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The windows

In these dark rooms where I live out

empty days, I circle back and forth

trying to find the windows.

It will be a great relief when a window opens.

But the windows are not there to be found—

or at least I cannot find them. And perhaps

it is better that I don’t find them.

Perhaps the light will prove another tyranny.

Who knows what new things it will expose?

C.P. Cavafy 1

1translation of Edmund Keeley and Philip Sherrard, appeared in Collected poems (Edited George

Savvides) of C.P. Cavafy, published by London: Hogarth Press, 1984



Abstract

The aim of this thesis is to explain how the theory of Hopf monads on monoidal

categories can be used to investigate the Hopf algebra object in a category of which

objects are complexes of sheaves on a smooth complex projective variety.

In particular, we associate to a smooth complex projective variety X the cate-

gory of orbits of the bounded derived category of coherent sheaves of the variety

under the double shift functor and discuss its structure. We explain why the de-

rived functors on the level of bounded derived categories of coherent sheaves in-

duce functors on the level of categories of orbits. We prove that if the variety is of

even dimension and has trivial canonical bundle, then the Serre functor on the or-

bit category is trivialised. As a direct application of this, we obtain functors on the

level of orbit categories which have the same left and right adjoint functor.

Next, we work in a general categorical level considering rigid monoidal cate-

gories and a pair of adjoint functors defined between them. Moreover, we assume

that the right adjoint is a strong symmetric monoidal functor and has a right quasi-

inverse which is also a strong monoidal functor. We prove that every such pair

of adjoint functors defines an augmented Hopf monad. From the theory of aug-

mented Hopf monads of Brugières, Lack and Virelizier we obtain that these Hopf

monads are equivalent to central Hopf algebras.

We explain why the orbit category of an even dimensional smooth complex pro-

jective variety X with trivial canonical bundle is a rigid symmetric monoidal cate-

gory. In addition we explain why the diagonal embedding ∆ : X → X × X of the

variety gives rise to a pair of adjoint functors on the level orbit categories such that

the right adjoint is strong symmetric monoidal and has a right quasi-inverse. As a

result, we obtain a Hopf monad on the orbit category and pin down the Hopf alge-

bra with explicit morphisms.
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Introduction

The aim of this thesis is to investigate the Hopf algebra object in a symmet-

ric monoidal category of which objects are bounded complexes of sheaves and its

morphisms are formally inverting quasi-isomorphisms. In particular, the category

in which we are interested in is obtained as the category of orbits of the bounded

derived category of coherent sheaves on a smooth complex projective variety un-

der an autoequivalence, which for our purposes is the double shift functor. In order

to pin down the Hopf algebra object we apply the theory of Hopf monads as devel-

oped in [8] and [7]. Hopf monads consist of generalisations of Hopf algebras to a

non-braided setup.

In the following, we start our narrative with Hopf algebras with the scope to

highlight those properties which led various mathematicians to introduce general-

isations of Hopf algebras. Then, we discuss Hopf monads trying to make clear the

analogy between Hopf algebras and Hopf monads. After that we discuss which is

our contribution in this thesis, stating what was known before and which are our

results. In the final part of this introduction, we explain where this story is heading

or better, our expectations of how our results could be useful.

Hopf algebras

Hopf algebras are algebraic objects which emerged in the field of topology in the

1940s to investigate problems related to the cohomology of compact Lie groups, see

[10]. In the last four decades, Hopf algebras have become extremely popular due

to work of Drinfel’d and Jimbo on quantum groups and their applications in low

dimensional topology, representation theory and topological quantum field theory.

A Hopf algebra H over a field k of characteristic zero is a bialgebra over k with

an invertible map S : H → H , called the antipode. Here, bialgebra means that H

is given an algebra and a coalgebra structure in a compatible way. In other words,

H has an associative product map, a unit map, a coassociative coproduct map and

a counit map such that the product and the unit are morphisms of coalgebras or

equivalently the coproduct and the counit are morphisms of algebras. Examples

of Hopf algebras are the group algebra k[G] of a finite group G and the universal

enveloping algebra U (g) of a finite dimensional Lie algebra g over k.

i
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Bialgebras and Hopf algebras over a field k are characterised by the structure of

the associated category of modules. In particular, if we consider a bialgebra H over

k then the associated category of left H-modules is a monoidal category, see [20,

Proposition XI.3.1]. If moreover on the bialgebra H is given an invertible antipode

and so H is a Hopf algebra, then the associated category of the modules of this Hopf

algebras is a monoidal category with left and right duals, see [20, Example 1, p. 347].

If we replace the category of k-vector spaces with a braided monoidal category

C then one can define analogous notions of a bialgebra and of a Hopf algebra in

C and give analogous characterisations for the associated categories of modules,

see [8, Chapter 6]. In particular, if C is a braided monoidal category and H is a

bialgebra in C then H is a Hopf algebra object in C if and only if the category of

representations of H is a monoidal category with duals, see [38, Lemma 6.1] for

details.

Street in [37] gave another characterisation of Hopf algebras in braided mo-

noidal categories with the use of the notion of the fusion operator, generalising in

an abstract categorical notions of the work of Baaj and Skandalis [5] on operator al-

gebras. To be more precise, for a bialgebra (H ,m,u,δ,ε) in a braided monoidal cat-

egory with product m, unit u, coproduct δ and counit ε, the fusion operator of H is

the morphism V : H ⊗H → H ⊗H defined by V = (id⊗m)◦ (δ⊗ id) see [37, Proposi-

tion 1.1]. If moreover H is a Hopf algebra with an invertible antipode S : H → H then

the inverse of the fusion operator is given by V −1 = (id⊗m)◦(id⊗S⊗id)◦(δ⊗ id), see

[37, Proposition1.2].

Now, a natural question which arises is if there is a generalisation of the notion

of a Hopf algebra in monoidal categories which are not braided. The answer to this

question is affirmative and is the notion of a Hopf monad which was introduced by

Moerdijk [30] and studied in a deeper level by Brugières and Virelizier in [8] and in

their joint work with Lack [7].

Hopf monads

Moerdijk in [30] based on the correspondence between bialgebras over a field

k and monoidal structures on the associated category of modules, generalised the

notion of a bialgebra to non-braided monoidal categories. Instead of an algebra

in some braided category, he considered a monad on the monoidal category C . A

monad on a category is an endofunctor of the category with natural transforma-

tions called the product and the unit which satisfy similar axioms to that of an al-

gebra. In an equivalent way, a monad can be defined as an algebra object of the

category of endofunctors of C . One can obtain monads on a monoidal category

C from an adjunction between functors or an algebra object of the category. More

specifically, if C is a monoidal category and A is an algebra in C then the endo-

functor T ′ = A ⊗− is a monad on C . Also, if (F : C → D,U : D → C ) is a pair of
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adjoint functors between monoidal categories with U being the right adjoint, then

the endofunctor T =U F on C is a monad on C . For a monad on a category C , one

can define an action of the monad on the objects of the category.

Now, the analogous notion of a bialgebra on the level of monads is the notion of

a bimonad or otherwise of an opmonoidal monad. In other words, a bimonad is the

monad in the category of opmonoidal functors and opmonoidal natural transfor-

mations. Examples of bimonads on monoidal categories are obtained either from

bialgebras in braided monoidal categories or from adjunctions between functors.

In particular, if C is a monoidal category and A is a bialgebra in C then the monad

T ′ = A⊗− has the structure of a bimonad on C . Moreover, if we consider an adjunc-

tion F a U between functors defined on monoidal categories such that the right

adjoint U is a strong monoidal functor, then the monad T =U F is a bimonad. Mo-

erdijk proved in [30, Theorem 7.1] that bimonad structures on a monad T corre-

sponds to monoidal structures on the associated category of the modules of the

monad T .

The analogue of an antipode for a bimonad was established by Brugières and

Virelizier in [8]. In particular, they considered bimonads on monoidal categories

with left duals, or right duals or both and proved in [8, Theorem 3.8] that a bimonad

on a monoidal category C with left duals (respectively with right duals) has a left

antipode (respectively a right antipode) if and only if the category of T -modules

is monoidal and has left duals (respectively right duals). Then, they defined the

notion of a Hopf monad as a bimonad on a monoidal category C with antipodes.

