coronary 

artery disease, stroke and type 2 diabetes. Obesity is a major risk factor for many facets of metabolic diseases 

which lead to significant morbidity and mortality worldwide. The family of Tribbles pseudokinases, including Trib3 

have been implicated in the development of many chronic inflammatory diseases. 

Previous human genetic studies have shown a Q84R polymorphism of TRIB3 to be associated with insulin 

resistance, dyslipidaemia and increased risk of developing diabetes. Furthermore, patients with type 2 diabetes 

(T2DM) were shown to have elevated levels of TRIB3 in the pancreas compared with healthy patients. TRIB3 was 

also implicated in the diabetic atherosclerosis process. Silencing Trib3 in apolipoprotein E (apoE)/LDR receptor 

(LDLR) double-knockout (ApoE–/–/LDLR–/–) mice with diabetes reduced atherosclerotic burden and stabilised the 

plaque in mice. All the evidence above indicates that Trib3 is an important regulator of insulin resistance and 

cardiovascular disease. However, the mechanisms of how Trib3 plays a part in chronic inflammatory diseases are 

unexplored. 

Development of metabolic syndrome is driven by a combination of different metabolic tissues becoming 

dysfunctional. While it is clear that the various organs may be affected differently, our insights into the role of Trib3 

in various organs remains limited. This study is aimed to use a systemic approach, for the first time on a whole 

body Trib3ko mice to decipher a role for Trib3 in metabolic dysfunction. 

Full body Trib3ko mice were created using the gene-trap system. Male Trib3ko mice were obese with elevated 

plasma levels of HDL and total cholesterol. These knockout mice also displayed a fatty liver phenotype, an 

increased macrophage influx in the liver and dysregulated proliferation in the adipose tissue. Comparative gene 

expression microarray analysis was performed on the liver, adipose and muscle tissues from Trib3ko and WT 

littermates. Gene Ontology and Pathway Analysis were performed using Ingenuity Pathway Analysis software. This 

analysis revealed multiple metabolic pathways in the liver, adipose and muscle tissues were altered, suggesting a 

dysregulated inter organ communication underpinning obesity. Key signalling regulators, such as PPARα, CEBPα 

and Akt were altered in the liver of Trib3ko compared with WT mice as evidenced by qPCR and western blots. 

Interestingly, a concurrent increase in GLUT2 levels were detected in Trib3ko liver, pointing to a possible cross-

regulation between liver lipid and glucose metabolisms via Trib3. 

Although Trib3 is implicated in lipid metabolism and insulin resistance, the isoform Trib1 has also been described 

as a regulator of inflammatory signalling and lipid metabolism. A genome-wide association study (GWAS) in a 

human patient had shown Trib1 to be associated with hyperlipidaemia and increase the risk of developing coronary 

artery disease (CAD)  

Trib1 has also shown to be an important negative regulator of inflammation and acts to lower plasma lipid levels. 

The half-life of Trib1 mRNA is <1 h, so the aim of the second part of the project was to find ways to stabilise Trib1 

mRNA levels which would, therefore, have beneficial effects on lipogenesis. The liver is the primary organ to 

modulate systemic cholesterol levels, so the aim was to stabilise TRIB1 levels in the liver. miRNA202 was shown 

to be a novel small non-coding RNA which can modulate TRIB1 protein levels, therefore representing a target by 

which TRIB1 levels could be raised in vivo, providing a mechanism to augment lipid levels and therefore the anti-

atherosclerotic effects of this protein. 
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Chapter 1 General Introduction 

1.1 Metabolic syndromes 

Metabolic syndrome has been characterised by the World Health Organization (WHO) as the presence 

of insulin resistance in combination with two additional risk factors, including dyslipidaemia, obesity and 

elevated blood pressure that contribute towards developing cardiovascular disease (CVD) and type 2 

diabetes (Alberti and Zimmet, 1998, Mayans, 2015). There have been several attempts to refine the 

clinical definition of metabolic syndrome, with the most commonly accepted definitions shown in 

Appendix I. It is essential to identify patients who develop metabolic syndrome because it is a tool for 

physicians to categorise patients who are at high risk of developing CVD and type 2 diabetes. 

Furthermore, it also allows scientist to understand the pathophysiology that links the components of 

metabolic syndrome together in developing CVD and further facilitates epidemiological and clinical 

studies for therapeutic treatments. Although environmental factors are essential in causing metabolic 

syndrome, genetic susceptibility is critical as well. Insulin resistance was first thought to be the primary 

cause of metabolic syndrome, however, more recently obesity has been linked to causal factors (Patel 

et al., 2016, Huang, 2009). 

1.2 Epidemiology of obesity 

Obesity, which is defined by the WHO as having a body mass index (BMI) greater than 30.0 kg/m2, is 

a global epidemic. It is a growing health problem with a significant burden on the economy and the 

health service. In 2016, 1.9 billion adults were reported overweight and 650 million obese. Furthermore, 

the estimated figures for 2025 are that 2.7 billion adults will become overweight and over 1 billion will 

be affected by obesity (IASO/IOTF, 2016). Worldwide, at least 2.8 million people die each year as a 

result of being overweight or obese (2.3%). In addition, Worldwide, in 2013 an estimated 42 million 

children under the age of five years were estimated to be overweight or obese; In contrast 3.1 million 

child deaths annually of malnutrition (UNICEF, World Health Organization [WHO], & The World Bank, 

2018), which accounts to 45% of child deaths in 2011. There is a growing concern for both adults and 

children because being overweight or obese leads to metabolic dysfunctions and increases the risk of 

developing CVD (Kaur, 2014). Figure 1.1 shows the percentage of adults that are obese worldwide. 

 

 

 

 

 

 

 

 

0%    Percentage of adults with obesity   100% 

Figure 1.1: Map showing the percentage of adults that are obese 

worldwide. The red gradient marks the percentage of adults that are obese. 

A higher incidence of obesity is present in Western societies and Western-

influenced countries (e.g., countries in the Middle East including Saudi 

Arabia). Adapted from (IASO/IOTF, 2016). 
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1.2.1 Consequences of Obesity 

As mentioned before, being overweight or obese significantly increase the risk of developing chronic 

inflammatory diseases, including CVD, cancer, mental disorder and type 2 diabetes. All of these require 

treatment and some of them even surgery. In the UK, the NHS spends £5.1 billion per year on the 

treatment of ill-health caused by overweightness and obesity. Estimated figures by 2035 are in the 

region of £7–8 billion per year due to the alarming increase of patients with obesity-related disorders 

(Scarborough et al., 2011). 

Some studies have reported that patients with obesity are divided into two pathological categories; the 

primary changes which are characterised by mental stress from obesity has been shown to have an 

impact on individuals’ self-esteem, often accompanied by sleep apnea and osteoarthritis. The second 

is metabolic changes, which give rise to metabolic syndrome and cause secondary diseases, including 

type 2 diabetes, insulin resistance and hypertension, which increases the chances of endothelial 

damage causing stroke, thrombosis and a heart attack (Lawrence and Kopelman, 2004, Kopelman, 

2000). 

Obese patients have a poorer prognosis than healthy lean individuals if they develop cancer. A 

prospective study in the US has shown that obese adult men are 33% more likely to die from cancer 

than lean adult men (Calle et al., 2003). Epidemiological studies have also demonstrated that obesity 

is associated with lifelong expectancy (Hruby, 2015). 

Furthermore, as mentioned, obesity and overweight have an impact on mental stress. Being overweight 

has been shown to increase the risk of developing Alzheimer's disease by 33% and this is significantly 

increased in obese individuals (Anstey et al., 2011). 

A systematic review has highlighted evidence for an increased sick leave rate due to overweightness- 

and obesity-related illnesses in the workplace for affected individuals compared with healthy. The 

review assessed 50 studies on the indirect costs of overweightness and obesity and demonstrated that 

excess weight entailed substantial indirect costs. Having an impact in the workplace can overall have 

an impact on the economy (Goettler et al., 2016). 

Being a source of physical and economic stress, obesity has social health impacts. A study by 

(Ostrovsky et al., 2013) has reported that social anxiety was significantly associated with obese and 

overweight people. However, this seems to diminish amongst extremely obese participants, compared 

with overweight and obese participants (Ostrovsky et al., 2013). 

From the literature above, it can be seen that obesity gives rise to mental stress and secondary 

diseases, alongside having a huge burden on the economy. The metabolic changes in obesity lead to 

an increased risk of developing diseases, including CVD and cancer. Obesity increases the risk of 

developing diseases. Having just an increased BMI is not sufficient in some cases, it includes having 

excess adiposity that has an impact metabolically. 

Hippocrates, the Greek philosopher and the fore-founder of medicine, said, ‘Corpulence is not only a 

disease itself but the harbinger of others’, first recognising that obesity is a medical disorder and gives 

rise to other disorders. Interestingly, scientists have provided more evidence on the impacts of obesity.  
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1.2.2 Defining obesity 

Obesity is a complex but preventable disease with a heterogeneous group of conditions. Obesity is 

caused by an excessive amount of fat accumulation from excessive intake of calories which supersedes 

calories used. The excessive calories are then stored in the form of fat and triglyceride. 

As suggested before, a person with a BMI of 30 or more is generally considered obese. A person with 

a BMI equal to or more than 25 is considered overweight. BMI is calculated by weight in kilogrammes 

divided by the square of the height in metres. BMI is used to predict body fatness levels by using a 

grading system. Furthermore, it allows comparisons of weight between populations, which can, 

therefore, identify the mortality rates. For a physician, it is a useful first-line tool used to evaluate whether 

intervention is required. Table 1.1 shows the different methods of examining fat mass levels. 

Advantages and disadvantages of examining different methods of fat mass levels. The most common 

ways include BMI, waist circumference, skinfold thickness and bioimpedance. 

 

Table 1.1: Different methods of examining fat mass levels. 

 

 

It is essential to understand that differences in gender, body proportions and the ethnic background will 

have an impact on the BMI and may not reflect the most accurate body fat levels. Alongside this, it is 

also worthwhile taking note of that defining a ‘healthy weight’ for a particular population can be 

sometimes misleading when using a BMI because different populations have different body size, weight, 

etc. The main limitation of using a BMI is the lack of the ability to differentiate between body fat 

composition and lean mass. 

Method Definition Advantages/limitations 

 

 

BMI 

 

It is the weight in kilogrammes (kg) 

divided by height in metres squared. 

 

BMI has a correlation with densitometry 

measurements of fat mass. The limitations 

include being unable to distinguish fat 

mass from lean mass. 

 

 

Waist 

circumference 

 

Measured between the lower border 

of your ribs and the upper border of 

the pelvis in centimetres (cm) 

 

Good for measuring the upper body fat 

deposition; however, it does not provide 

intra-abdominal (visceral) fat 

measurements. 

 

 

 

Skinfold thickness 

 

Measurement (in centimetres) using 

callipers, measures skinfold thickness 

(cm). Normally taken at multiple sites. 

 

The measurements can be variable due to 

different observers and require accurate 

callipers. Limitations include no information 

on abdominal and intramuscular fat. 

 

 

Bioimpedance 

 

It is the measurement of resistance to 

a weak current applied across the 

body. 

 

 

 

It is a simple way of measuring but not a 

more accurate predictor of fat compared 

with anthropometric measurements. 
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One of the ways clinicians can measure the amount of body fat is by body imaging such as magnetic 

resonance imaging (MRI) or computed tomography. MRI uses a combination of magnetic fields and 

radio waves to generate images of the body and its composition. These high-quality images will be able 

to be processed and differentiate and measure the amount and distribution of fat (Poonawalla et al., 

2013). MRI would be the most accurate way of measuring body fat composition, however the limitations 

are the costs and time.  

Having understood the limitations of BMI, there is a clear relationship between BMI and the relative risk 

of developing diabetes, CAD, hypertension and cholelithiasis (Willett et al., 1999). Figure 1.2 reveals 

the relationship between BMI and relative risk of developing disease for both males and females. In 

women, there is a significant trend in developing type 2 diabetes with a BMI up to 25, while in men the 

critical BMI for the same condition is up to 28. 

 

 

 

 

 

 

 

 

  

B A 

Figure 1.2: The relationship between BMI and relative risk of developing disease. 

BMI and the relative risk of developing diabetes, coronary artery disease (CAD), hypertension and cholelithiasis A) 
In women Initially 30 to 55 years old, followed up for 18 years. B) In men. Initially 40 to 65 years old, followed up 

to 10 years. In women, there is a significant trend in developing type 2 diabetes with a BMI up to 25, while in men 
the critical BMI for the same condition is up to 28. Adapted from (Willett et al., 1999). 
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1.2.3 Causes of Obesity 

Our body is a complex network mediated by interactions between genetic, environmental, psycho-

behavioural and economic factors which all contribute to and influence physiological mediators of 

energy intake and expenditure. Susceptible genes increase the risk of developing obesity. However, it 

should be noted that these alone are not essential for disease initiation or disease progression (Nammi 

et al., 2004). 

The most common model used to study obesity is caused by monogenic mutations involving leptin 

pathways. The ob knock out mouse is well studied and the ob locus is located at chromosome 6. The 

gene is expressed exclusively in the adipose tissue in the C57BL6 mice. The ob gene produces leptin, 

which is a crucial adipokine primarily produced in the white adipocytes and has been shown to be linked 

to appetite. Mutations that result in the expression of a constitutively active form of leptin result in 

profoundly obese mice with a mutant mouse that overeats (Zhang et al., 1994, de Luis et al., 2009). 

A study by (Campfield et al., 1995) has shown that a leptin replacement in the ob/ob mice leads to a 

reduction in body weight, food intake, body fat composition and insulin sensitivity. In the db/db model, 

which is a diabetic, obese model with high levels of leptin, there was no effect on body fat composition 

and body weight, showing signs of leptin resistance. 

There have been many mouse studies that have identified candidate susceptible genes which increase 

the risk of developing obesity. Many of these are associated with human obesity and metabolic 

dysfunction. A study by (Monda et al., 2010) has shown that if genes involved in the regulation of 

appetite become mutated, this could lead to an increased risk of developing obesity. Other models 

include the diet-induced models, polygenic models (Willett and Albright, 2004). 

Animal models are important in studying and understanding the potential pathology of metabolic 

syndrome, especially murine models, because their whole genome has been sequenced and a large 

amount of transgenic and knockout models are readily available. However, there are limitations of these 

as well. The animal models can be expensive and lipid physiology can differ compared with humans. 

In mice, most of the cholesterol transport is carried by the high-density lipoprotein (HDL), whereas in 

humans, low-density lipoprotein (LDL) plays an important part in delivering cholesterol to the tissues. 

Thus, high HDL levels would be reasonable in mice (Jackson Laboratory) (Camus et al., 1983). 

Although genetic susceptibility is paramount, it can be established that environmental factors influence 

the degree of obesity which is attenuated or exacerbated by non-genetic factors. These are known as 

obesogenic environmental factors (Kachur et al., 2017). 

Physical activity has shown to be a significant factor in reducing energy expenditure. There have been 

cross-cultural studies showing a sevenfold increased risk of becoming overweight in those who have 

reduced the physical activity level to less than 1.8 per week (Ferro-Luzzi and Martino, 1996). A 

longitudinal study by a Finnish group has shown that the prevalence of obesity was inversely associated 

with the level of physical activity. Those reported doing physical activity 2–3 times per week had on 

average weight loss compared with those with little physical activity (Rissanen et al., 1991). 

https://en.wikipedia.org/wiki/Mutant
https://en.wikipedia.org/wiki/Polyphagia
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Furthermore, there is a strong correlation between the prevalence of overweightness and hours spent 

in front of the television. In the USA, youth who watch TV 5 h a day have a 4.6 times higher risk of 

becoming overweight than those watching 0–2 h (Gortmaker et al., 1996). 

 

Evidence for the critical role environmental factors frequently play can be shown from studies on 

migrants and the impact of westernised diet and lifestyles. There is often an increase in BMI in migrant 

workers, where populations with a common genetic heritage live under new and different environmental 

circumstances. The Pima Indians who are living in the United States have been shown to be 25 kg 

heavier with an increase in BMI levels than the Pima Indians living in Mexico (Ravussin., 1995). 

 

Cultural and educational background have also been shown to be associated with attributes of obesity. 

In industrial countries, there is a higher prevalence of overweightness and obesity observed in lower 

educational and low-income families. In England and Wales, there is a strong association between 

social class and obesity, especially in women. There is a risk of 10.7% for becoming overweight in high 

social class compared with 25% in low social class families (Zaninotto et al., 2009). Figure 1.3 shows 

a summary of factors influencing obesity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obesity 

Genetics 

Environment 

Susceptible 

Genes Monogenic 

diseases 

Metabolism 

Physical activity 

Culture 

Diet 

Figure 1.3: Summary of factors influencing obesity. 

Environmental and genetic factors influence obesity, including metabolism, physical 
exercise, diet and culture which have been shown to be associated with an increased risk 
of developing CVD. 
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1.3 Adipose tissue WAT vs. BAT 

In the classical view, adipose tissue was regarded as storage tissue for increasing energy intake only. 

However, it is now seen as an endocrine organ which releases free fatty acids (FFA), adipokines that 

act on other tissues including the brain, liver and muscle to regulate insulin sensitivity, food intake and 

energy balance. Adipose tissue can be separated into many different types. However, there are two 

main types, white adipose tissue (WAT) and brown adipose tissue (BAT). The WAT has been shown 

to store excess energy as triglycerides, and the BAT has been shown to dissipate energy through heat 

production. It is abundant in small mammals and newborns and also present in adult tumours (Saely et 

al., 2012). 

The WAT appears pale white in colour and spherical in dimension, which is variable in size with a single 

lipid droplet inside the adipocytes for fat storage. The mitochondria are thin and elongated. The WAT is 

located at different anatomical sites, including the subcutaneous tissue located around the buttocks, 

thighs and abdominal region. The visceral fat is located around the organs inside and around the 

peritoneum. There has been a strong correlation between visceral WAT and increased risk of CVD 

(Golia et al., 2014, Luo and Liu, 2016, Esteve Rafols, 2014). 

Furthermore, the ectopic fat is a store of triglycerides that resides in other tissues like the liver, skeletal 

muscle or around the heart (epicardial fat). It can interfere with cellular functions and organ function and 

is strongly associated with insulin resistance in type 2 diabetes (Esteve Rafols, 2014). 

The BAT, in contrast, is darker in colour, with a high mitochondrial content which is largely spherical 

with laminar cristae. The BAT has higher capillaries and vascularisation due to higher oxygen demand. 

In adults, the BAT is primarily located around the cervical, supraclavicular, axillary, paravertebral, 

mediastinal and upper abdominal regions. The BAT has a unique mechanism for the vital organs which 

require oxygen and nutrients (Cypess and Kahn, 2010 ). 

The BAT has a crucial role in regulating body temperature to ensure that cellular and physiological 

processes continue to work in cold temperature. In cold temperatures, the hypothalamus becomes 

activated, which induces blood flow towards the BAT and results in a release of noradrenaline, which 

can bind to β-adrenergic receptors that are present in the BAT. This leads to the activation of protein 

kinase A and p38. This activation results in the phosphorylation of transcriptional factors and the cAMP 

response element binding protein, which controls the expression of genes involved in BAT activation. 

PGC-1 belongs to a family of transcriptional coactivators which has been shown to increase biogenesis 

of the mitochondria and induce expression of Uncoupling protein 1 (UCP1). Acute thermogenesis leads 

to lipolysis, glucose uptake and activation of UCP1 and mitochondrial biogenesis. Figure 1.4 shows the 

activation of brown adipocytes in the cold (van den Berg et al., 2017). 
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UCP1 is a protein ubiquitously expressed in the BAT. It is localised in the mitochondria and its role is 

to uncouple oxidative phosphorylation from ATP, which results in dissipation of energy into heat. It has 

been shown that cold induces glucose uptake by a factor of 15 in the paracervical and supraclavicular 

adipose tissue in 5 healthy subjects. Upon mRNA examination, there was an increase in UCP1 

(Virtanen et al., 2009). The morphological examination has shown an increase in intracellular lipid 

droplets. 

Furthermore, 14 obese men have shown a significantly reduced BAT activity compared with 24 healthy 

individuals. BMI and percentage of body fat have a negative correlation with brown tissue, with a 

positive correlation for the resting metabolic rate. The activity was measured using an integrated FDG 

PET-CT scan (van Marken Lichtenbelt et al., 2009). 

The primary role of WAT is to store energy in the form of triglycerides during an increase in energy 

intake and mobilising FFA to be used as fuel when energy expenditure increases. The adipocytes 

synthesise triglycerides as lipid droplets by combining glycerol molecules with FFA through a process 

known as esterification. The breakdown of triglycerides involves multiple hydrolysis steps mediated by 

Figure 1.4: The activation of brown adipocytes in cold 

temperatures. 

The hypothalamus gets activated by the cold, which activates the 

sympathetic nervous system to release noradrenaline. This can 

bind to the β-adrenergic receptors on the adipocytes of the BAT and 

results in fatty acid degradation by beta-oxidation and lipolysis. This 

causes activation of the UCP1.This is driven by a proton gradient. 

Adapted from (van den Berg et al., 2017). 
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lipases. Both size and number can determine the WAT. It can undergo two processes—hypertrophy, 

which is the increase in cell size and hyperplasia, which is the increase in cell number. Hypertrophy is 

achieved via an increase in lipogenesis; lipid accumulation and decreased lipolysis; breakdown of 

triglycerides, whereas hyperplasia is a process involving adipogenesis, which includes the proliferation 

of preadipocytes to mature adipocytes (Rosen and OA., 2006). Table 1.2 shows the comparison 

between WAT and BAT. 

 

An increase in circulating non-esterified fatty acids (NEFA) is the reflection of the adipose tissue unable 

to store excess nutrient intake, which relates to a dyslipidemia state, a marker for metabolic syndrome. 

Upon overload in the subcutaneous adipose tissue (WAT), it spills to the liver, which increases 

production of Apo-B, which transports the excess lipids to other organs. The subcutaneous tissue has 

a larger capacity to store lipids, a protective buffer for excess lipid intake. Individuals who have a smaller 

compartment of the subcutaneous tissue (WAT) due to, for example, genetics will achieve an earlier 

storage limit of the subcutaneous tissue depot and will overspill to the visceral depot. Increase in 

visceral adipose tissue leads to hypertriglyceridemia, and further accumulation leads to overspill into 

other organs which are not able to store lipids efficiently and harms their functions, causing toxicity. 

These include the peripheral organs like the liver and the muscle (Monteiro and Azevedo, 2010). 

 

 

 

 White adipose tissue (WAT) Brown adipose tissue (BAT) 
 

Function Many including mainly energy 
storage 

Mainly including heat production 

Morphology Single lipid droplet 
A variable number of mitochondria 

Multiple small vacuoles 
Abundant mitochondria  

Characteristic 
protein 

Leptin UCP1 
 

Human Data An increase in WAT has been 
shown to be associated with a 
higher risk of obesity-related 
disorders 

An increased in BAT has been shown to be 
associated with reduced risk of obesity-
related disorders. 
 

Impact of ageing Increases Decreases 
 

Table 1.2: comparing WAT with BAT. 

WAT is predominantly used as the main energy storage, it releases adipokines, important in regulating 

many physiological activities. The BAT is mainly for heat production and keeping you warm. Its 

characteristic proteins include the UCP1 and increased amount of BAT reduces CVD. Adapted from (Saely 

et al., 2012). 
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1.3.1 Impact of adipose tissue on ageing 

There is an age-related impact on adipocyte size and accumulation of fats. As we age, the lean mass 

decreases but ectopic fat accumulation occurs over time, which potentially leads to tissue dysfunction. 

The rate at which fat changes is different amongst different WAT and BAT. The subcutaneous fat is lost 

first, which means the excessive FFA is stored in the visceral fat, which increases the risk to CVD. This 

is one of the reasons CVD events occur more to aged individuals (Jura and Kozak, 2016).As we age, 

the preadipocytes lose their ability to become mature adipocytes. The BAT is also impaired, its ability 

to regulate temperature also diminishes. This causes a decrease in cold tolerance and impaired 

bodyweight. Ueno et al. (1998) showed the effect of ageing on BAT activity in lean and obese (ob/ob) 

mice. Unlike lean animals, old obese animals exhibited decreased expression of mRNA for UCP1 and 

therefore impaired thermogenic capacity in old obese mice (Ueno et al., 1998). 

1.4 Adipogenesis 

There is a wide range of evidence in the literature demonstrating that adipose tissue is essential in a 

number of roles, including lipid storage, energy homeostasis, insulin sensitivity and thermoregulation. 

WAT and BAT are derived from distinct precursor cells. The adipose tissue is comprised of a variety of 

cells, including fibroblasts, macrophages, pericytes and other immune cells, however, it is 

predominantly made up of mature adipocytes. There are several different transcription factors that 

control adipogenesis. However, two proteins have been especially well established in the literature, the 

peroxisome proliferator-activated receptor PPARγ and CCAAT-enhancer-binding protein CEBP. 

 

PPARγ and CEBPα are master regulators of adipocyte differentiation and gene expression. PPARγ is 

a member of a superfamily of hormone receptors that has been shown to be essential for adipocyte 

development. The expression level of the two PPARγ isoforms, PPARγ1 and PPARγ2, varies 

depending on the tissue type. PPARγ2 is highly expressed in adipocytes and was found to be elevated 

in morbidly obese individuals. Both isoforms have been shown to impact adipogenesis. However, 

PPARγ2 shows an enhanced ability to impact adipogenesis due to its increased sensitivity to ligands 

and binding capacity. PPARγ1 is critical for fat development. 

 

Conditional knock out mice lacking PPARγ in the adipose tissue displayed a decrease in fat disposition 

and insulin resistance in both adipose and liver tissue. Furthermore, PPARγ heterozygous mice 

responded with enhanced insulin sensitivity. Mice with mutations of PPARγ (P465L and L466A) 

exhibited defects in adipose tissue development. Furthermore, patients with dominant negative 

mutations in the PARPγ gene were diagnosed to display an abnormal body fat distribution (Harp, 2004, 

Davies et al., 2017). 

