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Abstract 

Continuous predictor variables are often categorised when reporting their 

influence on the outcome of interest. This does not make use of within category 

information. Alternative methods of handling continuous predictor variables such as 

fractional polynomials (FPs) and restricted cubic splines (RCS) exist.  

This thesis first investigates the current extent of categorisation in comparison to 

these alternative methods. The performances of categorisation, linearisation, FPs and 

RCS approaches are then investigated using novel simulations, assuming a range of 

plausible scenarios including tick-shaped associations. The simulation starts with 

continuous outcomes, and then move onto predictive models where the outcome itself is 

dichotomised into a binary outcome. Finally, a novel application of the four methods is 

performed using the UK Biobank data – incorporating additional issues of confounding 

and interaction. 

This thesis shows that the practice of categorisation is still widely used in 

epidemiology, whilst alternative methods such as FPs and RCS are not. In addition, this 

research shows that categorising continuous variable into few categories produce 

functions with large RMSEs, obscure true relations and have less predictive ability than 

the linear, FP and RCS models. Finally, this thesis shows that nonlinearity and 

interaction terms are more easily detected when applying FPs and RCS methods. The 

thesis concludes by encouraging medical researchers to consider the application of FPs 

and RCS models in their studies. 
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  Chapter 1

Introduction 

This chapter describes the purpose of the PhD, lists the main contributions and 

provides the thesis structure.  

The chapter is divided into sub-headings listed below: 

1) A brief background,  

2) A brief motivation of the research thesis 

3) A brief summary of objectives 

4) Significance and contributions of the thesis 

5) Thesis outline. 

1.1 Background 

The central objective of epidemiology is to assess the causes of disease amongst 

individuals identified with certain characteristics, such as diet, blood groups and 

smoking habits (Wakeford and McElvenny, 2007). Besides that, epidemiologists are 

also faced with the challenge to correctly define predictor-outcome relationships in their 

studies (Philippe and Mansi, 1998). When predictor variables are measured in 

continuous scales their relationship with the outcomes may be complex due to 

nonlinearity. Thus, nonlinear predictor-outcome relationships have to be considered 

during statistical modelling. Unfortunately, nonlinearity is often ignored when reporting 

the relationships between continuous predictors and the outcome variables in medical 

studies (Brenner and Blettner, 1997, Royston et al., 2006, Williams, 2011).  
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1.1.1 The importance of correctly specifying nonlinear relationships in 

epidemiology 

In epidemiology, it is very important to accurately characterise the nonlinear 

relationships being investigated. This is because such relationship studies inform 

policies that influence individuals’ health outcomes. For instance, where the nonlinear 

predictor-outcome relationships are well established, health practitioners may identify 

individuals who could benefit from some targeted interventions. 

1.1.2 Continuous predictor variables are predominately analysed as 

categorical measures in the current publications 

An assessment performed by Turner et al. (2010), found a common practice of 

categorisation amongst medical studies working with continuous predictor variables. 

Turner et al. (2010) reviewed observational studies published in December 2007 and 

January 2008 from five medical journals and found 86% of articles with categorised 

continuous predictors or risk factors. A similar trend was also observed in a different 

survey conducted in the early 2000 - reporting a proportion of 84% amongst 

epidemiological studies (Pocock et al., 2004). Reflecting on these findings, the 

incidence of categorisation could still be large. This thesis will start by demonstrating 

the current extent for categorisation of continuous variables in medical studies.  

1.1.3 Why is categorisation popular in medical studies 

The potential reasons and suggestions for categorisation include the following:  

Clinical audience to enable decision making: In clinical studies, categorisation 

of continuous variables may be performed for the sake of the audience to enable clinical 

decisions (Baneshi and Talei, 2011, Sauzet and Peacock, 2014). For example, the body 

mass index (BMI) could be grouped into four categories such that 18.5 ≤ BMI < 25.0, 

25.0 ≤ BMI < 30.0, 30.0 ≤ BMI < 40.0, and BMI ≥ 40.0 kg/m
2
 represent individuals 

with healthy weight, overweight, obese and severely obese, respectively (NICE, 2014). 
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This kind of grouping offers simple risk classifications that are easily understood by 

clinicians for decision making or treatment recommendations. Although useful in 

clinical settings, such simplicity is unnecessary in medical research since it is gained at 

a cost (Royston et al., 2006). The practice of categorising continuous variables does not 

make use of within-category information (Bakhshi et al., 2008, Bakhshi et al., 2012).  

The existence of distinct categories within variables of interest: Evidence of 

distinct groups within continuous variables has been suggested as another reason for 

categorisation in medical studies (MacCallum et al., 2002). For example, researchers 

investigating the influence of coffee consumption (g/day) on health outcomes may 

categorise the intake using two distinct groups (coffee drinkers versus nondrinkers) in 

their analysis; where nondrinkers are participants with ‘zero’ responses and coffee 

drinkers are ‘nonzero’ values. Although these two groups exist, it is important to 

recognise that analysts employing such categories will lose all the information showing 

some variations amongst the coffee drinkers. 

 Lack of awareness on the potential consequences of categorisation: Since the 

categorisation method is popular in medical studies, many researchers may be using it 

unconsciously unaware of the associated problems (Royston et al., 2006).  

Lack of awareness on the appropriate methods of analysis: Due to inexperience 

and lack of knowledge on appropriate methods for handling continuous variables during 

statistical analysis, researchers may categorise continuous variables to perform 

association tests using 𝑡 and 𝜒2 statistics (MacCallum et al., 2002, Royston et al., 2006). 

This situation is mostly common in studies investigating the associations between 

multiple independent variables and interaction terms. Hence, misleading (or biased) 

measures of effect sizes and spurious associations are likely to occur in such scenarios 

(Breitling and Brenner, 2010, Williams, 2011). Regression models using methods such 
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as fractional polynomials (Royston and Altman, 1994) and restricted cubic spline 

models have been suggested for studies working with continuous variables to 

incorporate nonlinear relationships, interaction terms and multiple independent 

variables. In the absence of nonlinearity, the simple linear regression models may also 

be useful. However, it is more convincing to assume that many medical researchers are 

not sufficiently familiar with the application of these regression models. Evidence 

provided by Turner et al. (2010) shows a high incidence of categorisation amongst 

medical studies. 

Beliefs that categorisation improves reliability: Other researchers believe raw 

measures of continuous data provide unreliable and imprecise information. Hence, they 

opt for categorisation with the belief that it would produce reliable measures (Cohen, 

1983, Royston et al., 2006). This kind of reasoning is incorrect; categorisation does not 

refine the original measurements but worsens reliability substantially – weakening the 

correlations or associations between variables (MacCallum et al., 2002). 

Due to statistically significant associations after categorisation: According to 

Royston et al. (2006), researchers may also justify their reasons for categorisation when 

significant relationships exist between categorised continuous variables. Such 

arguments are based on the assumption that categorisation is a conservative method - 

with reduced statistical power due to loss of information. Therefore, the underlying 

relationships should be strong (MacCallum et al., 2002). However, this reasoning is not 

entirely true, statistical significant tests are mainly influenced by sample sizes, levels of 

𝛼 and the distribution of sampling errors.  

Based on the arguments above, many of the perceived reasons for categorisation 

are misguided hence this practice might be unnecessary. There exist several challenges 
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associated with the practice of categorising continuous data during statistical modelling. 

The next section highlights some of the challenges. 

1.1.4 Challenges of categorising continuous variables during statistical 

modelling 

The potential challenges of categorising continuous variables during statistical 

modelling include (1) deciding the choice of cut points, (2) minimising information 

loss, and (3) the issue of bias due to incomplete adjustment for confounding when using 

categorised variables. 

When categorising continuous variables, researchers must decide how many 

categories to choose and where to place the category cut points. However, deciding 

these choices is not easy - there exist some uncertainties due to lack of knowledge of the 

most appropriate approach (O'Brien, 2004, Royston et al., 2006). Briefly, some of the 

methods available for establishing categories include using the median as the cut point - 

an extreme form of categorisation that yields two categories in the data (known as 

dichotomisation in the literature). For more than two categories, percentiles/quantiles 

could be used as cut points to decide categorical boundaries for ordered groups. 

Alternatively, analysts could adopt equally spaced categories such as 0-5, 5-10, 10-15 

and 15+ or use ‘zero/never’ categories as the reference group amongst the variables 

with large portions of zeros. The former is common amongst skewed variables, where 

the proportion of zeros is relatively large and comparable to non-zero values. Such 

variables are common in medicine and often referred to as ‘spike’ at zero (SAZ) 

variables (Jenkner et al., 2016, Lorenz et al., 2017). So far the methods defined are data 

dependent; this makes it difficult to compare results between studies. From a statistical 

point of view, the cut point should be chosen a priori to avoid data-driven inferences. 

However, lack of knowledge on the appropriate cut points in many medical settings 
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makes this difficult. Dichotomisation or categorisation may lead to a misleading 

measure of effect size if the cut points are not properly chosen (Cohen and Chen, 2009). 

The practice of categorisation simplifies relationships in the data restricting 

analysts to work with step functions which may be inappropriate for the final models 

(Royston et al., 1999). Thus, the final models may overlook potential curves in the data 

resulting in biased functions. The amount of bias in the estimated function could be 

large depending on the sample sizes and information loss (MacCallum et al., 2002). 

In regression models controlled for confounding, the practice of categorisation 

does not yield optimal estimates - due to inefficient use of within-category information. 

The categorisation method has been demonstrated to be inadequate when controlling for 

continuous confounders, with crudely categorised covariates resulting in misleading 

estimates (Brenner and Blettner, 1997, Brenner, 1998).  

1.2 A brief summary of the research motivation and rationale 

The existing evidence provided by Turner et al (2010) shows high incidence of 

categorisation of continuous data in medicine. The practice of categorisation may be 

unnecessary; many of the perceived reasons are misguided, information is lost and there 

exist serious challenges such as choosing the cut points. The alternative methods of 

analysing continuous data such as linear regression, fractional polynomials (FPs) and 

restricted cubic spline (RCS) are available but they are rarely used. The reasons why 

such methods are not widely used could be lack of examples in their applications, 

differing views on the most appropriate alternative approach, perceived difficulties in 

application and interpretation of estimates.  

This research will be demonstrating the current extent of categorisation in 

medicine, and the performances and applications of the linear, FPs and RCS regression 
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models against the practice of categorising continuous data - focusing in the area of 

epidemiology. The intention is to encourage and promote the use of the alternative 

methods in medical studies especially amongst clinicians with little statistical 

background for analysing continuous data. To reach out for this audience and other 

researchers interested in the applications and performances of these methods; the 

findings in the thesis will be demonstrated by conducting a new survey of current 

statistical methods used for analysing continuous data, novel plausible simulations 

(assuming continuous and binary outcomes) and real application studies. The objectives 

of the thesis are summarised in the next section. 

1.3 Summary of objectives 

 

Objective 1 - Cross sectional survey of research methods in current use 

 

To conduct a cross sectional survey on the current practice of reporting and 

analysing continuous variables in observational studies 

Following the STROBE guidelines (Von Elm et al., 2007) aimed at improving 

the reporting in observational studies; a new survey of current statistical methods used 

to analyse and report continuous variables in medical research will be needed. The 

previous findings are based on the surveys that reviewed studies that were published 

before (Pocock et al., 2004) and immediately after (Turner et al., 2010) the STROBE 

guidelines. Thus, many researchers were not aware of the STROBE guidelines at the 

time of their publications. To bridge this gap, the first research objective will be to 

conduct a new survey on the current practice of reporting and analysing continuous 

variables in observational studies. Details of the survey and its findings are presented 

in  Chapter 3.  
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Objective 2 – Simulations based on normal error models 

 

 To investigate using continuous outcome models - simulation based study; the 

performances and properties of categorisation, linearisation, FP, and RCS 

approaches assuming plausible exposure-outcome relationships in epidemiology. 

A simulation based study will be set out as the second objective to investigate 

the performances and properties of categorisation, linear, FP, and RCS regression 

models using pre-defined scenarios. Motivated by application of these methods to real 

data, the simulations will be covering several exposure-outcome associations in 

epidemiology using the reported alcohol-blood pressure relationships as example 

scenarios. The alcohol-blood pressure example scenarios are meant to assess the models 

directly in datasets where the distribution of the exposure and shapes of the underlying 

exposure-outcome relationships are known. The performance measures that will be used 

for model evaluation include the RMSE, type I errors, statistical power, coverage 

probability of turning points and the ability of each model to recover the ‘true’ 

exposure-outcome functions in the simulations. Further details of the simulation and the 

associated findings are provided in ‎Chapter 4 of this thesis. 

Objective 3 – Simulations based on binary outcome models 

 

To investigate using binary outcome models - simulation based study; the 

performance and choice of categorisation, linearisation, FP and RCS approaches for 

handling continuous predictors in prognostic models. 

The third objective will be addressed using a simulation study with binary 

outcome models - commonly found in medical studies after dichotomisation of 

underlying continuous outcomes, e.g. blood pressure and hypertension.  The intention 

will be to examine the influence of different approaches used for handling continuous 
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predictors when developing prognostic (or predictive) models. Therefore, this chapter 

differs from the previous simulations; not only on the type of outcome, and being based 

on prognostic models but also that it forms an example of categorisation for both the 

outcome and exposure variables. Moreover, prognostic models are rarely investigated in 

epidemiology, so this will also be an opportunity to consider other suitable performance 

measures for evaluation. For instance, some of the performance measures that will be 

used to evaluate the performance and properties of various prognostic models in the 

simulations include the c-index scores, calibration plots, and decision analysis curves. 

The findings of this simulation study are provided in ‎Chapter 5. 

Objective 4 – Application study using the UK Biobank data 

 

To investigate the association between alcohol consumption and hypertension 

in patients with type 2 diabetes using categorisation, linearisation, FP and RCS 

modelling approaches. 

The application of categorisation, linearisation, FP and RCS modelling 

approaches in this area has been identified as appropriate for investigations for several 

reasons including the conflicting evidence of guidelines regarding the associations 

between alcohol consumption and hypertension, previous evidence of use and common 

practice of categorisation in the area, importance to public health and the interest on 

identifying whether alcohol consumption thresholds exist in the patients with type 2 

diabetes. The specific objectives in this chapter are as follows: 

i. To investigate the association between alcohol consumption and the odds of 

hypertension in patients with type 2 diabetes adjusting for selected 

confounding variables identified by the use of a directed acyclic graph 

(DAG). 
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ii. To investigate effect modification of age and antihypertensive medication 

use in the adjusted multivariable alcohol-hypertension model. 

Explanatory modelling (or causal inference) is very popular in epidemiology 

thus the reason to consider it for application instead of prognostic modelling (or 

predictive analysis). The details of study are presented in  Chapter 6. The chapter 

demonstrates the application of the alternative methods covering issues of nonlinearity, 

confounding, interactions and interpretations - for medical researchers who might find it 

difficult to deal with such issues in their studies when applying these methods.  

1.4 Significance and contribution to knowledge 

The thesis will provide the following as novel contributions: 

i. A new piece of research providing the reporting of continuous variables in 

medical studies according to the STROBE guidelines. This will be the first 

update covering research articles that were published several years after the 

STROBE guidelines. The results of this update have relevance to authors and 

readers working with observational studies. Key issues necessary for 

improvement when reporting and analysing continuous variables will be 

highlighted in this research for the purpose of promoting and preserving 

scientific knowledge for synthesis and clinical decision making. 

 

ii. A novel simulation study investigating the properties and performances of 

categorisation, linearisation, FP, and RCS models on plausible relationships 

found in epidemiology. The simulations will be based on continuous outcome 

models to provide an inferential guide in similar situations – focusing on the 

ability of these methods to characterise the ‘true’ relationships in the data. The 

simulation will be covering nonlinear associations with turning points for 
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estimation. The ability of these methods to accurately predict turning points is 

uncertain. Therefore, this will be the first study conducting an assessment of 

these methods - under different simulation conditions taking into account issues 

of turning points. Ultimately, this research should also provide guidance to 

medical researchers on the applications of these methods. 

 

iii. A novel simulation study examining the influence of categorisation, 

linearisation, FP and RCS approaches used for handling continuous predictors 

when developing prognostic (or predictive) models with binary outcomes. 

Binary outcomes are common in epidemiology and prognostic models are rarely 

investigated. However, with the emerging field of machine learning, predictive 

analysis may be on the rise. Predictive analytics go hand-in-hand with machine 

learning where big data – large volumes of raw structured, semi structured and 

unstructured data are used to estimate or predict future outcomes. Due to 

spurious correlations and possible biases during data collections, the predicted 

outcomes from these data sources need to be validated for accuracy to guard 

against overly optimistic and exaggerated claims. This is where this simulation 

study comes in; different methods for developing prognostic models are 

demonstrated and evaluated using novel measures for the purpose of providing 

guidance to medical researchers working in the same area. 

 

iv. An investigation assessing the association between alcohol consumption and 

hypertension in patients with type 2 diabetes using the UK Biobank. Different 

association functions fitted with the methods of categorisation, linearisation, FP 

and RCS will be compared to demonstrate the application of these methods in 

real dataset characterised by issues of nonlinearity, confounding and 
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interactions. This will be the first study to demonstrate and compare the 

application of these methods in the UK Biobank. Clinically, this is also a novel 

study that should inform strategies for managing and controlling alcohol induced 

hypertension amongst type 2 diabetes patients taking into consideration (a) the 

efficacy of antihypertension medication use and (b) the severity of alcohol 

drinking in different age groups.  

1.5 Outline of the thesis 

The chapters in this research thesis are structured as follows: 

Chapter 1 is an introductory chapter that gives the research background, research 

motivation and rationale, summary of objectives, significance and contribution to 

knowledge and finally the thesis outline. 

 Chapter 2 summarises the methods used in this thesis. This chapter presents the 

choice and descriptions of modelling approaches including categorisation, linearisation, 

FP, and RCS as applied to objectives 2, 3 and 4.  

 Chapter 3 present a survey on the current practice of reporting and analysing 

continuous variables in observational epidemiological studies (Objective 1). 

 Chapter 4 and  Chapter 5 are simulation studies investigating the performance of 

methods discussed in  Chapter 2. These chapters address objective 2 and 3 respectively. 

In each chapter, details covering the gap in the literature, specific objectives, and 

procedures on how the simulations were set up are provided. Other contents include 

descriptions of performance measure, results, finding, discussions, and conclusions.  

 Chapter 6 investigated the association between alcohol consumption and 

hypertension in patients with type 2 diabetes using the UK Biobank dataset. In the 

analysis different modelling techniques were applied for comparison.  
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 Chapter 7 is a conclusion chapter. The chapter reflects on key findings, research 

implications, challenges and limitations, strengths and opportunities and the 

recommendations for future studies. 
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  Chapter 2

Statistical approaches for modelling exposure-outcome 

relationships 

This chapter provides an overview of statistical approaches for analysing the 

relationships between continuous exposure and outcome variables in epidemiology. 

This chapter also explains the decisions informing the choice of methods used in this 

thesis and their general applications.  

The chapter is divided into sub-headings listed below: 

1) An overview of statistical methods 

2) The details of statistical methods used in the thesis 

3) The statistical modelling framework of methods used in the thesis 

4) A conclusion 

2.1 Overview of statistical approaches for analysing exposure-

outcome relationships in epidemiology 

In epidemiology, the potential influence of continuous exposures on health 

outcomes can be ascertained using various statistical approaches that depend on the 

assumptions of categorisation, linear and nonlinear relationships (Schmidt et al., 2013a). 

The simplest method based on the assumption of categorisation involves categorising 

the exposure into two or more group categories, creating dummy variables and then 

reporting the outcome of each category (using one group as the reference) or fitting a 

linear trend over the ordered categorical exposure (Maclure and Greenland, 1992, 

Figueiras and Cadarso-Suárez, 2001). Alternatively, the analysts may keep the exposure 

as a continuous variable and assume a linear relationship between the exposure and 
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outcome during statistical modelling (Royston et al., 1999, Figueiras and Cadarso-

Suárez, 2001). When the relationship is complex, nonlinearity maybe assumed and 

explored using different methods that include: 

i. A polynomial parametrization of the exposure. In this method, the exposure 

is transformed and expressed as a quadratic or cubic term to report nonlinear 

relationships (Schmidt et al., 2013a). The advantage of this method is that it 

offers simpler function forms that define the overall relationships between 

the exposure and the outcome. On the contrary, simple transformations offer 

limited flexible functions especially at the tails of the exposure distribution 

whilst high order degree polynomials are susceptible to artefacts and over-

fitted functions (May and Bigelow, 2005, Schmidt et al., 2013a).  

ii. Fractional polynomial approach. The fractional polynomials (FPs) offer 

some improvement on the polynomial parametrization approach. The FP 

approach was first developed by Royston and Altman (1994) to allow a 

combination of polynomials and logarithmic functions. The main advantage 

of the FP approach is that it offers more flexibility and wider set of 

functional forms for the relationship between the exposure and the outcome 

variables (Royston and Altman, 1994, Royston and Sauerbrei, 2008).  

iii. Splines based approaches. Like FPs, splines extend from the polynomial 

parametrization approach. Splines are piecewise functions whose ‘pieces’ 

are polynomials defined over the adjacent intervals. The junction between 

two intervals is called the ‘knot’ and the number of knots (specified by the 

user) ranges between 3 and 7 (Desquilbet and Mariotti, 2010). Linear, 

quadratic and cubic splines are typical examples of these functions but cubic 

splines are common (Steenland and Deddens, 2004, Schmidt et al., 2013b). 

Quadratic or cubic splines maybe used to improve the smoothness of linear 
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spline functions when sudden change of slopes occurs between adjacent 

intervals. But, both the quadratic and cubic splines may behave poorly at the 

tails (Schmidt et al., 2013b). To overcome this problem, restricted cubic 

splines (cubic splines constrained to be linear at the tails) have been 

developed to improve the fitted curves (Desquilbet and Mariotti, 2010). In 

addition, there exist other different types of spline functions that include the 

B-splines, smoothing splines, penalized splines and thin-plate splines (Hastie 

and Tibshirani, 1990, Schimek and Turlach, 2000, Schmidt et al., 2013b). 

These functions offer non-interpretable parameter estimates hence some 

interpretations can only be made from the fitted curves (Steenland and 

Deddens, 2004).  

iv. Nonparametric approaches. Nonparametric methods relax the assumption of 

parametrization of the exposure emphasizing on the graphical approach to 

explore nonlinear relationships between the exposure and the outcome 

variables (May and Bigelow, 2005). There are no assumptions made on the 

nature (or shape) of the existing relationships or the distributions of the 

exposure and outcome variables; the estimated nonlinear functions are data 

driven (Keele, 2008). LOESS (for locally weighted regression) plot is one 

basic example of the available nonparametric approaches (Cleveland and 

Devlin, 1988). LOESS is a nonparametric procedure for generating a moving 

weighted average of the outcome variable within specified local regions of 

the exposure (x-axis). The weights reduce as one move from the center of 

each specific region and become zero beyond the range of the region 

(Cleveland and Devlin, 1988, Steenland and Deddens, 2004). Examples of 

common fits include the linear (first order LOESS) or quadratic (second 

order LOESS) models. However, the LOESS plots are only excellent for 
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exploring nonlinearity in single exposure-outcome relationship studies. Their 

use in multivariable settings is limited (May and Bigelow, 2005). Splines are 

also classified under the nonparametric approaches (Keele, 2008, Schmidt et 

al., 2013b). For estimation, both the LOESS and Spline functions can be 

incorporated into the standard linear models using the Generalized Additive 

models (GAMs) procedure (Hastie and Tibshirani, 1990, Beck and Jackman, 

1998). However, the GAMs are computationally expensive. Furthermore, 

fitted GAMs can be harder to communicate than a vector of parameter 

estimates and their standard errors (Beck and Jackman, 1998). 

2.2 Statistical methods used in the thesis 

With the variety of statistical approaches listed above, this PhD thesis focused 

on the method of categorisation, linearisation (i.e. assuming linearity between 

continuous exposure and outcome variables), fractional polynomials (FP) and restricted 

cubic splines (RCS) methods. The methods of linearisation and categorisation were 

chosen for assessment in more details because traditionally, the relationships between 

the continuous predictors and outcome variables are assumed to be linear or the 

predictors are grouped and entered into the model as dummy variables. A review in 

observational studies showed 86% of categorisation amongst published articles that 

investigated continuous predictors or risk factors (Turner et al., 2010). The FPs and 

RCS approaches are considered powerful and flexible in fitting both complex and linear 

associations (Royston and Altman, 1994, Desquilbet and Mariotti, 2010). The other 

alternative approaches (polynomials with powers < 2) have limitations in fitting 

complex nonlinear curves especially at their tails whilst those with powers (> 3) are 

susceptible to artefacts and over-fitted models (Schmidt et al., 2013b). The other 

reasons for choosing to investigate and compare RCS and FP are as follows: 
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i. They are readily available for implementation in most statistical programs 

ii. Comparisons between RCS and FP are lacking and little is known about their 

results and properties (Sauerbrei et al., 2006).  

iii. The features of the FP & RCS functions are intriguing when imagining the 

potential differences between the two models. When applied in nonlinear 

datasets, the RCS function might be able to get around the data at the extreme 

regions due to the linearity constraint at their tails. On the other hand, the FP 

functions offer flexibility - constrained by the selected set of powers available 

for use in such models.  

2.2.1 Modelling scenario 

To further describe the application of categorisation, linearisation, FPs and RCS 

methods, consider the following modelling scenario presented by Cumsille et al (2000): 

Let assume that the interest is to study the relationship between one continuous 

outcome (𝑦) and one continuous exposure (𝑥1) , controlling for confounding variables 

(both continuous and categorical) 𝑥2…𝑥𝑛. For simplicity, suppose the random vector 

𝑽 = (𝑦, 𝑥1, … , 𝑥𝑛) = (𝒀, 𝑿
′) has a multivariate normal distribution such 

that 𝑽~𝑁𝑛(𝝁, 𝚺), where mean vector 𝝁 =

(

  
 

𝜇𝑦
𝜇1
.
.
.
𝜇𝑛)

  
 
= (

𝜇𝑦
𝜇𝑥
), and covariance matrix  

𝚺 =

(

 
 
 
 

𝜎𝑦
2  𝜎𝑦1    .   .    .   𝜎𝑦𝑛

𝜎𝑦1  𝜎1
2    .   .    .    𝜎1𝑛

  .       .       .   .    .     .     
   .       .       .   .    .     .      
 .       .       .   .    .     .    
𝜎𝑦𝑛  𝜎1𝑛 .   .    .     𝜎𝑛

2 )

 
 
 
 

= (
Σ𝑦𝑦  Σ𝑦𝑥
Σ𝑦𝑥  Σ𝑥1𝑥𝑛

).    Eq. 2. 1 
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Given the modelling scenarios above, the methods of categorisation, 

linearisation, FPs, and RCS are described in sections ‎2.2.2 to ‎2.2.5 below.  

2.2.2 Categorisation/Dichotomisation  

Based on the scenario in  2.2.1, suppose the exposure variable, 𝑥1 is 

dichotomised (or categorised into two groups) using a cut point,  𝑐 such that the 

dichotomised variable Z is created based on the following rule: 

 𝑍 = {
1  𝑖𝑓 𝑥1 ≤ 𝑐
0  𝑖𝑓 𝑥1 > 𝑐

 ,        Eq. 2. 2 

where  is the cut point. 

Using the new variable, 𝑍, the unadjusted exposure-outcome model could be fitted as 

follows: 

𝑓(𝑍) = 𝐸(𝑦|𝑍) = 𝛽0 + 𝛽1𝑍,       Eq. 2. 3 

where 𝑓(𝑍) = 𝐸(𝑦|𝑍) is the expected function of the outcome (𝑦), 𝛽0 is the estimated 

outcome when 𝑍 = 0, and 𝛽1 represent the change in the outcome when 𝑍 takes the 

value 1.  

Alternatively, 𝑥1 can be grouped or divided into 𝑘 categories resulting in the process 

known as polychotomisation (categorisation of a continuous variable into many groups). 

For example, suppose 𝑍 takes value 1 if the exposure is in the 𝑘𝑡ℎ 
category and 0 

otherwise for 𝑘 = 1,2, … , 𝐾 − 1. Then, the unadjusted exposure-outcome relationship 

assuming k  categories could be written as follows: 

𝑓(𝑍) = 𝐸(𝑦|𝑍𝑘) = 𝛽0 + 𝛽1𝑍1 +⋯+ 𝛽𝑘𝑍𝑘 = 𝛽0 + ∑ 𝛽𝑘
𝐾−1
𝑘=1 𝑍𝑘,   Eq. 2. 4 

where 𝛽𝑘 represent the associated outcome value of an exposure at 𝑘 category. 

c
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For multivariable models incorporating confounders, the adjusted exposure-

outcome functions could be written as follows when dichotomised: 

𝑓(𝑍, 𝑋) = 𝐸(𝑦|𝑍, 𝑋) = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 = 𝛽0 + 𝛽1𝑍 + ∑ 𝛽𝑖
𝑛
𝑖=2 𝑥𝑖, Eq. 2. 5 

where 𝛽𝑖′𝑠 are parameters associated with each confounding variable in the model. 

Similarly, when the exposure was categorised into 𝑘 categories (polychotomisation), the 

adjusted model explaining the exposure-outcome relationship could be expressed as 

follows: 

 𝑓(𝑍𝑘, 𝑋) = 𝐸(𝑦|𝑍𝑘, 𝑋) = 𝛽0 + ∑ 𝛽𝑘
𝐾−1
𝑘=1 𝑍𝑘 + ∑ 𝛽𝑖

𝑛
𝑖=2 𝑥𝑖   Eq. 2. 6 

Detailed information about dichotomisation (as presented above) could be found in the 

following references; Cumsille et al., (2000), Gustafson and Le (2002) and Natarajan 

(2009). 

2.2.2.1 Strengths and challenges of categorisation 

The main strength of categorisation is based on its simplicity - avoids strong 

assumptions about the exposure-outcome relationships. The challenge is that such 

simplicity is achieved at a cost of throwing away some information. Thus, 

categorisation may lead to some reduction in effect sizes and statistical power compared 

to models that keep continuous variables in the analysis (Cumsille et al., 2000, 

Williams, 2011). The other problem faced by researchers is deciding on the categories 

to use in the analysis; choosing the cut points and decisions on whether continuous 

variables should be transformed into dichotomous (binary) or ordinal scale 

measurements (Cumsille et al., 2000, Figueiras and Cadarso-Suárez, 2001).   
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2.2.3 Linearisation 

From the modelling scenario provided in section  2.2.1, a typical regression 

function assuming linearity on the exposure-outcome relationship could be written as 

follows: 

𝑓(𝑋) = 𝐸(𝑦|𝑥1) = 𝛽0 + 𝛽1𝑥1,       Eq. 2. 7 

where 𝑓(𝑋) = 𝐸(𝑦) is the estimated function of the outcome, 𝛽0 is the predicted value 

of the outcome when the exposure is zero and 𝛽1 is the estimated value of outcome per 

unit increase of the exposure (𝑥1). 

In multivariable regression, the exposure-outcome relationship could be adjusted for 

other covariates such that  

𝑓(𝑋) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 = 𝛽0 + ∑ 𝛽𝑖
𝑛
𝑖=1 𝑥𝑖     Eq. 2. 8 

Further theories of linear regression models could be found elsewhere (Marill, 2004, 

Schneider et al., 2010, Schmidt and Finan, 2017). 

2.2.3.1 Strengths and challenges of linearisation 

Linear models are simple to implement and interpret. However, the assumption 

of linearity imposes some restrictions on the data and forces linear parametric models 

that frequently do not fit nonlinear data closely (Figueiras and Cadarso-Suárez, 2001). 

Thus, appropriate relationships maybe missed if deviations from the assumption of 

linearity are strong. 

2.2.4 Fractional polynomials (FPs) 

Fractional polynomials (FPs) were first proposed by Royston and Altman 

(Royston and Altman, 1994) for modelling families of curves. An FP function of degree 

𝑚 defining the unadjusted exposure-outcome relationship for the modelling scenario in 

section  2.2.1 is given as follows: 
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𝐹𝑃𝑚(𝑋) = 𝛽0 + ∑ 𝛽𝑗
𝑚
𝑗=1 𝑓𝑗(𝑥1),       Eq. 2. 9 

where 𝑚 is a positive integer, 𝛽0…𝛽𝑚 are regression parameters, and 𝑓𝑗(𝑥1) is the Box 

and Tidwell (1964) transformation defined by;  

𝑓𝑗(𝑥1) = {
𝑥1
𝑝𝑗              𝑖𝑓   𝑝𝑗 ≠ 0

ln(𝑥1)        𝑖𝑓   𝑝𝑗 = 0
  ,       Eq. 2. 10 

with the constraint 𝑥1 > 0, so that all the transformations are possible.  

The power terms, 𝑝𝑗 in Eq. 2.10 are taken from a restricted set of integer and 

non-integer values suggested by Mosteller and Tukey (1977, chapter 4) for general 

curve fitting. This set is given by 𝑝𝑗  ∈  {−2,−1,−0.5, 0, 0.5, 1, 2, 3}, where 𝑥1
0 

denote 𝑙𝑛(𝑥1). The set offer a wide range of curve shapes and transformations often 

used by applied researchers, such as the log (𝑝1 = 0), reciprocal (𝑝1 = −1) and square 

root (𝑝1 = 0.5). Table 2.1 provide a list of transformations defined by the specific 

values of 𝑝𝑗 (assuming 𝑚 = 1 in Eq. 2.9). 

 

Table 2.1: A list of transformations defined by specific values of 𝑝𝑗. 

FP powers (𝒑𝒋) Functions FP Equations 

-3 Inverse cubic 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1(1 𝑥1
3⁄ ) 

-2 Inverse square 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1(1 𝑥1
2⁄ ) 

-1 Inverse 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1(1 𝑥1⁄ ) 

-0.5 Inverse square root 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1(1 √𝑥1⁄ ) 

0 log 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1ln (𝑥1) 

0.5 Square root 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1√𝑥1 

1 Linear 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1𝑥1 

2 Square 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1𝑥1
2 

3 Cubic 𝐹𝑃1(𝑥1) = 𝛽0 + 𝛽1𝑥1
3 
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From Table 2.1, additional values of 𝑝1 between −3 𝑎𝑛𝑑 3 such as 𝑝1 = 1 4⁄  are 

possible but such transformations are rare. The curves produced by such transformation 

values are very similar to those in their neighbourhood (i.e. 𝑝𝑗). Hence, 𝑝𝑗  provide a set 

of powers familiar to many applied researchers (Long and Ryoo, 2010).   

From Eq. 2.10, repetition of powers is also allowed. However, this is only possible 

when 𝑚 ≥ 2. For instance, when 𝑚 = 2,  and 𝑝1 = 𝑝2 the FP model is written as 

follows: 

𝐹𝑃2(𝑋) = 𝛽0 + 𝛽1𝑥1
𝑝1 + 𝛽2𝑥1

𝑝1 ln(𝑥1)      Eq. 2. 11 

Otherwise, when  𝑚 = 2,  and the powers are not repeating (i.e. 𝑝1 ≠ 𝑝2) the FP model 

is written as follows: 

𝐹𝑃2(𝑋) = 𝛽0 + 𝛽1𝑥1
𝑝1 + 𝛽2𝑥1

𝑝2       Eq. 2. 12 

Based on the descriptions above, fractional polynomials cover a wide range of 

shapes and transformations including conversional polynomials. For example, the first-

order degree FP (𝑚 = 1) with 𝑝1 = 1 gives a linear polynomial model whilst the 

second-order degree FP (𝑚 = 2) with 𝑝1 = 1 and 𝑝2 = 2  is a quadratic function. The 

regression parameters, 𝛽𝑗 and polynomial powers 𝑝𝑗, 𝑗 = 1…𝑚 for such functions are 

obtained using a closed-test procedure described by Sauerbrei & Royston (Sauerbrei 

and Royston, 1999) and Ambler & Royston (Ambler and Royston, 2001). 

2.2.4.1 First and second order degree fractional polynomial functions 

To be practically relevant, fractional polynomial functions with 𝑚 ≤ 2 are fitted. 

In reality, FP models with 𝑚 > 2 would rarely be required for exposure-outcome 

relationship studies (Royston and Altman, 1994, Royston and Sauerbrei, 2008). For a 

permissible set of FP powers, 𝑝𝑗  ∈  {−2,−1,−0.5, 0, 0.5, 1, 2, 3} there exist 44 possible 

combinations of models (8 when 𝑚 = 1 and 36 when 𝑚 = 2) where the best fit is 
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chosen as the one with the lowest deviance (-2*log-likelihood). Furthermore, the FP 

family with 𝑚 ≤ 2 has a richer set of functions. For example, Figure 4.5 (Royston and 

Sauerbrei, 2008, p.78) shows a variety of curves available when 𝑚 = 2 and  𝑝 =

(−2, 2) for different values. The variety of curves attained for a single pair of powers, 

𝑝 = (−2, 2) when 𝑚 = 2  suggests the coefficients are non-interpretable - one 

disadvantage of working with FPs. However, Royston and Altman (1994) advise 

analysts to interpret the FP curves instead of predicted parameters.  

To adjust for confounding, the multivariable fractional polynomial (MFP) 

approach (combination of functional selection form for continuous covariates and 

backward elimination process of variable selection) has been suggested (Sauerbrei and 

Royston, 1999, Royston and Sauerbrei, 2005). However, application of such automated 

procedures have been criticised; the selection of variables through stepwise methods is 

known to produce biased results with inflated p-values and standard errors (Blanchet et 

al., 2008). To deal with the controversy of variable selection, realist ontology of 

causation of health outcome and covariates could be constructed to identify ‘minimal’ 

sufficient set of confounders for model adjustment. This approach incorporates clinical 

and epidemiological knowledge to achieve models with public health and scientific 

relevance.  

2.2.4.2 The strengths and weaknesses of FPs 

The advantages of FPs is that it avoids cut points and make full use of covariate 

information (Greenland, 1995b). Furthermore, FP functions of 𝑚 ≤ 2 offers a wide 

range of flexible shapes (e.g. monotonic and asymptotic curves) that could improve the 

reporting of nonlinearity in exposure-outcome studies (Royston and Altman, 1994). 

The applications of FPs also have some limitations that need to be pointed out. 

Firstly, FP powers cannot be used with zero or negative values. This is because the FP 




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powers are based on natural logarithms (terms of the form 𝑥𝑟[ln(𝑥)]𝑗 are included in 

the family of FP curves) (Greenland, 1995b). If the exposure (𝑥) assumes zero values, 

the FP function would be sensitive with unstable tails at zero levels of the exposure. In 

epidemiology, such variables are known as ‘spike’ at zero (SAZ) variables (Lorenz et 

al., 2017). Examples of such variables include tobacco consumptions and occupational 

exposures (e.g. asbestos). In FP models, the ‘spike’ at zero can be dealt with by shifting 

the origin of the exposure making it nonzero (by adding a constant 𝛿) (Royston and 

Altman, 1994, Royston and Sauerbrei, 2008). However, such transformations have been 

criticised because the choice of the constant 𝛿 could influence the results of the FP 

models (Ambler and Royston, 2001). Ignoring the ‘spike’ at zero level of the exposure 

may also be a sensible choice of dealing with this problem since there are no biological 

interpretations associated with such behaviour (Royston and Sauerbrei, 2008). For non 

positive values, Royston and Altman (1994) recommend adding a positive number to 

force the exposure to be positive. The discomfort with this approach is that it is likely to 

introduce new parameters into the FP functions thus influencing the results (Greenland, 

1995b). Secondly, the FP1 is based on limited powers to detect nonlinearity; the best 

function select powers from a candidate set of 𝑝𝑗  ∈  {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. 

Although flexible than conventional polynomials, the FP1 models could still be 

misleading (in both the shapes and estimates) due to this limited choice of powers 

(Royston et al., 1999). Finally, the FP functions offer non interpretable parameters of 

the curves. However, the results of such models can be reported using graphs or tables, 

although such approaches have its problems. Visual presentations make it difficult for 

researchers to conduct a meta-analysis in similar studies. In addition, subjective biases 

are likely to be introduced by analysts when interpreting the results (Greenland, 1995b, 

Royston et al., 1999).  
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2.2.5 Restricted cubic splines (RCS) 

Restricted cubic splines (RCS) are a special type of cubic splines (CS) 

constrained further to be linear above the last knot and below the first knot (Durrleman 

and Simon, 1989, Govindarajulu et al., 2009). The expression for RCS function with 𝑘 

knots, 𝑡1 < ⋯ < 𝑡𝑘 can be written as follows: 

𝑓(𝑋) = 𝛽0 + 𝛽1𝑥1 + ∑ 𝜃𝑗𝑓𝑗(𝑥1)
𝑘−2
𝑗=1 ,       Eq. 2. 13 

where 𝑓1(𝑥1)…𝑓𝑘−2(𝑥1) are cubic terms such that; 

𝑓𝑗(𝑥1) = (𝑥1 − 𝑡𝑗)+
3
− 

(𝑥−𝑡𝑘−1)+
3 [𝑡𝑘−𝑡𝑗]

[𝑡𝑘−𝑡𝑘−1]
+
(𝑥−𝑡𝑘)+

3 [𝑡𝑘−1−𝑡𝑗]

[𝑡𝑘−𝑡𝑘−1]
,  𝑗 = 1…𝑘 − 2 Eq. 2. 14 

The notation (. )+ is known as the ‘positive part’ function. It can be written as (𝑎)+ =

max(0, 𝑎). It retains the maximum value between 0 and 𝑎 = (𝑥1 − 𝑡𝑘−1) or 𝑎 =

(𝑥1 − 𝑡𝑘) respectively. 

From the RCS function above; 

i. The function, 𝑓(𝑋) is linear in parameters suggesting that standard 

procedures can be used for statistical inference.  For example, when the 

interest is to estimate the unknown smooth function, 𝑓(.), a test that 𝛽1 =

𝜃1 = ⋯ = 𝜃𝑘−2 = 0 represent a constant function and a test that 𝜃1 = ⋯ =

𝜃𝑘−2 = 0 is similar to a linearity test.  

ii. The estimated parameter estimates are hard to interpret thus the estimated 

𝑓(𝑋) is the main output. 

iii. Although the 𝑓(𝑋) looks complicated to implement, readily available 

statistical packages (e.g. R and Stata software) can be used to estimate the 

function. 
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Additional information on the development of restricted cubic spline regression models 

may be found in the following references; Durrleman and Simon (1989), Heinzl and 

Kaider (1997) and Desquilbet and Mariotti (2010). 

For multivariable models, a similar procedure as the MFP was made available 

for users working with regression splines (RS). The closed-test procedure was modified 

for spline functions resulting in a new algorithm called the multivariable regression 

spline (MRVS) (Royston and Sauerbrei, 2007, Royston and Sauerbrei, 2008). 

According to Royston & Sauerbrei (Royston and Sauerbrei, 2007), the MVRS and MFP 

procedures are similar in spirit and character, suggesting the application of MVRS will 

also produce a biased multivariable model. Therefore, the problem of minimising bias 

in the multivariable RCS model could also be dealt with by adjusting for a ‘minimally’ 

sufficient set of covariates as explained in section ‎2.2.4. 

2.2.5.1 Choosing the number of knots and their position 

In the absence of prior knowledge, analysts using cubic regression splines 

should carefully decide on the number and the placement of the knots across the 

exposure-outcome functions being fitted. Stone (Stone, 1986) found that more than 5 

knots were rarely required to fit the RCS models. Studies performed after Stone’s 

investigation suggest 3-5 knots will suffice in the RCS functions (Durrleman and 

Simon, 1989, Heinzl and Kaider, 1997, Harrell, 2001). For knot placement, the 

available procedures are still unclear on whether the knots positions should be 

determined from the exposure-outcome curvature, shape or the size of the sample 

(Durrleman and Simon, 1989). A reasonable approach was recommended by Harrell 

(2001) to place the knots as follows: 

i. At the quantiles/percentiles distribution of the exposure (𝑥1), 

ii. At the extremes, 
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iii. Equally spaced over the quantiles/percentiles 

The pre-specific positions for knots placements proposed by Harrell (2001) are provided 

in Table 2.2 below. 

Table 2.2: Knots positions expressed in quantiles/percentiles of the exposure (𝒙𝟏) 

No of knots, K Knots positions expressed in quantiles of the exposure (𝒙𝟏) 

3   0.1 0.5 0.9   

4   0.05 0.35 0.65 0.95 

5 0.05 0.275 0.5 0.725 0.95 

Source: (Harrell, 2001) 

The advantages of Harrell’s method of knots selection are as follows: 

1. The knots selection are less subjective  

2. A commonly used automatic knots selection scheme that allows reproducibility 

and comparison of results between studies (Heinzl and Kaider, 1997).   

Therefore, this practice of knots selection using restricted cubic splines (RCS) models 

could be of interest to researchers investigating exposure-outcome relationships in 

medicine. 

Other strategies include adaptive procedures based on standard algorithms for 

“optimal” knots selection (Morton, 1988, Friedman and Silverman, 1989, Luo and 

Wahba, 1997, Zhou and Shen, 2001). Knots selection based on such strategies could be 

subjective - there exists no standard algorithm which produces the best possible number 

and position of knots from the data alone (Morton, 1988, Zhou and Shen, 2001). 

Additionally, these methods exhibit computational burden in large samples because sets 

of candidate knots have to be examined to establish the ‘optimal’ number of knots and 

their positions  (Zhou and Shen, 2001).  
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2.2.5.2 The strengths and weaknesses of RCS 

Restricted cubic splines have advantages of parsimony and offer a wide range of 

flexible shapes (Desquilbet and Mariotti, 2010). Unlike in other spline functions, RCS 

models allows flexibility in the data without requesting too many parameters (Therneau 

and Grambsch, 2000, Harrell, 2001). The potential shortcoming of RCS is that they 

constrained to be linear at their tails; this could strongly affect the entire shape of the 

curve and enhance the sensitivity of the overall shape to outliers (Greenland, 1995b). 

Furthermore, the RCS offers parameter estimates that are hard to interpret thus their 

estimated curves are recommended for use as the main output (Heinzl and Kaider, 

1997). Finally, it is not always clear what degree of smoothness should be imposed on 

the data when working with spline functions (Royston et al., 1999). Thus, the choice of 

knots should strike the balance between adequate smoothness and avoiding over-fitted 

functions or some artefacts. 

2.3 Statistical modelling framework 

The four methods of categorisation, linearisation, FPs, and RCS described above 

could be used in the framework of the generalized linear models (GLMs) (Nelder and 

Wedderburn, 1972, McCullagh and Nelder, 1989, Turner, 2008), to estimate exposure-

outcome relationships in epidemiology. The GLMs extend from the concept of multiple 

linear regression and offer flexibility (e.g. in the form of nonlinear models and non-

normal distributions), allowing researchers to work with various type of functions and 

responses or outcome variables (Royston and Sauerbrei, 2008). Section  2.3.1 briefly 

describes the concept of GLMs putting the application of categorisation, linearisation, 

FPs, and RCS in context.  
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2.3.1 The concept of generalized linear models (GLMs) 

Crudely stated, the relationship between the covariate(s) 𝑿 = (x1, … , 𝑥𝑘) and the 

outcome (𝑌) modelled using the GLM models comprise three components: 

i. The outcome variable (Y) with mean 𝜇, ⟹ 𝐸(𝑌) = 𝜇. 

ii. A model function 𝜂 = 𝜂(𝑿, 𝜷) based on 𝑿 and on a vector of 𝜷 parameters.  

iii. A link function 𝑔 such that 𝑔(𝜇) = 𝜂 

A model function in (ii) is an additive predictor 𝜂 = 𝛽0 + ∑𝑓𝑗 (𝑋𝑗), such that 

𝛽0 is a constant term and 𝑓𝑗(𝑗 > 0)  is a function of 𝑋𝑗 and a set of parameters (Royston 

and Altman, 1994). This means a linear predictor could be generalized into an additive 

predictor with 𝑓𝑗(𝑋𝑗) = 𝛽𝑗𝑋𝑗 for each 𝑗. For example, a model incorporating a quadratic 

polynomial in 𝑋𝑗  has a linear predictor of the form 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 which can be 

written in additive format as  𝛽0 + 𝑓𝑗(𝑋𝑗), where 𝑓𝑗(𝑋𝑗) = 𝛽1𝑥 + 𝛽2𝑥
2. Here, the 

quadratic model is additive in 𝑥, nonlinear in 𝑥, and linear in (𝑥, 𝑥2). Essentially, the 

functions, 𝑓𝑗(𝑋𝑗) can be estimated in many ways including categorisation, linearisation, 

FP and RCS regression models. Such methods produce models whose additive 

predictors are linear as described above.  

The choice of a link function 𝑔 enables analysts to incorporate many types of 

response or outcome (Y) in the data. The normal, binomial and Poisson models, have 

their link functions taken as 𝑔(𝜇) = 𝜇, 𝑔(𝜇) = ln (
𝜇

1−𝜇
) and 𝑔(𝜇) = ln(𝜇) respectively 

(Turner, 2008, Müller, 2012). For survival time data, a standard formulation involves 

the Cox hazard function 𝜆(𝑡; 𝑿) = 𝜆0(𝑡)exp (𝜂), where 𝜆0(𝑡) is the baseline hazard 

function (Royston and Altman, 1994, Hollander and Schumacher, 2006).  
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2.4 Conclusion 

This chapter provided an overview of methods available for analysing or 

characterising the relationships between continuous exposure and outcome variables in 

epidemiology. The methods of categorisation, linearisation, fractional polynomials and 

restricted cubic splines used in this thesis were emphasized, explaining their choice, 

application (using modelling scenarios), strengths and weaknesses. 

As the way forward, the next chapter investigated the current extent of 

categorisation against the alternative methods of analysing continuous exposure-

outcome relationships. The investigation was conducted in medical journals publishing 

medical research.  
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  Chapter 3

Cross sectional survey of research methods in current 

use 

3.1 Background 

Most studies in medicine exhibit serious weaknesses due to issues of reporting 

(Little et al., 2009, Sauerbrei et al., 2014). Inadequate and poor reporting practices 

restrict generalisability and implementation of results and subsequently, the clinical and 

scientific utility of such studies is lost (Von Elm et al., 2007, Little et al., 2009, Langan 

et al., 2010). To aid reporting in epidemiology, the STROBE (Strengthening the 

Reporting of Observational Studies in Epidemiology) (Von Elm et al., 2007) and 

STRATOS (Strengthening Analytical Thinking for Observational Studies) (Sauerbrei et 

al., 2014) guidelines were developed to guide researchers working on observational 

studies.  