A further generalisation of the definition of a Hopf monad on a monoidal category

was given in [7], which was based on the notion of the fusion operator by Street.

Although a Hopf algebra in a braided monoidal category gives rise to a Hopf

monad on the category, it is not true in general that all Hopf monads are coming

from Hopf algebras. Under which circumstances a Hopf monad is coming from a

Hopf algebra was studied in [7]. Of particular interest is [7, Corollary 5.9] where it

is proved that the only Hopf monads which are obtained from a Hopf algebra are

those which are defined on braided monoidal categories.

Contribution of this thesis

The aim of this thesis is to bring together the theory of Hopf monads of Brugières,

Lack and Virelizier with derived categories of coherent sheaves. Consider a smooth

complex projective variety X and let Coh(X ) be the abelian category of coherent

sheaves on X . In the case where X is a complex manifold, an example of a coherent

sheaf is a holomorphic vector bundle. Let C (X ) be the category of cochain com-

plexes in Coh(X ). Then, bounded derived category of coherent sheaves Db Coh(X )

is obtained from C (X ) by formally inverting quasi-isomorphisms in Coh(X ). Its

objects are essentially cochain complexes of coherent sheaves on X . The ultimate



iv INTRODUCTION

goal is to investigate the Hopf algebra object in the bounded derived category of

coherent sheaves on a smooth complex projective variety X .

Now, the category Db Coh(X ) is a symmetric monoidal category, with the monoi-

dal product to be the derived tensor product and monoidal unit to be the structure

sheaf of the variety X . Moreover, Db Coh(X ) is a category with duals. In partic-

ular, for every complex E • of Db Coh(X ) its right dual is defined to be the object

(E •)∨ := RHom(E •,OX ) where RHom denotes the right derived functor of the in-

ternal hom functor Hom. Then, a natural question to ask is if Db Coh(X ) is the

module category of a Hopf algebra and which is explicitly this Hopf algebra.

A candidate for the Hopf algebra follows from the work of Kapranov [17] and

the subsequent work of Markarian [29], Ramadoss [31] and Roberts and Willerton

[33] where it is proved that for a complex manifold X , the shifted holomorphic tan-

gent sheaf TX [−1] of X is a Lie algebra object in Db Coh(X ) and the Hochschild

cochain complex which is defined by U := Rπ1,∗RHom(OX ,OX ) is the universal

enveloping algebra object for the Lie algebra TX [−1]. Moreover, Roberts and Willer-

ton proved that the object U acts on all the objects of Db Coh(X ). Markarian [29]

and Ramadoss [31] went through explicit calculations considering the Bar resolu-

tion of RHom(O∆,O∆), unlike Roberts and Willerton [33] who worked at a more

categorical level. Furthermore, in [33, Section 7.7] is given an equivalent definition

of the object U as ∆! R∆∗OX where ∆ : X → X ×X is the diagonal embedding, R∆∗
is the derived pushforward functor and ∆! is the right adjoint of R∆∗ obtained by

Grothendieck Verdier duality. In other words, one can say that the object U is ob-

tained applying the composite functor∆! R∆∗ on the structure sheaf of the complex

manifold X .

It is then natural to ask if the object U of Db Coh(X ) is a Hopf algebra object.

Willerton in [40] hinted that the theory of Hopf monads on monoidal categories

with duals as developed by Brugières and Virelizier [8] can be applied on the case

of Db Coh(X ). Moreover, Calaque, Caldararu and Tu proved in [9, Section 3] that

the endofunctor U ⊗− of Db Coh(X ) is a bimonad.

Although, Db Coh(X ) has nice properties, i.e. is a symmetric monoidal category

with duals, is the module category of the Lie algebra U and the functor∆! R∆∗ is the

monad obtained by the adjunction R∆∗ a ∆!, it is not straightforward that ∆! R∆∗
is a bimonad since ∆! is not a strong monoidal functor. To overpass this difficulty,

we considered the category Dor(X ), called the orbit category, which is obtained as

the fixed points category of Db Coh(X ) by the functor [2] : Db Coh(X ) → Db Coh(X )

following the work of Keller [21, 22]. The category Dor(X ) has as objects the same

as Db Coh(X ) and the hom spaces are of the form

HomDor(X )(E
•,F •) = ⊕

n∈Z
HomDb Coh(X )(E

•,F •[2n])

where E • and F • are objects of Dor(X ). The category Dor(X ) is a symmetric monoidal

category with duals and for any object E • of Dor(X ) it is true that E •[2] ∼= E •. More-



v

over, if f : X → Y is a smooth map between smooth projective varieties, then the

derived functors which are defined on the level of derived categories of coherent

sheaves induce functors on the level of orbit categories and satisfy the same ad-

junctions.

In Section 7.1, we consider X to be an even dimensional smooth complex pro-

jective variety with trivial canonical bundle and let Dor(X ) the associated orbit cat-

egory of X . The Serre functor of Db Coh(X ) induces a Serre functor on Dor(X ) and

in the case at hand, the Serre functor is isomorphic to the identity functor, see

Lemma 7.1.13. As a result, we obtain that the right adjoint ∆! of R∆∗ is isomor-

phic to L∆∗ on the level of orbit categories, see Proposition 7.1.14. Symbolically

we have ∆! ' L∆∗ and so, we obtain the adjunction R∆∗ a L∆∗. Now, L∆∗ is a

strong monoidal functor and applying the theory of Hopf monads, the endofunctor

L∆∗ R∆∗ of Dor(X ) is a Hopf monad, see Proposition 7.1.15. Since we are interested

in investigating the Hopf algebra object in Dor(X ), we prove also that L∆∗ R∆∗ is an

augmented Hopf monad on Dor(X ) with left regular augmentation map. Then, by

the correspondence between augmented Hopf monads with left regular augmen-

tation maps and Hopf algebras in the centre of the category, as established in [7,

Theorem 5.17 and Corollary 5.18] gives that the object L∆∗ R∆∗OX is a Hopf alge-

bra object in Dor(X ) and Dor(X ) is a module category of the Hopf algebra of U , see

Theorem 7.3.1.

Our proof of the fact that L∆∗ R∆∗ is an augmented Hopf monad relies on the

structure of the functor L∆∗ R∆∗. The functor L∆∗ is not only a strong monoidal

functor but moreover has a right quasi inverse. In particular, if π1 : X ×X → X is the

projection map on the first coordinate, then its derived pullback Lπ∗
1 : Db Coh(X ) →

Db Coh(X × X ) is defined on the level of bounded derived categories of sheaves

which induce a map on the level of orbit categories Lπ∗
1 : Dor(X ) → Dor(X × X ).

Then, it is true that

L∆∗ ◦Lπ∗
1
∼= L(π◦∆)∗ = id∗ = id.

In Section 7.2 we prove that for a pair of adjoint functors (F : C → D,U : D → C )

defined between symmetric monoidal categories with duals such that the right ad-

joint is a strong monoidal functor and has a right quasi-inverse, then, the functor

T =U F on C is an augmented Hopf monad.

A natural question which follows then is what could be the use of U as a Hopf

algebra in the Dor(X ). Our expectation and our ultimate goal are to get more in-

sight towards a rigorous formulation of the Rozansky-Witten topological quantum

field theory. It is Rozansky-Witten theory which motivated Roberts and Willerton to

study the object U and the results of [33]. In the following, we review some basics

of this physical theory.
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Rozansky-Witten theory

Rozansky-Witten theory [34] is a three-dimensional topological sigma model of

which path integral integrates over all maps from a three dimensional topological

manifold M to a hyperkähler manifold X . A hyperkähler manifold is a Riemannian

manifold of real dimension 4n, with three compatible complex structures and a

holomorphic symplectic form. An example of a hyperkähler manifold is a K 3 sur-

face which is defined to be a compact complex surface with trivial canonical bundle

and H 1(X ,OX ) = 0.