 

The CEBPs are a family of leucine zipper transcriptional factors with six currently known isoforms. All 

of them have a highly conserved bZIP domain. CEBPα, CEBPβ and CEBPδ promote adipocyte 

differentiation and the loss of CEBPα causes a decrease in adipogenesis. Whole body CEBPα knockout 

mice die early due to liver defects and hypoglycaemia and failing to accommodate lipids in the WAT 
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and BAT. CEBPα have been shown to be induced late in adipogenesis and are important in glucose 

uptake. 

 

Recent studies have shown that CEBPα binding sites seem to co-localise with those of PPARγ (Rosen 

et al., 2002). A study by Spiegelman has shown that PPARγ expression can completely rescue 

adipogenesis in CEBPα deficient mouse embryonic fibroblasts (MEFs) PPARγ (Rosen et al., 2002). 

Studies clearly show that PPARγ and CEBPα cross-regulate each other and help in mediating adipocyte 

differentiation: lack of CEBPα increases PPARγ expression levels and loss of CEBPα increases PPARγ 

levels (Lowe et al., 2011, Luo and Liu, 2016). Figure 1.5 shows PPARγ and C/EBPα expression, in 

adipogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.1 Structure and function of PPARs  

PPARs form a nuclear receptor family which consists of three isotypes, namely PPARα, PPARβ and 

PPARγ; they play an important role in energy homeostasis and metabolic function. All of them have a 

unique expression pattern depending on the tissue. All PPARs have a conical domain with an AF-1 

train-activation domain, followed by a DNA binding domain. The PPAR function as a heterodimer with 

a co-activator complex that binds to the DNA sequence PPRE, which then leads to the transactivation 

or transrepression of genes. PPARα is predominantly expressed in hepatocytes, enterocytes and 

macrophages (Tyagi et al., 2011). It plays a vital role in fatty acid oxidation in the liver and provides 

energy for the tissues (Tyagi et al., 2011). 

PPARγ CEBPα 

Adipogenesis 

Figure 1.5: PPARγ and C/EBPα expression, in adipogenesis. 

PPARγ and CEBPα are master regulators of adipocyte differentiation and gene 

expression. PPARγ and CEBPα cross-regulate each other and help in mediating 

adipocyte differentiation. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ccaat-enhancer-binding-proteins
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1.5 Mechanism linking obesity to type 2 diabetes 

Diabetes mellitus (DM), is a metabolic disorder which causes blood sugar levels to rise due to an 

insufficient amount of insulin being produced to regulate glucose levels. There are two main types of 

diabetes. Type 1 is an autoimmune condition caused by the malfunction of immune cells that destroy 

the pancreatic islets of Langerhans cells. Thus, the body will be unable to produce any insulin, and the 

patient will require insulin injections. Type 2 diabetes is a long-term metabolic disorder, which is the 

most common form of diabetes accounting for up to 90% of all diabetes patients. In type 2 diabetes, the 

body produces insufficient or no insulin. This could be due to several reasons, including genetics, 

obesity and lack of physical exercise. Lifestyle management; diet, exercise and drugs are usually 

prescribed to patients with this condition. In 2012, 382 million people worldwide were diagnosed with 

diabetes, and it is expected to increase to 592 million people by 2035. Diabetes has also significantly 

increased in the UK. One in 17 people in the UK has diabetes (diagnosed or undiagnosed) 

(diabetes.org.uk). Overweight people run an up to 7 times higher risk to develop diabetes than healthy 

individuals (diabetes/gov.uk) Furthermore, for every kilogramme of weight gained, the risk of diabetes 

increases between 4.5 and 9% (Al-Goblan et al., 2014). Despite these factors, some patients who are 

overweight and obese do not develop diabetes and the molecular mechanism is still unknown. 

 

There are many different interactions occurring between the different metabolic organs, which 

contribute to the pathogenesis of obesity and diabetes (WHO). Figure 1.6 shows the effects of insulin 

resistance on different organs. Impaired insulin resistance causes a reduced amount of insulin 

production, leading to activation of the hypothalamus to increase food intake, resulting in obesity. This 

further causes reduced output of glucose from the liver, alongside inhibition of glucose uptake from the 

muscle, with an increase in lipolysis in the adipocytes resulting in an increase in NEFA in the plasma. 

This leads to further suppression of pancreatic β-cell in the pancreas and resulting in glucotoxicity (Kahn 

et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Effects of Insulin resistance on different organs. 

Many different interactions occur between the different metabolic organs, to contribute towards the 

pathogenesis of obesity and diabetes. Adapted from (Kahn et al., 2006). 
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1.6 Insulin signalling and glucose homeostasis 

Glucose is essential for the survival of all organs and is controlled by the primary metabolic organs 

which are the liver, fat and skeletal muscle. When glucose homeostasis becomes impaired, then it 

requires compensatory mechanisms from different organs. 

One important pathway is the insulin signalling pathway. Insulin is an important hormone released by 

the pancreatic beta cells located at the islets of Langerhans. It is secreted to the bloodstream in 

response to high glucose levels in the blood. This then triggers the uptake of glucose to the main 

metabolic organs, like the liver, adipose and skeletal muscle to promote storage. Insulin promotes 

glucose uptake by stimulating the translocation of the glucose transporter GLUT4 from the intracellular 

compartment to the plasma membrane by the insulin signalling pathway. GLUT4 receptor concentration 

on the cell surface is low without the presence of insulin. 

The insulin receptor is a receptor tyrosine kinase that is composed of two extracellular subunits, two 

transmembrane B subunits linked by disulfide bonds and the intracellular tyrosine kinase domains. 

Ligand-binding causes a conformational change in the extracellular subunits that activates the tyrosine 

kinase domain which autophosphorylates some tyrosine residues present in the B-subunit. The 

residues are recognised by the phosphotyrosine binding domains of the adaptor proteins like the insulin 

receptor substrates (IRS). The IRS-1 protein then, in turn, binds and activates phosphatidylinositol three 

kinases (PI3K) by the Src homology two (SH2) domain of the p85 regulatory subunit of the PI3K. This 

is then followed by a translocation of the PI3K to the membrane and the phosphorylation of 

phosphatidylinositol (PIP2) leading to the formation of phosphatidylinositol-3,4,5-triphosphate (PIP3). A 

pip3-dependent kinase (PDK) subsequently interacts with PIP3-activating protein kinase B, also known 

as Akt. Once Akt is phosphorylated and active, it enters the cytoplasm where it participates in several 

different processes. It causes the translocation of GLUT4 from intracellular vesicles to the plasma 

membrane to stabilise glucose levels. Upon glucose homeostasis in the blood and a reduction in insulin 

levels, GLUT4 is removed from the plasma membrane by endocytosis and recycled back into their 

compartment. Akt also promotes glucose storage as glycogen by phosphorylating forkhead box protein 

O1 (FoxO1) and facilitates glycogen synthesis by phosphorylating and inactivating glycogen synthase 

kinase (GSK)-3, which can no longer phosphorylate glycogen synthase and inhibits glycogen synthesis. 

In addition to promoting glucose storage, Akt can promote production and release of glucose by the 

liver by blocking gluconeogenesis and glycogenosis. Insulin is also able to increase lipogenesis and 

decrease lipolysis. Trib3 is a negative modulator and is able to bind to PI3K or AKT and inhibit and 

modulate its signal. APP1 competes with Trib3 as an antagonist (Kahn et al., 2006, Kahn et al., 2001). 

Figure 1.7 shows the insulin signalling pathway. 
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1.6.1 The role of skeletal muscle and adipose tissue in insulin resistance 

Skeletal muscle is one of the most important energy sites of the body, as it is always in the disposal of 

energy. The skeletal muscle uses both glucose and FFA in uptake. However, when there is an 

imbalance between glucose and FFA, due to reduced oxidation and increased uptake, it can cause an 

accumulation of triglycerides which increases the risk of insulin resistance. 

Type 2 diabetes (T2DM) patients have six times more fat in the muscle than non-diabetic patients. An 

excessive amount of FFA causes lipotoxicity that leads to insulin resistance. During fasting, the FFA in 

plasma is high, and glucose uptake is low, so the FFA is used as a primary fuel source for energy 

production in the skeletal muscle while glucose is reserved for the brain. In lean individuals, there is an 

increased uptake of glucose in a dose-independent manner. However, in patients with insulin 

resistance, the skeletal muscle has displayed a slow reduction of glucose uptake (DeFronzo and Abdul-

Ghani, 2011). 

Moreover, a study by Himsworth and Kerr has shown that using a glucose tolerance test, tissue 

sensitivity to insulin is diminished in T2DM patients (Himsworth and Kerr, 1939). Furthermore, it is 

reported that up to 80% of the total body glucose uptake occurs in the skeletal muscle under euglycemic 

conditions. 

FFA induces insulin resistance in the skeletal muscle by blocking insulin activation of IRS-1-associated 

PI3K via the increased activation of protein kinase C and its downstream IRS-1 serine (307) 

Figure 1.7: Schematic diagram representing the insulin signalling pathway. 

A ligand binds to the transmembrane glycoprotein that contains two alpha and two beta subunits, 

which causes a signalling cascade and starts auto-phosphorylation. This then increases the tyrosine 

kinase activity and activates its substrates, IRS-1 and IRS-2. This, in turn, binds to the PI3K, which 

causes the production of PIP3. This acts as a secondary messenger and goes on to activate Akt, 

which acts as a secondary messenger and mediates insulin signalling, including translocation of 

GLU4, mTOR and FOXO. Trib3 is a negative modulator and has been shown to inhibit both Akt and 

P13K and modulate its signal. APP1 competes with Trib3 as an antagonist. 
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phosphorylation, which reduces the phosphorylation of tyrosine and the subsequent IRS-1-associated 

PI3K activity. This results in a decrease in GLUT4 translocation alongside a decreased insulin-

stimulated glucose uptake (Yu et al., 2002). 

Obesity causes excessive fat accumulation in many different tissues; most prominently in adipose 

tissues, but also in other peripheral organs, such as skeletal muscle and liver, predisposing these 

insulin-responsive organs to insulin resistance. An increase in lipolysis by the adipose tissues causes 

FFA to be released to the circulation. Hence, we can see obese patients with type 2 diabetes to have 

high levels of FFA in the bloodstream (Abdul-Ghani and DeFronzo, 2010). 

 

1.6.2 Insulin resistance in the liver with and without HFD 

The liver is the largest metabolic organ, which is associated with many functions including glycogen 

synthesis, manufacturing triglyceride and cholesterol and bile production. The liver is a key regulator of 

glucose homeostasis. 

High-fat diet (HFD) in mice has shown hepatic steatosis, which is a fatty liver. Obese patients are not 

always insulin resistant, for example, patients with highly active antiretroviral therapy associated 

lipodystrophy lacking subcutaneous fat are not insulin resistant. However, they do have an increase in 

fat hidden in the liver. Ectopic fat in the liver has been shown to cause hepatic insulin resistance 

(Neuschwander-Tetri, 2007, Adiels et al., 2008, Yki-Jarvinen, 2010). 

1.7 Obesity is a chronic inflammatory disease 

Inflammation is the body’s mechanism to respond to harmful physical, chemical or biological stimuli to 

maintain physiological homeostasis levels. Obesity is a chronic inflammatory condition that is often 

referred to as ‘low-grade’ inflammation. It is normally given the name Met-inflammation due to 

inflammation being triggered by metabolism. 

Obesity has shown a positive association with inflammatory markers, like C-reactive protein (CRP) in 

adult participants (Maury and Brichard, 2010, Lau et al., 2005, Katsiki et al., 2017, Matsuzawa, 2010). 

In agreement with this study, weight loss of obese patients results in the decreased expression of 

inflammatory biomarkers including CRP (Heilbronn et al., 2001). Inflammation has a central role in the 

liver, as it consumes free fatty acids, it releases IL-6 by the adipose tissue, which triggers hepatocyte 

expression and release of CRP (Katsiki et al., 2017, Matsuzawa, 2010). 

The pro-inflammatory cytokine TNFα was the first cytokine that had been identified as a link between 

obesity and inflammation. The study has shown induction of TNFα levels in the adipose tissue from four 

different rodent models (Hotamisligil, 2006, Hotamisligil et al., 1993). Furthermore, TNFα was shown to 

be increased in the adipose tissue of human obese individuals with macrophages co-localising with 

adipocytes (Lumeng, 2013). 

Moreover, saturated fatty acids seem to activate the TLR2 and TLR4 receptors, and unsaturated fatty 

acids inhibit TLR mediated signalling and gene expression. There was an increase in IL-6 and TNFα 

upon exposure to diet-derived saturated fatty acids whereas unsaturated fatty acids did not have any 

impact on TNFα (Qatanani and MA., 2007). Activation of TLRs results in a pro-inflammatory state, with 
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an increase in NEFA obesity, it is likely that there is amplified inflammation contributing to the 

development of aggravation of Met syndrome (Aprahamian and Sam, 2011). 

There is a marked increase in plasma makers upon high-fat meal in abdominally obese men (Blackburn 

et al., 2010). Other studies have shown the importance of microbiota in inflammation. High-fat feeding 

increases intestinal permeability and the plasma concentration of LPS, which has an impact on 

inflammation. Changes of gut microbiota control inflammation in obese mice through GLP2 driven 

mechanisms (Cani et al., 2009). 

 

1.7.1 Inflammatory signalling 

As mentioned before, the role of the inflammation is to respond to injury, infection or any other type of 

harm to promote healing and restore physiological homeostasis. The immune system initiates 

intracellular mediators which cause inflammatory signalling. Macrophages are important cells that 

secrete factors such as cytokines, which promote several processes such as phagocytosis to eliminate 

harmful debris. Each cell has essential cell signalling complexes which work together to co-ordinate 

responses allowing them to respond appropriately depending on its environment and development. In 

the adipose tissue, adipokines such as IL-6, TNF, adiponectin and leptin have been involved in lipid 

metabolism and inflammation. Dysregulation in adipokines leads to chronic inflammatory diseases, 

including atherosclerosis (Sherling et al., 2017). 

1.7.2 Adipokines 

Adipokines are metabolic mediators secreted by the adipose tissue to maintain homeostasis. An 

example of an adipokine is adiponectin, a protein derived from the adipose tissue which has been 

reported to have an impact on type 2 diabetes and atherosclerosis. High levels of adiponectin are found 

in the plasma of patients who suffer from metabolic syndrome. Adiponectin is a 247-amino acid peptide 

discovered in 1995 (Beltowski et al., 2008, Matsuzawa et al., 2004). The adiponectin levels were 

demonstrated to increase the expression of nitric oxide (NO), which is a vasodilator known to protect 

against endothelial dysfunction (Nakamura et al., 2004). 

Furthermore, adiponectin reduces oxidative stress, and in the liver, adiponectin has been shown to 

improve insulin sensitivity by decreasing the uptake of NEFA and reducing gluconeogenesis (Gatselis 

et al., 2014, Lihn et al., 2005). Adiponectin levels are significantly reduced in obese patients (Engin, 

2017), although the exact mechanism is yet unknown. However, an increase in serum level of IL-6 and 

TNFα inhibits and reduces the synthesis and secretion of adiponectin (Ellulu et al., 2017). Adiponectin 

was reported to have a negative association with obesity in both genders and a positive correlation with 

HDL cholesterol (Eglit et al., 2013). 

Another cytokine, IL-6, which is produced by many different cell types including the adipose tissue also 

has been reported to mediate inflammatory responses (Guzik et al., 2006). Moreover, it was shown that 

FFA in obesity activates pro-inflammatory serine kinase cascades, such as IkB kinase, which stimulates 

adipose tissue to release IL-6 that results in hepatocytes to secrete CRP (Ellulu et al., 2017). There is 

a positive correlation between IL-6 levels and BMI which significantly decreases 12 months after surgery 

(Illán-Gómez et al., 2012). 
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CRP is synthesised by the liver and is a sensitive marker of systemic inflammation. It has been reported 

that the level of CRP levels is positively related to obesity. It is regulated mainly by two cytokines, IL-6 

and IL-1, which induce the farnesoid X receptor, which can influence many lipid metabolism genes such 

as PPARγ (Ellulu et al., 2017). Figure 1.8 shows mechanisms on how obesity influences inflammation 

to cause metabolic syndrome. 
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Figure 1.8: Mechanisms linking obesity to inflammation resulting in 

MS. 

Saturated fatty acids have been shown to activate the TLR2 and TLR4 receptors. 

Activation of TLRs results in a pro-inflammatory state increase in IL-6. The induction 

of IL-6 and IL-1b results in activation of the farnesoid X receptor (FXR). FXR regulates 

many genes involved in lipid and lipoprotein metabolism. Activation of FXR results in 

dysregulation of lipid metabolism genes and endothelial dysfunction. Adapted from 

(Ellulu et al., 2017). 
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1.7.3 Tribbles proteins are modulators of inflammatory signalling 

Tribbles proteins (Trib) have been described to modulate several components of the inflammatory cell 

signalling pathways to maintain homeostasis. Early studies have shown the importance of Trib in 

inflammation. Kiss-Toth et al. have shown that Trib isoforms are able to bind to MAPKKs and modulate 

their activity (Kiss-Toth et al., 2004a). Furthermore, Trib isoforms can bind to the c-Jun N-terminal 

kinases (JNKs) and p38 to regulate IL-8 production (Kiss-Toth et al., 2006). Trib have been reported to 

bind to kinase-dependent proteins like the MAPK and JNK, but they lack kinase activity, hence are 

called pseudo-kinase proteins (Hegedus et al., 2007, Hegedus et al., 2006).Trib act like scaffold 

proteins because they balance complex cell signalling pathways. Others have demonstrated that Trib 

act like allosteric activators. Trib have been shown to compete for binding sites like the MAPK and 

therefore regulate MAPK signalling (Sung et al., 2007). Additionally, it has been reported that Trib3ko 

causes increased expression of pro-inflammatory proteins like MCP-1 and TNFα, suggesting that Trib3 

is a negative regulator of pro-inflammatory cytokines (Kuo et al., 2012). Knockdown of Trib3 via RNAi 

significantly induced the production of tumor necrosis factor-α (TNF-α), IL-4, IL-6, and MCP-1. 

Trib have an N-terminal domain, central kinase-like domain and C-terminal protein-binding domain. The 

canonical Trib proteins have an N-terminal domain, which seems to be less conserved, a central domain 

and a C-terminal which are highly conserved. Trib proteins are part of the pseudokinase family which 

have a central serine/threonine kinase domain but lack conserved residues, which make them 

catalytically inactive. 

The N domain of Trib, which is known as a PEST region, contains approx. 60–80 amino acids, abundant 

in proline and serine residues. This makes the half-life of Trib very short as 34 out of the 50 sequences 

analysed contained predicted PEST regions, making the proteins prone to degradation. This was also 

demonstrated by Sharova and colleagues (Sharova et al., 2009) where Trib possesses a rapid turnover, 

less than 1 h. mRNA half-life was measured for nearly 20,000 genes in mouse embryonic stem cells, 

only 9% of genes had a shorter mRNA half-life than Trib3 (half-life 2.8 hours). 54 genes including Trib3 

showed mRNA half-lives less than 1 hour Other studies have suggested this half-life was due to 

proteasome-dependent degradation, facilitated by E3 ubiquitin ligases (Zhou et al., 2008). The C-

terminal domain contains important motifs and binding sites, including COP-1, the Akt and the MAPKK. 

Trib3 protein structure (Figure 1.9). 

 

 

 

Figure 1.9: Trib3 protein structure. 

Trib have an N-terminal domain, a central pseudokinase domain and the C-terminal. Trib3 is a 358 amino acid 

protein that contains 4 exons. It has the Akt binding site which is able to inhibit insulin signalling pathway. A MAPKK 

binding site that is able to bind and modulate MAPKK activity and the COP-1 binding site to direct key target protein 

to the proteasome for degradation. 
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1.7.4 Tribbles interacting proteins 

Tribbles have been shown to bind and interact with a number of proteins. Table 1.3 represents a 

comprehensive list of interacting proteins with biological significance. 

 

 

Protein Tribbles Biological significance Citation 

COP-1 TRIB1/3 Degradation of target proteins (Qi et al., 2006) 

String 
(CDC25) 

Tribbles 
(Drosophila) 

Inhibition of mitosis and cell cycle 
(Grosshans and Wieschaus, 

2000) 

SIBO 
Tribbles 

(Drosophila) 
Regulation of cell migration (Rørth et al., 2000) 

C/EBPα TRIB1/2 AML induction 
(Keeshan et al., 2006, Yamamoto 

et al., 2007) 

C/EBPβ TRIB1/2 
Inhibition of adipocyte differentiation 
and modification of toll-like receptor 

signalling 

(Keeshan et al., 2006, Yamamoto 
et al., 2007) 

ATF4 TRIB3 
Suppression of stress signal upon 

hypoxia 
(Ord and Ord, 2003) 

CHOP TRIB3 
Induction of apoptosis upon ER 

stress 
(Ohoka et al., 2005, Qi et al., 

2006) 

ACC TRIB3 Suppression of adipogenesis (Qi et al., 2006) 

MEK1 TRIB1/3 
Enhancement of ERK 

phosphorylation and AML induction 
(Kiss-Toth et al., 2004b, 
Yokoyama et al., 2010) 

MKK4 TRIB1/3 Suppression of SMC induction (Yokoyama et al., 2010) 

AKT1/2 TRIB1/3 
Suppression of adipocytes 

differentiation, disruption in the 
insulin signalling pathway 

(Du et al., 2003) 

MLK3 TRIB/3 Induction of pancreatic B cell death (Humphrey et al., 2014) 

BMPRII TRIB/3 
Promotion of osteogenic 

differentiation by degradation of 
smurf1 

(Chan et al., 2007) 

SMURF1 TRIB/3 Induction of smurf degradation (Chan et al., 2007) 

PPARγ TRIB/3 
Inhibition of adipocyte differentiation 

by suppressing of PPARγ 
transcriptional activities 

(Takahashi et al., 2008) 

P65/RelA TRIB/2 
Apoptotic induction upon TNF and 

TRAIL stimuli 
(Wu et al., 2003) 

SIAH1 TRIB/3 Inhibition of TGFβ signalling (Zhou et al., 2008) 

Table 1.3 Tribbles have been shown to bind and interact with a number of proteins. 

. 

 

. 
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1.7.5 Macrophages 

Macrophages are a large phagocytic cells, which are part of the immune system and are involved in 

detection, phagocytosis and destruction of bacteria and other harmful organisms. In addition, 

macrophages play a significant role in development, homeostasis antigen presenting and 

immunomodulation. Macrophages are also involved in chronic inflammatory diseases including 

atherosclerosis, obesity and non-alcoholic fatty liver disease (NAFLD). Studies have shown that 

macrophages display remarkable plasticity properties due to be able to respond and adapt to tissue 

environment. Therefore, the polarisation of macrophages have been traditionally divided into two 

groups, which are known as M1 and M2. M1 are known to be ‘classically’ activated macrophages and 

are induced by Th1 cytokines such as the interferon-γ (IFN-γ) and Tumor necrosis factor- α (TNF-α) 

and shown to have a pro-inflammatory cytokines secretion profile. Having the release of these 

molecules play a great part in host defence but overall the mediator and cytokines need to be controlled, 

as high levels lead to host tissue damage and cause chronic inflammation. Numerous diseases like 

arthritis and atherosclerosis have been associated with M1 type. M2 macrophages are known as 

‘alternatively’ activated macrophages which have shown to display wound healing properties by 

releasing cytokines such as IL-4 during the innate immune response. These have shown to have an 

anti-inflammatory cytokines secretion profile. Although, macrophages have been divided into M1/M2, 

the heterogeneity of macrophages is far more complex as the cells are highly plastic in different 

microenvironment. Further macrophage sub groups have emerged and spectrum of macrophages can 

be displayed which are much more unique (Thomas and Apovian, 2017, Barros et al., 2013, Liu et al., 

2014). 

 

1.8 Origin of Tribbles 

Trib protein was originally identified in Drosophila melanogaster in a developmental study by Grosshans 

and colleague (Grosshans and Wieschaus, 2000) where a genetic mutation screen had reported Trib 

to be involved in cell proliferation and migration of mesodermal cells. A mutation in Trib had shown an 

overproliferation of the mesodermal cells compared with the wild type (WT). Trib was shown to block 

proliferation of mesodermal cells via degradation of String phosphatase, which prevents it from 

activating cyclin-dependent kinase 1 (cdc2), important in the cell cycle (Grosshans and Wieschaus, 

2000). The highly proliferative behaviour of the mesodermal cells resembles the Tribbles species shown 

on the Sci-Fi TV show Star Trek, hence the name of this gene. 

Furthermore, it was proposed that Trib regulate degradation of CEBPα and cdc25 levels via the 

ubiquitin-proteasomal pathway. A study by Saka and colleague (Saka and Smith, 2004) had reported 

that microinjection of the fertilised Xenopus embryos with antisense Trib2 had delayed the cell division 

and led to developmental defects. A distinct phenotype compared with what was shown in the 

Drosophila, which could be due to Xenopus having both Trib1 and Trib2 genes compared with 

Drosophila and deleting one could lead to a different phenotype. All of these early studies have 

highlighted the importance of Trib in the early stages of development as reviewed by Lohan and 

colleague (Lohan and Keeshan, 2013). 
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1.9 Lipoproteins are a risk factor for cardiovascular disease 

As mentioned before, excessive amounts of nutrients can lead to elevated plasma fatty acids, which 

further causes insulin resistance. Excessive amounts of lipids have been shown to increase the risk of 

CVD. Another important event is the influx of LDL into the endothelial cells, which contributes 

significantly to the pathogenesis of atherosclerosis (Glass and Witztum, 2001). 

The liver is the primary organ to regulate cholesterol levels in the body. Lipoprotein molecules allow the 

transportation of triglyceride and cholesterol throughout the blood vessels. Very low-density lipoproteins 

(VLDL) are released from the liver which transport triglyceride to the tissues required for energy. In lipid 

metabolism, there is the endogenous, exogenous and reverse cholesterol pathways (Nguyen et al., 

2008). 