Realising the benefits of research might be achieved slowly without sufficient 

clarity on reporting; in 2004, researchers, methodologist and journal editors met in a 2-

day workshop under the STROBE initiative and developed recommendations (checklist 

of 22 items) necessary for an accurate and complete observational study (Von Elm et 

al., 2007). The established recommendations aim at contributing to the improvement of 

reporting in three main study designs of analytical epidemiology: cohort, case-control 

designs and cross-sectional studies (Von Elm et al., 2007). One aspect to consider when 

presenting the results of observational studies in epidemiology is how continuous risk 

factors are analysed and reported. The STROBE guidelines recommend authors 

describe how they handle quantitative variables when analysing the data; for categorised 

quantitative variables, the guidelines require researchers to explain and justify the 
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methods of categorisation. However, reviews in 2004 and 2010 suggest that few studies 

at that time were reporting the issues of categorisation in epidemiology appropriately 

(Pocock et al., 2004, Turner et al., 2010). These suggested that most continuous 

variables were categorised for analysis and presentation and that the basis for 

categorisation was rarely described. To investigate whether the analysis and 

presentations have improved in the past 7 years, we aimed to assess the practice of 

categorisation in the field of epidemiology according to the STROBE guidelines. 

Therefore, this was the first study assessing the reporting of categorised continuous 

variables several years after the STROBE guidelines.  

For the purpose of this study, categorisation was defined as the practice of 

converting continuous variables such as age, body mass index (BMI) and blood pressure 

(BP) into two or more groups by splitting them at some points and designating 

individuals above or below the points as separate groups (MacCallum et al., 2002). For 

example, age could be divided into several age groups such as 1-5, 6-10, and 10+ or 

below/above 25
th

, 50
th

 or 75
th

 percentiles or based on quantiles (e.g. tertiles, quartiles, 

quintiles or deciles). In addition, binary variables were defined as measures assuming 

any two distinct values. For example, gender (coded 0 or 1 for male or females 

respectively) and medication use (coded 0 or 1 for No and Yes respectively).  

The research seeks to highlight key issues necessary for improvement when 

reporting and analysing continuous variables in medical studies. It is suggested that 

categorisation have the potential to produce inaccurate estimates and clinical 

interpretations (Greenland, 1995b, Taylor and Yu, 2002, Chen et al., 2007, Bennette and 

Vickers, 2012). The latter consequences are linked with loss of information (Fedorov et 

al., 2009), reduced statistical power (Streiner, 2002, Peacock et al., 2012), efficiency 

(Zhao and Kolonel, 1992), reliability (MacCallum et al., 2002), higher type I (Austin 
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and Brunner, 2004) and type II (Streiner, 2002) errors likely to occur when analysing 

continuous variables as categorical measures. Thus, the findings in this study have 

relevance to authors and readers working with observational studies in epidemiology - 

for improved reporting and to promote or preserve scientific knowledge for synthesis 

and clinical decision making. 

3.2 Methods 

We based our assessment on five journals we would anticipate to be examples of 

current best practice in clinical epidemiology, using the highest impact factor (IF) 

ratings from the Web of Science citation report of July 2015 (Web of Science., 2015). 

Three journals were selected in the area of epidemiology and two general medical 

journals that publish epidemiological research. Journals selected were the International 

Journal of Epidemiology, Epidemiology, Journal of Clinical Epidemiology, the New 

England Journal of Medicine and Lancet. The rationale behind the selection of the five 

journals was based on impact factor to include journals with high levels of influence in 

the literature. The common use of categorisation in these leading journals would suggest 

the method is also widely applied in other journals with lower impact factors or more in 

specialist journals. 

3.2.1 Study selection 

For eligible articles, we considered observational studies published between 1
st
 

April and 30
th

 June 2015. Articles published between this time intervals were selected to 

reflect current practice. Consideration was given to all publications with at least one 

independent continuous variable in the analysis. Specific eligibility criteria are as 

follows:  

i. Publications based on individual’s data quantifying the risk or association 

between continuous exposures and outcomes.  
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ii. The reported data should be from the original study. The study should not 

report pooled estimates in the form of systematic reviews and meta-analysis 

iii. The study should be based on observational designs such as cohort, case-

control and cross-sectional (a requirement in the STROBE guidelines). 

3.2.1.1 Exclusion criteria 

We excluded all systematic reviews or meta-analyses, clinical trials or 

experimental studies and genetic epidemiology studies. Epidemiological studies other 

than cohort, cross-sectional and case-control studies such as ecological studies were also 

excluded because they are not covered by the STROBE recommendations. Additionally, 

non-related articles (e.g. comments, correspondence, editorials, non-full text abstracts) 

and non-related original (full text) publications (e.g. simulations, methodological 

papers) were also excluded. Details are provided in Figure 3.1. 

3.2.1.2 Search strategy 

The search for eligible articles was done amongst all publications obtained in the 

five journals. We reviewed all publications to identify those investigating associations 

between risk factors and disease outcomes or any measures in individuals. The search 

was done electronically, and the identified articles were later reviewed in more detail. 

Figure 3.1 presents a summary of the identification and selection process for eligible 

articles. 

As shown in Figure 3.1, we identified 1005 articles from the five Journals: 

Lancet (540), NEJM (272), IJE (102), Epidemiology (28) and Journal of Clinical 

Epidemiology (63). From the 1005 publications identified, 944 articles were excluded 

after screening through their abstracts and titles. Reasons for excluding an article’s title 

or abstract were based on studies identified and classified as follows; systematic 

reviews, meta-analyses or pooled analyses (45), non-related articles (648), non-related 
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original articles (60) and cohort or profile update studies (30), clinical trials and other 

experimental studies (121) and genetic studies (40).  

The screening resulted in 61 articles which were retrieved and reviewed as full-

text for inclusion in the analysis; 23 observational studies met the eligibility criteria, and 

38 were excluded (see Figure 3.1). Amongst the 38 studies which were excluded, 22 

were not related to the objective of the review, 4 were clinical trials and other 

experimental studies, 2 were meta-analyses and genetic studies and the other 10 studies 

investigated exposures or risk factors which were not continuous. 
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Figure 3.1: A detailed flow chart summarising the selection and identification process of 

eligible articles  
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3.2.2 Data extraction 

We used a modified data collection form (see appendix -  A.1) prepared by 

Turner et al. (2010) in their previous survey. The study variables and characteristics 

collected through this form are as follows: title of the study, lead author surname, date 

of publication, journal name, type of study design, sample size or number of 

participants, outcomes and exposures or risk factor characteristics (e.g. specialty, types, 

and whether they are categorised), details of grouping or categorisation, details of other 

adjusted variables included in the study, presentation and types of statistical results used 

in reporting, type of effect estimates (e.g. odds ratios, relative risks, confidence 

intervals, p-values). 

3.2.3 Statistical analysis 

The data collected was captured in a Microsoft Access database and exported to 

Stata 13 for analysis (StataCorp LP, 2013). The patterns of reporting for observational 

studies were quantified and reported using proportions. Where possible, examples from 

the data are provided for illustration. Only predominant findings or issues and practices 

of categorisation are reported. 

3.3 Results 

3.3.1 General characteristics  

In this section, we provide a summary of results describing general 

characteristics of 23 observational studies included in the study. Overall, the three 

epidemiological journals produced 57% (CI = 34%, 77%) of the total articles included 

in the study. The other articles - 43% (CI = 23%, 66%) were obtained from the New 

England Journal of Medicine and Lancet. The International Journal of Epidemiology 

(IJE) and Lancet contributed more articles in the study than the other journals.  The IJE 

contributed 39% (CI = 20%, 61%) of the total articles whilst from the Lancet we 
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obtained 35% (CI = 16%, 57%) of the total articles.  Amongst these articles, cohort or 

follow-up studies were common. We obtained 74% (CI = 52%, 90%) of cohort or 

follow-up studies. The other study designs included; cross-sectional and case-control 

with 17% (CI = 5%, 39%) and 9% (CI = 1%, 28%) respectively.  

Non-communicable diseases such as diabetes, cancer, heart diseases and mental 

illness were commonly studied contributing 35% (CI = 16%, 57%) amongst principal 

diseases or outcomes being investigated and mortality followed with 30% (CI = 13%, 

53%). HIV, physiological or biochemical markers such as anti-mullerian hormone 

(AMH) concentration levels, body mass index (BMI) and other conditions contributed 

35% (CI = 16%, 57%). These outcome variables were commonly analysed as binary 

variables (44%, CI = 23%, 66%), continuous variables (30%, CI = 13%, 53%) and time-

to-event variables (26%, CI = 10%, 48%). For binary and time-to-event studies, 

mortality was more predominant compared to other outcome variables. 

Considering the exposures or main risk factor variables, socioeconomic 

exposures were commonly investigated; 30% (CI = 13%, 53%) of studies with such 

exposures were obtained. For example, Zhang and colleagues (Zhang et al., 2015) 

investigated the associations between neighborhood deprivation index (socioeconomic 

exposure) and BMI (outcome). The neighborhood deprivation index in this study was 

derived from the 2000 US Census housing and population data using variables such as 

income, poverty, housing, education, and employment and occupation status. The other 

exposures found included; diet and lifestyle exposures (17%, CI = 5%, 39%), 

environmental exposures (13%, CI = 3%, 34%) physiological or biochemical markers 

(9%, CI = 1%, 28%) pre-existing conditions (4%, CI = 0%, 22%) and other varied risk 

factors (26%, CI = 10%, 48%).  
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3.3.2 The incidence of categorisation amongst the exposures or main risk 

factors 

Amongst the 23 studies, 61% (CI = 39%, 80%) transformed the continuous 

exposures or the main risk factor variables into categorical or grouped measures for 

analysis. The other 39% (CI = 20%, 61%) kept the exposures or the main risk factor 

variables continuous.  For example, Li and colleagues (Li et al., 2015) investigated the 

association between BMI trajectories and adult BP across two generations keeping the 

exposure (BMI) continuous. Linear spline function with one knot was used to 

summarise longitudinal changes of the BMI curves in the two generations. In another 

example, Victora and colleagues (Victora et al., 2015) investigated the association 

between intelligence quotient (IQ) and breastfeeding duration (measured in months) and 

categorised the exposure (breastfeeding duration). The assumed categories for the 

exposure were varied, defined according to the total duration of breastfeeding and 

predominant breastfeeding duration (breastfeeding as the main form of nutrition with 

some other foods). The total duration of breastfeeding (in months) was categorised 

using five interval groups; <1, 1-2.9, 3-5.9, 6-11.9 and ≥ 12 which differed to the 

predominant breastfeeding categories defined as; <1, 1-1.9, 2-2.9, 3-3.9 and ≥4. In most 

articles, whenever categorical analysis was deployed as in the latter example, the 

categories were assigned ordinal values or scores to depict distinct levels amongst the 

categorised groups. Further details on the practices of categorisation considering only 

articles where continuous exposures or the main risk factors were transformed into 

categorical or group measures (n=14) are discussed in the next sub-sections.   

3.3.2.1 Decisions informing categorisation 

Amongst all studies which employed categorisation (n=14), one (7%, CI = 0%, 

34%) article explained their choice for reported categories. Categorical groupings 

adopted in the study were explained as hypothetically driven. Hypothesis-driven 
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categories were then used to construct a cut-off or dichotomised model which was 

tested against the non-categorical (continuous) model. Otherwise, the rest of the studies, 

93% (CI = 66%, 100%) did not explain or state reasons informing their choices of 

categorisation. 

3.3.2.2 Criteria used for categorisation  

Criteria used in establishing categorical boundaries for the exposure variables 

were varied with 21% (CI = 5%, 51%) of the studies using quantiles (e.g. median, 

quartiles, quintiles, and deciles). Equally spaced intervals or arbitrary groupings (which 

does not appear to be data or clinically driven) were very popular criterions for deciding 

categorical boundaries. Both equally spaced interval and arbitrary grouping criterions 

were observed in 65% (CI = 35%, 87%) of studies were categorisation occurred (see 

Table 3.1). Altogether, a combination of articles consisting ordered categories (equally 

spaced intervals and quantiles) and arbitrary grouping produced 86% (CI = 57%, 98%) 

of studies. 

Otherwise, the other 14% (CI = 2%, 43%) of articles selected their categories 

based on established guidelines. For example, Gardner and colleagues (Gardner et al., 

2015) used the WHO standards to categorise BMI into four categories; underweight 

(BMI < 18.5), normal (18.5 ≤ BMI< 25), overweight (25 ≤ BMI <30), and obese (BMI 

≥ 30) and Kaukonen and colleagues (Kaukonen et al., 2015) defined systemic 

inflammatory response syndrome (SIRS) status (present/absent) based on consensus 

statement of the American College of Chest Physicians and Society of Critical Care of 

Medicine. 

3.3.2.3 Number of categories 

When transforming continuous exposure variables for categorical analyses, the 

number of categories used across the studies varied between two and ten categories (see 

Table 3.1). Studies employing four or five categories were common. For example, 
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Gauffin and colleagues (Gauffin et al., 2015) investigated the association between 

school performance (exposure) and alcohol-related disorders (outcome) in early 

adulthood population by dividing the population into five categories: high school marks 

(> mean + 1 SD); high average (between mean and mean + 1 SD); lower average 

(between mean and mean -1 SD); low (< mean - 1 SD) and missing. The practice of 

categorisation with four or five categories was found in 57% (CI = 29%, 82%) of the 

articles. Dichotomisation (or grouping into two categories) was observed in one (7%, CI 

= 0%, 34%) article whilst ten categories appeared in two (14%, CI = 2%, 43%) articles 

(see Table 3.1).  

When comparing the practice of categorisation using quantiles against equally 

spaced interval grouping, four or five categories were more likely to occur with the 

latter practice. Amongst studies with four or five categories, equally spaced interval 

grouping occurred in 38% (CI = 9%, 76%) of the articles compared to 25% (CI = 3%, 

65%) of quantiles. 

3.3.2.4 Trend testing and analysis  

Trend tests are often performed to assess the strength of any exposure-outcome 

relationships that may exist in an investigation (Kodell and Chen, 1991). The results 

show that 57% (CI = 29%, 82%) of the studies which employed categorisation, 

performed the trend tests. For example, Wang and colleagues (Wang et al., 2015) 

performed a trend test in risk estimates using the median values of the heart rate quintile 

categories. The five values were treated as a continuous measure and were used to 

evaluate the risk trend; p-values were presented as part of the trend testing. In another 

example, Victora et al. (2015) performed the linear trend test based on mean categories 

for months of breastfeeding.  
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Amongst all studies were trend testing was performed, various significance trend 

values ranging between 0.0001 and 0.001 were obtained and interpreted as significant. 

However, there was variation across studies on how these values were obtained. Guertin 

and colleagues (Guertin et al., 2015) obtained the overall trend value from the pairwise 

estimates comparing coffee drinkers (number of cups/day) against non-drinkers 

(reference group). Moreover, in some studies, floating estimates (where no reference 

group is assumed) were used to attain the trend values. 

3.3.2.5 Covariate adjustment  

Considerations were also made to establish the number of confounders or other 

variables often adjusted for in studies investigating exposure-outcome relationships. 

Amongst studies where the exposure or main risk factor was categorised, the number of 

confounders or adjusted variables ranged between 3 and 20 with an average of 10 

variables. Cohort or follow-up studies tend to report large numbers of variables or 

confounders compared to cross-sectional and case-control studies. 

3.3.3 Summary of key findings 

Table 3.1 provides summary statistics of key findings emerging from the study 

results. The proportions and confidence intervals of main findings explaining the 

characteristics of categorisation are presented in the table.  
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Table 3.1: Key findings showing the characteristics of categorisation amongst the 

exposure variables in epidemiological studies 

Characteristics of categorisation % of articles & CI 

regions 

Prevalence of categorisation 61% (CI = 39%, 80%) 

 

Decision informing categorisation 

Hypothesis-driven categories 

Unknown (reasons not provided in the articles) 

 

 

 

7% (CI = 0%, 34%) 

93% (CI = 66%, 100%) 

 

Criteria used for categorisation  

Established external criteria (e.g. WHO standards) 

Arbitrary grouping 

Equally spaced interval grouping 

Quantile grouping 

 

Number of categories used amongst grouped 

exposures 

2 

3 

4 

5 

6 

10 

 

Proportion of trend testing 

14% (CI = 2%, 43%) 

29% (CI = 8%, 58%) 

36% (CI = 13%, 65) 

21% (CI = 5%, 51%) 

 

 

 

7% (CI = 0%, 34%) 

7% (CI = 0%, 34%) 

29% (CI = 8%, 58%) 

29% (CI = 8%, 58%) 

14% (CI = 2%, 34%) 

14% (CI = 2%, 34%) 

 

57% (CI = 29%, 82%) 
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3.4 Discussion 

The present study indicates a high occurrence of categorisation in 

epidemiological studies. Amongst the articles investigating the associations between the 

continuous exposures and disease outcomes, 61% of them transformed the exposure 

variables into categorical measures for analysis. The results are consistent with those 

obtained in previous reviews. Pocock et al. (2004) and Turner et al. (2010) respectively 

reported 84% and 86% of categorisation in epidemiological studies. However, 

compared to these studies, we recorded the lowest proportions of categorisation. This 

could be attributed to the numbers and journals selected for assessment. For instance, 

the American Journal of Epidemiology (AJE) which was not considered in this survey 

contributed more articles (about 53% of articles) in Turner’s study. There is also a 

possibility of under-representation from other specialist areas since we only used high-

ranking journals. High ranking journals may be strict and particular with the quality of 

work they wish to publish. Thus, this could limit the number of articles considered in 

our study. However, there are advantages to evaluating high impact journals. They offer 

us the opportunity to report on practices from leading researchers.  

Amongst the transformed continuous exposures, nearly 60% of the articles 

reported ordered categories (using either equally spaced intervals or quantiles). This 

kind of categorisation when investigating the exposure-outcome relationship has some 

disadvantages (Bennette and Vickers, 2012). Quantiles produce estimates that are data 

dependent. On the other hand, equally spaced interval groupings produce categories that 

can be statistically inefficient and unjustifiable. With normally distributed data, it will 

be ideal to have more categories at the center and a few at the tails (Bennette and 

Vickers, 2012). One would expect this to be a justification for arbitrary grouping 

however none was provided for all articles where such criterion was used. Justifications 

informing categorisation or grouping were explained in 7% of the studies. This is 
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despite the call to describe, “Why quantitative groupings are chosen in the studies” 

(recommendation 11 of the STROBE guidelines). Hence, high proportions of articles 

not explaining their choice for categorisation could be an indication that authors are not 

aware of existing guidelines. Otherwise, authors are ignoring the guidelines or simply 

underestimating the consequences of categorising data when analysing continuous 

variables. 

The assessment also shows that researchers use different categories when 

categorising exposures or risk factors. However, four and five categorical groupings 

were common amongst studies categorising continuous exposure variables. 

Approximately, 60% of the studies used four or five categories when transforming the 

exposures for analysis. The finding is consistent with what other researchers view as a 

common practice in epidemiology (Becher, 1992, Royston et al., 2006). According to 

Royston et al. (2006) and Becher (1992), four or five categories are often created in the 

field of epidemiology. Dichotomisation was not popular; the practice featured in one 

article only. 

Of particular interest was also how the confounders and other variables were 

adjusted when investigating the exposure-outcome relationships. There are no clear 

procedures to decide on the choice and number of confounders and other variables when 

investigating exposures and outcome relationships (Sauerbrei et al., 2007). Quite often 

we rely on evidence from other studies, subject knowledge, statistical packages and 

correlations to choose the variables we wish to include as confounders in our analysis. 

In this study, we observed large numbers of unrelated confounders and variables being 

investigated. This could result in false positive claims. Careful consideration is needed 

to establish what true confounders are in our investigations. In one article in this 

assessment (Guertin et al., 2015), a multivariable model was adjusted for 20 variables.  
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Such models are hard to interpret and can be misleading. Variables might be dependent 

on each other making it difficult to explain their associations. The use of directed 

acyclic graphics (or DAGs) (Textor, 2013) offers a better solution to identify and 

establish relations. DAGs provide graphical models explaining causal relationships 

amongst variables of interest (Textor, 2013). Furthermore, studies with a large number 

of confounders and variables should also be accompanied by large samples. The 

samples should also incorporate the study designs. Otherwise, studies with small 

samples, categorising exposures and having too many variables are likely to be 

underpowered (Royston et al., 2006). 

Taking into consideration trend testing and analysis, 57% of the articles 

performed the tests after categorising the exposure variables. Trend values such as 

ordinal scores, mean and median of categories were often used in fitting and evaluating 

the overall trends. In all the studies reviewed, the null hypothesis was not clearly 

provided. However, indications from the studies suggest the hypothesis of no exposure-

disease association was always assumed. We found that small significance values for 

trend statistics were in some studies interpreted as the existence of a monotonic 

(continuously increasing or decreasing) relationship between the exposures and risk 

outcomes. For example, after obtaining a trend value of 0.0006, Liu and colleagues (Liu 

et al., 2015) concluded that the risk between nasopharyngeal carcinoma (NPC) and 

categorised sibling size was continuously increasing. Such interpretations could be 

misleading. Sometimes a significant trend statistic value does not imply a continuously 

increasing risk of exposure on the outcome. Trend tests are not tests for monotonic 

exposure-outcome relationships (Maclure and Greenland, 1992, Schmidt et al., 2013a). 

If the exposure-outcome relationship is unknown, the trend test may obscure rather than 

reveal the relationship (Maclure and Greenland, 1992). Trend or slope estimation 
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methods such as polynomial regression and non-parametric models should supplement 

trend testing when investigating relationships which are unknown. 

3.5 Conclusions 

In epidemiology, studies evaluating issues of categorisation according to the 

STROBE guideline are lacking. Based on recommendation 11 of the STROBE 

guidelines, this study highlights current practices for analysing continuous variables 

focusing on issues of categorisation. Findings obtained using five medical journals 

indicates high proportions of categorisation within epidemiological studies. The 

categorisation of continuous exposure or risk factors was found in 61 percent of articles 

assessed. Reasons and justifications informing the choices and practices of 

categorisation are rarely provided and remain unknown. The findings confirm the 

presence and claims of categorisation viewed by some researchers as a dominant feature 

for analysing continuous data in medicine.  

Clearly, these findings raise concerns about the adequacies of analysis and 

quality of reporting. Categorisation enables researchers to assume simple relationships 

between the outcome and exposures and in the process the information is lost. How 

much information is lost will depend on cut points or categories used (Altman et al., 

1994). In this study, we have seen four or five group categories being dominant. 

However, we cannot be certain of how much information is lost when four or five group 

categories are assumed under different exposure - outcome associations.  

The majority of researchers also preferred to use equally spaced intervals or 

arbitrary grouping. In medicine, biologically meaningful cut points are necessary to 

inform decisions which relate to the pattern of the data. Establishing meaningful cut 

points where complex relationships or associations are present may not be easy. 

Alternative approaches such as fractional polynomials (Royston and Altman, 1994, 
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Royston et al., 1999) and splines (Desquilbet and Mariotti, 2010, Schmidt et al., 2013b) 

are available. However, the precision and performance of these approaches in the 

presence of complex associations are also not well known (Keogh et al., 2012). Further 

research evaluating these approaches, their performance and precision under different 

complex associations is required. 

Other existing guidelines available for medical researchers can be found on 

online resources including the Enhancing the QUAlity and Transparency Of health 

Research (EQUATOR) network website (www.equator-network.org) which have the 

aim of improving the reporting of epidemiological and clinical studies. 
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  Chapter 4

Comparison of different approaches for modelling 

associations between an exposure and a continuous 

outcome – a simulation study 

4.1 Introduction 

Limited comparisons on the properties of FP and RCS and their performance 

against the method of categorisation and linear models (known as linearisation in this 

thesis) are available to date (Strasak et al., 2011, Binder et al., 2013). Lack of examples 

in the application of these methods, differing views on the most appropriate alternative 

approach, perceived difficulties in application and interpretation of estimates could be 

the reason why the FP and RCS approaches are not widely used in medical studies. The 

survey on current research practice revealed the common use of categorisation amongst 

medical studies investigating the relationships between continuous predictor variables 

and the outcomes. About 61% of the publications converted continuous predictor 

variables into categorical groups during statistical analysis. Further results on the 

current research practice of analysing continuous predictors in medicine could be found 

in  Chapter 3. 

One way to compare a variety of statistical methods such as categorisation, 

linearisation, FP, and RCS is through a simulation study. Simulation studies are known 

for their ability and strength in assessing the appropriateness and accuracy of statistical 

methods using pre-defined scenarios (Burton et al., 2006, Crowther and Lambert, 2013). 

This is because, in reality, the appropriateness and accuracy of statistical methods 

cannot solely be evaluated and achieved with real data alone (Burton et al., 2006). In the 
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literature, simulation studies comparing, fractional polynomials and spline based 

approaches have focused mostly on (1) variable or covariate selection and (2) global fits 

or functions relating to covariates and/or outcome variables. For example, Binder and 

colleagues (Binder et al., 2013) compared FP and RCS methods in multivariable setting 

to help provide guidance on the appropriate technique for model building in situations 

where moderate number of covariates with different shapes are of interest. In another 

simulation, the performance of FP and RCS models were assessed based on various 

association functions found in environmental and occupational epidemiology 

(Govindarajulu et al., 2009). To reflect studies in environment and occupational health, 

Govindarajulu et al. (2009) investigated six plausible exposure-response scenarios (with 

right skewed exposure distributions). One important aspect lacking in these simulations 

was the performances of FP and RCS methods against the turning or thresholds 

(Muggeo, 2003, Benedetti et al., 2009) points. Turning points or thresholds (words used 

interchangeably) are defined as the locations where nonlinear functions experience 

sudden changes in their directions or slopes.  

In epidemiology, exposure-outcome relationships may be characterised by 

sudden changes when the exposure reaches an unknown threshold or turning point 

(Pastor and Guallar, 1998, May and Bigelow, 2005). When this occurs, some natural or 

biological phenomenon may be present; requesting some interpretations from the 

researchers for health policy implementation or planning. Therefore, reporting 

exposure-outcome relationships require reliable models that have the ability to predict 

not only the function but also its turning points or thresholds (if they present in the 

data). However, none of the usual methods of analysis provides an inferential guide for 

estimating the location of turning-points when modelling exposure-outcome 

relationships (Pastor and Guallar, 1998). 



52 

To bridge this gap, this chapter assessed and compared the performance of 

categorisation, linearisation, FP and RCS methods based on different exposure-outcome 

relationships (with predetermined thresholds or turning points) to provide guidance on 

the appropriate models. The assessment was performed using a simulation study under 

the ‘normal error’ regression framework - assuming different relationships between one 

continuous exposure variable and one continuous outcome. The idea was to evaluate the 

performance of these methods directly in simulated datasets where the distribution of 

the continuous exposure and shapes of the underlying exposure-outcome relationships 

are known. The ultimate aim was to encourage the use of FP and RCS models and 

inform researchers on their properties of estimating exposure-outcome functions and 

turning points in medical studies. Although, the FP and RCS models has potential 

features suitable for analysing exposure-outcome studies they are not widely used. 

Findings in  Chapter 3 showed that the method of categorising continuous predictor 

variables was popular amongst studies investigating exposure-outcome relationships. 

Compared to the methods of linearisation, FP and RCS, the method of categorisation 

may be inadequate or limited for analysing exposure-outcome relationships and 

estimating thresholds in the data. To investigate this, the specific objectives of this 

chapter are provided in section  4.1.1. Detailed simulation procedures are provided in 

section  4.2. Sections  4.3,  4.4,  4.5 and  4.6 describe the performance measures in the 

simulations, results, discussion and conclusion of this chapter respectively. 

4.1.1 Aim and objectives: 

The main aim of this chapter was to investigate and compare the performance of 

categorisation, linearisation, FP, and RCS methods based on simulated exposure-

outcome relationship datasets - focusing on the ability of these methods to (1) recover 

the ‘true’ relationships assumed in the simulations and (2) estimate the positions of 

‘true’ turning points or thresholds in the data.  
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To achieve this aim, the predicted functions (attained using these methods) were 

compared with the ‘true’ exposure-outcome relationships in the simulations by 

quantifying or evaluating the following performance measures: 

i. The root mean square error (RMSE) for goodness of fit. The RMSE was 

computed by taking the difference between predicted functions and the true 

simulated exposure-outcome curves (without the error).  

ii. The rates of type 1 errors amongst the alternative regression models 

(fractional polynomials and restricted cubic splines). A function showing a 

linear relationship between an exposure and the outcome was simulated and 

fitted with FP and RCS models to estimate the proportion of times linearity 

was rejected in 1000 replicates (iterations). 

iii. The 95% confidence interval regions of median predicted functions used in 

estimating the ‘true’ exposure-outcome shapes. The 95% confidence 

intervals allowed inference on the coverage of median predicted models 

against ‘true’ shapes. 

iv. The precison of median predicted functions in estimating the actual turning 

points or thresholds assumed in the simulations. The estimated turning or 

threshold points from the mean predicted curves were provided with their 

corresponding 95% confidence intervals. 

4.2 Simulation framework 

4.2.1 Introduction 

Motivated by application to real data, the simulations in this chapter were 

exemplified by alcohol-blood pressure relationships found in epidemiological studies. 

However, this work is generalizable to most observational studies investigating 

exposure-outcome relationships with continuous exposures or risk factor variables. Both 
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the continuous and binary outcome models were covered in the simulations. But, the 

present chapter only provides for continuous outcome models. The results showing the 

simulations with binary outcomes are presented in  Chapter 5. 

In the literature, several studies report positive associations between alcohol 

intake and blood pressure (Chang and Park, 1991, Marmot et al., 1994, Choudhury et 

al., 1995, Moreira et al., 1998). However, the shape of the alcohol-blood pressure 

association and threshold dose for hypertension remains unclear (Keil et al., 1998, 

Husain et al., 2014). This is because in some studies the relationship has been reported 

as linear (Chang and Park, 1991, Beilin et al., 1996), U-shaped (Jackson et al., 1985, 

Matsumoto et al., 2009) and sometimes with threshold effects or J-shaped (Klatsky et 

al., 1977, Gillman et al., 1995).  

In most of these studies, the authors reported alcohol-blood pressures 

relationships after categorising the alcohol intake measurements (Jackson et al., 1985, 

Moreira et al., 1998). The possibility of misspecified models and risk estimates in such 

instances could occur. Assuming an adult population, alcohol consumption datasets 

(intake measured in continuous scale) were generated based on example scenarios found 

in the literature to compare the method of categorisation against the linear, FP and RCS 

models in a simulation study.  

4.2.2 Simulation set-up  

Let’s consider a simulation structure with an outcome variable (𝑦) and one 

continuous exposure variable (𝑥). Suppose an exposure variable (𝑥) was drawn from a 

uniform distribution with a range of values between 0 and max (𝑥) and 𝑦 as an outcome 

variable has normally distributed errors. To conduct simulations of various exposure-

outcome relationships from an example study chosen from epidemiology, assume 

𝑦~𝑁(𝐸(𝑦), 𝜎2) where 𝐸(𝑦) = 𝑓𝑖(𝑥) represent the simulated true mean functions such 
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as those found in the example provided in section ‎4.2.2.2  and 𝜎 denote the standard 

errors of an outcome (𝑦).  

With any statistical program suitable to conduct simulations, a seeding number 

could be initiated to generate random observations and set up the simulation with 

multiple datasets assuming different number of observations (𝑁𝑖, 𝑖 = 1,2, … , 𝑘) with 

various random errors (𝜎𝑖, 𝑖 = 1,2, … , 𝑛) replicated 𝑅 times. For each dataset, the 

observations inside the loop should be varied when replicating the samples 𝑅 times. 

Moreover, the simulation should be done such that 𝑅 is sufficient to produce minimum 

Monte Carlo error (MCE). The MCE is linear in 1 √𝑅⁄  . Therefore, based on the 

asymptotic property, as 𝑅 is increased, 1 √𝑅⁄ → 0 as the MCE (Koehler et al., 2009).  

4.2.2.1 Description of Stata (statistical simulation program)  

The programming structure in Stata 13 (StataCorp LP, 2013) is widely 

supported for many estimators and functions hence the program was identified as a 

suitable environment to perform the simulations. The Monte Carlo simulations in Stata 

can be carried out using either the simulate or postfile command (Adkins and Gade, 

2012). In this work, the postfile command was used. The postfile command works 

with loops (e.g. forvalues, while and foreach looping) that makes it more powerful and 

flexible to use. Using the simulate command has disadvantages; it requires a lot of 

intervention from the user. The joint analysis and results from different models with 

different parameters cannot be attained without manually changing the file names and 

merging different datasets (Adkins and Gade, 2012). Example codes of the simulation 

procedures carried out using the postfile command are provided in ‎Appendix B.  
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4.2.2.2 Alcohol blood pressure example 

Consider alcohol intake (measured in grams/day) as a uniformly distributed 

exposure variable (𝑥) with a range of values between 0 and 60 grams/day (average 

intakes from the literature) and systolic blood pressure (measured in millimetres per 

mercury, mm Hg) as an outcome variable (𝑦) with normally distributed errors. As an 

example, the proposed mean functions, 𝑓𝑖(𝑥) similar to those found in epidemiological 

studies explaining alcohol-blood pressure relationships are presented in Table 4.1.  

 

Table 4.1: Nonlinear associations investigated with continuous outcome models 

Type of 

associations 

Functions Proposed ‘true’ functions 

Linear 𝛽0 + 𝛽1𝑥 𝑓1(𝑥) = 120 + 0.38𝑥 

Linear 

piecewise 

threshold 

𝛽0 + 𝛽1(𝑥 − 𝑐) 𝑓2(𝑥) = {
121                                   𝑖𝑓 𝑥 ≤ 20

121 + 0.78 ∗ (𝑥 − 20) 𝑖𝑓 𝑥 > 20
 

 

Nonlinear 

piecewise 

threshold 

𝛽0 + 𝛽1(𝑥 − 𝑐)
2 

𝑓3(𝑥) = {
121                                       𝑖𝑓 𝑥 ≤ 20

121 + 0.038 ∗ (𝑥 − 20)2 𝑖𝑓 𝑥 > 20
 

U-shaped or 

Quadratic 

𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 𝑓4(𝑥) = 134 − 1.44𝑥 + 0.036𝑥

2 

 

From the example in Table 4.1, multiple datasets were created based on the 

proposed mean functions representing alcohol-blood pressure relationships such that 

each dataset has 200, 500, 1000, 5000, and 10000 observations respectively. Variation 
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within individual’s blood pressure was accounted by generating observations with 

varying standard errors (𝜎𝑖 = 2.5, 5.0, 7.5). NOTE: When 𝑦 = 𝑓𝑖(𝑥) + 𝜀 then 𝜀 is the 

error term with mean zero and variance, (𝜀~𝑁(0, 𝜎2)). This procedure produced blood 

pressure (BP) outcome values with minimum, moderate and large variations in the 

datasets respectively. These BP outcomes were then predicted using the categorisation, 

linearisation, FP, and RCS regression models taking alcohol intake as an exposure 

variable. In this example, the proposed standard errors assumed corresponds to findings 

reported by Saunders and colleagues (Saunders et al., 1981) in a cohort study of 132 

alcoholic patients who were admitted in a hospital for monitoring. The study was 

performed to investigate the relationship between alcohol consumption and blood 

pressure on patients who regularly consumed more than 80g of alcohol/day. The 

investigation was done over a period of two years and the blood pressures of patients 

were measured at the day of admission while still drinking, during detoxification from 

alcohol and after a period of abstinence. After a day of admission, BP was taken at least 

twice a day. The BP readings were made when the patient was lying upright. Following 

detoxification and continued absenteeism of alcohol, a mean change of 17.4 mmHg 

from the normal systolic BP of 120 mmHg was reported. In the example, this mean 

change correspond to 𝜎 = 7.5 that yield mean fluctuation of approximately 18 mmHg 

from the normal blood pressure levels amongst the alcohol consumers. In datasets 

where 𝜎 = 2.5, the mean change of blood pressure in alcohol consumers was expected 

to be approximately 6 mm Hg from normal systolic BP of 120 mmHg. Similarly, for 

𝜎 = 5.0 the expected mean change from the normal should be approximately 12 mm 

Hg. 

Based on these example datasets, the categorical, linear, FP and RCS regression 

models were then fitted to predict the mean functions in Table 4.1. The latter was 
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performed in each dataset with varying observations 

(𝑛 = 200, 500, 1000, 5000, 10000) and 𝑅 = 1000 replications. Replicating datasets 

1000 times produced an approximate MCE of 3%. Given this, good regression models 

should be able to produce sufficient estimates in the simulated datasets since 𝑅 was 

large and yields minimum MCE. 

Graphically, the example mean functions in Table 4.1 are shown in Figure 4.1. 

These mean functions were referred as ‘true’ functions in this chapter and the interest 

was to establish how the categorical, linear, FP and RCS regression models performed 

against them in the simulation. 

 

 

Figure 4.1: The proposed 'true' association functions used in the simulations to compare 

the properties and performances of fractional polynomials, restricted cubic spline, 

categorisation and linear regression techniques 
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Briefly from Figure 4.1; (i) the linear association function assume an increasing 

blood pressure for any unit of alcohol consumed. (ii) The piecewise association function 

was characterised by the absence of harmful effects at certain levels of consumption 

however after the threshold, the effect was large and harmful. Two types of piecewise 

associations were investigated; (a) linear and (b) nonlinear piecewise functions. The 

latter depicts the increasing nonlinear effect of alcohol on blood pressure after the 

threshold whilst the linear piecewise shows an increasing linear effect. (iii) For U-

shaped or quadratic association function, the effects of alcohol intake on blood pressure 

were greater at minimum and maximum units of consumption. In the quadratic 

association function, the optimal intake favourable or beneficial to consumer’s blood 

pressure was found between these extreme units (see Figure 4.1). 

4.3 Methods evaluating the performance of statistical models  

This section begins by briefly describing the implementation of categorical, 

linear, fractional polynomials (FP), and restricted cubic splines (RCS) regression 

models in the simulation. For additional information, the methods of categorisation, 

linearisation, FP, and RCS were broadly described in ‎Chapter 2. This section concludes 

by explaining the performance measures used to evaluate the regression models under 

investigation.  

In the simulations, the method of categorisation was implemented by 

transforming the continuous exposure variable (alcohol intake, g/day) in the following 

ways. First, the alcohol intake measures were categorised into three categories (CAT3) 

as commonly reported in alcohol studies (Higashiyama et al., 2013). Second, the 

alcohol intake measures were transformed into five categories (CAT5) - to assess the 

influence of number of categories in the simulations. The categorical boundaries in 
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CAT3 were established using the tertile distribution of the exposure. In contrast, 

quintiles were used to establish categorical boundaries under the CAT5 approach. 

Tertiles and quintiles produce ordered categories preferred by medical researchers in 

studies categorising continuous variables (see ‎Chapter 3). Alternatively, the relationship 

between continuous exposure and the outcome variables were analysed by keeping both 

the exposure and outcome variables continuous in the simulations. The simplest 

approach of keeping these variables continuous in the analysis was assuming linearity 

on the data. This process was achieved through the method of linearisation.  

For complicated functions covering both linear and nonlinear relationships, the 

FP and RCS were fitted. The FP model with 𝑚 ≤ 2 degrees was considered sufficient 

for the simulated alcohol-blood pressure relationships datasets. The FP family with 

𝑚 ≤ 2 degrees offers a wide range of association shapes that generally improves the fits 

covered by conventional polynomials (Royston and Altman, 1994, Royston and 

Sauerbrei, 2008). For a permissible set of FP powers, 

𝑝𝑗  ∈  {−2,−1,−0.5, 0, 0.5, 1, 2, 3} there exist 44 possible combinations of models for 

the FP family with 𝑚 ≤ 2 degrees. Furthermore, the second degree FP models (with 

𝑚 = 2) allows the estimation of at most one possible turning point (Royston et al., 

1999). Hence, the proposed FP approach should be adequate for any nonlinear 

relationship assumed in the simulations since few turning points (<2) are considered. 

The RCS method was implemented by using 3 knots located at the 10
th

, 50
th

 and 

90
th

 percentiles distribution of the exposure (alcohol intake, g/day). The RCS functions 

with 3 knots should provide adequate fits since the simulated datasets are less complex 

with few turning points (<2). The RCS functions with more than 3 knots were likely to 

be less parsimonious and over fitted because the curves under investigation were not 

characterised by multiple sudden changes over the exposure space (Durrleman and 
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Simon, 1989, Rutherford et al., 2015). Finally, the fractional polynomials (FP), 

restricted cubic splines (RCS) models in this simulation study were implemented using 

standard procedures found in most available statistical programs.  

The final regression models attained with the methods described above were 

then evaluated and compared using the following performance measures: 

4.3.1 Goodness of fit 

The root mean square error (RMSE) was used to measure the goodness of fit for 

predicted models. The RMSE assessed the goodness of fit in the simulations by 

considering the distance between the predicted association curves and the ‘true’ 

association functions. In 1000 simulations (replicates), the RMSE was obtained by 

taking the difference between the predicted curves and true association functions (for 

each iteration). This was done at each observed data points along the exposure scale (x-

axis). Thus, for simulations with different sample sizes 

𝑛 = 200, 500, 1000, 5000, 10000 replicated 1000 times (𝑅 = 1000) the RMSE was 

calculated as follows: 

𝑅𝑀𝑆𝐸 (𝑓�̂�(𝑥𝑗)) = √
1

𝑛
∑ (𝑓𝑖(𝑥𝑗) − 𝑓𝑖(𝑥𝑗))

2

∀𝑖𝑗  ,    Eq. 4. 1 

where 𝑓�̂�(𝑥𝑗) is the estimated association curve for the 𝑖𝑡ℎ simulated dataset evaluated at 

the 𝑗𝑡ℎ exposure value (𝑥𝑗) and 𝑓𝑖(𝑥𝑗) is the ‘true’ curve at 𝑥𝑗.  

To visualise and compare the performance of different methods fitted in various 

exposure-outcome shapes in the simulation, the median of all the RMSEs for each set of 

simulations (in 1000 replicates) were reported and presented using bar graphs. A 

regression model with the smallest median RMSEs had the better fit suggesting a closer 

relationship between the predicted and ‘true’ association shapes. The 95% confidence 

intervals (CI) for the median RMSE were also provided in summary graphs for 
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visualisation and also to convey the effects of sampling variation in the simulated 

datasets. To estimate the 95% confidence intervals for the median RMSEs the lower and 

upper boundaries were first calculated based on the following percentiles: 

𝑙𝑏 =
𝑅

2
− (𝑍1−𝛼/2

√𝑅

2
) and 𝑢𝑏 = 1 +

𝑅

2
+ (𝑍1−𝛼/2

√𝑅

2
)    Eq. 4. 2 

where 𝑅 = 1000 iterations and 𝑍1−𝛼/2 is the appropriate value from the standard 

normal distribution. At 𝛼 =  0.05 the standard normal value is 1.96.  

When 𝑅 replicates are ranked in an increasing order of magnitude, the 47
th

 and 

53
th 

percentiles points (rounded to the nearest integer) gives the lower and upper bound 

respectively for the median RMSE estimates. This approximation method for median 

confidence intervals is acceptable in most sampling scenarios (Campbell and Gardner, 

1988). In the simulations, the median confidence intervals have attractive properties 

compared to when using the general CIs from the means. For any estimator, they are 

easy and simple to obtain whereas the mean CIs are generally difficult to compute. 

After ranking the estimators, one could easily get the median CI as stated above after 

ranking the estimators whilst for mean CIs special care would be needed to determine 

the variance of the estimators. Wider CIs of the median may also suggest insufficient 

𝑅 in the simulations (Strelen et al., 2001). 

Going back to the RMSE, one distinct advantage of this quantity is that it 

provides a quadratic loss function (Makridakis and Hibon, 1995). The RMSE enable 

researchers to study and infer on necessary conditions that may be required to achieve 

minimum distance between the predicted and ‘true’ functions in the simulations. For 

example, large value of the loss function means optimisation may be required to achieve 

minimization. In such scenarios, optimisation could be achieved by either (1) 

increasing/decreasing the sample sizes (𝑛) in the data and/or (2) working on datasets 
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with small/large noises in the data. Thus, the RMSE plays an important role as a 

statistical measure of variance/uncertainty around the `true’ association functions 

(Makridakis and Hibon, 1995, Chai and Draxler, 2014). In statistics, such measures of 

variance are pre-requisite for inference. They provide a complete picture of the error 

distribution (Makridakis and Hibon, 1995, Chai and Draxler, 2014). Contrary to these 

positives, the RMSE is greatly influenced by extreme values or outliers hence it can be 

a misleading measure of the average fit (Willmott and Matsuura, 2005, Chai and 

Draxler, 2014). Nonetheless, the RMSE have been recommend for model assessment in 

medical studies for continuous outcome measures (Harrell et al., 1996). Besides the 

RMSE, another competing measure of model fit is the mean absolute error (MAE). 

However, the MAE was excluded for evaluation since is only recommended for 

uniformly distributed error models (Chai and Draxler, 2014). 

4.3.2 The type I error and power rates   

4.3.2.1 Type I error rate 

In this simulation, the type I error was defined as the proportion (or probability) 

of rejecting the test of linearity while it was actually true. This test was performed with 

alternative regression models (fractional polynomials and restricted cubic splines) to 

assess their susceptibility in fitting linear association datasets. Using the simulated 

linear association datasets obtained through the ‘true’ linear functions assumed in Table 

4.1, the linearity tests were performed as follows: 

i. The null hypothesis using fractional polynomials models was set up such 

that, 𝐻0: 𝑚 = 1, 𝑝 = 1 and the alternative occurred for any 𝑚 ≤ 2 and 𝑝 ≠

1. Under the spline regressions, the null hypothesis was such that 𝐻0: �̂�1 =

0.38. Recall: In Table 4.1 the slope coefficient for the ‘true’ linear 

association function is 0.38. The alternative was any association function 

obtained when fitting the RCS model with 3 knots.  
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ii.  After setting the hypothesis, 1000 simulations (iterations) were performed 

and fitted with both FP and RCS regression models. 

iii. Based on the final FP and RCS regression models (obtained at each 

iteration), the linearity test was performed based on the likelihood ratio 

statistic with 3 degrees of freedom assuming 𝛼 = 0.05. The chi-square value 

of this test can be written as 𝜒2 = −2𝑙(𝑥) − [−2𝑙(𝑓(𝑥))], where 𝑙(𝑥) is the 

partial log-likelihood from the linear model and 𝑙(𝑓(𝑥)) is the partial log-

likelihood from the estimated model. This likelihood ratio test statistic was 

considered appropriate because, in both fractional polynomials and restricted 

cubic splines models, the linear association functions are nested within these 

methods.  

iv. Finally, after 1000 replications in the simulations, the proportions of times 

the null hypothesis was rejected (with 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) was computed 

and reported as type 1 error rates.   

4.3.2.2 Power 

The model power rates were defined as the proportion of times the FP and RCS 

models were able to correctly identify the existence of nonlinearity in the data and reject 

the hypothesised linear relationships. When the model failed to reject a false null 

hypothesis (existence of linearity) then the type II error was committed. Given the latter, 

the knowledge of type II rates (𝛾) was essential for quantifying the power rates in each 

modelling approach. The two measures (power and type II rates) complement each 

other. In the simulations, the model power rates were computed in all nonlinear 

association shapes proposed in Table 4.1 following steps ( i) – ( iii) outlined when 

investigating the type I error rates in section  4.3.2.1. In step (iv), after 1000 simulations, 

the model power rate was computed by subtracting the type II error rate from one (that 

is 𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛾, where 𝛾 is the type II error rate).   
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4.3.3 Confidence intervals, turning points, and coverage probabilities 

4.3.3.1 Confidence intervals 

The confidence intervals for each method were obtained and graphed after 

fitting the estimated functions in 1000 simulations (replicates). This made it possible to 

visually assess the performance of each method against the ‘true’ association functions. 

To construct the 95% CI graphs for each method, the 2.5
th

 & 97.5
th

 percentile points of 

the predicted outcomes were obtained and plotted on the exposure scale to represent the 

CI regions. In the graphs, the 50
th

 percentile points representing the median predicted 

association curves for each method were also shown. This approach of calculating the 

95% CI region is known as the percentile method (Diciccio and Romano, 1988, 

Haukoos and Lewis, 2005). For comparisons, the ‘true’ association function curves 

were also presented in the graphs. The outcome values in the graphs were transformed 

in log scale to retain the same range of units to visually assess the differences in the 

fitted functions. 

4.3.3.2 Turning points 

In all nonlinear association datasets considered in the simulations, the ‘true’ 

turning points (or thresholds) occurred when the exposure was at 20 units. The outcome 

occurring at 20 units of the exposure in these datasets was known as the ‘true’ optimal 

outcome. At this position, the ‘true’ functions retain the minimum outcome values (i.e. 

lower BP values) in the simulations. For prediction, the optimal exposure was estimated 

where the predicted function retains the minimum outcome. This means 1000 optimal 

exposure were obtained in the simulations together with the corresponding optimal 

outcomes. For reporting, the 50
th

 percentile points of the distribution representing the 

median estimates were provided together with their 95% CIs (estimated as the 2.5
th

 and 

97.5
th

 percentile distribution of the predicted values). These estimates were summarised 

in tables for comparison with the ‘true’ optimal values in the simulations. The tables 
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also showed the predicted outcomes (together with the CIs) occurring at 20 units of 

exposure to assess if the fitted models were underestimating or overestimating the 

outcome at the ‘true’ optimal exposure. 