The invariant which assigns this sigma model to a three-manifold M is the par-

tition function ZX (M) of the theory, also called path integral, which is not well de-

fined from a mathematical point of view. An explicit perturbative expansion of the

partition function over all Feynman diagrams, which in this case are just trivalent

graphs, had been made by Rozansky and Witten and has the form

ZX (M) =∑
Γ

bΓ(X )IΓ(M)

where Γ are trivalent graphs, bΓ(X ) are complex-valued functions depending on X

and IΓ(M) are integrals depending on M . It is the complex-valued functions bΓ(X )

which were studied by Roberts and Willerton in [33] in a categorical level with the

use of the derived category of sheaves on a holomorphic symplectic manifold.

Moreover, Rozansky and Witten conjectured that the Hilbert space HΣg which

is assigned to a genus g Riemann surface Σg is given by

HΣg =
dimC X∑

q=0
H q

∂

(
X , (

∧∗TX )⊗g )
.

where TX is the holomorphic tangent bundle on X . This conjecture was verified

in [34] for Riemann surfaces of genus zero and genus one and for X being a K 3

surface.

An interesting question which can be asked and still there is no clear answer

is what a rigorous mathematical topological quantum field theory of Rozansky-

Witten theory would look like. In the following, we review the axiomatic definition

of a topological quantum field theory.

Mathematical definition of a topological quantum field theory

A simple definition of a topological quantum field theory in any dimension n,

due to Atiyah [4], is as a rule which assigns a finite dimensional vector space τ(N )

to a (n − 1)-dimensional oriented closed manifold N and a linear map τ(N1) →
τ(N2) to a n-dimensional compact oriented cobordism M from N1 to N2, i.e. a n-

dimensional manifold M such that its boundary ∂M can be written as ∂M = N 1tN2

(where N1 is N1 with reversed orientation). Considering any compact oriented
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closed n-dimensional manifold as a cobordism from the empty set to the empty

set, this rule should assign a complex number. This number is called in physics

terms the partition function of the topological quantum field theory. In an equiv-

alent way, a topological quantum field theory in dimension n is defined as a sym-

metric monoidal functor Z from the cobordism category Cobn,n−1 to the category

of vector spaces Vect(k) over a field k. The monoidal product of the cobordism

category is the disjoint union and the monoidal product of the category of vector

spaces is the tensor product of k-vector spaces. The unit objects are the empty set,

considered as (n −1)-dimensional manifold and the field k respectively.

Atiyah’s axioms [4] lay the foundations for a mathematical study of topological

quantum field theories. However, this list of axioms doesn’t provide information

for manifolds of codimension bigger than one. For example, in dimension three

in which we are mainly interested in a topological quantum field theory assigns a

number to a closed 3-manifold M 3 and a vector space to a closed surface Σ but

provides no information to 1-dimensional or zero-dimensional manifolds i.e. to

circles, intervals and points. Much work has been done towards a definition of a

topological quantum field theory which extends Atiyah’s definition providing infor-

mation for such submanifolds, see for example the work of Lurie [27], Schommer-

Pries [35], Khovanov [24]. In the following, we discuss Khovanov’s definition of a

3d-topological quantum field theory with corners [24].

Following Khovanov, a topological quantum field theory with corners in dimen-

sion three is a 2-functor F from the 2-category of three dimensional cobordisms

with corners to the 2-category of all additive categories. In other words, this 2-

functor assigns an additive category F (K ) to a closed oriented 1-dimensional man-

ifold K , a functor F (M) to an oriented 2-dimensional cobordism M and a natural

transformation of functors F (N ) to an oriented 3-dimensional cobordism with cor-

ners N . Moreover, Khovanov proved in [24] that for a 3-dimensional topological

quantum field theory with corners F , the functor F (M) which is assigned to a 2-

dimensional cobordism with boundary M , has simultaneously the same left and

right adjoint functor; symbolically if G is a left adjoint to F (M) then G a F (M) aG .

Another important observation for 3d topological quantum field theories with cor-

ners is due to Crane and Yetter. In particular, in [11] it is proved that a 3d-topological

quantum field theory with corners assigns to the torus with one disk removed a

Hopf algebra object in the category which is assigned to the circle.

In view of the above observations, we are in the situation of having a category

which is related with Rozansky-Witten theory through the work of Roberts and

Willerton [33] and for which we have identified the Hopf algebra. Our hope and

our expectation are that the orbit category would be useful to determine a rigorous

three-dimensional topological quantum field theory for Rozansky-Witten theory.



viii INTRODUCTION

Structure of the thesis

In Chapter 1 we give basic definitions about categories, functors and adjunc-

tions for the reader who is not familiar with this language. Then we discuss additive

and abelian categories, Serre functors on arbitrary k-linear Hom-finite categories

and orbit categories of additive categories following the work of Keller.

In Chapter 2 we review the basics on closed symmetric monoidal categories and

discuss monoidal and opmonoidal functors. Emphasis is given on rigid monoidal

categories.

In Chapter 3 we introduce the notion of the derived category of an abelian cat-

egory and discuss its strucure. Then, we discuss how derived functors on the level

of derived categories are defined.

In Chapter 4 we introduce the bounded derived category of coherent sheaves

on a smooth complex projective variety. Then, we discuss how to obtain derived

functors on the level bounded derived categories of coherent sheaves. Emphasis

is given in the various adjunctions which are formed between the derived func-

tors. We conclude the chapter discussing the strongly dualisable complexes in the

bounded derived category of coherent sheaves.

In Chapter 5 we review the basics of Hopf algebras in braided monoidal cate-

gories. Emphasis is given in the notion of the fusion operator due to Street.

In Chapter 6 we discuss Hopf monads on monoidal categories. We start explain-

ing the notion of a monad and then explain why the notion of a bimonad consists

of a generalisation of a bialgebra. Then, we discuss Hopf monads on monoidal cat-

egories.

In Chapter 7 which is the main chapter of this thesis we bring together all the

above notions. In particular, we discuss the orbit category of the bounded derived

category of coherent sheaves on a smooth complex projective variety and we prove

that in the case where the variety X is even dimensional and has trivial canonical

bundle then the Serre functor trivialises. Moreover, we prove that given a pair of ad-

joint functors defined between rigid symmetric monoidal categories such that the

right adjoint is a strong monoidal functor and has a right quasi-inverse then the

associated adjunction monad is an augmented Hopf monad with left regular aug-

mentation map. Finally, apply this general theory to the case of the orbit category

of an even dimensional smooth complex projective variety with trivial canonical

and pin down the Hopf algebra object in this category.

In the Appendix 8 we give the definition of a triangulated category and the

proofs of some technical lemmas.



Chapter 1

On categories and Serre functors

In this thesis, we will be mostly interested in categories and functors with spec-

ified structure and so this chapter serves as a first introduction on these topics. In

particular in Section 1.1 we recall the basic definitions of a category, of a functor be-

tween categories and of a natural transformation between functors. In Section 1.2

we study the important notion of an adjunction between functors. In Section 1.3

we discuss for first time categories with extra structure. In particular, we cover the

material of additive categories, of abelian categories and functors between them.

Having defined the notion of an additive category we define the very important no-

tion of a Serre functor in Section 1.4. Serre functors will appear again in Chapter

3. We close this chapter with Section 1.5 where we discuss orbit categories follow-

ing the work of Keller. Our particular interest will be in orbit categories of derived

categories, where the latter is discussed in Chapter 3.

1.1 Categories, functors and natural transformations

In this section, we cover the basic notions of a category, a functor and of a nat-

ural transformation. Our main reference for this section is [25].

We start with the definition of a category.

Definition 1.1.1. A category C consists of the following data.

1. A collection of objects which will be denoted by Ob(C ). Its elements will be

denoted by X , Y , Z .

2. For any two X and Y of Ob(C ), a collection of sets HomC (X ,Y ) of which

elements are called maps or arrows from X to Y .