The exogenous pathway includes consuming an HFD, which contains triglycerides and cholesterol that 

are broken down by pancreatic, liver and gut enzymes into small non-essential fatty acid chains and 

glycerol. These are then absorbed by the intestines and are re-esterified into triglyceride that gets 

combined with the Apolipoprotein B48 (ApoB-48) to form nascent chylomicrons and is transported into 

the lymphatic system and to the circulation. The nascent chylomicrons mature upon reaching the 

circulation and then interact with the HDL so it can obtain the Apolipoprotein C (Apo-C) and 

Apolipoprotein E (ApoE). The Apo-C is a cofactor to activate lipase enzymes in the adipose and skeletal 

muscle when it is delivered so that it can be broken down and stored as fatty acids. Upon storage and 

distribution, the chylomicrons reappear in the bloodstream and return the Apo-C to the HDL, but keep 

the ApoE, which is recognised by the receptor in the liver to be endocytosed and broken down. This is 

now known as a chylomicron remnant. The endogenous pathway is independent of the intestines. The 

liver synthesises VLDL that package triglyceride and cholesterol into the bloodstream with the Apo-

B100 which deliver them into the tissues, similar to that of the exogenous pathway. Upon arrival at the 

liver, the receptor ApoE of the remnant VLDL interacts with the liver receptor and is taken up and further 

hydrolysed by the hepatic lipase to release fatty acids and glycerol, which leaves behind the LDL. The 

LDL is of high cholesterol and low lipoproteins and is the primary carrier of cholesterol in the 

bloodstream (Gropper, 2009). 

The primary function of the LDL is to transport cholesterol to the tissues that require it. However, the 

LDL can also migrate into the peripheral tissue and become oxidised, which are taken up by the 

scavenger receptors leading to steps in atherosclerosis. It is therefore physiologically important that 

LDL be controlled in the bloodstream. The HDL is secreted primarily by the liver and the gut to remove 

excess free cholesterol in the bloodstream and peripheral tissue, via the ATP-binding cassette 

transporter 1 (ABC-A1). This includes macrophages that express the ABC-A1 in its surface. The 

lecithin–cholesterol acyltransferase (LCAT) converts the cholesterol to cholesteryl esters converting it 

to mature HDL. The mature HDL returns to the liver for excretion in the bile by scavenger receptors B. 

Another method is via cholesteryl ester transfer protein (CETP), which exchanges the ApoB for 

cholesterol esters and is now able to be taken up by the LDL receptors. This is known as the reverse 

cholesterol pathway (Fitzgerald et al., 2010). A malfunction in LDL and HDL can lead to an increase in 
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cholesterol levels, which can lead to hyperlipidaemia and is a significant risk factor to contribute to 

atherosclerosis and other medical conditions. The current treatment includes statins, which inhibit the 

enzyme HMG-CoA reductase responsible for cholesterol production. Figure 1.10 is a schematic 

diagram of the cholesterol metabolism pathway. 

   

  

Figure 1.10 Cholesterol metabolism pathway. 

The exogenous pathways include consuming a HFD. The triglycerides are broken down by the enzymes into 

fatty acid chains, which are taken by the chylomicrons and delivered to the tissues and back to the liver. The 

endogenous pathway is independent of the intestine. The liver produces VLDL for the fatty acids to be 

transported to the tissues (adipose and muscle) and back to the liver. The reverse cholesterol pathway includes 

the transportation of cholesterol to the tissues via LDL, however, some of it gets transported to the peripheral 

tissue and taken up by the scavenger receptor and leads to steps in atherosclerosis. 
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1.9.1 Structure of the lipoprotein particles 

Lipoproteins are particles that are enriched with cholesterol and proteins. Lipoproteins are insoluble in 

water and are transported via the blood. Lipoproteins are heterogeneous and are classified according 

to their compositions. These particles include chylomicrons, VLDL, intermediate-density lipoproteins 

(IDL), LDL and HDL. Ultracentrifugation is a way of separating the particles and provides a better 

prognosis of CVD. Ion mobility has also been recently used to separate the particles according to 

charge. The particles are ionised and placed in an electric field, which separates them into different 

sizes. Figure 1.11 shows the basic structure of the lipoprotein particle. 
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Figure 1.11: Structure of lipoprotein. 

A hydrophilic outer core, containing phospholipids, cholesterol and apolipoproteins. The inner hydrophobic 

core contains triglycerides and free cholesterols. The Apolipoproteins are embedded in the membrane, 

examples include the plasma lipoprotein particles categorised as HDL, LDL, IDL and VLDL. 
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1.9.2 Obesity is associated with higher lipid and LDL lipoprotein levels 

Dyslipidaemia is a significant comorbidity of obesity which has been reported to have a very high 

incidence of coronary and vascular events. Many studies have described obese patients as having 

elevated levels of total and LDL cholesterol and low levels of HDL. These are important risk factors for 

coronary heart disease and predictors of developing CVD. A study by Szczygielska and colleagues has 

shown the relationship between BMI and blood lipids. It was revealed the mean total cholesterol and 

triglyceride concentrations were higher in obese patients than in healthy weights with a reduction in 

HDL levels (Szczygielska et al., 2003). Furthermore, epidemiological studies have shown elevated 

cholesterol levels to be a risk factor for CAD (Hajar, 2017). However, due to the function of the 

lipoprotein being different, LDL is the gold standard measurement for future CAD as well as being a 

therapeutic target for treating CVD risk (Miller et al., 2005). 

1.9.3 VLDL 

It has been shown that elevated levels of triglyceride-rich remnant lipoproteins are involved in 

atherosclerosis development. Many studies have shown an inverse relationship between lipoprotein 

particle size and atherosclerosis development (Burnett, 2004). Small VLDL particles have been shown 

to be able to cross the endothelium into the arterial intima. Others like chylomicrons and large VLDL 

have been shown to not cross the endothelium and are not pro-atherogenic. As mentioned before, the 

small VLDL and ApoC-III have been shown to be significantly associated with the development of 

atherosclerosis. Meta-analysis has shown cholesterol, and recurrent events trial indicated that plasma 

concentration of patients of VLDL and APOC-III are a stronger measure of CAD than plasma triglyceride 

(Burnett, 2004). 

1.9.4 LDL 

As mentioned before, LDL levels have been significantly associated with cardiovascular risks. It was 

reported that an increase in LDL levels is associated with a threefold increase in the risk of CAD (Chan 

et al., 2004). The key event is the retention and accumulation of cholesterol-rich apoB-containing 

lipoproteins within the arterial intima at sites of plaque formation. Lipoprotein with a diameter of <70 nm 

in diameter can easily enter and exit the arterial intima. It has been reported that elevated levels of LDL 

and lipoproteins less than <70 nm lead to the development of atherosclerotic plaque in a dose-

dependent manner (Chan et al., 2004). An autosomal co-dominant disorder known as familial 

hypercholesterolemia is caused by a mutation in the LDL receptor; LDLR leading to premature 

atherosclerosis, particularly CAD. Hence LDL is used as a primary target for treatment for CVD. 

Treatment by statins can reduce LDL levels and the risk of CVD. However, there is still a residual risk 

of CVD (Libby, 2005). Furthermore, LDL particles vary in composition including size, density, electrical 

charge and chemistry. Elevated levels of small dense LDL), along with increased triglyceride has been 

reported to be more associated with obesity and increases with type 2 diabetes (Nikolic et al., 2013, 

Chan et al., 2004). 

1.9.5 HDL 

Reduced levels of HDL are increased in obese patients and have been associated with increased risk 

for the development of CAD. Obesity has an impact on HDL metabolism by increasing CETP activity 
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due to the increased number of triglyceride (TG)-rich lipoproteins. In brief, the HDL are broken down by 

the enzyme hepatic lipase, resulting in small HDL particles. These have a decreased affinity for apo A-

I, which causes dissociation of apo A-I from HDL. This results in a decreased level of HDL-C and 

circulating HDL particles causing impairment of the reversed cholesterol transport (Kratzer et al., 2014, 

Klop et al., 2013). Table 1.4: Physical properties of lipoprotein particles. 

1.10 Lipogenesis vs. lipolysis 

Excessive accumulation of fats leads to lipotoxicity, which affects the metabolic pathways causing 

cellular dysfunction. This increases the risk of developing metabolic disorders, such as obesity, 

diabetes, non-alcohol fatty liver disease (NAFLD) and CVDs. Lipotoxicity is not only caused by an HFD 

but also by alternative sources of lipids, de nova lipogenesis where excess carbohydrates are converted 

into FFA and triglycerides. These are co-ordinated via enzyme processes and convert citrate to acetyl 

CoA, which can then be used as energy storage. An excessive amount of nutrients leads to the 

synthesis and release of VLDL and secreted into the circulation and stored in the peripheral tissue, the 

adipose tissue is the predominant storage. During starvation, the triglycerides are hydrolysed in the 

adipose tissue and FFA is released into the circulation, known as lipolysis (Ameer et al., 2014).  

Table 1.4: Physical properties of lipoprotein particles. 

 

  

Lipoprotein Subclasses 
Diameter 
(nm) 

% protein 
Major 
lipids 

Apoproteins 
 

VLDL VLDL-1 330–700 
5–10 TG, PL, CE B100, C ,E 

 VLDL-2 300–330 

IDL IDL-1 285–300 
15–20 CE, TG, PL B100, C, E 

 IDL-2 272–285 

LDL LDL-I 272–285 

20–25 CE, PL B100  LDL-II 256–272 

 LDL-III 242–256 

 LDL-IV 220–242 

HDL HDL-1 ~120 

40–55 PL, CE A, C, D, E  HDL-2 103–104 

 HDL-3 73–99 
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1.11 Non-coding RNAs 

In recent years, non-coding RNAs (ncRNAs) have been shown to play an essential role in disease 

progression or inhibition. ncRNAs are molecules that are not translated into protein, however, they are 

important in controlling gene expression. ncRNAs are involved in many cellular processes. Evolutionally 

these have evolved to protect against foreign organisms by controlling gene expressions and returning 

to a physiological homeostasis level. Table 1.5 shows the different small ncRNAs found in mammals. 

Table 1.5: Summary of ncRNAs. 

  

Short Approx 

length 

(nt) 

Function 

MicroRNA (miRNA) 21–23 Post transcription—In animals, involved with the RISC complex 

and silence target genes. 

Small nucleolar RNAs 

(snoRNA) 

60–300 Posttranscriptional—Causes chemical modification via 

methylation or pseudouridylation of mRNA influencing protein 

stability and folding. 

Small nuclear RNAs 

(snRNAs) 

150 Assist in splicing of introns from the primary genomic 

transcript. 

Silencing RNAs 

(siRNAs) 

21–23 Causes degradation of mRNA via complementary base pairing. 

Transcription RNAs 

(tiRNAs) 

13–30 Enriched downstream transcriptional start sites of highly 

expressed genes. 

Piwi-interacting RNAs 

(piRNAs) 

25–30 Causes RNA silencing via RISC specifically transposons. 

Transfer RNAs (tRNAs) 76–90 Important in protein translation; interaction between mRNA and 

protein. 

Ribosomal RNAs 

(rRNAs) 

>2000 Essential in protein synthesis 

Circular RNAs 

(circRNAs) 

100 to 

>4000 

Have diverse functions, including templates for viral replication 
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1.12 miRNAs, post-transcriptional regulators of gene expression 

miRNA are small non-coding single-stranded RNA nucleotides that post-transcriptionally control the 

regulation of gene expression by binding to the 3 or 5UTR mRNA of the target gene sequence. miRNA 

are key molecules in the RNA-mediated silencing complex to downregulate a number of genes by 

translational repression, mRNA cleavage or mRNA deadenylation. The non-coding miRNA was first 

described as ‘junk DNA’, but now it is actively shown to be involved in many important cellular processes 

(Gebert and MacRae, 2018). 

Ambros and colleagues initially discovered the first miRNA in 1993 where a genetic screening in the 

Caenorhabditis elegans larval development had identified Lin 4, which was shown to be a small RNA 

~22-nucleotide long, that was able to bind to the complementary 3UTR of Lin-14 and cause repressing 

of the lin-14 gene. Hence, it was unable to translate lin-14 mRNA into the LIN-14 protein (Lee et al., 

1993). This was the first evidence of the regulatory function of RNAs. Since then, there have been a 

large number of small ncRNAs discovered. High throughput screening has enabled us to discover a 

high number of novel miRNA with regulatory targets and possible functions. Recent studies have shown 

computational techniques and bioinformatics algorithms as novel tools for identifying genes regulated 

by miRNAs (Fehlmann et al., 2017). It has been estimated that more than half of the protein-coding 

genes in humans are negatively regulated by miRNAs (Cai et al., 2009). With more complex organisms 

the miRNAs are proportionally more. Each miRNA can target more than one gene and control gene 

expression. Those genes are important in processes including lipid metabolism, apoptosis and glucose 

metabolism. Changes in miRNAs expression levels result in diseases and can be used as biomarkers 

to indicate disease prognosis (Gebert and MacRae, 2018). 

1.12.1 Biogenesis of miRNAs in mammals 

miRNA has many cellular steps before it can complementarily bind to genes and cause mRNA 

degradation and/or translation repression. These include 1) Nuclear processing, 2) Transportation by 

exportin-5, 3) cytoplasmic processing, 4) Argonaute loading and finally 5) mRNA degradation and/or 

translation repression (Wahid et al., 2010). 

miRNAs are non-coding single-stranded RNAs, about 21–25 nucleotides long, which are produced from 

hairpin-shaped precursors. miRNA has been reported to be mainly transcribed in the introns of their 

pre-host genes. Other miRNAs have been reported to be pretranscribed within their promoters. Based 

on miRNA genomic locations, miRNA genes can be classified as intronic miRNAs in coding transcription 

units (TUs), intronic miRNAs in non-coding TU, exonic miRNAs in coding TU and exonic miRNAs in 

non-coding TU. Most studies have shown the RNA polymerase II (Pol II) initiates and is responsible for 

the transcription of the miRNA. This occurs in the nucleus where Pol II or Pol III transcribes the prior-

miRNA, which are 60–70 nucleotide long hairpin structures known as precursor miRNA (pre-miRNA). 

The large precursor RNA is cleaved by Drosha enzyme and binding protein Pasha/DGCR8, which 

results in the premature hairpin RNA. The Drosha, in combination with either DGCR8 or Pasha, forms 

a large complex. Mouse models have shown the DGCR8 are conserved within the mammal species 

and are important genes for developmental processes. 
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The pre-miRNA is then transported to the cytoplasm by exportin-5 and Ran GTP complex. The 

transportation occurs via nuclear pore complexes. Studies have shown that hydrolysis of the GTP 

results in the release of the pre-miRNA. The pri-miRNA is now being processed in the cytoplasm. The 

endonuclease cytoplasmic RNase III enzyme Dicer creates a mature miRNA. Dicer is a highly 

conserved protein which exists in all eukaryotic organisms. Other organisms have been shown to have 

multiple isoforms of Dicer which are required for miRNA maturation. In humans, a Dicer can process 

the mature miRNA into small double-stranded RNA containing the mature or guide strand and 

complementary or passenger strand. One strand, normally the weaker and unstable strand, is then 

transported into the RNA induced silencing complex (RISC complex) to be silenced, and the other is 

degraded. Dicer, alongside other interacting proteins (TRBP and/or PACT and Ago family proteins, 

assemble to form RISC also known as RISC loading complex. The Ago protein is critical in the 

development of the RISC complex. The Ago family proteins are composed of three distinct domains: 

the PAZ, MID and PIWI domains. The PAZ domains have been shown to bind to the miRNA in a folded 

structure. The passenger strand is degraded, and the mature strand remains with the Ago proteins to 

be introduced to the RISC complex and is degraded (Gebert and MacRae, 2018). Figure 1.12 shows 

the biogenesis of miRNAs in mammals. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Biogenesis of miRNAs in mammals. 

miRNA has many cellular steps before it is able to complementary bind to mRNA and cause mRNA degradation 

or translation repression. These include 1) Nuclear processing, 2) Transportation by exportin-5, 3) cytoplasmic 

processing, 4) Argonaute loading and finally 5) mRNA degradation and/or translation repression. 

 

Seed region 
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1.12.2 miRNA functions in mammals 

miRNA has been shown to have distinct roles in the regulation of cellular processes. Over half of our 

genome is in the control of miRNA, hence this suggests the importance of miRNA in disease 

development. The mutation of miRNA Lin-4 and Lin-7 in c.elegans has been shown to cause defects in 

larval development. Several studies have reported that miRNA is not only able to cause mRNA 

degradation but also translation repression. However, the exact mechanisms of how translation 

repression occurs are still unknown. Some studies have proposed mechanisms and shown that Ago 

can recruit GW182, which interacts with polyadenylate-binding protein, thereby causing mRNA 

deadenylation by recruiting the poly(A)-nuclease deadenylation complex subunit 2 (Braun et al., 2011). 

This can cause destabilisation of the target gene before degradation or the protein synthesis inhibition 

occurring. As mentioned before, the Ago protein is critical for loading the guide strand to the RISC and 

translation repression. Mammals encode for four Ago proteins. Ago two is highly expressed and can 

cleave the target full complementary to the guide strand. Furthermore, other studies have shown that 

inhibition of translation initiation is also caused by the involvement of eukaryotic initiation factor 4 AI 

(eIF4A-I) and eIF4A-II (Zhong et al., 2018). 

There have been previous studies which have reported the extent of complementary base pairing 

results in either mRNA degradation or protein inhibition. Partial complementary binding of the miRNA 

to the seed region on mRNA results in protein inhibition and upon miRNA completely binding to the 

target sequence it has been shown to cause mRNA degradation. The majority of the miRNA have been 

identified in the 3UTR. However, there have been several studies that highlight miRNA able to bind to 

the 5UTR (Catalanotto et al., 2016). 

 

1.12.3 miRNA in disease and future therapeutics 

It has been reported that around 2200 miRNA genes exist in mammals, which regulates many biological 

processes in cells, including differentiation, metabolism, growth and repair. Up to 50% of miRNAs which 

are expressed are transcribed from the non-protein-coding genes and the remaining are within the 

introns of coding genes. Many of the miRNA play a pivotal role in maintaining homeostasis, however, 

upon dysregulation, they have been linked to many clinical diseases such as CAD autoimmune disease 

and cancer (Aryal et al., 2017, Ma et al., 2016). 

miR-122 has been shown to be predominantly expressed in the liver and can modulate cholesterol 

levels, shown to be involved in hepatic carcinoma and cancer progression (Hu J et al., 2012). A study 

by Esau et al. (2006) has also shown inhibition of miR122 to reduce lipogenesis genes and a reduction 

in plasma cholesterol levels in chow and obese mice. It is evident that the dysregulation of miRNAs has 

an impact on disease development and progression. 

Furthermore, miR-155 and miR-125b have been reported to influence the polarisation of macrophages, 

which are important in inflammatory responses. miR-155 is upregulated upon TLR activation and has 

been shown to regulate M1 macrophages in vitro (O'Connell et al., 2007). 
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Furthermore, miR-33 inhibitors have been shown to reduce atherosclerotic lesions in C57BL6 mice. 

MiR-33 has been shown to regulate autophagy in macrophages foam cells, which results in a reduction 

in cholesterol uptake and therefore reduces plaque development (Ouimet, 2013, Ouimet et al., 2017). 

miR-133 and miR-208 have been shown to be highly expressed in the heart, which reports 

demonstrating miR133 and miR-208 are important in regulating myocyte differentiation heart 

development (Ouimet et al., 2017. Downregulation of miR-133 has resulted in heart failure (Ono et al., 

2011, Aryal et al., 2017). Table 1.6 shows miRNA expression associated with disease. This table is 

adapted from (Ardekani and Naeini, 2010). 

Table 1.6: Shows the miRNA associated with disease. 

 

 

 

From the evidence above, it can be established that miRNAs play a pivotal role in the development of 

many cellular processes and disease initiation, therefore, miRNA are the ideal markers to have a great 

role in diagnosis and treatment of diseases. In the last decade, several techniques such as miRNA 

silencing, antisense blocking and miRNA modification have been considered for potential therapeutic 

treatment. Another popular method is Target site blockers, also known as miRNA inhibitors, which have 

been used to increase the endogenous levels of therapeutic proteins. miR-122 is an LNA-based (locked 

nucleic acid) antisense molecule against miR-122, which is used for the treatment of hepatitis. Studies 

have shown miR-122 to affect hepatitis C virus (HCV) replication, phase 2 clinical trials in HCV patients 

have shown success and in 2017 Santaris Pharma are developing the drug named miravirsen (Bandiera 

et al., 2015). 

Disease 
type 

miRNA Up/Down 
Regulation 

References 

Cardiac hypertrophy  
miR-23a, miR-23b, miR-24, miR-195, miR-199a, 

and miR-214 
Up (Thum et al., 2008) 

Down syndrome 
 

miR-99a, let-7c, miR-125b-2, miR-155 and miR-
802 

Up (Kuhn et al., 2008) 

Alzheimer  
miR-9, miR-128a, miR-125b Up (Lukiw, 2007) 

Rheumatic arthritis 
 

miR-155, miR-146 Up (Tili et al., 2008) 

Systemic lupus erythematosus  
miR-189, miR-61, miR-78, miR-21, miR-142-3p, 

miR 342, miR-299-3p, miR-198 and miR-298 
Up (Dai et al., 2007) 

 
miR-196a, miR-17-5p, miR- 409-3p, miR-141, 

miR-383, miR- 112, and miR-184 
Down (Dai et al., 2007) 

https://en.wikipedia.org/wiki/Santaris_Pharma
https://en.wikipedia.org/wiki/Miravirsen


31 
 

1.13 Atherosclerosis 

Atherosclerosis is a focal form of CVD and is characterised by chronic inflammation and fatty deposits 

in the arterial wall. Its underlying mechanism includes endothelial injury, which leads to a cascade of 

events occurring during disease progression. The endothelial injury can be due to several possible 

causes, including hyperdyslipidaemia, smoking, hypertension, hyperhomocysteinemia infection and 

mechanical stress (Wang, 2004). 

Recent studies have highlighted the importance of blood flow and its haemodynamics on the different 

regions of the arteries. Blood flow is generally laminar in the unbranched regions of the arteries with 

high shear stress. Upregulated levels of atheroprotective genes are found in the region of the 

endothelium. However, studies have shown an upregulation of pro-atherogenic genes in the disturbed 

regions of the arteries as reviewed by Chiu and colleague (Chiu and Chien, 2011). 

Upon injury, the endothelium transduces the stress into a biochemical signal allowing upregulation of 

adhesion molecules such as vascular cell adhesion molecule 1 (VCAM-1) which change the 

cytoskeletal structure of the endothelial cells resulting in cell permeability and allowing the 

transmigration of leukocytes (Bassiouny, 2012). The endothelium produces a concentration gradient of 

monocytes that activate the immune system; circulating monocytes transmigrate through the site of 

injury and differentiate into macrophages. The injury causes the endothelial cells to reduce the 

production of NO, a vasodilator, releases monocyte chemo-attractant protein-1 (MCP-1) attracting 

monocyte adhesion and upregulates macrophage colony-stimulating factor (MCSF) expression, 

thereby promoting monocyte differentiation into macrophages as reviewed by Glass and colleague 

(Glass and Witztum, 2001). 

Lipo-Density-Lipoproteins (LDL) are elevated in the blood vessels which enter the peripheral tissue and 

become oxidised. The monocytes transmigrate into the endothelium and mature into macrophages and 

engulf oxidised LDL (oxLDL) via scavenger receptors to become foam cells leading to atherosclerotic 

lesions (Glass and Witztum, 2001). The macrophages engulf the oxLDL particles which further release 

inflammatory cytokines, chemokines and matrix metalloproteinase (MMP) which augment the 

inflammation (Mitchell and Sidawy, 1998). Activated macrophages also produce growth factors which 

contribute to the migration and proliferation of vascular smooth muscle cells (VSMCs) into the tunica 

intima, hardening the arteries and causing plaque growth and fibrous cap formation. The lipid content 

is released from the foam cells which contributes to the necrotic lipid core of the plaque (Tousoulis et 

al., 2011). 

All of these events lead to the restriction of blood flow, which reduces oxygen and nutrients being 

transported to the tissues. Symptoms of a patient who has atherosclerosis include angina, fatigue, 

vertigo and nausea. If not treated, the fibrous cap can cause further complications such as thrombosis 

leading to a stroke or a myocardial infarction. Some of the current treatments include glyceryl trinitrate, 

a vasodilator, stenting, thrombolysis and surgery depending on the extent of injury and disease 

progression (Kuroda and Kitazono, 2013) Figure 1.13: Pathogenesis of atherosclerosis. 
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Figure 1.13: Pathogenesis of atherosclerosis. 

A) Showing a normal vessel wall, no damage to the endothelium. B) Endothelial damage, LDL oxidised, Floating 

monocytes transmigrate into the tunica intima and differentiate into macrophages, scavenger receptor takes up the 

oxiLDL, and become foam cells forming the atherosclerotic lesions. C) smooth muscle cells proliferate and migrate 

from the tunica media to the intima, plaque building up on the vessel wall, calcification of the wall and release of 

MMP, all build up, restricting blood flow and able to cause the plaque to rupture resulting in thrombosis, stroke or a 

myocardial infarction. Adapted from (Libby et al., 2011). 
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1.14 TRIB3 is implicated in atherosclerosis and CVD 

TRIB3 has been implicated to play a role in many of these metabolic processes that lead to the 

development of CVD. Human genetic studies have shown a gain of function Q84R polymorphism of 

TRIB3 to be associated with insulin resistance, carotid atherosclerosis, dyslipidaemia and an increased 

risk of developing diabetes (Prudente et al., 2005). 

There is a reduction in mRNA transcript hepatic and abdominal Trib3 levels in the visceral abdominal 

fat and the liver of obese patients, additionally, there was a correlation between mRNA levels of Trib3 

and plasma insulin levels (Oberkofler et al., 2010). Furthermore, a study has used fibrates to treat 

hypertriglyceridemia and has shown this had augmented TRIB3 expression levels independent of 

PPARα. This were done using  PPAR alpha knockout (KO) mice treated with and without fibrates (Selim 

et al., 2007). 

Moreover, patients with T2DM were seen to have an elevated level of TRIB3 in the pancreas compared 

with healthy patients (Liew et al., 2010). Biopsies of islets of Langerhans from patients with T2DM have 

shown up to fourfold increase in TRIB3 mRNA and a threefold increase in TRIB3 protein levels 

compared with the control (non-diabetic patients). Insulin resistance is a risk factor for the development 

of CVD (Freeman and Pennings, 2018). 