4.3.3.3 Coverage probabilities 

Finally, the coverage probabilities were also computed as the proportion of 

times the 100 (1 − 𝛼)% confidence intervals, say �̂�𝑖 ± 𝑍1−∝/2𝑆𝐸(𝑑�̂�) included the 

‘true’ optimal outcome (𝑑) assumed in the 𝑅 simulations (𝑤ℎ𝑒𝑟𝑒  𝑖 = 1,2, … , 𝑅) 

(Burton et al., 2006, White, 2010).  Assuming a nominal 95% confidence interval, the 

coverage probability less than 95% level represents under-coverage in the simulation. In 

contrast, the estimated CI bounds were conservative in their coverage when the 

calculated proportions were greater than the 95% nominal level.  

4.4 Results 

This section presents the results of this chapter. Section  4.4.1 provides the 

results showing the goodness of fit for predicted models. The results of type I error rates 

associated with fitting linear association datasets using FP and RCS models were 

discussed in section  4.4.2. Section  4.4.2 also covers the results on statistical power of 

FP and RCS models. The final section  4.4.3 presents the results on model coverage; 

assessed by the graphs showing the predicted CI regions and reporting on coverage 

probabilities. 

4.4.1 Goodness of fit 

The goodness of fit for each regression model obtained under the four 

association shapes in Figure 4.1 was quantified using the RMSE as explained in 

section  4.3.1. The RMSE results were explained by noting the influence of noise and 

sample size variation in the simulation. Section  4.4.1.1 discusses the results showing the 
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effects of varying noises in the datasets. The effects of varying sample sizes on RMSEs 

were discussed in section  4.4.1.2. 

4.4.1.1 Effects of noise on the RMSE 

Figure 4.2 shows the effects of varying noise in a sample with 200 observations, 

replicated 1000 times. The noise in the datasets was varied at 𝜎 = 2.5, 5.0 and 7.5 to 

assess its effects on the RMSEs of different regression models. The heights of the bars 

in the graphs represent the medians of the estimated RMSE obtained across the 

simulations. The median RMSE estimates were presented using the same unit intervals 

to allow comparison between different models. The confidence interval limits of the 

median RMSE estimates were also provided at the top of each bar in the graph. 

However, the CI widths were narrow and not entirely visible on the graphs.  

Additional results showing the estimated median RMSEs and their 

corresponding 95% CIs in the simulations were displayed in  Appendix C (see Table 

4.3).  
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Figure 4.2: The estimated median RMSEs obtained when fitting (a) linear association 

shape (b) linear piecewise association shape (c) nonlinear piecewise association shape 

and (d) quadratic or U association shape using the linearisation, categorisation (CAT3 

and CAT5), RCS, and FP models in a simulation study with 1000 replicates. Various 

noises (𝜎) were considered in the simulation with 200 observations (sample size). The 

95% CI of each median RMSE are provided at the top of each bar. 

 

In Figure 4.2 (a) where the ‘true’ association shape was linear; the linearisation 

method retained smaller RMSE values compared to when fitting the fractional 

polynomials, restricted cubic splines, and categorisation models in the same dataset. 

The latter holds when varying the noise (𝜎) in the data. Increasing 𝜎 from 2.5 to 5.0 

doubled the median RMSE from 0.21 (CI=0.20, 0.22) to 0.42 (CI=0.41, 0.44) when 

fitting the linear regression model. When 𝜎 was increased from 2.5 to 7.5 the median 
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RMSE was almost three fold, 0.64 (CI=0.61, 0.68). The same pattern was also observed 

when fitting the same dataset with fractional polynomials and restricted cubic spline 

models. However, the RCS models retained smaller RMSE values than the FP models. 

The RMSE estimates under the CAT3 method were not adversely affected by 𝜎 in the 

same dataset. The CAT3 approach produced almost constant but large RMSEs when 

varying 𝜎 in the data. However, there was some slightest improvement when fitting the 

CAT5 with more categories. The CAT5 method retained the fit with the next largest 

RMSEs (that increased slightly with 𝜎). Overall, these results suggest that 

increasing 𝜎 in linear association dataset contribute more change on the RMSEs of the 

linear, fractional polynomial, and restricted cubic spline regression models than when 

applying the methods of categorisation. 

Under the linear piecewise thresholds, nonlinear piecewise thresholds and 

quadratic or U association datasets in Figure 4.2 (b)-(d); the fractional polynomial 

regression models produced the smallest RMSE quantities than the methods of 

linearisation, CAT3, CAT5 and restricted cubic splines. The RCS model followed the 

FPs with the next smallest RMSE estimates. The CAT3, CAT5 and linearisation models 

generally had larger RMSE estimates in these datasets. But, the CAT5 approach 

performed better than the CAT3 and linearisation methods. In addition, the three 

methods (CAT3, CAT5 and linearisation) were not affected by varying noise in these 

datasets. For any 𝜎 considered in the simulations, the three methods consistently 

produced larger constant RMSEs. In contrast, varying 𝜎 in the simulation affected the 

magnitudes of RMSE under the FP and RCS models (see Figure 4.2 (b)-(d)). Although 

the RMSE estimates under the RCS models were generally larger than those obtained 

with the FP models; varying 𝜎 contributed greater changes when fitting the FP models 

than when using the RCS methods (see Figure 4.2 (b)-(d)). The latter suggest the FP 

model was more susceptible to variation of noise in the data than the other methods of 
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analysis. This occurred despite the FP method retaining the least RMSE scores in the 

analysis. The RCS was more adaptive, its RMSE estimates were not adversely affected 

by noise variation - the RCS models neither retained larger or least RMSE estimates. 

4.4.1.2 Effects of sample sizes on the RMSEs of methods being studied 

The results showing the effects of sample size variation in the simulations are 

summarised in Figure 4.3. The simulations with different sample sizes taken in various 

association datasets where the noise was moderate, 𝜎 = 5.0 are shown. 

 

 

Figure 4.3: The estimated median RMSEs obtained when fitting (a) linear association 

shape (b) linear piecewise association shape (c) nonlinear piecewise association shape 

and (d) quadratic or U association shape using the linearisation, categorisation (CAT3 

and CAT5), RCS, and FP models in a simulation study with 1000 replicates. Various 

sample sizes were considered in the simulations where σ=5.0. 
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The results shown in Figure 4.3 (a) were attained from the linear association 

datasets fitted using the linearisation, CAT3, CAT5, FP and RCS regression models. 

Varying and increasing the sample sizes from 𝑛 = 200 𝑡𝑜 10000 yielded almost 

constant but large RMSEs when applying the CAT3 and CAT5 in the data. But, the 

RMSEs under the CAT5 method were smaller compared to the CAT3 models. When 

comparing the two methods of categorisation (CAT3 and CAT5) with other methods; 

the linear, FP, and RCS regression models had smaller RMSEs that decreased with 

sample size increase. However, the linear models had the least RMSE estimates across 

the samples assumed in the simulation (see Figure 4.3 (a)). Overall, these results 

suggest sample size increase do not improve the RMSEs under categorical methods 

when fitting linear association datasets. In contrast, the RMSEs under the linear, FP and 

RCS models could be minimised by increasing samples in the data.  

Under the linear and nonlinear threshold functions (shown in Figure 4.3 (b)-(c)); 

the CAT3 and linear models had smaller RMSEs in small sample datasets (𝑛 = 200). 

However, varying the sample to 𝑛 = 500, 1000, 5000, 10000 produced the RMSEs 

that were large and steady (see Figure 4.3 (b)-(c)). In contrast, the FP and RCS models 

retained smaller but consistent RMSEs in the simulation (when the samples were varied 

between 𝑛 = 200 and 𝑛 = 10000). Reflecting on these results, larger RMSEs under the 

methods of linearisation and CAT3 suggest lack of flexibility and inability of these 

models to adapt when applied in threshold functions. The CAT5 method produced 

steady, moderately large RMSEs in the two datasets (see Figure 4.3 (b)-(c)). 

Under the quadratic or U association datasets in Figure 4.3 (d), the FP models 

produced smaller RMSEs that were decreasing with the samples in the simulation. The 

RCS, CAT5 and CAT3 followed subsequently with the next smallest RMSE estimates. 

The linear regression models retained the largest RMSEs in the same datasets. 
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However, unlike under the FP models; the RMSEs obtained after fitting the CAT3, 

CAT5, linear and RCS methods remained steady across all the samples assumed in the 

simulation (see Figure 4.3 (d)).  

Further results showing the estimated median RMSEs and their corresponding 

95% CIs in other simulation conditions not presented here could be found in  Appendix 

C (see Table 4.3). However, Figure 4.2 & Figure 4.3 provides a comprehensive 

summary on the pattern of RMSE quantities for the five methods across different 

association functions studied. In general, similar patterns were observed across other 

combinations of noise and sample sizes not presented in this section. 

4.4.2 Estimated type I errors and statistical power  

The results investigating type I error rates and statistical power associated with 

fitting fractional polynomials and restricted cubic spline models are presented in this 

section. The type I error and power tests were performed in relation to the null 

hypothesis that the association between the outcome variable (blood pressure, mmHg) 

and the exposure (alcohol intake, g/day) was linear. To perform the tests, the linear and 

nonlinear associations functions provided in Table 4.1 were simulated and the 

likelihood ratio tests described in section  4.3.2 was executed. The proportion of times 

the linear association models were rejected under each function based on 1000 

simulations were noted and reported in Table 4.2 below.  
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Table 4.2: The proportion of times the test of linearity was rejected in 1000 simulations 

under linear association datasets fitted using FPs and RCS models (assuming different 

number of observations and random error (𝜎)). 

True association 

functions 

Methods of 

Analysis 

Sigma 

)(  

Number of observations 

200 500 1000 5000 10000 

Linear 

FP 2.5 

 

0.196 0.150 0.173 0.159 0.135 

RCS 0.044 0.042 0.051 0.046 0.051 

FP 5.0 0.210 0.187 0.228 0.151 0.146 

RCS 0.046 0.058 0.073 0.044 0.045 

FP 7.5 0.245 0.230 0.206 0.196 0.162 

RCS 0.064 0.048 0.051 0.044 0.055 

 

The results in Table 4.2 suggest the type I error rates were increasing with noise 

(𝜎) when fitting the FP regression models in linear association datasets. However, 

whenever the observations in the datasets were increased, the type I error rates 

improved. For example, under the noisy datasets (𝜎 = 7.5), when the sample size was 

small (𝑛 = 200), the type I error rate was 25% but this proportion decreased for larger 

samples. About 16% of type I error rate was observed under the FP regression model 

when the sample size was large (𝑛 = 10000). Compared to fractional polynomials, the 

type I error rates observed under the RCS regression models were smaller (considering 

all scenarios with different numbers of observations and 𝜎 in the simulations). The RCS 

methods produced type I error rates close to the nominal level of 5%.  

The power rates obtained when fitting nonlinear association datasets with FPs 

and RCS models are shown in Table 4.4 (see  Appendix C). As expected, the FP and 

RCS methods rejected the hypothesis of linearity majority of times when applied in 
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nonlinear association datasets. When the FP and RCS models were fitted in nonlinear 

threshold and quadratic datasets, the predicted power rates were 100% - suggesting that 

all the models fitted using linear regression were rejected (see Table 4.4 in the 

appendix).   

For linear threshold associations, the FP and RCS models retained less than 

100% power rates when the sample size was smaller (𝑛 = 200) and the data was 

noisy, 𝜎 = 7.5. The inability to reject the null hypothesis 100% times meant the type II 

errors were present. In such instances, the type II errors occurred when the test failed to 

reject the false null hypothesis in the simulation. The results in Table 4.4 (see appendix) 

under the linear threshold association datasets (𝑛 = 200, 𝜎 = 7.5) suggest the presence 

of 0.3% and 1.4% type II errors when fitting the FP and RCS models respectively.  

4.4.3 Median predicted associations shapes, their confidence intervals, and 

turning points 

This section presents the results showing the median predicted association 

shapes and their coverage regions. In the simulations, the median predicted association 

functions represent the average fit. Their coverage regions were reported using 

confidence intervals. For different association models produced using the methods 

under investigation, the aim was to determine whether the predicted median association 

shapes and their confidence intervals were able to identify and provide adequate 

coverage to the ‘true’ functions, and their turning or thresholds points. The results were 

summarised in two parts. Firstly, the median predicted association shapes and their 

confidence intervals were presented graphically – comparing predicted functions with 

‘true’ associations assumed in Table 4.1. The second part summarised the results of the 

estimated outcomes and their confidence intervals predicted from the CAT3, CAT5, FP, 

and RCS methods at the threshold (that is at 𝑐 ∗= 20). These results were meant to infer 

on whether the methods under study provide reliable estimates at the ‘true’ thresholds 
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(turning points) or not. The findings on the coverage probabilities of optimal outcomes 

were also reported at the end of this section to validate the reliability of the estimates. 

Turning (or threshold) points and optimal outcome estimates were not reported under 

the linearisation method due to its limitations of predicting such features in nonlinear 

datasets. 

4.4.3.1 The median predicted association shapes and their confidence intervals 

To infer on the ability of the linearisation, CAT3, CAT5, FP and RCS models 

against the identification of true association functions in Table 4.1, the results were 

presented graphically in Figure 4.4 & Figure 4.5 for comparisons. The results in Figure 

4.4 compared the median predicted association shapes against the ‘true’ linear and 

linear piecewise threshold association functions. The results for the nonlinear threshold 

and quadratic or U association function were provided in Figure 4.5. The 95% 

confidence intervals for the median predicted functions were also presented in these 

graphs. The summary results were obtained from the datasets with 200 observations and 

moderate noise, 𝜎 = 5.0 replicated 1000 times in the simulations. Identical graphs were 

obtained in other simulation conditions. However, narrow confidence intervals were 

observed in simulations with larger sample sizes. In addition, samples with large noise 

had wider confidence intervals (graphs not provided).  

In Figure 4.4 under the linear association shapes, the linearisation, RCS, and FP 

regression models produced functions that lied entirely on the ‘true’ shape. However, 

the FP function was characterised by wider CI width at the lower tail of the exposure. 

For example, based on an antilog scale, at zero exposure, the FP model had an outcome 

of 120.74 (CI=110.63, 128.88). In contrast, the linearisation, CAT3, CAT5 and RCS 

models retained narrow CI width at zero units of the exposure with the predicted 

outcome of 119.98 (CI=118.58, 121.46), 124.66 (CI=123.54, 125.79), 123.13 

(CI=121.64, 124.58) and 120.01 (CI=117.92, 122.05) respectively. The two methods of 
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categorisation (CAT3 and CAT5) produced step functions when fitted in linear 

association datasets – suggesting the categorical models do not accurately predict and 

identify the ‘true’ relationship assumed in the simulation. Likewise, the CIs produced 

under the categorical analyses provided insufficient coverage on the ‘true’ function (see 

Figure 4.4 – top row).  

Under the linear piecewise threshold association shapes, none of the five 

methods entirely identified the ‘true’ function in the data. Through its lowest exposure 

group category, CAT3 was the only method of analyses that was able to identify the 

non-harmful effect on the ‘true’ function. The CAT3 method also captured the ‘true’ 

optimal outcome assumed in the simulations, however, this approach failed to identify 

the linear relationship in the dataset after the threshold. After the threshold, the CAT3 

method produced a step function (see Figure 4.4 – bottom row). In contrast, the CAT5 

method failed to identify the non-harmful effect occurring between 14-20 units of the 

exposure by overestimating the outcome as 122.73 units (instead of 121 units). At the 

upper exposure values (> 20 units), the CAT5 also suggested an increasing step function 

(just like the CAT3), however, the ‘true’ function was linear (see Figure 4.4 – bottom 

row). The linearisation method produced a linear fit that underestimated the outcomes at 

lower and upper tails of the exposure. For example, based on antilog estimates, when 

the exposure was zero, the outcome predicted using the linearisation method was at 

113.19 units - an underestimation of the ‘true’ outcome (121 units) assumed in the 

simulations. In addition, the linear regression model overestimated the outcome at the 

actual threshold. In contrast, the FP and RCS methods provided near approximate 

shapes in the data, however, the estimated functions also struggled to provide sufficient 

coverage at the threshold. At the threshold, the FP and RCS models were overestimating 

the actual outcome in the simulation. Moreover, the FP function had wider CIs at the 

lower tail of the exposure distribution. For example, at zero unit of the exposure, the FP 
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regression model predicted 122.28 (CI=118.02, 129.87) units of the outcome. At the 

similar exposure point, the method of linearisation, CAT3, CAT5 and RCS predicted 

the outcome at 113.19 (CI=111.79, 114.66), 121.13 (CI=120.01, 122.26), 121.01 

(CI=119.52, 122.47) and 118.36 (CI=116.27, 120.39) units respectively. (NOTE: In 

Figure 4.4, the estimates provided are on an antilog scale). For more details, see Figure 

4.4 for comparison of median fits and their confidence interval regions.  
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Figure 4.4: The median predicted functions and their 95% confidence interval regions obtained from 1000 simulations (replicates) after 

fitting the linear and linear piecewise association datasets using the methods of categorisation (CAT3 and CAT5), linearization (LIN), 

fractional polynomials (FP), and restricted cubic splines (RCS). The results were taken from a sample with 200 observations and moderate 

noise, σ=5.0 
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Figure 4.5 presents results from the nonlinear piecewise and quadratic or U 

association shaped datasets. Under the nonlinear piecewise association, the median 

predicted functions produced using the FP and RCS were visually indistinguishable. 

The two methods produced nearly similar association curves with their functions 

deviating a little from the ‘true’ at the lower values of the exposure. However, at the 

lowest values of the exposure, the FP model had wider CIs. Additionally, the two 

methods of FP and RCS slightly underestimated the ‘true’ optimal outcomes in the 

simulations. At the lower tail where no exposure effect was observed, the FP and RCS 

methods struggled to identify this effect producing nonlinear and linear functions 

respectively. However, their CI offered sufficient coverage on the ‘true’ effect. In 

contrast, the linearisation method failed to produce adequate fit depicting the ‘true’ 

nonlinear threshold function in the simulation. The two methods of categorisation also 

struggled to identify the ‘true’ relationship in the data after the threshold by producing 

misleading step functions. Furthermore, the CAT5 also overestimate the ‘true’ outcome 

at the threshold (c*=20) (see Figure 4.5 – top row).  

Like with the threshold functions, the CAT3, CAT5 and linearisation methods 

produced inadequate fits under the quadratic or U association datasets. The three 

methods produced median functions that do not lie on the ‘true’ association, so their 

estimated CI regions also failed to provide sufficient coverage on the actual fit. In 

contrast, the application of FP produced curves that lied entirely on the ‘true’ quadratic 

or U association functions. The RCS produced a fit that was very close to the ‘true’ 

quadratic shape. However, at the lower exposure values (< 5 units); the RCS model 

slightly underestimated the outcome value. The RCS function also predicted the linear 

relationship at the lower tail of the exposure (< 20 units) - failing to capture the actual 

nonlinearity assumed in the simulation (see Figure 4.5 bottom row). 
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Figure 4.5: The median predicted functions and their 95% confidence interval regions obtained from 1000 simulations (replicates) after 

fitting the nonlinear piecewise and quadratic or U association datasets using the methods of categorisation (CAT3 and CAT5), 

linearisation, fractional polynomials (FP), and restricted cubic splines (RCS). The results were taken from a sample with 200 observations 

and moderate noise, 𝜎 = 5.0 
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4.4.3.2 Prediction of outcomes at the threshold (c*=20) in different association 

shapes using categorisation, FP and RCS methods 

Figure 4.6 & Figure 4.7 provides a summary showing the estimated outcomes 

and their confidence intervals predicted in the linear piecewise, nonlinear piecewise and 

quadratic or U association shapes using CAT3, CAT5, FP, and RCS models. The 

predicted estimates were obtained from the median predicted functions with 

200, 1000 and 10000 observations respectively, assuming moderate noise, 𝜎 = 5.0 in 

the data. 

In all the association shapes, the optimal outcome was assumed to occur at 20 

units of the exposure (that is at 𝑐 ∗= 20). In the linear piecewise threshold association 

shapes, 20 units of exposure yield 121 units of the outcome. Based on these 

assumptions, CAT3 was the only method of analysis that provided accurate predictions 

on the ‘true’ optimal outcomes. The latter was true across all the sample sizes 

considered in the simulation (see Table 4.5 in the  Appendix C). Increasing the sample 

sizes improved the estimated outcomes and also narrowed their CIs (see Figure 4.6). At 

𝑛 = 200, the outcome predicted when 𝑐 ∗= 20 was 121.13 (CI = 120.01, 122.26) units 

and this improved to 121.00 (CI = 120.82, 121.17) when 𝑛 was large (𝑛 = 10000). 

However, the performance of this method and its ability to predict the ‘true’ optimal 

outcome was coincidental. The CAT3 method performed better because when the 

simulations were initially set-up, the ‘true’ optimal outcome was placed at the lower 

exposure category. In contrast, the CAT5, FP and RCS models overestimated the ‘true’ 

optimal outcome when 𝑐 ∗= 20 units – producing CIs with insufficient coverage on the 

actual outcome (see Figure 4.6). Instead, the ideal turning points under the FP and RCS 

methods were observed when the exposure was lower (see Table 4.5 in the  Appendix C 

and Figure 4.4). For instance, when 𝑛 = 200 𝑎𝑛𝑑 𝜎 = 5.0, the optimal exposure was 

shifted to the left – reducing from 20 units (assumed) to 6 (CI=0, 11) units when 
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applying the FPs. At 6 units of the exposure, the corresponding outcome occurred at 

119.73 (CI = 117.95, 121.28). Similarly, the RCS model attained its optimal outcome of 

118.36 (CI = 116.27, 120.39) when the exposure was at zero. Apart from these results, 

an optimal outcome of 121.00 (CI=119.52, 122.39) was attained within 0-23 level of the 

exposure under the CAT5 method (see Table 4.5 in Appendices). 

Under the nonlinear piecewise association function it was also assumed that 20 

units of exposure attain an optimum outcome of 121 units. Except when the sample was 

small (𝑛 = 200), the RCS model was the only method of analyses that struggled to 

estimate the ‘true’ optimal outcome when the exposure was at 20 units (see Figure 4.6). 

In contrast, when c*=20 units; the CAT3, CAT5 and FP methods produced estimates 

that were closer to the ‘true’ outcome (with CIs that offer sufficient coverage on the 

actual value). The latter was more noticeable in larger samples where more than 200 

observations were considered (see Figure 4.6 for a summary of these results). Due to the 

same reason provided earlier, the CAT3 method was able to accurately predict the 

optimal outcome - the estimate coincided with the lower category of the exposure where 

the optimal value was placed during the simulation design. Contrary to the assumptions 

made in the simulations, the FP and RCS models predicted their optimal turning points 

at the lower exposure. For example, when 𝑛 = 200 & 𝜎 =  5.0, the FP regression 

model attained its optimal outcome at 120.20 (CI = 119.00, 121.43) when the exposure 

was 15 (CI = 6, 18) units. For any simulation conditions, the RCS models predicted the 

optimal exposure at 18 units (with varying confidence intervals). For 𝑛 = 200 & 𝜎 =

5.0, the suggested optimal outcome corresponding to 18 (CI = 15, 20) units of exposure 

was at 119.98 (CI = 119.06, 120.88) when fitting the RCS model. In comparison to the 

latter results, the CAT5 produced an optimal outcome at 120.76 (CI=119.43, 122.01) 

within the exposure category of 0-27 (see Table 4.6 in the ‎Appendix C). 
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Overall, the FP and RCS models were underestimating the optimal outcomes in 

threshold datasets - shifting the position of the exposure to the left. 
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Figure 4.6: The outcome (at c*=20) predicted by fitting the CAT3, CAT5, FP and RCS regression models in linear and nonlinear threshold 

datasets1. 

                                                 

1 True outcome equals to 121 units in the two threshold datasets (when c*=20). 
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Figure 4.7 below compares the optimal outcomes predicted under the quadratic 

or U association shapes using the CAT3, CAT5, FP and RCS models. When the sample 

was small (𝑛 = 200) and the noise was moderate (𝜎 = 5.0), the CAT3 method 

predicted the optimal outcome at 123.05 (CI = 121.93, 124.18) units at the lower 

exposure group (0-23 units) (see Table 4.7 in the ‎Appendix C). In Table 4.1, the 

assumption was that 20 units (𝑐 ∗= 20) of the exposure yield 119.6 units of the 

outcome (after first order differentiation). Given the latter, the CAT3 method 

overestimated the optimal outcome - producing CIs that do not cover the actual outcome 

in the simulation. When the sample was increased to 𝑛 = 1000 𝑜𝑟 𝑛 = 10000, the 

predicted optimal outcome increased further away from the true value of 119.6 units 

resulting in 123.72 (CI = 123.19, 124.23) and 124.32 (CI = 124.14, 124.49) units 

respectively (see Figure 4.7). These results suggest the inability of the CAT3 method to 

produce reliable optimal estimates under the U or quadratic association datasets. 

However, there were considerable improvements when the number of categories was 

increased in the analysis. The CAT5 method predicted optimal outcomes closer to the 

‘true’ in the simulations. For example, when 𝑛 = 200 & 𝜎 = 5.0, the CAT5 method 

predicted the optimum outcome at 120.33 (CI=117.83, 122.58) units at the second 

exposure category (14-27 units). Similarly, large samples yielded closer estimates but 

with narrow CIs that do not include the true outcome assumed in the simulation. See 

Figure 4.7 and Table 4.7 (in ‎Appendix C) for further details. In contrast, the FP model 

offered precise optimal estimates in the quadratic association datasets. The FP models 

accurately predicted the optimal exposure at 20 units in the simulation. For example, 

when 𝑛 = 200, 1000, 10000 and 𝜎 = 5.0 the optimal outcomes predicted at the 

optimal exposure of 20 units were 119.67 (CI=118.53, 121.08), 119.59 (CI=119.14, 

120.07) and 119.60 (CI=119.47, 119.74) respectively (see Table 4.7 in  Appendix C). 

These estimated optimal outcomes were very close to the true value of 119.60 units 
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(with CIs that provided adequate coverage regions). From these results, increasing the 

samples in the simulations improved the precision of the optimal outcome estimates - 

narrowing the width of the predicted CIs. Under the RCS models, the predicted optimal 

exposure occurred at 23 units for all sample sizes considered in the simulations (see 

Table 4.7 in the ‎Appendix C). Based on the latter, the position of the optimal estimates 

was shifted to the right when fitting the RCS model. At 20 units of the exposure, the 

RCS models predicted CIs with adequate coverage for the ‘true’ optimal outcomes. 

However, this was observed in the datasets with large noise, 𝜎 ≥  5.0 (see Table 4.7 in 

the ‎Appendix C). Although for large sample sizes (𝑛 ≥ 10000), the RCS may still 

require large noise, greater than 5.0 to accurately capture the ‘true’ optimal outcome in 

the predicted CI region. This is because, whenever the sample sizes were increased in 

the simulations, the CI regions for predicted optimal outcomes were becoming narrow. 

For example in Figure 4.6, when 𝑛 = 10000 the RCS function had narrow CIs that did 

not include (or provide sufficient coverage) the ‘true’ optimal outcome. In contrast, 

when the noise was large, 𝜎 = 7.5, the estimated CI regions provided adequate coverage 

for the ‘true’ optimal outcome (see Table 4.7 in the ‎Appendix C). 
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Figure 4.7: The outcome (at c*=20) predicted by fitting the CAT3, CAT5, FP, and RCS regression models in Quadratic or U-shaped 

datasets1. 

                                                 

1 True outcome equal to 119.6 units (when c*=20). 
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Finally, the results on coverage probabilities revealed conservative CI bounds 

for the optimal outcomes when fitting the CAT3, CAT5, FP and RCS models in the 

simulations. The calculated coverage probabilities attained with the four methods 

exceeded the 95% nominal levels assumed in the simulations. The latter was observed 

across all the nonlinear association shapes and simulation conditions considered in this 

chapter (results not shown). 

4.5 Discussion 

This section discusses the general approach, summarises the key results, 

challenges and limitations, strength and opportunities, novelty and future studies from 

this chapter. Section  4.5.1 discusses the general approach adopted in this chapter. Then, 

a summary of key results and how they compare with other studies are provided in 

section  4.5.2. The discussions of challenges and limitations, strength and opportunities, 

novelty and future work are provided in sections  4.5.3,  4.5.4,  4.5.5, and  4.5.6 

respectively. 

4.5.1 General approach 

There exist few simulation studies comparing the performances of FP and RCS 

methods. This chapter was set-up to investigate the properties of these two models 

comparing them with the methods of categorisation (CAT3 and CAT5) and linearisation 

in the area of epidemiology. The focus was to establish the ability of these methods in 

(1) recovering the ‘true’ relationships assumed in the simulations and (2) estimating the 

‘true’ turning points or thresholds in the data. To achieve this, several exposure-

outcome relationships found in the area of epidemiology were simulated under the 

‘normal error’ regression framework (i.e. assuming continuous outcome variables). The 

simulations were exemplified by using the alcohol-BP relationship scenarios in the 

literature. For simplicity, single predictor-outcome relationship datasets were generated 
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– assuming the exposure was measured as a continuous variable. A realistic data 

structure incorporating other covariates would be difficult to envision in the simulations 

since many variables influence each other in epidemiology.  Chapter 6 of this thesis 

suggests an appropriate approach of adjusting for other covariates in single predictor 

models using real-application data. 

4.5.2 Summary of main results 

Firstly, the performances of the proposed regression methods were assessed 

based on the RMSE obtained after fitting different exposure-outcome relationship 

datasets. As expected, the linearisation model performed better (with smaller RMSEs) 

than the other methods when the exposure-outcome relationship was linear. The two 

methods of categorisation (CAT3 and CAT5) had the largest RMSEs when applied in 

the same dataset. Larger RMSEs were attributed to the step-functions produced when 

the two methods were employed. Under the linear and nonlinear piecewise threshold 

functions, the fractional polynomial regression models retained smaller RMSE 

estimates and the restricted cubic spline models followed. However, the two methods 

struggled to fully identify the true association curves. The CAT3, CAT5 and 

linearisation approaches produced the largest RMSEs under these curves. The large 

RMSEs attained using the linear regression and categorical analyses were due to the 

methods inability to adapt and lack of flexibility in fitting complex nonlinear functions. 

For instance, both the CAT3 and CAT5 were limited to step-functions whilst 

linearisation was restricted to linear functions only. The FP regression models also 

retained smaller RMSE estimates under the quadratic or U-shaped association. The RCS 

models followed the FP with the next smallest estimates. In contrast, assuming linearity 

under the quadratic association datasets produced functions with the largest RMSEs. 

Although the study cannot directly be compared to the findings in this chapter, 

Govindarajulu et al (2009) conducted a simulation study examining several smoothing 
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methods for estimating nonlinear exposure-outcome curves that included the FPs and 

RCS (with 5 knots). Amongst the investigated shapes that included the threshold and 

quadratic functions, both the FP and RCS functions performed well when fitted in 

quadratic datasets (with smaller RMSE quantities). In contrast, under the threshold 

dataset, the RCS performed better (with small RMSE estimates) than the FP function 

(Govindarajulu et al., 2009). However, these results were not directly comparable with 

findings in this chapter because the simulations differed in their framework. The 

simulations by Govindarajulu and colleagues were based on time to event outcomes 

with rightly skewed exposure variables whilst in this chapter, the outcome was 

continuous and the exposure was from the uniform distribution. 

The RMSE estimates under the CAT3 and CAT5 models were not adversely 

affected by sample size variation. The two methods of categorisation retained steady 

RMSEs across the four association shapes when varying the samples in the simulations. 

For instance, the two methods of categorisation had large steady RMSEs across 

different samples in linear dataset. In contrast, the linear, FP and RCS models had 

smaller RMSEs that decreased with the samples in the same data. Apart from that, the 

linear, FP and RCS methods also had steady RMSEs (like CAT3 and CAT5) when 

fitted in thresholds (linear & nonlinear) datasets. In quadratic datasets, steady RMSEs 

were obtained when fitting the linear, CAT3, CAT5 and RCS models. In contrast, FPs 

produced RMSE estimates that decreased with larger samples in quadratic datasets - a 

suggestion of good fit. The theory of large numbers suggests a good model should 

improve fit whenever the sample is increased in the simulation (Siegmund, 2005). 

Secondly, the type I error rates in FP and RCS models were assessed based on 

the assumption that the exposure-outcome relationship was linear (null hypothesis). The 

simulation results suggested that the FP functions were susceptible to noisy datasets 
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than the RCS models. Increasing the noise in small datasets produced higher type I error 

rates (maximum of 25%) amongst the FP models. In contrast, the RCS models produced 

error rates that were closer to the nominal level of 5%. Based on these findings, the FP 

method was more likely to produce over-fitted functions - rejecting the ‘true’ linear 

relationship more frequently than the RCS approach. In addition, fractional polynomials 

were too flexible compared to the RCS functions. When the sample sizes were large and 

there was less noise in the datasets, the type I error rates in FPs were minimal - closer to 

10%. This means that the FP models require studies with large samples (𝑛 ≥ 10000) 

and small noise (𝜎 ≤ 2.5) to improve their statistical power of identifying linearity in 

exposure-outcome investigations. The findings of high type I error rates under the FP 

models were also reported by Amber and Royston (Ambler and Royston, 2001). Amber 

and Royston (2001), found that the FP models (𝑚 = 2) were anti-conservative (with the 

maximum type I error of 15%) when the ‘true’ function was linear.  

Under the nonlinear functions, both the FP and RCS approaches performed well 

to identify the non-existence of linearity in the datasets. There were no type II errors 

(accepting the null hypothesis of linearity when the actual relationship was nonlinear) 

committed when fitting the FP and RCS models in threshold and quadratic association 

datasets. This finding confirms the ability of the FP and RCS models in detecting the 

presence of nonlinearity in datasets with similar association shapes studied in this 

chapter.  

Thirdly, the performances of fitted models were evaluated against predetermined 

‘true’ exposure-outcome associations using the 95% CI regions. From 𝑅 =

1000 simulations, the interest was establishing whether the mean predicted functions 

produced using the categorisation, linearisation, FP and RCS approaches were sufficient 

and provided enough coverage around the ‘true’ fit. Generally, narrow CI widths of 
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predicted mean functions were observed when the samples (𝑛) were increased in the 

simulations. In contrast, increasing the noise (𝜎) widened the CI width of the predicted 

curves. The latter was more visible in datasets with small samples. Under the linear 

exposure-outcome association datasets, the linearisation, FP and RCS approaches 

produced functions that lied on the ‘true’ functions. In addition, their predicted 95% CIs 

provided sufficient coverage on the actual fit. However, the FP functions were 

characterised by wider CIs at the lower tail of the exposure. In application studies, 

researchers may find this behaviour unattractive forcing them to ignore the use of FP in 

their investigation since such wider CIs are biologically implausible. However, it has 

been advised that analysts ignore the portion where the estimated curve have wider CIs 

– since its unlike to change the interpretation of the fitted curves (Lorenz et al., 2017).  

Alternatively, the FPs could be fitted at high/large exposure values above zero - by 

shifting the origin of the data, adding a small constant value to exposure values 

(Royston and Sauerbrei, 2008). In contrast, the categorisation method produced step-

functions that were inadequate for the ‘true’ linear associations in the simulation.  

Under the linear and nonlinear piecewise threshold associations, the mean 

predicted curves obtained using the five methods of analysis did not lend themselves on 

the ‘true’ association shapes. Also, their CIs produced insufficient coverage on the 

actual curves - reflecting lack of fit. The FP and RCS struggled to estimate the 

predetermined ‘true’ threshold or turning points in these datasets. On the other hand, the 

CAT3, CAT5 and linearisation approaches produced fits that completely missed the true 

shapes yielding step and linear functions. Under the quadratic association datasets, the 

FP method was the only approach that produced mean functions that lied entirely on the 

‘true’ curve. Similarly, their CIs provided adequate coverage for the actual fit. In 

contrast, the other methods provided imprecise fits with CIs that did not cover the ‘true’ 

curve sufficiently. Although the RCS predicted a near approximation curve, its function 
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struggled to lend itself on the ‘true’ fit at the lower exposures. The results similar to 

those reported with FP fit under the quadratic association datasets were also reported 

elsewhere (Strasak et al., 2011). 

Finally, the performances of fitted regression models were evaluated against the 

turning points (or thresholds) in the simulations. Both the FP and RCS regression 

models produced misleading turning points in linear threshold association datasets. The 

‘true’ position of the optimal exposure was underestimated and shifted to the left in both 

methods – suggesting protective effects at the lower exposure. Moreover, the estimated 

optimal exposure varied in the two methods; FP models were likely to estimate higher 

optimal exposure compared to the RCS functions. This has a huge implication in 

applied health research studies; different optimal exposure values often reported in 

application studies such as alcohol and blood pressure outcomes may be due to these 

methodological variations. Therefore, researchers are advised to carefully consider the 

properties and behaviour of these modelling techniques before investigating the turning 

points in exposure-outcome studies. 

In nonlinear piecewise threshold datasets, the predicted optimal exposure under 

the RCS models was closer to the ‘true’ value than when fitting the FPs. However, the 

predicted optimal exposure was shifted to the left of the actual estimate in both models 

(appears at the lower exposure values) also underestimating the optimal outcomes.  

For the quadratic or U-shaped association, the FP model provided precise 

estimates of the threshold in the simulations. The RCS misspecified the actual turning 

point of the exposure shifting it to the right. 

Both the CAT3 and CAT5 were inefficient for estimating the exact positions of 

‘true’ turning points in the simulations. The application of these methods forced the 

predicted outcomes to remain invariant within categories of the exposure producing step 
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functions - where adjacent categories of the exposure determined the changes in the 

predicted outcomes.  

4.5.2.1 The difference between CAT3 and CAT5 approaches  

The features of exposure-outcome relationships were masked when applying the 

CAT3 and CAT5 models in the simulation. The outcomes predicted in the two models 

were submerged and varied according to exposure categories. Thus, the number of 

exposure categories influenced how the predicted outcomes varied in such models. For 

instance, the CAT3 allowed the outcomes to vary within few or wide categories whilst 

the CAT5 had more or narrow categories. From the latter, the CAT5 also needed more 

parameter estimates (or degrees of freedom) than the CAT3 or other methods in the 

simulations. Hence, performance improvements from the categorical models with large 

number of categories come as a trade-off for more complex functions which are 

generally inefficient or unstable, e.g. using >10 categories to approximate a non-linear 

relationship. 

4.5.3 Challenges and limitations 

This section discusses the challenges and limitations of this simulation chapter. 

4.5.3.1 The simulations not entirely inclusive  

It was beyond the scope of this chapter to assess the performances of CAT3, 

CAT5, linearisation, FP, and RCS models in all the relationships functions found in 

epidemiology. There exist other plausible association shapes that were not investigated 

in this simulation chapter. Some example of the association shapes (with turning points) 

found in the literature include J-shapes (Lawlor et al., 2003, Jee et al., 2006, de 

Gonzalez et al., 2010), asymptotic shapes (Vesey et al., 1982) and sigmoidal/S-

shaped/logistic functions (Pinheiro and Bates, 2000). However, I expect the properties 

and performances of these methods not to vary much when applied in some of these 

functions. For example, the RCS model is likely to struggle to lend itself (or fail to 



95 

accurately predict the position of turning points) on the J-shaped function at the lower 

exposure since the RCS model predict linear fits at the tails. In contrast, FP models are 

likely to lend themselves on the J-shaped functions and accurately predict the locations 

of the turning point in the datasets since both the J and U-shaped curves belong to 

quadratic functions - easily be fitted by the FP functions. 

4.5.3.2 The normal error distribution 

Binary and time to event outcomes are more common in epidemiological studies 

than continuous outcomes (Bender, 2009). Thus, the findings in this chapter may not be 

too generalisable. A future work focusing on binary outcomes is needed for 

generalisability. The existing simulation studies investigating the performances of FP 

and RCS in different exposure-outcome relationships have mostly focused on time to 

event outcomes using Cox regression models (Hollander and Schumacher, 2006, 

Govindarajulu et al., 2009, Keogh et al., 2012). However, it was not possible to make 

direct comparisons between studies and findings in this chapter since the simulation 

framework or settings were different. 

The assumption of normality on the outcome variable was also likely to enhance 

the performances of predicted models in the simulations. According to Suissa (1991), 

continuous outcome models are disadvantaged by their complete reliance on the 

assumption of normality for the data. Hence, some deviations away from the Gaussian 

distribution would likely cause some uncertainties in the simulations. 

4.5.4 Strengths and opportunities 

Assessing the performances of CAT3, CAT5, linearisation, FP, and RCS models 

based on different exposure-outcome scenarios was possibly not going to be achievable 

with real data alone. The simulations in this chapter offered that opportunity – covering 

several scenarios that are usually difficult to evaluate with real application studies. The 

simulations evaluated the performances of these methods based on several exposure-
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outcome relationship datasets characterised by (1) varying noises and sample sizes and 

(2) pre-determined turning points (or thresholds) quantities. Overall, the settings in this 

simulation chapter offer the following: 

i. A simple guide to set-up similar simulation studies in the area of epidemiology 

ii. An insight on the properties of CAT3, CAT5, linearisation, FP and RCS models 

when fitted in linear, thresholds and quadratic association datasets. The 

properties of these methods were evaluated based on several measures suitable 

for normal error models including the RMSE, type 1 errors, and coverage 

probabilities. 

iii. An inferential guide on the precision of the FP and RCS models when estimating 

the positions of thresholds or turning points in nonlinear association datasets. 

iv. A guide on the appropriate or suitable models for fitting different association 

shapes considered in the simulations. 

4.5.5 Novelty 

Despite the practical relevance of this topic, the researcher was not aware of any 

simulation study that assessed the performances of FP, RCS, CAT3, CAT5 and 

linearisation methods against thresholds or turning points in exposure-outcome 

relationships. Pastor and Guallar (Pastor and Guallar, 1998) have argued that often, the 

researchers visualise and approximate the location of the thresholds or turning points 

based on their predicted exposure-outcome shapes. The practice is largely subjective 

and may lead to inconsistent estimates for thresholds or turning points. Evidence in this 

chapter suggests that FPs and RCS methods (used to investigate exposure-outcomes 

relationships) may generally be useful for revealing the ‘true’ association shapes in the 

data and still fail to detect the positions of ‘true’ threshold points (or fail to achieve 

both). These are key finding that may be useful to researchers interested in exposure-

outcome studies and to those reporting thresholds. In addition, this chapter 
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demonstrated the properties of CAT3, CAT5, linearisation, FP and RCS methods, 

exhibiting the ability of simulation modelling in several exposure-outcome 

relationships. In reality, investigating the properties of these methods with real data 

alone would generally be hard. Hence, the simulation approach was a novel idea 

adopted by the researcher to achieve the objectives in this chapter. Plausible exposure-

outcome relationships often observed in epidemiology were simulated to ensure the 

findings in this chapter are practically relevant. 

4.5.6 Future work  

Although the present simulations were based on continuous outcomes, 

epidemiologists favour binary outcome models for reporting the occurrence of diseases 

or events in their studies. Often, binary outcome models are achieved by dichotomising 

continuous outcome variables when analysing the data. For example, serum creatinine 

above/below 1.4 mg/dL may define the presence/absence of abnormal renal function 

(Culleton et al., 1999). Taking the latter scenario into consideration, the present work is 

incomplete without the assessment of binary outcome models. Further simulation work 

is proposed in  Chapter 5 to assess the performance and choice of categorisation, 

linearisation, FP and RCS approaches for handling continuous predictors in prognostic 

models under the binary outcome setup. The potential limitation with the results from 

the normal error models is that they are completely dependent on the Gaussian 

distribution assumed in the data. Thus, any deviations from the assumption of normality 

could cause more uncertainties in the estimates (Suissa, 1991). 

4.6 Conclusions 

Categorisation and linearisation methods performed poorly when nonlinearity 

was present in exposure-outcome relationships. The categorisation methods distorted 

trends in the data producing step functions with large RMSE estimates. The latter 
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occurred in models with few and more categories hence these findings are generalisable. 

The linearisation approach only worked well in linear association datasets. Fitting linear 

regression models when the associations were nonlinear resulted in misleading 

functions. Thus, these approaches are not appropriate for modelling complex nonlinear 

exposure-outcome associations. The results could worsen when clinical thresholds are 

required for decision making. The two methods have no ability for detecting features 

such as turning points in the datasets. When investigating their properties against 

nonlinearity and thresholds functions, the two approaches failed to identify the presence 

of nonlinearity and ‘true’ thresholds in the simulations.  

Alternative methods such as FP and RCS have been suggested for modelling 

nonlinear exposure-outcome relationships. The FP produced high type I errors when 

applied in linear association datasets due to its flexibility and being more susceptible to 

fluctuations. Compared to FPs, the RCS models were generally more conservative and 

adaptive. The latter was not adversely affected by variation of noises and samples in the 

data. 

The FP and RCS models also failed to accurately predict ‘true’ turning points (or 

thresholds) present in some nonlinear association datasets considered in the simulation. 

Under the quadratic association datasets, the FP function performed better than the RCS 

regression model - producing fits that accurately predict the ‘true’ thresholds in the data. 

In contrast, the RCS models produced near approximation estimates. In the other 

nonlinear curves considered in the simulations, the two methods produced varying 

thresholds estimates when applied in similar datasets. Clinically, this has huge 

implications; researchers need to be cautioned about the inconsistencies of estimating 

clinical thresholds using these methods.  
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Finally, as a lesson learned, it was important to recognise that the application of 

flexible regression models such as the FP and RCS would not always yield accurate 

results when estimating the actual turning or threshold points in the datasets (especially 

when the association shapes are unknown). Therefore, as a minimum check, it is 

recommended that these regression models be used together with the traditional 

methods such as linearisation and categorisation approaches to verify the existence of 

nonlinearity in the datasets. If both RCS and FP analyses provide evidence of abrupt 

changes in risk then there could be reasons to suspect the existence of nonlinearity and 

turning points in the datasets. In addition, if the FP model suggests U or J-shaped 

associations (or there are a priori reasons), then the FP method could be used to estimate 

the turning points together with their standard errors. 
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  Chapter 5

Extensions to prognostic models with binary outcomes 

– a simulation study 

5.1 Introduction 

In  Chapter 4, a simulation study was performed to study the performance of 

categorisation, linearisation, FP, and RCS approaches in normal error models - 

assuming continuous variables in predictor-outcome relationships. This chapter focuses 

on the situations with binary outcomes (e.g. disease recurred or did not; patient lived or 

died). The survey research in  Chapter 3 suggests medical researchers favour binary 

outcomes in their studies to explain causal relations with other variables. Besides 

explaining causal relationships, binary outcome models could also be used for 

prediction purposes. Although similar in structure, predictive and explanatory models 

are different. Predictive models inform clinicians about the patient’s health outcome (or 

prognosis) whilst explanatory models are mainly focused on explaining the cause of an 

event outcome (González-Ferrer et al., 2017). In epidemiology, predictive models are 

rarely investigated compared to explanatory models. Thus, this chapter concentrates on 

predictive models with binary outcomes – also known as ‘prognostic models’ in the 

literature (Steyerberg et al., 2013). 

One issue of concern when developing prognostic models is the assessment of 

their predictive accuracy. The ability to accurately predict the occurrence of the event or 

disease outcomes on the basis of continuous risk factors is an important modelling step 

often overlooked by analysts (Collins et al., 2016). Traditionally, continuous predictor 

variables are treated as dummy variables (after categorisation or grouping) or linear 

terms when developing such models (Sauerbrei and Royston, 1999). However, the two 
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approaches of categorisation and linearisation may be inadequate or limited in 

characterising the unknown relationships – producing inaccurate predictions (Rosenberg 

et al., 2003). For example, if nonlinearity is present in the data, these practices could 

simplify relationships in the data restricting analysts to work with functions that are 

inappropriate for the final model. Additional problems associated with the method of 

categorising continuous predictor variables in medicine has been discussed in many 

research articles (Richardson and Loomis, 2004, Royston et al., 2006, Froslie et al., 

2010, Baneshi and Talei, 2011). Unfortunately, there exist few studies examining the 

performance of prognostic models and explaining the effects and choices of handling 

continuous predictor variables in medical research to guide non-statisticians (Collins et 

al., 2016).  

The two recent studies comparing the performance of prognostic models using 

the methods of categorisation and linearisation against alternative approaches involving 

fractional polynomials (FP) and restricted cubic splines (RCS) were performed by 

Nieboer (Nieboer et al., 2015) and Collins (Collins et al., 2016). Nieboer and colleagues 

focused on logistic prognostic models comparing FP and RCS against the method of 

linearising the predictor in four nonlinear association datasets. The researchers did not 

examine the models categorising the continuous predictor variables. Going further, this 

thesis chapter aims to compare the performance of FP and RCS models against the 

methods of categorisation and linearisation using a simulation study. To maintain 

consistency and continuity in the thesis, similar nonlinear shapes considered in  Chapter 

4 were also investigated here - focusing on logistic prognostic models. Collins and 

colleagues compared these four approaches using Cox regression based prognostic 

models predicting 10-year risk of cardiovascular disease and hip fracture in two cohort 

datasets. The authors used a resampling strategy (random sampling with replacement) to 

examine and validate the performance of FP, RCS, categorisation, and linearisation for 
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handling continuous predictors in prognostic models. However in the two studies of 

Nieboer et al., (2015) and Collins et al., (2016), the true association between the 

continuous predictors and the outcomes were unknown. Moreover, the properties of 

these methods against clinical features such as turning points and thresholds were 

omitted. In this chapter, the assessments and comparisons of FP, RCS, linearisation, and 

categorisation methods were performed assuming the log odds functions or shapes are 

known. This procedure allowed this research to infer on predicted models against the 

overall underlying ‘true’ functional relations. In the process, the clinical features such as 

turning or threshold points attained using these models were reported and evaluated for 

precision. The predictive ability of prognostic models developed using FP, RCS, 

linearisation, and categorisation methods were assessed and compared using two key 

measures of discrimination and calibration recommended for reporting in all prediction 

models (diagnostic or prognostic) (Moons et al., 2015). Net benefits (Vickers and Elkin, 

2006, Kerr et al., 2016) curves were also used as another useful measure in the 

simulations. The details and explanation of these performance measures are provided in 

sections  5.3.1.2 to  5.3.1.4.  

The specific objectives of this chapter are outlined and summarised in 

section  5.1.1. Sections  5.2,  5.3,  5.4,  5.5, and  5.6 describe the simulation framework, 

methods, results, discussion, and conclusions respectively of this chapter. 