3. For any X , Y and Z of Ob(C ), a map

HomC (Y , Z )×HomC (X ,Y ) → HomC (X , Z ), (g , f ) 7→ g ◦ f (1.1.1)

called the composition.

1
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4. For each object X of C an element idX of HomC (X , X ) called the identity on

X .

All the above satisfy the following:

• (h ◦ g ) ◦ f = h ◦ (g ◦ f ) for each f ∈ HomC (X ,Y ), g ∈ HomC (Y , Z ) and h ∈
HomC (Z ,W );

• f ◦ idX = f = idY ◦ f for each f ∈ HomC (X ,Y ).

Examples of categories which we will be interested in are the following.

Example 1.1.2. For a field k of characteristic zero, there is a category Vect(k) of

vector spaces over k and linear maps between them.

Example 1.1.3. Let R be a ring. Then, there is a category Mod(R) of which objects

are left R-modules and its morphisms are morphisms between left R-modules.

Example 1.1.4. Ler R be a commutative ring. Then, there is a category Ch(R) of

which objects are Z-graded chain complexes of left R-modules with differetial of

degree−1 and the morphisms are maps between chain complexes of left R-modules

which commute with the differentials.

Maps between categories are called functors. To be explicit, we give the follow-

ing definition.

Definition 1.1.5. Let C and D be categories. A functor F : C → D assigns an ob-

ject F (X ) of D to an object X of C and a morphism F ( f ) : F (X ) → F (Y ) of D to a

morphism f : X → Y in C such that the following axioms are satisfied:

• F (idX ) = idF (X ) for each object X of C ;

• F (g ◦ f ) = F (g )◦F ( f ) whenever the composition X
f−→ Y

g−→ Z is well defined.

Maps between functors are called natural transformations. To be explicit, we

give the following definition.

Definition 1.1.6. A natural transformation between functors F, G : C →D is a fam-

ily of morphisms

φX : F (X ) →G(X ) (1.1.2)

for all X of C such that the following diagram commutes for all f : X → Y .

F (X ) F (Y )

G(X ) G(Y )

F ( f )

φYφX

G( f )
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Remark 1.1.7. The above diagram is called the naturality square of the natural

transformation φ and will be extremely useful to prove the commutativity of var-

ious diagrams.

Remark 1.1.8. Let C be a category. Then, the endofunctors of C form a category

of which objects are functors F : C →C and its morphisms are natural transforma-

tions. This category is denoted by End(C ).

1.2 Adjunctions

In this section we discuss the notion of an adjunction between functors. Ad-

junctions consist of one of the main notions of this thesis. In particular, it will be

the adjunction between functors which will determine the structures that will want

to study further. We start recalling the definition.

Definition 1.2.1. Let C and D be categories and let F : C → D and U : D → C be

functors. We say that the functor F is left adjoint to U and the functor U is right

adjoint to F and write F aU if

HomD(F (A),B) ' HomC (A,U (B)) (1.2.1)

naturally in A ∈ C and B ∈ D. An adjunction between F and G is a choice of an

natural ismorphism (1.2.1).

The following correspondence will be useful for applications. Actually, we will

view adjunctions through the prism of the following equivalence.

Theorem 1.2.2 ([25] p.53). Let C and D be categories and let F : C →D and U : D →
C be functors between these categories. Then the following are equivalent:

• adjunctions between F and U with F being a left adjoint to U ;

• pairs of natural transformations (idC
η−→U F, FU

ε−→ IdD) such that the fol-

lowing diagrams commute for all X of C and Y of D.

F (X ) FU F (X )

F (X )

F (ηX )

εF (X )idF (X )

U (Y ) U FU (Y )

F (Y )

ηU (Y )

U (εY )idF (Y )

Notation 1.2.3. The natural transformation η is called the adjunction unit or sim-

ply unit, the natural transformation ε is called the adjunction counit or simply

counit .
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We will be interested in sheaves of modules later in this thesis and the proposi-

tion below will be helpful. First we fix some notation.

Notation 1.2.4. Let f : X → Y be a smooth map between topological spaces and

denote by Sh(X ) and Sh(Y ) the categories of sheaves on X and Y respectively. As-

sociated to f is the direct image functor f∗ : Sh(X ) → Sh(Y ) and the inverse image

functor f −1 : Sh(Y ) → Sh(X ). If R is a sheaf of rings on X then f∗R is a sheaf of

rings on Y . Moreover, if S is a sheaf of rings on Y then f −1S is a sheaf of rings on

X . The functors f∗ and f −1 above induce the following functors, denoted with the

same notation

f∗ : ShR(X ) → Sh f∗R(Y ), f −1 : ShS (Y ) → Sh f −1S (X ).

where ShR(X ) and ShS (Y ) denote now the categories sheaves of R-modules over

X and the sheaves of S -modules over Y . Similarly, we denote by Sh f∗R(Y ) and

Sh f −1S (X ) the category of sheaves of f∗R-modules over Y and the category of

sheaves of f −1S -modules over X .

Proposition 1.2.5 ([18] Proposition 2.3.3). Let f : X → Y be a smooth map between

topological spaces and let S be a sheaf of rings on Y . Then, there exists a natural

isomorphism

Hom f −1S ( f −1 A,B)
∼−→ HomS (A, f∗B)

where S is a sheaf of rings over Y , A is an object of ShS (Y ) and B is an object of

Sh f −1S (X ). In other words, the functor f −1 : ShS (Y ) → Sh f −1S (X ) is a left adjoint

to f∗ : Sh f −1S (X ) → ShS (Y ).

1.3 Additive categories and abelian categories

In this section, we will discuss categories with extra structure and in particu-

lar, additive categories, abelian categories and functors between such categories.

Abelian categories which are additive categories with extra structure will be used in

Chapter 3 to define derived categories. Our main reference for this section is [12].

Definition 1.3.1. An additive category is a category C such that the following are

satisfied.

1. The hom set HomC (X ,Y ) of arrows from X to Y is an abelian group, with

operation the addition, and the composition law is biadditive with respect to

this structure.

2. There exists an object of C called the zero object and which is denoted by

0 such that the hom sets HomC (X ,0) and HomC (0, X ) are equal to the one

element trivial group 0, for all X of C .
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3. For any X1, X2 of C , there exists an object Y and morphisms π1 : Y → X1,

π2 : Y → X2, i1 : X1 → Y and i2 : X2 → Y such that Y is the direct sum and the

direct product of X1 and X2.

Example 1.3.2. The category of abelian groups is an additive category.

Example 1.3.3. Let R be a ring. Then the category Mod(R) of left R-modules is an

additive category.

Definition 1.3.4. Let k be a field. An additive category C is said to be k-linear if for

any object X and Y of C the hom sets HomC (X ,Y ) are k-linear vector spaces and

the composition law is bilinear.

Functors between additive categories preserve the additive structure.

Definition 1.3.5. Let F : C → D be a functor between additive categories. Then, F

is said to be an additive functor if the maps

HomC (X ,Y ) → HomD

(
F (X ),F (Y )

)
(1.3.1)

are homomorphisms of abelian groups for all X and Y of C . Similarly, F is said to

be k-linear if homorphisms 1.3.1 are k-linear.

Next we define abelian categories. To do this, we need the notion of a kernel

and of a cokernel of a morphism. We give these definitions first.

Definition 1.3.6. Let C be an additive category and f : X → Y be a morphism in C .

1. The kernel of f is a pair (K ,k) where K is an object of C and k : K → X is a

morphism in C such that f ◦k = 0 and also, if there is another map k ′ : K ′ → X

such that f ◦k ′ = 0 then there exists a unique k ′′ : K ′ → K such that k ◦k ′′ = k ′.

2. The cokernel of f is a pair (C ,c) where C is an object of C and c : Y → C is a

morphism in C such that c ◦ f = 0 and also, if there is another map c ′ : Y →C ′

such that c ′ ◦ f = 0 then there exists a unique c ′′ : C →C ′ such that c ′′ ◦ c = c ′.

Remark 1.3.7. Although kernels and cokernels of maps in additive categories don’t

exist always, if they do exist then they are unique up to a unique isomorphism.