Amongst 513 unrelated Chinese individuals, Gong and colleagues have found the R84 variant to be 

associated not only with insulin resistance and metabolic syndromes but also with carotid intima-media 

thickness (IMT), which is a marker for future cardiovascular events (Gong et al., 2009). 

TRIB3 was also implicated in the diabetic atherosclerosis process. Silencing Trib3 in apolipoprotein E 

(apoE)/LDR receptor (LDLR) double-knockout (ApoE–/–/LDLR–/–) mice with diabetes reduced 

atherosclerotic burden and stabilised the plaque in mice and reduced macrophage apoptosis (Wang et 

al., 2012). Furthermore, rats with silenced TRIB3 showed an improved insulin resistance and cardiac 

function (Wang et al., 2012). All the evidence above indicates that Trib3 is an important protein which 

may contribute towards the development of CVD. 

1.15 Trib3 is implicated in lipid metabolism 

It has been reported that Trib3 overexpression in 3T3-L1 preadipocytes blocks adipogenesis either 

directly or through physical interaction via transcriptional factors. Trib3 is able to prevent induction of 

C/EBPα and PPARγ from trans-activating adipogenic genes or indirectly, in which it inhibits extracellular 

signal-regulated kinase (ERK) phosphorylation and in turn, activates CEBPβ by phosphorylating its 

regulatory phospho-acceptor sites (Bezy et al., 2007). Furthermore, the work was confirmed by another 

group, showing that Trib3 can control the transcriptional activity of PPARγ and therefore suppress 

adipocytes differentiation and intracellular accumulation of triglycerides (Takahashi et al., 2008). 

 

Trib3 been described as a negative regulator of differentiation of adipocytes but can also control lipid 

accumulation in mature adipocytes. Fasting has been shown to increase Trib3 levels, which stimulate 

adipocyte lipolysis and cause inactivation of Acetyl CoA, a key enzyme responsible for fatty acid 

synthesis via recruiting ubiquitin E3 ligases COP1 and promoted ubiquitin-proteasomal degradation (Qi 
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et al., 2006). Furthermore, Trib3 overexpressing mice in the adipose tissue are protected from obesity 

due to an increased rate of fatty acid oxidation via ACC and increased energy expenditure (Prudente 

et al., 2012). Additionally, it has been reported that Trib3 is upregulated in fatty liver dystrophy (fld) 

mutant mouse which suffers from hypertriglyceridemia and fatty liver in young mice and impaired nerve 

function in adult mice (Klingenspor et al., 1999). Weismann and colleagues did a study using Trib3ko 

via antisense oligo in rat livers and showed an elevated weight, improved insulin sensitivity and increase 

in PPARγ but no changes to Akt activation, suggesting alternative mechanisms (Weismann et al., 2011). 

1.16 TRIB3, Akt and insulin resistance 

Studies have shown Trib3 to be important in insulin signalling via Akt. Expression levels of Trib3 were 

induced upon fasting through the induction of PPARα (Selim et al., 2007). It was, therefore, suggested 

that Trib3 is involved in both lipid and glucose metabolism. 

Trib3 has been described as a negative regulator of insulin, mediated via Akt phosphorylation. Another 

study has shown that overexpression of Trib3 in Hepg2 inhibits Akt activation and therefore affects 

insulin signalling pathway (Du et al., 2003). Conversely, Trib3ko resulted in induction of phosphorylation 

in Akt. Similarly, it has been shown in skeletal muscle cells, where overexpression of Trib3 inhibits Akt 

phosphorylation as well as ERK phosphorylation. This, in turn, affects GLUT4 translocation and glucose 

transportation (Liu et al., 2010). 

It has been reported that Trib3 is elevated upon fasting and overexpression of Trib3 leads to inhibition 

of insulin via the Akt phosphorylation pathway (Liu et al., 2010). In addition to this, overexpression of 

Trib3 in mice liver resulted in hyperglycaemia, conversely, Trib3ko in mice liver led to improved insulin 

and glucose tolerance. Trib3 expression was upregulated in db/db diabetic insulin resistance mice, and 

overexpression of Trib3 in the control resulted in hyperglycaemia, glucose intolerance and insulin 

resistance, similar to what was seen in the db/db diabetic insulin resistance mice (Matsushima et al., 

2006). 

Furthermore, Trib3 is shown to be upregulated in skeletal muscle for type 2 diabetic patients and 

overexpression of Trib3 in muscle cells blocks insulin-stimulated glucose transport as reviewed by 

(Angyal and Kiss-Toth, 2012). Trib3 is also able to control muscle differentiation by activating Akt, which 

in turn increases myogenic differentiation of factor D, a regulator of muscle proliferation. Overexpression 

of Trib3 leads to inhibition of Akt, a reduction in myogenic differentiation factor D and therefore reduction 

in myotube formation (Kato and Du, 2007). 

Recent studies have questioned Trib3 involvement in the insulin signalling pathway as overexpression 

of Trib3 in rat liver had no effect on the insulin signalling pathway, suggesting alternative mechanisms 

(Weismann et al., 2011). 

1.17 Trib1 in CVD and inflammation 

Although Trib3 is implicated in lipid metabolism and insulin resistance, the isoform Trib1 has also been 

described as a regulator of inflammatory signalling and lipid metabolism. 
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A genome-wide association study (GWAS) in a human patient had shown Trib1 to be associated with 

hyperlipidaemia and an increase in the risk of CAD (Yamamoto et al., 2007). Furthermore, full body 

Trib1ko in mice had shown an increased level of plasma triglycerides and cholesterol levels due to an 

increase in VLDL production. Hepatic-specific overexpression of Trib1 using adeno-associated virus 

serotype eight vector resulted in a decrease in cholesterol and plasma triglycerides (Burkhardt et al., 

2010). Trib1 has also been shown to modulate vascular smooth muscle cells (VSMCs) proliferation and 

migration (Sung et al., 2007). 

Trib1 have been described as regulators of pro-inflammatory markers. A study by Sung and colleagues 

had shown that Trib1 was expressed in resident macrophages of mouse atherosclerotic plaques (Sung 

et al., 2012). Atherosclerosis in ApoE−/−IL1R1−/− (double knockout) mice models were used. 

Immunohistochemical analysis has shown a reduction in Trib1 expressing macrophages, compared to 

the ApoE−/− cohort. Furthermore, it was reported an upregulation of pro-inflammatory IL-12 in Trib1 

knockout mice, a characteristic feature of M1 macrophages (Yamamoto et al., 2007). This study has 

also been validated and was shown that Trib1 is increased in Raw 264.7 cells and overexpression of 

Trib1 leads to a reduction in IL-6 and IL-12 levels (Sung et al., 2012). 

Furthermore, it has been reported that Trib1 is critical for differentiation of M2 macrophages. Trib1ko 

resulted in a reduction of M2-macrophages in various organs, including bone marrow, spleen, lung and 

adipose tissues. The above studies demonstrate that Trib1 is important in the polarisation of 

macrophages towards an M2 phenotype. However, more in vivo studies are required to validate this in 

an atherosclerosis context (Satoh et al., 2013). 

1.18 Tribbles in cancer 

Tribs have been shown to be expressed in many cancerous cell lines, including human lung, colon, 

oesophageal and breast tumours (Xu et al., 2007). Trib1 has been reported to accelerate the 

degradation of CEBPα in acute myeloid leukaemia (AML) cells, and this is done via MAPKK 

dependence (Yamamoto et al., 2007). Additionally, Keeshan and colleagues have shown that 

overexpression of Trib2 in mice leads to AML (Keeshan et al., 2010). Furthermore, a study conducted 

a transcriptomic analysis of over 200 human blood samples from AML patients and demonstrated the 

contrary with a reduction in levels of Trib2 in AML patients compared with healthy volunteers (Gilby et 

al., 2010). Both studies could be correct and it could be possible that dysregulation of both Trib1 and 

Trib2 levels could lead to a disease state. Other possibilities include Trib could be working as 

heterodimers and work in a compensatory manner as reviewed in (Liang et al., 2013, Kiss-Toth, 2011). 

Both Trib1 and Trib2 have also been shown to interact and co-operate with HOXA9 to accelerate the 

onset of AML (Keeshan et al., 2008). There is an increase in evidence that Trib1 and Trib2 have a role 

in oncogenesis and the development of AML. However, understanding the details of the mechanism by 

which it regulates this is of importance to developing future therapeutics. 

1.19 Summary 

From the review, it can be shown that obesity is a significant risk factor for many facets of metabolic 

diseases including diabetes, hypertension and CVD. Trib3 has been implicated to play a role in these 
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metabolic processes including the insulin signalling and lipid metabolism. While several tissue-specific 

transgenic and knockdown experiments have been published recently, our unpublished knockout 

studies are the first to address this question at the level of the whole mouse. So far, it is clear that the 

various organs may be affected differently and that the interplay between these changes may lead to 

the obese phenotype. Our insight into the role of Trib3 in various organs remains limited. This study 

aims to use a systemic approach, for the first time on a whole body Trib3ko mice to decipher a role for 

Trib3 in metabolic dysfunction. 

 

1.20 Hypothesis 

Based on current knowledge, Trib3 is hypothesised to have a tissue-specific function in different 

metabolic tissues and is an important regulator of metabolic homeostasis. 

1.21 Aims 

The project aims to: 

 

Chapter 3 

 Characterise the anatomy and lipid profile of the full body Trib3ko in mice, alongside MRI images 

to localise fat distribution. 

 Characterise the energy consumption, food and water intake and other metabolic activities of 

the full Trib3ko mice. 

 Conduct a glucose tolerance test (GTT) and Insulin tolerance test (ITT) to characterise if the 

full body Trib3ko in mice become insulin resistance. 

Chapter 4 

 Characterise tissue-specific consequences, i.e. assess the morphology of the metabolic tissues 

of the male Trib3ko compared with WT littermates. 

 Characterise Trib3 dependent, tissue-specific regulatory mechanisms of metabolic tissues in 

male Trib3ko compared with WT littermates by microarray and validate key findings using 

standard molecular biology techniques. 

Chapter 5 

 Identify miRNAs that can bind to the Trib1 3UTR using bioinformatics databases. 

 Test and characterise the impact of miRNAs on Tribbles expression levels via dual luciferase 

assay and qRT-PCR and western blots. 

 Determine the impact of miRNA on tribbles on high fat diet (HFD) and chronic inflammatory 

settings. 

 Use a target site blocker (TSB) to increase Hepatic Trib1 levels and test for plasma lipid profile 

and triglyceride in the liver. 
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2.1 Animals 

2.1.1 Licensing 

All experiments were in accordance with the UK legislation under the 1986 Animals (Scientific 

Procedures Act). All animal experiments were approved by the University of Sheffield Project Review 

Committee and carried out under a UK Home Office project license holder (PPL, 70/77992 Professor 

S.E. Francis by personal licence holder (procedure individual licence; PIL) J. Johnston 40/10901.). 

Animal experiments were carried out by myself after culling and Dr Jessica Johnston. 

 

2.1.2 Husbandry 

All mice were housed in a controlled environment with a 12 h light and dark cycle at around 22 °C 

room temperature. All mice were fed ad libitum on standard chow diet (Harlan 18% rodent diet unless 

otherwise stated). Where possible, littermates were housed together at no more than 6 mice per cage. 

 

2.1.3 Generation of Trib3ko mice 

The Trib3ko mice strain were created using the gene-trap system.Trib3 heterozygous mice were back-

crossed with C57BL6 mice for 10 generations before intercrossing to produce Trib3ko mice. This was 

carried out in Madrid, in Prof Guillermo Velasco’s lab. Full detail of the breeding can be found in 

(Salazar et al., 2014). Figure 2.1 illustrates the principle pf generating the Trib3ko mice using the gene-

trap system. 

 

 

 

 

 

 

 

 

Figure 2.1: Generation of Trib3ko mice using the gene-trap system.  
(A) The gene trap vector used to inactivate the Trib3 allele included two expression cassettes. (B) 
Schematic showing the Trib3 allele, which was targeted in the first intron using the gene-trap vector. 
Adapted from (Salazar et al., 2014). 

A B 

Chapter 2—Materials and Methods 
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2.1.4 Genotyping Analysis 

The Genotyping was carried out by Mark Arians, a technician in the core faculty of the University of 

Sheffield. WT and Trib3ko were weaned and genotyped at 3 weeks of age. Mice were anaesthetised, 

and ears were clipped approximately 2  2 mm2 that was then digested in 300 l of lysis buffer 

containing Tris-HCl, 100 nM EDTA, 0.5% sodium dodecyl sulfate (SDS), 0.1 mg/ml Proteinase K 

(Promega, Madison, WI, USA), and 0.2 mg/ml RNase A (Qiagen, Germantown, MD, USA), at 56 °C 

in agitation for 30 min. The lysates were centrifuged at 12,000g at room temperature for 5 min and to 

precipitate the isolated DNA, 500 μl of isopropanol was slowly added to the supernatant followed by 1 

ml of ice-cold 70% ethanol. The tubes were then repeatedly inverted until the DNA had completely 

flocculated. 

Precipitated products were centrifuged at 12,000g for 5 min and the pellets were air dried at room 

temperature before suspended in 200 μl of water at 65 °C in agitation for 5 min. 

Mice were genotyped by a multiplex polymerase chain reaction (PCR) assay. Specific details of the 

PCR reaction can be found in Appendix II. 

 

2.1.5 End of procedure 

Mice were weighed and culled via a pharmacological overdose of 0.2 ml sodium pentobarbital (200 

mg/ml) given into the peritoneal cavity. Blood for plasma was taken directly from the heart through the 

chest wall into a heparinised syringe following the loss of pedal reflex. Blood was centrifuged at 2000g 

for 5 min at room temperature. Plasma was immediately frozen and stored at –80 °C. 
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2.2 MRI scans of Trib3ko and WT littermates 

MRI images were carried out by Steven Reynolds in the Radiography department of the University of 

Sheffield. MRI images were obtained using a 9.4 Tesla, Bruker Avance III MRI scanner (Bruker Biospin 

MRI GmbH, Ettlingen, Germany) with a 25 mm 1H volume coil. The mice were placed in the coil so 

that the centre of their abdomen was aligned with the centre of the coil. The mice were oriented in the 

scanner so that their hips were at the top of the image. Structural MRI scans were performed using an 

MSME spin echo sequence (FOV 3.0 cm  3.0 cm, 512  512 matrix, TE/TR 16 ms/1000 ms). 34–36 

1 mm slices were used for each mouse, creating a pack extent of 35 ± 1 slices. The images produced 

were processed using Bruker paravision 5.1 software. The slice package of MRI images was 

segmented and analysed for fat content using a custom MATLAB program (MathsWorks Inc, Natick, 

MA). 

A common image reference point was used to compare different mice. This was defined by using the 

location of the hips; the mid-slice between the first slice with hips visible and the last slice with visible 

hips was chosen as a standardised reference point for each mouse. For image processing in each 

mouse, the package of image slices was first normalised. A binary mask was created by thresholding 

each image between 10–95%, at 5% intervals, of image intensity. All image voxels above the threshold 

intensity were selected and summed to give the fat volume in each image. Images were inspected at 

the 50% threshold to confirm fat identification. 

2.3 Metabolic measurements 

Metabolic cage studies were performed by Zoe Bichler from the animal facility at NTU. 12-week-old 

mice (n = 6 per genotype) were conducted in a Comprehensive Laboratory Animal Monitoring System 

(8-chamber CLAMS, Columbus Instruments, Columbus, OH, USA). The mice were adapted to 

powdered food for 24 h before they were introduced into the metabolic cages, where a 48-h acclimation 

preceded the 24-h recording time. Metabolic parameters, including food and water consumption, O2 

consumption, CO2 emission, metabolic rate and physical activity, were recorded for 24 h from the 

beginning of a light cycle until the end of a dark cycle. Metabolic rate was derived from the heat 

production by assessment of the exchange of O2 and CO2 during the metabolic process. 

Physical activity was determined by dual axis detection of animal motion. Horizontal movements 

(Xamb) and rearing movements (Ztot) were measured by counting the number of horizontal and 

vertical infrared beam breaks. Respiratory exchange ratio (RER) was calculated by VO2/VCO2 to 

reveal the fuel consumption preference. Oxygen and carbon dioxide sensors were calibrated using 

calibration gas mixtures. High-precision weighing stations in combination with leak- and spill-proof 

containers accurately recorded the body weight, food and water intake (in grams). Spontaneous 

activity was recorded with two levels of infrared light beam frames surrounding each cage. Raw data 

can be found in Appendix III. 

2.4 Histology 

Frozen tissue samples from the adipose and liver were either paraffin embedded or cryo-sectioned. 

Oil red O staining and haematoxylin and eosin (H&E) was used to assess tissue morphology and look 
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at lipid content. Images were captured using a Nikon Eclipse E600 microscope with either 20, 50 or 

100 magnification. The histological detail protocol can be seen below: 

 

Staining: 

 Dewax slides for 10 minutes in xylene and rehydrate through graded alcohols (100%, 90%, 
70 and 50% (v/v) ethanol), finishing in water 

 Stain with Carazzi’s haematoxylin for 2 minutes, rinse in water 

 Stain with eosin (1% (w/v)) for 30 seconds 

 Rinse in water and quickly dehydrate through graded alcohols for 30 seconds in each, 
beginning at 90% (v/v) ethanol, ending in xylene 

 Mount with coverslips using DPX mountant 

Interpretation: 

 Nuclei                                            Purple/blue 

 Cytoplasm                                     Pink 

 Muscle fibres                                 Deep red 

 RBCs                                             Orange/red 

 Fibrin                                             Deep pink 

 
Oil red O staining: 

Solution:          

 Add Oil Red O powder to 99% (v/v) isopropanol until it becomes saturated 

 Filter the solution using Whatmann grade 1 filter paper 

 The stock stain can be kept at room temperature 

 Dilute to 60% (v/v) fresh using distilled water on day of staining 

 

Staining: 

 Tissues should be stained in individual 1.5ml eppendorf tubes 

 Rinse tissues in distilled water followed by 60% (v/v) isopropanol for 2 minutes 

 Immerse in 60% (v/v) Oil Red O for 10-15 minutes 

 Rinse in 60% (v/v) isopropanol for 2 minutes followed by distilled water. 

 Stained tissue can be stored at 4°C until pinning out. 
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2.4.1 Tissue processing 

Metabolic tissues; adipose, liver and skeletal muscle tissues were dissected and placed in 10% (v/v) 

formalin or snap frozen in liquid nitrogen. The tissues were embedded in paraffin wax for histology 

examinations. The three main steps include clearing, dehydration and infiltration. After paraffin 

embedding tissues, the wax was placed on cold ice for 1 h before being sectioned. The blocks were 

trimmed until the desired tissue thickness and area were reached. Around 2–10 m was sectioned 

using a microtome. The sections were mounted onto a glass microscopic slide and dried at room 

temperature before being placed on 37 C overnight. 

2.5 Blood biochemistry 

Samples were sent to Royal Hallamshire Hospital, Sheffield to measure total cholesterol, HDL-C, 

triglycerides and glucose levels were measured from plasma from the mice on a Roche Cobas 8000 

modular analyser. LDL-C was estimated using the Friedewald equation. LDL-chol] = [Total chol] - 

[HDL-chol] - ([TG]/2.2) where all concentrations are given in mmol/L. 

 

2.5.1 Lipid profiling 

Blood taken from the mice was stored at –80 C. The samples were sent to Royal Hallamshire Hospital 

at the Department of Clinical Chemistry. A full-blood lipid profile was measured, which included 

triglycerides, cholesterols levels, major lipoproteins (HDL, LDL) and glucose level (Roche Cobas 8000 

modular series). 

2.6 Triglyceride quantification in the liver 

Lipids were extracted from tissues using the Folch extraction method. Fatty acid and triglyceride 

concentrations were measured using a fatty acid and glycerol kit (Wako pure chemical industries, 

Osaka, Japan). Reading was measured using a spectrometer and plotted. Data were normalized 

against the tissue weight. 

2.7 Microarray gene analysis 

RNA yield quantity and quality were assessed using a NanoDrop Spectrophotometer (NanoDrop 

Products, Thermo Fisher Scientific, Inc., Wilmington, DE, USA) and Agilent Bioanalyzer (Agilent 

Technology, Santa Clara, CA, USA). Samples were considered acceptable for testing when 28S and 

18S rRNA bands resolved into two discrete bands that had no significant smearing below each band. 

Double-stranded cDNA was generated from the RNA sample using the GeneChip® WT PLUS 

Reagent Kit according to the manufacturer’s protocol. Fragmentation and end-terminus labelling of 

cDNAs were performed using the same kit according to the manufacturer’s protocol. The samples 

were then hybridized to GeneChip® Mouse Transcriptome Array 1.0 at 45 °C for 16 h overnight, 

following the manufacturer’s procedures. GeneChips post-processing was done on the AFX Fluidics 

450 Station, according to all AFX protocols and procedures defined for the Mouse Transcriptome Array 

1.0 (FS450_0001), as outlined in the kit manual. GeneChips were scanned on the GC3000 G7 

Scanner. 
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2.7.1 Bioinformatics software used to analyse the microarray: 

Data were extracted and processed using Partek® Genomics Suite™ (Partek Incorporated, St. Louis, 

MO, USA) and IPA (intuitive pathway analysis) PCA, gene list of P-value of <0.05 and a fold difference 

of <–2.5 and >2.5 were used to create hierarchical clustering heatmap, gene ontology and a Pathway 

network analysis. 

2.8 Measurements of FFA and glucose uptake in HepG2 

HepG2 cells were seeded in a 12-well plate and siTrib-3 was transfected using lipofectamine 3000 

(Dharmacon) alongside an NTC. Media were removed after 24 h and washed with PBS. 10 M of FFA 

dye was added to the cells for 30 min. Cells were lysed using trypsin and a flow cytometer was used 

to detect the uptake via FITC. 

2.9 Glucose tolerance test (GTT) and insulin tolerance test (ITT) 

The GTT and ITT experiments were carried out by Jihan AlGhamdi, a previous PhD student at EKT 

lab. Mice were fed on chow or 60% HFD for 8 weeks and then fasted overnight. Fasting mice were 

weighed and blood was collected from the tail. A 20% glucose solution was prepared and filtered 

through 0.2-m filter. For GTT, mice were fed with 2 mg glucose/g of body weight. Blood was collected 

at different intervals, 0, 30, 60, 90 and 120 min after glucose challenge by the tail sampling method. 

For ITT, mice were fasted for 2–3 h and then weighed. They were then intraperitoneally injected with 

0.75 mU insulin/g of body weight using an insulin syringe. Blood glucose was determined at 0, 20, 40 

and 60 minutes. 

2.10 Western blotting 

Relative protein expression was measured using the western blotting method. The tissue was lysed 

using the RIPA lysis buffer (50 mM HEPES, 100 mM NaF, 10 mM EDTA, 10 mM sodium 

pyrophosphate, 1% Triton v/v X-100, 10% v/v glycerol.) Protease inhibitors (1:7, Roche) and 

phosphatase inhibitors (1:10, Roche) were also added to the solution. Cells were then sonicated for 

~20 s to complete the lysis step. Cell lysates were centrifuged at 15,000g for 15 min at 4 °C and the 

supernatant was transferred into a separate Eppendorf tube and the pellet discarded. Proteins were 

quantified using the Bradford method and kept at –80 °C until required. The proteins were mixed 2 

lamellae buffer (1:7, 4% SDS (w/v), bromophenol blue 0.0004% (w/v), 2-mercaptoethanol, 20% 

glycerol, 0.125 M Tris-HCl, pH 6.8) The samples were then boiled for 5 min at 95 °C. Proteins were 

loaded onto NuPAGE 4–12% Bis-Tris SDS-PAGE gel (Novex) with a pre-stained protein ladder 

(Thermofisher), to mark the size of the bands. Electrophoresis allows the bands to separate according 

to size and charge. MES-SDS running buffer (50 mM MES, 0.1% SDS, 50 mM Tris-Base, 1 mM EDTA, 

pH 7.3) were also added in the tank, alongside the gel for 45 min at 100 V. Upon separation of the 

protein, the proteins were transferred to a nitrocellulose membrane at 35 V for 1 h with a transfer buffer 

(5% 20 Transfer buffer, 20% methanol and 0.1% antioxidant). Ponceau Red was added to the 

nitrocellulose membrane to validate bands and washed off with 5% Marvel TBST (20 mM Tris pH 7.5, 

150 mM NaCl, 0.1% Tween20). The nitrocellulose membrane was blocked in 5% Marvel TBST for 1 h 

at room temperature on a shaker. The membrane was then washed with TBST 3 for 15 min. Primary 
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and secondary antibodies were added and specific protein bands were detected upon addition of a 

chemo-luminescent substrate (ECL prime western blotting detection reagent, GE Healthcare) and its 

exposure was detected by the Biorad imager or Licor machine. Table 2.1 represents the antibodies 

used and its dilutions. 