5.1.1 Aims and objectives 

The main aim of this chapter was to investigate and compare through 

simulations the performance and choice of approaches including FP, RCS, linearisation, 

and categorisation for handling continuous predictors in prognostic models often 

reported in epidemiology. The research focused on binary outcome models fitted using 

logistic functions. The following specific plots and measures were quantified and 
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presented to evaluate and compare the performances of various prognostic models in the 

simulation:  

i. The median predicted prognostic plots/curves showing the relation between a 

continuous predictor and the occurrence of an outcome from various approaches 

were summarised for comparison based on 1000 simulations. Further, the 

precision of median predicted prognostic models in estimating the actual turning 

points or thresholds were summarised and reported with their corresponding 

95% confidence intervals estimates. 

ii. The ability of the models to differentiate between patients with an outcome and 

those without an outcome were evaluated using the median c-index scores from 

the area under the ROC (Receiver operating characteristic) curve (AUC). 

Median estimates of the c-index together with their 95% confidence intervals 

were reported from 1000 simulations to summarise model performance in 

various datasets. 

iii. The influence of various approaches used to handle continuous predictors was 

evaluated through calibration plots. The median observed probabilities in 1000 

simulations were plotted against predicted probabilities to assess their 

agreement.  

iv. Finally, the prognostic models attained using the FP, RCS, linearisation, and 

categorisation approaches were assessed using the decision analysis curves for 

clinical usefulness (measured using median net benefits curves) at various 

probability thresholds.  

5.2 Monte Carlo simulation framework 

A single predictor-outcome relationship data structure was proposed in the 

simulation to investigate and compare the properties and performances of FP, RCS, 
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categorisation and linearisation methods suggested for handling continuous predictors 

when developing prognostic models. The outcome variable (𝑦) was assumed to be a 

binary event and various prognostic models were developed using these methods for 

comparison by applying logistic regression models. The aim was to investigate these 

methods assuming the existence of linear and nonlinear relationships between the 

continuous predictor variable (𝑥) and the 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑓𝑖(𝑥). To be practically relevant, 

the descriptions of the simulation set-up guided by example scenarios in the field of 

epidemiology are provided in sections  5.2.1 and  5.2.2 respectively.  

5.2.1 Simulation set-up 

For continuity from the previous chapter, let’s assume the continuous predictor 

variable (𝑥) was drawn from a uniform distribution with a range of values between 0 

and max(𝑥) and the outcome variable (𝑦) was generated from a random binomial 

distribution such that the event of interest takes values 1 and 0 otherwise. Let 𝑦 = 1 

represent the presence of an event and 𝑦 = 0 its non-existence. Then for each individual 

in the simulated datasets, 𝑦𝑖~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑖) where 𝜋𝑖 are observed mean probabilities 

of an event, 𝑦 = 1 written as 𝑃(𝑦 = 1|𝑥). The observed mean probabilities (𝜋𝑖) relate 

to 𝑿 through the canonical link function known as the logit expressed as follows: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔𝑒 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝑿𝛽 = 𝛽0 + ∑ 𝛽𝑗

𝑘
𝑗=1 𝑥𝑗 = 𝑓𝑖(𝑥),    Eq. 5. 1 

where (
𝜋𝑖

1−𝜋𝑖
) is the odds of an event with 0 ≤ 𝜋𝑖 ≤ 1 and 𝑓𝑖(𝑥) is the mean function 

relating the continuous predictor variable (𝑥) to the logit. Possible mean functions 

include the alcohol-hypertension relationship example scenario provided in 

section ‎5.2.2.  
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5.2.1.1 Computation of estimates  

5.2.1.1.1 Observed probabilities 

Assuming the logit model in Eq.5.1 is known, the observed mean probabilities 

can be calculated as follows: 

𝜋𝑖 = 𝑃(𝑦 = 1|𝑥) = exp(𝑓𝑖(𝑥)) /(1 + exp(𝑓𝑖(𝑥))),    Eq. 5. 2 

Such that for 𝑛 independent random observations corresponding to 𝑦1, 𝑦2, … , 𝑦𝑛, the 

probability function of 𝑦𝑖 is given by:  

𝑓𝑖(𝑦𝑖) = 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖, where 𝑦𝑖 = 0 𝑜𝑟 1, 𝑖 = 1,2, … , 𝑛  Eq. 5. 3 

with the probability of having an event given as 𝜋𝑖 and variance as 𝜋𝑖(1 − 𝜋𝑖) 

(McConnell and Vera-Hernández, 2015).  

5.2.1.1.2 Observed odds ratio curves 

To construct the observed odds ratio curves the 𝑓𝑖(𝑥) are transformed such that 

𝜋𝑖(𝑥) = exp (𝑓𝑖(𝑥)),         Eq. 5. 4 

where 𝑥 is the predictor value for a single continuous variable considered in the 

simulations.  

The observed odds ratio curves are estimated using FP, RCS, categorisation, and 

linearisation models and plotted point by point of the predictor with a range of values 

between 0 to max (𝑥) for R simulation (replication). After R simulations, the 50
th

 

percentile curve data was obtained to represent median predicted functions under each 

method. The data for predicted median functions included their 95% confidence 

intervals obtained using the 2.5
th

 and 97.5
th

 percentile points of the empirical 

distribution in the simulations. Note: The R simulations should be sufficient with 

minimum Monte Carlo error (MCE) (Koehler et al., 2009). The simulation was 
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performed using a Stata program assuming similar procedures in section  4.2.2.1 

of  Chapter 4 (varying observations inside the loop). See  Appendix B for Stata codes. 

5.2.2 Extension of the alcohol-blood pressure example 

Based on the alcohol-blood pressure relationship example studies reported 

in  Chapter 4 (section  4.2.2.2), suppose the interest was on developing prognostic 

models for hypertension patients treating alcohol consumption as a predictor variable 

(𝑥). In this scenario, let the outcome (𝑦) be a binary variable taking value 1 for patients 

with the disease (hypertension) and 0 for non-diseased patients (no hypertension). 

Furthermore, suppose for each individual in the simulation, a binary outcome was 

generated through a random binomial distribution with observed mean probability 𝜋𝑖 

given in Eq. 5.2, where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑓𝑖(𝑥) and 𝑥 was drawn from a uniform distribution 

with a range of values between 0 and 60 grams for alcohol consumption. That is, 

𝑦𝑖~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜋𝑖) where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑓𝑖(𝑥) are logit functions. The examples of logit 

functions 𝑓𝑖(𝑥) could include those in Table 5.1 representing alcohol-hypertension 

relationship shapes reported in epidemiological studies.  

In the simulation, the alcohol-hypertension association datasets in Table 5.1 

were generated assuming 1000N  individuals (observations). Furthermore, the 

datasets were replicated 1000R  times to compare various logistic prognostic models 

attained with FP, RCS, categorisation, and linearisation approaches. Replication of the 

samples 1000 times yield MCE of approximately 3% (Koehler et al., 2009).  

To attain reasonable prediction functions, the values of 𝛽0 and 𝛽𝑖′𝑠 in Table 5.1 

were chosen such that the disease outcome was approximately 10% in 1000N  

observations. The reported prevalence of hypertension varies across the world. A 

systematic review has previously reported the lowest prevalence of hypertension in rural 

India and the highest in Poland at 3.2% and 72.5% respectively (Kearney et al., 2004). 
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Table 5.1: Proposed linear and nonlinear logit functions used in the simulation to compare various approaches of handing the continuous 

predictor (𝑥) when developing prognostic models. 

 

Type of associations Logit function equations  Logit functions  

Linear 𝑙𝑜𝑔𝑒 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1𝑥 = 𝑓1(𝑥)  𝑓1(𝑥) = −2.5 + 0.01𝑥  

Linear piecewise threshold  𝑙𝑜𝑔𝑒 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1(𝑥 − 𝑐 ∗) = 𝑓2(𝑥)  𝑓2(𝑥) = {

−2.9                                  𝑖𝑓 𝑥 ≤ 20

−2.9 + 0.045(𝑥 − 20) 𝑖𝑓 𝑥 > 20
  

Nonlinear piecewise threshold 𝑙𝑜𝑔𝑒 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1(𝑥 − 𝑐 ∗)

2 = 𝑓3(𝑥)  𝑓3(𝑥) = {
−2.9                                        𝑖𝑓 𝑥 ≤ 20

−2.9 + 0.0015(𝑥 − 20)2  𝑖𝑓 𝑥 > 20
  

U-shaped or Quadratic  𝑙𝑜𝑔𝑒 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥

2 = 𝑓4(𝑥)  𝑓4(𝑥) = −2.2 − 0.0128𝑥 + 0.00032𝑥
2  
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Using the example simulated datasets proposed above, the next section  5.3 

describes various approaches of handling alcohol consumption (measured in grams) 

when developing logistic prognostic models for hypertension patients. Various 

performance measures used to evaluate these prognostic models were also described in 

section  5.3.1. 

5.3 Approaches for handling continuous predictors 

The common approaches of handling continuous predictor variables when 

developing predictor-outcome prognostic models include the methods of categorisation 

and linearisation. These methods are compared to alternative prognostic models attained 

with fractional polynomials and restricted cubic spline approaches.  

In the simulation, the method of categorisation was implemented by using tertile 

and quintile values of the predictor (alcohol consumption) to form models with three 

(CAT3) and five (CAT5) categories respectively. Tertiles and quintiles are common 

way of establishing categories in medical studies (see ‎Chapter 3). Apart from the latter, 

prognostic models were developed by assuming linearity between alcohol consumption 

and the disease outcomes. This simple approach is known as linearisation in this 

chapter. 

Alternatively, the method of fractional polynomials that involves limited but 

flexible sets of transformations defining the relationship between alcohol consumption 

and hypertension was applied for model development. In the simulation, FP modelling 

was performed using the standard implementation procedures available in the Stata 

program. The second degree FPs (𝑚 = 2) that occurs as a default in Stata offers a wide 

range of shapes sufficient to cover the four association functions in the simulations. The 

final approach involves developing logistic prognostic models using restricted cubic 
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splines (RCS) (Desquilbet and Mariotti, 2010). The alcohol consumption was treated 

non-parametrically such that the developed model has 3 knots placed at 10
th

, 50
th

 and 

90
th 

percentiles of the observed measurement distribution. Since the association datasets 

considered in the simulation has few turning points (< 2), RCS with 3 knots should 

provide adequate prognostic models. Moreover, the RCS models with 3 knots have 

smooth functions than the models with greater knots (> 3). Thus, the RCS functions 

with 3 knots were also suggested for use to achieve smoothness and avoid over-fitted 

models. 

5.3.1 Model evaluation 

The predictive accuracy and performances of predicted prognostic models 

attained with FP, RCS, categorisation and linearisation approaches were evaluated 

based on (1) the ability to discover ‘true’ relationship between binary outcomes and the 

predictor variable, (2) the ability of predicted models to differentiate between subjects 

with an outcome and those without an outcome, (3) the influence of various approaches 

in handling continuous predictor variables and (4) the clinical utility. To achieve (1) the 

performance of predicted prognostic models were assessed and compared using graphs 

examining the overall fit and their predicted turning points estimates. Discrimination, 

calibration, and decision curve analysis graphs were used to draw inference on point (2) 

to (4) above. The suggested methods of model performance including discrimination, 

calibration, and decision curve analysis are recommended for reporting and evaluation 

of prediction models in medicine for individual prognosis or diagnosis (Moons et al., 

2015). The description of these measures and how they were presented is provided 

below.   
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5.3.1.1 The median predicted functions, optimal rates, and their 95% confidence 

intervals 

To construct the median predicted functions from various modelling techniques 

after 1000 simulation (replications), the 50
th

 percentile points of the event outcome 

(hypertension) probability distribution were obtained and plotted against predictor 

values (alcohol intake) to represent the average fit.  The median predicted functions 

were then compared by overlaying each fit against the ‘true’ model in the simulations. 

With these plots, it was possible to make an assessment on whether the methods under 

investigation have the abilities to produce identical fits as the truth or not. The 95% 

confidence intervals for the median functions were also presented to assess how each 

modelling technique was affected or influenced by the distribution of the data. In 1000 

simulations, the 95% CI region was represented by the 2.5
th

 and 97.5
th

 percentile points 

of the event probabilities plotted along the predictor scale.  

Furthermore, to assess the accuracy and performance of predicted functions, the 

median optimal event (hypertension) probabilities and their 95% CIs were estimated for 

comparison with the true values assumed in the simulation. The optimal estimates were 

defined as points where the predicted functions attain the minimum event probability. In 

the simulation, 1000 estimated optimal event probabilities were obtained and the 50
th

 

percentile point of the distribution represented the median optimal rate. The 2.5
th

 and 

97.5
th

 percentile distribution of the optimal probabilities represented their 95% CIs.  

Another useful measure considered in the evaluation of predicted models was 

the coverage probability. The success rate of CIs was measured by their ability to 

provide coverage of the ‘true’ optimal estimates across the different logit models 

proposed in Table 5.1. From 1000 simulations, the coverage probability was the fraction 

of time the confidence interval contains the true optimal rate (White, 2010). Given this, 

the coverage probabilities based on nominal 95% confidence intervals for the median 
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optimal event (hypertension) rate (denoted by 𝜋�̃�) was calculated from the estimated 

functions as 𝜋�̃� ± 𝑍𝛼/2 ∗ 𝑆�̂�(𝜋𝑖) where 𝑍∝/2 is the critical value from the standard 

normal distribution and 𝑆�̂�(𝜋𝑖) are the standard errors of the estimated probabilities of 

the event outcome in each iteration (Zhao and Kolonel, 1992, Dalen et al., 2009). The 𝜋�̃� 

and 𝑆�̂�(𝜋𝑖) were collected at each iteration. For a 95% CI, its coverage was said to be 

correct if it includes the true parameter 95% of the time. If the coverage probability was 

less than the 95%, then the CI was said to be narrow with small standard errors. Or else 

the CIs are too wide with large standard errors (White, 2010). 

The descriptions of how other performance measures are applied in this Chapter 

are provided below. The proposed measures were considered for evaluation because 

they are recommended for reporting and evaluation of prediction models in medicine 

(Moons et al., 2015). 

5.3.1.2 Discrimination 

This is a key aspect of model performance when working with logistic 

regression. It is defined as the ability of the model to differentiate between patients with 

the event outcome and those without (Royston and Altman, 2010, Collins et al., 2016). 

It was evaluated through the c-index or statistic – a measure that summarises the area 

under the receiver operating characteristic curves (AUC) for binary outcomes (Harrell et 

al., 1996, Royston and Altman, 2010). For 𝑅 = 1000 iterations, the c-index scores were 

collected from each regression model. Then, the median c-index estimates for each 

modelling approach were presented for comparison. Furthermore, the 2.5
th

 and 97.5
th

 

percentile distribution of the c-index scores collected from 1000 simulations represented 

the 95% CI regions. For interpretations, the median c-index scores were judged on their 

values on the range between 0.5 and 1.0 (Royston and Altman, 2010). For example, a 

value of 0.5 indicates no predictive ability (or poor discrimination) whilst 1.0 suggests 
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perfect separation of patients with different outcomes. Generally, larger values above 

0.7 indicate the model’s ability to discriminate (Akobeng, 2007). 

The disadvantage of the c-index measure is that it only focuses on the predictive 

accuracy of models under study, its estimate cannot tell us whether a model is worth 

using or not (Vickers and Elkin, 2006). In a situation where different prognostic models 

are being compared (as in this chapter), the c-index is unable to provide and guide on 

preferred models. To address this problem, the other measures including decision 

analysis curves (see section  5.3.1.4) were considered alongside the c-indexes to evaluate 

the clinical usefulness of predictive models in the simulation. 

5.3.1.3 Calibration 

Calibration is another useful and very popular measure of performance often 

used to evaluate prognostic models. It measures how close the predicted probabilities 

are to the observed rates of the event outcome (Giancristofaro and Salmaso, 2007, 

Royston and Altman, 2010). In the simulation, the predicted prognostic models obtained 

using the FP, RCS, categorisation and linearisation approaches were assessed by 

overlaying plots of observed probabilities against predicted probabilities (median) along 

the 45
o 

diagonal line. Well-calibrated plots lie entirely on the 45
o
 line (Altman et al., 

2009, Collins et al., 2016). The challenge with this approach includes interpretation of 

deviations from the 45
o
 line of identity which to some extent can be subjective (Austin 

and Steyerberg, 2014). Nonetheless, this method was still used to evaluate the 

performances of prognostic models used in the simulation. The alternative methods 

including the Hosmer-Lemeshow test are available. However, the test is directly 

influenced by sample sizes and discouraged for use in large samples (Paul et al., 2013). 

For example, the Hosmer-Lemeshow test will fail to identify small departures from the 

predicted models when the sample size is large. This is because the power of the test 
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increases with the sample sizes thus producing significant values. In contrast, graphical 

methods do not suffer from sample size limitation as the test-based approaches. 

5.3.1.4 Clinical utility of predicted prognostic models 

To decide whether the predicted prognostic models attained with the methods of 

categorisation, linearisation FP, and RCS are clinically useful or not, the decision curves 

were drawn and assessed to evaluate competing models (Vickers and Elkin, 2006). The 

decision curves took into consideration the clinical consequences of competing 

prognostic models. The net benefits attained in various prognostic models at different 

threshold probabilities were shown graphically to inform choices on the most 

appropriate model (Hunink et al., 2014). An illustrative example on how the model’s 

net benefits and threshold probabilities could inform clinicians and patients to make the 

clinical decision for treatment is provided below: 

Suppose an alcoholic patient was faced with a decision to undergo a 

hypertension treatment. If the decision was informed by the prognostic model - 

suggesting the probability of having the disease to be close to 1, the patient will request 

to be treated. If the probability of having hypertension was close to 0 in the prognostic 

model, the patient would unlikely opt for hypertension treatment. However, at values 

between 0 and 1, the patient would be unsure of whether to ask for treatment or not. In 

this case, the threshold probability (𝑝𝑡) would be required to inform the clinicians or 

patient’s decision. Given this scenario, the threshold probability (𝑝𝑡) can be defined as 

where the expected benefit of hypertension treatment is equivalent to the expected 

benefit of avoiding the treatment.  

Assuming the decision tree in Figure 5.1, the expression for threshold 

probability (𝑝𝑡) could be written as follows:  

𝑝𝑡𝐴 + (1 − 𝑝𝑡)𝐵 = 𝑝𝑡𝐶 + (1 − 𝑝𝑡)𝐷     Eq. 5. 5 
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Such that 

 𝑝𝑡𝐴 − 𝑝𝑡𝐶 = (1 − 𝑝𝑡)𝐷 − (1 − 𝑝𝑡)𝐵    
𝐴−𝐶

𝐷−𝐵
=
1−𝑝𝑡

𝑝𝑡
   Eq. 5. 6 

From Eq. 5.6, 𝐷 − 𝐵 quantity is the consequence of receiving hypertension treatment 

when it was not needed. The harm occurs due to false-positive results (see Figure 5.1). 

The quantity associated with the consequence of avoiding hypertension 

treatment when it could have been beneficial is given as 𝐴 − 𝐶. In 𝐴 − 𝐶 quantity, 

comparing the true positive and false negative results, the harm is from the latter (see 

Figure 5.1). Clearly, from Eq. 5.6, the threshold probability at which a patient decides 

on the treatment depends on how one weighs the relative harm of false-positive and 

false negative results.  
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Figure 5.1: A decision tree diagram. The probabilities of disease and no disease are 

given by p and 1-p respectively. The values of true positive, false positive, false 

negative and true negative are given by A, B, C, and D respectively. 

 

Based on the concept above, Vickers & Elkin (2006) suggested a method which 

allows for varying thresholds depending on the uncertainties associated with each 

outcome and individuals preferences. The proposed methods allow computation of the 

clinical net benefit in predicted prognostic models as follows: 

𝑁𝑒𝑡𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛
−
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛
(
𝑝𝑡

1−𝑝𝑡
)    Eq. 5. 7 

where 𝑛 is the number of observation (or sample size) considered in the simulations and 

𝑝𝑡 is the threshold defining risk given in the probability scale to weight the cost of false 

positive to false negative (from Eq.5.6).  

C 

A 
Heavy alcohol consumers 

(Treatment group) 

Non/Moderate alcohol 

consumers  

(Non-treatment group) 

Hypertension 

Hypertension 

No Hypertension 

No Hypertension  

𝑝𝑡 

1 − 𝑝𝑡 

𝑝𝑡 

1 − 𝑝𝑡 

True positive 

False positive 

False negative 

True negative 

B 

D 
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In the results section, decision curves showing the net benefit (on the y-axis) 

against a range of selected 𝑝𝑡 values (on the x-axis) were presented to compare various 

prognostic models in different linear and nonlinear datasets assumed in the simulations. 

In these curves, a useful prognostic model was the one that achieves the highest net 

benefits curve across the range of selected 𝑝𝑡.  

There are disadvantages of working with the decision analysis curves. First, it is 

important to recognise that the computations of the net benefits require some weights on 

how individuals perceive the harms and benefits of a particular treatment. This 

information is not always readily available; thus defining the threshold (𝑝𝑡) is difficult. 

The difficulties may occur at the population level where insufficient data on the harms 

and benefits is likely. Furthermore, the weights may be different between patients 

necessitating individual thresholds (Steyerberg et al., 2010). Hence, this is the reason 

why a range of thresholds (𝑝𝑡) for the occurrence of the outcome are considered in the 

simulations. 

5.4 Results 

The results summarising and comparing various association shapes of the 

predictor in logit models fitted with fractional polynomials, restricted cubic splines, 

linearisation and categorisation (CAT3 & CAT5) approaches are presented in 

section  5.4.1. The results on discrimination and calibration are presented in section  5.4.2 

and  0 respectively. The summary plots showing the clinical utility or net benefit results 

for applying the categorisation, and linearisation, FP, RCS models in the simulation are 

presented in section  5.4.4.  
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5.4.1 Comparison of various modelling techniques based on different 

association shapes of the predictor 

Figure 5.2 compares FP, RCS, CAT3, CAT5 and linearisation methods 

assuming various association shapes between continuous predictor variables and the 

probabilities of an event outcome. The results were obtained through a simulation study 

comparing these methods in linear, thresholds and quadratic or U association shaped 

datasets. The simulations were replicated 1000 times and the median predicted 

functions were reported for comparison with the true shapes considering alcohol-

hypertension relation as an example scenario. 

Under the linear association datasets, the linear and restricted cubic spline 

approaches produced almost similar linear fits between the predictor and probabilities of 

the event outcome. The median predicted functions produced by fitting the linear and 

RCS models lied entirely on the ‘true’ fit when the predictor was equivalent to or 

greater than 20 units. For lower predictors (values below 20 units), the linear and RCS 

functions slightly deviated away from the ‘true’ fit - underestimating the ‘true’ 

probabilities of the event outcome (see Figure 5.2- top left). In contrast, fitting the 

fractional polynomial models produced the fit that lied on the ‘true’ function when the 

predictor was equivalent to or greater than 14 units. Compared to the linear and RCS 

models, the FP function greatly underestimated the outcome probabilities when the 

predictor was less than 14 units. The fitted FP function also had an artefact or ‘spike’ at 

the lower tail of predictor. The artefact was observed when the predictor was zero – an 

indication that zero values in the predictor data affect the behaviour of the FP models. 

Apart from the three models that keep continuous predictor values continuous in the 

analysis, the CAT3 and CAT5 methods produced step functions that suggest increasing 

probabilities of the event outcomes in the data (see Figure 5.2 - top left). 
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In linear threshold datasets, none of the five methods including CAT3, CAT5, 

linear, FP and RCS models were completely able to identify the true curve in the data. 

The FP and RCS partially identified the ‘true’ association at the upper range (> 28 units) 

of the predictor - where the actual relationship was linear (see Figure 5.2 – top right). 

Apart from that, the FP and RCS models underestimated the probabilities of the 

outcome at the lower predictor (< 10 units) and also overestimated the probabilities of 

the outcome when the predictor was between 10 - 28 units. Based on the latter, the two 

functions overestimate the probability of the outcome at the threshold (occurring at 20 

units of the predictor). In Figure 5.2 (top right), the main dissimilarity between the FP 

and RCS models was an artefact observed in the FP fit when the predictor was zero. 

Other than that, the CAT3, CAT5 and linearisation methods revealed incorrect 

relationships in the linear threshold data. The CAT3 and CAT5 methods overlooked the 

actual curve features in the data by producing increasing step functions that assumes 

constant changes at different levels of the exposure (see Figure 5.2 (top right)). In 

contrast, the method of linearisation retained a linear function suggesting an increasing 

relationship between the predictor and the outcome. Overall, the median probability 

function attained by assuming linearity on the data underestimated the occurrence of the 

outcome at the lower and upper tails of the predictor distribution. Moreover, the method 

of linearisation overestimated the occurrence of the outcome at the threshold (occurring 

at 20 units of the predictor). A graphical comparison of CAT3, CAT5, linear, FP and 

RCS methods in the linear threshold dataset is provided in Figure 5.2 (top right).  
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Figure 5.2: Comparison of FP (green), RCS (blue), CAT3 (brown), CAT5 (red) and 

linearisation (orange) methods in a simulation where continuous predictor variable 

assume various shapes for prediction of event outcome. Median probability functions 

obtained with these methods after 1000 simulations are presented to compare them 

against true shapes (black) in linear, thresholds and quadratic datasets.  

 

Under the nonlinear threshold datasets, the methods of FP and RCS produced 

approximately near similar association functions that were close to the true relationship. 

However, none of the two approaches produced a fit that entirely lends itself on the true 

curve (see Figure 5.2 – bottom left). The two methods of categorisation produced 

increasing step functions that do not identify with true curve in the data. The 

linearisation approach produced a linear association function - showing an 

underestimation of the outcome probabilities at the predictor below 18 units and above 
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50 units. At the predictor range between 18 - 50 units, the probabilities of the outcome 

event would be overestimated when fitting the linear function (see Figure 5.2 – bottom 

left).  

For quadratic or U association datasets (Figure 5.2 – bottom right), the FP and 

RCS revealed the existence of U associations in the data however the two models 

struggled to lend themselves on the true curve at the lower tail of the predictor. Fitting 

FPs produced logistic functions that underestimated the ‘true’ probabilities of the event 

outcome at the lower tail (≤ 15 units) and upper tail (≥ 44 units) of the predictor. When 

the predictor values were between 15 – 44 units, the FP function overestimated the 

‘true’ probabilities of the event outcome. In addition, the FP function was characterised 

by some artefacts around the zero predictor values (see Figure 5.2 – bottom right). In 

contrast, fitting the RCS function underestimated the ‘true’ probabilities of the event 

outcome when the predictor was ≤ 38 units and ≥ 50 units. When the predictor was 

between 38 – 50 units, the RCS was overestimating the ‘true’ probabilities of the event 

outcome. Apart from the FP and RCS methods, categorisation and linearisation 

produced inadequate fits in the data - showing step functions and linear relationships 

respectively. See a graphical comparison of these methods in Figure 5.2 – (bottom 

right). 

5.4.1.1 Confidence intervals of predicted functions 

Figure 5.3 & Figure 5.4 shows the 95% CI regions corresponding to the median 

predicted functions in Figure 5.2. 

The results under the linear association datasets (Figure 5.3 - top) show that the 

FP function had the widest CIs at the tails of the predictor compared to the linear, 

CAT3, CAT5 and RCS models. This behaviour was attributed to instability of the FP 

function at the tails of the predictor (see Figure 5.2 - top right). Apart from that, the 
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linear model produced a fit with the thinnest CIs across the range of the predictor 

distribution whilst the CAT3 and CAT5 methods retained step function CIs (see Figure 

5.3 - top). 
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Figure 5.3: The median predicted functions and their 95% confidence interval regions obtained from 1000 simulations (replicates) after 

fitting linear and linear threshold association datasets using linearisation, categorisation, FP and RCS modelling approaches 
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Under the linear threshold datasets (Figure 5.3 - bottom), the CI regions 

produced using the CAT3 model failed to sufficiently cover the true function. In 

contrast, the CAT5, linear, FP and RCS models produced CIs that offer sufficient 

coverage region on the true function. However, the FP function had extremely wider 

CIs at the tails of the predictor distribution compared to the CAT5, linear and RCS fits. 

The FP function was unstable at the tails, thus the extremely wider CIs. Beside the FP 

function, the RCS model also had wider CIs at the upper tail of the predictor compared 

to the CAT5 and linear fits (see Figure 5.3 – bottom). 

Under the nonlinear threshold datasets, the CAT3, CAT5 and linearisation 

methods produced inadequate fits with insufficient CI regions for the true functions. 

The linearisation and CAT3 methods struggled to adequately estimate and provide 

coverage of the true probability of an event outcome at the central distribution of the 

predictor. For example, at 40 units of the predictor, true probability of an event outcome 

was 0.09. However, the linear and CAT3 models overestimated the probabilities of the 

event outcome at 0.12 (CI = 0.10, 0.15) and 0.19 (CI = 0.15, 0.24) respectively. In 

contrast, the CAT5 struggled at the upper distribution of the predictor – underestimating 

the true event probabilities (see Figure 5.4 - top). Apart from the latter, the alternative 

methods of FP and RCS produced CIs that were adequate for the true functions (see 

Figure 5.4 - top). Like in the previous relationship functions, the FP model retained 

wider CIs at the lower and upper tails than the other methods. Detailed graphical 

comparison of median predicted functions and their CIs in the nonlinear threshold 

datasets are provided below in Figure 5.4 (top). 
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Figure 5.4: The median predicted functions and their 95% confidence interval regions obtained from 1000 simulations after fitting 

nonlinear threshold and quadratic or U association datasets using linearisation, categorisation, FP, and RCS modelling approaches 



125 

The 95% CIs attained using the quadratic or U association datasets are found in 

Figure 5.4 (bottom). Although the linear, CAT3 and CAT5 models do not adequately 

lend themselves on the ‘true’ quadratic function, they retained sufficient CIs on the data. 

Unsurprising, the FP and RCS models retained near approximation fits with adequate 

coverage for the actual fit (see Figure 5.4 – bottom). However, the 95% CI regions in 

the FP and RCS models were narrow at the centre of the predictor distribution and wide 

at the tails. In comparison, the FP function predicted wider CIs at the tails than the RCS 

models. For example, when the predictor was zero, the probabilities of the event 

outcome estimated from the FP and RCS functions were 0.10 (CI = 0.00, 0.30) and 0.10 

(CI = 0.05, 0.15) respectively. At the upper tail, when the predictor was 59 units, the 

estimated probabilities of the event outcome was 0.13 (CI = 0.08, 0.22) in the FP model 

and 0.13 (0.08, 0.20) in the RCS function. These estimates were in comparison with the 

‘true’ of probabilities of 0.10 and 0.14 occurring at 0 and 50 units of the predictor. 

5.4.1.2 Estimated turning points or optimum probabilities  

Table 5.2 below present the turning points or optimal probabilities of the event 

outcome from the threshold and quadratic datasets using the CAT3, CAT5, RCS and FP 

models. This section also summarises the results on coverage probabilities from the 

simulations. The coverage probabilities of ‘true’ optimal rate of an event outcome in 

1000 simulation are summarised in Table 5.3 for comparison. 
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Table 5.2: Comparison of optimal predictor and probability estimates obtained across 

1000 simulations after fitting thresholds and quadratic association datasets using 

different modelling approaches. 

Association 

datasets 

under 

investigation 

Modelling 

approaches  

Estimates The true 

optimal 

probability 

of an 

outcome at 

20 units of 

the predictor 

Estimated 

optimal 

predictor 

The estimated 

optimal 

probability of an 

outcome 

The estimated 

probability of an 

outcome at 20 

units of the 

predictor 

Linear 

threshold 

datasets 

CAT3 - 0.05 (0.03, 0.07) 0.05 (0.05, 0.08)  

0.05 
CAT5 - 0.04 (0.02, 0.07) 0.05 (0.02, 0.08) 

RCS 0 (0, 22) 0.04 (0.02, 0.07)  0.06 (0.04, 0.08)  

FP 0 (0, 18.5) 0.04 (0.00, 0.06)  0.06 (0.04, 0.08)  

Nonlinear 

threshold 

datasets 

CAT3 - 0.05 (0.03, 0.07) 0.05 (0.03, 0.08) 

0.05 
CAT5 - 0.04 (0.02, 0.06) 0.05 (0.02, 0.08) 

RCS 18 (0, 25) 0.04 (0.02, 0.06) 0.05 (0.03, 0.07)  

FP 9 (0, 27) 0.04 (0.00, 0.06)  0.05 (0.03, 0.07)  

Quadratic 

association 

datasets 

CAT3 - 0.08 (0.06, 0.11)  0.09 (0.06, 0.12)  

0.09 
CAT5 - 0.07 (0.05, 0.10) 0.09 (0.05, 0.13) 

RCS 22 (0, 60) 0.08 (0.05, 0.10)  0.09 (0.06, 0.11)  

FP 9 (0, 60) 0.07 (0.00, 0.10)  0.09 (0.07, 0.12)  

 

Under the linear threshold datasets, the RCS and FP models predicted the 

optimal predictor values at 0 (CI = 0, 22) and 0 (CI = 0, 18.5) units respectively. At the 

estimated optimal predictor of 0 units, the corresponding probabilities of the event 

outcome were 0.04 (CI = 0.02, 0.07) and 0.04 (0.00, 0.06) in the RCS and FP models 

respectively. At 20 units of the predictor where the ‘true’ probability of 0.05 for the 

event outcome was expected, both the RCS and FP models overestimated the event 

rates – suggesting the probability of 0.06 (CI = 0.04, 0.08) (see Table 5.3). These results 

suggest that fitting the RCS and FP logistic regression models in liner threshold datasets 

shift the ‘true’ position of the predictor producing an underestimation. As seen in Table 

5.2, the location of optimal predictor was shifted to the left – producing smaller 

probabilities of the event outcome than at the true turning point. In 1000 replications, 

the coverage probabilities of the ‘true’ optimal outcome recorded when fitting the RCS 
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and FP models in linear threshold datasets were 1.000 and 0.721 respectively (see Table 

5.3). The coverage probability attained using the FP function was far from the 95% 

nominal level than when applying the RCS method. These results implied some under-

coverage probability in the FP models and conservative coverage in the RCS models.  

 

Table 5.3: The coverage probabilities of 'true' optimal outcome events in 1000 

simulations (replications) obtained in thresholds and quadratic datasets after fitting 

categorisation (CAT3 and CAT5), RCS, and FPs.  

Types of association dataset under investigation Modelling Approaches 

CAT3 CAT5 RCS FP 

Linear threshold datasets 0.999 1.00 1.000 0.721 

Nonlinear threshold datasets 1.000 1.00 1.000 0.755 

Quadratic association datasets 0.907 0.957 0.867 0.658 

 

Under the nonlinear threshold datasets, the RCS model predicted the optimal 

predictor at 18 (CI = 0, 25) units with the corresponding probability of 0.04 (CI = 0.02, 

0.06) for the event outcome. In contrast, the optimal predictor attained by fitting the FP 

model was 9 (CI = 0, 27) units and the corresponding probability of the event outcome 

0.04 (CI = 0.00, 0.06). When compared to the ‘true’ optimal probability of 0.05 attained 

at 20 units of the predictor, both the RCS and RCS resulted in underestimated 

probabilities of the event outcome and the optimal predictor (see Table 5.2). Apart from 

the latter, the FPs returned the lowest coverage rates of the ‘true’ optimum outcome 

than when using RCS models. In 1000 simulation using nonlinear threshold datasets, 

the coverage probability using FP models was 0.755 whilst in RCS was at 1.000. These 
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results suggest under-coverage probability in FP models and conservative coverage in 

the RCS models.   

Under the quadratic datasets, the optimal predictor was overestimated when 

fitting RCS models. The RCS predicted the optimal predictor at 22 (CI = 0, 60) units 

with the corresponding probability of 0.08 (CI = 0.05, 0.10) for the event outcome. 

Contrary to the RCS method, fitting the FP models resulted in an underestimation of the 

‘true’ optimal predictor. The optimal predictor under the FP method was estimated at 9 

(CI = 0, 60) units. The corresponding optimal probability of the event outcome was also 

underestimated when fitting the FP function (see Table 5.2). Although there were 

contradictions in the predicted optimal/turning points from these models (RCS and FP), 

they both accurately estimated the ‘true’ probability of the outcome at 20 units of the 

predictor (see Table 5.2). In Table 5.3, when comparing the coverage probability, fitting 

the RCS functions retained greater proportion than the FP models (0.867 vs 0.654). 

However, under-coverage probabilities were evident in the two methods when fitted in 

quadratic or U association datasets. The estimated proportions that the interval contains 

the ‘true’ optimal outcome was less than the nominal 95% level assumed in the 

simulation for both models. 

Although the categorisation produced inadequate fits (step functions) in the 

simulation, the CAT3 and CAT5 had greater coverage probabilities of the event 

outcome in thresholds and quadratic datasets (see Table 5.2). However, this was not 

surprising. The ‘true’ optimal points were placed in the lower category (under the 

CAT3) and second category (under the CAT5) hence these categories were always 

returned every time the minimum probabilities were recalled in the simulations. 

Therefore, this retained the coverage probabilities greater or closer to the nominal rate 

of 95% under the two methods (see Table 5.3). 
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5.4.2 Discrimination  

Table 5.4 compares the differences in AUC of five models (linear, CAT3, 

CAT5, FP and RCS) in the simulation. The median estimates of the AUC and their 95% 

confidence intervals were reported from the four logit functions (including log linear, 

thresholds and quadratic datasets) for comparison.  

There was discrimination failure when applying the methods of linearisation, 

CAT3, CAT5, RCS, and FP in log linear datasets. In Table 5.4, the logistic regression 

models (attained through the methods of linearisation, CAT3, CAT5, RCS, and FP) 

produced the c-index scores that were closer to 0.5 – suggesting the inability of the 

models to discrimination between outcomes with the event and those without. The 

logistic regression models (attained by linearising and categorising the continuous 

predictor into three groups) retained similar c-index scores - with little differences on 

their confidence intervals. For example, the c-index scores under the methods of 

linearisation and CAT3 were recorded as 0.55 (CI=0.50, 0.61) and 0.55 (CI=0.50, 0.60) 

respectively. In contrast, there was slight improvement on the c-index scores when 

fitting the FP, CAT5 and RCS models. The FP, CAT5 and RCS models yielded c-index 

scores of 0.56 (CI=0.50, 0.61), 0.57 (CI=0.53, 0.62) and 0.58 (CI=0.53, 0.71) 

respectively (see Table 5.4). Although the difference was not substantial, the latter 

results also suggested the CAT5 performs better than the FP approach. 
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Table 5.4: The median estimates for the area under the ROC curve (AUC) and their 95% confidence intervals obtained after fitting FP, 

RCS, categorisation, and linearisation models in a simulation study replicated 1000 times. The reported estimates were obtained after 

applying these methods in log linear, thresholds and quadratic datasets. 

Types of 

association 

datasets under 

investigation 

Methods of analysis 

Linearisation  
Categorisation 

(CAT3) 

Categorisation 

(CAT5) 

Restricted 

cubic spline 

Fractional 

polynomial 

Linear 0.55 (0.50, 0.61) 0.55 (0.51, 0.60) 0.57 (0.53, 0.62) 0.58 (0.53, 0.71) 0.56 (0.50, 0.61) 

Linear threshold 0.69 (0.61, 0.73) 0.65 (0.60, 0.70) 0.67 (0.61, 0.72) 0.68 (0.62, 0.78) 0.67 (0.61, 0.73) 

Nonlinear 

threshold 
0.70 (0.64, 0.76) 0.67 (0.62, 0.72) 0.70 (0.64, 0.75) 0.71 (0.65, 0.81) 0.70 (0.64, 0.76) 

Quadratic or U 

shaped 
0.53 (0.50, 0.59) 0.54 (0.51, 0.59) 0.56 (0.53, 0.61) 0.57 (0.53, 0.69) 0.55 (0.50, 0.61) 
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There was an improvement in c-index scores when fitting the log linear, CAT3, 

CAT5, FP and RCS regression models in linear threshold datasets. However, 

discrimination remained poorer across the five methods of analysis. The CAT3 method 

had the lowest c-index score of 0.65 (CI=0.60, 0.70) followed by the CAT5 and FP that 

achieved similar c-index scores of 0.67 (with slightly different CIs). The RCS and 

linearisation approaches had the largest but poor discrimination with c-index scores of 

0.68 (CI=0.62, 0.78) and 0.69 (CI=0.61, 0.73) respectively (see Table 5.4). 

Fair discrimination was obtained with CAT5, FP, RCS and log linear models in 

nonlinear threshold datasets. In contrast, the CAT3 approach retained the least c-index 

of 0.67 (CI=0.62, 0.72) – suggesting poor discrimination in the data (see Table 5.4 for 

more details). 

The five methods of analyses (including the linear, CAT3, CAT5, RCS and FP) 

had no predictive discrimination ability when fitted in quadratic datasets. The c-index 

scores attained when fitting these methods in quadratic datasets were closer to 0.5 – 

suggesting discrimination failure (see Table 5.4).  

Overall, the RCS methods produced greater c-index scores amongst the five 

methods considered in the simulations whilst the CAT3 retained the least c-index 

scores. However, the difference between the five methods of analysis was not 

substantially large/worse (see Table 5.4). The CAT5, FP and linearisation competed 

fairly but the CAT5 slightly outperformed the linear and FP models in some scenarios. 

5.4.3 Calibration plots 

Figure 5.5 & Figure 5.6 show calibration plots in 1000 simulations obtained 

after fitting various datasets using the logistic regression models through the 

linearization, CAT3, CAT5, FP and RCS approaches. The plots summarise the 

agreement between observed probabilities against predicted probabilities. When the 
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observed and predicted probabilities are in agreement, the estimated calibration curves 

should produce an ideal 45
o 

line with an intercept of zero and slope of one. Otherwise, 

the model is not well calibrated. 

The calibration plots obtained in Figure 5.5 (top) after fitting different logistic 

regressions using linear relationship datasets showed no perfect calibration when 

applying any of the linear, CAT3, CAT5, FPs and RCS models. The linearisation and 

FP models produced better calibrated plots in lower prediction regions below 20% and 

30% respectively. In high prediction region both the linear and FP models showed 

disagreements between the observed and predicted probabilities. The predicted 

probabilities were lower than the observed in the high prediction region when fitting the 

linear model and slightly higher under the FP function (see Figure 5.5 - top). In contrast, 

fitting the RCS models in linear association datasets produced disagreements between 

observed and predicted probabilities in lower (< 10%) and high (>17%) prediction 

regions. In the range between 10% and 17%, the predicted probabilities agreed with 

those observed and the RCS plot was well calibrated in this region. In other words, the 

RCS calibration plot showed a combination of agreement in the prediction region 

between 10% to 17% and miscalibration in the lower (<10%) and upper (>17%) regions 

of the predicted probabilities (see Figure 5.4 – top). Apart from that, CAT3 and CAT5 

methods produced plots showing systematically lower predicted probabilities than those 

observed. The estimated calibration plots obtained under the two methods of 

categorisation lied above the 45
o
 line – showing positive intercept coefficients and 

parallel slopes. However, the calibration plot under the CAT5 looked better than that 

under the CAT3 since it was closer to the 45
o
 line (although the difference between the 

plots produced by the two functions was not substantial) (see Figure 5.4 (top). 
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In linear threshold datasets, the linear model produced a calibration curve with 

an intercept greater than zero and a negative slope < 1 for prediction probabilities above 

25%. In Figure 5.5 (bottom), the linear model was well calibrated in the prediction 

region between 5% - 15% and miscalibrated in the prediction region below 5% and 

above 15% - suggesting a combination of agreement and disagreement. Generally, such 

calibration plots are difficult to interpret. However, overall sum differences between 

predicted and observed probabilities along the calibration curve show that the predicted 

probabilities are generally too high indicating the presence of miscalibration. In 

contrast, the two methods of categorisation (CAT3 & CAT5) produced calibration plots 

showing systematically lower predicted probabilities than those observed. However, 

there were little differences between observed and predicted probabilities across the 

prediction range in both models. Under the methods of FP and RCS, the plots were well 

calibrated in the prediction region below 30%. In the prediction region above 30%, the 

predicted probabilities were lower than those observed when fitting the FP models. In 

contrast, the predicted probabilities exceeded those observed when fitting the RCS 

models in this region (>30%) (See Figure 5.5 – bottom).  
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Figure 5.5: Calibration plots of the event probabilities obtained in log odds models. The plots were obtained in a simulation with 1000 

replicates comparing linearisation, categorisation, FPs and RCS approaches in linear and linear threshold datasets respectively. For each 

approach, the median observed probabilities of an event were plotted against the predicted probabilities. 
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In nonlinear threshold datasets, better calibration plots occurred when fitting the 

CAT3, CAT5, FP and RCS models. However, there was small miscalibration in the 

RCS models at the extreme prediction region (>45%). In contrast, the CAT3, CAT5 and 

FP models produced calibration plots very close to the 45
o
 line (across the prediction 

range). However, the CAT3 and CAT5 models still retained plots with slightly lower 

predicted probabilities than those observed in the true function (see Figure 5.6 - top).  In 

the same datasets, the worst miscalibration plot occurred when applying the method of 

linearisation (see Figure 5.6 - top). The linear model retained a plot showing 

disagreement between the observed and predicted probabilities at extreme prediction 

regions <5% and > 15% (see Figure 5.6 - top). 

In quadratic relationships, there was a combination of agreement and 

miscalibration when fitting the log linear, FP and RCS models in the datasets. The 

methods of linearisation, FP and RCS produced plots suggesting well calibration in 

lower prediction region and miscalibration in high prediction range (see Figure 5.6 – 

bottom). In contrast, fitting CAT3 and CAT5 models produced calibration curves with 

intercepts terms greater than zero and positive slopes - showing consistently lower 

predicted probabilities than the observed probabilities (see Figure 5.6 – bottom). 
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Figure 5.6: Calibration plots of the event probabilities obtained in log odds models. The plots were obtained in a simulation with 1000 

replicates comparing linearisation, categorisation, FPs and RCS approaches in nonlinear thresholds and quadratic or U shaped datasets 

respectively. For each approach, the median observed probabilities of an event were plotted against predicted probabilities. 
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Overall, the results above suggest the two method of categorisation (CAT3 and 

CAT5) were likely to produce lower predicted probabilities than those observed in true 

functions assumed in this simulation study. However, the CAT3 and CAT5 retained 

better plots than the linear, FP and RCS models. The calibration plots attained by 

methods of linearisation, FP and RCS were characterised by combinations of agreement 

and disagreements (or miscalibrations) when applied in the same datasets. 

5.4.4 Clinical usefulness of statistical models under investigation 

The decision curves plotting the net benefits against varying threshold 

probabilities are presented in this section to evaluate the risk prediction models and their 

clinical utility. The plots identified the threshold probabilities at which the prediction 

models were of value, the magnitudes of net benefits and the overall optimal models in 

the four association datasets considered in the simulations. 

In Figure 5.7, the strategy with large clinical benefits has the highest curve. The 

grey solid line assumes that all patients have the event outcome (hypertension) and are 

all treated. This means that any prediction model closer to the grey solid line (or with 

less net benefits) has negative clinical consequences. Furthermore, the black solid line 

assumes no patient has the disease and required for treatment. Given these scenarios, the 

prediction models attained by using the methods of linearisation, CAT3, CAT5, FP and 

RCS were similar to the strategy of treating all patients with the event outcome at the 

lower threshold probabilities, 𝑝𝑡 < 7% than at higher thresholds. For 𝑝𝑡 < 7%, the five 

prediction models are inefficient and have no clinical use than the strategy of treating all 

patients with the event outcome. In Figure 5.7, the clinical usefulness of these 

prediction models was only realized when the thresholds probability, 𝑝𝑡 was between 

7% and 13%. When the threshold probabilities was between 7% and 13%, the net 

benefits derived from using the five methods were greater or better than the strategy of 
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not treating any patient (assuming no patients has the event outcome). In other words, 

when 𝑝𝑡 < 7% or 𝑝𝑡 > 13%, the five prediction models have no clinical value since 

they are no better than a strategy of treating all the patients with the event outcome 

(𝑝𝑡 < 7%) or not providing treatment for all patients without the event outcome 

(𝑝𝑡 > 13%). 

 

Figure 5.7: The median predicted curves attained from 1000 simulations showing the 

Net Benefits of applying various statistical models (FP, RCS, CAT3, CAT5 and 

linearisation approaches) in linear predictor-outcome relationship datasets 

The advantages of applying the methods of linearisation, CAT3, CAT5, FP and 

RCS in the linear association datasets can be summarised by assessing the reduction of 

false positive results from each prediction model. This is because whenever treatment is 

guided by prediction models, the harm often occurs due to false-positives. Table 5.5 and 

Figure 5.8 compares the net benefit and reduction of false positive results per 100 

patients at various threshold probabilities as obtained in the predicted models. 
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According to the results in Table 5.5, the net benefit of 0.05 (0.03, 0.07) was 

attained at 𝑝𝑡 of 5% in all the prediction models. This means that compared to none 

treatment of all patients, the prediction models suggest 5 true positives per 100 patients 

without any increase in the numbers of false positives. At 𝑝𝑡 of 8%, the FP and CAT5 

models predicts 3 true positives per 100 patients compared to 2 obtained when fitting 

the CAT3, log linear and RCS models (not shown in the table). This agrees with what 

was observed in Figure 5.7 – the CAT5 had higher net benefits followed by the FP 

model when 7% < 𝑝𝑡 < 13%. This means that at the threshold probabilities (𝑝𝑡) 

between 7% and 13% patients or clinicians may choose the results from the CAT5 

model as their treatment strategy over the FP, CAT3, log linear and RCS results since it 

achieves higher clinical benefits. However, the results from the FP, CAT3, log linear 

and RCS methods were not substantially worse/different from those attained using the 

CAT5 (see Figure 5.7). 

The results on false-positive reductions per 100 patients also suggested some 

agreement between the methods of CAT3, CAT5, log linear, FP and RCS when the 

threshold probability was 𝑝𝑡 < 7% or 𝑝𝑡 > 13% (see Figure 5.8). At the threshold 

probabilities,  𝑝𝑡 between 7% and 13% there was disagreement on these methods. For 

example, at 𝑝𝑡 of 10% the CAT5 model produced 10 fewer false positives per 100 

patients compared to 9 (CAT3, FP and RCS) and 8 under the linearisation approach. 