Notation 1.3.8. The kernel of a map f : X → Y in an additive category C will be

denoted by ker( f ). Similarly, the cokernel of f : X → Y in C will be denoted by

coker( f ).

Definition 1.3.9. Let C be an additive category. Then, C is said to be abelian for

every morphism f : X → Y in C there exists a sequence

K
k−→ X

i−→ I
j−→ Y

c−→C (1.3.2)

such that the following are true.
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• The pair (K ,k) is the kernel of f and the pair (C ,c) is the cokernel of f .

• The pair (I , i ) is the cokernel of the map k and the pair (I , j ) is the kernel of

the map c.

• It is true that j ◦ i = f .

In the following, we collect examples of abelian categories which we would like

to keep in mind.

Example 1.3.10. Let R be a commutative ring. Then, the category Mod(R) of left

R-modules is abelian. Moreover, the full subcategory of finitely generated modules

is an abelian category.

Example 1.3.11. Let X be a topological space. The category Sh(X ) of sheaves of

abelian groups is an abelian category. Moreover, if we fix a sheaf of commutative

rings on X , then the subcategory of sheaves of modules over this sheaf is abelian.

The following example of an abelian category is very important and the reader

is advised to keep it in mind.

Example 1.3.12. Let X is a smooth complex projective variety. We denote its struc-

ture sheaf by OX . A sheaf of OX -modules is a sheaf E over X with a natural map

of sheaves OX ⊗E → E . A coherent sheaf on X is an OX -module which is locally a

quotient of a finite-rank locally-free sheaf. Here, locally free means that any point

has a neighbourhood U over which the sections are isomorphic to the sheaf O⊕n
U ,

for some n. Examples of locally free sheaves are holomorphic vector bundles on a

finite dimensional complex manifold.

In the following we discuss left exact and right exact functors. Such functors

are defined between abelian categories and will be essential for Chapter 3 and in

particular the study of derived functors.

Definition 1.3.13. A functor F : C →D between abelian categories is said to be left

exact if for any short exact sequence 0 → X → Y → Z → 0 in C the sequence

0 → F (X ) → F (Y ) → F (Z ) (1.3.3)

is exact in D. Similarly, the functor F is said to be a right exact if the sequence

F (X ) → F (Y ) → F (Z ) → 0 (1.3.4)

is exact in D. If F is left and right exact, then F is simply called exact.

Example 1.3.14. Let X and Y be objects of an abelian category C . Then, the func-

tors

Hom(A,−) : C → Ab, Hom(−, A) : C op → Ab (1.3.5)

are left exact. Here, C op denotes the opposite category of C .
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Definition 1.3.15. Let C be an abelian category.

1. An object I of C is said to be injective, if the functor Hom(−, I ) : C op → Ab is

right exact.

2. An object P of C is said to be projective, if the functor Hom(P,−) : C → Ab is

right exact.

1.4 Serre functors

Serre functors are functors which were defined by Bondal and Kapranov [6] for

triangulated categories. Later this notion was generalised by Reiten and Van den

Bergh [32] to any k-linear and Hom-finite categories. In this section, we make a

first discussion about Serre functors for k-linear categories and we will revisit this

notion on the level of derived categories of coherent sheaves in Chapter 4. Our

presentation of this section follows [16] and [32] closely.

Definition 1.4.1. Let A be a k-linear category which is Hom-finite. A Serre functor

is an additive functor S : A →A together with a natural isomorphism

ηX ,Y : HomA (X ,Y )
∼−→ HomA (Y ,S(X ))∨ (1.4.1)

for all X ,Y objects of A and (−)∨ := Homk (−,k).

The following proposition establishes a criterion for an endofunctor on a k-

linear, Hom-finite category A with finite hom spaces to be a Serre functor.

Proposition 1.4.2 ( [32] Proposition I.1.4). In order to define a Serre functor (S,ηX ,Y )

on a k-linear and Hom-finite category A it is necessary and sufficient to give the

action of S on objects, as well as k-linear maps ηX : HomA (X ,SX ) → k such that the

composition

HomA (X ,Y )×HomA (Y ,SX )
◦−→ HomA (X ,SX )

ηX−−→ k (1.4.2)

yields a non-degenerate pairing for all X and Y of A . If we are given ηX , then ηX ,Y

is obtained from the pairing.

The following lemma will be important for applications in the next section.

Lemma 1.4.3 ([16] p.10). Let A and B be k-linear, hom finite categories. If A and B

are endowed with Serre functors SA and SB , then any k-linear equivalence F : A →
B commutes with the Serre functors; symbolically

F ◦SA ' SB ◦F.
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The following theorem establishes a relation between Serre functors and ad-

joints.

Theorem 1.4.4 ([16] Remark 1.31). Let U : A →B be a functor between k-linear cat-

egories with finite dimensional hom-spaces and let F : B →A be a left adjoint to U ;

symbolically F aU . Then the functor SA ◦F ◦S−1
B

is right adjoint to U ; symbolically

U a SA ◦F ◦S−1
B

.

Proof. For an object A of A and an object B of B the following chain of maps gives

the required

Hom(A,SA ◦F ◦S−1
B (B)) ' Hom((F ◦S−1

B )(B), A)∨ (Serre duality)

' Hom(S−1
B (B),U (A))∨ (F aU )

' Hom(U (A),SB(S−1
B )(B)) (Serre duality)

' Hom(U (A),B). (SB ◦S−1
B

= id)

1.5 Orbit categories after Keller

In this section, we introduce the notion of the orbit category of a k-linear cat-

egory and discuss how to obtain functors on the level of orbit categories. Our pre-

sentation follows closely the work of Keller in [22] and [21].

Definition 1.5.1 (Keller [22]). Let C be a k-linear category and F : C → C be an

autoequivalence. Then, the orbit category of C is defined to be the category C /F

with objects the same as C and hom spaces to be defined by

HomC /F (X ,Y ) = ⊕
n∈Z

HomC (X ,F nY ) (1.5.1)

for all X , Y objects of C . The composition of two morphisms f : X → F nY and

g : Y → F m Z is defined by (F n g )◦ f : X → F m+n Z .

Notation 1.5.2. We will denote by π : C → C /F the canonical projection functor

endowed with a natural isomorphism φ :π◦F
∼−→π given by the identity on F X , for

any object X .

Lemma 1.5.3 ([2] p.115). Let C be a k-linear category and F : C → C be an autoe-

quivalence. Then, C /F is a k-linear category.

In order to define functors on the level of orbit categories we need the following

definitions.
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Definition 1.5.4. Let C and D be k-linear categories and F : C → C be an autoe-

quivalence. A left F -invariant functor from C to D is a k-linear functor H : C →D

endowed with a natural isomorphism η : HF
∼−→ H .

A morphism between F -invariant functors (H1,η1) → (H2,η2) is defined to be a

morphism of functors γ : H1 → H2 such that the following square commutes.

H1F H1

H2F H2

η1

γF γ

η2

Notation 1.5.5. We will denote by FunF−inv(C ,D) the category of F -invariant func-

tors from C to D.

An important example of such functors is the following one.

Example 1.5.6. The projection functor π : C →C /F with the natural isomorphism

φ : π◦F
∼−→π is a F -invariant functor.

We can obtain more F -invariant functors by composing any functor of the form

H : C /F → D with the natural projection functor π : C → C /F . More explicitly, we

have the following.

Example 1.5.7. Let H : C /F → D be any functor and (π,φ) as above. Then the

composite H ◦π : C →D is an F -invariant functor where the natural isomorphism

(H ◦π)◦F
∼−→ H ◦π is given by H(φ).

Moreover, the category of functors from the orbit category C /F to a category

D is equivalent to F -invariants functors from C to D. In particular, we have the

following.

Proposition 1.5.8 ([21]). Let (π,φ) : C →C /F be the projection functor. Then, there

is an equivalence between Funk (C /F,D) and FunF−inv(C ,D).