Table 2.1 represents the antibodies used and its dilutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.11 qRT-PCR 

Total RNA of adipose, liver and muscle was isolated using the RNAeasy Mini Plus Kit (#74134, Qiagen) 

kit and according to the manufacturer’s guidelines. RNA was reverse transcribed into cDNA using iScript 

cDNA synthesis kit (#1708890, Bio-Rad). Assays were performed using either TaqMan (Invitrogen) or 

SYBR green (Precision PLUS, Primer Design, UK) to detect the mRNA levels of the genes of interest. 

qRT-PCR reactions were run using the Bio-rad system C3779 machine. Values were normalised using 

either Tubulin or GAPDH. Fold changes were calculated using the DDCT method. Table 2.2 shows the 

primer sequences for the qRT-PCR 

 

 

Antibody Company Dilutions 

mPPARα Santa Cruz Biotechnology, Inc. USA 1:1000 in 5% milk 

mPPARγ Santa Cruz Biotechnology, Inc. USA 1:1000 in 5% milk 

mPPARβ Santa Cruz Biotechnology, Inc. USA 1:1000 in 5% milk 

mpAKT Cell Signalling Technology (CST) 1:2000 in 5% BSA 

mTAKT Cell Signalling Technology (CST) 1:2000 in 5% BSA 

mGlut4 Santa Cruz Biotechnology, Inc. USA 1:2000 in 5% milk 

mGlut2 Santa Cruz Biotechnology, Inc. USA 1:2000 in 5% milk 

mCebpβ Santa Cruz Biotechnology, Inc. USA 1:2000 in 5% milk 

mCebpα Cell Signalling Technology (CST) 1:2000 in 5% milk 

mPCNA Santa Cruz Biotechnology, Inc. USA 1:2000 in 5% milk 

mTrib3 Abcam 1:3000 in 5% milk 

Trib1 Abcam 1:3000 in 5% milk 

Tubulin Santa Cruz Biotechnology, Inc. USA 1:5000 in 5% milk or BSA 

GAPDH Cell Signalling Technology (CST) 1:5000 in 5% milk or BSA 

https://www.scbt.com/scbt
https://www.scbt.com/scbt
https://www.scbt.com/scbt
https://www.cellsignal.com/
https://www.cellsignal.com/
https://www.scbt.com/scbt
https://www.scbt.com/scbt
https://www.scbt.com/scbt
https://www.cellsignal.com/
https://www.scbt.com/scbt
https://www.scbt.com/scbt
https://www.cellsignal.com/
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Table 2.2- The primer sequences for the mRNA expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RT-PCR was performed with the following: 

 2 µl of cDNA 

 0.5 µl Primer mix 

 5 µl of Taqman RT-PCR mix (2) 

 2.5 µl of H2O 

All of the above mixtures were added and mixed into sterile Eppendorf tubes with a total end volume of 

10 µl. It was then transferred into the 384-well plates and placed in the PCR machine. The thermal 

cycling parameters are as follows: 

 Step 1 – 94 °C for 1 minute 

 Step 2 – 35 cycles at 94 °C - (Denaturation) for 30 s, 55 °C – (Annealing) for 30 s, 72 °C – 

(Extension) for 1 minute. 

 Step 3 – 72 °C for 5 minutes 

 Step 4 – 4 °C on Hold 

 

Gene Forward sequence (sense) 

5-3 

Reverse sequence (Antisense) 

5-3 

 

mPPARα AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA 

mPPARγ TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT 

mPPARβ TCCATCGTCAACAAAGACGGG ACTTGGGCTCAATGATGTCAC 

mpAKT CCTCCACGACATCGCACTG TCACAAAGAGCCCTCCATTATCA 

mGlut4 GATTCTGCTGCCCTTCTGTC 

 

ATTGGACGCTCTCTCTCCAA 

 

mGlut2 GCTGTCTCTGTGCTGCTTGT CGTAACTCATCCAGGCGAAT 

mCebpβ TTAAGCGTAACTGGCGGAAACC CAGTAAGATTTGTTGCACATCAGC 

mCebpα CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC 

mPCNA GGCCGAAGATAACGCGGATAC GGCATATACGTGCAAATTCACCA 

mTrib3 TCGACTGGGGCCTTATATCCTT CAGGTGTACTCTGTGCCTGTG 

mAPOE CTGACAGGATGCCTAGCCG CGCAGGTAATCCCAGAAGC 

mFabp4 AAGGTGAAGAGCATCATAACCCT TCACGCCTTTCATAACACATTCC 

mLDLR TCCCTGGGAACAACTTCACC CACTCTTGTCGAAGCAGTCAG 

mAngptl8 CTGACCCTGCTCTTTCACGG GCTCTGTCATAGAGGCCCAG 

mTubulin GTTCACTGGTCAGTCAGAACC TCCGAACACTGGAAAGAATCTTG 

mGAPDH TGGATTTGGACGCATTGGTC TTTGCACTGGTACGTGTTGAT 
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2.12 Dual luciferase assay 

The Dual Luciferase Reporter (DLR) Assay System (Promega) was used to create Trib1 plasmids fused 

to the Renilla luciferase. The activities of firefly luciferase (Photinus pyralis) and Renilla luciferase 

(Renilla reniformis) were measured sequentially from a single sample. Firefly luciferase was expressed 

constitutively as a housekeeping gene and Renilla luciferase was an indirect measure of the WT or 

mutant TRIB1 activity. HepG2 cells were seeded in a 96-well plate and transfected with the luciferase 

plasmids and a miRNA (Ambion). They were left overnight in the incubator and then washed with PBS 

and lysed using Lysis buffer 1:4 supplied with the kit (Promega). The substrates were added to the 

lysates and chemiluminescence light was detected by the plate reader. For more information, refer to 

the standard Promega Dual luciferase assay standard manual. 

2.13 Flow cytometry 

An LSR flow cytometry machine was used to look at percentage GFP and siGlow transfection using 

different transfection reagents. Furthermore, free fatty acid uptake and glucose uptake were analysed 

using flow cytometry in HepG2s. 

2.14 Cell culture of HepG2 cells 

The human hepatocellular carcinoma cells (HepG2) were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Invitrogen) supplemented with L-glutamine (Invitrogen), 25 mM HEPES, 10% 

inactivated foetal bovine serum (FBS), 1% streptomycin/penicillin and kept at 37 °C in a 5% CO2 

incubator overnight. 

Mycoplasma testing was done every 3 months to look at whether the cells were infected. The 

haemocytometer was used to count the cell numbers and Trypan blue was used to test for cell viability 

before experiments. 

2.15 Statistical Analysis 

All statistical analyses were performed with GraphPad Prism. The relevant tests are stated in the figure 

legend of each graph. One-way ANOVA and Student’s t test were mainly used. P-value was labelled 

as significant if the value was <0.05. Results are presented as Mean ± SEM unless stated otherwise. 

The number of repeats are also stated in the figure legends. 
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3.1 Introduction 

Obesity is a systemic disease that involves the dysregulated communication amongst different organs, 

contributing to the development of metabolic processes that can lead to chronic diseases, including 

coronary artery disease (CAD), diabetes and cancer. Tribbles-3 (TRIB3) has been implicated in many 

of these metabolic processes. Human genetic studies have shown a Q84R polymorphism of TRIB3 to 

be associated with insulin resistance, dyslipidaemia and an increased risk of developing diabetes 

(Prudente et al., 2005). Furthermore, patients with T2DM were seen to have an elevated level of TRIB3 

in the pancreas compared with healthy patients (Liew et al., 2010). Biopsies of islets of Langerhans 

from patients with T2DM have shown up to fourfold increase in TRIB3 mRNA and a threefold increase 

in TRIB3 protein levels compared with the control (non-diabetic patients) (Liew et al., 2010). Insulin 

resistance is a risk factor for the development of CVD (Freeman and Pennings, 2018). Additionally it 

was reported that Trib3 is upregulated in fatty liver dystrophy (fld) mutant mice which suffers from 

hypertriglyceridemia and fatty liver in young mice and impaired nerve function in adult mice (Klingenspor 

et al., 1999). Furthermore, in 513 unrelated Chinese individuals, Gong and colleagues have found the 

R84 variant to be associated not only with insulin resistance and metabolic syndromes but also with 

carotid IMT, which is a marker for future cardiovascular events (Prudente et al., 2005). TRIB3 was also 

implicated in the diabetic atherosclerosis process. Silencing Trib3 in apolipoprotein E (apoE)/LDR 

receptor (LDLR) double-knockout (ApoE-/-/LDLR-/-) mice with diabetes reduced atherosclerotic burden 

and stabilised the plaque in mice (Wang et al., 2012). All the evidence above indicates that Trib3 is an 

important regulator in insulin resistance and CVD. 

Over the years, there have been many mouse models developed to investigate the consequences of 

Trib3 tissue-specific overexpression or knockout mice. Adipose-specific overexpression of Trib3 has 

shown reduced weight gain, reduced WAT and these animals were protected from diet-induced obesity 

(Qi et al., 2006). Another study has shown that skeletal muscle-specific overexpression of Trib3 mice 

led to an increased proportion of oxidative muscle fibres but no change in glucose homeostasis (An et 

al., 2014). In addition, PPARα expression levels and miR208b and miR499 were both increased. Both 

miR208b and miR499 have been shown to be significantly elevated in acute myocardial infarction 

patients in a Greek population, hence used as biomarkers for CVD in Greek populations 

(Agiannitopoulos K et al., 2018). 

Together, these observations suggest that Trib3 plays a tissue-specific role and that it may be involved 

in the communication amongst different organs, including adipocyte differentiation and insulin 

signalling, to maintain lipid homeostasis. 

Chapter 3—Results 

Trib3 deficiency leads to male-specific obesity, 

dyslipidaemia and altered energy homeostasis 
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A knockdown of Trib3 in hepatic with antisense oligonucleotides was shown to increase the mass of 

WAT by 70% and enhanced expression of PPARγ (Weismann et al., 2011). Furthermore, a study by 

Okamoto and colleagues have shown a genetic deletion of Trib3 with no difference in hepatic glucose 

production, lipid levels and energy metabolism in the liver (Okamoto et al., 2007). Thus, the global loss 

of Trib3 in this model does not appear to affect glucose homeostasis in mice maintained in standard 

conditions. However, our insight into the role of Trib3 in various insulin-sensitive organs remains limited. 

In this study, full body Trib3ko mice were used to characterise a role for Trib3 in metabolic dysfunction 

via a systematic analysis of lipid and glucose homeostasis and transcriptomic alterations in key 

metabolic tissues. In this chapter, the phenotype of a full body Trib3ko alongside metabolic changes will 

be characterised. 

 

3.2 Hypothesis 

TRIB3 is an essential regulator of lipid metabolism and insulin signalling and may display an obese 

phenotype in a full body Trib3ko mouse model. 

3.3 Aims 

 Characterise the anatomy and lipid profile of the full body Trib3ko in mice, alongside MRI images 

to localise fat distribution. 

 Characterise the energy consumption, food and water intake and other metabolic activities of 

the full body Trib3ko mice. 

 Conduct a glucose tolerance test (GTT) and Insulin tolerance test (ITT) to characterise if the 

full body Trib3ko in mice become insulin resistance. 
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3.4 Results 

Full body Trib3ko mice were created using the gene-trap system. Trib3 heterozygous mice were back-

crossed with C57BL6 mice for 10 generations before intercrossing to produce Trib3 mice. The details 

of the generation of the Trib3ko mice have been described in (Salazar et al., 2014). 

3.4.1 Trib3ko mice lead to male obesity 

Although many models have been used to study Trib3, this study is the first to address the question at 

the level of a whole body Trib3ko mouse. A study by (Qi et al., 2006) has shown that adipose-specific 

overexpression of Trib3 reduced weight gain, reduced white adipose tissue (WAT) and protected from 

diet-induced obesity. Figure 3.1A shows an elevated body weight of the Trib3ko compared with WT 

littermates (WT) at 13 weeks of age.Trib3ko weighed an average of 29.8g compared to 25.6g of WT 

littermates. Furthermore, Figure 3.1B shows no significant difference in the weights of female mice. 

3.4.2 Male Trib3ko mice lead to an increase in subcutaneous fat 

Upon dissection of a mouse, it has appeared that male Trib3ko mice had an increased amount of 

subcutaneous fat compared with WT littermates. Signs of adipose hypertrophy was shown (arrows). 

Figure 3.1C shows representative images of the gross anatomy of male Trib3ko mice compared with 

WT littermates. 

 

 

 

 

 

 

 

 

 

 

 

W T T r ib 3
k o

0

1 0

2 0

3 0

F e m a le  w e ig h t

W
e

ig
h

t 
(g

)

n .s

WT 

 

 
 

C 

 

C 

A 

 

A 

W T T r ib 3
k o

0

1 0

2 0

3 0

4 0

M a le  w e ig h t

W
e

ig
h

t 
(
g

)

* *

B 

 

Fi

g

ur

e 

3.

1 

M

al

e 

Tr

ib

3k

o 

le

a

ds 

to 

m

al

e 

o

b

es

it

y 

w

it

h 

a

Figure 3.1: Male Trib3ko lead to male obesity with an increase in subcutaneous fat. 

(A) Male Trib3ko mice have an increased body weight at 13 weeks of age, compared with WT littermates 

however (B) female Trib3ko mice did not show any significant difference in weight, compared with WT 

littermates. (C) Representative images of male Trib3ko and WT littermates mice. Results are presented as 

Mean ± SEM N=5-8. Unpaired T-test. P value: (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S. = Not 

significant) 
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3.4.3 Male Trib3ko leads to an increase in abdominal fat as detected by MRI 

To characterise the fat composition of Trib3ko and WT littermates further, MRI scans were taken for both 

Trib3ko and WT littermates. Figure 3.2A, B show an increase in fat volume for the Trib3ko male mice 

and the area under the curve shows a statistically significant increase compared with the WT littermates. 

Interestingly, the females show an opposite change (Figure 3.2D, E), with a reduction in fat volume and 

area under the curve, suggesting the female are becoming leaner. Figure 3.2C, F shows representative 

MRI images from the male Trib3ko and WT littermates, showing you an increase in fat depot around the 

abdominal region for the Trib3ko  Figure 3.2G shows the overall fat ratio for the male Trib3ko compared 

with the WT littermates. The hipline was used as the reference point. It can be seen MRI slices between 

28–35 show an statistical significant  increase in fat volume for the male Trib3ko compared with WT 

littermates.  
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Figure 3.2: Male Trib3ko mice have an increase 
in mean fat volume. 

Male Trib3ko
 

mice show a statistically significant increase 

in weight and fat volume compared with WT (A, B). 

However the females have shown an opposite trend, with 

a reduction in weight and fat volume (D, E). 

Representative scans were taken from male Trib3ko and 

WT littermates mice. 1mm thick ?slices were used for 

each mouse, creating a pack extent of 50 ±1 slices (C, 

F). Overall Fat Ratio (G). Results are presented as Mean 

± SEM N=3. Unpaired T-test. Data from the MRI were 

provided by Dr. Steven Reynold from the University of 

Sheffield. Dept of Radiography. P value: (*p ≤ 0.05. **p ≤ 

0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant) 
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3.4.4 Male Trib3ko mice alter plasma cholesterol homeostasis 

Having observed that male Trib3ko mice become obese, further characterisation the plasma lipid profile 

of the mice were carried out. Figure 3.3A, B shows a statistically significant increase in total cholesterol 

levels, with an increase in HDL levels in the Trib3ko compared with WT littermates. However, there was 

no difference in triglyceride levels as shown in Figure 3.3C. In collaboration with Prof. Ronald Krauss 

(Berkeley), the fractions of HDL were further looked at, and no difference was observed between the 

fractions of HDL between Trib3ko compared with WT littermates (Figure 3.3D). Next, the LDL fractions 

were characterised, and Figure 3.3E shows Trib3ko to have a reduction in VLDL. However, there was 

an increase in lgVLDL. Different fractions of LDL interact differently with the extracellular matrix. Small, 

dense LDL particles are more likely to bind to proteoglycans than large LDL particles. There is an 

increased risk of heart disease with elevated levels of LDL particles shown in prospective epidemiologic 

studies (Maranhao et al., 2014). 
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Figure 3.3: Male Trib3ko mice alters plasma cholesterol homeostasis 

Blood was isolated from male Trib3ko
  

and WT mice at 13 weeks age and the lipid profile were measured by ion 

mobility analysis. (A) There is an increase in total cholesterol levels and an increase in (B) HDL plasma levels 

of the male Trib3ko compared with WT littermates. (C) There was no significant difference in the plasma 

triglyceride levels between male Trib3ko
 

compared with WT littermates. (E) There was no significant difference 

in HDL Fractions. (F)  Upon VLDL fractions, you can see a statistical reduction in smVLDL and an increase in 

lgVLDL. Results are presented as Mean ± SEM N=5-8. Unpaired T-test. P value: (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 

0.001. ****p ≤ 0.0001, N.S= Not significant). The above data were provided by Dr. Jihan-al Ghamdi, a previous 

PhD student in Endre-Kiss-Toths lab. 
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3.5 Male Trib3ko has an altered physiology 

After establishing that full body Trib3 deficiency alters plasma lipid and adipose homeostasis, leading 

to obesity in male animals, the metabolic activity of male Trib3ko vs. WT littermates were characterised, 

in collaboration with the animal facility at Nanyang Technological University in Singapore. The mice 

were 38 weeks old and fed on a standard chow diet. The mice were kept habituated three full days in 

the calorimetric cages in the testing room before being kept inside the climate chamber for seven days 

at a constant temperature of 22 °C and humidity of 45%. The light cycle was between 7 am and 7 pm. 

The calorimetric chamber measured oxygen consumption and carbon dioxide production. Recording 

began from the first entry in the chamber and measures were considered only from the third day in the 

chamber, which made a habituation phase of a total of 6 days. All measurements were taken every 15 

min and hourly averages are presented. 

 

 

3.5.1 Male Trib3ko mice have a reduced exchange respiratory ratio 

Male Trib3ko require a higher level of oxygen consumption (Figure 3.4A), during the dark phase with a 

reduced amount of CO2 produced (Figure 3.4B). This is reflected in the Figure 3.4C, D. The RER, 

which is the ratio between CO2 and O2 showed a reading between 0.7 and 0.8 for the male Trib3ko mice 

(Figure 3.4E). The RER ratio can be used for estimating the respiratory quotient (RQ), which is an 

indicator for measuring which fuel type is being oxidised (carbohydrate or fat) to supply energy to the 

body. In brief, a RER value of 0.7 indicates that fat is the predominant fuel source, a RER of 0.85 

suggests a mix of fat and carbohydrates, and a value of 1.00 or above is indicative of carbohydrate 

being the predominant fuel source. It seems that Trib3ko use fat as the predominant fuel source to supply 

energy to the body. This will be discussed more at the end of the chapter. 

  

https://en.wikipedia.org/wiki/Respiratory_quotient
https://en.wikipedia.org/wiki/Carbohydrate
https://en.wikipedia.org/wiki/Fat
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Figure 3.4 Male Trib3ko mice alters metabolic 
physiology- Respiratory Indexes 

Respiratory indexes measurments were collected 

continuously on the phenomaster every 15min for 

24hrs and have been re-calculated per hour. Data are 

shown as mean values per hour in the light and dark 

times.  (A) % oxygen consumption (B) % CO2 

consumption (C) VO2 (D) VCO2 (E) RER Results are 

presented as Mean ± SEM N=4 Unpaired T-test. P 

value: (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 

0.0001, N.S= Not significant). The above data was 

provided by Dr. Zoe Bichler at Nanyang Technological 

University. 
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3.5.2 Male Trib3ko mice require less energy than WT littermates 

(Figure 3.5A) shows in the dark phase, male Trib3ko mice show reduced movement compared with 

WT littermates. There is no difference during the light phase. The male Trib3ko mice use less energy 

than WT littermates (Figure 3.5B). The daily energy expenditure is expressed in kcal/h/kg , it is the 

average individual heat production over 24 h. The baseline of male Trib3ko is the same as WT 

littermates, at least from the beginning of the experiment (Figure 3.6). Interestingly, daily energy 

expenditure (DEE) decreases with time in Trib3ko mice, but not in WT. Figure 3.5C, D shows that 

Trib3ko mice have a reduced food and drink intake compared with WT littermates. 
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Figure 3.5: male Trib3ko mice alters metabolic physiology- Energy homeostasis. 

Phenomaster measurements were collected continuously every 15 min for 24hrs and have been re-

calculated per hour. Data are shown mean values per hour.  (A) Locomotor activity (counts) (B) 

Energy expenditure consumption (C) Food consumption (D) Drink consumption. Results are 

presented as Mean ± SEM N=4. P value: (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= 

Not significant) Unpaired T-test. The above data was provided by Dr. Zoe Bichler at Nanyang 

Technological University. 
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3.6 Altered plasma glucose homeostasis 

Next, Jihan Al Ghamdi conducted a GTT and an ITT on Trib3ko compared to WT littermates. Trib3 

deficient mice on a chow diet have been shown to have impaired glucose transport. From Figure 3.7A, 

it can be seen that the GTT had shown male Trib3ko mice to be able to release glucose at a much faster 

rate than WT littermates. Figure 3.7B Upon ITT, it was revealed that the uptake of glucose is normal 

and there is an impairment in the release of glucose. Furthermore, Figure 3.7C there was no difference 

in the fasting glucose between male Trib3ko mice vs. WT littermates 
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Figure 3.6: Male Trib3ko mice alters metabolic physiology- Daily 
energy expenditure. 

Phenomaster measurement were collected continuously every 15 min for 

24hrs and have been re-calculated per hour. Data are shown mean values 

per hour. Data are shown mean values per hour.  (A) Energy expenditure 

consumption per day. Results are presented as Mean ± SEM N=4 ONE WAY 

ANOVE. P value: (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= 

Not significant). The above data was provided by Dr. Zoe Bichler at Nanyang 

Technological University. 

 

 

Figure 3.5 male Trib3ko mice alters metabolic physiology- Daily energy 
expenditure 

Phenomaster measurement was collected continuously every 15min for 

24hrs and have been re-calculated per hour. Data are shown mean values 

per hour. Data are shown mean values per hour.  (A) Energy expenditure 

consumption per day. Results are presented as Mean ± SEM N=4-6 Unpaired 

T-test. P value: *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001. The 

above data was generated by Dr. Zoe Bichler at Nanyang technological 

university. 
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Figure 3.7 Altered plasma glucose homeostasis. 

10 ul/g BW (20% D-glucose was injected in mice and blood levels were measured in 30 min intervals. 

(A) Insulin was injected and blood glucose levels were measured. Trib3KO
 

mice shown impaired 

recovery of plasma glucose levels (B). Trib3KO
 

did not show any significant difference on fasting 

glucose levels, compared with wild type littermates. Unpaired T-test  (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 

0.001. ****p ≤ 0.0001, N.S= Not significant) 
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The work in this chapter characterises a full body Trib3ko in males and females at 13 weeks of age and 

defines a new role for TRIB3 in male mice. It can be concluded from these data that TRIB3 is a critical 

protein that contributes towards obesity and metabolic dysfunction. The observations made here 

provide a firm association with TRIB3 and altered energy homeostasis. 

3.7 Summary 

 

 Male Trib3ko leads to an obese phenotype. However, female Trib3ko do not show any significant 

weight gain. 

 There is an increase in cumulative fat volume for the male Trib3ko mice compared with WT 

littermates. However, the females become leaner. 

 Male Trib3ko mice show an increase in abdominal subcutaneous fat compared with WT 

littermates. 

 There is an altered plasma cholesterol profile for the Trib3ko male mice. Increase in HDL, no 

difference in HDL fractions, no difference in triglyceride content, but we see an increase in 

smVLDL and lgLDL fractions. 

 Male Trib3ko are significantly less active in the dark phase: they eat and drink significantly less 

than the WT littermates. Male Trib3ko have an RER that is decreased night and day as 

compared with WT littermates. However, male Trib3ko have a higher per cent oxygen 

consumption during the dark phase compared with WT littermates. 

 Male Trib3ko mice also have a reduced food and drink intake compared with WT littermates. 

 The baseline for the DEE of Trib3ko male is the same as the WT. Interestingly, DEE decreases 

with time for the male Trib3ko mice, but not in the WT littermates. 

 

3.8 Discussion 

Although many models have been used to assess the role of Trib3 in different tissues, the lipid profile 

and metabolic profile of the Trib3 knockout mice remains mostly unexplored. There have been some 

studies that have used tissue-specific Trib3ko mouse models and depending on the studies have 

reported different phenotypes. It was reported that an adipose tissue-specific overexpression of Trib3 

reduced WAT, slowed weight gain with a concurrent increase in dietary intake (Qi et al., 2006). This 

study highlights the importance of Trib3 in the differentiation of adipocytes. Furthermore, it was shown 

that Trib3 overexpression in 3T3-L1 preadipocytes blocks adipogenesis by degradation of CEBPβ and 

PPARγ (Bezy et al., 2007). Trib3 acts as a negative regulator of adipocytes differentiation and can also 

control lipid accumulation in mature adipocytes. Additionally, Takashashi and colleague have shown 

that Trib3 is also able to control the transcriptional activity of PPARγ and therefore suppress adipocytes 

differentiation (Takahashi et al., 2008). In contrast, studies by Weismann and colleagues have shown 

a knockdown of Trib3 with antisense oligonucleotides in the liver had shown an increase in the mass of 

WAT by 70% and enhanced expression of PPARγ (Weismann et al., 2011). This has therefore raised 

questions on Trib3 phenotype and alternative mechanisms. From this study, It can be seen male Trib3ko 

mice have an increase subcutaneous tissue compared with WT littermates. Furthermore, MRI scans 
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show male Trib3ko have a higher fat volume compared with females. All the above evidence indicates 

that Trib3 is an essential regulator in contributing to lipid metabolism and obesity. Human genetic 

studies have also shown a genetic Q84R polymorphism of TRIB3 to be associated with insulin 

resistance, hyperlipidaemia and increase in the risk of developing diabetes  which are all risk factors 

contributing towards CVD (Prudente et al., 2005). 

Obesity is a systemic disease that involves dysregulated communication amongst different organs, 

contributing to the development of many metabolic processes, so a full body Trib3ko mouse model was 

generated to analyse Trib3 function in different organs simultaneously and our knockout studies show 

an elevated body weight for the Trib3ko compared with WT littermates at 13 weeks of age. The difference 

in male and female weights is an interesting observation and can be explained by a number of 

mechanisms, including hormonal influences. Unpublished studies from our lab have shown there is a 

platelet defect in the female Trib3 knockout mice compared with the males. Furthermore, it was 

identified by our group that the Trib1 promoter site has a putative androgen binding site, which in turn 

affects testosterone production. However, whether testosterone or oestrogen has an impact on Trib3 

levels and the mechanism as to how it occurs is still unknown. 

Upon dissection, it can be observed that the male Trib3ko mice have an increase in subcutaneous 

adipose tissue compared with the WT. MRI scans show an increase in body fat volume for the male 

Trib3ko mice over WT littermates. The female Trib3ko mice, in contrast, become leaner. The anatomical 

fat position was shown to be around the abdominal region of the male Trib3ko mice. The increased 

weight in the Trib3ko mice could be due to an increase in the volume of adipose tissue alongside the 

liver. The muscle is also a dense organ, so it would be interesting to look at the morphology of the 

different metabolic organs including triglyceride levels. A study has reported that Trib3 is a negative 

regulator in insulin and its effect is mediated via Akt phosphorylation. Furthermore, overexpression of 

Trib3 in HepG2 cells inhibits Akt activation and therefore affects insulin signalling pathway (Du et al., 

2003). The increase in sensitivity to insulin would lead to an increase in adipogenesis as excess glucose 

is converted into fatty acids, in a process known as lipogenesis (Avramoglu et al., 2006). In Chapter 4, 

a microarray will be conducted for the different metabolic organs to identify the dysregulated genes that 

contribute to obesity in the male Trib3ko mice. 