This means that applying the CAT5 a treatment strategy will reduce the enrolment 

amongst patients without the event outcome by 10% compared to the 9% (under the 

CAT3, FP, RCS) and 8% under the linear method - assuming the numbers of true 

positives do not increase (see Table 5.5 and Figure 5.8 below for more details). 
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Table 5.5: Comparison of net benefits and reduction of false positive results per 100 patients according to different statistical prediction 

models assuming various threshold probabilities. 

 

 

0.05 0.05 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0)

0.10 0.00 0.01 (0.00, 0.03) 0.01 (0.00, 0.02) 9 (0, 22) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 10 (1, 23) 0.01 (0.00, 0.03) 0.01 (0.00, 0.02) 8 (0, 22)

0.15 -0.06 0.00 0.06 (0.04, 0.08) 33 (22, 46) 0.00 0.06 (0.04, 0.08) 33 (22, 46) 0.00 0.06 (0.04, 0.08) 33 (21, 46)

0.20 -0.13 0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (41, 60)

Reduction in false 

positives per 100 

patients

Linearisation

Difference       

(Net Benefit)

Reduction in false 

positives per 100 

patients

Predicted model 

(Net Benefit)

Threshold 

probabilities 

(%)

Treat 

all
Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Categorisation (3 groups) Categorisation (5 groups)

Predicted model 

(Net Benefit)

Predicted model 

(Net Benefit)

Difference           

(Net Benefit)

0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 5) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 4)

0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 9 (0, 23) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 9 (0, 23)

0.00 0.06 (0.04, 0.08) 33 (21, 46) 0.00 0.06 (0.04, 0.08) 33 (21, 46)

0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (41, 60)

Predicted model 

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Restricted cubic splines

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Fractional Polynomials

Predicted model 

(Net Benefit)
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Figure 5.8: Comparison of various statistical prediction models showing the net reduction of false positives per 100 patients in the linear 

predictor-outcome datasets  
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The net benefits attained in (a) linear threshold, (b) nonlinear threshold and (c) 

quadratic or U predictor-outcome relationship datasets using CAT3, CAT5, linear, FP, 

RCS models are summarized in Figure 5.9. The top row in Figure 5.9 shows the net 

benefits from these statistical models in (a) linear threshold, (b) nonlinear threshold and 

(c) quadratic or U predictor-outcome relationship datasets respectively. The bottom row 

provides the results showing the net reductions for false positives associated with each 

prediction model in these datasets. 

In Figure 5.9, the CAT3 model had the least clinical net benefits compared to 

the methods of CAT5, linearisation, FP, and RCS when fitted in both linear and 

nonlinear threshold datasets. In the linear threshold predictor-outcome dataset, the 

CAT3 method was clinically useful when the threshold probability, 𝑝𝑡 was between 5% 

and 17% and retained the least benefits in this probability range. In the same dataset, the 

FP and RCS models had similar clinical net benefits when the threshold probability, 

𝑝𝑡 was between 5% and 22%. The plots comparing the net clinical benefits of these 

methods are provided in Figure 5.9 (top left (a)). In Figure 5.9 (top left (a)), the FP and 

RCS models outperformed the CAT3 method when 14% < 𝑝𝑡 < 22%. In addition, the 

FP and RCS approaches outperformed both the CAT5 and linear models when 17% <

𝑝𝑡 < 22%. Graphically, the CAT5 method was clinically useful when 𝑝𝑡 was between 

5% and 19% whilst the linear model achieved its usefulness when 5% < 𝑝𝑡 < 21%. 

Hence, the linear approach was a better strategy than the CAT5 when 19 % < 𝑝𝑡 <

21% and 14% < 𝑝𝑡 < 21% against the CAT3 - which is not better than any strategy of 

treating patients with the event outcome when 𝑝𝑡 > 17% (see Figure 5.9 - top left (a)).  

In nonlinear threshold datasets presented in Figure 5.9 (top middle (b)), 

categorising the predictor into three categories during analysis produced a model with 

clinical utility when 𝑝𝑡 was between 5% and 18%. In this probability range, the CAT3 
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slightly outperformed the linear model when 𝑝𝑡 was between 5% and 11%. In contrast, 

the CAT5 (with more categories) had better fit (with larger clinical benefits) than both 

the CAT3 and linear models when 5% < 𝑝𝑡 < 18%. However, the linear model 

outperformed the two methods of categorisation (CAT3 & CAT5) when 𝑝𝑡 was large 

(between 19% and 24%). Fitting the FP and RCS models in similar dataset produced 

similar clinical net benefits when 𝑝𝑡 was between 5% and 33%. In this probability 

range, the FP and RCS models had larger clinical benefits compared to the CAT5 

method when 𝑝𝑡 was between 18% and 33%. Otherwise, the three methods of CAT5, 

FP and RCS had almost similar clinical benefits when 𝑝𝑡 < 18%. When compared to 

the methods of linearisation, the FP and RCS models had larger clinical benefits when 

5% < 𝑝𝑡 < 15% and 20% < 𝑝𝑡 < 33%. At the threshold probabilities between 15% 

and 20% the methods of linearisation retained similar large clinical benefits as in the FP 

and RCS models. The plots comparing the net benefits of five models in nonlinear 

threshold datasets are provided in Figure 5.9 – top right (c) below.  
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Figure 5.9: The median predicted curves attained from a simulation study (with 1000 replicates) showing the Net Benefits and Reduced 

false positive per 100 patients using various statistical models (FP, RCS, CAT3, CAT5 and linearisation approaches) in (a) linear threshold, 

(b) nonlinear threshold and (c) quadratic or U predictor-outcome relationship datasets. 



145 

The results showing false-positive reductions per 100 patients in different 

logistic regression models are provided in Figure 5.9 – bottom. Overall, the CAT5, 

linear, FP and RCS models performed better than the CAT3 method when fitted in 

threshold (linear and nonlinear) and quadratic datasets. Evidence of underperformance 

in CAT3 models was noticeable in threshold datasets. The CAT3 method was struggling 

at the central distribution of the threshold probabilities, 𝑝𝑡′𝑠 in these datasets – 

producing a smaller reduction in false positives than the CAT5, linear, FP and RCS 

models (see Figure 5.9- bottom ((a) – (b)). The other additional tables showing detailed 

analyses output of net benefit and the reduction of false positives per 100 patients using 

the CAT3, CAT5, linear FP, and RCS models in threshold and quadratic datasets are 

provided in  Appendix D (see Table 5.6 - Table 5.8).  

5.5 Discussion 

This section starts by discussing the general approach adopted in this chapter. 

Section  5.5.2 follows next to outline the main findings of this chapter. Limitations, 

future work emerging from this work are provided in section  5.5.3 and  5.5.4 

respectively. 

5.5.1 General approach 

The practices of categorising or linearising continuous predictor variables in 

prognostic models have been criticised in the literature (Bennette and Vickers, 2012, 

Collins et al., 2016). The alternative methods of handling continuous predictor variables 

include using fractional polynomials (FP) and restricted cubic splines (RCS). FP and 

RCS are principal competitors for estimating functional forms but there exist few 

studies comparing the two methods (Hollander and Schumacher, 2006, Govindarajulu et 

al., 2009, Binder et al., 2013). This chapter investigated through simulations the 

methods of categorisation and linearisation against the alternative approaches of using 
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FPs and RCS in logistic regression models with a continuous predictor. In the 

simulation, two forms of categorisation including CAT3 and CAT5 models were 

considered for evaluation. The aim was to get an insight on the properties of these 

approaches in various prognostic models where linear and nonlinear logit functions 

were observed. Identification of local features such as turning points (or threshold 

estimation) was also of interest. Hence, the choice and performance of various logistic 

prognostic models against ‘true’ functions were very critical in this Chapter.  

For predictive accuracy, performance measures including discrimination, 

calibration, and the clinical utility were exhibited to encourage and guide medical 

researchers with limited statistical background on their usage with CAT3, CAT5, linear, 

FP, and RCS logistic regression models. The three performance measures of 

discrimination, calibration, and clinical usefulness have been recommended to improve 

the reporting of prognostic models in the TRIPOD (Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis) guidelines - see 

Item 16 of the recommendations (Moons et al., 2015).  

The applications of the FP and RCS models in Stata are readily available. Their 

implementations in the simulations were performed using the standard (or default) 

settings available to non-statistician to sensitize and encourage their usage. 

Furthermore, the simulations were exemplified by using the alcohol-hypertension 

relationship scenarios in epidemiology. However, the results of the simulation could be 

extended to similar settings where generalised linear models are applied. 

5.5.2 Summary of main results 

The practices of handling continuous predictor variables using CAT3 and CAT5 

methods were not adequate for prognostic functions assumed in the simulation. The two 

approaches yielded step functions that did not reflect true shapes in the data - suggesting 
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risk probabilities that were submerged and varied according to predictor categories. 

Therefore, the number of predictor categories under the CAT3 and CAT5 methods 

influenced risk variations in the fitted datasets. For example, the CAT3 (with three 

categories) allowed the event risk to vary by few (or wider) categories whilst the CAT5 

(with five categories) had more (or narrow) categories reflecting risk changes. In 

contrast, linearisation models performed well only when the relationship between the 

predictor and outcome was linear. The alternative methods of FP and RCS improved the 

results of the predictive functions in nonlinear threshold or quadratic datasets. The 

prognostic models developed using the FP and RCS methods produced fits that were 

very close to the ‘true’ nonlinear thresholds or quadratic associations in the simulations. 

In linear threshold datasets, none of the methods investigated in this study were able to 

identify the actual association shape in the simulations.  

In the simulation, the FP functions were characterised by unstable tails at the 

lower distribution of the predictor. The four logit functions fitted with FPs produced fits 

with some spike behaviour at zero values of the predictor. This behaviour affected the 

95% CIs of the FP models at the lower tails - making them irrationally wide and 

biologically implausible. In application studies, this problem could be dealt with by 

ignoring the spike in the fitted models (Lorenz et al., 2017). Alternatively, the FPs could 

be fitted at high/large predictor values above zero - by shifting the origin of the data, 

adding a small constant value to predictor values (Royston and Sauerbrei, 2008). The 

predictive models produced using fractional polynomials are based on natural 

logarithms thus may not be possible when the predictor assume zero or non-positive 

values. 

The results on optimal thresholds (or turning points) suggested some 

underestimation when fitting the FP and RCS models in linear and nonlinear threshold 
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datasets. Both the FP and RCS methods underestimated the ‘true’ optimal probabilities 

of the event outcome and shifting the positions and the locations of the optimal 

predictor to the left. Findings on the coverage probabilities of optimal event rates in 

these threshold datasets suggest under-coverage in the FP models and conservative 

estimates when fitting the RCS models. For quadratic datasets, there were some 

inconsistencies in the directions and positions of the estimated optimum predictor when 

fitting the FP and RCS prognostic models. The FP model underestimated the ‘true’ 

optimal predictor values – shifting the position to the left. In contrast, the RCS models 

overestimated the position of the ‘true’ optimal predictor – shifting the position to the 

right. Apart from that, both the FP and RCS models underestimated the optimal 

probability of the event outcome in the ‘true’ function. The coverage probabilities of the 

‘true’ optimal event rates were less than the 95% nominal level assumed when fitting 

the quadratic data with the FP and RCS models. 

Generally, there was poor discrimination and miscalibration when applying the 

five methods of analysis in the simulations. In all the simulated datasets, the RCS 

methods had greater c-index scores whilst the CAT3 retained the least c-indexes. 

However, the differences between the five methods of analysis were not substantially 

large or worse. The CAT5 competed fairly with other methods of analysis 

outperforming the linear and FP models in some scenarios. The results on calibration 

were characterised by lower predicted probabilities than those observed in ‘true’ 

functions when applying the two methods of categorisation (CAT3 and CAT5) in the 

simulations. However, the CAT3 and CAT5 retained better plots than those observed 

under the linear, FP and RCS models. In contrast, calibration plots attained by methods 

of linearisation, FP and RCS showed combination of agreements and disagreements 

(between predicted and observed probabilities) when applied in the same datasets. 

Reflecting on this, these are important findings, they provide insights on discrimination 
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and calibration (key measures of prognostic models). There is an ongoing debate about 

whether excellent discrimination and calibration can both be achieved in prognostic 

models. In this study, none of the prognostic models achieved both excellent 

discrimination and calibration in the simulated datasets. These findings are consistent 

with the argument raised by Diamond (Diamond, 1992) that prognostic models cannot 

achieve both excellent discrimination and calibration since the models that maximise 

discrimination does so at the expense of calibration.  

The results on clinical usefulness showed better performance when fitting the 

CAT5, linear, FP and RCS models in linear, thresholds and quadratic datasets than the 

CAT3 approach. However, the differences between the five methods were not 

substantially large or worse when applied in linear or quadratic datasets. Thus, the 

underperformance of CAT3 was predominantly large in linear and nonlinear threshold 

datasets. The CAT3 struggled at the central distribution of these datasets producing 

smaller false-positive reductions those observed under the CAT5, linear, FP and RCS 

models. The findings of poor net-benefits in categorical models (with few categories) 

were also reported by Collins and colleagues (2016). These authors also found some 

improvement on net-benefits when the number categories were increased in categorical 

models. The latter agrees with the results comparing CAT5 against CAT3 models. The 

CAT5 (with more categories) retained functions with improved net-benefits than the 

CAT3 fits.  

5.5.2.1 The difference between CAT3 and CAT5 approaches 

The five categorical (CAT5) models had better predictive ability (in terms of 

discrimination, calibration and net-benefits) than when three categories (CAT3) were 

assumed in the simulation. However, the two approaches were similar in character; their 

application produced step functions that did not reflect actual predictor-outcome 

relationships. Thus, the improvements on models with large number of categories come 
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as a trade-off for more complex functions (with more parameters) which would 

generally be inefficient, e.g. using >10 categories to approximate a non-linear 

relationship. 

5.5.3 Limitations 

Firstly, this study has only focused on single predictor models. In reality, there 

exist other variables that may influence or improve the performances of prognostic 

models. However, it was not possible to incorporate such variables in the simulations 

since it was difficult to envision how they would affect the predictive models. The 

results were clearer when considering one predictor variable. Nevertheless, similar 

findings may apply in general - when two or more continuous variables are adjusted for 

in these models.  

Secondly, the predictor variable was generated assuming a continuous uniform 

distribution. This claim is unpopular and ungeneralizable in most settings. Skewed or 

‘spike’ at zero (SAZ) distributions such as the lognormal, normal or a mixture of 

distribution are popular and more realistic in epidemiology. Thus, the directions and 

shapes of the predictor-outcome models were likely to be different in similar studies 

with skewed predictors. For example, if the ‘true’ predictor-outcome function was 

steeper at the tails because the predictor effects are concentrated in one end of the 

distribution, defining the end categories too broadly would obscure the direction and the 

‘true’ predictor-outcome functions in that region. In this situation, the end categories 

would assume the event outcomes are homogeneous (amongst higher and lower 

predictor values) which is not correct (Greenland, 1995a, Bennette and Vickers, 2012). 

Like in this chapter, it is expected that the alternative methods of FPs would produce 

fits with some spike behaviour at the zero values of the predictor. However, this 

behaviour would be more striking - skewed or SAZ predictor variables have larger 

proportions of zeros than the uniformly distributed measures. This behaviour is 
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influence by FPs inability to deal with zero predictor values (their FP powers of the 

form 𝑥𝑟[ln(𝑥)]𝑗 are included in the family of FP curves) hence only require positive 

values (Greenland, 1995b). In contrast, the RCS models would produce linear fits at the 

extreme tails of the predictor variables. The RCS are naturally constrained to be linear 

above the last knot and below the first knot (often placed at the tails of the predictor 

distributions). 

The third issue is about interpretation of certain features of the FP and RCS 

curves. The RCS fits linearly at the tails whilst the FP tends to fit curves even when it 

should be linear. Thus, true curves may be missed and misinterpreted in skewed datasets 

(with a large proportion of zeros and non-negative values). Hence, some statistical 

methods developed for this problem may be appropriate. Examples of such methods 

include, two-part models proposed by Duan et al (1983) and the compound Poisson 

exponential dispersion model proposed by Jørgensen (1987, 1997). However, a two-part 

model by Duan et al (1987) is suggested as a reasonable approach for many application 

studies (Min and Agresti, 2002). 

5.5.4 Future work 

The present simulation work focused on developing prognostic models based on 

single predictor variable. The motivation was to assess the four modelling approaches in 

various nonlinear risk functions excluding the influence of other possible variables (a 

priori) and maximise on generalizability. However, in reality, epidemiological studies 

are characterised by many covariates that influence and affect the final models. 

Therefore, an application study is suggested to assess the methods of categorisation, 

linearisation, FPs and RCS under the multivariable setting.   
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5.6 Conclusions  

Based on the results of this chapter, researchers may be tempted to use large 

number of categories for predictive analysis. However, the performance improvements 

on such models come as a trade-off for more complex functions that are inefficient. 

Thus, this research concludes by recommending that: 

i. Researchers do not categorise continuous predictors for development of 

prognostic models. Alternative approaches for handling continuous 

predictor variables such as FPs and RCS are available.  

ii. Flexible regression approaches including fractional polynomials or 

restricted spline models be used as a minimum check for the presence of 

nonlinearity when the ‘true’ predictive function is unknown. 

iii. When nonlinearity is suspected or unknown, researchers should be 

careful about the reporting of clinical thresholds (or turning points) using 

the FP and RCS functions. The estimation of clinical thresholds (or 

turning points) using these functions in unknown relationships could be 

misleading – producing inconsistent findings. 

iv. When the predictive function is suspected to be linear, the assumption of 

linearising the predictor or applying RCS produces adequate functions. 

The FP method is not sufficient for linear predictive models; produce fits 

that are biologically implausible – characterised by artefacts at the lower 

tails of the predictor variable and extremely wider CIs. 

Finally, if prognostic models are to be used by practitioners or clinicians, it is 

important to validate the risk prediction for clinical credibility, accuracy, and efficiency. 

Thus risk performance measures including discrimination, calibration, and clinical 

utility must always be performed for validation of any prognostic model.  
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  Chapter 6

Examining the alcohol-hypertension association in type 

2 diabetes patients using the UK Biobank  

6.1 Background  

Diabetes (also known as Diabetes Mellitus (MD)) is amongst serious non-

communicable diseases targeted by world leaders for action due to steadily increasing 

cases reported over the past decades (World Health Organization, 2016). The estimated 

global estimates for the adult population living with diabetes stood at 422 million in the 

year 2014. The estimates depict a twofold increase in the global prevalence rate of 4.7% 

in the 1980s to 8.5% in 2014 (World Health Organization, 2016).  

The consequences of diabetes include morbidity and mortality and are 

accelerated by allied complications and sequelae of hypertension such as kidney 

diseases, cardiovascular diseases, neuropathy, blindness and lower extremity 

amputations (Bebb et al., 2007, Deshpande et al., 2008). Evidence suggests that 

hypertension is significantly higher in diabetic population than in non-diabetics 

particularly common amongst those with type 2 diabetes (Barnett, 1994, World Health 

Organization, 2016). A recent review suggests that more than 60% of patients with type 

2 diabetes have hypertension (Colosia et al., 2013). Therefore, maintaining tighter and 

lower blood pressure levels amongst patients with type 2 diabetes is essential to control 

and manage allied complications. However, this is not easy; the number of patients 

diagnosed with hypertension amongst those with type 2 diabetes is increasing. The 

reasons for rising prevalence of hypertension in type 2 diabetes population maybe 

attributed to lifestyle factors such as the consumption of high-calorie diets and 
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sedentary behaviour in different racial, ethnic, and social groups (Lago et al., 2007, 

Blomster et al., 2014).  

Alcohol consumption is another major lifestyle factor associated with the 

disease complications amongst patients with type 2 diabetes (Beulens et al., 2005, 

Blomster et al., 2014). Heavy or excess alcohol intake is known to elevate blood 

pressure levels (Stamler et al., 2003, Mori et al., 2016) perhaps due to increased levels 

of low-density lipoprotein (LDL), increased blood clotting and changes in the 

myocardium and ventricular fibrillation, which are all linked to adverse cardiovascular 

outcomes (Mckee and Britton, 1998). Thus, some studies recommend moderate alcohol 

drinking (Razay et al., 1992, Blomster et al., 2014, Gepner et al., 2015). The 

consumption of alcohol in moderate quantities is associated with reduced incidence of 

risk amongst cardiovascular diseases and mortality (Razay et al., 1992, Blomster et al., 

2014, Gepner et al., 2015), due to increased levels of high-density lipoprotein (HDL) 

cholesterol and reduced coagulation (Pearson, 1996). In patients with type 2 diabetes, 

the risk-benefits of moderate alcohol consumption is questionable due to the 

recommendation of tighter blood pressure levels (Judd et al., 2011, Gepner et al., 2015, 

Gepner et al., 2016). Some studies discourage patients living with type 2 diabetes of 

using alcohol in moderation (Bantle et al., 2008). In 2012, a systematic review and 

meta-analysis reported an increasing trend between moderate alcohol consumption and 

blood pressure in males and a protective relationship with a decreasing risk of 

hypertension in females (Briasoulis et al., 2012). These findings and recommendations 

discouraging the use of alcohol are contradictory and complicates the potential benefits 

of alcohol consumption in people living with diabetes. The National Institute for Health 

and Care Excellence guidelines (NICE, 2015) recommends an individual preference for 

moderate alcohol consumption (3-4 units/day in men and 2-3 units/day in women).  
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This chapter aims to assess the association between alcohol consumption 

(exposure) and hypertension (outcome) in patients with type 2 diabetes using the UK 

Biobank data. A causal relationship between alcohol consumption and hypetension has 

been established in cross-sectional and prospective studies using the general population 

datasets (Chang and Park, 1991, Gillman et al., 1995, Moreira et al., 1998, Fuchs et al., 

2001). However, this relationship is not well studied in a population with diabetes 

patients (Saremi et al., 2004). The presence of diabetes has the potential to modify the 

alcohol-hypertension relationship worsening the risk of hypertension at every unit of 

alcohol intake. The UK Biobank provides large, generalizable and contemporary data 

that is sufficient to investigate hypertension in patients with type 2 diabetes (Allen et al., 

2012). A recent study by Eastwood and colleagues (2016) reported approximately 5% 

(23,842/502,619) of participants with type 2 diabetes in the UK Biobank. The 

proportion is similar to the prevalence rate of 5% (3,500,000/66,000,000) reported in 

the UK population with type 2 diabetes (Diabetes UK, 2015, National Statistics, 2017).  

In this study, the confounding factors for adjustment were identified using a 

causal diagram known as a Directed Acyclic Graph (DAG). The theory of DAGs and its 

application in the UK Biobank data is introduced in the next section. 

6.1.1 Introducing DAGs 

In epidemiology, the issue of establishing causality is a challenging one. 

Evidence of causation cannot be validated based on non-experimental studies. Non-

experimental studies can only offer evidence for association. Strong evidence for 

causation requires experimental data - which is rare and expensive to produce (Law et 

al., 2012). To strengthen causal inference in non-experimental studies, causal path 

diagram have been suggested (Greenland et al., 1999). The theory of causal path 

diagrams (focusing on the Directed Acyclic Graphs (DAGs)) is provided below.  
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6.1.1.1 The theory of DAGs 

This section describes the theory of DAGs, focusing on the structure, sources of 

bias and selection of ‘minimal sufficient’ set of covariates. Further details supporting 

the theory presented here can be attained in the references including Greenland et al 

(1999), Law et al (2012), Sauer and VanderWeele (2013) and Textor (2013). 

6.1.1.1.1 Definition and use of DAGs 

Textor (2013) defined a DAG as “a graphical model that depicts a set of 

hypotheses about the causal process that generates a set of variables of interest”.  

Essentially, DAGs are used to encode investigators’ a prior assumptions about the 

associations between variables in causal structures. Additionally, DAGs help 

researchers to achieve the following: (1) diagnose the sources of bias and (2) select a set 

of covariates that explains or allows the estimation of causality from observed data 

(Greenland et al., 1999, Sauer and VanderWeele, 2013). 

6.1.1.1.2 The structure, source of bias and selection of covariates  

The structure of DAGs contains directed arcs (arrows), linking nodes (variables) 

and their paths. A path suggests the existance of known, likely and assumed 

relationships between any two variables, with an arrow representing causality (Law et 

al., 2012). For instance, ‘A causes B’ would be represented as A  B, where A and B 

are nodes and the arrow between them is an arc. In the example, A  B, A is the parent 

nodes whilst B is the child. In a path connecting three nodes such that A  B  C, A is 

known as the ancestor of C, and C is a descendent of A; while B is a child of A and 

parent of C. The node B lies on the causal pathway between A and C thus is considered 

as a mediator variable. The paths with all arcs following the same direction of causality 

(as in the examples) are known as direct (or causal) paths. In contast, a non-causal path 

is known as a backdoor path.  For example, when A  B  C, a backdoor path exist 
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between A and C through B. The node B is a common cause of A and C thus is 

considered as a confounder variable. A blocked path occurs if it contains at least one 

collider. A node is a collider when both arcs entering and leaving the node have arrows 

pointing at it. For example, when A  B  C, the path between A and C is blocked by 

a node B (a collider). The node B is also called an outcome (or common effect) of A 

and C (Greenland et al., 1999, Law et al., 2012, Textor, 2013). In DAGs, blocked path 

represent independence whilst the unblocked path indicate the presence of an 

association between variables (Sauer and VanderWeele, 2013). 

Hence, DAGs can be used to infer on dependence and conditional independence 

when their causal structure is correctly specified. The procedure linking the structure of 

a DAG to statistical independence is known as the d-seperation criterion (Greenland et 

al., 1999, Sauer and VanderWeele, 2013). Suppose X and Y nodes are d-separated 

conditional on Z if all the paths from X to Y are blocked conditional on Z; then if a 

DAG is correctly specified, X and Y are conditionally independent given Z.  In contrast, 

conditional associations occur when adjusting for colliders. Mutually independent 

variables with a common effect become conditionally dependent when statistically 

adjusting the common effect. This process opens up the backdoor paths and introduces 

confounding errors on the estimates (Greenland et al., 1999, Sauer and VanderWeele, 

2013). The removal of confounding errors requires background knowledge to 

differentiate colliders, mediators, and confounders when creating a causal DAG.  If the 

full causal structure is unknown, colliders, mediators, and confounders may behave the 

same in the exposure-outcome models. To guide the development of a complete DAG 

the following consideration are necessary according to Sauer and VanderWeele (2013): 

i. Creating DAGs should not be restricted to measure variables from the 

study data. 
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ii. Capturing any common cause of any other two variables on the DAGs. 

This is an important point of demonstrating causality. 

iii. Variables that only causally relate to one other variable maybe captured 

or ignored. However, common causes must always be captured for 

causality. 

iv. Identifying a set of covariates that minimises the confounding bias on 

the DAGs. The minimal set of covariates blocks all the backdoor paths 

and does not open closed pathways by conditioning on the colliders.  

Based on these guidelines, a suitable DAG provided in Figure 6.1 was 

constructed to identify a set of covariates to adjust for counfounding in the alcohol-

hypertension models using the UK Biobank. An online DAGitty software available at 

(www.dagitty.net/) was used to encode and specify relationships between variables in a 

DAG presented. The causal relationships assumed were justified using evidence from 

the literature (see ‎Appendix E). 

6.1.1.2 Application of DAGs using the UK Biobank data 

Figure 6.1 provides a hypothetical causal relationship between alcohol 

consumption (as exposure variable) and hypertension (outcome variable) taking into 

consideration possible mediators, competing exposures, confounding variables and 

colliders available in the UK Biobank dataset. The schematic diagram was constructed 

taking into account multiple lifestyles, dietary and behavioural factors affecting the 

relationship between alcohol consumption and the risk of having hypertension.  

 

http://www.dagitty.net/
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Legend:  Exposure   Outcome   Confounders   Causal path  Biasing path  

Figure 6.1: DAGitty schematic view of confounding adjustment for an alcohol-hypertension relationship 

 



160 

In Figure 6.1 a set of confounders satisfying the condition of ‘minimal 

sufficiency’ include age, anti-hypertension medication use, family history of 

hypertension, physical activity, ethnicity, sex, and smoking. This set of confounding 

variables closes all non-causal pathways between alcohol consumption and 

hypertension in the diagram. Adjusting for these variables will be sufficient to remove 

the confounding bias in the alcohol-hypertension models. 

Currently, no analysis has been carried out in diabetes patients to examine risk 

modification factors of hypertension in the UK Biobank (Eastwood et al., 2016), the 

present study also aims to investigate how age (continuous variable) and use of 

antihypertensive medication (binary variable) modify the alcohol-hypertension in the 

data. Establishing how age and the use of antihypertensive medication modify the 

alcohol-hypertension relationship may guide health practitioners to develop target 

specific strategies or interventions to control and manage hypertension. 

6.1.1.2.1 Why effect modification of age and use of antihypertensive medication? 

When investigating the alcohol-hypertension relationship, it is important to 

consider the effect modification of age and antihypertension medication use. This is 

because the benefits or harm associated with alcohol consumption may differ depending 

on individual’s age or on whether a patient is on antihypertension medication or not. In 

the literature, little is known about the age-related difference of alcohol consumers on 

the risk of hypertension (Vanleer et al., 1994). In this chapter, the age-related 

differences and the chances of having hypertension are investigated assuming alcohol X 

age interactions in the adjusted models. 

For patients on antihypertension medication and non-users, it is also not clear 

whether the association between alcohol consumption and hypertension varies in the 

two groups (Wakabayashi, 2010). There exist little research in this area (Beevers et al., 
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1990). To explore this area, an investigation on whether medication use modifies the 

relationship between alcohol consumption and hypertension in type 2 diabetes patients 

is also performed. In the analysis, it is hypothesized that the alcohol X medication use 

interactions are present in the adjusted models. 

6.1.2 Specific study objectives  

The main aim of this chapter is to investigate the alcohol-hypertension 

relationship in patients with type 2 diabetes using various logistic modelling 

approaches. The issues of interest about the alcohol-hypertension association include 

whether the relationship is linear/nonlinear or involves a threshold dose of alcohol, 

whether age or antihypertensive medication use modify the benefits/harm associated 

with alcohol drinking. Using the UK Biobank, the specific objectives of this chapter 

includes: 

i. To investigate the association between alcohol consumption and the odds of 

hypertension in patients with type 2 diabetes adjusting for selected 

confounding variables identified using a DAG.  

ii. To investigate effect modification of age and antihypertensive medication 

use in the adjusted multivariable alcohol-hypertension models. 

6.1.2.1 The rationale of the study 

The study is important due to public and clinical interest in the subject. 

Investigating the relationship between alcohol consumption and hypertension in patients 

with type 2 diabetes is necessary to assist clinicians in developing target strategies and 

interventions to control the harm associated with alcohol drinking. In addition, this 

study forms an example of methods studied in ‎Chapter 4 and ‎Chapter 5. However, the 

focus is on explanatory analysis since epidemiologists are mostly interested in causal 

inference than predictive analysis. 
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6.2 Subjects and Methods 

6.2.1 UK‎Biobank‎participant’s‎characteristics 

This research used self-reported baseline data from the UK Biobank with over 

500, 000 participants aged between 40 to 69 years. The UK Biobank was set-up 

between 2006 and 2010 by recruiting participants from the National Health Service 

register using healthcare data linkage systems (Eastwood et al., 2016). About 9.2 

million people living within 25 miles (40 km) of the 22 UK Biobank assessment centres 

located throughout England, Wales and Scotland were invited by mail to participate and 

the response rate of 5.5% was achieved (Allen et al., 2012, Fry et al., 2017). The aim 

was to provide a resource that will enable researchers to investigate genetic, 

environmental and lifestyle determinants of a wide range of diseases in middle and 

older age population in the UK (Allen et al., 2012). Amongst those who agreed to 

participate in the study, baseline information collected includes the data on lifestyle, 

environment, medical history, physical measurements, and biological samples. Detailed 

information on how the data was collected and other assessment procedures may be 

found elsewhere (http://www.ukbiobank.ac.uk). The data is available to other 

researchers worldwide provided an application for use has been granted by the UK 

Biobank team. The application and review process is done online through the UK 

Biobank website and is carried out in four stages including registration, submission of 

preliminary application, submission of main application and the signing of material and 

transfer agreement (MTA) contract. Overall, the whole application and review process 

requires 3-4 months to be completed. A detailed schematic diagram showing the UK 

Biobank application process is provided in Figure 6.2. The research application protocol 

approved by the UK Biobank team for this research is provided in ‎Appendix G as a 

supplementary material. 

http://www.ukbiobank.ac.uk/
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Figure 6.2: The UK Biobank application and review process 

Source: adapted from the UK Biobank Access procedure manual (UK Biobank, 2011a) 

6.2.1.1 Type 2 diabetes patients 

This thesis chapter focuses on a subsample of 23,842 type 2 diabetes patients 

identified using the algorithm developed by Eastwood and colleagues (Eastwood et al., 

2016) when defining patients with diabetes in the UK Biobank. In medical studies using 

self-reported data, the prevalence of diseases cannot be established with certainty. 

Bergmann and colleagues (Bergmann et al., 2004) observed some disagreement on the 
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medical history of participants using self-reported and in-person administered 

interviews. To bridge this gap, Eastwood et al. (2016) developed and ran an algorithm 

to assign prevalent diabetes and types using the self-reported information in the UK 

Biobank. The medical history information collected through the online touchscreens 

questionnaire and nurse’s interviews were used in the algorithm defining patients as 

‘probable’ or ‘possible’ diabetes cases when they have greater certainty or less certainty 

of the disease respectively.  

Therefore, this study aims to include all type 2 diabetes patients identified in UK 

Biobank who meet the following criteria: 

6.2.1.1.1 Inclusion Criteria 

 Self - reported type 2 diabetes (nurse interviews) 

 Self-reported type 2 diabetes medications (online touchscreens and 

nurses interviews) 

 Age of diagnosis for diabetes ≥ 36 years (amongst European origin) or ≥ 

30 years (amongst South Asian or African-Caribbean origin). 

Participants excluded from this study were identified as follows: 

6.2.1.1.2 Exclusion criteria 

 Non-diabetes participants (i.e. all patients not reporting any diabetes from 

the nurse interviews, or gestational diabetes in both the nurse’s interviews 

and touchscreens or any diabetes medication in both nurses and 

touchscreens) 

 Self-reported type 1 diabetes patients that also includes self-reported insulin 

use < 12 months post-diagnosis or self-report current insulin use 

(touchscreens and nurses interviews) 
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 self-reported gestational diabetes amongst the females who were pregnant 

(touchscreens and nurse’s interviews) 

6.2.1.2 Hypertension and blood pressure measurements 

The definition of hypertension in people living with diabetes as used in this 

chapter refers to any patient with systolic blood pressure (SBP) levels at or above 130 

mmHg (World Health Organization, 2006, British Cardiovascular Society et al., 2014).  

The SBP measurements were collected using the Omron digital blood pressure 

monitor which was operated by registered, trained and certified nurses during the 

assessment visits at the clinics (UK Biobank, 2011b). The blood pressure of each 

participating patient was collected and reported in millimeter per mercury (mm Hg). 

The participants were asked to sit on a chair with their feet parallel to each other, toes 

pointing forward and soles of feet flat on the floor. The right arm was used to take the 

measurement. Participants were asked to loosen or remove any restrictive clothing that 

could obstruct circulation of blood. Since the resting BP measurements were required, 

the nurses took care not to engage the participants in the conversation. This procedure 

was repeated for the second BP measurements. After completing the first measurement, 

the participants were allowed at least one minute break for rest; the rubber inflation 

tubing was disconnected from the Omron monitor with cuff left in place. The 

participants were asked to gently shake their arm and open and close their hand before 

the second measurement commenced (UK Biobank, 2011b). In the analysis, the two 

repeated systolic blood pressure measurements were averaged for use; classifying 

patients as having high blood pressure or not. 

6.2.2 Alcohol intake estimates 

The data on alcohol consumption was collected during the assessment visits at 

clinics using the touch screens and web-based questionnaires. In the questionnaire, 

alcohol drinkers and non-drinkers were identified by responses relating to the question 
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“About how often do you drink alcohol?” Non-alcohol drinkers responded as “Never” 

whilst alcohol drinker’s responses were selected from the options including “daily or 

almost daily”, “three or four times a week”, “once or twice a week”, “one to three times 

a month”, and “special occasions only”. The responses for participants who drink more 

often than once or twice a week were followed by another question requesting them to 

provide average weekly consumption in numbers of pints, glasses (in various sizes) of 

beers or ciders, wines, champagnes, spirits, fortified wines and other alcoholic drinks 

including alcopops. Otherwise, those who consume alcohol occasionally or one to three 

times a month were asked to provide average monthly consumption. Capturing intake in 

weekly or monthly quantities is essential since alcohol consumption is an episodic 

event. Weekly/monthly quantities provide coverage for occassional drinkers who are 

likely to be missed amongst those reporting daily alcohol intake. 

To standardise the units of alcohol consumption provided by respondents, the 

number of drinks were converted into grams of alcohol consumption per day based on 

the UK alcohol guidelines (House of Commons Science and Technology Committee, 

2012) using the following procedures: 

i. According to the UK alcohol guidelines (House of Commons Science 

and Technology Committee, 2012), one unit is equivalent to 8g or 10 ml 

of any standard alcohol drink. In this chapter, a small glass of wine or 

champagne (125 ml) is equivalent to 1.5 units; a pint of beer or cider was 

taken as 3 units (a full-strength pint of a beer or cider is 4 units whilst 

light beers or cider is 2 units). Otherwise, one shot of spirits or fortified 

wines is 1 unit whilst other alcoholic drinks including alcopops were 

taken as 1.5 units. These conversion rates were adopted from the Health 

Survey of England (HSE) report (Fat and Fuller, 2012). Major surveys 

including the General Household Survey (GHS) estimate the contents of 
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alcohol based on these conversion units. A detailed conversion table 

adapted from the HSE 2011 report is provided in Table 6.1.  

ii. Based on the standard conversion provided in (i) above, the amount of 

alcohol units or contents for each beverage type consumed was 

calculated then converted in grams by multiplying the number of units by 

8. 

iii. For each alcohol drinker, the total consumption per day/week/month in 

grams was summed considering all beverage type.  

iv. Finally, where weekly alcohol consumption was provided, the sum in 

(iii) was divided by seven days to obtain the average daily consumption. 

Amongst participants reporting monthly alcohol consumption, the sum in 

(iii) was divided by four to attain weekly quantities. The resulting 

weekly consumption was further divided by seven for the average daily 

intake. 
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Table 6.1: The conversion units for estimating the contents of alcohol drinks 

 

Source: Adapted from the Health Survey of England report (Fat and Fuller, 2012)  

6.2.3 Statistical analysis 

To characterise the alcohol-hypertension relationship adjusting for confounders, 

the methods of categorisation, linearisation, fractional polynomials and restricted cubic 

splines were applied using logistic regression models. Details of these methods are 

provided in  Chapter 2 of this thesis. The next sub-sections  6.2.3.1- 6.2.3.4 highlight the 

particular assumptions made under each modelling approach as specifically applied in 

this chapter. 

6.2.3.1 Categorisation 

In categorical analysis, alcohol drinking patients were divided into three groups 

based on the amount of alcohol consumption (in g/day). The fouth group constitutes 

non-alcohol drinkers (0 g/day). Within the alcohol consumers, the boundaries or cut-

points of the three drinking categories were established using tertiles of the alcohol 
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consumed. To compute the odds of hypertension, the three groups were then compared 

to non-alcohol drinkers (0 g/day) adjusting the model for confounding variables. 

Continuous confounders were entered in the model as linear variables in the analysis 

without any transformation and categorical confounders were entered as dummy 

variables. 

6.2.3.2 Linearisation 

In linear modelling, the alcohol consumption amounts were kept continuous and 

were analysed assuming the alcohol-hypertension relationship was linear. A unit 

increase in the amount of alcohol consumption was assumed to have a constant change 

on the odds of hypertension across the range of alcohol intake values. That is, an 

increase in alcohol consumption from 5 to 6 g/day results in the same change on the 

odds of hypertension as an increase from 59 to 60 g/day. Further, the alcohol-

hypertension relationship was adjusted for confounders taking continuous confounders 

as linear variables and treating categorical confounders as dummy variables. 

6.2.3.3 Fractional polynomials 

In the analysis involving fractional polynomials, the alcohol-hypertension 

relationship was assumed to be nonlinear. FPs has the advantage of keeping the alcohol 

consumption measures continuous and allowing for nonlinearity in the data. During 

model building, the alcohol intake values were power transformed to allow the alcohol-

hypertension relationship to be fitted with first or second order degree FP function (that 

is, for mFP , 2m  degree model). In practice, FP functions with 𝑚 > 2 are rarely 

observed thus, FP1 or FP2 models should be sufficient for alcohol-hypertension 

relationships reported in epidemiological studies.  Chapter 2 provide additional details 

on how the FP models are usually set up based on a set of restricted powers. Moreover, 

once the FP1 and FP2 models was established, the best fitted function was selected 
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using both the Akaike’s Information Criterion (AIC) score and the likelihood ratio test 

(LRT).  

To account for confounding variables identified through the DAG, the best fitted 

FP function was then adjusted for confounding by entering continuous covariates as 

linear variables and categorical covariates as dummy variables in the final multivariable 

model.  

The multivariable fractional polynomial (MFP) algorithm (Royston and 

Sauerbrei, 2005) developed for the multivariable model building was not applied in this 

study. When implemented, the MFP algorithm combines the selection of variables using 

the backward elimination (BE) process and determine their functional forms through the 

FP function selection procedure (FSP) (Royston and Sauerbrei, 2005, Sauerbrei et al., 

2007). Selection of variables through the automated stepwise procedures such as the BE 

is known to produce biased results with inflated p-values and standard errors (Blanchet 

et al., 2008).  

6.2.3.4 Restricted cubic splines  

To estimate the RCS model, the alcohol consumption data was split into a series 

of connected ‘segments’ joined with 𝑘 knots. The number of knots, 𝑘 was allowed to 

vary such that 𝑘 = 3 𝑜𝑟 4 implying two different RCS models were fitted in the 

analysis. The purpose of varying the number of knots was to allow and assess flexibility 

within the fitted models. The proposed knots should be sufficient for any plausible 

alcohol-hypertension shapes reported in epidemiological studies. The RCS models with 

5k are likely to produce over fitted functions. 

Within the fitted RCS functions, the knots positions were equally spaced across 

the percentile distribution of alcohol consumption data using Harrell’s method of knots 

placement described in section  2.2.5.1. This knots selection method is less subjective 
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and allows reproducibility and comparison of results between studies (Heinzl and 

Kaider, 1997). At the two extreme knots (below the first knot and above the last knot), 

the alcohol-hypertension relationship was assumed to be linear. Nonlinearity was 

assumed to be occurring inside the inner knots. Based on this approach, an adequate 

RCS fit (with 3k or 4  knots) was chosen using both the AIC score and the likelihood 

ratio test (LRT).  

The multivariable model was developed by entering continuous confounders as 

linear variables and treating categorical confounders as dummy variables in the best 

fitted alcohol-hypertension function. 

Overall, the models attained with the procedures above were ranked according to 

their AIC scores. The model with the least AIC score suggest a better fit. Thus, the AIC 

scores for these models were reported for both unadjusted and adjusted functions. 

6.2.4 Stratification analysis 

Beyond adjusting for confounders, analyses were performed to investigate 

whether the use of anti-hypertensive medication (binary predictor) and age (continuous 

predictor) modify the relationship between alcohol consumption and hypertension. An 

additional interest was also to explore if effect modification was preserved in nonlinear 

functions. To achieve these objectives, effect modification was investigated using 

margins plots for visual and interpretable graphs (Williams, 2012, Royston, 2013). 

Typical regression output tables with interaction terms and p-values are hard to interpret 

and communicate to readers when nonlinearity is present in the data (Lamina et al., 

2012).  

In the analyses, the two interaction terms (alcohol X age) and (alcohol X 

medication use) were entered and assessed separately in different multivariable models 

obtained through the categorisation, linearisation, FP and RCS approaches. For each 
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modelling approach, two multivariable models were tested; one with alcohol X age 

interaction term and another one with the alcohol X medication use interaction term. 

The procedures for testing these interactive terms include: 

i. Plotting the difference in probabilities of hypertension between patients who 

are not on medication and those using anti-hypertensives at different values 

(or categories) of alcohol consumption. This was applicable in models 

inspecting categorical by categorical or continuous by categorical interaction 

terms. 

ii. Assessing the average marginal effect (AME) of age on the probability of 

hypertension assuming values of alcohol consumption are held constant 

(vice-versa). 

iii. Plotting the predicted probability of hypertension for all combination of age 

(in years) and some specified range of alcohol consumption (in g/day) using 

contour or functional diagrams. Note: (ii) and (iii) were applied in adjusted 

models where two continuous variables are being assessed for interaction. 

6.2.5 Sensitivity analysis 

Sensitivity analysis was performed to evaluate the influence of type 2 diabetes 

status on key findings. This was done by excluding ‘possible’ type 2 diabetes patients in 

the analysis. Using the same procedures in sections ‎6.2.3.1 - ‎6.2.3.4, the assessment of 

the alcohol-hypertension relationships was further replicated in ‘probable’ type 2 

diabetes patients to validate the final conclusions.   
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6.3 Results 

6.3.1 General characteristics 

 Table 6.2 shows the characteristics of 23,842 patients with type 2 diabetes 

included in the study for analysis. Counts (percentages) were used for describing the 

occurrence of categorical variables, means (standard deviations) to summarise the 

distribution of continuous variables which are normally distributed and median 

(interquartile range) for variables which deviate from normality. Of 23,842 patients, 

20,569 (86%) and 3,273 (14%) individuals were classified as ‘probable’ and ‘possible’ 

type 2 diabetes cases respectively. A t-test performed to assess the mean systolic blood 

pressure difference between ‘probable’ and ‘possible’ type 2 diabetes cases was not 

statistically significant (|t|= 0.33, p-value = 0.74). A similar mean systolic blood 

pressure of 141 mmHg was observed amongst ‘probable’ and ‘possible’ type 2 diabetes 

patients with standard deviations of 17.2 and 18.2 respectively. 

The assessment of data quality revealed 5% (n=1,338) of type 2 diabetes patients 

with missing values on systolic blood pressure (SBP). This implied that 5% of the total 

sample (n=23,842) would be omitted in the analysis because of missing SBP readings. 

The alcohol drinking status was not revealed in nearly 0.5% (n=114) of the respondents. 

Amongst those identified as current alcohol drinkers (n=19,773), the information on the 

amount of alcohol consumption was missing on nearly 22% (n=4425) of the 

participants. A summary of missing data provided in Table 6.2, suggest incompleteness 

on family history of hypertension - 4% (n=1017), smoking status – 1% (n=256), 

ethnicity – 0.8% (n=202), and physical activity – 10% (n=2285). Apart from this, the 

data on age, sex, and anti-hypertension medication use were complete. 

The general characteristics of type 2 diabetes patients suggested that participants 

were adults in middle and older ages with a median age of 62 years (IQR=56-66). Male 

participants were more dominant with 63% (n=15,009) compared to 37% (n=8,833) of 
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females. The majority of participants, 86% (n=20,531) were from the White ethnic 

group. The other ethnic groups including the Blacks, Asians, and Mixed constituted 

about 13% (n=3,109) of total patients classified as diabetic (see Table 6.2). 

Based on the definition of hypertension used in this study (any patient with SBP 

levels at or above 130 mmHg), 70% (n=16,659) of patients with diabetes were also 

hypertensive with the mean SBP of 148 mmHg (SD=13.8). Apart from the latter, 25% 

(n=5,845) of patients with diabetes were non-hypertensive with the mean SBP of 121 

mmHg (SD=7.3). Amongst the 16,659 patients with hypertension and diabetes, 49% 

(n=8,240) individuals reported a family history of high blood pressure and 67% 

(n=11,163) were using antihypertensive medications.  

The majority of individuals, n=13,019 (54%) were either previous or current 

smokers whilst n=10,567 (44%) have never smoked. On average patients moderately 

exercised 3 days (SD=2.4) per week. The data on alcohol consumption was rightly 

skewed showing daily median intake of 9.7 g with interquartile range values between 

0.2 and 25.1 g (see Table 6.2 and Figure 6.3 below).   
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Table 6.2: The general characteristics of n=23,842 diabetes patients included in the 

study 

Data characteristics Overall 

(n=23,842) 

Age, years (median [IQR]) 62 [56-66] 

  

Sex (n [%])  

Female 8,833 (37%) 

Male 15,009 (63%) 

  

Hypertension (n[%])  

Yes 16,659 (70%) 

No 5,845 (25%) 

  

Antihypertensive medication use (n[%])  

Yes 15,421 (65%) 

No 8,421 (35%) 

  

The family history of hypertension (n [%])  

Yes 11,664 (49%) 

No 11,161 (47%) 

  

Smoking status (n [%])  

Never 10,567 (44%) 

Previous 10,406 (44%) 

Current 2,613 (11%) 

  

Ethnicity (%)  

Whites  20,531 (86%) 

Asians 1,683 (7%) 

Blacks 852 (4%) 

Mixed/Other ethnic groups 574 (2%) 

  

Physical Activity (PA) (mean [SD])  

No. of days per week of moderate PA 10+ minutes  3.3 [2.4] 

  

Alcohol intake (median [IQR])  

Alcohol intake, g/day 9.7 [0.2-25.1] 
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A graphical display of alcohol consumption (measured in g/day) amongst this study 

sample is given in Figure 6.3 below: 

 

Figure 6.3: Histogram of alcohol consumption (in g/day) with normal curve 

6.3.2 Model fits 

A summary Table 6.3 showing the AIC scores of different unadjusted logistic 

regression models applied in the analysis of alcohol-hypertension relationship is 

presented below. The logistic regression models were obtained based on the four 

modelling approaches outlined in section ‎6.2.3.1 - ‎6.2.3.4.   
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Table 6.3: Summary statistics obtained after fitting various unadjusted logistic 

regression models 

Modelling approaches  

 

Degrees of freedom 

(excluding the intercept) 

 

Akaike’s‎Information‎

Criterion 

(AIC) 

Categorisation 3 20724 

Linearisation 1 20739 

Fractional polynomials (FPs):   

First order degree – FP1 (0.5) 2 20712 

Second order degree – FP2 (1, 2) 4 20707 

Restricted cubic splines (RCS):   

With 3 knots (RCS3) 2 20713 

With 4 knots (RCS4) 3 20713 

 

In Table 6.3, the largest AIC score of 20739 occurred when the relationship 

between alcohol consumption and the odds of having hypertension was linearised. 