Proof. (Sketch) If G is a functor from C /F to D then G ◦π : C →D is an F -invariant

morphism with natural isomorphism (G ◦π) ◦F
∼−→ G ◦π given by G(φ). Moreover,

for functors G1, G2 from C /F to D and γ : G1 → G2 a morphism between them, it

induces an F -invariant morphism γ◦π : G1π→G2π.

In the other direction, if (H ,η) is an F -invariant functor from C to D, then it in-

duces a functor H : C /F →D such that a morphism f : X → F Y in C /F is mapped

to the composite

H X
H f−−→ HF Y

∼−→ HY .
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Definition 1.5.9. An F -equivariant functor on a k-linear category C with autoe-

quivalence F : C → C is a k-linear functor H : C → C endowed with a natural

isomorphism η : HF
∼−→ F H .

The composition of two equivariant functors (H1,η1) and (H2,η2) is defined as

the functor H1H2 endowed with the composed isomorphism (η2H1)(H2η1).

Notation 1.5.10. We will denote by FunF -eq(C ,C ) the category of F -equivariant

functors of C .

Lemma 1.5.11 ([21]). Let (H ,η) be an F -equivariant functor on C . Then,π◦H : C →
C /F is naturally an F -invariant functor.

Proof. The natural isomorphism (πH) ◦F
∼−→ (πH) which makes πH a F -invariant

functor is given by the following composition.

πHF πF H

πH

πη

φH∼

Corollary 1.5.12. Starting with an F -equivariant functor, we obtain naturally an

F -invariant functor and from the equivalence (1.5.8) a functor on the level of orbit

categories; symbolically

FunF−equiv(C ,C ) → FunF−inv(C ,C /F )
∼−→ Fun(C /F,C /F )

Example 1.5.13. The functor F , which is used to define the orbit category, can be

made into an F -equivariant functor with natural transformation η = idF 2 . To see

this, recall that that π(X ) = idX for all objects X and that the following diagram is

commutative.

πF F πF F

πF

π idF 2

idF∼

Next, we discuss the notion of a Serre functor on orbit categories. Let C be a k-

linear Hom-finite category and let F : C → C be an autoequivalence. Assume that

SC is a Serre functor on C , as discussed in Definition 1.4.1. By Proposition 1.4.2 any

Serre functor on a k-linear Hom-finite category is determined by the trace maps

tX : HomA (X ,SX ) → k. Suppose that there exists σF : F ◦SX → SX ◦F such that

tF X
(
(σF X )◦F ( f )

)= tX ( f )
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for all morphisms f : X → SX . To unwrap the last assumption, if f : X → SX then

tF X
(
(σF X )◦F ( f )

)
is the assignment which maps a number of the field k to the com-

posite F X
F f−−→ F SX

σF X−−−→ SF (X ).

Lemma 1.5.14 (Keller [22]). Let C be a k-linear Hom-finite category and let F : C →
C be an autoequivalence and let SC be a Serre functor on C . Then, the pair (SX ,σ−1)

is an F -equivariant functor and so induces a Serre functor on the orbit category C /F

with induced trace map given by

tπX ( f ) =
{

tX ( f ) if f : X → SX

0 if f : X → F p SX
.
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Chapter 2

On monoidal categories and functors

The goal of this chapter is to study closed symmetric monoidal categories and

the associated functors between them. Furthermore, we discuss braided monoidal

categories and the important notion of rigid monoidal categories.

The material of this chapter is presented as follows. In Section 2.1 we introduce

the notion of a monoidal category and discuss the notion of a monoidal functor. In

Section 2.2 we will discuss another class of functors between monoidal categories,

the opmoidal functors which will be of much interest in Chapter 6 and in Chapter 7.

In Section 2.3 we discuss braided monoidal categories and symmetric monoidal

categories in order to define Hopf algebras in braided monoidal categories in Chap-

ter 5 and vast generalisations of Hopf algebras in a non-braided setup in Chapter 6.

In Section 2.4 we discuss the important notion of a category with duals and in Sec-

tion 2.5 we discuss the notion of a closed category.

2.1 Monoidal categories and monoidal functors

In this section, we introduce the notion of a monoidal category following [28]

closely.

Definition 2.1.1. A monoidal category is the data (C ,⊗,1C ,α, l ,r ) where C is a cat-

egory, ⊗ : C ×C → C is a bifunctor called the monoidal product, 1C is a specified

object in C called the unit object and natural isomorphisms

αX ,Y ,Z : (X ⊗Y )⊗Z
∼−→ X ⊗ (Y ⊗Z ) (associator)

lX : 1⊗X
∼−→ X (left unit)

rX : X ⊗1
∼−→ X (right unit)

defined for all objects X ,Y and Z of C such thatα, l , r make the following diagrams

commutative.

13
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(Pentagon)

(X ⊗Y )⊗ (Z ⊗W )

(
(X ⊗Y )⊗Z

)⊗W X ⊗ (
Y ⊗ (Z ⊗W )

)

(
X ⊗ (Y ⊗Z )

)⊗W X ⊗ (
(Y ⊗Z )⊗W

)αX ,Y ,Z ⊗ idW idX ⊗αY ,Z ,W

αX ,Y ⊗Z ,W

αX⊗Y ,Z ,W αX ,Y ,Z⊗W

(Triangle)

X ⊗Y

(X ⊗1)⊗Y X ⊗ (1⊗Y )
αX ,1,Y

rX ⊗ idY idX ⊗lY

Example 2.1.2. Let k be a field of characteristic zero. Then, the category Vect f (k) of

finite dimensional vector spaces over k is a monoidal category with monoidal unit

the field k and monoidal product the tensor product of k-vector spaces.

Example 2.1.3. Let C be a category. Then, the category End(C ) of the endofunctors

of C is a monoidal category with monoidal product the composition of functors

and monoidal unit the identity functor.

Example 2.1.4. Ler R be a commutative ring. Then, the category Ch(R) ofZ-graded

chain complexes of R-modules with differetial of degree −1 is a monoidal category

with monoidal product being the graded tensor product which is defined by

(X ⊗R Y )n = ∑
p+q=n

Xp ⊗R Yq , d(x ⊗ y) = d(x)⊗ y + (−1)pq x ⊗d(y).

for all complexes X and Y of Ch(R).

In the following, we review the basics of monoidal functors between monoidal

categories following [7] closely.

Definition 2.1.5. Let (C ,⊗C ,1C ) and (D,⊗D ,1D) be monoidal categories. A monoidal

functor from the C to D is a triple (F,F0,F2), where F : C →D denotes a functor with

F0 : 1D → F (1C ) being a morphism in D and F2 : ⊗D ◦ (F ×F ) → F ◦⊗C being a nat-

ural transformation and such that the following diagrams commute for all objects

X ,Y and Z of C .



2.1. MONOIDAL CATEGORIES AND MONOIDAL FUNCTORS 15

F (X )⊗F (Y )⊗F (Z ) F (X )⊗F (Y ⊗Z )

F (X ⊗Y )⊗F (Z ) F (X ⊗Y ⊗Z )

idF (X )⊗F2(Y , Z )

F2(X ⊗Y , Z )

F2(X ,Y )⊗ idF (Z ) F2(X ,Y ⊗Z )

F (X ) F (X )⊗F (1C )

F (1C )⊗F (X ) F (X ⊗1C )

idF (X )⊗F0

F0 ⊗ idF (X )

idF (X )
F2(1, X ) F2(X ,1)

Notation 2.1.6. A monoidal functor (F,F0,F2) is said to be strong, if F0 and F2 are

isomorphisms. The monoidal functor (F,F0,F2) is called strict if F0 and F2 are iden-

tities.

Next, we define the notion of a monoidal natural transformation between monoidal

functors.

Definition 2.1.7. A natural transformation φ : F → U between monoidal functors

is monoidal if the following diagrams commute for all for all X ,Y of C .