Having observed obese male Trib3ko mice with an increase in fat volume compared with the females, 

the lipid profile of these mice was of interest. Interestingly, male Trib3ko have been seen to show 

elevated levels of plasma cholesterol with an increase in HDL levels. However, no difference in 

triglyceride levels were detected. Having an altered lipid profile suggests the mishandling of lipids. Mice 

and rats are naturally deficient in CETP activity, although the reason behind the deficiency in activity is 

still unknown. The enzyme CETP is responsible for moving cholesterol esters and transfer of 

triglycerides between different fractions of lipoproteins. Low levels of CETP are associated with a 

decreased risk of atherosclerosis because it promotes HDL and the reverse cholesterol pathway. The 

mouse genome databases has shown sequences could not code for a functional CETP (Hogarth et al., 

2003). 
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To understand further the dynamics and physiology of the male Trib3ko compared with WT littermates, 

a metabolic cage experiment was provided to us by our collaborators. It measured the respiratory 

indexes, including sleeping, motion and energy expenditure of the mice. The male Trib3ko mice have a 

precise circadian rhythm similar to the WT littermates. The male Trib3ko mice eat and drink significantly 

less than the WT littermates and are much less active, with a decreased RER. When the respiratory 

function is reduced, the Trib3ko mice need to use more oxygen and produce more carbon dioxide, for 

an activity that decreased overall as compared with the WT littermates hence an increase in oxygen 

levels for the male Trib3ko mice can be observed. Furthermore, the male Trib3ko mouse have a lower 

RER corresponding to a predominance of fat metabolism versus carbohydrates or mixed use of a 

source of energy. The Trib3ko seem to lack switching their metabolic strategy from fat to carbohydrate 

depending on the circadian rhythm and their overall activity level. The male Trib3ko are using more 

energy than the WT littermates. Having a reduced movement, with reduced food intake and using more 

energy could suggest that the male Trib3ko mice are using the energy from the stored fats or glucose 

(Nisoli et al., 2007). 

From the respiratory indexes, the value of the RER stands between 0.7 and 1, which is reflecting a 

healthy standard exchange ratio. However, the male Trib3ko are closer to the lower values (0.75), which 

suggest that the male Trib3ko mice have an increase in fat metabolism compared with the WT 

littermates, and fat is their predominant source of fuel, as opposed to WT mice, which use predominantly 

carbohydrates (when RER is closer to 1, mainly during the dark/active phase) or a mix of both (in lower 

RER values of about 0.8, mainly during the light/less active phase). Interestingly, the male Trib3ko do 

not seem to change their metabolism according to the circadian cycle; they always use the same source 

of fuel, independent of their activity. Accordingly, they also do not consume more food or water during 

the active phase as compared with WT littermates, and their consumption is not cyclic even though they 

are still more active in the dark phase. 

Furthermore, some studies have shown the temperatures in mice to be between 27 °C and 30 °C, which 

makes the temperature chosen for this experiment (22 °C) dramatically below the standards. It is 

possible that the male Trib3ko mice are sensitive to thermal stress and hence utilise the energy more 

than the WT littermates. Alternatively, it has been reported that genetically modified mice develop more 

weight at warmer temperatures but not at colder temperatures (Feldmann et al., 2009). 

In summary, the male Trib3ko have a lower RER corresponding to a predominance in fat metabolism 

versus carbohydrates or mixed use of a source of fuel. Male Trib3ko seem to lack switching their 

metabolic strategy from fat to carbohydrate depending on the circadian phenomena, which is not seen 

in humans (a low RER at rest may predict a high peak fat oxidation during exercise and a healthy 

metabolic phenotype in moderately overweight people (Rosenkilde et al., 2010 ). Although the data are 

interesting, they cannot be used to explain the obesity observed in the male Trib3ko mice because of 

the difference in age. The male Trib3ko mice and WT littermates were studied at 38 weeks of age. The 

male Trib3ko mice become obese by 13 weeks of age. As altered physiology can be seen at 38 weeks 

of age, a future experiment could be to conduct a metabolic cage experiment for the male Trib3ko mice 

at 13 weeks of age and compare metabolic activity between different age groups. 
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Finally, a GTT and ITT were carried out to see if the male Trib3ko mice become glucose tolerant and 

insulin resistance. It can be seen that the male Trib3ko mice are able to release glucose at a much faster 

rate than WT littermates, suggesting glucose tolerance. Upon ITT, it was revealed that the uptake of 

glucose is normal and there is an impairment in the release of glucose. Furthermore, there was no 

difference in the fasting glucose between male Trib3ko mice vs. WT littermates.  

 

 

 

 

  



59 
 

4.1 Introduction 

In Chapter 3, it was shown that male Trib3ko mice have an increased body weight compared with WT 

littermates at 13 weeks of age. In contrast, the females did not show any statistical difference in weight 

or fat volume. Chapter4, will investigate the molecular mechanisms that contribute towards male Trib3ko 

obesity by conducting transcriptome analyses of various organs with a focus on key metabolic changes 

and validate those using standard molecular biology techniques. 

From previous literature, TRIB3 was shown to be an essential regulator of adipocyte differentiation 

(Takahashi et al., 2008), lipid metabolism (Qi et al., 2006) and insulin signalling (Du et al., 2003). 

However, our insight into the molecular roles of TRIB3 in various insulin-sensitive organs remains 

limited. A study in skeletal muscle supports the notion that TRIB3 is important in insulin signalling (Liu 

et al., 2008). TRIB3 is upregulated in the skeletal muscle of patients with Type II diabetes. 

Overexpression of Trib3 in the muscle cells blocks insulin-stimulated glucose transport and impair 

phosphorylation of Akt, including ERK, and insulin receptor substrate-1 (IRS1) (Liu et al., 2008). Trib3 

expression in the pancreas is also upregulated in (db/db) diabetic insulin resistance mice (Matsushima 

et al., 2006). Overexpression of Trib3 in the non-diabetic (control) mice resulted in hyperglycaemia, 

glucose intolerance and insulin resistance, similar to what was seen in the (db/db) diabetic insulin 

resistance mice (Matsushima et al., 2006). All of the evidence so far suggests Trib3 overexpression 

impairs insulin signalling, thus one would hope that reducing Trib3 levels may be beneficial to insulin 

sensitivity. A study by Okamoto and colleagues performed a genetic deletion of hepatic Trib3 and 

measured Akt and downstream signalling pathway in the liver which did not change (Okamoto et al., 

2007), suggesting possible alternative mechanisms for Trib3 action. 

Additionally, it was reported that Trib3 overexpression in 3T3-L1 preadipocytes blocks adipogenesis by 

degradation of CEBPβ and PPARγ. Trib3 acts as a negative regulator of differentiation of adipocytes 

but can also control lipid accumulation in mature adipocytes (Bezy et al., 2007). Furthermore, it was 

shown Trib3 is also able to directly control the transcriptional activity of PPARγ and therefore suppress 

adipocyte differentiation (Takahashi et al., 2008). In the contrary, a study by Weismann  and colleagues 

have shown that Trib3ko in rats increased body weight, PPARγ activity and improved insulin sensitivity, 

with no notable changes in Akt activity (Weismann et al., 2011). Trib3 was also shown to induce 

inactivation of Acetyl CoA, a key enzyme responsible for fatty acid synthesis via recruiting ubiquitin E3 

ligases and promote its ubiquitin-proteasomal degradation. This was shown in transgenic mice 

expressing TRIB3 in adipose tissue (Qi et al., 2006). 

Furthermore, overexpression of Trib3 in the liver completely blocks insulin action through inhibition of 

Akt phosphorylation, suggesting Trib3 promotes glucose output from the liver under fasting conditions 

Chapter 4–Results 

Male-specific Trib3 deficiency leads to key metabolic 

changes in the liver, adipose and skeletal muscle 
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and that its abnormal expression may contribute to insulin resistance and thereby promote 

hyperglycaemia. Further, liver-specific overexpression of Trib3 resulted in hyperglycaemia. Conversely, 

liver-specific Trib3ko leads to improved insulin sensitivity and glucose tolerance (Du et al., 2003).  

A study has reported that Trib3 is upregulated in fatty liver dystrophy (fld) mutant mouse which suffers 

from hypertriglyceridemia and fatty liver in young mice and impaired nerve function in adult mice 

(Klingenspor et al., 1999). Another study has shown a knockdown of PGC1, a PPARc co-activator, in 

the liver induced fasting hypoglycaemia and decreased expression of Trib3 (Koo et al., 2004). From the 

literature, Trib3 seems to be involved in gluconeogenesis in the liver. However, the exact mechanism 

is still unclear. 

In this chapter, a full body Trib3ko mouse will be used to use a systematic approach to decipher a 

mechanistic role for Trib3 in metabolic dysfunction in primary metabolic tissues; liver, subcutaneous 

adipose tissue and skeletal muscle tissue. Key Trib3 effectors involved in the dysregulation between 

the tissues and contributing to obesity will be identified. Furthermore, the anatomical position of the 

adipose tissue will be assessed and the morphology of the different metabolic tissues analysed. 

4.2 Hypothesis 

From the literature and Chapter 3, it is hypothesised that TRIB3 is involved in the interplay 

communication between the different metabolic organs which contribute towards an obese phenotype 

in a full body male Trib3ko mouse model. In this chapter, the systemic consequences of a full body 

Trib3ko mice and further identify key genes that may contribute towards the obesity observed in Chapter 

3. 

4.3 Aims 

 Characterise tissue-specific consequences, i.e. assess the morphology of the metabolic tissues 

of the male Trib3ko compared with WT littermates, 

 Characterise Trib3 dependent, tissue-specific regulatory mechanisms of metabolic tissues in 

male Trib3ko compared with WT littermates by microarray and validate key findings using 

standard molecular biology techniques. 
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4.4 Microarray for metabolic tissues; Liver, subcutaneous adipose tissue and skeletal 

muscle 

Liver, subcutaneous adipose tissue and skeletal muscle were chosen as primary metabolic tissues 

which are involved in regulating glucose and lipid metabolism. The chosen metabolic tissues are 

predicted to be dysregulated in male Trib3ko mice and contribute towards obesity (Cornier et al., 2008). 

4.4.1 Quality control for 13-weeks male Trib3ko and WT mice; liver tissue 

Liver tissue was homogenised and RNA was extracted and sent to Denova Limited for the microarray 

analysis. Mouse Transcriptome Array 1.0 (FS450_0001) Agilent chip was used. Four male Trib3ko and 

3 WT littermates liver tissue was sequenced. Microarray data were analysed using Partek and Ingenuity 

Pathway Analysis (IPA) software packages. Figure 4.1A shows hierarchical clustering, assigning genes 

from the microarray into groups between the different samples. Figure 4.1B shows principal component 

analysis (PCA), which shows the variability between different samples. From Figure 4.1B, male Trib3ko 

mice and WT littermate samples were shown to be close together. Furthermore, Liver tissues taken 

from the male Trib3ko and WT littermates were analysed to confirm Trib3 mRNA expression levels. 

Trib3ko has shown to have a statistically significant reduction for Trib3 compared with WT littermates 

shown in Appendix VII. 23,435 genes were dysregulated and 2342 genes were created using the 

Partek software; with a P-value of <0.05 and a fold difference of >2, <–2. 

 

 

 

 

 

 

 

 

 

 

 

Hierarchical 
Clustering 

A PCA 

Figure 4.1: Quality control for 13 weeks male Trib3ko and WT mice; liver tissue. 

 (A) Shows hierarchical clustering, to assign the genes from the microarray into groups between the 

different samples. (B) Principle component analysis (PCA) is used to determine the variability 

between different data sets. Results are presented as Mean ± SD N=3-4 (*p ≤ 0.05. **p ≤ 0.01. ***p 

≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.4.2 Gene ontology for the liver 

IPA software was used to create gene ontology and pathway analysis for the gene lists created in 

Partek. Table 4.1A shows 56 genes were associated with the CVD pathway with a P-value of 4.91  

10–2. Table 4.1B shows the genes highlighted for the molecular and cellular function. Significant genes 

were selected based on pathways. 
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Table 4.4: Gene ontology for liver 

(A) For the disease and disorder, 56 genes were associated with 

cardiovascular disease with a P value of 4.91 x10-2 (B) shows the number of 

genes involved in the molecular and cellular function (*p ≤ 0.05. **p ≤ 0.01. 

***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.4.3 Validation of microarray genes 

Selected genes involved in the cardiovascular pathway were used to create a network analysis. Figure 

4.2A shows a heat map of the list of genes from the cardiovascular pathway. Figure 4.2B shows the 

microarray genes validated by qRT-PCR and Figure 4.2C western blots. A reduction in CEBPα protein 

levels was observed; a gene which has been previously reported to be involved in the proliferation and 

lipogenesis of hepatic Trib1 (Bauer et al., 2015).  

Of particular interest, reduced expression of PPARα was detected, an important lipid sensor gene, in 

the male Trib3ko liver tissue compared with its WT littermates. PPARα is involved in fatty acid 

metabolism pathways and is involved in mitochondrial β-oxidation of the liver and regulation have shown 

to impact plasma lipoprotein metabolism during nutritional deficit, and inflammatory response 

(Takahashi and Sakai, 2006, Seedorf and Assmann, 2001, Kaplan et al., 2001). Furthermore, there is 

a decrease in ANGPT8, an important glyco-protein involved in the lipid metabolism pathway. ANGPT8 

have shown to be associated with liver steatosis and ANGP4, an isoform of ANGPT8 have shown to 

be involved in the breakdown of fatty acids in the liver (Wang et al., 2017, Kadomatsu et al., 2011).  

Furthermore, a reduction in ApoE, which is a key component of lipoprotein particles, suggested a 

decrease in cholesterol transport of LDL cholesterol leading to an influx of cholesterol and its build up 

in the liver. ApoE is produced in the liver and is an important gene involved in cholesterol metabolism 

pathway. APOC was decreased, which another important protein is found in triglyceride-rich 

lipoproteins. LDLR was also shown to increase, which is an important receptor in the uptake of LDL 

involved in transporting fatty acids to the peripheral tissues and back to the liver (Au et al., 2017). This 

suggests, Trib3 is able to uptake an increase levels of cholesterol but unable to break it down, building 

up in the liver. 

Additionally, pAKT and GLUT2 expression was increased in male Trib3ko suggesting an increase in 

glucose uptake in the male Trib3ko mice. Both AKT and GLUT2 are part of the insulin signalling pathway. 

Insulin is secreted to the bloodstream in response to high glucose levels in the blood. This then triggers 

the uptake of glucose to the main metabolic organs, like the liver, adipose and skeletal muscle to 

promote storage. This suggests, a dysregulation in glucose homeostasis and Trib3 to be involved in the 

uptake of glucose.  

Additionally, from the microarray, expression levels of the canonical inflammatory transcription factor, 

RelA nuclear factor kappa-light-chain-enhancer of activated B cells (p65 NF-B) was also increased in 

the liver, suggesting hepatic inflammation. All the genes highlighted in the microarray of the liver 

suggest that male Trib3ko is involved in fatty acid oxidation, lipogenesis and inflammation.  

 

  

https://www.sciencedirect.com/topics/medicine-and-dentistry/lipoprotein-metabolism
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Figure 4.2: Validation of microarray genes- Liver. 

Microarray analysis was performed on the liver male Trib3ko mice vs WT littermates’ mice. Partek and IPA 

software packages were used for bioinformatics analysis of the data. (A) Heatmap created with the 

highlighted genes; Green is downregulated, Red is upregulated. KO represents the Trib3ko samples. (B) 

qPCR normalized against B-actin housekeeping gene and (C) Western blotting were performed and shown 

for genes that show a statistical significance. Further analysis using ImageJ densitometry were used. 

Results are presented as Mean ± SEM N=6-8. Unpaired T-test. P value (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. 

****p ≤ 0.0001, N.S= Not significant). 
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4.4.4 Increase in lipid accumulation in the liver tissue 

So far, from the microarray of the male Trib3ko liver samples compared with the WT, there is a reduction 

in PPARα levels, an important gene involved in the oxidation of FFA. An increase in mRNA LDL mRNA, 

which has been shown to be important in FFA uptake. This suggests FFA are unable to be broken down 

with an increase in FFA uptake leading to accumulation of lipids in the liver. Thus, the lipid content of 

the liver needed to be characterised. Liver tissue were sectioned using cryo-sectioning, and Oil red O 

staining was performed for the male Trib3ko samples compared with WT littermates. From Figure 

4.3A,B it can be visibly seen that there is an increase in Oil red O staining in the male Trib3ko samples 

compared with the WT littermates suggesting an increase in lipid content for the male Trib3ko samples. 

A triglyceride detection kit was used quantify the FFA levels. Figure 4.3C shows a significant increase 

in triglyceride levels in the male Trib3ko compared with WT littermates. 

4.4.5 Increase in free fatty acid (FFA) uptake in the HepG2 cells 

Having observed an increase in Ldlr mRNA in our microarray, it was important to confirm if there is an 

increased uptake of FFA in Trib3-deficient cells. HepG2 cells were incubated with FFA attached to a 

fluorescent probe to measure the amount of FFA uptake. Flow cytometry was used to quantify FFA 

uptake. Figure 4.3D shows an increase in FFA uptake in the Trib3 knockdown samples compared with 

controls, suggesting an increase in the uptake and build-up of lipids which in turn are not broken down. 

Figure 4.3D showing fluorescence peaks of the different conditions, alongside Figure 4.3E showing 

you a histogram of the mean fluorescence uptake of the different conditions. 
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Figure 4.3: Increase in lipids accumulation in Trib3ko mice compared with WT 

littermates, alongside increase in Free Fatty acid (FFA) uptake in the HepG2 cells. 

(A, B) Oil-O stain (red/orange) was performed on cryo-sectioned liver samples and have shown an 
increase in oil droplets for the Trib3komice compared with WT (C) Triglyceride was measured in the liver 

tissue using the Folsch lipid extraction method. There is an increase in triglyceride content in the male 
Trib3kocompared with the WT mice of the liver tissue. (D) Flow cytometry was used to look at Fatty acid 

uptake in HepG2 cells. Trib3 knockdown compared with Vehicle control. Fluorescence showing an increase 
in fatty acid uptake in Trib3 knockdown cells alongside the (E) histogram. Results are presented as Mean 
± SD N=4-6. (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant) 
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Microarray Adipose 

4.5 Quality control for 13 weeks male Trib3ko and WT mice; Adipose tissue 

Adipose tissue was homogenised, RNA was extracted and sent to Denova Limited for the microarray 

analysis. Mouse Transcriptome Array 1.0 (FS450_0001) Agilent chip was used. Four male Trib3ko and 

three WT littermates was sequenced. Microarray data were analysed using Partek and IPA software 

packages. Figure 4.4A shows hierarchical clustering, assigning genes from the microarray into groups 

between the different samples. Figure 4.4B shows the PCA, which shows the variability between 

different samples. From Figure 4.4B, both male Trib3ko and WT littermate’s samples were shown to be 

close together. Furthermore, adipose tissues taken from the male Trib3ko and WT littermates was 

analysed to confirm Trib3 mRNA expression levels. Trib3ko has shown to have a statistically significant 

reduction for Trib3 mRNA compared with WT littermates shown in Appendix VII. 26,234 genes were 

dysregulated and 3276 genes were created using the Partek software; with a P-value of <0.05 and a 

fold difference of >2, <–2. 
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Figure 4.4: Quality control for 13 weeks male Trib3ko and WT mice; Adipose tissue. 

(A) Shows hierarchical clustering, to assign the genes from the microarray into groups between the 

different samples. (B) Principle component analysis (PCA) is used to determine the variability between 

different data sets. Results are presented as Mean ± SD N=3-4 (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. 

****p ≤ 0.0001, N.S= Not significant). 
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4.5.1 Gene ontology for adipose samples 

IPA software was used to create gene ontology and pathway analysis for the gene list created in Partek 

for the adipose samples. Table 4.2 shows 48 genes associated with the inflammatory response with a 

P-value of 1.62  10–2. Lipid metabolisms genes were selected for the molecular and cellular functions 

highlighted. Significant genes were selected based on pathways. 
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Table 4.5: Gene ontology for adipose 

A) for the disease and disorder, 48 genes were associated with the inflammatory 

response with a P value of 1.62 x10-2. (B) For the molecular and cellular function, lipid 

metabolism and cell death and survival was the top hit (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 

0.001. ****p ≤ 0.0001, N.S= Not significant). 

B 
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4.5.2 Validation of microarray genes 

Genes involved in the inflammatory response pathway which have been shown to be the most 

significant were selected and a network analysis created. Figure 4.5A shows a heat map from the 

microarray for the samples. Figure 4.5B shows the selected microarray genes validated by qRT-PCR 

and Figure 4.5C western blots. Gene ontology analysis revealed an enrichment of differentially 

expressed genes involved in cellular proliferation, lipid metabolism and inflammation (Table 4.3).  

 

Amongst the genes, it is confirmed the upregulation of proliferative and adipogenesis genes, such as 

PCNA and CEBPβ, respectively, at both the mRNA and protein levels. The nuclear receptor PPARγ is 

a master regulator of adipogenesis and has shown that the formation of WAT is dependent on the 

presence of PPARγ and CEBPα (Farmer et al., 2015). In vitro studies in 3t3-L1 cells have shown that 

Trib3 can block adipogenesis via inhibiting CEBPβ (Bezy et al., 2007), whose expression was also 

elevated in Trib3 knockout mice. Together with these observations, it is plausible to hypothesise that 

male Trib3ko have an increased preadipocyte proliferation leading to an increase in adipogenesis. 

 

Furthermore, the fatty acid-binding proteins (FABPs) which are a group of molecules that coordinate 

lipid responses in cells. These are known as the chaperones of the cell. FABPs have shown to facilitate 

the transport of lipids to different places of the cell, such as to the lipid droplet for storage. A study 

overexpressing fatty acid binding protein 3 has shown to promotes remodeling after myocardial 

infarction by inducing apoptosis. overexpression of FABP3 in rat promoted drastically death and 

apoptosis of neonatal rat ventricular cardiomyocyte's (Zhuang et al., 2019).  

 

Additionally, pAKT expression was reduced in male Trib3ko suggesting a decrease in glucose uptake in 

the male Trib3ko mice of the adipose tissue. AKT is part of the insulin signalling pathway. In the liver of 

the Trib3ko mice there was an increased in pAKT levels compared with Trib3ko adipose tissue, 

suggesting liver is the primary organ taking up glucose.  The uptake of glucose is mainly occurs in the 

liver and skeletal muscle to promote storage. Again, this suggests, a dysregulation in glucose 

homeostasis in Trib3ko mice (Qin et al., 2011). 
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Figure 4.5: Validation of microarray genes-Adipose. 

Microarray analysis was performed on the adipose male Trib3ko vs WT littermates’ mice. Partek and IPA 

software packages were used for bioinformatics analysis of the data. (A) Heatmap created with the 

highlighted genes; Green is downregulated, Red is upregulated. KO represents the Trib3ko samples. (B) 

qPCR normalized against B-actin housekeeping gene and (C) Western blotting were performed and 

shown for genes that show a statistical significance. Further analysis using ImageJ densitometry were 

used. Results are presented as Mean ± SEM N=6-8. Unpaired T-test. P value (*p ≤ 0.05. **p ≤ 0.01. ***p 

≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.5.3 Increase in adipocytes in the Trib3ko adipose tissue 

The MRI analysis shown in Chapter 3, revealed that male Trib3ko have an increase in fat volume 

compared with WT littermates. PPARγ and PCNA genes show statistically significant upregulation in 

the microarray analysis, suggesting that adipogenesis and proliferation are affected by Trib3. 

Histological examination of subcutaneous adipose tissue has shown no difference in the adipocyte size 

between male Trib3ko and its WT littermates (Figure 4.6A, B) suggesting adipocyte hyperplasia as a 

consequence of Trib3 deficiency. This was expected as it was seen an increase in proliferative genes 

such as PPARγ and PCNA. Trib3 have shown to be able to bind to PPARγ and suppress adipocyte 

differentiation in 3T3-L1 adipocytes. Furthermore, Trib3 expression in 3T3-L1 cells decreased the 

mRNA levels of PPARγ and the intracellular triglyceride levels (Takahashi et al., 2008). Figure 4.6C 

shows the densitometry measurements of the male Trib3ko compared with WT littermates. 

4.5.4 Increase in macrophage influx 

Having seen an increase in the expression of inflammatory response genes in the microarray, the 

expression of macrophage marker F4/80 in the adipose tissue was quantified. Figure 4.6D shows an 

increase in F4/80 positive nuclei, probably due to macrophage influx in the male Trib3ko compared with 

WT littermates. Macrophages display plasticity due to their ability to alter their physiology upon a change 

of environmental signals. The impact of Trib3 deficiency on macrophage polarisation is unknown. Future 

studies would be to show the polarisation and function of the macrophages and therefore understand 

the interplay between macrophage and adipocytes.   
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Figure 4.6 Increase in macrophage influx in the male Trib3ko adipose 

tissue with no change in adipocyte size. 

(A, B) Representative histology graphs showing male Trib3ko vs WT littermates 

adipocyte size. There was no difference in size (C), densitometry (D) however we did 

see an increase in F4/80 positive nuclei (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 

0.0001, N.S= Not significant). 
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Microarray muscle 

4.6 Quality control for 13-week male Trib3ko and WT mice; Muscle tissue 

Muscle tissue was homogenised and RNA was extracted and sent to Denova Limited for the microarray 

analysis. Mouse Transcriptome Array 1.0 (FS450_0001) Agilent chip was used. Four male Trib3ko and 

3 WT littermates liver tissue was sequenced. Microarray data were analysed using Partek and Ingenuity 

Pathway Analysis (IPA) software packages. Figure 4.7A shows hierarchical clustering, assigning genes 

from the microarray into groups between the different samples. Figure 4.7B shows principal component 

analysis (PCA), which shows the variability between different samples. From Figure 4.7B, both male 

Trib3ko and WT littermate samples were shown to be close together. Furthermore, muscle tissues taken 

from the male Trib3ko and WT littermates was analysed to confirm Trib3 mRNA expression levels. 