Categorising the alcohol consumption data produced the model with the next largest 

AIC value of 20724. 

For nonlinearity, the best fitting first-order degree fractional polynomial (FP1) 

had alcohol consumption term transformed with power 0.5 and the AIC score of 20712. 

The best fitting second-order degree fractional polynomial (FP2) had powers (1, 2) and 

the AIC value of 20707 (see Table 6.3). A likelihood ratio test performed between the 

FP2 (1, 2) and FP1 (0.5) functions showed an insignificant difference between the two 

models (𝐿𝑅𝑇 =  2.12, 𝑝 = 0.14), hence the FP1 (0.5) function was favoured to 

characterise the adjusted alcohol-hypertension relationship in the UK Biobank.  

For restricted cubic spline models (RCS), similar AIC scores were obtained 

when fitting three or four knots functions (see Table 6.3). A likelihood ratio test 

performed between the two RCS functions suggests an insignificant models difference 

(𝐿𝑅𝑇 =  2.87, 𝑝 = 0.10). Therefore, a three knot function (RCS3) was chosen to 

describe the adjusted alcohol-hypertension relationship in the data. 
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Based on ‘minimally sufficient’ set of confounding variables identified from the 

DAG, the categorical, linear, FP1 (0.5) and RCS3 models were then adjusted for 

confounding. 

Table 6.4 shows the unadjusted and adjusted odds ratio estimates together with 

their 95% confidence intervals (CIs) from the method of categorisation with four 

categories. 

 



179 

Table 6.4: The unadjusted and adjusted Odds ratios (ORs) of hypertension and their 95% confidence intervals obtained using the method of 

categorisation (CAT). 

Alcohol 

consumption, 

 g/day 

No. of 

observations 

No. of 

hypertension 

cases 

Unadjusted OR  

(CAT Model) P-trend  

Adjusted OR  

(CAT Model) P-trend 

Estimate 95% CI Estimate 95% CI 

0 4,579 3,173 1.00 - 0.025 1.00 - 0.001 

0-9.7 4,752 3,425 1.14 1.05 - 1.25 1.05 0.95 - 1.16 

9.7-25.1 4,570 3,455 1.37 1.25 - 1.51 1.22 1.10 - 1.36 

25.1+ 4,484 3,632 1.89 1.71 - 2.08 1.71 1.52 - 1.93 

Covariates in the adjusted models include; age, anti-hypertension medication use, family history of hypertension, physical activity, 

ethnicity, sex, and smoking. 
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To compare the unadjusted and adjusted odds ratios from the linear, FP1 and 

RCS3 models, the category based estimates in Table 6.4 were replaced using logistic 

regression from these methods. In the logistic regression models fitted using the linear, 

FP1 and RCS3 approaches, the odds ratios were estimated at different values of alcohol 

consumption. As an illustration, Table 6.5 shows the odds of hypertension in the three 

models estimated at 0, 5, 17.5, 37.5, 62.5 and 87.5 g of alcohol consumption per day. In 

the data, less than 5% of the respondents reported alcohol consumption above 90 g/day. 

Treating non-drinkers (as the reference), Table 6.4 and Table 6.5 suggested that 

the odds of hypertension were increasing for every unit of alcohol consumption. This 

was observed across the four methods of analyses. Furthermore, adjusting for 

confounders reduced the odds of hypertension; the unadjusted models had larger odds 

compared to adjusted estimates.  

A display of the alcohol-hypertension association curves based on the four 

modelling approaches is shown in Figure 6.4. Additional curves trimmed ≤ 45 g/day of 

alcohol consumption were also made available in Figure 6.13 in the appendices. The 

choice to trim the functions ≤ 45 g/day of alcohol consumption was mainly for 

illustration and also to compare the alcohol-hypertension curves with functions in the 

range between 0-90 g/day. Large alcohol intakes (>90 g/day), may influence the 

functions to behave wildly at the upper tail. 
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Table 6.5: The unadjusted and adjusted odds ratios (ORs) of hypertension & their 95% confidence intervals obtained from the best fitting 

linearisation (LIN), fractional polynomials - first order degree (FP1) and the restricted cubic spline with 3 knots (RCS3) models. The odds 

of hypertension was modelled as a function of alcohol consumption, g/day. 

Alcohol 

consumption, 

g/day 

No. of 

observations 

No. of 

hypertension 

cases 

Ref. 

points 

OR Estimates (LIN Based Model) OR Estimates (FP1 Based Model) OR Estimates (RCS3 Based Model) 

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

0 4,579 3,173 0 (ref) 1.00 1.00 1.00 1.00 1.00 1.00 

0-9.7 4,752 3,425 5.0 1.05 (1.04-1.06) 1.05 (1.04-1.06) 1.18 (1.09-1.28)  1.08 (0.98-1.18) 1.13 (1.10-1.16)  1.10 (1.06-1.13) 

9.7-25.1 4,570 3,455 17.5 1.20 (1.17-1.24) 1.17 (1.13-1.21) 1.42 (1.32-1.53)  1.30 (1.19-1.42) 1.44 (1.34-1.56) 1.33 (1.21-1.45) 

25.1-49.9 2,885 2,313 37.5 1.48 (1.39-1.58) 1.41 (1.31-1.52) 1.72 (1.58-1.87) 1.56 (1.41-1.73) 1.74 (1.59-1.89)  1.58 (1.42-1.76) 

49.9-74.9 1,021 830 62.5 1.92 (1.73-2.14) 1.77 (1.57-1.99) 2.05 (1.85-2.27) 1.85 (1.63-2.10) 1.95 (1.76-2.15) 1.83 (1.62-2.06) 

74.9+ 578 489 87.5 2.50 (2.15-2.89) 2.21 (1.87-2.62) 2.35 (2.08-2.66) 2.12 (1.83-2.46) 2.18 (1.89-2.52) 2.11 (1.79-2.49) 
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6.3.3 Alcohol-hypertension association curves 

In Figure 6.4, the left panel represents the estimated functions from the 

unadjusted models trimmed ≤ 90 g/day of alcohol consumption. The adjusted models 

are presented in the right panel.  

Compared to non-alcohol drinkers (0 g/day), the odds of hypertension increased 

in steps based on the three alcohol drinking groups assumed in the categorical models. 

For instance, in the adjusted model, 0-9.7 (lower), 9.7-25.1 (middle) and 25.1+ (upper) 

alcohol drinking categories was associated with OR=1.05 (CI=0.95-1.16), OR=1.22 

(CI=1.10-1.36) and OR=1.71 (CI=1.52-1.93) respectively (see Figure 6.4). 

In Figure 6.4, linearising alcohol consumption measures was associated with 

increasing odds of hypertension in both unadjusted and adjusted linear models. A 

constant change in the odds of hypertension was observed for every additional g of 

alcohol intake. 

In Figure 6.4, the curves attained using FP1 models were visibly different. A 

large ‘spike’ at zero units of alcohol consumption was observed when fitting the 

adjusted model compared to the unadjusted model. However, there was no biological 

interpretation associated with this wild behaviour. The adjusted FP1 function was more 

meaningful when greater than zero units of alcohol was consumed. The alcohol-

hypertension association curve in the adjusted FP1 model showed steeper and 

increasing slope on the odds of hypertension when small and moderate quantities of 

alcohol were consumed. For larger amounts of alcohol consumption, the slope in the FP 

function was shallow - showing a monotonically increasing OR trend (see Figure 6.4 for 

details). Furthermore, in the adjusted FP function, lower odds of hypertension (i.e. OR < 

1) were observed when less than 2.2 g/day of alcohol was consumed. For example, 



183 

when 0.1 g of alcohol was consumed, the predicted odds of hypertension in the adjusted 

model was 0.89 (CI=0.80-1.00).  

The RCS model with three knots (placed at the 10th, 50th, and 90th percentile) 

depicts a positive association with the odds of hypertension. Unlike in the FP1 model, 

the odds of hypertension obtained with RCS3 fit was never below one. The ORs in the 

RCS3 function was always positive with steep slopes observed when small and 

moderate units of alcohol were consumed. Just like in FP models, when large amounts 

of alcohol were consumed, the slope in the alcohol-hypertension function attained using 

the RCS was shallow but with a monotonically increasing OR trend. Overall, near 

similar nonlinear curves were observed when fitting the adjusted FP1 and RCS3 models 

for alcohol consumption exceeding 2.2 g/day. The graphs comparing the unadjusted and 

adjusted functions are provided in Figure 6.4 below.  
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Figure 6.4: The unadjusted and adjusted odds of hypertension (on log scales) estimated 

using categorisation, linearisation, first order degree fractional polynomials (FP1), and 

restricted cubic splines with three knots (RCS3) models at different units of alcohol 

consumption (in g/day).  

 

The graphs comparing the predicted odds of hypertension together with their 

95% CIs using the adjusted models were presented in Figure 6.5. The presentation 

shows the predicted functions assuming 0-90 g/day of alcohol consumption. Similar 

graphs trimmed ≤ 45 g/day of alcohol consumption were also provided in  Appendix F 

for comparison (see Figure 6.14).  
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Figure 6.5: The adjusted odds of hypertension (on log scales) together with their 95% 

CIs estimated using the categorisation, linearisation, first order degree fractional 

polynomials (FP1), and restricted cubic splines with three knots (RCS3) models at 

different units of alcohol consumption, g/day. 

In Figure 6.5, narrow CIs were observed at lower alcohol intakes when fitting 

the linear and RCS models. In contrast, the FP model had wider confidence intervals 

when smaller quantities of alcohol were consumed. However, in the three models, the 

width of predicted CIs increased with an additional unit of alcohol intake. Thus, the 

three models had wider CIs when larger amounts of alcohol were consumed. The CIs 

produced using categorical models increased in steps and the CIs width was not affected 

by variation in the data. Similar CI width was observed across the three groups assumed 

in the analysis.  
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6.3.3.1 Final adjusted models 

Formally, the influence of confounders in the final models cannot be interpreted 

due to the application of a DAG. Nonetheless, Figure 6.11 & Figure 6.12 shows the 

odds ratios and the 95% CIs of several covariates adjusted for the alcohol-hypertension 

relationships (see ‎Appendix F). 

Overall, the FP approach produced a better fit compared to the other adjusted 

models. The adjusted FP function had the lowest AIC score of 17440 followed by the 

RCS function with the AIC score of 17443. The adjusted models that linearised and 

categorised the alcohol measures (exposure) had the AIC scores of 17449 and 17450 

respectively.  

6.3.4 Stratification analysis 

The results showing whether antihypertensive medication use (binary variable) 

or age (continuous variable) modifies the alcohol-hypertension relationship are provided 

in the next sub-sections ‎6.3.4.1-‎6.3.4.4. The results obtained in the analysis using the 

four methods were different thus the outcomes were presented separately for 

comparison.  

6.3.4.1 Effect modification of medication use and age using the categorical model 

The differences in probabilities of hypertension between patients on anti-

hypertension medication against non-users across the four categories of alcohol 

consumption (non-drinkers, lower, moderate and heavy drinkers) are shown in Figure 

6.6 (a). Shown in the figure are also the 95% CIs of the predicted probabilities. In the 

two medication groups, the chances of having hypertension increased positively with 

alcohol drinking categories. When comparing the probabilities within the four drinking 

categories, the chance of having hypertension was high amongst patients on treatment 
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than non-medication users. However, the probability difference was narrow amongst 

heavy drinkers compared to moderate, light and non-alcohol drinkers (see Figure 6.6). 

This suggests that antihypertensive medication use weakens the harm associated 

with alcohol consumption in heavy drinkers compared to patients who consume alcohol 

moderately, lightly or non-alcohol drinkers. 

 

 

Figure 6.6 (a): The predicted probabilities of hypertension between patients on 

medication against non-medication users. The probability differences were computed 

based on the four categories of alcohol consumption. Figure 6.6 (b) shows the 

probabilities of hypertension between different categories of alcohol consumption 

against patient’s age. The predicted probabilities were attained through the adjusted 

multivariable categorical model. 
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Figure 6.6 (b) shows the difference in probabilities of hypertension in the four 

groups of alcohol consumption against age predicted using the categorisation model. In 

all the four categories of alcohol consumption, the chances of having hypertension 

increased with age. Heavy alcohol drinkers had greater probabilities of being 

hypertensive compared to other drinking categories across the age range. In comparison, 

non-alcohol drinkers retained the lowest probabilities across the age range. Light 

alcohol drinkers followed with probabilities slightly higher than non-alcoholic patients 

but not greater than moderate drinkers (see Figure 6.6 (b)). In Figure 6.6 (b), when 

patients were young, the predicted probabilities of hypertension were small with large 

differences observed between the four drinking categories. In contrast, older patients 

had greater chances of hypertension with narrow differences between the alcohol 

drinking categories. For example, the predicted probabilities of hypertension in 40-year-

old patients were recorded as 0.49 (CI=0.44-0.54), 0.52 (CI=0.46-0.57), 0.55 (CI=0.50-

0.61) and 0.68 (CI=0.63-0.73) amongst non-alcohol drinkers, light, moderate and heavy 

alcohol drinkers respectively. Additionally, the predicted probabilities of hypertension 

in 72-year-old patients were large with narrow differences amongst the four alcohol 

drinking groups compared to the 40-year-olds. The probabilities of hypertension in 72-

year-old patients were predicted as 0.82 (CI=0.80-0.84), 0.82 (CI=0.80-0.84), 0.84 

(CI=0.82-0.86) and 0.86 (CI=0.84-0.88) amongst non-alcohol drinkers, light, moderate 

and heavy alcohol drinkers are respectively.  

The narrow probability differences observed amongst older patients suggest the 

harm associated with alcohol drinking was worse in young patients.  

6.3.4.2 Effect modification of medication use and age using the linear model  

The predicted probabilities of hypertension based on the linear models for 

patients on anti-hypertension medication and non-users are presented in Figure 6.7 (a). 

Based on the various amount of alcohol consumption (g/day), the difference in 
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probabilities between the two groups (medication user’s vs non-users) was also captured 

and presented for evaluation using Figure 6.7 (b). Overall, the graph showed a 

significant alcohol-hypertension association with the presence of an alcohol X 

medication use interaction term. The slopes of predicted probabilities of hypertension 

between patients on medication and non-users were different. However, similar 

predicted probability and zero probability difference of hypertension between patients 

on medication and non-medication occurred when 73 g of alcohol was consumed (see 

Figure 6.7 (a)-(b)). Below 73 g of alcohol consumption, the predicted probability of 

hypertension amongst patients on antihypertension medication was large than in non-

medication users. When patients consumed more than 73 g of alcohol, the predicted 

probabilities of hypertension was slightly high in non-medication users compared to 

those using anti-hypertensives (see Figure 6.7 (a)).  

From the results, antihypertensive drug’s efficacy was notable at every 

additional unit of alcohol intake. The slopes functions amongst patients on medication 

and non-medication users narrows with every unit of alcohol consumption. At 73 g of 

alcohol drinking, the difference of probabilities between patients on medication and 

non-medication users was zero. Above 73 g, non-medication users had greater chances 

of hypertension compared to antihypertensive medication users.  
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Figure 6.7 (a): The predicted probabilities of hypertension between patients on anti-

hypertension against non-users across the different amount of alcohol consumption 

(g/day). Figure 6.6 (b) shows the difference in probabilities between anti-hypertension 

medication users and non-users at different quantities of alcohol consumption (g/day). 

The predicted probabilities were attained through the adjusted multivariable linear 

model. 

Figure 6.8 presents the effects of alcohol consumption (g/day) on the predicted 

probability of hypertension according to different patient’s age. It was also evident from 

the graph that the association between age and the probabilities of hypertension varied 

with the different amount of alcohol consumption (g/day). Moreover, there was 

evidence of alcohol X age interaction term in the linear model. This was suggested by 

the curvature of the contour lines in Figure 6.8. The omission of the interaction term 

produces straight contour lines. 
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Figure 6.8: The predicted probabilities of hypertension across different levels of alcohol 

consumption (g/day) and age from the adjusted multivariable linear model 

In Figure 6.8, a 44 year old person drinking 15 g of alcohol per day had 60% 

chance of hypertension. When the patient’s age was held constant, the probability of 

hypertension increased with alcohol consumption. For example, when an individual’s 

drinking capacity was increased to 60 g/day amongst the 44-year-olds, the predicted 

probability of hypertension also increased to 80%.  

Also, when the amount of alcohol consumption (g/day) was held constant, the 

predicted probability of having hypertension increased with age. For instance, 48-year-

old people consuming 30 g of alcohol per day had 70% chance of hypertension. For the 

same units of alcohol intake – 30 g/day, an older person aged between 68 or 72 years 

had 90% chance of hypertension.  
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6.3.4.3 Effect modification of medication use based on fractional polynomial and 

restricted cubic spline models. 

The probabilities of hypertension between patients on antihypertension 

medication and non-users estimated from the FP1 and RCS models are presented in 

Figure 6.9. The probabilities of hypertension were large amongst patients on 

antihypertensive medication compared to non-medication users and increased with 

every unit intake of alcohol. The slopes of predicted probability functions were the same 

when fitting the FP functions (see Figure 6.9 (column (a)). Thus, the antihypertensive 

drug’s efficacy was undetectable across the range of alcohol consumption levels.  

The RCS fit produced wider probability differences amongst patients consuming 

< 30 g of alcohol per day. For alcohol consumption >30 g/day, the slopes of predicted 

probability functions between antihypertensive medication users and non-users were 

identical and the probability difference was narrow (see Figure 6.9 (column (b)). The 

narrow probability difference amongst patients consuming > 30 g of alcohol per day 

suggests the efficacy of antihypertensive drugs in this region 

.
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Figure 6.9: shows the difference in probabilities of hypertension between patients on antihypertensive medication and non-users at different 

levels of alcohol consumption (g/day) from the FP1 model with a power transformation of 0.5 and RCS with 3 knots. 
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6.3.4.4 Effect modification of age based on fractional polynomial and restricted 

cubic spline models 

The results showing whether age modifies the alcohol-hypertension relationship 

from the FP and RCS models are provided in Figure 6.10. In the two models, the chance 

of hypertension increased with age (holding alcohol consumption units constant). 

Similarly, when age was held constant, the chance of having hypertension increased 

with each unit of alcohol consumption. The differences in predicted probabilities of 

hypertension across different ages were wide at the lower tail of alcohol consumption 

scale and narrow at the upper tail when fitting the FP model. Although a similar pattern 

was observed when fitting the RCS model, the latter had slightly wider probability 

differences at the upper tail than when fitting the FP model. This suggested the presence 

of a significant alcohol X age interaction term in the FP model which was not strong in 

the RCS model.  For any two age groups, the difference in mean probabilities of 

hypertension obtained using the RCS function reduced firmly with the consumption of 

more alcohol (see Figure 6.10).  

Moreover, for any age held constant, the FP model predicted large probabilities 

of hypertension compared to fitting the RCS function. At the tails of alcohol 

consumption (x-scale), the FP model produced functions with steep and increasing 

slope compared to narrow slopes obtained in the RCS fit. The differences in the two 

model fits are shown in Figure 6.10. 
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Figure 6.10: The predicted probabilities of hypertension across different levels of 

alcohol consumption (g/day) and age from the adjusted FP and RCS models 

The results in Figure 6.10 suggest that the harm associated with alcohol 

consumption was worse in young adult population than in older patients. The latter is 

supported by steep slopes observed in young aged functions at the lower tails of alcohol 

consumption and narrow probability differences at the upper tails obtained when 

comparing the older and the younger adult population groups. A similar pattern was 

observed when fitting the FP and RCS models; however, the alcohol X age interaction 

in the RCS model was weaker.  

6.3.5 Sensitivity analysis 

Excluding ‘possible’ type 2 diabetes patients in the analysis did not substantially 

change the odds of hypertension in the fitted models. For any unit of alcohol 

consumption, the categorical, linear, FP and RCS models slightly overestimate the odds 

of hypertension in ‘probable’ type 2 diabetes patients. However, similar alcohol-
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hypertension shapes were obtained in patients with or without ‘possible’ type 2 

diabetes. As an illustration, the estimated odds of hypertension across different units of 

alcohol consumption in patients excluding ‘possible’ cases are given in  Appendix F (see 

Table 6.6-Table 6.7). Figure 6.15 shows alcohol-hypertension associations obtained 

across the four methods of analysis in the dataset excluding ‘possible’ diabetes cases. 

The sensitivity analysis involving interactions were not performed because of 

insignificant changes observed between the main effects models.  

6.4 Discussion  

This section discusses key findings, challenges and limitations, strength and 

opportunities, novelty and future studies from this chapter. Summary of findings and 

how they compare with results from other studies are provided in Section  6.4.1. The 

discussion of challenges and limitations focussing on the data and issues of this chapter 

are provided in section  6.4.2. Section  6.4.3 focuses on the strength and opportunities 

whilst section  6.4.4 -  6.4.5 highlight the novelty and possible future studies. 

6.4.1 Summary of key findings 

The overall objective of this study was to investigate the association between 

alcohol consumption and hypertension in type 2 diabetes patients using the UK 

Biobank. The prevalence of hypertension amongst patients with type 2 diabetes was 

observed at 70% in the UK Biobank. This proportion was higher than the figure 

reported in the general UK population. The Health Survey for England (HSE), estimate 

hypertension at 28% of the general UK adult population (National Statistics, 2016). In 

the present study, tighter systolic BP cut-off point (≥ 130 mmHg) was used in defining 

patients with hypertension amongst type 2 diabetes patients. In the HSE, the systolic BP 

cut-off point defining hypertension in the general population was less tight (≥ 140 

mmHg). Hence, the high proportion of hypertension subjects observed in the present 
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study. In other words, the proportions of hypertension in diabetes cohort could vary 

depending on the definition of tighter BP control in the study. For example, the 

prevalence of hypertension (assuming SBP ≥ 160 mmHg) in diabetic adults was 

estimated at 51% using a population based analysis from the HSE conducted in 1991 to 

1994 (Colhoun et al., 1999). In the latter, the prevalence of hypertension could be 

higher when applying the recent guidelines suggesting a stringent reduction of SBP in 

diabetes patients. The recent Joint British Societies’ consensus recommendations for the 

prevention of cardiovascular diseases (JBS3) and the WHO guidelines suggest SBP 

<130 mm Hg amongst patients with diabetes (World Health Organization, 2006, British 

Cardiovascular Society et al., 2014). Compared to patients with both hypertension and 

type 2 diabetes in the UK Biobank, the proportion of non-hypertensive individuals with 

type 2 diabetes was low (~25%). Non-hypertensive patients had an average SBP of 121 

mmHg compared to 148 mmHg observed amongst those with hypertension and type 2 

diabetes. These findings characterising the prevalence of hypertension (or mean SBP) in 

patients with type 2 diabetes should form the basis for upcoming studies. The UK 

Biobank has large, generalizable and contemporary data sufficient to investigate 

hypertension in patients with type 2 diabetes (Allen et al., 2012).  

The relationship between alcohol consumption and the odds of hypertension in 

type 2 diabetes patients suggested the presence of nonlinearity when fitting the FP and 

RCS models. The adjusted ORs in the two models were different for alcohol 

consumption below 2.2 g/day and comparable when the consumption exceeds 2.2 g/day. 

For example, a large ‘spike’ at zero units of alcohol consumption was observed when 

fitting the FP function. In addition, the FP function had ORs below 1 for alcohol 

consumption between 0.1 and 2.2 g/day. In this range, the ORs of hypertension were 

increasing at every unit of alcohol intake. In contrast, the ‘spike’ at zero was not 

observed when applying RCS. Furthermore, the ORs in the RCS model was always 
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positive across the alcohol consumption range. According to Royston and Sauerbrei 

(Royston and Sauerbrei, 2008), the ‘spike’ at zero observed under the FP models has no 

biological interpretation. Royston and Sauerbrei (2008) recommend researchers to 

ignore the ‘spike’ behaviour in their models and begin interpreting the FP curves where 

alcohol consumption exceed zero (i.e. X > 0). Alternatively, the ‘spike’ at zero in FP 

models can be removed by shifting the origin of alcohol intake units by adding a small 

constant 𝛿 to each observation. However, this transformation method has been criticised 

because the resulting FP models could be influenced by the choice of the constant 𝛿 

(Ambler and Royston, 2001). The other approaches of dealing with ‘spike’ at zero 

covariates such as alcohol consumption include a two stage FP procedure suggested by 

Jenkner and colleagues (Jenkner et al., 2016). The two stage FP procedure recommend 

including a binary indicator variable (non-alcohol drinkers vs alcohol drinkers) in the 

final FP models to eliminate the spike at zero. The disadvantage of the two stage FP 

procedure is that it makes a strong assumption on the relationship between alcohol 

consumption and the odds of hypertension. The inclusion of a binary indicator in the 

final FP model will suggest a relationship separating the exposure at zero and the 

continuous part.  

At the alcohol consumption range where the FP and RCS functions are 

comparable, the OR curves increased positively with steeper slopes observed between 

2.2 and 17.5 g/day of alcohol intake. For alcohol consumption exceeding 17.5 g/day, the 

slopes in both the FP and RCS models were shallow but with monotonically increasing 

OR trends. The functions attained with the traditional methods showed non-negative 

monotonic relationships that increased in step (when categorising alcohol consumption 

measures) and linearly (when treating alcohol consumption measures as a linear 

variable). In comparison, the four methods of analysis used in this study were in 

agreement suggesting the presence of monotonically increasing relationships between 
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alcohol consumption and the odds of hypertension. However, the methods of 

categorisation and linearisation prohibit the detection of nonlinearity on the data. In the 

four methods, no optimal amount of alcohol consumption was linked with reduced odds 

of hypertension amongst patients with type 2 diabetes. These results contradict findings 

in the general population studies reporting the J or U association shapes suggesting the 

optimal risk of hypertension amongst the light or moderate alcohol drinkers (Gillman et 

al., 1995, Moreira et al., 1998). For example, an optimal odd of hypertension was 

reported amongst light drinkers in the general study performed by Moreira and 

colleagues (1998). After adjustment for sex, age, education, BMI and use of 

antihypertensive drugs; light drinkers (0-30 g/day) had OR=0.82 (CI=0.51-1.30), 

moderate drinkers (30-60 g/day) had OR=2.39 (CI=1.11-5.16) and heavy drinkers (≥ 60 

g/day) had OR=2.02 (CI=0.88-4.64) of hypertension compared to non-alcohol drinkers 

(reference category). Thus, the ever rising or positive odds of hypertension amongst the 

light alcohol drinkers in the present study could be a suggestion that alcohol worsens 

the incidence of hypertension in patients with diabetes than in the general (or non-

diabetics) population. Light-moderate drinking and occasional heavy drinking were 

both associated with increased risk of hypertension in patients with type 2 diabetes 

(Saremi et al., 2004). 

In the analysis stratified by antihypertensive medication use (medication user’s 

vs non-users); the chances of having hypertension were high amongst patients using 

antihypertensive medication compared to non-medication users. The latter was observed 

across the four methods of analysis. These results were consistent with findings in the 

Japanese male population (without diabetes) showing higher percentages of alcohol 

drinkers in the group receiving antihypertensive therapy for hypertension than in the 

group not receiving antihypertensive(s) (Wakabayashi, 2010). Under the method of 

categorisation and linearisation, the slopes showing the predicted probabilities of 
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hypertension between patients on medication and non-users were different suggesting 

significant alcohol consumption influence and the existence of alcohol X medication use 

interaction terms. The difference in probabilities was narrow towards heavy alcohol 

drinkers compared to light, moderate and non-alcohol drinkers. These results suggest 

antihypertensive efficacy amongst heavy drinkers. The harm associated with alcohol 

consumption was visibly weak amongst heavy drinkers compared to light and moderate 

drinkers. The evidence of antihypertensive medication efficacy amongst hypertensive 

patients has also been reported in a randomised placebo-controlled trial (Maheswaran et 

al., 1990) and a cross-sectional study (Wakabayashi, 2010) performed to examine the 

influence of alcohol consumption. In the trial, the systolic BP amongst hypertensive 

patients participants given metoprolol drugs dropped significantly compared to those 

who were given placebo (Maheswaran et al., 1990). In a cross-sectional performed by 

Wakabayashi (2010), the systolic BP was significantly high in heavy (22-44 g/day) and 

very heavy (≥ 44 g/day) drinkers compared to non-drinkers when subjects were not 

receiving therapy for hypertension. In subjects receiving therapy, no significant 

difference was obtained when comparing systolic BP for light (<22 g/day), heavy and 

very heavy drinkers to non-drinkers. The FP and RCS analyses revealed the absence of 

the alcohol X medication use interaction terms. The comparison between the slopes of 

probability functions of hypertension amongst patients using antihypertensive 

medication versus non-medication users was the same when fitting the FP model. This 

means that the efficacy of antihypertensive medication was not detectable in the FP 

model. In contrast, the RCS model suggested the efficacy of antihypertensive amongst 

patients consuming more than 30 g/day of alcohol. When comparing the RCS functions 

predicting the occurrence of hypertension amongst antihypertensive medication users 

and non-users, identical slopes with narrow probability differences were observed at 

alcohol consumption exceeding 30 g/day. When alcohol consumption was below 30 



201 

g/day, the comparison between the RCS functions of medication users versus non-users 

produced wider probability differences suggesting inefficacy of antihypertensive drugs. 

To my knowledge, this is the first study investigating the application of the four 

methods of analysis and the efficacy of antihypertensive use in alcohol-hypertension 

relationships focusing on diabetes patients. 

In the analysis stratified by age; the probabilities of hypertension were high 

amongst aging patients. This was observed across the four methods of analysis. Heavy 

older alcohol drinkers had a greater chance of having hypertension compared to young 

non-alcohol drinkers or young individuals drinking lightly or moderately. The 

differences in predicted probabilities of hypertension across different ages were wider at 

the lower tails of alcohol consumption than at the upper tails. This implies that younger 

adults were severely affected by the harm associated with alcohol consumption 

compared to older patients. The alcohol X age interaction was also observed in the four 

models however, it was not strong when fitting the RCS function. Existing studies 

investigated the alcohol-hypertension relationship in general population (Okubo et al., 

2014). Okubo and colleagues (2014) found consistent linear associations between 

alcohol intake and the risk of hypertension in middle-aged (40-59 years) and older (60-

79 years) individuals suggesting the absence of the alcohol X age interaction term in the 

data. To my knowledge, this is the first largest study showing that the relationship 

between alcohol consumption and hypertension in a diabetic population vary by age. 

6.4.2 Challenges and limitations 

This section discusses the potential challenges and limitations in this chapter. 

6.4.2.1 Data 

There are issues of inconsistent reporting in alcohol studies linked with possible 

response biases. Potential sources of the response biases in the UK Biobank includes (1) 

under-reporting particularly amongst heavy drinkers, (2) inability to remember the past 
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alcohol intake activities, and (3) inability to comprehend and estimate alcohol content 

accurately according to the assumed standard drinks and sizes. These sources of bias are 

discussed in details below.  

Under-reporting amongst heavy drinkers: Heavy drinkers are likely to under-

report the amount of alcohol they drink, perhaps for reasons of social desirability. If this 

occurs, the heavy drinkers would be misclassified and analysed as moderate, light or 

non-drinkers. This would then affect the predicted functions by overestimating 

probabilities and changing their slopes at the lower tails of the alcohol consumption 

scale. Hence, it is possible that the curvature observed at the lower tails of the alcohol 

distribution when applying the FP and RCS models could be artefacts caused by under-

reporting amongst heavy drinkers (see Figure 6.4). Unfortunately, it was not possible to 

check this since the actual misclassification error was not known.  

Inability to remember the past alcohol intake activities: Forgetting is another 

potential source of response bias in self-reported alcohol consumption data. Evidence 

suggest higher estimates in studies that inquire about recent alcohol intake activities 

(e.g. in the last 24-hours) than those estimating the consumption over a longer period of 

time (in weeks or months) (Lemmens et al., 1992, Stockwell et al., 2004). Based on the 

latter, occasional drinkers were likely to underestimate their alcohol intake in the 

present study. This could affect the predicted probabilities of hypertension in the four 

methods - lowering the estimates across the alcohol consumption range. The actual 

errors associated with forgetting and its influence in the present study was also difficult 

to quantify. 

Inability to comprehend and estimate alcohol content accurately: The UK 

Biobank touchscreen questionnaire provided pictures of different drinks and serving 

sizes to standardise alcohol intake response’s and increase the reliability of answers 
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provided by participants. This approach assumes the serving sizes and contents of 

drinks in licenced premises and home measures are the same. These assumptions have 

the potential to underestimates the actual contents and amounts of alcohol consumed by 

participants. The large variation of alcohol contents and drinking sizes could affect the 

slopes and estimates in the predicted models. However, the standardized alcohol 

measurements in the UK Biobank were in agreement with those in the UK alcohol 

guidelines (House of Commons Science and Technology Committee, 2012). The UK 

alcohol guidelines are revised and updated frequently to capture changing patterns of 

beverage preferences and availability. Hence, the predicted estimates in the present 

study should have minimum bias from the responses given by participants.  

6.4.2.2 Methods and application 

The discussions on methodological challenges and limitations in this chapter are 

provided below. 

The clinical definition of hypertension amongst patients with diabetes includes 

individuals on blood pressure lowering medication and/or systolic BP ≥ 130 mm Hg 

(Judd et al., 2011). However, in this chapter, the operative definition of hypertension 

excluded patients on antihypertensive medication, focusing only on those with systolic 

BP ≥ 130 mm Hg. This has the potential to affect the results in other similar studies 

since the prevalence rates of hypertension are likely to be underestimated in such 

investigations. Nonetheless, it was not statistically feasible to consider antihypertensive 

medication use as part of the definition for patients with hypertension in the present 

study. This is because antihypertensive medication use (yes/no) was treated as a 

confounding variable in the analysis.  

In the analyses, continuous confounders were untransformed to establish the 

relationship between alcohol consumption and hypertension. Untransformed 
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confounders simplify the analysis and preserve the scales of continuous confounders 

during statistical modelling minimising the bias on the estimates (Brenner and Blettner, 

1997, Groenwold et al., 2013). A simulation study assessing various covariate-risk 

associations, Brenner and Blettner (1997) found suboptimal confounding when 

covariates were continuous (either linear or nonlinear) and biased OR estimate or 

residual confounding when continuous covariates were analysed as categorical 

variables. Chen and colleagues (Chen et al., 2007) also obtained satisfactory odds ratios 

(ORs) when age (continuous confounder) was treated as a linear or nonlinear variable in 

the analysis and biased ORs when age was dichotomised. Based on the findings of these 

studies, biased OR estimates was less likely in functions treating both the exposure and 

confounders as continuous variables in the analyses. Models dichotomising the 

exposure and analysing confounders as continuous variables had a larger bias on their 

estimates. This has implications for the present study; the estimated ORs of 

hypertension attained with the method of categorisation (see Table 6.4) could be more 

biased than the estimates in Table 6.5 (obtained when both the exposures and 

confounders were continuous variables).  

Knots selection procedure was another aspect considered when assessing the 

alcohol-hypertension relationships using the RCS functions. The RCS functions are 

known to be sensitive to the number of knots and their placement (Durrleman and 

Simon, 1989, Desquilbet and Mariotti, 2010). In this study, the RCS function suitable 

for the alcohol-hypertension relationship amongst patients with type 2 diabetes had 3 

knots. The RCS model with 4 knots was less efficient with more parameter estimates 

and unstable function. These findings are in agreement with the suggestion made by 

Durrleman and Simon (1989) that fewer knot RCS models were likely to provide 

adequate fits for most phenomena observed in medical studies.  
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Finally, the incomplete data in the predictors were omitted during statistical 

modelling. The adjusted functions were attained using n=15,967 complete records, 

which represent about 67% of the whole dataset (n=23,842). The remaining n=7,875 

observations representing 33% of the dataset, had one or more missing values and were 

completely ignored in the analysis. This implies that the predicted alcohol-hypertension 

functions could be less precise due to reduced sample size or loss of power on the data. 

Also, the confidence intervals of the predicted functions could be incorrect due to the 

potential bias in standard errors (White, 2015). An attractive approach for handling 

missing values of predictors in regression modelling is the multiple imputation (MI) 

method (Rubin, 2004). The MI method is common in epidemiology and clinical studies. 

In its application,  𝑀 complete datasets are generated such that they correctly reflect the 

distribution of missing data given the observed values. The benefits of the MI methods 

is that it restores the natural variability of the missing values and incorporates 

uncertainty in the data for valid statistical inference (Kang, 2013). The main challenge 

with this imputation method is that it is computationally expensive and based on 

assumptions that may lead to errors when generating the data (Humphries, 2013). In 

addition, more complications could occur in studies investigating nonlinearity and 

interaction terms. Available standard software’s implementing the MI procedures are 

limited - imputation datasets maybe based on assumptions that are incomparable with 

the ‘true’ models (Bartlett et al., 2015). Thus, the recent studies (Bartlett et al., 2015, 

White, 2015) recommend not choosing the MI method when investigating nonlinear 

associations and interactions in the data. Hence, the MI procedure was not implemented 

in this study. 

6.4.3 Strengths and opportunities 

Apart from the weaknesses noted above, there are particular strengths worth 

noting in this work. Firstly, it is important to recognise that UK Biobank is a large 
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cohort study with over 500, 000 participants. Therefore, a large sample was used in 

establishing and analysing the alcohol-hypertension relationships. Secondly, to control 

for confounding bias, the DAG technique was applied in the modelling process. The 

DAG approach reduce the potential confounding bias in alcohol-hypertension models 

through the identification of minimal sufficient sets of variables to adjust for in the 

analysis. In contrast to the DAG based approach, stepwise selection procedures are 

common for identifying confounders however they have been discouraged on many 

grounds particularly because variable selection depends on p-values alone (Greenland 

and Neutra, 1980, Núñez et al., 2011). Thirdly, the research covers a variety of methods 

of analysis to study the alcohol-hypertension relationships. The two popular methods of 

categorisation and linearisation were compared with nonlinear approaches including 

fractional polynomials and restricted cubic splines. The practice of categorisation and 

linearising the alcohol intake measures restrict the shapes of the alcohol-hypertension 

associations to step and linear functions ignoring nonlinearity in the data. Fourth, the 

research employs simpler graphical methods of analysis for visualization and 

interpretation of interactions (or modification) in the data. The graphical methods were 

illustrated using the categorical, linear and nonlinear alcohol-hypertension relationships 

attained in this chapter. Finally, a sensitivity analysis was performed to verify the 

consistency of the reported alcohol-hypertension relationships. 

6.4.4 Novelty  

A literature search on Google Scholar, PubMed and Web of Science using the 

following keywords; UK Biobank, type 2 diabetes, hypertension, alcohol, associations 

or relationships suggest this is the first study investigating the alcohol-hypertension 

relationships and interactions amongst type 2 diabetes patients in the UK Biobank. 

Therefore, the findings reported in this chapter are novel and have potential implications 

for public health and medical practice. 
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6.4.5 Future studies 

To clarify the causal relationship between alcohol consumption and 

hypertension in patients with type 2 diabetes, further research is needed using 

longitudinal data. The present study investigated the relationship using self-reported 

baseline data. The cause and effect pathways will be more reliable in a longitudinal 

study than the data obtained at a single point in time. 

Consideration for another research is also suggested to develop a multiple 

imputation model for missing alcohol-hypertension data in the UK Biobank and to 

provide guidelines for its implementation. The proposed imputation needs to 

demonstrate the missing data mechanism, correct specification of the data imputation 

model and the implementation process.  

Finally, since the alcohol data is prone to measurement/misclassification errors, 

further investigations are also required to (1) establish the effects of these errors on the 

alcohol-hypertension relationships and (2) assess the methods suitable for correcting or 

reversing the bias in the data. This could be achieved through a simulation study 

demonstrating the effects of different random errors in the data and correction 

procedures. 

6.5 Conclusions 

This study identified a greater proportion of type 2 diabetes patients with poor 

blood pressure control. Furthermore, alcohol consumption was associated with the 

increasing odds of hypertension in the data. The four methods of analysis applied in the 

study suggested monotonically increasing functions in the data. These results suggest 

the need for aggressive strategies to manage and control hypertension in type 2 diabetes 

patients. Additional findings also revealed that antihypertensive medication use and 

patient’s age modify the odds of hypertension in alcohol drinkers across the four 
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methods of analysis. In the four models, the harm associated with alcohol drinking was 

worse in young patients than in older patients. Furthermore, the efficacy of 

antihypertensive use was observed amongst heavy alcohol drinkers when comparing 

medication users against non-users. These findings are in support of clinical guidelines 

or strategies that explain the risk of hypertension in patients with type 2 diabetes taking 

into consideration (1) the efficacy of antihypertension medication use and (2) the 

severity of alcohol drinking across different ages.  

This study also demonstrated the existence of nonlinearity in real data. The 

functions characterising the alcohol-hypertension showed the presence of nonlinearity 

when fitting the FP and RCS models. This is an important finding that should encourage 

researchers working in the same area to consider nonlinearity in their studies. 

Characterising nonlinear exposure–outcome relationships accurately is very important 

in epidemiology because such relationship studies inform policies that influence 

individuals’ health outcomes.  
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  Chapter 7

Discussion 

This discussion chapter synthesises the work carried out in this PhD.  

The chapter is divided into sub-headings listed below: 

1) A brief introduction 

2) Synthesis and interpretations of key findings  

3) Research implications and contributions 

4) Challenges and limitations 

5) Strengths and opportunities 

6) Recommendations for future research 

7) A list of publications arising from this PhD thesis 

8) A conclusion 

7.1 Introduction 

In medical studies, it is important to be able to characterise the shapes of the 

predictor-outcome relationships accurately. This is because such relationship studies 

have the potential to inform health policies that in turn impact on individuals’ health 

outcomes. Evidence in published surveys suggests the common practice of 

categorisation of continuous variables when reporting predictor-outcome relationships 

in medicine (Pocock et al., 2004, Turner et al., 2010). The practice of categorisation 

does not make use of within category information. Thus, the final models may be 

inappropriate due to loss of information. The alternative methods such as fractional 
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polynomials (FPs) and restricted cubic spline (RCS) approaches are available for 

handling continuous data during statistical modelling but they not widely used. 

To encourage and promote the use of FPs and RCS models amongst medical 

researchers with little background in statistics for application of these methods; the first 

objective of this research was to conduct a new survey demonstrating the current extent 

of categorised continuous variables in observational studies. Taking lessons from the 

latter, novel simulation studies (based on causal and predictive models) and an 

application study based on real dataset then followed. The purpose of these studies was 

to compare the performances and properties of the linear, FPs and RCS regression 

approaches (as the alternatives) against the practice of categorising continuous data. A 

simple conceptual framework linking these chapters is provided in Figure 7.1 below.  
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Figure 7.1: Conceptual framework and linkages of the thesis results chapters  
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7.2 Synthesis and interpretation of key findings 

This section discusses key findings emerging from this PhD, bridging chapters 

together. 

7.2.1 The current practice of reporting and analysing continuous variables 

in observational studies 

The findings of the survey study conducted in ‎Chapter 3 revealed the presence 

of categorisation of continuous variables in epidemiological studies. Amongst the 

articles investigating the associations between the continuous exposures and disease 

outcomes, 61% (CI = 39%, 80%) of them transformed the exposure variables into 

categorical measures for analysis. Amongst these articles, the justifications informing 

the choice of categorisation was only explained in 7% (CI = 0%, 34%) of the studies. 

These findings show that things have not improved since the release of the STROBE 

(Strengthening the Reporting of Observational Studies in Epidemiology) guidelines 

(Von Elm et al., 2007). Thus, researchers could be unaware of the existing STROBE 

guidelines or simply ignoring them underestimating the consequences of categorisation 

during statistical modelling. The implications of categorisation were investigated in 

simulation studies provided in ‎Chapter 4 and ‎Chapter 5. The findings in these chapters 

revealed the inability of this method to discover the ‘true’ associations in the 

simulations and estimate turning points in the data. Furthermore, categorical models 

were charaterised by poor performance measures in the simulations. This is because 

categorisation does not use the within category information. The alternative methods of 

FPs and RCS that preserve continuous data are available. However, the survey results 

in ‎Chapter 3 suggest that such methods are rarely used for reporting exposure-outcome 

relationships in epidemiology.   



213 

7.2.2 Implications of categorisation and comparison of alternative methods  

Given the high incidence of categorisation in  Chapter 3, the researcher wanted to 

establish how bad categorisation was amongst studies investigating exposure-outcome 

relationships. To achieve this, two methods of categorisation - assuming three (CAT3) 

and five (CAT5) categories were compared against the alternative approaches of FPs 

and RCS through the simulation studies presented in  Chapter 4 and  Chapter 5. The 

simulations also incorporated linear regression models – which offer simplicity amongst 

studies that keep continuous variables in the analysis. The reasons informing the choice 

of FPs and RCS were as follows; (1) the two approaches are considered powerful and 

flexible in fitting both complex and linear functions, (2) they are readily available for 

implementation in most statistical programs, (3) the comparisons between them are 

lacking and little is known about their results and (4) they possess special unique 

features - RCS are constrained to be linear at their tails whilst FPs offers flexibility and 

are constrained through a set of powers, 𝑝𝑗  ∈  {−2,−1, −0.5, 0, 0.5, 1, 2, 3}. Besides the 

FPs and RCS methods, the other approaches such as LOESS and GAMs are available 

but they were not considered in this research. The application of LOESS in 

multivariable setting is limited (i.e. only useful in single-predictor models) whilst the 

GAMs are computational expensive (Beck and Jackman, 1998, May and Bigelow, 

2005). 

To aid the evaluation of methods used in this research, novel simulations were 

performed - assuming plausible relationship scenarios in epidemiology. The plausible 

scenarios were exemplified by using the alcohol-blood pressure relationships found in 

the literature. However, it was difficult to envision the influence of other covariates (or 

confounding) in the simulations thus, single predictor-outcome models were considered 

for evaluation. The predictor-outcome shapes in the simulations comprised the linear 

function, two different thresholds functions (linear and nonlinear - tick shaped) and U 



214 

shaped function – referred as ‘true’ shapes for estimation using the CAT3, CAT5, 

linearization, FPs and RCS regression approaches. 

7.2.2.1 Ability‎to‎discover‎‘true’‎predictor-outcome relationships 

The research in Chapter 4 and 5 showed that categorising or linearising 

continuous predictor or exposure (used interchangeably in this chapter) produces 

functions that fail to lend themselves on the ‘true’ nonlinear shapes. The CAT3 and 

CAT5 approaches produced step functions – concealing detailed information about the 

actual shapes in the simulations. For instance, the relations between the predictor and 

outcome variables were constant within the assumed categories. This implies that ‘true’ 

biological changes occurring in linear, thresholds and U shaped associations were lost 

due to constant variation within the assumed categories. In contrast, the linearisation 

approach produced fits that lied entirely on the ‘true’ function only when the 

relationship was linear. Besides that, the linear models produced inadequate fits when 

applied in thresholds (both linear and nonlinear) and U shaped datasets - 

underestimating the ‘true’ outcomes at the lower and upper predictor values. For 

moderate exposure values, the outcomes were overestimated when fitting the linear 

functions in thresholds and U shaped datasets. Overall, the results in  Chapter 4 (for 

Gaussian outcome models) were similar to those in  Chapter 5 (for binary outcomes). 

The CAT3, CAT5, and linearisation methods were inadequate for characterising 

thresholds and U-shaped relationships. Thus, applying these methods in similar 

scenarios will produce inaccurate functions that mislead individuals’ health outcomes. 

The alternative methods of FPs and RCS improved the results in thresholds (both the 

linear and nonlinear) datasets – producing fits that were very close to the ‘true’ 

functions. However, none the predicted fits lied entirely on ‘true’ threshold functions. 

This was true in both the continuous and binary outcome models. The RCS models also 

produced near approximate fits in U-shaped datasets under the continuous and binary 



215 

models. In contrast, the FP method produced precise fits that lied entirely on the ‘true’ 

U-shaped function when both the predictor and outcome were analysed as continuous 

variables (i.e. continuous models). However, near approximate fits that do not lie 

entirely on the ’true’ curve were obtained when applying FPs under the binary outcome 

scenario. This latter implies that any deviation from the assumption of normality to 

binary outcomes will reduce the precision of the FP function.  

One of the limitations in this PhD is studying a few nonlinear shapes in the 

simulation chapters. Some of the functions found in epidemiology but not considered in 

the simulations include the asymptotic, J-shaped and sigmoidal relationships. For 

example, an asymptotic relationship was reported between blood carboxyhaemoglobin 

(or plasma thiocyanate concentrates) and daily smoking of cigarettes, reaching an 

asymptote after consumption rate of 25 cigarettes per day (Vesey et al., 1982). Evidence 

of J-shaped relations includes the associations between BMI and coronary heart disease 

or mortality (Jee et al., 2006, de Gonzalez et al., 2010). A sigmoid relationship exists 

between Vitamin C ingestion (or dosage) and its concentration (Paoletti et al., 1998). 