F (X )⊗F (Y ) F (X ⊗Y )

U (X )⊗U (Y ) U (X ⊗Y )

F2(X ,Y )

U2(X ,Y )

φX ⊗φY φX⊗Y

1D F (1C )

U (1C )

F0

U0
φ1

Two monoidal functors can be composed and the composite is a monoidal func-

tor. More precisely, we have the following lemma.

Lemma 2.1.8 ([38] p.16). Let F : A1 → A2 and G : A2 → A3 be two monoidal func-

tors between monoidal categories. Then, the functor G ◦F : A1 → A3 is a monoidal

functor with constraints (GF )2 =G(F2)◦G2 and (GF )0 =G(F0)◦G0.

Lemma 2.1.9 ([13] Section 3). Let (F : C →D,U : D →C ) be a pair of adjoint func-

tors between monoidal categories such that F is a strong monoidal functor and left

adjoint to U . Then, it is defined a monoidal structure on U by

U (X )⊗U (Y )
η−→U F

(
U (X )⊗U (Y )

) '−→U
(
FU (X )⊗FU (Y )

) U (ε⊗ε)−−−−→U (X ⊗Y )

1C
η−→U F (1C )

U (F0)−−−−→U (1D)

for all X and Y objects of D.
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Corollary 2.1.10 ([13] Section 3). Let (F : C →D,U : D →C ) be as the above Lemma.

Then, it is defined the morphism

π : X ⊗U (Y )
η⊗id−−−→U F (X )⊗U (Y ) →U (F (X )⊗Y ) (2.1.1)

for all X of C and Y of D.

Remark 2.1.11. We have to underline here that π is not an isomorphism in general.

If it is, then π is called the projection formula in [13].

2.2 Opmonoidal functors

In this section, we introduce the notion of an opmonoidal functor between

monoidal categories. Our presentation follows [7] closely and it is similar to the

material on monoidal functors. The reason for introducing and discuss in this sec-

tion independently is that in Chapter 6 where we will discuss the generalisations of

Hopf algebras in a non-braided setup, opmonoidal functors will play fundamental

role.

Definition 2.2.1. Let (C ,⊗C ,1C ) and (D,⊗D ,1D) be monoidal categories. An op-

monoidal functor from C to D is a triple (F,F2,F0), where F : C → D is a functor,

F2 : F ◦⊗C →⊗D ◦ (F ×F ) is a natural transformation and F0 : F (1C ) → 1D is a mor-

phism in D such that the following diagrams commute for all objects X , Y and Z of

C .

F (X ⊗Y ⊗Z ) F (X )⊗F (Y ⊗Z )

F (X ⊗Y )⊗F (Z ) F (X )⊗F (Y )⊗F (Z )

F2(X ,Y ⊗Z )

F2(X ,Y )⊗ idF (Z )

F2(X ⊗Y , Z ) idF (X )⊗F2(Y , Z )

F (X ) F (X )⊗F (1C )

F (1C )⊗F (X ) F (X )

F2(X ,1)

F0 ⊗ idF (X )

idF (X )
F2(1, X ) idF (X )⊗F0

Notation 2.2.2. An opmonoidal functor (F,F2,F0) is said to be strong, if F2 and F0

are isomorphisms. Then (F,F−1
2 ,F−1

0 ) is a strong monoidal functor. An opmonoidal

functor (F,F2,F0) is called strict if F2 and F0 are identities.
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Next, we define the notion of an opmonoidal natural transformation between

opmonoidal functors.

Definition 2.2.3. A natural transformation φ : F → U between opmonoidal func-

tors is opmonoidal if the following diagrams commute for all X , Y of C .

F (X ⊗Y ) F (X )⊗F (Y )

U (X ⊗Y ) U (X )⊗U (Y )

F2(X ,Y )

U2(X ,Y )

φX⊗Y φX ⊗φY

F (1C ) U (1C )

1D

φ1

F0
U0

Composition of opmonoidal functors is again an opmonoidal functor as the fol-

lowing lemma establishes.

Lemma 2.2.4 ([38], p.16). Let F : A1 →A2 and G : A2 →A3 be two opmonoidal func-

tors between monoidal categories. Then, G ◦F : A1 → A2 is an opmonoidal functor

with opmonoidal constraints (U F )2 =U2 ◦U (F2) and (U F )0 =U0 ◦U (F0).

The following definition introduces a specific kind of adjunction and it will be

of much interest in Chapter 6 and in Chapter 7.

Definition 2.2.5. Let C and D be monoidal categories and let F : C →D be a func-

tor with right adjoint the functor G : D → C . Then, the adjunction F aU is called

an opmonoidal adjunction if both F and U are given the structure of opmonoidal

functors and the adjunction unit η : 1C → U F and adjunction counit ε : FU → 1D

are opmonoidal natural transformations.

We will be particularly interested in is the case where for the adjuction F a U

the right adjoint U is a strong monoidal functor.

Theorem 2.2.6 ([8] Theorem 2.6). Let C and D be monoidal categories. Assume

also that there are functors F : C → D and U : D → C such that U is the right ad-

joint; symbolically F aU . Then monoidal structures on U correspond to opmonoidal

structures on F .

If moreover, U is a strong monoidal functor, then the composite U F is an op-

monoidal functor.

To make the above statement precise, the fact that U is a monoidal functor

means that there is morphisms U (X )⊗U (Y ) → U (X ⊗ Y ) and 1C → U (1D) in C

such that they satisfy the diagrams of Definition 2.1.5. Then the corresponding op-

monoidal structure on F is defined to be

F (X ⊗Y )
F (ηX ⊗ηY )−−−−−−−→ F

(
U F (X )⊗U F (Y )

)→ FU
(
F (X )⊗F (Y )

) ε−→ F (X )⊗F (Y )
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and

F (1C ) → FU (1D)
ε−→ 1D

for all X and Y of C .

Remark 2.2.7. The above theorem will be fundamental for the theory of bimonads,

which will be discussed in 6.2.

In the remaining of this section, we assume that it is given a pair of adjoint func-

tors of which the right adjoint is a strong monoidal functor and has a right quasi-

inverse. Then, we define a specific natural transformationψ and we state a number

of results of which the proof can be found in the appendix. All the following will be

used for the proof of Lemma 7.2.14 and so the reader may skip the next part and

return when it will be needed.

Definition 2.2.8. Let (F : C → D,U : D → C ) be a pair of adjoint functors defined

between monoidal categories such that the right adjoint U is a strong monoidal

functor. Assume also that there exists a strong monoidal functor W : C →D which

is also a right quasi-inverse to U ; symbolically we have UW ∼= id. We define the

natural transformation ψ : F → F (1)⊗W (−) to be the composite

F (A) → F (1⊗ A) = F (1⊗UW A)
F (η⊗id)−−−−−→ F

(
U F (1)⊗UW A

)
∼−→ FU (F (1)⊗W A)

ε−→ F (1)⊗W A

for all A of C . Moreover, the natural transformation ψ will be useful to prove some

technical lemmas later.

Proposition 2.2.9. Let U : D → C be a strong monoidal functor with left adjoint

F . Moreover, assume also that there exists a functor W : C → D such that UW ∼= id.

Then the morphism γA,1 : F (1⊗A⊗1⊗B) → F (1)⊗W A⊗F (1)⊗W B defined to be the

composite

γA,1 = ε◦FU
(
ε⊗ε◦ (

F (U 2)⊗F (U 2)
))◦F

(
U 2 ◦ (η⊗η)◦ (η1 ⊗ idA ⊗η1 ⊗ idB )

)
makes the following diagram commutative for all A and B of C .

F (A⊗B) F (A)⊗F (B)

F (1⊗ A⊗1⊗B) F (1⊗ A)⊗F (1⊗B)

F (1)⊗W A⊗F (1)⊗W B

F2(A,B)

F (l−1
A ⊗ l−1

B ) F (l−1
A ⊗ l−1

B )

γA,1 ψ1⊗A ⊗ψ1⊗B
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Proposition 2.2.10. Let U : D → C be a strong monoidal functor with left adjoint

F . Moreover, assume also that there exists a functor W : C → D such that UW ∼= id.