Trib3ko has shown to have a statistically significant reduction for Trib3 mRNA compared with WT 

littermates shown in Appendix VII. 14,324 genes were dysregulated and 732 genes were created using 

the Partek software; with a P-value of <0.05 and a fold difference of >2, <–2. 
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Figure 4.7: Quality control for 13 weeks male Trib3ko and WT mice; Muscle tissue. 

(A) Shows hierarchical clustering, to assign the genes from the microarray into groups between the 

different samples. (B) Principled complement analysis (PCA) is used to determine the variability 

between different data sets. Results are presented as Mean ± SD N=3-4 (*p ≤ 0.05. **p ≤ 0.01. ***p 

≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.6.1 Gene ontology for muscle 

IPA software was used to create gene ontology and pathways analysis for the gene list created in Partek 

for the muscle samples. Table 4.3A shows that 73 genes were associated with endocrine system 

disorder with a P-value of 3.53  10–2. Table 4.3B shows the genes highlighted for the molecular and 

cellular function. Significant genes were selected based pathways. 
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Table 4.6: Gene ontology for muscle 

(A) For the disease and disorder, 73 genes were assigned to be play a part in 

endocrine system disorder with a P value of 3.53 x10-2.(B) shows the molecular 

and cellular function that cellular function and maintenance was the top hit. (*p 

≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 

B 
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4.6.2 Validation of microarray genes 

Genes involved in the endocrine disorder pathway which have been shown to be significant were 

selected and a network analysis created. Figure 4.8A shows a heat map from the selected microarray 

genes, showing an increase in insulin receptor 2 (IRS2), important in the insulin signalling pathway. 

lipoprotein lipase (LPL)  part of the fatty acid pathway, has shown to break down fat in the form of 

triglycerides. Figure 4.8B shows the selected microarray genes validated by qRT-PCR and Figure 

4.8C western blots. As can be seen, GLUT4, pAKT expression was increased in maleTrib3ko suggesting 

an increase in glucose uptake in the skeletal muscle. PPARδ has shown an increase in mRNA 

expression levels between male Trib3ko and WT littermates, however it did not show significant at the 

protein levels suggesting post-translational modification. 
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Figure 4.8 Validation of microarray genes- Muscle. 

Microarray analysis was performed on the muscle male Trib3ko vs WT littermates’ mice. Partek and IPA 

software packages were used for bioinformatics analysis of the data. (A) Heatmap created with the highlighted 

genes; Green is downregulated, Red is upregulated. KO represents the Trib3ko samples. (B) qPCR normalized 

against B-actin housekeeping gene and (C) Western blotting were performed and shown for genes that show 

a statistical significance. Further analysis using ImageJ densitometry were used. Results are presented as 

Mean ± SEM N=6-8. Unpaired T-test. P value (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not 

significant). 
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4.6.3 Increase in glucose uptake in the HepG2 cells 

Having observed an increase in pAKT in our microarray, it was important to see if there is an increased 

uptake of glucose in the Trib3-deficient cells. HepG2 cells were used and glucose attached to a 

fluorescent probe to measure the amount of glucose uptake. Flow cytometry was used to measure 

glucose uptake. Figure 4.9A shows an increase in glucose uptake in the Trib3 knockdown samples 

compared with controls, suggesting an increase in glucose uptake and storage. Alongside, Figure 4.9B 

is the histogram; showing the fluorescence of the different conditions. 

 

            

            

            

            

       

 

 

            

         

 

 

 

 

            

         

n o  d y e W T T rib -3  K D

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

C o n d itio n s2
-N

B
D

G
 u

p
ta

k
e

 f
lo

u
r
e

s
c

e
n

c
e

 d
y

e

*

A 

Figure 4.9 Altered glucose uptake in HepG2s.  

(A) Flow cytometry was used to look at glucose uptake in Trib3 knockdown compared with Vehicle control. (B) 

Densitometry showing an increase in glucose uptake in Trib3 knockdown cells. One-way ANOVA T-Test used 

to test for statistical significance (*p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.7 Changes in adiponectin levels in male Trib3ko mice compared with WT littermates 

Next, the adiponectin levels for the Trib3ko were examined, as it  has shown to be important cytokine to 

regulate a number of metabolic processes, including glucose regulation and fatty acid oxidation. Obese 

patients have been shown to have reduced adiponectin levels compared with healthy individuals. This 

increases the risk of developing insulin resistance and CVD (Bruckert, 2008, Matsuzawa, 2005, 

Lacquemant et al., 2005, Matsuzawa et al., 2004, Whitehead et al., 2006). Leptin and adiponectin were 

downregulated in the microarray however were not significant. From Figure 4.10, although not 

significant, there is a slight reduction in adiponectin in the Trib3ko plasma compared with WT littermates, 

suggesting a dysregulation of metabolism. 
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Figure 4.10 Changes in adiponectin levels in Trib3ko plasma 

compared with WT littermates. 

(A) Adiponectin levels measured using ELISA. Graphs showing male Trib3ko vs 

WT has a reduced adipokine levels compared with WT littermates, however 

was not statistically significant. Unpaired T test. N=4 (*p ≤ 0.05. **p ≤ 0.01. ***p 

≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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4.8 Summary 

Liver 

 Gene ontology confirms dysregulation of CVD genes. 

 Reduction of PPARα and pAKT with an increase in LDLR genes involved in lipid metabolism 

and insulin signalling. 

 Increase in lipid droplets in the male Trib3ko liver tissue compared with WT littermates with an 

increase in triglyceride content. 

 In vitro experiments show an increase in FFA and glucose uptake of the Trib3 knockdown 

HepG2 cells compared with control. 

Adipose 

 Gene ontology confirms dysregulation of inflammatory and lipid metabolism genes. 

 Increase in PCNA, PPARγ and pAKT genes involved in lipid metabolism. 

 No differences in adipocyte size in the male Trib3ko adipose tissue compared with WT 

littermates with an increase in F4/80+, macrophage influx. 

Muscle 

 Gene ontology confirms dysregulation of metabolic and lipid metabolism genes. 

 The increase of pAKT and GLUT4 genes involved in glucose metabolism. 

 Male Trib3ko mice showed impaired recovery of plasma glucose levels compared with WT 

littermates. 

 

4.9 Discussion 

In this chapter, the systemic effects of Trib3ko in male mice were investigated. The liver, adipose and 

muscle were chosen as the primary metabolic organs. From Chapter 3, an obese phenotype in male 

Trib3ko mice compared with WT littermates at 13-weeks of age was known. Elevated cholesterol levels 

were observed with no difference in triglyceride. It was hypothesised that TRIB3 was an important 

regulator of lipid metabolism and insulin signalling and may contribute towards an obese phenotype in 

a full body male Trib3ko mouse model. 

The liver is one of the main metabolic organs involved in fat metabolism and breakdown and storage of 

triglycerides for energy. The liver is also involved in carbohydrate metabolism and allows the glucose 

levels in our blood to remain constant. A fatty liver is generally associated with patients who are obese 

a nd ordinarily diabetic. There are many stages of development of liver disease, which are 1) non-

alcoholic fatty liver disease (NAFLD) 2) non-alcoholic steatohepatitis, 3) fibrosis and 4) cirrhosis 

(Antunes and Bhimji, 2018). 

The male Trib3ko mice have shown a fatty liver phenotype. A triglyceride assay was performed for the 

liver, which had shown elevated triglyceride levels in male Trib3ko mice compared with WT littermates 

https://www.nhs.uk/conditions/cirrhosis/Pages/Introduction.aspx
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(Freeman and Pennings, 2018). A study have shown Trib3 to be upregulated in fatty liver dystrophy 

(fld) mutant mouse which suffers from hypertriglyceridemia and fatty liver in young mice and impaired 

nerve function in adult mice (Klingenspor et al., 1999). Furthermore, a study by Wang and colleagues  

analysed three groups of Sprague Dawley rats including controls, NAFLD fed on HFD for eight weeks, 

and NAFLD fed for 16 weeks on HFD. The expression level of Trib3 mRNA was significantly higher in 

the NAFLD fed for 8 weeks compared with controls. A significantly lower expression level of Akt and 

pAKT compared with the control groups was also seen in this study. The animals models here was fed 

on HFD compared to our models. It would be interesting to further investigate the impacts of Trib3ko on 

HFD (Wang et al., 2009).  

Trib3 has been shown to play an essential role in insulin signalling. Previous studies suggest that Trib3 

is a negative regulator of insulin, mediated via Akt phosphorylation. It was reported that overexpression 

of Trib3 in Hepg2 inhibits Akt activation and therefore affects the insulin signalling pathway. Conversely, 

a Trib3 knockdown in HepG2s resulted in induction of phosphorylation in Akt (Du et al., 2003).  

Furthermore, patients with NAFLD, more than 95% of are insulin resistant, so there is a possibility that 

insulin resistance plays a vital role in the development or inducing of NAFLD. It can, therefore, be 

possible that Trib3, may not only be a cause of insulin resistance but also an important factor in inducing 

or development of NAFLD (Chitturi and Farrell, 2001). Other studies implicate activation of peroxisome 

proliferator-activated receptor alpha (PPARα) as a leading cause of NAFLD. Pparαko mice in HepG2 

cells were treated with and without fenofibrate at different doses. Fibrates activate Pparα. Hepatic 

steatosis was detected through oil red O staining. It was shown that the fenofibrate-treated mice, hepatic 

triglyceride content was increased in a dose-dependent manner (Tanaka et al., 2017, Yan et al., 2014). 

The microarray analysis of the liver and validation of both mRNA and protein levels has shown a 

decrease in PPARα with a concurrent increase in Akt phosphorylation. PPARα is a member of the 

nuclear receptor family, which was shown to be a significant regulator of lipid metabolism. It is 

predominantly expressed in the liver and is a major activator of fatty acid oxidation. Knockdown studies 

of PPARα have shown induced hypoglycaemia and reduction in hepatic glucose levels, demonstrating 

its importance in glucose homeostasis (Sanders et al., 2014). Additionally, it was shown that Trib3 to 

be induced by fasting through the induction of PPARα, which suggests that Trib3 is involved in lipid and 

glucose metabolism (Koo et al., 2004). 

The male Trib3ko has an increase in liver LDLR expression, a receptor for upregulation of lipids. 

Alongside, with a reduction in PPARα, a potential mechanism could be Trib3 can regulate PPARα levels 

which have an impact on lipid disposition and therefore, contribute to the development of fatty liver. 

Whether there is any direct or indirect interaction between Trib3 and PPARα, is unknown. An increase 

in uptake of free fatty acids in vitro was confirmed. An increase in fatty acid uptake in Hepg2’ cells after 

Trib3 knockdown was seen, alongside an increase in glucose uptake. The above experiments alongside 

previous literature indicate that Trib3 is involved in regulating hepatic lipid levels and can be a potential 

therapeutic target in the future for NAFLD. There was also a reduction of GLUT2 and pAKT levels in 

the liver; involved in the insulin signalling pathway and have been highlighted in our microarray, 

suggesting Trib3 is involved in the glucose handling. A study by Lie and colleagues has also shown 

that Trib3 is elevated upon fasting and overexpression of Trib3 leading to inhibition of insulin via Akt 
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phosphorylation pathway in mouse (Liu et al., 2010). In addition to this, overexpression of Trib3 in 

mouse liver resulted in hyperglycaemia. 

Conversely, liver-specific deletion of Trib3 in mice leads to improved insulin and glucose tolerance 

(Prudente et al., 2012). A similar phenotype was observed in our male Trib3ko model. Upon a GTT and 

ITT, male Trib3ko mice show a quicker recovery of plasma glucose levels, suggesting male Trib3ko 

become insulin sensitive. In the muscle, there is an increase in GLUT4 protein and pAKT suggesting 

an increase in glucose uptake, which correlates with the microarray data. 

Another gene highlighted in the microarray analysis for the adipose tissue is peroxisome proliferator-

activated receptor-γ (PPARγ). PPARγ is an essential regulator for adipogenesis. There are two different 

isoforms, known as PPARγ1 and PPARγ2. PPARγ2 is expressed predominantly in the adipose tissue, 

whereas PPARγ1 is ubiquitously expressed. Others include the members of the CCAAT/enhancer-

binding protein (C/EBP) family of transcription factors, which also play an essential role in promoting 

adipocyte differentiation. It was shown that CEBPαko mice to lack WAT, suggesting a key regulatory 

contribution to adipocyte differentiation (Siersbaek R, 2010). Another study by Spiegelman and 

colleagues has shown PPARγ can induce adipogenesis in CEBPαko in MEFs. However, CEBPα is 

unable to induce adipogenesis in PPARγko mice (Sharma AM1, 2007). TRIB3 is an essential regulator 

of adipocytes and has a role not only in adipocyte differentiation via C/EBPβ and PPARγ but also lipid 

metabolism and homeostasis (Prudente et al., 2012). TRIB3 inhibits ERK and prevents the 

phosphorylation and activation of C/EBPβ, which in turn induces PPARγ, both essential proteins for 

adipocyte function. An increase in PCNA and PPARγ was observed, suggesting an increase in 

adipocyte differentiation and contribution to the obese phenotype observed in the male Trib3ko mice. 

The previous study by Bezy and colleagues has shown Trib3 overexpression in 3T3-L1 preadipocytes 

blocks adipogenesis by degradation of CEBPβ and PPARγ (Bezy et al., 2007). Trib3 acts as a negative 

regulator of differentiation of adipocytes but also can control lipid accumulation in mature adipocytes. 

The Takahashi group has shown that Trib3 is also able to control the transcriptional activity of PPARγ 

and therefore suppress adipocytes differentiation (Takahashi et al., 2008). From the microarray, 

inflammatory genes were also observed, so histology was performed in adipose sections for F4/80, a 

marker for macrophages. An increase in F4/80 was observed, suggesting an increase in macrophage 

influx in the adipose tissue. Upon male Trib3ko there is a proliferation of adipocytes and an increase in 

macrophages, whether the macrophages are behaving like M1 or M2, is still unexplored. All 

experiments in this project focussed on subcutaneous tissue. Unpublished studies from our lab have 

suggested an increase in adipocyte size and a reduction in macrophages in the visceral tissue, the 

opposite of what was shown in the subcutaneous tissue. This is an interesting observation because 

different adipose tissues are linked differently to disease progression. Another tissue that is unexplored 

is the BAT. Male Trib3ko have a tissue-specific impact, and from this study, it seems that there is a 

spillover of lipids from the adipose into the liver, and maybe into the muscle. Adiponectin levels show a 

slight reduction in the Trib3ko compared with WT littermates. Further cytokine analysis would have 

revealed more information in regard to the communication between different tissues. 
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5.1 Introduction 

During my PhD, work was done in profiling miRNAs that bind and modulate Trib1 levels. This chapter 

would therefore be focusing on Trib1, rather than the isoform, Trib3. 

Trib1 has been shown to play an important role in lipid haemostasis and atherosclerosis. A GWAS 

conducted in healthy controls and human coronary artery disease (CAD) patients showed genetic 

variants near the TRIB1 locus to be associated with hyperlipidaemia and increased the risk of 

developing CAD (Kathiresan et al., 2008). Furthermore, a study by Burkhardt and colleagues 

demonstrated that Trib1ko in mice increases plasma TG and cholesterol levels with an increase in VLDL 

production, thus assigning a protective function to this protein in hepatocytes. Additionally, 

overexpression of Trib1 in hepatic cells had shown opposite effects, it reduces cholesterol and TG 

levels, with a reduction in VLDL production. Trib1 is also critical for macrophage polarisation. A study 

by Satoh and colleagues has shown that Trib1 is a critical regulator for differentiation of anti-

inflammatory, M2 macrophages. A Trib1ko resulted in a reduction of M2 macrophages in various organs, 

including bone marrow, spleen, lung and adipose tissues. Trib1 was shown to be an important negative 

regulator in controlling inflammation and acts to lower plasma lipid levels (Satoh et al., 2013). 

While our understanding of the TRIB1 function is becoming clearer, the regulation of TRIB1 remains 

unexplored. The half-life of TRIB1 mRNA is <1 hour, so the aim is to find ways to stabilise Trib1 mRNA 

levels which would, therefore, have beneficial effects on lipogenesis. The liver is the primary organ to 

modulate systemic cholesterol levels, so we aim to stabilise TRIB1 levels in the liver. 

Furthermore, all the Tribbles mammalian family members have a long and conserved 3 untranslated 

region (UTR), which suggests post-transcription modification via miRNAs. The Trib1 miRNA transcript 

contains a 1948 bp long 3UTR, making it ideal for miRNA cleavage. An example of this is miR122, 

which regulates multiple target genes which have been associated with the metabolism of hepatic fatty 

acids. Forty-five targets of miR122 were highlighted including Trib1 (Yang et al., 2015). In this study, 

novel miRNA that are able to regulate hepatic TRIB1 levels and therefore control inflammation and lipid 

levels will be demonstrated. 

5.2 Hypothesis 

In this chapter, bioinformatics databases will be used to search for miRNA that controls Trib1 expression 

levels. I believe that TRIB1 proteins are important negative regulators in controlling inflammation and 

Chapter 5—Results 

miR202 is a novel regulator of endogenous TRIB1 

protein expression 
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act to lower plasma lipid levels and lipid homeostasis, so increasing levels of TRIB1 protein would, 

therefore, have beneficial effects on the atheroma. 

5.3 Aims 

 Identify miRNA’s that can bind to the trib1 3UTR using bioinformatics databases. 

 Test and characterise the impact of miRNAs on Tribbles expression levels via Dual luciferase 

assay and qRT-PCR and western blots. 

 Determine the impact of miRNA on Tribbles on HFD and chronic inflammatory settings. 

 Use TSB to increase hepatic Trib1 levels and test for plasma lipid profile and triglyceride in the 

liver. 
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5.4 miR202 predicted to bind to Trib1 3UTR 

miRTarget is an online database made by the algorithm to predict miRNA binding (Wong et al., 2015, 

Wang et al., 2016). The program was used to search for miRNAs that can bind and interact with Trib1. 

miR202 was highlighted as the most significant with a pairing score of more than 150 and energy score 

<–7. Furthermore, it has a mirSVR cut off of –1.2. Over 500 miRNA hits were observed from 

12/03/2018. Table 5.1 shows the top 3 predicted miRNAs that are able to bind and modulate Trib1 

levels. Alongside are the miRNA sequence and binding site position. Figure 5.1 shows the constructed 

Renilla Luciferase plasmid created by a Vera, a technician in Endre-Kiss-Toth group, with the different 

lengths of the Trib1 3UTR site.3. 

Table 5.1 showing the top two hits of miRNA able to bind and modulate Tribbles. The initial 

bioinformatics analysis was performed by a PhD student in our group; Chiara Niespolo. 

 

 

5.5 Plasmids—Renilla luciferase fused with Trib1 UTRs 

Renilla Luciferase plasmids were created with different lengths of the Trib1 3UTR site. Figure 5.1shows 

the different plasmids used in the experiment. Different plasmids were created and tested for mRNA 

stability. A dual luciferase assay was used to transfect Trib1 3UTR vs. control in HepG2 cells 

transfected in a 96-well plate. Figure 5.1D shows the 3UTR region of the Trib1 is destabilising the 

mRNA level and it is the truncated 3UTR responsible for this. 

 

 

 

 

 

 

 

 

 

 

Target gene Species MiRNA Sequence Seed 

location 

TRIB1 Human miR202-3p AGAGGUAUAGGGCAUGGGAA 
 

1517 
 

TRIB1 Human miR129-2-3P AAGCCCUUACCCCAAAAAGCAU 
 

1467 
 

TRIB1 Human miR-888-5p 
 

UACUCAAAAAGCUGUCAGUCA 
 

368,780 
 

D 

C 

B 

A 

EF1 promoter Renilla 
luciferase 

Renilla 
luciferase 

EF1 promoter 

Renilla 
luciferase 

EF1 promoter 
Truncated 

Trib1 

3UTR 

Full Trib-1 

3UTR 

Figure 5.1: Plasmids- Renilla luciferase fused with Trib1 UTRs. 

A,B,C) Structures of the transcriptional reporters, to test the impact of Trib1 3UTR on mRNA stability. Red represents 

the Full UTR. Green represents Truncated UTR. D) Transiently transfected HeLa cells with the reporters shown and 

measured Renilla luciferase and Firefly luciferase activity using a spectrophometer. Unpaired T test. N=4 (*p ≤ 0.05. 

**p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001, N.S= Not significant). 
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5.6 miR202 modulate TRIB1 levels  

miR202 was selected because it was a top hit in the bioinformatics screen; it has also been shown in a 

previous study to be an essential regulator in human hepatocyte metabolism. miR202 was also 

identified in an RNA screen to identify upstream regulators of TRIB1 in HepG2 cells. TRIB1 suppression 

in HepG2 resulted in impairment of lipid metabolism and liver function genes like CEBPα and ApoB 

(Soubeyrand et al., 2016). 

Dual luciferase constructs were made, and co-transfected with miR202 mimics (50nM) and miR202 

(100nM) inhibitors which was purchased from Exicon, alongside with Renilla luciferase fused with 

truncated Trib1-3UTR. A Renilla luciferase with no Trib1-3UTR was used as a negative control. Figure 

5.2A shows no significant change upon addition of miR202 mimic or miR202 inhibitor alongside the 

negative control. However, Figure 5.2B, C shows upon the addition of miR202mimic, a sharp reduction 

in Trib1-3UTR levels and an increase in Trib1-3UTR levels upon addition of the miR202 inhibitor. This 

suggests miR202 is able to bind and modulate the Trib1-3-‘UTR levels. Cell viability were measured 

using trypan blue and it showed no significance difference in cell death between miR202mimic and 

miR202 inhibitor. Renilla luciferase and firefly luciferase were measured suing a spectrometer. 
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Figure 5.2: miR202 is a binding site for TRIB1 3UTR in HepG2 cells. 

A) Co-transfection of EF1 promoter driven Renilla luciferase only with mimic and inhibitor as a negative control 

(Mean ± SEM, No statistical significance One-way ANOVA with Bonferroni post test) B) Co-transfection of EF1 

promoter driven Renilla Luciferase containing the 3UTR of TRIB1 and mimic and C) inhibitor. (Mean ± SEM, * 

P<0.05, *** P<0.001 T-test with Bonferroni post test, N=6). 
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5.7 No changes in mutant Trib1-3UTR levels upon miR202 

The impact of miR202 on Trib1-3UTR was further validated by using a mutant Trib1-3UTR which has 

a mutated site where miR202 binds to and the effect of miR202 mimic was observed. The mutant were 

generated by Vera, a technician in EKT group. The construct formation can be found in the method 

section. Figure 5.3 had shown no significant effect on Trib1-3UTR levels upon addition of miR202 

mimic, however, from the non-mutated site, there is a statistically significant reduction in Trib1 3UTR 

levels. 
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Figure 5.3: No changes in mutant Trib1-3UTR levels 

upon miR202. 

A) Co-transfection of EF1 promoter driven Renilla Luciferase containing 

the 3UTR of Trib1, with the miRNA202 binding site mutated, and mimic 

and inhibitor (Not statistically significant Mean ± SEM, * P<0.05, *** 

P<0.001 T-test with Bonferroni post test, N=6), to validate miR202 binding 

to TRIB1. 
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5.8 miR202 is important in maintaining the double hairpin structure 

So far, it has been shown that miR202 can bind and modulate Trib1 3UTR levels, with a mutant Trib1 

this binding is abolished. Next, the mutational analysis of miR202 was looked at to look for 

polymorphism sites. miR202 is conserved within the mammalian species and has been shown to be in 

expressed in most of the human and mouse tissues. However, it is abundantly expressed in the liver. 

Collaborative studies with Dr Clint Millar have shown 2D mutational analysis of TRIB1 3UTR around 

miR-202 site, showing miR202 to be important in maintenance of the double hairpin structure. Figure 

5.4A shows a mutational analysis of TRIB1 3UTR around the miR-202 site. Mutating a nucleotide and 

mapping chemical accessibility reveals interactions in the three-dimensional structure of the RNA. This 

has been done to see the miR202 binding and its accessibility site. Figure 5.4B shows the hairpin 

structure of TRIB1 and the location of miR202 binding site, showing it is more accessible and located 

around the hairpin structure. The miR202 site is also very critical and polymorphic variants have been 

shown at the miR202 position. This bioinformatics data is important as it deepens our understanding in 

the location of the miR202 binding site, therefore suggesting us to visualize its accessibility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Mutational analysis of TRIB1 3UTR around miR-202 site. 

The data above was provided by Dr Clint Miller, Stanford University USA. A) Developed a shape seq. This has been 

done to see the miR202 binding and its accessibility site. Mutating a nucleotide and mapping chemical accessibility 
reveals interactions in the three-dimensional structure of the RNA. More info refer to (Kladwang et al., 2011) B) 

Showing the hairpin structure of TRIB1 and the location of miR202 binding site, showing it is more accessible and 
located around the hairpin structure. The miR202 site is also very critical and polymorphic variants have been shown 
at the miR202 position. Z-score key showing (number of standard deviations from mean at each residue). 
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5.9 Mir202 can modulate endogenous Trib1 mRNA and protein levels in HepG2s 

Next, it was tested if Trib1 is expressed endogenously in HepG2 cells and if this is regulated upon 

miR202 mimic and miR0202 inhibitor. qPCR was used to measure Trib1 mRNA levels and normalised 

against B-actin, which acted as a housekeeping gene. Figure 5.5 (A, B) shows miR202 is expressed 

in HepG2’s and can bind and modulate endogenous Trib1 levels Furthermore. Figure 5.5 (C, D) shows 

miR202 is expressed in HepG2’s and can bind and modulate TRIB1 protein levels. 
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Figure 5.5: miR202 is expressed in HepG2’s and is able to bind and 

modulate endogenous TRIB1 mRNA and protein levels. 

A,B) Transiently transfected miR202 mimic and inhibitor in HepG2 cells. Normalised against B-

actin. C,D) Western blot shows reduction in TRIB1 levels upon overexpression of miR202 and 

an increase TRIB1 levels upon addition of miR202 inhibitor. Normalised against Tubulin for 

western blot. (Mean ± SEM, P<0.01 for mimic, P<0.05 for inhibitor, Student t-test, N=6). 
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5.10 Reciprocal regulation of TRIB1 and miR202 in HepG2 cells by high glucose 

Next, the impact of high glucose was tested to see miR202 and Trib1 levels. A metabolic stimulus were 

given to the HepG2 cells. Trib1 levels was reduced upon high glucose levels in HepG2s, with a 

concurrent increase in miR202 expression levels (Figure 5.6). 