Supposing such relationships existed in real application studies, the categorical and 

linear models will fail to identify (or detect) the ‘true’ shapes in the data. The findings 

in ‎Chapter 4 and ‎Chapter 5 suggest the methods of categorisation would hide the actual 

relations in such scenarios producing step functions. In contrast, the linear models 

would restrict these nonlinear functions to be linear (which is misleading and 

inaccurate). For alternative methods, the RCS model would likely struggle to lend itself 

on the J-shaped function at the lower exposure since the RCS model predict linear fits at 

the tails. However, the RCS should not struggle to accurately identify the asymptotic 

fits since such functions tend to be linear at their tails.  In contrast, the FP functions 

would likely to lend itself on the J-shapes than the asymptotic fits. The J curves belong 

to the quadratic functions thus, it is expected that the FP fit identify them as it does with 
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the U-shaped functions in ‎Chapter 4 and ‎Chapter 5. On the other hand, the FP would 

likely struggle to lend itself on asymptotic functions since its fits tend to be too flexible 

at the tails. For sigmoid functions, the RCS (with 3 knots) as assumed in this thesis 

would be insufficient. Sigmoid functions have more than one turning point thus, 

additional internal knots maybe required for the actual fit. Similarly, FPs may be 

inadequate; requiring high order degree fit (>2) - depending on the complexity of the 

sigmoid shapes. 

7.2.2.2 Turning point estimation 

The simulations in ‎Chapter 4 & ‎Chapter 5 showed that the FP and RCS 

functions were not adequate for predicting the location of turning points (or thresholds) 

in linear and nonlinear threshold datasets (tick shaped). The FP and RCS models 

underestimated the ‘true’ outcomes in the two threshold functions – shifting the ‘true’ 

location of the exposure/predictor variables to the left. Moreover, the two methods 

produced varying estimates in similar datasets (i.e. under both the linear and nonlinear 

threshold functions). This has huge clinical implications, different optimal 

exposure/outcome values often reported in application studies could be due to these 

methodological variations. The alternative change point regression methods (Muggeo, 

2003, Breitling, 2015) that were not explored in this PhD maybe suited for estimating 

the positions of turning points (together with their CIs) in the simulations. Although the 

FP and RCS models were not adequate for predicting the location of turning points for 

threshold scenarios in the simulations; the FP models produced precise estimates in U-

shaped functions (under the continuous outcome scenarios). In contrast, the RCS 

models misspecified the position of the ‘true’ turning points – shifting it to the right. 

The RCS results were similar across the continuous and binary outcome scenarios 

in ‎Chapter 4 and ‎Chapter 5. 
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The CAT3 and CAT5 approaches were not suitable for estimating exact location 

of turning points in the simulations. The two methods of categorisation forced the 

predicted outcomes to remain invariant within each category of the predictor - 

producing interval estimates. Considering that the estimated turning points may be 

useful for establishing treatment dosages or therapeutic interventions, interval estimates 

are not explicit thus individual’s health outcomes could be compromised. Therefore, I 

suggest that researchers use such estimates for quantitative hypothesis – testing whether 

the precise location of the turning point is within the predicted intervals. 

7.2.2.3 Goodness of fit  

The RMSE (also a predictive measure) was used in ‎Chapter 4 to measure the 

variation between the predicted curves and the ‘true’ functions in the simulations. In 

contrast, discrimination and calibration were used in ‎Chapter 5 for prognostic models 

with binary outcomes. Discrimination (measured using c-index scores) was defined as 

the ability of the predicted model to separate patients with different event outcomes 

whilst calibration (assessed by graphical plots) was the extent of agreement between 

observed and predicted outcomes (Harrell et al., 1996). In ‎Chapter 4, the two methods 

of categorisation (CAT3 and CAT5) had larger RMSE scores compared to the FP and 

RCS methods when fitted in linear, thresholds and U – shaped datasets. The FP 

functions retained the smallest RMSE when fitted in nonlinear datasets (thresholds and 

U-shaped associations) followed by the RCS fit. When the association was linear, the 

linearisation approach produced the best fit - with minimum RMSE followed by the 

RCS and FP fits respectively. In addition, the FP method was likely to reject linearity 

more often than the RCS approach - even when the true relationship was linear 

(resulting in high type I errors). Applying the RCS model in linear datasets produced 
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type I errors close to 5%, whilst the type I errors in FP models varied 14% and 25%. 

The latter suggests the FP approach was likely to produce over fitted models when 

applied in linear datasets than the RCS functions – an implication that the RCS is more 

conservative than the FP approach. The suggestion that the RCS is conservative than the 

FP approach was also observed in binary outcome models. The RCS models retained 

slightly larger c-index scores than the FP method in binary outcome functions 

(occurring after transforming continuous outcomes into binary variables) – an indication 

that the RCS approach was better in such scenarios. Categorising the continuous 

predictor variables into few (CAT3) categories (under the binary outcome models) 

displayed functions with the least discrimination than the linear, FP, RCS approaches. 

However, the CAT5 (with more categories) improved the discrimination results. In 

contrast, the CAT5 competed fairly with the linear, FP and RCS functions - slightly 

outperforming the linear and FP methods in some scenarios. Moreover, the CAT5 

retained functions with better calibration plots than the linear, FP and RCS approaches 

(whose functions were characterised by combinations of agreements and disagreements 

in the simulations). Based on these results, researchers might be tempted use models 

with more categories in predictive analysis. However, the improvements on models with 

large number of categories come as a trade-off for more complex functions (with many 

parameters or degrees of freedom) than the categorical models (with few categories) or 

other methods that preserve and make full use of predictor information in the analysis. 

7.2.3 The differences between continuous and binary outcome models 

The simulation in  Chapter 5 investigated the performances of categorisation, 

linearisation, FP, and RCS methods in binary logistic models. The survey research 

in  Chapter 3 showed that binary outcome models were very popular in medical studies. 

Often binary logistic models are investigated after categorisation of continuous 

outcomes - using prevailing definitions (or clinical cut points) of disease conditions for 
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the purpose of prediction and explanatory analysis. However, there exist few studies 

investigating predictive models (Shmueli, 2010). The simulations in  Chapter 5 focused 

on the performance of different methods used for handling continuous predictors when 

developing predictive models under the logit framework. These simulations were 

different from the normal error regression models in  Chapter 4 where both the predictor 

and outcome variables were continuous. Furthermore, the prognostic models in  Chapter 

5 formed an example of categorisation for both the predictor and outcome variables. 

Considering the different simulation framework in chapter 4 and 5, this was an 

opportunity to study several performance measures for continuous and binary outcome 

models. Notable differences observed between the results comparing the methods of 

categorisation, linearisation, FP and RCS in chapter 4 and 5 are discussed in 

sections  7.2.3.1 and  7.2.3.2. 

7.2.3.1 Confidence Intervals of the estimated functions 

The most outstanding difference observed between binary and continuous 

models in the simulations was their 95% CIs. The binary outcome scenarios retained 

functions with wider CIs compared to the settings where the predictor and outcome 

variables were continuous. Based on these findings, any deviation from the assumption 

of normality (or Gaussian distribution) will reduce the precision or accuracy of 

functions being estimated. Putting this in context, this implies that transforming 

continuous outcomes into binary variables would reduce the accuracy of the estimated 

functions under these methods. Generally, the information is lost when continuous 

outcomes are transformed into binary variables. 

Overall, the fitted functions had the widest CIs at the tails of the predictor 

variables than at the centre. This pattern was the same across the binary and continuous 

outcome models. However, the comparison between the fitted functions showed some 

striking difference at the lower tails of the predictor variables. Across the four 
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association shapes in the simulations, the FP curves had wider CIs at the lower tails of 

the predictor than the categorical, linear and RCS fits. This was mainly due to zero 

values occurring at the lower tail of the predictor variable. FPs are based on natural 

logarithms thus they not able to handle zero values. This consequently causes unstable 

fit at the lower tails - resulting in wider CIs. Reflecting on this problem, this could be 

one of the reasons why FPs are not widely used in medical studies (as seen in the survey 

in  Chapter 3). Researchers may not be comfortable with using FPs because their 

resulting trends functions may be biologically implausible. 

7.2.3.2 Coverage probabilities of the turning points 

The average coverage probabilities of the ‘true’ turning points exceeded the 95% 

nominal levels when applying the FP and RCS functions under the continuous outcome 

scenarios. The latter was observed in both the thresholds and U-shaped functions 

considered in  Chapter 4 (under all simulation conditions – varying sample sizes and 

noise in the data). In contrast, the average coverage probabilities of 72% and 76% were 

observed when fitting the FP functions in linear and nonlinear threshold datasets 

respectively, under the binary scenarios. In the same datasets, the RCS had conservative 

estimates above the 95% nominal level. For U-shaped functions, both the FP and RCS 

had the average coverage probabilities below the 95% nominal level. However, the RCS 

was closer to the nominal level with the average rate of 87% than 66% under the FP. 

These results suggest underperformance of FP in binary outcome scenarios compared to 

the continuous outcome cases. In contrast, the RCS was not adversely affected by 

deviations from the assumption of normality – the results remained the same except in 

U-shaped functions. Reflecting on these results, the coverage rate below and far from 

the 95% levels implies under-coverage and lack of fit. Thus, under-coverage and lack of 

fits were more likely under the binary outcome scenarios. 
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7.2.4 Application study - Examining the alcohol-hypertension association in 

type 2 diabetes patients using the UK Biobank  

For the application of methods studied in  Chapter 4 and  Chapter 5, an 

investigation was carried out in  Chapter 6 to assess the association between alcohol 

consumption and the odds of hypertension in patients with type 2 diabetes using the UK 

Biobank. In addition,  Chapter 6 was also aimed at investigating whether patients’ age 

and antihypertensive medication use modify the alcohol-hypertension relationships. 

Moreover,  Chapter 6 was also an example of real world data and use of categorisation, 

linearisation, FP and RCS approaches. 

This chapter showed that the proportion of type 2 diabetes patients with poor 

blood pressure control (defined as SBP ≥ 130 mmHg in diabetics) in the UK Biobank 

(70%) is substantially high. Taking into account this finding, aggressive strategies are 

needed to manage and control hypertension in type 2 diabetes patients in the UK 

Biobank. 

Amongst type 2 diabetes patients, the odds of hypertension increased 

monotonically with the consumption of alcohol in the UK Biobank. This relationship 

was observed when fitting the categorical, linear, FP and RCS models. The application 

of the categorisation method reported as the popular practice in  Chapter 3 yielded a non-

negative monotonic function that increased in steps. As observed in  Chapter 4 

and  Chapter 5, the step functions produced through the categorical approach obscure 

‘true’ relationships in the data due to loss of information. The alternative methods that 

keep the continuous variables in the analysis resulted in a non-negative linear 

relationship when fitting linear models. In contrast, the FP and RCS revealed the 

presence of nonlinearity in the UK Biobank. The adjusted odds of hypertension in the 

FP and RCS models were different for alcohol consumption below 2.2 g/day and 

comparable when the consumption exceeded 2.2 g/day. Notable differences at the 
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alcohol consumption range between 0 and 2.2 g/day include (1) a large ‘spike’ at zero 

units of alcohol consumption and (2) the ORs <1 for alcohol intake between 0.1 and 2.2 

g/day in the FP function. In contrast, the ‘spike’ at zero consumption of alcohol was not 

observed when applying the RCS model. Furthermore, the RCS function was always 

positive and increasing with ORs>1. Between 2.2 and 17.5 g/day of alcohol 

consumption, the two functions were comparable and had steeper and increasing slopes 

on their ORs. When alcohol consumption exceeded 17.5 g/day, the slopes in the FP and 

RCS models were shallow with OR trends that increase monotonically. No optimal 

amount of alcohol consumption was linked with the reduction of odds of hypertension 

amongst patients with type 2 diabetes in the UK Biobank. This contradicts findings in 

general population where the optimal risk of hypertension has been reported amongst 

the light or moderate alcohol drinkers (Gillman et al., 1995, Moreira et al., 1998). The 

present study found increasing or positive odds of hypertension amongst the light and 

moderate alcohol drinkers.  

Additional findings also suggest that antihypertensive medication use and 

patient’s age modify the odds of hypertension. In the analysis stratified by 

antihypertension medication use (medication user’s vs non-users); the probabilities of 

having hypertension were high amongst patients on antihypertensive medication 

compared to non-medication users and the harm associated with alcohol drinking was 

visibly weak amongst heavy drinkers compared to light and moderate drinkers. The 

latter was observed in the categorical, linear and RCS models and suggest the efficacy 

of antihypertensive use amongst heavy alcohol drinkers. In contrast, the efficacy of 

antihypertensive medication was undetectable when fitting the FP model. The findings 

suggesting the efficacy of antihypertensive use has also been reported in other clinical 

studies examining the influence of alcohol consumption on hypertension (Maheswaran 

et al., 1990, Wakabayashi, 2010). In the analysis stratified by age, the probabilities of 
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having hypertension were high amongst aging patients. However, young adult patients 

were severely affected by the harm associated with alcohol drinking than older patients. 

The four models applied in the analysis were in agreement with these findings and 

suggested the presence of alcohol X age interaction (which was not strong when fitting 

the RCS function) in the data. In contrast, Okubo and colleagues (2014) found 

consistent linear associations between alcohol intake and the risk of hypertension in 

middle-aged (40-59 years) and older (60-79 years) individuals suggesting the absence of 

alcohol X age interaction term in general population. Thus, further research is needed to 

confirm the presence of alcohol X age interaction in diabetes patients. The suggested 

alcohol X age interaction may only be in this study. 

7.3 Research implications and contribution to knowledge 

The research implications and contributions of each chapter in this thesis are 

discussed below: 

For the first time after several years in existence, a new piece of research was 

carried out in ‎Chapter 3 to assess the current practice of reporting and analysing 

continuous variables in observational studies according to the STROBE guidelines. The 

findings showed a higher incidence of categorisation - raising concerns about the 

adequacies of analysis and quality of reporting continuous exposure or risk factors in 

epidemiology. This result was an indication that researchers may be unaware of the 

existing STROBE guidelines or they simply ignore them. This result also suggests 

researchers might not be attracted to the alternative methods of FP and RCS suitable 

(shown in ‎Chapter 4 and ‎Chapter 5 of this thesis) for improving the reporting 

relationships in epidemiology. Taking note of these results, it is so important to 

encourage researchers to adopt the alternative approaches for improved reporting. The 

common practice of categorisation does not make use of within category information - 
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yield functions that obscure underlying relationships (shown in ‎Chapter 4 and ‎Chapter 

5). Therefore, the costs of categorisation may be huge in public health if the exposure-

outcome relationships are not well established. For instance, patients’ health outcomes 

may be wrongly classified resulting in misguided interventions. 

  

The research in ‎Chapter 4 suggests the FP and RCS functions were not adequate 

for predicting both the ‘true’ fits and turning points in a linear or nonlinear threshold 

(tick shaped) datasets. The actual positions of turning points were underestimated 

(shifted to the left of the exposure scale) when fitting FP and RCS models in the two 

threshold functions. However, the two methods produced varying estimates when 

applied to a similar threshold dataset. Under the U-shaped datasets, the FP model was 

able to accurately identify both the ‘true’ curve and the exact location of turning points. 

In contrast, the RCS overestimated the positions of the ‘true’ turning points in the same 

datasets (shifted to the right of the exposure scale). In comparison, applying the 

methods of categorisation in the simulations produced step functions, which were 

inadequate for the ‘true’ relationships and estimation of turning points. Essentially, 

these findings are novel and can also be extended to binary outcome scenarios to guide 

medical researchers reporting similar shapes in their studies. The researcher was not 

aware of any simulation study evaluating the estimation of turning points in plausible 

exposure-outcome relationships using the categorisation, FP, and RCS methods. Even 

though researchers often visualise and approximate the location of the turning points 

based on the shapes of predicted association functions (Pastor and Guallar, 1998).  

 

The research in ‎Chapter 5 was based on novel simulations examining the 

predictive ability of prognostic models developed using the CAT3, CAT5, linearisation, 
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FP, and RCS methods under three key measures of discrimination, calibration, and 

clinical utility. Overall, there was poor discrimination and miscalibration when applying 

the five methods in the simulations. However, the RCS methods had greater c-index 

scores whilst the CAT3 retained the least c-indexes (although the difference between the 

five methods was not substantially large or worse). The calibration results were 

characterised by lower predicted probabilities than those observed in ‘true’ functions 

when applying CAT3 and CAT5). However, the two methods of categorisation were 

better calibrated than the linear, FP and RCS models that showed combinations of 

agreements and disagreements between predicted and observed probabilities in the 

simulations. For clinical usefulness, the CAT5, linear, FP and RCS methods showed 

better clinical net-benefits when applied in linear, thresholds and quadratic datasets than 

the CAT3 approach. The findings of poor net-benefits on categorical models (with few 

categories) and improvements on models with large categories were also reported by 

Collins and colleagues (2016). Overall, these are novel findings that provide insights 

about categorisation, linearisation, FP and RCS methods in prognostic modelling. The 

results imply that categorising continuous predictors into few categories during model 

development would produce models with the least predictive accuracy (discrimination 

and calibrations) and poor clinical net benefits than the prognostic models developed 

using the CAT5, linear, FP and RCS approaches. The poor performance of the 

categorical model with few categories was attributed to information loss occurring when 

continuous predictors are transformed into categories during model development. In 

contrast, the CAT5 achieves better performances by trading off its many categories for 

more complex step functions (which is not efficient), whilst the other methods fully 

utilise the continuous predictor information. Therefore, with the emerging field of 

machine learning; researchers working in this area might find this research useful to 

validate their models. Predictive analytics go hand-in-hand with machine learning 
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where big data – large volumes of raw structured, semi structured and unstructured data 

are used to estimate or predict future outcomes (Obermeyer and Emanuel, 2016).  

 

A literature search on Google Scholar, PubMed and Web of Science using the 

following keywords; UK Biobank, type 2 diabetes, hypertension, alcohol, associations 

or relationships suggest  Chapter 6 was the first study investigating the alcohol-

hypertension relationship amongst type 2 diabetes patients in the UK Biobank using the 

methods of categorisation, linearisation, FPs, and RCS. Findings in this chapter showed 

a substantially large proportion of type 2 diabetes patients with poor blood pressure 

control (defined as SBP ≥ 130 mmHg in diabetics) in the UK Biobank (70%). The odds 

of hypertension increased monotonically with the consumption of alcohol in the UK 

Biobank amongst the type 2 diabetes patients suggesting nonlinear relationships when 

fitting the FP and RCS models. In contrast, the odds of hypertension were increasing in 

steps when fitting the categorical model whilst the linear model produced a positively 

linear relationship. The additional findings suggested antihypertensive medication use 

and patients’ age modifies the odds of hypertension. In the analysis stratified by 

antihypertension medication use (medication user’s vs non-users); the probabilities of 

having hypertension were high amongst patients on antihypertensive medication than 

non-medication users and the harm associated with alcohol drinking was visibly weak 

amongst heavy drinkers compared to light and moderate drinkers. The latter was 

observed in the categorical, linear and RCS models and suggested the efficacy of 

antihypertensive use amongst heavy alcohol drinkers. In contrast, the efficacy of 

antihypertensive medication was undetectable when fitting the FP model. In the analysis 

stratified by age, the probabilities of having hypertension were high amongst aging 

patients. However, young adult patients were severely affected by the harm associated 
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with alcohol drinking than older patients. The four models applied in the analysis were 

in agreement with these findings and suggested the presence of alcohol X age 

interaction (which was not strong when fitting the RCS function). Overall, these are 

novel results that suggest the need for aggressive strategies to manage and control 

alcohol induced hypertension in type 2 diabetes patients and clinical guidelines 

explaining the risk of hypertension in patients with type 2 diabetes taking into account 

(a) the efficacy of antihypertension medication use and (b) the severity of alcohol 

drinking according to patient’s age. On the methodological side, researchers are 

encouraged to consider nonlinearity when investigating the associations between 

alcohol consumption and hypertension in patients with type 2 diabetes. Considering 

nonlinearity and characterising the exposure-outcome relationships accurately is 

important because such studies inform policies that influence individuals health 

outcomes. Taking this application study as an example, ignoring nonlinearity will not 

recognise steep OR slopes (increasing at a decreasing rate in FP and RCS models) 

requiring health policy makers to pay attention at lower values of the exposure. Thus, 

this study is also an example of errors that can result in any epidemiological study not 

addressing the issues of nonlinearity and categorising continuous variables – a common 

practice observed in the survey provided in  Chapter 3. 

7.4 Challenges and limitations  

It is important to point out that there were some challenges and limitations 

encountered in this PhD. These challenges and limitations are discussed in 

section ‎7.4.1- ‎7.4.3 below.  

7.4.1 PhD scope/coverage 

It was beyond the scope of this PhD thesis to compare all the methods available 

for analysing continuous exposure-outcome relationships. This PhD covered the 
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common methods of categorisation and the alternative approaches of linearisation, FP, 

and RCS for characterising relationships in epidemiology. Despite these methods, there 

exist other approaches for analysing exposure-outcome relations that were not proposed 

but may have benefited from consideration in this PhD.  

Assuming knowledge of ‘true’ exposure-outcome relationships in epidemiology, 

the performances of categorisation, linearisation, FP and RCS approaches were 

investigated in simulation studies under the framework of continuous and binary 

outcomes (see  Chapter 4 &  Chapter 5). The simulations covered few exposure-outcome 

relationships exemplified by alcohol-blood pressure association scenarios found in the 

literature. These example scenarios were only used to illustrate the applications of the 

methods, therefore could not be interpreted as estimates for the causal effects of alcohol 

on blood pressure (confounding also not considered). Apart from the latter, the 

properties and applications of these methods could be extended to any similar exposure-

outcome relations studied in  Chapter 4 &  Chapter 5 provided the exposures are 

continuous variables. 

7.4.2 Methods applications 

The mathematical expressions of the best-fitted FP and RCS functions attained 

when estimating the alcohol-hypertension relationships in  Chapter 6 were complex and 

difficult to interpret. This was not surprising because the FP and RCS methods are 

known for not providing interpretable parameters when estimating exposure-outcome 

relationships (Royston and Altman, 1994, Heinzl and Kaider, 1997, Steenland and 

Deddens, 2004). Because of this challenge, parameter estimations and their 

interpretations were avoided. Functional interpretations and comparisons of results were 

achieved by using graphs and tabulations. This is the best practice recommended for 

reporting results when applying these methods (Royston and Altman, 1994, Royston et 

al., 1999). 
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In spline regression modelling, the procedures for deciding the number of knots 

and their placement in exposure-outcome studies are unclear (Smith, 1979, Durrleman 

and Simon, 1989). This PhD applied a reasonable approach recommended by Harrell 

(2001) for knots placement over the quantiles distribution of the exposure. Harrell’s 

method of knots selection is useful when a prior knowledge about the exposure-

outcome relationships is unknown. The procedure for knots placements in this method 

is less subjective and allows reproducibility and comparison of results between studies 

(Heinzl and Kaider, 1997). Other strategies include adaptive procedures based on 

standard algorithms for “optimal” knots selection (Morton, 1988, Friedman and 

Silverman, 1989, Luo and Wahba, 1997, Zhou and Shen, 2001). The disadvantage with 

adaptive procedures is that they are subjective - there exists no standard algorithm 

which produces the best possible number and position of knots from the data alone 

(Morton, 1988, Zhou and Shen, 2001). Additionally, these methods exhibit 

computational burden in large samples because sets of candidate knots have to be 

examined to establish the ‘optimal’ number of knots and their positions  (Zhou and 

Shen, 2001). 

7.4.3 Data 

The simulations in ‎Chapter 4 & ‎Chapter 5 were setup assuming uniformly 

distributed predictors. This is another limitation of these simulation studies - uniformly 

distributed predictors may not be too realistic. In epidemiology, skewed or ‘spike’ at 

zero (SAZ) situations such as those under the lognormal, normal distributions (or 

mixture with uniform) are common. Thus, the simulation results would likely be 

different under the skewed or SAZ situations. For example, if the ‘true’ predictor-

outcome function was steeper at the tails because the predictor effects are concentrated 

in one end of the distribution, defining the end categories too broadly would obscure the 

direction and the ‘true’ predictor-outcome functions in that region. In that situation, the 
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end categories assume the event outcomes are homogeneous (Greenland, 1995a, 

Bennette and Vickers, 2012) which is not correct. The alternative methods of FPs would 

produce fits with some spike behaviour at the zero values of the predictor. However, 

this behaviour will be more striking due to larger proportions of zeros in skewed 

distributions. FPs cannot deal with zero predictor values because they based on natural 

logarithms thus, the spike behaviour around the zero region. In contrast, the RCS 

models would produce linear fits at the extreme tails of the predictor variables. 

 

The issues of measurement or misclassification errors were not dealt with in this 

PhD thesis. This means the alcohol-hypertension relationships reported in ‎Chapter 6 

(application study) could be exposed to some form of measurement or misclassification 

bias due to the error-prone alcohol intake measures (exposure). In epidemiological 

studies, measurement bias is known to occur in models that analyse error-prone 

continuous exposures without categorising them. In contrast, categorising error-prone 

continuous exposures is known to induce misclassification bias (Brenner and Loomis, 

1994, Dalen et al., 2009). This suggests the linear, FP and RCS models would likely 

suffer from the measurement bias whist the method of categorisation would be 

susceptible to the misclassification bias. Taking note of this problem, the issues of 

measurement or misclassification errors need to be addressed separately by (1) 

assessing the direction and magnitude of the potential bias in exposure-outcome 

relationships and (2) offering corrective measures for the potential bias in the exposure-

outcome data. To achieve the latter, a simulation study needs to be performed by 

exemplifying the alcohol-hypertension relationships in patients with type 2 diabetes as 

reported in the UK Biobank (see ‎Chapter 6). 
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In the application study, the exposure-outcome relationships were reported 

based on complete case analysis – omitting a third of incomplete data in the predictors. 

This could affect the predicted exposure-outcome functions making them less precise 

due to reduced sample size and potential loss of power on the data. Also, the confidence 

intervals of the predicted functions could be incorrect due to the potential bias in 

standard errors (White, 2015). An attractive approach for handling missing values of 

predictors in epidemiological studies is the multiple imputation (MI) method (Rubin, 

2004). However, the MI procedure was not performed in  Chapter 7 of this thesis. The 

two recent studies recommend not to choose the MI method when investigating 

nonlinear associations and interaction terms (Bartlett et al., 2015, White, 2015). 

7.5 Strengths and opportunities 

The strengths and opportunities of this PhD are as follows: 

i. Provide an update on the current practices of categorisation in leading 

medical publications - raising concerns about the adequacies of analysis and 

quality of reporting continuous exposure or risk factors in epidemiology. 

ii. Demonstrate and compare the performances and properties of categorical, 

linear FP and RCS methods based on rational and plausible simulation 

scenarios in epidemiological studies. The simulations cover the continuous 

and binary outcome models – focusing on the ability of these methods to 

characterise the ‘true’ relationships assumed in the data. The assessment and 

evaluation of model performances were carried out using measures suitable 

for the simulated datasets. 

iii. Demonstrate and compare the application of categorical, linear FP and RCS 

methods in real application data - dealing with perceived challenges of 

confounding, interactions and interpretations of the results.  
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7.6 Recommendations for future research 

Evidence from this PhD thesis suggests the categorical, linear, FP and RCS 

regression models cannot accurately characterise the threshold association datasets. This 

calls for further research exploring suitable methods for estimating the ‘actual’ 

threshold points and their functional parameters. 

It would also be interesting to evaluate how the distribution of the exposure 

affects the performance of categorical, linear, FP and RCS models in more explicit 

‘spike’ at zero distributions or under lognormal, normal distributions. To my 

knowledge, there exists no simulation study comparing the performance of these 

methods and considering the ‘spike’ at zero situations in different exposure-outcome 

relationships. In a recent study, the methods of categorisation, linearisation, and 

fractional polynomials were compared using three case-control datasets with ‘spike’ at 

zero situation (Lorenz et al., 2017). 

Further research is also proposed in the UK Biobank to develop a multiple 

imputation model for missing alcohol-hypertension data - providing guidelines for its 

implementation.  

Since the exposure-outcome relationships are prone to measurement and 

misclassification errors, further research is required to (1) assess the direction and 

magnitude of these potential biases in exposure-outcome relationships and (2) offer 

their corrective measure in the data. To achieve this, a simulation study may be 

performed - exemplifying it with the alcohol-hypertension relationships amongst 

patients with type 2 diabetes as reported in the UK Biobank.  

Finally, an application study is proposed using a two-part regression model by 

Duan et al (1987) or the compound Poisson exponential model by Jørgensen (1987, 
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1997). Certain features of the curve may not be adequately interpreted when fitting FPs 

and RCS models in skewed datasets (especially at the tails). 

7.7 Publications arising from this PhD thesis  

The publications associated with this thesis are given below. 

Conference presentations 

1. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. A simulation 

study investigating the performance of traditional and alternative approaches 

for fitting nonlinear exposure-outcome relationships in epidemiology. Oral 

Presentation at the LICAMM Early Career Group Science Day. 27
th

 May 2017, 

University of Leeds, United Kingdom. 

 

2. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. A survey 

based study evaluating the incidence and categorisation of quantitative 

variables in medical research. Oral Presentation at 39
th

 Research Students’ 

Conference in Probability and Statistics. 14
th

 – 17
th

 June 2016, Dublin, Ireland. 

 

3. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. Fractional 

polynomial and restricted cubic spline models as alternatives to categorising 

continuous data: applications in medicine. Poster Presentation at Faculty of 

Medicine and Health Postgraduate Symposium. 29
th

 June 2015, University of 

Leeds, United Kingdom.  
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Published Protocol 

4. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. (2017). 

Modelling the alcohol-blood pressure associations in type 2 diabetes patients: 

UK Biobank. UK Biobank, United Kingdom. 

(http://www.ukbiobank.ac.uk/2017/07/mr-onkabetse-mabikwa-modelling-the-

alcohol-blood-pressure-associations-in-type-2-diabetes-patients-uk-biobank/). 

 

Published Research 

5. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. (2017). 

Assessing the reporting of categorised quantitative variables in observational 

epidemiological studies. BMC Health Services Research, 17, 201. 

(http://doi.org/10.1186/s12913-017-2137-z). 

 

In preparations 

6. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. Comparison 

of different approaches for modelling associations between an exposure and a 

continuous outcome – a simulation study. International Journal of Statistics and 

Probability. In preparation 

 

7. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. Comparison 

of different approaches for developing prognostic models with binary outcomes 

– a simulation study. Statistics in Medicine. In preparation 

 

8. Mabikwa, O. V., Greenwood, D. C., Baxter, P. D. & Fleming, S. J. Examining 

the alcohol-hypertension association in type 2 diabetes patients using the UK 

Biobank. Diabetes care. In preparation 

http://www.ukbiobank.ac.uk/2017/07/mr-onkabetse-mabikwa-modelling-the-alcohol-blood-pressure-associations-in-type-2-diabetes-patients-uk-biobank/
http://www.ukbiobank.ac.uk/2017/07/mr-onkabetse-mabikwa-modelling-the-alcohol-blood-pressure-associations-in-type-2-diabetes-patients-uk-biobank/
http://doi.org/10.1186/s12913-017-2137-z
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7.8 Conclusions 

As argued in ‎Chapter 1, this PhD thesis was motivated by the common practice 

of categorisation and the limited application of alternative methods for analysing 

unknown predictor-outcome relationships in medicine. The performances and properties 

of the alternative approaches of fractional polynomials and restricted cubic splines were 

shown and compared against the popular method of categorisation and the linear 

approach using different exposure-outcome relationships in simulation studies 

(assuming continuous & binary outcome models). In addition, the applications of these 

methods were exemplified using real-dataset from the UK Biobank to encourage their 

use - demonstrating communication or interpretation of the results from these 

approaches. Therefore, it is my hope that this PhD will go some way to highlight to 

practitioners the application of these alternative methods when reporting continuous 

predictor-outcome relationships in their studies. 
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Appendix A  

A.1 Data collection form  

 

Section 1: General information 

D.O.I (Digital Object Identifier)         Reviewers   

             1: O.V.M  

             2: S.L.F  

             3: P.D.B  

             4: D.C.G 

(4) Does this article satisfy the eligibility criterion? 

 1: Yes  

 2: No 

(If Yes, skip to Q6 otherwise stop entry at Q5) 

(5) If No, which eligibility criterion is not satisfied?      (5a) If other, specify  

 1: Sample size too small 

 2: Analysis based on pooled data/estimates (e.g. systematic reviews & meta-analysis) 

 3: Main investigation based on effect modification or interaction effects 

 4: Based on experimental or randomised control trial designs 

 5: Non-relevant article (e.g. comments, reviews, correspondences, tutorials, seminars etc.) 
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 6: Non-full text abstract (e.g. poster/conference/meeting abstracts) 

 7: Cohort or profile update studies 

 8: Article not relevant  

 9: Other 

(6) Journal         

 1: International Journal of Epidemiology 

 2: Epidemiology 

 3: Journal of Clinical Epidemiology 

 4: New England Journal of Medicine  

 5: Lancet 

(7) Types of study design       (7a) If other, specify    

 1: Cohort 

 2: Case-control 

 3: Cross-sectional        (8) Sample size (no.of participants)   

 4: Other  

 

Section 2: Outcomes 

(9) The principal disease outcome or condition studied   

(10) Type of outcome        (10a) If other, specify    

 1: Binary: absent/present event (yes/no) 

 2: Time-to-event or events/person-year 
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 3: Ordered categorical 

 4: Unordered categories 

 5: Continuous or quantitative measure 

 6: Other 

(10b) For continuous outcomes, how were they analysed?   

 1: Quantitatively/Continuously 

 2: Qualitatively/Categorical/Grouping 

 3: Both  

 4: N/A 

 

Section 3: Exposures  

(11) Name of the main exposure or risk factor studied  

(12) Nature of the main exposure or risk factor studied     (12a) If other, specify   

 1: Lifestyle 

 2: Environmental 

 3: Pre-existing condition 

 4: Diet 

 5: Biochemical 

 6: Physiological 

 7: Socioeconomic 

 8: Genetic 
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 9: Other 

(13) Type of main exposure or risk factor studied      (13a) If other, specify   

 1: Ordered categorical  

 2: Unordered categories 

 3: Continuous or quantitative 

 4: Other 

(14) If the main exposure or risk factor is continuous and was categorised, how many groups were used?   

Skip to Q22, if exposures are categorical - (for both unordered & ordered categories) 

Details of continuous or quantitative exposure/risk factors 

(15) Is the main exposure/risk factor truly quantitative?  

 1: Yes 

 2: No 

(16) Was it measured or collected quantitatively?   

 1: Yes 

 2: No 

 9: Not specified/Unknown 

(17) How was the main exposure/risk factor analysed?     (17a) If other, specify   

 1: Quantitatively or Continuously 

 2: Categorically or Ordered categories 

 3: Both 

 4: Other 
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If analysed categorically; 

(18) What informed this approach or decision?      (18a) If other, specify    

 1: Data driven or evidence based categories 

 2: Hypothesis driven categories 

 3: N/A 

 4: Other 

 9: Not specified 

(19) How are the categories analysed, are they ordered categories?    (19a) If No, specify   

 1: Yes 

 2: No 

 3: N/A 

(19b) Have they looked at the trend? 

 1: Yes 

 2: No 

 3: N/A 

 9: Not specified/Unknown 

(20) Specify the types of grouping that were used or assumed?    (20a) If other, specify   

 1: Statistical criteria (e.g. equal sized group) 

 2. External basis (well established e.g. WHO criteria) 

 3. Logical grouping/Equally spaced intervals (e.g. 10 year age groups) 

 4. Random/Arbitrary grouping 
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 5. Quantiles 

 6: Other 

If analysed quantitatively; 

(21) Was linearity or nonlinearity between the continuous exposure and the outcome considered?   

 1: Yes 

 2: No 

 3:N/A 

 9: Not specified 

 

Section 4: Details of the analysis 

(22) Specify if any, the model used for producing the estimates between the exposure and the outcome   

(23) What were the principal types of statistical results used for reporting the main exposure/risk factor?  

 1: OR (binary or per unit change in risk factor) 

 2: RR 

 3: Difference in % or rates 

 4: Hazard ratios or other time-to-event measures or rate ratios (e.g. from Poison) 

 5. Regression: difference in means or regression coefficients 

 6: Other 

(23a) If Other, specify   

Adjustment for other variables/confounders 

(24) Are there any other variables considered in the study?  
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 1. Yes 

 2. No 

(25) If Yes, how many are they?  

(26) Are there any continuous risk factors analysed as categorical variables?  

 1. Yes 

 2. No 

(27) If Yes, how many continuous risk factors are analysed as categorical variables?  

Presentation of results 

(28) How are the results using the categorised principal risk factor or exposure presented?   

 1: Tables 

 2: Figures 

 3: Both  

 4: Other 

(28a) If other, specify  

 

Types of estimates 

(a)   (b).  (c).Reference group 

       1: Yes  1: Yes  1: Lowest 

       2: No  2: No  2: Middle 

         3: SE's  3: Highest 

4: Other 
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9: N/A  

 (29) Continuous e.g. regression coefficients     

 (30) By group for all groups      

 (31) By group relative to reference group      

 (32) Other, specify  

 

P-values and other statistical significance tests 

Types of tests  

            1: Yes 

            2: No 

            3: With CI 

 (33a) None           

 (33b) Continuous analysis p-value        

 (33c) Trend test (i.e. scores for groups)       

 (33d) Pairwise p-values (i.e. every group relative to reference group)   

 (33e) Global p-values (e.g. LRT model with all dummy vs w/t all dummy)   

 (33f) Other, specify  

 

(34) Any other comments?    
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Appendix B  

B.1 Example of the simulation codes used to generate data in 

chapter 4 

clear all 
capture log close 
global nmc = 1000 
set seed 231014 
set more off 
scalar constant = 120 
scalar slope = .38 
scalar a = 0 
scalar b = 60 
gen x =. 
gen Ey =. 
gen y =. 
gen u =. 
 
tempname sim 
local iter = 1  
quietly { 
postfile `sim' nobs sigma check using check1, replace 
foreach j of numlist 0 300 800 4800 9800 {   
 local nobs = 200 + `j' 
 set obs `nobs' 
 replace x = a+(b-a)*runiform() 
 replace x = round(x) 
 replace Ey = constant + slope*x 
 foreach sigma of numlist 2.5 5.0 7.5 { 
 local i = 1 
 while `i' <= $nmc { 
 local k = `i'+1 
 replace u = rnormal(0,`sigma') 
 replace y = Ey + u 
 fp<x>, scale replace: reg y <x> 
 preserve 
 levelsof x, local(levels) 
 xblc x_1 x_2, covname(x) at (`r(levels)') gen (xlabfp`k' predfp`k' 
lbfp`k' ubfp`k') 
 keep xlabfp`k' predfp`k' lbfp`k' ubfp`k' 
 rename xlabfp`k' xlabfp 
 rename predfp`k' predfp 
 rename lbfp`k' lbfp 
 rename ubfp`k' ubfp 
 save FPdta`iter++' 
 restore 
 post `sim' (`nobs') (`i') (`sigma')  
 local i = `i' + 1 
   } 
  } 
 } 
} 
 
postclose `sim' 
use "check1.dta", clear 
quietly list ,clean 
quietly dir *.dta 
quietly { 
  
use FPdta1, clear 
 forvalues i = 2/15000 { 
  append using FPdta`i' 
foreach var of varlist xlabfp predfp lbfp ubfp { 
  drop if `var'==. 
  }  
 } 
} 
save FPxblc 
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B.2 Example of the simulation codes used to generate data in 

chapter 5 
clear all 
capture log close 
global nmc = 1000 
set seed 231014 
scalar a = 0 
scalar b = 60 
gen x =. 
gen y =. 
gen w =. 
gen p =. 
gen s1 =. 
gen s2 =. 
 
tempname sim 
local iter = 1  
quietly { 
postfile `sim' nobs sigma check using check1, replace 
foreach j of numlist 800 {   
 
 local nobs = 200 + `j' 
 set obs `nobs' 
 replace x = a+(b-a)*runiform() 
 replace x = round(x) 
 replace w = -2.2-0.0128*x+0.00032*x^2 
 replace p = exp(w)/(1+exp(w)) 
 mkspline xs = x, nknots(3) cubic 
 replace s1 = xs1 
 replace s2 = xs2 
 drop xs* 
  
 foreach sigma of numlist 7.5 { 
 local i = 1 
 while `i' <= $nmc { 
 local k = `i'+1 
 replace y = rbinomial(1, p) 
   
 logit y s*, iter(5) 
 preserve 
 levelsof x, local(levels) 
 xblc s*, covname(x) at (`r(levels)') gen (xlabrcs`k' predrcs`k' 
lbrcs`k' ubrcs`k') 
 keep xlabrcs`k' predrcs`k' lbrcs`k' ubrcs`k' 
 rename xlabrcs`k' xlabrcs 
 rename predrcs`k' predrcs 
 rename lbrcs`k' lbrcs 
 rename ubrcs`k' ubrcs 
 save RCdta`iter++' 
 restore 
 
 post `sim' (`nobs') (`i') (`sigma') 
 local i = `i' + 1 
   } 
  } 
 } 
} 
 
postclose `sim' 
use "check1.dta", clear 
list ,clean 
quietly dir *.dta 
quietly { 
 use RCdta1, clear 
 forvalues i = 2/1000 { 
  append using RCdta`i' 
   
foreach var of varlist xlabrcs predrcs lbrcs ubrcs { 
  drop if `var'==. 
  }  
 } 
} 
save RCSxblc 
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Appendix C  

C.1 Additional tables in Chapter 4 

Table 4.3: Estimated median Root Mean Square Errors (RMSE) and their 95% CI regions obtained when fitting different nonlinear 

exposure-outcome associations using different regression models 

 Shapes of the exposure-outcome relationships 

Linear association 

curve 

Linear piecewise 

threshold association 

curve 

Nonlinear piecewise 

threshold association 

curve 

Quadratic  or U- shaped 

association curve 

 

n 

 

σ 

 

Method 

200 2.5 LIN 0.21 (0.20, 0.22) 2.53 (2.53, 2.53) 7.45 (7.45, 7.45) 8.60 (8.60, 8.60) 

CAT3 2.03 (2.03, 2.03) 3.19 (3.19, 3.19) 6.60 (6.60, 6.60) 6.60 (6.60, 6.60) 

CAT5 1.36 (1.36, 1.36) 2.12 (2.12, 2.12) 4.34 (4.34, 4.34) 4.37 (4.37, 4.37) 

RCS 0.27 (0.26, 0.28) 1.16 (1.15, 1.16) 1.00 (1.00, 1.00) 1.03 (1.03, 1.03) 
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FP 0.36 (0.35, 0.36) 0.79 (0.79, 0.79) 0.54 (0.54, 0.55) 0.28 (0.26, 0.28) 

5.0 LIN 0.42 (0.41, 0.44) 2.56 (2.55, 2.56) 7.46 (7.45, 7.46) 8.61 (8.61, 8.61) 

CAT3 2.09 (2.08, 2.09) 3.22 (3.22, 3.22) 6.61 (6.61, 6.61) 6.61 (6.61, 6.61) 

CAT5 1.50 (1.49, 1.51) 2.21 (2.21, 2.22) 4.38 (4.38, 4.39) 4.42 (4.42, 4.42) 

RCS 0.54 (0.52, 0.56) 1.25 (1.24, 1.26) 1.11 (1.10, 1.11) 1.13 (1.12, 1.14) 

FP 0.70 (0.68, 0.71) 0.97 (0.96, 0.99) 0.76 (0.74, 0.77) 0.63 (0.60, 0.65) 

7.5 LIN 0.64 (0.61, 0.68) 2.60 (2.59, 2.61) 7.47 (7.47, 7.47) 8.62 (8.62, 8.62) 

CAT3 2.19 (2.18, 2.20) 3.29 (3.28, 3.29) 6.64 (6.64, 6.65) 6.65 (6.64, 6.65) 

CAT5 1.73 (1.71, 1.75) 2.38 (2.36, 2.39) 4.47 (4.46, 4.47) 4.50 (4.50, 4.51) 

RCS 0.84 (0.81, 0.87) 1.40 (1.38, 1.42) 1.28 (1.26, 1.30) 1.30 (1.28, 1.32) 

FP 1.09 (1.06, 1.12) 1.25 (1.23, 1.28) 1.07 (1.04, 1.11) 1.11 (1.08, 1.14) 

 

500 2.5 LIN 0.13 (0.13, 0.14) 2.81 (2.81, 2.81) 8.32 (8.32, 8.32) 9.73 (9.73, 9.73) 
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CAT3 2.18 (2.18, 2.18) 3.67 (3.67, 3.67) 8.16 (8.16, 8.16) 8.07 (8.07, 8.07) 

CAT5 1.37 (1.36, 1.37) 2.20 (2.20, 2.20) 5.04 (5.04, 5.04) 4.98 (4.98, 4.98) 

RCS 0.17 (0.16, 0.17) 1.16 (1.16, 1.16) 1.34 (1.34, 1.34) 1.01 (1.01, 1.01) 

FP 0.21 (0.21, 0.22) 0.81 (0.81, 0.81) 0.51 (0.51, 0.52) 1.17 (1.16, 1.18) 

5.0 LIN 0.26 (0.25, 0.27) 2.82 (2.82, 2.82) 8.33 (8.33, 8.33) 9.73 (9.73, 9.73) 

CAT3 2.20 (2.20, 2.20) 3.68 (3.68, 3.68) 8.16 (8.16, 8.16) 8.08 (8.08, 8.08) 

CAT5 1.43 (1.42, 1.43) 2.23 (2.23, 2.24) 5.06 (5.06, 5.06) 5.00 (5.00, 5.00) 

RCS 0.34 (0.33, 0.35) 1.20 (1.19, 1.20) 1.37 (1.37, 1.38) 1.05 (1.05, 1.05) 

FP 0.44 (0.43, 0.46) 0.87 (0.87, 0.88) 0.61 (0.61, 0.62) 0.34 (0.33, 0.35) 

7.5 LIN 0.41 (0.39, 0.42) 2.83 (2.83, 2.84) 8.33 (8.33, 8.33) 9.73 (9.73, 9.73) 

CAT3 2.24 (2.23, 2.24) 3.70 (3.70, 3.70) 8.17 (8.17, 8.17) 8.09 (8.09, 8.09) 

CAT5 1.53 (1.52, 1.53) 2.30 (2.30, 2.30) 5.09 (5.09, 5.09) 5.03 (5.02, 5.03) 

RCS 0.52 (0.51, 0.54) 1.26 (1.26, 1.27) 1.43 (1.43, 1.44) 1.12 (1.12, 1.13) 
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FP 0.69 (0.67, 0.71) 1.00 (0.99, 1.01) 0.76 (0.74, 0.77) 0.59 (0.56, 0.61) 

 

1000 2.5 LIN 0.09 (0.09, 0.10) 2.72 (2.72, 2.72) 8.13 (8.13, 8.13) 9.46 (9.46, 9.46) 

CAT3 2.16 (2.16, 2.16) 3.58 (3.58, 3.58) 7.87 (7.87, 7.87) 7.81 (7.81, 7.81) 

CAT5 1.33 (1.33, 1.33) 2.09 (2.09, 2.09) 4.83 (4.83, 4.83) 4.85 (4.85, 4.85) 

RCS 0.12 (0.12, 0.12) 1.21 (1.21, 1.21) 1.18 (1.18, 1.18) 1.03 (1.03, 1.03) 

FP 0.15 (0.14, 0.15) 0.78 (0.77, 0.78) 0.51 (0.50, 0.51) 0.12 (0.12, 0.12) 

5.0 LIN 0.19 (0.18, 0.19) 2.72 (2.72, 2.72) 8.14 (8.14, 8.14) 9.46 (9.46, 9.46) 

CAT3 2.17 (2.16, 2.17) 3.59 (3.58, 3.59) 7.87 (7.87, 7.87) 7.82 (7.81, 7.82) 

CAT5 1.36 (1.36, 1.36) 2.11 (2.11, 2.11) 4.84 (4.84, 4.84) 4.86 (4.86, 4.86) 

RCS 0.25 (0.24, 0.26) 1.23 (1.23, 1.23) 1.20 (1.19, 1.20) 1.06 (1.05, 1.06) 

FP 0.32 (0.32, 0.33) 0.82 (0.82, 0.82) 0.57 (0.56, 0.57) 0.25 (0.24, 0.26) 

7.5 LIN 0.28 (0.27, 0.29) 2.73 (2.73, 2.73) 8.14 (8.14, 8.14) 9.47 (9.47, 9.47) 
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CAT3 2.18 (2.18, 2.18) 3.60 (3.59, 3.60) 7.87 (7.87, 7.87) 7.82 (7.82, 7.82) 

CAT5 1.41 (1.40, 1.41) 2.15 (2.14, 2.15) 4.86 (4.86, 4.86) 4.87 (4.87, 4.87) 

RCS 0.36 (0.35, 0.37) 1.26 (1.25, 1.26) 1.22 (1.22, 1.23) 1.09 (1.08, 1.09) 

FP 0.48 (0.47, 0.49) 0.87 (0.86, 0.88) 0.65 (0.65, 0.66) 0.37 (0.36, 0.39) 

 

5000 2.5 LIN 0.04 (0.04, 0.04) 2.86 (2.86, 2.86) 8.26 (8.26, 8.26) 9.78 (9.78, 9.78) 

CAT3 2.21 (2.21, 2.21) 3.73 (3.73, 3.73) 8.03 (8.03, 8.03) 8.01 (8.01, 8.01) 

CAT5 1.34 (1.34, 1.35) 2.20 (2.20, 2.20) 4.97 (4.97, 4.97) 4.98 (4.98, 4.98) 

RCS 0.06 (0.05, 0.06) 1.18 (1.18, 1.18) 1.39 (1.39, 1.39) 1.02 (1.02, 1.02) 

FP 0.07 (0.07, 0.07) 0.79 (0.79, 0.79) 0.51 (0.51, 0.51) 0.06 (0.05, 0.06) 

5.0 LIN 0.08 (0.08, 0.09) 2.86 (2.86, 2.86) 8.26 (8.26, 8.26) 9.78 (9.78, 9.78) 

CAT3 2.21 (2.21, 2.21) 3.73 (3.73, 3.73) 8.03 (8.03, 8.03) 8.01 (8.01, 8.01) 

CAT5 1.35 (1.35, 1.35) 2.20 (2.20, 2.20) 4.97 (4.97, 4.97) 4.98 (4.98, 4.98) 
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RCS 0.11 (0.10, 0.11) 1.18 (1.18, 1.18) 1.39 (1.39, 1.39) 1.03 (1.03, 1.03) 

FP 0.13 (0.13, 0.13) 0.80 (0.80, 0.80) 0.52 (0.52, 0.53) 0.11 (0.10, 0.11) 

7.5 LIN 0.13 (0.12, 0.13) 2.86 (2.86, 2.86) 8.26 (8.26, 8.26) 9.78 (9.78, 9.78) 

CAT3 2.22 (2.22, 2.22) 3.73 (3.73, 3.73) 8.03 (8.03, 8.03) 8.01 (8.01, 8.01) 

CAT5 1.36 (1.36, 1.36) 2.21 (2.21, 2.21) 4.98 (4.98, 4.98) 4.99 (4.99, 4.99) 

RCS 0.16 (0.16, 0.17) 1.19 (1.18, 1.19) 1.39 (1.39, 1.39) 1.04 (1.03, 1.04) 

FP 0.21 (0.20, 0.21) 0.81 (0.81, 0.82) 0.54 (0.54, 0.54) 0.16 (0.16, 0.17) 

 

10000 2.5 LIN 0.03 (0.03, 0.03) 2.84 (2.84, 2.84) 8.23 (8.23, 8.23) 9.72 (9.72, 9.72) 

CAT3 2.20 (2.20, 2.20) 3.71 (3.71, 3.71) 8.22 (8.22, 8.22) 8.17 (8.17, 8.17) 

CAT5 1.32 (1.32, 1.32) 2.13 (2.13, 2.13) 4.96 (4.96, 4.96) 4.96 (4.96, 4.96) 

RCS 0.04 (0.04, 0.04) 1.15 (1.15, 1.15) 1.41 (1.41, 1.41) 1.02 (1.02, 1.02) 

FP 0.05 (0.04, 0.05) 0.79 (0.79, 0.79) 0.50 (0.50, 0.50) 0.04 (0.04, 0.04) 
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5.0 LIN 0.06 (0.06, 0.06) 2.84 (2.84, 2.84) 8.23 (8.23, 8.24) 9.72 (9.72, 9.72) 

CAT3 2.20 (2.20, 2.20) 3.71 (3.71, 3.71) 8.22 (8.22, 8.22) 8.17 (8.17, 8.17) 

CAT5 1.32 (1.32, 1.32) 2.14 (2.14, 2.14) 4.96 (4.96, 4.96) 4.96 (4.96, 4.96) 

RCS 0.08 (0.07, 0.08) 1.16 (1.16, 1.16) 1.41 (1.41, 1.41) 1.03 (1.03, 1.03) 

FP 0.09 (0.09, 0.10) 0.79 (0.79, 0.79) 0.51 (0.51, 0.51) 0.08 (0.07, 0.08) 

7.5 LIN 0.09 (0.08, 0.09) 2.84 (2.84, 2.84) 8.24 (8.24, 8.24) 9.72 (9.72, 9.72) 

CAT3 2.20 (2.20, 2.20) 3.71 (3.71, 3.71) 8.22 (8.22, 8.22) 8.17 (8.17, 8.17) 

CAT5 1.32 (1.32, 1.32) 2.14 (2.14, 2.14) 4.96 (4.96, 4.96) 4.96 (4.96, 4.96) 

RCS 0.11 (0.11, 0.12) 1.16 (1.16, 1.16) 1.41 (1.41, 1.41) 1.03 (1.03, 1.03) 

FP 0.14 (0.14, 0.14) 0.80 (0.80, 0.80) 0.52 (0.52, 0.52) 0.11 (0.11, 0.12) 
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Table 4.4: The proportion of times the test of linearity was rejected in 1000 simulations under nonlinear association datasets fitted using 

FPs and RCS models (assuming different numbers of observations and noise’s (𝜎)). 

True association functions Methods of Analysis Sigma )(  Number of observations 

200 500 1000 5 000 10 000 

Linear piecewise threshold 

FP 2.5 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

FP 5.0 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

FP 7.5 0.997 1.000 1.000 1.000 1.000 

RCS 0.986 1.000 1.000 1.000 1.000 

 

Nonlinear piecewise  FP 2.5 1.000 1.000 1.000 1.000 1.000 
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threshold 
RCS 1.000 1.000 1.000 1.000 1.000 

FP 5.0 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

FP 7.5 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

 

Quadratic 

FP 2.5 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

FP 5.0 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 

FP 7.5 1.000 1.000 1.000 1.000 1.000 

RCS 1.000 1.000 1.000 1.000 1.000 
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Table 4.5: Comparison of the average optimal alcohol intake and BP estimates obtained across 1000 simulations (replications) after fitting 

linear threshold association datasets using different regression models. The 95% CI regions for the estimates are given in brackets. Datasets 

of various sample sizes (n=200, 500, 1000, 5000, 10 000) and standard deviations (σ =2.5, 5.0, 7.5) are considered. 

 

Linear threshold association datasets 

Estimates 

Optimal alcohol intake BP at optimum alcohol intake BP at intake = 20 grams 

Sample sizes   Std. dev Methods 

200 2.5 CAT3 0-23 121.13 (120.52, 121.67) 121.13 (120.52, 121.67) 

CAT5 0-13 121.02 (120.24, 121.73) 122.73 (121.98, 123.46) 

RCS 0 (0, 0) 118.38 (117.26, 119.35) 123.82 (123.38, 124.27) 

FP 8 (0, 9) 119.82 (118.94, 120.66) 123.15 (122.61, 123.68) 

5.0 CAT3 0-23 121.13 (120.01, 122.26) 121.13 (120.01, 122.26) 

CAT5 0-23 121.00 (119.52, 122.39) 122.73 (121.14, 124.11) 

RCS 0 (0, 0) 118.36 (116.27, 120.39) 123.81 (122.88, 124.80) 
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FP 6 (0, 11) 119.73 (117.95, 121.28) 123.16 (122.09, 124.11) 

7.5 CAT3 0-23 121.18 (119.36, 122.98) 121.18 (119.36, 122.98) 

CAT5 0-25 120.91 (118.62, 123.04) 122.83 (120.32, 125.07) 

RCS 0 (0, 0) 118.43 (115.11, 121.81) 123.87 (122.43, 125.27) 

FP 0 (6, 12) 119.65 (108.80, 121.77) 123.21 (121.46, 124.69) 

 

500 2.5 CAT3 1-20 120.99 (120.63, 121.37) 120.99 (120.63, 121.37) 

CAT5 1-11 120.98 (120.54, 121.49) 121.98 (121.53, 122.47) 

RCS 1 (1, 1) 119.28 (118.77, 119.86) 123.87 (123.55, 124.16) 

FP 1 (1, 9) 119.94 (119.55, 120.37) 123.30 (122.90, 123.61) 

5.0 CAT3 1-20  121.05 (120.21, 121.77) 121.05 (120.21, 121.77) 

CAT5 1-22 121.03 (120.01, 121.93) 122.02 (121.08, 122.92) 

RCS 1 (1, 1) 119.34 (118.07, 120.53) 123.88 (123.28, 124.45) 
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FP 1 (1, 9) 119.97 (119.06, 120.75) 123.25 (122.51, 123.83) 

7.5 CAT3 1-20 120.99 (119.89, 122.18) 120.99 (119.89, 122.18) 

CAT5 1-24 120.92 (119.60, 122.24) 121.99 (120.57, 123.49) 

RCS 1 (1, 1) 119.33 (117.68, 121.16) 123.82 (122.98, 124.76) 

FP 1 (1, 10) 119.86 (118.58, 121.05) 123.18 (122.17, 124.11) 

 

1000 2.5 CAT3 0-21 121.03 (120.79, 121.31) 121.03 (120.79, 121.31) 

CAT5 0-13 121.00 (120.71, 121.33) 121.90 (121.57, 125.26) 

RCS 0 (0, 0) 118.68 (118.30, 119.17) 123.85 (123.66, 124.05) 

FP 8 (0, 9) 119.76 (119.41, 120.32) 123.21 (122.91, 123.49) 

5.0 CAT3 0-21 121.01 (120.49, 121.53) 121.01 (120.49, 121.53) 

CAT5 0-16 120.98 (120.29, 121.60) 121.90 (121.20, 122.58) 

RCS 0 (0, 0) 118.70 (117.69, 119.62) 123.84 (123.40, 124.24) 
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FP 8 (0, 9) 119.71 (119.11, 120.50) 123.15 (122.63, 123.63) 

7.5 CAT3 0-21 121.05 (120.25, 121.87) 121.05 (120.25, 121.87) 

CAT5 0-23 120.99 (120.00, 121.89) 121.92 (120.85, 123.03) 

RCS 0 (0, 0) 118.76 (117.39, 120.11) 123.84 (123.23, 124.51) 

FP 8 (0, 10) 119.79 (118.84, 120.77) 123.17 (122.43, 123.83) 

 

5000 2.5 CAT3 0-20 121.00 (120.87, 121.12) 121.00 (120.87, 121.12) 

CAT5 0-12 121.00 (120.84, 121.14) 121.68 (121.52, 121.84) 

RCS 0 (0, 0) 119.14 (118.94, 119.34) 123.72 (123.62, 123.82) 

FP 8 (0, 8) 119.91 (119.59, 120.06) 123.17 (123.04, 123.43) 

5.0 CAT3 0-20 121.00 (120.77, 121.23) 121.00 (120.77, 121.23) 

CAT5 0-12 121.00 (120.70, 121.24) 121.68 (121.37, 121.99) 

RCS 0 (0, 0) 119.15 (118.79, 119.50) 123.73 (123.52, 123.92) 
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FP 7 (0, 8) 119.88 (119.50, 120.17) 123.20 (122.94, 123.51) 

7.5 CAT3 0-20 121.01 (120.67, 121.34) 121.01 (120.67, 121.34) 

CAT5 0-12 121.01 (120.56, 121.42) 121.67 (121.20, 122.17) 

RCS 0 (0, 0) 119.16 (118.61, 119.70) 123.72 (123.44, 123.99) 

FP 7 (0, 8) 119.84 (119.37, 120.28) 123.22 (122.85, 123.58) 

 

10000 2.5 CAT3 0-20 121.00 (120.92, 121.09) 121.00 (120.92, 121.09) 

CAT5 0-12 121.00 (120.90, 121.12) 121.66 (121.55, 121.76) 

RCS 0 (0, 0) 119.12 (118.98, 119.27) 123.75 (123.68, 123.82) 

FP 8 (0, 8) 119.97 (119.64, 120.06) 123.16 (123.08, 123.40) 

5.0 CAT3 0-20 121.00 (120.82, 121.17) 121.00 (120.82, 121.17) 

CAT5 0-12 120.99 (120.79, 121.22) 121.65 (121.44, 121.87) 

RCS 0 (0, 0) 119.11 (118.83, 119.40) 123.75 (123.62, 123.89) 
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FP 8 (0, 8) 119.92 (119.55, 120.13) 123.19 (123.01, 123.47) 

7.5 CAT3 0-20 121.01 (120.75, 121.24) 121.01 (120.75, 121.24) 

CAT5 0-12 121.01 (120.69, 121.33) 121.65 (121.31, 121.97) 

RCS 0 (0, 0) 119.13 (118.71, 119.53) 123.75 (123.55, 123.95) 

FP 8 (0, 8) 119.90 (119.46, 120.21) 123.21 (122.93, 123.51) 
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Table 4.6: Comparison of the average optimal alcohol intake and BP estimates obtained across 1000 simulations (replications) after fitting 

nonlinear threshold association datasets using different regression models. The 95% CI regions for the estimates are given in brackets. 

Datasets of various sample sizes (n=200, 500, 1000, 5000, 10 000) and standard deviations (σ =2.5, 5.0, 7.5) are considered. 

 

Nonlinear threshold association datasets 

Estimates 

Optimal alcohol 

intake 

BP at optimum alcohol intake BP at intake = 20 grams 

Sample 

sizes   

Std. 

dev 

Methods 

200 2.5 CAT3 0-23 121.02 (120.41, 121.56) 121.02 (121.41, 121.56) 

CAT5 0-26 120.97 (120.22, 121.58) 121.46 (120.71, 122.19) 

RCS 18 (16, 19) 120.01 (119.58, 120.45) 120.12 (119.68, 120.57) 

FP 15 (11, 17) 120.21 (119.67, 120.87) 120.68 (120.08, 121.51) 

5.0 CAT3 0-23 121.02 (119.90, 122.15) 121.02 (119.90, 122.15) 

CAT5 0-27 120.76 (119.43, 122.01) 121.45 (119.87, 122.83) 
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RCS 18 (15, 20) 119.98 (119.06, 120.88) 120.11 (119.18, 121.10) 

FP 15 (6, 18) 120.20 (119.00, 121.43) 120.74 (119.63, 122.05) 

7.5 CAT3 0-23 121.07 (119.25, 122.87) 121.07 (119.25, 122.87) 

CAT5 0-27 120.62 (118.51, 122.59) 121.55 (119.05, 123.80) 

RCS 18 (12, 21) 120.02 (118.56, 121.34) 120.17 (118.73, 121.57) 

FP 14 (0, 18) 120.20 (117.90, 121.96) 120.83 (118.99, 122.46) 

 

500 2.5 CAT3 1-20 120.99 (120.63, 121.37) 120.99 (120.63, 121.37) 

CAT5 1-24 120.94 (120.53, 121.30) 121.17 (120.73, 121.67) 

RCS 18 (17, 18) 119.46 (119.15, 119.75) 119.60 (119.28, 119.89) 

FP 15 (12, 16) 120.07 (119.74, 120.55) 120.53 (120.20, 121.25) 

5.0 CAT3 1-20 121.05 (120.21, 121.77) 121.05 (120.21, 121.77) 

CAT5 1-25 120.85 (119.98, 121.60) 121.22 (120.27, 122.11) 
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RCS 18 (16, 19) 119.46 (118.88, 119.99) 119.62 (119.01, 120.18) 

FP 15 (10, 17) 120.14 (119.43, 120.87) 120.67 (119.95, 121.62) 

7.5 CAT3 1-20 120.99 (119.89, 122.18) 120.99 (119.89, 122.18) 

CAT5 1-25 120.71 (119.49, 121.77) 121.18 (119.77, 122.68) 

RCS 18 (16, 19) 119.41 (118.59, 120.29) 119.55 (118.71, 120.49) 

FP 15 (7, 17) 120.10 (119.02, 121.22) 120.67 (119.67, 121.93) 

 

1000 2.5 CAT3 0-21 121.00 (120.76, 121.28) 121.00 (120.76, 121.28) 

CAT5 0-24 120.96 (120.69, 121.24) 121.16 (120.82, 121.51) 

RCS 18 (17, 18) 119.72 (119.54, 119.91) 119.84 (119.65, 120.05) 

FP 15 (13, 16) 120.12 (119.86, 120.48) 120.58 (120.32, 121.13) 

5.0 CAT3 0-21 120.98 (120.46, 121.50) 120.98 (120.46, 121.50) 

CAT5 0-25 120.87 (120.23, 121.38) 121.15 (120.45, 121.83) 
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RCS 18 (17, 19) 119.71 (119.28, 120.08) 119.83 (119.39, 120.23) 

FP 15 (11, 16) 120.14 (119.66, 120.75) 120.66 (120.10, 121.71) 

7.5 CAT3 0-21 121.03 (120.22, 121.84) 121.03 (120.22, 121.84) 

CAT5 0-25 120.82 (119.89, 121.65) 121.17 (121.10, 122.28) 

RCS 18 (16, 19) 119.72 (119.08, 120.36) 119.84 (119.22, 120.50) 

FP 15 (10, 17) 120.23 (119.46, 121.07) 120.80 (119.99, 121.71) 

 

5000 2.5 CAT3 0-20 121.00 (120.87, 121.12) 121.00 (120.87, 121.12) 

CAT5 0-23 120.99 (120.84, 121.12) 121.10 (120.94, 121.26) 

RCS 18 (17, 18) 119.45 (119.35, 119.54) 119.59 (119.49, 119.69) 

FP 14 (13, 15) 120.19 (119.90, 120.33) 120.88 (120.38, 121.01) 

5.0 CAT3 0-20 121.00 (120.77, 121.23) 121.00 (120.77, 121.23) 

CAT5 0-24 120.96 (120.68, 121.19) 121.10 (120.79, 121.41) 
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RCS 18 (17, 18) 119.45 (119.25, 119.64) 119.60 (119.39, 119.79) 

FP 14 (13, 16) 120.13 (119.84, 120.42) 120.81 (120.30, 121.11) 

7.5 CAT3 0-20 121.00 (120.67, 121.34) 121.00 (120.67, 121.34) 

CAT5 0-24 120.91 (120.54, 121.26) 121.09 (120.62, 121.59) 

RCS 18 (17, 18) 119.44 (119.18, 119.72) 119.59 (119.31, 119.86) 

FP 14 (11, 16) 120.11 (119.77, 120.61) 120.72 (120.26, 121.39) 

 

10000 2.5 CAT3 0-20 121.00 (120.92, 121.09) 121.00 (120.92, 121.09) 

CAT5 0-22 120.99 (120.90, 121.10) 121.10 (120.99, 121.20) 

RCS 18 (17, 18) 119.46 (119.40, 119.53) 119.60 (119.54, 119.67) 

FP 14 (13, 15) 120.20 (119.92, 120.30) 120.88 (120.39, 120.98) 

5.0 CAT3 0-20 121.00 (120.82, 121.17) 121.00 (120.82, 121.17) 

CAT5 0-23 120.97 (120.78, 121.15) 121.09 (120.88, 121.31) 
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RCS 18 (17, 18) 119.46 (119.33, 119.59) 119.60 (119.47, 119.74) 

FP 14 (13, 16) 120.14 (119.86, 120.36) 120.81 (120.35, 121.02) 

7.5 CAT3 0-20 121.00 (120.75, 121.24) 121.00 (120.75, 121.24) 

CAT5 0-24 120.96 (120.66, 121.20) 121.08 (120.75, 121.41) 

RCS 18 (17, 18) 119.46 (119.26, 119.65) 119.60 (119.40, 119.81) 

FP 14 (13, 16) 120.12 (119.81, 120.44) 120.77 (120.27, 121.12) 
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Table 4.7: Comparison of the average optimal alcohol intake and BP estimates obtained across 1000 simulations (replications) after fitting 

the Quadratic association datasets using different regression models. The 95% CI regions for the estimates are given in brackets. Datasets 

of various sample sizes (n=200, 500, 1000, 5000, 10 000) and standard deviations (σ =2.5, 5.0, 7.5) are considered. 

 

Quadratic association datasets 

Estimates 

Optimal alcohol 

intake 

BP at optimum alcohol intake BP at intake = 20 grams 

Sample 

sizes   

Std. 

dev 

Methods 

200 2.5 CAT3 0-23 123.05 (122.44, 123.59) 123.05 (122.44, 123.59) 

CAT5 14-27 120.24 (119.49, 120.97) 120.24 (119.49, 120.97) 

RCS 23 (22, 23) 119.99 (119.53, 120.46) 120.24 (119.80, 120.70) 

FP 20 (19, 21) 119.61 (119.13, 120.16) 119.61 (119.13, 120.17) 

5.0 CAT3 0-23 123.05 (121.93, 123.59) 123.05 (121.93, 123.59) 

CAT5 14-27 120.23 (118.65, 121.61) 120.23 (118.65, 121.61) 
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RCS 23 (22, 24) 119.97 (118.99, 121.01) 120.23 (119.30, 121.22) 

FP 20 (18, 21) 119.65 (118.46, 121.04) 119.67 (118.53, 121.08) 

7.5 CAT3 0-23 123.10 (121.28, 124.90) 123.10 (121.28, 124.90) 

CAT5 14-27 120.33 (117.81, 122.52) 120.33 (117.83, 122.58) 

RCS 23 (21, 24) 120.00 (118.44, 121.46) 120.29 (118.85, 121.69) 

FP 20 (17, 22) 119.74 (117.86, 121.51) 119.79 (117.91, 121.57) 

 

500 2.5 CAT3 1-33 124.50 (124.14, 124.83) 124.50 (124.14, 124.88) 

CAT5 12-25 120.27 (119.82, 120.77) 120.27 (119.82, 120.77) 

RCS 23 (22, 23) 119.61 (119.29, 119.93) 119.88 (119.56, 120.17) 

FP 20 (20, 20) 119.61 (119.29, 119.91) 119.61 (119.29, 119.91) 

5.0 CAT3 1-39 124.50 (123.73, 125.05) 124.56 (123.73, 125.28) 

CAT5 12-25 120.31 (119.37, 121.21) 120.31 (119.37, 121.21) 
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RCS 23 (22, 23) 119.63 (118.97, 120.24) 119.90 (119.29, 120.46) 

FP 20 (19, 21) 119.64 (118.98, 120.46) 119.64 (118.99, 120.48) 

7.5 CAT3 1-39 124.36 (123.37, 125.29) 124.50 (123.40, 125.69) 

CAT5 12-25 120.28 (118.87, 121.78) 120.28 (118.87, 121.78) 

RCS 23 (22, 23) 119.56 (118.67, 120.55) 119.83 (118.99, 120.77) 

FP 20 (18, 21) 119.61 (118.48, 121.00) 119.62 (118.55, 121.06) 

 

1000 2.5 CAT3 0-21 123.73 (123.49, 124.01) 123.73 (123.49, 124.01) 

CAT5 14-25 120.07 (119.73, 120.42) 120.07 (119.73, 120.42) 

RCS 23 (23, 23) 119.76 (119.54, 119.97) 120.04 (119.85, 120.25) 

FP 20 (20, 20) 119.60 (119.41, 119.81) 119.60 (119.41, 119.81) 

5.0 CAT3 0-21 123.72 (123.19, 124.23) 123.72 (123.19, 124.23) 

CAT5 14-25 120.06 (119.36, 120.74) 120.06 (119.36, 120.74) 
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RCS 23 (22, 23) 119.74 (119.25, 120.19) 120.03 (119.59, 120.43) 

FP 20 (19, 20) 119.59 (119.14, 120.07) 119.59 (119.14, 120.07) 

7.5 CAT3 0-21 123.76 (122.96, 124.57) 123.76 (122.96, 124.57) 

CAT5 14-25 120.08 (119.01, 121.19) 120.08 (119.01, 121.19) 

RCS 23 (22, 23) 119.75 (119.10, 120.45) 120.04 (119.42, 120.71) 

FP 20 (19, 21) 119.63 (118.92, 120.56) 119.64 (118.93, 120.56) 

 

5000 2.5 CAT3 0-20 124.36 (124.23, 124.48) 124.36 (124.23, 124.48) 

CAT5 13-24 120.11 (119.95, 120.27) 120.11 (119.95, 120.27) 

RCS 23 (23, 23) 119.45 (119.35, 119.56) 119.74 (119.65, 119.84) 

FP 20 (20, 20) 119.60 (119.50, 119.70) 119.60 (119.50, 119.70) 

5.0 CAT3 0-22 124.36 (124.13, 124.59) 124.36 (124.13, 124.60) 

CAT5 13-24 120.12 (119.80, 120.42) 120.12 (119.80, 120.42) 
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RCS 23 (23, 23) 119.46 (119.23, 119.66) 119.75 (119.55, 119.94) 

FP 20 (20, 20) 119.60 (119.40, 119.80) 119.60 (119.40, 119.80) 

7.5 CAT3 0-35  124.36 (124.02, 124.65) 124.37 (124.03, 124.71) 

CAT5 13-25 120.10 (119.64, 120.60) 120.10 (119.64, 120.60) 

RCS 23 (23, 23) 119.45 (119.15, 119.74) 119.74 (119.46, 120.01) 

FP 20 (20, 20) 119.60 (119.31, 119.87) 119.60 (119.31, 119.87) 

 

10000 2.5 CAT3 0-20 124.32 (124.23, 124.41) 124.32 (124.23, 124.41) 

CAT5 13-24 120.19 (120.01, 120.22) 120.19 (120.01, 120.22) 

RCS 23 (23, 23) 119.50 (119.43, 119.58) 119.79 (119.72, 119.86) 

FP 20 (20, 20) 119.60 (119.54, 119.67) 119.60 (119.54, 119.67) 

5.0 CAT3 0-20 124.32 (124.14, 124.49) 124.32 (124.14, 124.49) 

CAT5 13-24 120.12 (119.90, 120.34) 120.12 (119.90, 120.34) 
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RCS 23 (23, 23) 119.50 (119.36, 119.65) 119.79 (119.65, 119.92) 

FP 20 (20, 20) 119.60 (119.47, 119.74) 119.60 (119.47, 119.74) 

7.5 CAT3 0-20  124.32 (124.07, 124.55) 124.32 (124.07, 124.56) 

CAT5 13-24 120.11 (119.77, 120.43) 120.11 (119.77, 120.43) 

RCS 23 (23, 23) 119.50 (119.28, 119.71) 119.78 (119.58, 119.99) 

FP 20 (20, 20) 119.60 (119.40, 119.80) 119.60 (119.40, 119.80) 
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Appendix D  

D.1 Additional tables in Chapter 5 

Table 5.6: Comparison of net benefits and reduction of false positive results per 100 patients according to different statistical models in 

linear threshold datasets assuming various threshold probabilities. 

 

 

 

0.05 0.05 0.06 (0.04, 0.08) 0.00 (0.00, 0.01) 0 (0, 13) 0.06 (0.04, 0.08) 0.00 (0.00, 0.01) 4 (0, 16) 0.06 (0.04, 0.07) 0.00 (0.00, 0.01) 1 (0, 15) 
0.10 0.00 0.03 (0.01, 0.04) 0.03 (0.01, 0.04) 24 (12, 36) 0.03 (0.02, 0.05) 0.03 (0.01, 0.04) 24 (13, 36) 0.03 (0.01,0.04) 0.03 (0.01, 0.04) 24 (12, 36)
0.15 -0.06 0.01 (0.00, 0.03) 0.07 (0.05, 0.08) 38 (29, 46) 0.01 (0.00, 0.01) 0.07 (0.05, 0.09) 39 (29, 49) 0.01 (0.00,0.03) 0.07 (0.05, 0.09) 39 (29, 49)

0.20 -0.12 0.00 0.12 (0.10, 0.14) 49 (41, 58) 0.00 0.13 (0.11, 0.15) 50 (42, 58) 0.00 0.13 (0.10, 0.15) 50 (42, 59)

0.25 -0.20 0.00 0.20 (0.17, 0.22) 59 (52, 66) 0.00 0.20 (0.17, 0.22) 59 (52, 66) 0.00 0.20 (0.17, 0.22) 59 (52, 66)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Categorisation (3 groups)

Reduction in false 

positives per 100 

patients

Reduction in false 

positives per 100 

patients

Linearisation
Threshold 

probabilities 

(%)

Treat 

all

Categorisation (5 groups)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

0.06 (0.04, 0.08) 0.00 (0.00,0.01) 2 (0, 16) 0.06 (0.04, 0.08) 0.00 (0.00, 0.01) 0 (0, 15)
0.03 (0.01, 0.05) 0.03 (0.01, 0.04) 24 (13, 36) 0.03 (0.01, 0.05) 0.03 (0.01, 0.04) 24 (12, 36)
0.01 (0.00, 0.03) 0.07 (0.05, 0.09) 39 (29, 49) 0.01 (0.00, 0.03) 0.07 (0.05, 0.09) 39 (29, 49)

0.00 0.13 (0.10, 0.15) 50 (42, 59) 0.00 0.13 (0.10, 0.15) 50 (42, 59)

0.00 0.20 (0.17, 0.22) 59 (52, 66) 0.00 0.20 (0.17, 0.22) 59 (52, 66)

Reduction in false 

positives per 100 

patients

Fractional Polynomials

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Predicted model     

(Net Benefit)

Restricted cubic splines

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients
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Table 5.7: Comparison of net benefits and reduction of false positive results per 100 patients according to different statistical models in 

nonlinear threshold datasets assuming various threshold probabilities. 

 

 

 

 

0.05 0.05 0.06 (0.04, 0.07) 0.00 (0.00, 0.01) 1 (0, 15) 0.06 (0.04, 0.07) 0.00 (0.00, 0.01) 4 (0, 18) 0.05 (0.04, 0.07) 0.00 (-0.01, 0.01) 0 (0, 17)

0.10 0.00 0.03 (0.02, 0.05) 0.03 (0.02,0.04) 29 (17, 40) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 29 (16, 41) 0.03 (0.02, 0.05) 0.03 (0.01, 0.04) 27 (14, 40)

0.15 -0.06 0.02 (0.00, 0.03) 0.07 (0.06, 0.09) 41 (33, 49) 0.02 (0.01, 0.03) 0.08 (0.06, 0.09) 45 (35, 53) 0.02 (0.01, 0.03) 0.08 (0.06, 0.09) 44 (34, 53)

0.20 -0.12 0.00 0.13 (0.11, 0.14) 50 (43, 58) 0.01 (0.00, 0.02) 0.13 (0.12, 0.15) 54 (46, 61) 0.01 (0.00, 0.03) 0.13 (0.12, 0.15) 54 (46, 61)

0.25 -0.20 0.00 0.20 (0.17, 0.22) 60 (52, 66) 0.00 0.20 (0.18, 0.22) 60 (54, 67) 0.00 0.20 (0.18, 0.22) 60 (54, 67)

0.30 -0.28 0.00 0.28 (0.26, 0.31) 66 (60, 72) 0.00 0.28 (0.26, 0.31) 66 (60, 72) 0.00 0.28 (0.26, 0.31) 66 (60, 72)

0.35 -0.38 0.00 0.38 (0.35, 0.41) 71 (66, 76) 0.00 0.38 (0.35, 0.41) 71 (66, 76) 0.00 0.38 (0.35, 0.41) 71 (66, 76)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Linearisation 

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Categorisation (3 groups) Categorisation (5 groups)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Threshold 

probabilities 

(%)

Treat 

all

0.06 (0.04, 0.07) 0.00 (0.00, 0.01) 2 (0, 18) 0.06 (0.04, 0.07) 0.00 (0.00, 0.01) 1 (0, 18)

0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 30 (17, 43) 0.03 (0.02, 0.05) 0.03 (0.02, 0.05) 29 (16, 41)

0.02 (0.01, 0.04) 0.08 (0.06, 0.09) 45 (35, 54) 0.02 (0.01, 0.03) 0.08 (0.06, 0.09) 45 (34, 53)

0.01 (0.00, 0.03) 0.14 (0.12, 0.15) 54 (46, 62) 0.01 (0.00, 0.02) 0.14 (0.12, 0.15) 54 (46, 62)

0.01 (0.00, 0.02) 0.20 (0.18, 0.23) 61 (55, 68) 0.01 (0.00, 0.02) 0.20 (0.18, 0.23) 61 (55, 68)

0.00 0.29 (0.26, 0.31) 67 (61, 73) 0.00 0.29 (0.26, 0.31) 67 (61, 72)

0.00 0.38 (0.36, 0.41) 71 (66, 76) 0.00 0.38 (0.36, 0.41) 71 (66, 76)

Reduction in false 

positives per 100 

patients

Restricted cubic splines

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 100 

patients

Predicted model     

(Net Benefit)

Fractional Polynomials

Difference           

(Net Benefit)
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Table 5.8: Comparison of net benefits and reduction of false positive results per 100 patients according to different statistical models in 

quadratic datasets assuming various threshold probabilities. 

 

 

 

0.05 0.05 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 2) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0)

0.10 0.00 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 7 (0, 22) 0.01 (0.00, 0.02) 0.01 (0.00, 0.03) 9 (0, 23) 0.01 (0.00, 0.02) 0.01 (0.00, 0.02) 6 (0, 22)

0.15 -0.06 0.00 0.06 (0.04, 0.08) 33 (21, 46) 0.00 0.06 (0.04, 0.08) 34 (22, 46) 0.00 0.06 (0.04, 0.08) 33 (21, 46) 

0.20 -0.13 0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (46, 60)

Difference           

(Net Benefit)

Reduction in false 

positives per 1000 

patients

LinearisationCategorisation (3 groups) Categorisation (5 groups)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Predicted model     

(Net Benefit)

Threshold 

probabilities 

(%)

Treat 

all
Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Reduction in false 

positives per 1000 

patients

Predicted model     

(Net Benefit)

0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 3) 0.05 (0.03, 0.07) 0.00 (0.00, 0.00) 0 (0, 0)

0.01 (0.00, 0.02) 0.01 (0.00, 0.03) 8 (0, 23) 0.01 (0.00, 0.02) 0.01 (0.00, 0.03) 8 (0, 23)

0.00 0.06 (0.04, 0.08) 34 (22, 47) 0.00 0.06 (0.04, 0.08) 34 (21, 46)

0.00 0.13 (0.10, 0.15) 50 (41, 60) 0.00 0.13 (0.10, 0.15) 50 (41, 60)

Reduction in 

false positives 

per 1000 patients

Restricted cubic splines

Reduction in false 

positives per 1000 

patients

Fractional Polynomials

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)

Predicted model     

(Net Benefit)

Difference           

(Net Benefit)
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Appendix E  

E.1 Justification of assumed associations in the DAG 

 

Introduction 

An observation that excessive alcohol consumption is associated with hypertension was 

first reported in 1915. While caring for military personnel in World War 1, Lain 

reported higher BP amongst soldiers consuming >2.5 L of wine per day (Lian, 1915). 

However, these findings were largely ignored until the 1970s. In the last 45 years, 

several studies and reviews have been performed to confirm the presence of the alcohol-

hypertension relationship (Jackson et al., 1985, Moreira et al., 1998, Fuchs et al., 2001, 

Saremi et al., 2004, Steffens et al., 2006, Klatsky and Gunderson, 2008, Briasoulis et 

al., 2012, Mori et al., 2016). However, there are unresolved issues about the direction, 

shape, and factors explaining the alcohol-hypertension relationship. This might be due 

to several factors associated with the development of hypertension. Hypertension is 

multifactorial, therefore the alcohol-hypertension relationship is likely to be confounded 

by many variables (Lip and Beevers, 2003). A suitable alcohol-hypertension 

relationship requires consideration and identification of confounding variables for 

adjustment. In Figure 6.1, the DAG was used to identify suitable confounding variables 

for the alcohol-hypertension relationships in type 2 diabetes patients. Clinical and 

epidemiological knowledge from the literature was used to develop and explain the 

causal relationships in the DAG. The choice of variables in the DAG and their assumed 

relationships with the exposure (alcohol consumption) and outcome (hypertension) were 

explained focusing on competing exposures, confounders, mediators, and colliders in 

the diagram. 
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Competing Exposures 

Diet. In Figure 6.1, diet was entered in the DAG as a competing exposure. The 

association between diet and hypertension has been reported in epidemiological and 

clinical studies (Reddy and Katan, 2004, Bazzano et al., 2013, Duman, 2013). There is 

no evidence suggesting that diet changes alcohol consumption (or vice-versa). Existing 

studies report lower hypertension risk amongst vegetarians (low fat diets with higher 

nutrients including potassium, magnesium, and fibre) or low-salt diets. For example, in 

a trial study on Dietary Approaches to Stop Hypertension (DASH), diet with low salt 

(or sodium), saturated fats, cholesterol and high in potassium, fibre, magnesium, 

protein, fruits & vegetables and calcium was recommended to reduce the risk of 

hypertension (Moore et al., 2001, Sacks et al., 2001). An observation study suggesting 

similar findings as the DASH trial reveal a positive association between dietary salt 

intake and BP. A positive linear relationship between salt intake and BP was reported in 

Turkey where each 100 mmol/day of salt intake was associated with a 5.8 mmHg 

increase of SBP (Erdem et al., 2010). Furthermore, dietary fats are suggested as the key 

link in the causal pathway connecting diet to hypertension. Healthier fats including 

monounsaturated fats and polyunsaturated fats (omega 3 and omega 6) have been linked 

with no incidence of hypertension (Duman, 2013). These fats play an important role in 

balancing the cholesterol levels in the blood - reducing bad cholesterol (LDL-C) and 

increasing good cholesterol (HDL-C). Apart from these studies, diets with high 

potassium intake, protein, fibre and fruits, and vegetables are associated with lower 

incidence of hypertension (Reddy and Katan, 2004, Bazzano et al., 2013). A diet with 

rich potassium intake has been suggested to be more beneficial amongst patients with 

higher salt intake (Van Bommel and Cleophas, 2012). On the other hand, fibre 

consumption tends to lower the LDL-C concentration without affecting the HDL-C 

(Reddy and Katan, 2004). Based on this evidence, the DAG provided in Figure 6.1 
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summarises the assumed relationships between diet measures and hypertension. In the 

DAG, diet intake measures including potassium intake, protein, fats, salts, fibre, fruits, 

and vegetable were treated as competing exposures.  

Another competing exposure appearing in the DAG is coffee consumption. In 

the diagram, coffee and alcohol consumption were assumed to be independent and both 

were linked with high incidence of hypertension as suggested in the literature 

(Uiterwaal et al., 2007, Klatsky and Gunderson, 2008, Briasoulis et al., 2012)  

Mediators 

Obesity. The prevention or treatment of obesity is recommended as an 

important means to reduce the risk of CDV in adults population (British Cardiovascular 

Society et al., 2014). Evidence also suggests a causal link between obesity and 

hypertension (Fall et al., 2013). Amongst alcohol drinkers, a significant additive 

interaction between alcohol consumption and obesity was associated with the incidence 

of hypertension (Li et al., 2006, Luo et al., 2013). However, the mechanism between 

alcohol consumption and obesity in relation to hypertension remains unclear (Li et al., 

2006, Buja et al., 2009). In Figure 6.1, alcohol consumption was assumed to be causally 

linked to obesity due to the energy derived from alcohol drinking (extra energy is stored 

as fat). A non-caloric mechanism linking alcohol consumption to obesity might causally 

be related to changes in steroid hormones favouring fat storage (Buja et al., 2009). 

Insulin resistance. In type 2 diabetes patients, heavy alcohol drinking has been 

linked with insulin resistance because of disruption of glucose homeostasis (Kim and 

Kim, 2012). In Figure 6.1, insulin resistance was associated with hyperinsulinemia 

which relates with increased LDL and reduced HDL concentrations. Also, through 

hyperinsulinemia, insulin resistance was associated with the occurrence of hypertension. 

The assumed causal pathways are supported by Barnett (Barnett, 1994).  
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Poor glucose control. Maintaining tight blood control of blood glucose in 

alcoholics with type 2 diabetes is difficult. Alcohol consumption is associated with both 

incidents of hypoglycaemia (low blood glucose levels) and hyperglycaemia (high blood 

glucose levels). Hypoglycaemia is mostly prevalent in heavy alcoholics with 

insufficient dietary intake of glucose whilst hyperglycaemia is common in well fed 

heavy alcohol drinkers (Emanuele et al., 1998). In the two types of diabetes, 

hypoglycaemia is causally linked to hyperinsulinemia (Kim and Kim, 2012). 

Hyperglycaemia has strong but reversible oxidation linkages with LDL concentrates 

which are associated with hypertension through the renin-angiotensin system (RAS) 

(Leslie, 1993, Ji et al., 2014).  

Colliders 

Kidney function. The responsibilities of kidneys include (1) filtering harmful 

substances from the blood and (2) regulating the right quantity of water inside the body 

(deRibeaux, 1997). Alcohol drinking might disturb kidneys making them less able to 

perform their functions. A significantly reduced kidney function in alcohol fed animals 

was reported in an experimental study (Van Thiel et al., 1977). Alternatively, the harm 

on kidney function might occur indirectly through alcohol-induced hypertension. In 

observational studies, excessive alcohol drinking has been linked to the occurrence of 

high blood pressure (Parekh and Klag, 2001). Hence, kidney function was captured as a 

collider (with both arcs from the exposure and outcome variables pointing into it) in 

Figure 6.1. Furthermore, atherosclerosis (lining of fats in the arteries), excessive dietary 

salts and poor glycaemic control in patients with type 2 diabetes were causally linked to 

the poor functioning of the kidneys or CKD (Chade et al., 2005, Bash et al., 2008, 

Farquhar et al., 2015). Figure 6.1 show pathway linkages between these variables. 
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Stroke. Evidence suggests the alcohol and hypertension are associated with the 

risk of stroke (Hillbom et al., 2011). The mechanism defining the relationship between 

alcohol consumption and stroke is less clear. Alcohol consumption might directly 

reduce the risk of ischaemic stroke through the HDL-C. In contrast, the alcohol’s 

antithrombotic action (clotting) might accelerate the risk of haemorrhagic stroke 

(Klatsky and Gunderson, 2008). Moreover, hypertension has long been established as a 

powerful predictor for both ischaemic and haemorrhagic strokes (Klatsky and 

Gunderson, 2008, Hillbom et al., 2011). Hypertension is linked to the occurrence of 

stroke through the multifactorial causation of atherosclerosis (Kannel et al., 1996). The 

causal pathway diagram showing details of these relations is provided in Figure 6.1. 

Confounders 

Smoking. Evidence in epidemiology link heavy drinking to smoking (Lip and 

Beevers, 2003) therefore, smoking may influence the association between alcohol 

consumption and hypertension. A negative relationship between smoking and blood 

pressure was reported in general population - with high BP levels observed amongst 

non-smoker compared to smokers (Lee et al., 1998, Can et al., 2009, Alomari and Al-

Sheyab, 2016). So, if alcohol drinkers are more likely to be smokers and smoking 

reduces blood pressure, then smoking is an important variable to consider for 

confounding – it may change the alcohol-hypertension relationship amongst type 2 

diabetes patients. 

Physical Activity. Broadly, physical activity (PA) is defined as “any body 

movement produced by the contraction of skeletal muscles that substantially increases 

energy expenditure” (Colberg et al., 2010, Stump, 2011). In the thesis, the word PA is 

used interchangeably with ‘exercise’. Exercise is defined as “a subset of PA and done 
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with the intension of developing physical fitness (i.e. improvements in cardiovascular 

function, strength, and flexibility)” (Colberg et al., 2010, Stump, 2011).  

Evidence suggests that exercise improves many risk factors associated with 

cardiovascular disease (CVD). Amongst patients with diabetes, the positive effects of 

regular exercise include greater insulin sensitivity and improvements in common risk 

factors of inflammation, abnormal adiposity, dyslipidaemia and hypertension (Stessman 

and Jacobs, 2014). A recent meta-analysis recommends 150 min/week of regular PA in 

moderate intensity amongst young and middle-aged diabetes patients (Kodama et al., 

2013). However, it is also important to note that the mechanism at which PA affects 

individuals could be different depending on the behaviour of individuals and the 

severity of the disease. In the literature, much is not known about risk management of 

hypertension in alcohol drinkers who are diabetic taking into consideration the issue of 

physical fitness. However, if exercising improves many risk factors associated with 

CVD including hypertension, patients who are physically active may consume more 

alcohol compared to non-active or sedentary subjects thus influencing the alcohol-

hypertension relationship. 

Age. Age is another important variable to consider for confounding when 

investigating the relationship between alcohol and hypertension. It is suggested that 

blood pressure and the risk of hypertension increases with age (Hart et al., 2012, 

Buford, 2016). Furthermore, a strong association between alcohol consumption and 

hypertension was reported in older people (van Leer et al., 1994). Based on these 

findings, older patients with type 2 diabetes may stop drinking alcohol as a way of 

controlling their blood pressure control thus influencing the alcohol-hypertension 

relationship. 
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Sex. Previous alcohol studies suggest females are more prone to elevated blood 

pressure compared to males (Weissfeld et al., 1988, Wakabayashi, 2008). However, the 

mechanism responsible for the sex-related difference in blood pressure is not fully 

understood. Hormonal factors and the use of contraceptive pills in females might 

explain the difference (Oparil and Miller, 2005). Consequently, to control the harm 

associated with alcohol, females may be encouraged to drink less compared to males. 

The latter may, therefore, change the alcohol-hypertension relationship. 

Ethnicity. It is important to consider ethnicity when investigating the 

relationship between alcohol consumption and hypertension. Evidence in alcohol 

studies suggests higher mean blood pressure and higher rates of hypertension in black 

ethnic groups compared to other ethnic groups (Fuchs et al., 2001, Ikeda et al., 2013). 

To control the risk of hypertension, black people may be advised to reduce alcohol 

drinking and this could change the association between alcohol and hypertension.  

The family history of hypertension. Evidence suggests greater mean blood 

pressures and a higher risk of hypertension amongst subjects with family history of 

hypertension compared to those without (Tozawa et al., 2001, Ranasinghe et al., 2015). 

For example in a study by Tozawa and colleagues where mean SBP levels for study 

participants were computed and assigned to groups according to the number of family 

members with history of hypertension, the results showed higher mean SBP levels in 

probands (individuals) with a family history of hypertension compared to those without. 

The proband with a mean SBP of 121 ± 17 mmHg was reported when 1 family member 

was hypertensive (n=1, 760). If 2 family members were hypertensive (n=280), the 

proband mean SBP was 124 ± 18 mmHg. If 3 or more family members were 

hypertensive (n=43), the proband mean SBP was 127 ± 17 mmHg. In contrast, the mean 

SBP in probands without a family history of hypertension was 119 ± 15 mmHg 
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(Tozawa et al., 2001). Based on these findings, a positive family history of hypertension 

maybe linked to an increased risk of hypertension through family sharing of 

cultural/environmental and lifestyle factors such as alcohol consumption. Thus, a family 

history of hypertension may influence the relationship between alcohol consumption 

and hypertension in type 2 diabetes patients.  

Antihypertension medication use. Antihypertensive(s) are important for lowering 

blood pressure levels and controlling the risk of hypertension (Bandi et al., 2017). 

Amongst alcoholics, the use of antihypertensive(s) may influence the association 

between alcohol consumption and hypertension. In a cross-sectional study of males 

aged ≥65 years, Wakabayashi (2010) found significantly higher odds ratios (ORs) of 

hypertension in heavy (≥22 and <44 g/day) and very heavy (≥44 g/day) alcohol drinkers 

compared to non-drinkers in patients who did not receive therapy for hypertension. In 

contrast, the ORs of hypertension in heavy and very heavy alcohol drinkers receiving 

therapy for hypertension were insignificant. In addition, the ORs of hypertension for 

light drinkers (<22 g/day) vs non-drinkers in the two groups (receiving therapy vs not 

receiving therapy for hypertension) were both insignificant. These findings suggest that 

alcohol-induced elevation of blood pressure may be suppressed by the use of 

antihypertensive therapy. Thus, antihypertensive therapy has potential to influence the 

alcohol-hypertension relationships. 
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Appendix F  

F.1 Additional tables and figures in Chapter 6 

 

Figure 6.11: Odds ratios for several covariates adjusted for an alcohol-hypertension relationship and their 95% CIs obtained by categorising 

and linearising the alcohol consumption measures using logistic regression models. 
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Figure 6.12: Odds ratios of several covariates adjusted for the alcohol-hypertension relationships and their 95% CIs obtained by fitting 

logistic regression using first-order degree fractional polynomial (FP1) and three knots restricted cubic spline (RCS3) models 
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Figure 6.13: The unadjusted and adjusted odds of hypertension (on log scales) estimated 

using categorisation, linearisation, first order degree fractional polynomials (FP1), and 

restricted cubic splines with three knots (RCS3) models at different units of alcohol 

consumption (in g/day). 
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Figure 6.14: The adjusted odds of hypertension (on log scales) together with their 95% 

CIs estimated using the categorisation, linearisation, first order degree fractional 

polynomials (FP1), and restricted cubic splines with three knots (RCS3) models at 

different units of alcohol consumption, g/day 

 

Table 6.6: The unadjusted and adjusted Odds ratios (ORs) of hypertension and their 

95% confidence intervals obtained using the method of categorisation (CAT). 

Alcohol 

consumption, 

 g/day 

No. of 

observations 

No. of 

hypertensi

on cases 

Unadjusted OR  

(CAT Model) 

Adjusted OR  

(CAT Model) 

Estimate 95% CI Estimate 95% CI 

0 3,834 2,637 1.00 - 1.00 - 

0-9.7 4,094 2,965 1.19 1.08 - 1.31 1.08 0.97 - 1.21 

9.7-25.1 3,977 3,014 1.42 1.29 - 1.57 1.24 1.10 - 1.39 

25.1+ 3,995 3,255 2.00 1.80 - 2.22 1.79 1.58 - 2.03 
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Table 6.7: The unadjusted and adjusted odds ratios (ORs) of hypertension & their 95% confidence intervals obtained from the best fitting 

linearisation (LIN), fractional polynomials - first order degree (FP1) and the restricted cubic spline with 3 knots (RCS3) models. The odds 

of hypertension was modelled as a function of alcohol consumption, g/day. 

Alcohol 

consumption, 

g/day 

No. of 

observations 

No. of 

hypertension 

cases 

Ref. 

points 

OR Estimates (LIN Based Model) OR Estimates (FP1 Based Model) OR Estimates (RCS3 Based Model) 

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

0 3,834 2,637 0 (ref) 1.00 1.00 1.00 1.00 1.00 1.00 

0-9.7 4,094 2,965 5.0 1.05 (1.05-1.06) 1.05 (1.04-1.06) 1.23 (1.13-1.34) 1.10 (1.00-1.22) 1.14 (1.11-1.18) 1.10 (1.07-1.14) 

9.7-25.1 3,977 3,014 17.5 1.20 (1.17-1.24) 1.18 (1.13-1.22) 1.49 (1.37-1.61) 1.33 (1.21-1.47) 1.49 (1.38-1.61) 1.35 (1.23-1.49) 

25.1-49.9 2,541 2,054 37.5 1.49 (1.40-1.60) 1.42 (1.31-1.53) 1.79 (1.64-1.94) 1.61 (1.44-1.80) 1.81 (1.65-1.99) 1.63 (1.45-1.82) 

49.9-74.9 930 760 62.5 1.95 (1.74-2.18) 1.78 (1.57-2.03) 2.13 (1.90-2.37) 1.91 (1.67-2.18) 1.99 (1.79-2.22) 1.87 (1.64-2.12) 

74.9+ 524 441 87.5 2.54 (2.17-2.97) 2.24 (1.87-2.69) 2.44 (2.14-2.78) 2.19 (1.87-2.57) 2.19 (1.88-2.55) 2.13 (1.79-2.54) 
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Figure 6.15: The adjusted odds of hypertension (on log scales) together with their 95% 

CIs estimated using the categorisation, linearisation, first order degree fractional 

polynomials (FP1), and restricted cubic splines with three knots (RCS3) models at 

different units of alcohol consumption, g/day. 
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Appendix G  

G.1 Research protocol submitted at the UK Biobank 
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