 

 

 

 

 

 

 

 

 

 

5.11 Hepatic Trib1 levels reduced in mice fed on HFD 

Having shown miR202 can bind and modulate TRIB1 levels in high glucose, it was tested to see if this 

changes with a HFD. The Trib1 level is reduced upon HFD in liver tissue, with a concurrent increase in 

miR202 expression levels. Figure 5.7 also shows Trib1 is regulated in the liver tissue fed in HFD in the 

liver tissues. This suggests upon a change in metabolic environment, Trib1 levels shows a significant 

reduction in expression.   

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Trib1 is regulated upon HFD in the liver tissue. 

Trib1 was reduced upon HFD in liver tissue 16 weeks old mice, with a concurrent increase in 

miR202 expression levels (Mean ± SEM P<0.0001) Student t-test, N=3. 
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Figure 5.6: Trib1 is regulated upon High glucose in the HepG2 cells. 

Reciprocal regulation of TRIB1 and miR202 RNAs in HepG2 cells by glucose. HepG2 cells 

were incubated in medium supplemented with glucose (25mM) for 48 hrs. Trib1 and miR202 

RNA levels were quantified by RT-qPCR. Data are presented as mean ±SEM Student t-test, 

N=4, * p<0.05, *** p<0.001 
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5.12 Summary 

 The bioinformatics database has shown the highest affinity predictions for the TRIB1 binding 

site. miR888-3p, miR129-3p and miR202-3p (TRIB1) have shown to be binding sites in the 

3UTR in the HepG2 cells. 

 Mir202 has shown to bind with 3UTR of TRIB1 and modulate a strong TRIB1 luciferase 

response. The mutants of TRIB1 have confirmed the binding site by showing mir202 was 

unable to bind to the mutant 3UTR (negative control). 

 MiR202 can modulate Trib1 mRNA and protein expression levels. 

 Upon high glucose and HFD, Trib1 levels are reduced with a concurrent increase in miR202 

expression levels. 

5.13 Discussion 

Trib1 is an important negative regulator in controlling inflammation and acts to lower plasma lipid levels. 

However, the half-life of TRIB1 is <1 hour (Sharova et al., 2009). Other studies have shown the half-life 

was due to proteasome-dependent degradation, facilitated by E3 ubiquitin ligases (Zhou et al., 2008). 

This chapter’s aims is to use miRNA inhibitors to stabilise TRIB1 protein levels which could, therefore, 

have beneficial effects on the atheroma. The liver is the primary organ to modulate cholesterol levels, 

so we aim to stabilise TRIB1 levels in the liver, which would reduce VLDL production. miRNAs are small 

non-coding nucleotides that are important in regulating gene expression. It is shown that miRNAs 

regulate half of the protein-coding complex in a genome, hence, changes in miRNAs result in 

dysregulating of genes and therefore contribute to many types of disease (Kuret et al., 2018, Friedman 

RC, 2009). miRNAs have caused downregulation of many essential genes involved in lipid metabolism 

and fatty acid oxidation by the RISC complex. 

It has been reported that miR27b can directly target PPARγ, which is an essential protein associated 

with the Trib family (Karbiener M, 2009). Another study has shown overexpression of miR51d reduces 

PPARα expression levels and is reported to cause a severe obese phenotype. miR-519 dose-

dependently suppressed translation of the PPARα protein, and increased lipid accumulation during pre-

adipocyte differentiation (Martinelli R, 2010). Furthermore miR-122 was shown to be predominantly 

expressed in the liver and can modulate cholesterol levels, shown to be involved in hepatic carcinoma 

and cancer progression (Hu et al., 2012). Furthermore, it was shown that inhibition of miR122 reduces 

expression of lipogenesis genes and a reduction in plasma cholesterol levels in chow and obese mice 

(Esau et al. 2006). Put together, the above literature makes a strong case that dysregulation of miRNA’s 

has an impact on metabolic disease development and progression. 

miRNA inhibitors are being used to stabilise protein levels that are important in metabolic and other 

processes which have shown positive effects. Although miRNA’s are non-specific and can bind to and 

modulate different proteins, TSB is a specific oligo compound that can protect TRIB1 RNA specifically, 
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reducing off-target effects. It works by directly binding to the miRNA target site of an mRNA, preventing 

other miRNAs from gaining access to that site. 

There have been some previous studies showing miRNA targeting TRIBs. It was shown that miR124 is 

upregulated in the livers of C57B/6 fed on HFD (Xing Liu et al., 2016). Upon overexpression of mir124, 

the mice had an excessive accumulation of triglycerides and had an increase in lipogenic genes in the 

liver. TRIB3 was shown to be a direct target of miR124, and the protein levels were reduced upon 

overexpression of miR124, with an increase in Akt phosphorylation. Interestingly, TRIB3 restoration on 

the liver of this overexpressed miR124 abolished the effects of miR124 suggesting TRIB3 plays a critical 

role in hepatic lipogenesis and TG accumulation. 

Furthermore, studies by Tsai and colleagues showed miR-122 reduced TRIB1 levels in the liver, this is 

a tumour suppressor, highlighting TRIB1 importance in hepatic cancer pathogenesis (Tsai et al., 2009). 

Both TRIB1 and TRIB3 play essential roles in regulating different miRNAs and this has an impact on 

health and disease. 

From this study, miRTarget database was used to predict miRNA bindings miR202 was highlighted as 

the most significant. Other databases such as miRNADA, Targetscan and miRscan were also used with 

similar outcomes. Selecting the top hit, and ordering the commercially made oligoes from Exicon. Dr 

Clint Millar have data showing miR202 to be important in maintenance of the double hairpin structure. 

Furthermore, the hairpin structure of TRIB1 and the location of miR202 binding site, reveals it is more 

accessible as it is located around the hairpin structure. The miR202 site is also very critical and 

polymorphic variants have been shown at the miR202 position.  

Dual luciferase constructs were made, and co-transfected with miR202 mimics (50nM) and miR202 

(100nM) inhibitors Renilla luciferase fused with truncated Trib1-3UTR. A Renilla luciferase with no 

Trib1-3UTR was used as a negative control. There was no significant change upon addition of miR202 

mimic or miR202 inhibitor alongside the negative control. However, upon the addition of miR202mimic, 

a sharp reduction in Trib1-3UTR levels and an increase in Trib1-3UTR levels upon addition of the 

miR202 inhibitor. The impact of miR202 on Trib1-3UTR was further validated by using a mutant Trib1-

3UTR which has a mutated site where miR202 binds to and the effect of miR202 mimic was observed. 

Next, it was tested if Trib1 is expressed endogenously in HepG2 cells and if this is regulated upon 

miR202 mimic and miR0202 inhibitor. qPCR was used to measure Trib1 mRNA levels and normalised 

against B-actin, which acted as a housekeeping gene. Furthermore, a significant change in TRIB1 

protein levels has been shown upon addition of miR202 mimic and miR202 inhibitor, suggesting miR202 

to be an important miRNA in the post-translation modification.  

Finally, in high glucose and HFD, Trib1 levels are reduced with a concurrent increase in miR202 

expression levels showing Trib1 is regulated upon inflammation. It was also demonstrated that 

miRNA202 expression levels are regulated in HFD conditions.  

All of these findings are novel because currently, the field of miRNA’s with TRIB1 is relatively new. 

miRNA202 has been identified and tested as a novel small ncRNA that can modulate TRIB1 protein 
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levels. miR202 may represent a target by which TRIB1 levels could be raised in vivo, thereby providing 

a mechanism to regulate lipid and glucose levels and therefore augment the anti-atherosclerotic effects 

of this protein.  
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6.1 General discussion 

Obesity is a driver of metabolic syndrome that is a global epidemic leading to an increased number of 

patients becoming obese and increasing the risk of diseases, including CVD, cancer and Type 2 

diabetes. CVD is a leading cause of mortality and morbidity worldwide, with elevated levels of lipid in 

the arterial wall and inflammation. It is therefore important to understand the mechanisms that contribute 

to metabolic syndromes such as obesity and insulin resistance to provide better therapeutic treatments 

and reduce the risk of developing CVD. The main aim of this project was to characterise Trib3 

dependent, tissue-specific regulatory mechanisms of metabolic tissues in male Trib3ko compared with 

WT littermates. TRIBs have been described as fundamental regulators of the cell cycle, differentiation, 

metabolism, proliferation, and cell stress, as shown in many reviews and papers and discussed earlier. 

Previous studies have shown Trib3 to play important roles in core cell signalling pathways including 

those controlling insulin signalling and in lipid metabolism. However, even though several tissue-specific 

transgenic and knockdown experiments have recently been published; our knockout studies are the 

first to address this question at the level of the whole mouse. Furthermore, insight into the role of Trib3 

in various organs remains limited. This study aimed to use a systemic approach, for the first time using 

whole body male Trib3ko mice to decipher a role for Trib3 in metabolic dysfunction. Moreover, Trib1 was 

also studied because it has been shown to be a risk factor for hyperlipidaemia and previous studies 

have demonstrated Trib1 to be associated with plasma triglyceride and total cholesterol levels. 

In this study, the consequences of full body male Trib3ko mice on lipid profile and adipose tissue content 

were studied. It was shown that for full body male Trib3ko mice, there is an elevated body weight 

compared with WT littermates at 13 weeks of age. Furthermore, in contrast, females do not show any 

weight difference compared with WT littermates. Upon dissection of the male Trib3ko mouse, there was 

increased subcutaneous adipose tissue compared with the WT littermates. An MRI scan was carried 

out to look at the adipose distribution and location and an increase in body fat volume for the male 

Trib3ko compared with WT littermates was observed. The anatomical position was shown to be around 

the abdominal region of the male Trib3ko mice. The increased weight in the male Trib3ko mice could be 

due to an increase in the volume of adipose tissue alongside other dense organs, e.g. liver, muscle. It 

was reported that adipose tissue-specific overexpression of Trib3 and noticed less WAT, slowed weight 

gain with an increase in dietary intake (Qi et al., 2006). A similar study by Weismann and colleagues  

reported a Trib3ko via antisense oligo in rat livers had shown an elevated body weight and improved 

insulin sensitivity (Weismann et al., 2011). These studies confirm our finding that a full body male Trib3ko 

leads to elevated body weight, alongside an increase in fat volume suggesting that Trib3 is involved in 

regulating lipid metabolism. 

To understand further the dynamics and physiology of the male Trib3ko compared with WT littermates, 

a metabolic cage experiment was carried out by our collaborators at NTU in Singapore. This is the first 

Chapter 6—Discussion 
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time a metabolic cage experiment was conducted on a full body Trib3ko. This experiment investigated 

the respiratory indexes, including sleeping, motion and energy expenditure of the mice. The male Trib3ko 

mice have a clear circadian rhythm similar to the WT littermates. However, the male Trib3ko mice eat 

and drink significantly less than the WT littermates and are much less active, with an RER less than 

that of WT. Their respiratory function is decreased but they require more oxygen and produce more 

carbon dioxide, for an activity that is in total decreased as compared with the WT littermates. This is an 

interesting observation, the male Trib3ko seem to require more oxygen and have an RER ratio of 0.75, 

suggesting oxidation of the fat tissue. Having reduced movement and using more energy could suggest 

that the male Trib3ko mice are using the energy from the stored fats or glucose. The metabolic cage 

experiment was carried out on male Trib3ko mice that were 38 weeks old, hence the results could not 

be directly compared with the young Trib3ko mice used in other experiments. Nevertheless, changes in 

metabolic physiology could be seen for male Trib3ko compared with WT littermates, confirming an 

important function of this gene in energy homeostasis. 

In Chapter 4 tissue-specific consequences of the observed metabolic changes were characterised 

alongside tissue-specific mechanisms. A transcriptome analysis of the insulin-sensitive organs was 

conducted simultaneously and an attempt made to decipher a role for Trib3 in metabolic dysfunction. 

This is the first study to look at multiple tissues simultaneously and address the communication between 

the different insulin-sensitive organs. The study looked at the liver of the male Trib3ko mice, an increase 

in lipid droplets was observed compared with the WT littermates, suggesting a fatty liver. A triglyceride 

assay was carried out for the liver and it showed elevated triglyceride levels in the liver of the male 

Trib3ko mice compared with WT littermates. It has been reported that Trib3 to be upregulated in young 

mutant mice which have suffered from hypertriglyceridemia and fatty liver (Klingenspor et al., 1999). A 

transcriptome analysis of the liver was conducted and validated some of the genes using qRT-PCR and 

western blots. Lipid metabolism, Cholesterol metabolism and insulin signalling pathways were selected. 

There are increases in Akt phosphorylation in the liver, alongside a decrease in PPARα. PPARα is a 

member of the nuclear receptor family, which has been shown to be a major regulator of lipid 

metabolism. It is predominantly expressed in the liver and is a major activator of fatty acid oxidation. 

Furthermore, knockdown studies of PPAR have shown fasting-induced hypoglycaemia and reduction 

in hepatic glucose levels, suggesting its importance in glucose homeostasis (Sanders et al., 2014). 

Having shown an increase in LDLR mRNA and an increase in ApoE, this suggests a mechanism in 

which increased lipid levels are seen in the liver. Trib3 has been previously reported to influence Akt in 

the liver. Additionally, a study have shown overexpressing of Trib3 to the liver completely blocks insulin 

action through inhibition of Akt phosphorylation, suggesting Trib3 promotes glucose output from the 

liver under fasting conditions and that its abnormal expression may contribute to insulin resistance, 

thereby promoting hyperglycaemia (Du et al., 2003). Upon a GTT and ITT, male Trib3ko mice had shown 

a quicker recovery of plasma glucose levels suggesting male Trib3ko become glucose tolerant.  

PPARγ and CEBPβ were highlighted genes in the adipose tissue. PPARγ is an important regulator of 

adipogenesis (Prudente et al., 2012). A previous study has reported Trib3 to suppress adipocyte 

differentiation in the 3T3-L1 cells via inhibiting ERK and prevents the phosphorylation and activation of 
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C/EBPβ, which in turn induces PPARγ. Furthermore, there is an increase in adipocyte differentiation 

marker PCNA and a reduction of pAKT in the adipose. Histological examination has shown no 

difference in adipocyte size, however, there is an increase in F480 marker, suggesting increased 

macrophages in the adipose tissue. The results suggest there is an increase in adipocyte differentiation 

in the adipose tissue with an influx of macrophages. Trib3 is influencing C/EBPβ and PPARγ in 

controlling adipogenesis. In the muscle, there is an increase in GLUT4 and pAKT suggesting an 

increase glucose uptake, which correlates with the microarray results. 

Next, the plasma adipokine levels of male Trib3ko mice were compared with the WT littermates and a 

slight reduction in Trib3ko mice compared with the WT littermates was observed, however, this was not 

significant. Taken together, these observations suggest that Trib3 may be involved in the 

communication amongst different organs, including adipocyte differentiation and insulin signalling, to 

maintain lipid homeostasis and the major mechanisms that include PPARα in the liver, alongside PPARγ 

in the adipose tissue. 

Having a strong metabolic phenotype upon a Trib3ko, microarray analysis and subsequent validation 

have shown associations between Trib3 and a large number of dysregulated genes. Some of these 

genes have been identified in the literature. Having genes which have been shown by other groups 

gives us reassurance. Novel genes have also been identified, however, there has been no direct link to 

show whether Trib3 is able to bind directly or indirectly to those proteins. Figure 6.1 shows a summary, 

of the impact of Trib3ko on different insulin-sensitive tissues. 

 

 

Figure 6.1 Summary, showing the impact of Trib3ko on different insulin-sensitive tissues. 

Microarray analysis and subsequent validation have shown associations between Trib3 and a large 

number of dysregulated genes. Trib3 is influencing C/EBPβ and PPARγ in controlling adipogenesis. In 

the muscle, there is an increase in GLUT4 and pAKT suggesting an increase glucose uptake, which 

correlates with the microarray results. Furthermore, there is a reduction in PPARα in the live for the 

Trib3ko. All of the dysregulated genes suggests with the phenotype that the adipose tissue is unable to 

store excess nutrient intake, which overloads and spills to the liver, which it cannot breakdown 

efficiently. This increases production of Apo-B, which transports the excess lipids to other organs and 

increases risk of developing CAD. 
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Chapter 6 next showed identification of miRNA’s that are able to bind to the Trib 3UTR using in silico 

analysis and the impact of miRNAs in Trib expression levels characterised. From this study, miRTarget 

database was used to predict miRNA bindings miR202 was highlighted as the most significant. Other 

databases such as miRNADA, Targetscan and miRscan were also used with similar outcomes. 

Selecting the top hit, and ordering the commercially made oligoes from Exicon. Dr Clint Millar have data 

showing miR202 to be important in maintenance of the double hairpin structure. Furthermore, the 

hairpin structure of TRIB1 and the location of miR202 binding site, reveals it is more accessible as it is 

located around the hairpin structure. The miR202 site is also very critical and polymorphic variants have 

been shown at the miR202 position.  

Dual luciferase constructs were made, and co-transfected with miR202 mimics (50nM) and miR202 

(100nM) inhibitors Renilla luciferase fused with truncated Trib1-3UTR. A Renilla luciferase with no 

Trib1-3UTR was used as a negative control. There was no significant change upon addition of miR202 

mimic or miR202 inhibitor alongside the negative control. However, upon the addition of miR202mimic, 

a sharp reduction in Trib1-3UTR levels and an increase in Trib1-3UTR levels upon addition of the 

miR202 inhibitor. The impact of miR202 on Trib1-3UTR was further validated by using a mutant Trib1-

3UTR which has a mutated site where miR202 binds to and the effect of miR202 mimic was observed. 

Next, it was tested if Trib1 is expressed endogenously in HepG2 cells and if this is regulated upon 

miR202 mimic and miR0202 inhibitor. qPCR was used to measure Trib1 mRNA levels and normalised 

against B-actin, which acted as a housekeeping gene. Furthermore, a significant change in TRIB1 

protein levels has been shown upon addition of miR202 mimic and miR202 inhibitor, suggesting miR202 

to be an important miRNA in the post-translation modification.  

Finally, in high glucose and HFD, Trib1 levels are reduced with a concurrent increase in miR202 

expression levels showing Trib1 is regulated upon inflammation. It was also demonstrated that 

miRNA202 expression levels are regulated in HFD conditions.  

Although miRNA’s are non-specific and are able to bind to and modulate a number of different proteins, 

this is a limitation which can be overcome by using a TSB. Target Site Blockers are antisense 

oligonucleotides that bind to the miRNA target site of an mRNA, preventing miRNAs from gaining 

access to that site. This enables you to study the effects of an miRNA on a single target. The target site 

blockers outcompete miRNAs for their target sites.  

Another important factor is the dose of the miR202, will it have sufficient upregulation of Trib1 levels, 

which in turn has an effect on lipid levels. A microarray would be ideal to look for different miRNA’s that 

have been shown to bind to Trib1 levels and use a combination, giving a stronger response. 

There have been approval for RNAi used as a therapy, Alnylam® is siRNA product Onpattro (patisiran), 

used in therapy for the rare hereditary disease transthyretin-mediated amyloidosis in adult patients. 
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Onpattro improved multiple clinical manifestations of the disease and demonstrated safe administration 

of a siRNA product 

All of these findings are novel because currently, the field of miRNA’s with TRIB1 is relatively new. 

miRNA202 has been identified and tested as a novel small ncRNA that can modulate TRIB1 protein 

levels. miR202 may represent a target by which TRIB1 levels could be raised in vivo, thereby providing 

a mechanism to regulate lipid and glucose levels and therefore augment the anti-atherosclerotic effects 

of this protein.  

 

6.2 Future work 

6.3 Characterising the metabolic activity of male Trib3ko mice at 13 weeks of age 

The metabolic cage experiment was carried out on male Trib3ko that were 38 weeks old, hence it was 

not possible to compare the results with the 13 weeks Trib3ko mice. Although they cannot be compared, 

changes in metabolic physiology for male Trib3ko compared WT littermates could be seen. A metabolic 

cage experiment for both Trib3ko male and female mice compared WT littermates, this can therefore be 

compared to the microarray data. 

6.4 Measurements of lipolysis male Trib3ko compared with WT littermates 

Male Trib3ko mice have an increase in adipocytes but do not show an increase in size.  Markers such 

as PCNA, PPARγ and CEBPβ have shown to be differentially dysregulated, it would be interesting to 

measure the FFA, glycerol and other cytokines involved in the lipid metabolism. Studies have shown 

when there are defects in lipolysis, this can cause leaner mice but more fat in the liver because cells 

cannot store fat (Saponaro et al., 2015). Proliferation assay for adipose tissue, would be good to further 

validate the proliferation of the adipocytes. 

6.5 Use of target site blocker (TSB) to increase endogenous Trib1 levels 

TSBs are specific oligo compounds that are able to protect Trib1 RNA specifically, reducing off-target 

effects. Studies have shown TSB to have a high efficacy in vitro and in vivo with high protein expression 

due to lack of RNase H-dependent mRNA degradation (exicon.com). 

6.6 Use of novel miRNA to regulate hepatic TRIB3 levels  

Identify miRNA’s that can bind to the Trib1 3UTR using bioinformatics databases. Test and characterise 

the impact of miRNAs on Tribbles expression levels via Dual luciferase assay and qRT-PCR and 

western blots and use TSB to increase hepatic Trib3 levels and test for plasma lipid profile and 

triglyceride in the liver. 
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Appendix I- Metabolic Syndrome Definition 

 

 

 

DNA was extracted from the mouse ear clip and placed in the lysis buffer overnight at 56’C 
to digest in the tissue. 

 

DNA isolation 

 
 

 

 

World Health organisation 

WHO 1998 

 

 

International 

diabetes federation 

IDF 

National 

Cholesterol 

Education Program 

Adult Treatment 

Panel III 

NCEP ATP III 

 

Required 

criteria 

Type 2 DM, impaired fasting 

glucose, impaired glucose 

tolerance or insulin resistance 

PLUS 2 of: 

Waist circumference 

90 cm (for Asian) 

PLUS 2 of: 

3 of the following: 

Fasting 

glucose 

NA Glucose 100 mg dl−1 or 

previously diagnosed 

as type 2 DM 

−1 

or previously 

diagnosed as type 2 

DM 

HDL-

cholesterol 

<35 mg dl−1 or specific 

treatment 

<40 mg dl−1 or specific 

treatment 

<40 mg dl−1 or 

specific treatment 

Triglyceride Triglyceride level 150 mg dl−1 

or specific treatment 

Triglyceride level 

150 mg dl−1 or specific 

treatment 

Triglyceride level 
−1 or 

specific treatment 

Hypertension Blood pressure 140/90 mm Hg 

or receiving anti-hypertensive 

medication 

Blood pressure 

130/85 mm Hg or 

receiving anti-

hypertensive 

medication 

Blood pressure 

130/85 mm Hg or 

receiving anti-

hypertensive 

medication 

Obesity BMI>30 kg m−2 or WHR>0.9 NA Waist circumference 

>90 cm (for Asian) 

Urine protein microalbuminuria 

(albumin/creatinine ratio 
−1) 

NA NA 

 

Appendix II-Genotyping 
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1. Add Prot K solution to lysis buffer to a final concentration of 300 μg/ml (30 μl stock 
per ml lysis buffer) 

2. Add 150 μl lysis+Prot K to each ear clip in 1.5 ml eppendorf tube 
3. Incubate ON at 55°C in waterbath 
4. Vortex briefly 
5. Heat inactivate Prot K by incubating samples @ 100°C for 12 min (heat block) 
6. Add 600 μl sterile H2O to each tube 
7. Vortex & store @ 4°C 
8. Use 4 μl DNA per reaction 

 

Trib3 primer specifications: 

 

LEXKO-1947-3: CCGCGACGAATGAAAGGTTTA 

LEXKO-1947-5: AGACTCCGAGAGCTGCTCAGTTAGG 
LTR-2: AAATGGCGTTACTTAAGCTAGCTTGC 
 

WT oligos: LEXKO-1947-3 + LEXKO-1947-5 

KO oligos: LEXKO-1947-3 + LTR-2 
 
WT band: 483bp 
KO band: 381bp 
 

PCR & agarose gel analysis 

1. Prepare PCR mix on ice. Per sample: 
Biomix  Red (2x)  12.5 μl 
Primer  1     0.5 μl 
Primer  2     0.5 μl 
Primer  3     0.5 μl 
H2O      9.0 μl 
DNA sample     2.0 μl 
    ---------  
    25.0 μl 
 

 in 0.5 ml eppendorf tubes or 8-tube strips. 

 

 

 

2. Run PCR using the following settings: 
 

Step 1: 5 min at 95 °C    1 cycle 

Step 2: 30 sec at 95 °C 40 cycles 

  30 sec at 65 °C 

  30 sec at 72 °C 

Step 3: 5 min at 72 °C    1 cycle 

Step 4: ∞ at 10 °C  
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3. Prepare 2 % agarose gel: 100 ml TAE buffer + 2g agarose + 14 μl ethidium bromide 
(handle with care! Carcinogenic substance) 

4. Run PCR products and marker (100 bp DNA ladder; Geneflow) on gel @ 80 V, 10 μl 
sample / slot 

5. Analyse gel using transilluminator with EtBr/UV filter 
 
 

 

 

Materials 

 
- Tribbles-3 primers (Sigma); all primers are 100 μM in H2O 
- Biomix Red (2x concentrated; Bioline Ltd) 
- TAE buffer 
- Agarose powder 
- Ethidium bromide 
- Lysis buffer: 
 10 ml 1M Tris-HCl (pH 8.5) 
 0.4 ml 0.5M EDTA (pH 8.0) 
 10 ml 10% Tween-20 
 Add H2O to 200 ml; filter & store @ -20°C in 20 ml aliquots 
- Proteinase K (10 mg/ml stock): 
 100 mg Prot K 
 5 ml glycerol 
 100 μl 1M TRIS-HCl (pH 7.5) 
 29 mg CaCl2 
 Add H2O to 10 ml; store 1 ml aliquots @ -20°C 
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Appendix VII-Trib3 RNA levels (QC) 
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