Then the morphism ζ1,A : F (1⊗1⊗A⊗B) → F (1)⊗F (1)⊗W A⊗W B defined to be the

composite

ζ1,A = ε◦FU
(
ε⊗ε◦ (

F (U 2)⊗F (U 2)
))◦F

(
U 2 ◦ (η⊗η)◦ (η1 ⊗η1 ⊗ idA ⊗ idB )

)
makes the following diagram commutative for all A and B of C .

F (1⊗ A⊗B) F (1⊗1⊗ A⊗B)

F (1)⊗W A⊗W B F (1)⊗F (1)⊗W A⊗W B

F (l−1
1⊗A⊗B )

(U F )2(1,1)⊗ idW A⊗W B

ψA⊗B ζA,1

The next two Lemmas we will be essential to prove Proposition 2.2.13.

Lemma 2.2.11. Let U : D → C be a strong monoidal functor with left adjoint F .

Moreover, assume also that there exists a functor W : C → D such that UW ∼= id.

Then, the following diagram is commutative.

(
U F (1)⊗U F (1)

)⊗ (
UW A⊗UW B

)
U

(
F (1)⊗F (1)

)⊗U
(
W A⊗W B)

)

U F
(
U F (1)⊗U F (1)

)⊗U F
(
U F (1)⊗UW B)

)

U
(
F

(
U F (1)⊗U F (1)

)⊗F
(
UW A⊗UW B

))

U
(
FU

(
F (1)⊗F (1))⊗FU (W A⊗W B

))
U

(
F (1)⊗F (1)⊗W A⊗W B

)

η⊗η

U 2

U
(
F (U 2)⊗F (U 2)

)

U (ε⊗ε)

U 2 ⊗U 2

U 2

In a similar sense with Lemma 2.2.11, we have also the following.

Lemma 2.2.12. Let U : D → C be a strong monoidal functor with left adjoint F .

Moreover, assume also that there exists a functor W : C → D such that UW ∼= id.

Then, the following diagram is commutative.
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U (F (1)⊗W A)⊗U (F (1)⊗W B) (U F (1)⊗UW A)⊗ (U F (1)⊗UW B

U F (U F (1)⊗UW A)⊗U F (U F (1)⊗UW B)

U
(
F (U F (1)⊗UW A)⊗F (U F (1)⊗UW B)

)

U (F (1)⊗W A⊗F (1)⊗W B) U (FU (F (1)⊗W A)⊗U (F (1)⊗W B))

U 2 ⊗U 2

U 2

η⊗η

U 2

U (F (U 2)⊗F (U 2))

U (ε⊗ε)

For the next proposition, recall that in Proposition 2.2.9 and in Proposition 2.2.10

we defined morphisms

γ1,A : F (1⊗1⊗ A⊗B) → F (1)⊗F (1)⊗W A⊗W B

ζA,1 : F (1⊗ A⊗1⊗B) → F (1)⊗W A⊗F (1)⊗W B

Proposition 2.2.13. Let U : D → C be a strong monoidal functor with left adjoint

F . Moreover, assume also that there exists a functor W : C → D such that UW ∼= id.

Then, the morphisms γ1,A and ζA,1 make the following diagram commutative for

every A and B of C .

F (1⊗1⊗ A⊗B) F (1⊗ A⊗1⊗B)

F (1)⊗F (1)⊗W A⊗W B F (1)⊗W A⊗F (1)⊗W B

F (id1⊗τ1,A ⊗ idB )

γ1,A ζA,1

id⊗τF (1),W A ⊗ id

2.3 Symmetries, braidings and centres of categories

In this section, we discuss braided monoidal categories and symmetric monoidal

categories. Then, we discuss the construction of the centre of a category which

turns out to be always a braided category even if the original category is not braided.

Definition 2.3.1. Let C be a monoidal category. A braiding for C is a natural iso-

morphism τ : X ⊗Y
∼−→ Y ⊗ X such that the following diagrams commute for all X ,

Y and Z objects of C .
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X ⊗1 1⊗X

X

τX ,1

rX lX

(Y ⊗X )⊗Z Y ⊗ (X ⊗Z )

(X ⊗Y )⊗Z Y ⊗ (Z ⊗X )

X ⊗ (Y ⊗Z ) (Y ⊗Z )⊗X

τX ,Y ⊗ idZ

αY ,X ,Z

idY ⊗τX ,Z

αY ,Z ,X

τX ,Y ⊗Z

αY ,Z ,X

(X ⊗Y )⊗Z Z ⊗ (X ⊗Y )

X ⊗ (Y ⊗Z ) (Z ⊗X )⊗Y

X ⊗ (Z ⊗Y ) (X ⊗Z )⊗Y

α−1
X ,Y ,Z

τX⊗Y ,Z

α−1
Z ,X ,Y

idX ⊗τY ,Z

α−1
X ,Z ,Y

τX ,Z ⊗ idB

Notation 2.3.2. The bottom two diagrams in the definition above are called the

hexagons.

Next, we introduce the notion of a symmetric monoidal category.

Definition 2.3.3. A braided monoidal category C is said to be symmetric if the nat-

ural isomorphism τ : X ⊗Y
∼−→ Y ⊗X makes the following diagram commutative for

all X and Y objects of C .

X ⊗Y Y ⊗X

X ⊗Y

τX ,Y

idX⊗Y τY ,X

We will be mainly interested in symmetric monoidal categories and in the fol-

lowing we provide some useful examples for the following.
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Example 2.3.4. Let k be a field of characteristic 6= 2. Then, the category sVectk of

Z2-graded vector spaces with symmetry given by τX ,Y (x ⊗ y) = (−1)|x||y |y ⊗x where

|x|, |y | ∈ {0,1}, x ∈ X , y ∈ Y and X ,Y ∈ sVect is a symmetric monoidal category.

An important example is the following.

Example 2.3.5. Recall from Example 2.1.4 that that the category Ch(R) ofZ-graded

chain complexes of R-modules is a monoidal category. Furthermore, Ch(R) is a

symmetric monoidal category with symmetric τX ,Y : X ⊗Y
∼−→ Y ⊗ X to be defined

by

τ(x ⊗ y) = (−1)pq y ⊗x (2.3.1)

for all x ∈ Xp and y ∈ Yq .

To each monoidal category C one can assign a braided category, called the cen-

tre of the category which is the analogue of the centre of an algebra A over a field k

of characteristic zero. The notion of the centre of a category will play an important

notion the Chapter 6.5 where we will discuss Hopf monads represented by Hopf

algebras. First, we introduce the notion of a half braiding.

Definition 2.3.6. Let C be a monoidal category and let A be an object of C .

1. A half braiding for the object A is a pair (A,σ) where σ is a family of isomo-

prhisms σX : A⊗X
∼−→ X ⊗ A natural in X of C such that

σX⊗Y = (idX ⊗σY )◦ (σX ⊗ idY ) (2.3.2)

for all X , Y objects of C .

2. The centre of a category C is the category Z (C ) of which objects are half-

braidings. Let (A,σ) and (B ,ρ) be two half braidings in Z (C ). Then, an mo-

prhism of half braidings from (A,σ) to (B ,ρ) is a map f : A → B in C such that

the following diagram commutes for all X of C .

A⊗X X ⊗ A

B ⊗X X ⊗B

σX

idX ⊗ ff ⊗ idX

ρX

Theorem 2.3.7 ([20] p.330). Let C be a monoidal category. Then, Z (C ) is a braided

monoidal cateogry with monoidal product defined by

(A,σ)⊗Z (C ) (B ,ρ) = (
A⊗B , (σ⊗ idB )◦ (idA ⊗ρ)

)
, (2.3.3)

unit object defined by 1Z (C ) = (1C , id) and braiding τ defined by

τ(A,σ),(B ,ρ) =σB : (A,σ)⊗ (B ,ρ) → (B ,ρ)⊗ (A,σ). (2.3.4)
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2.4 Rigid categories

In this section, we discuss categories with duals. Our presentation for this sec-

tion follows [20, Section XIV.2] and [38, Section 1.6] closely.

Definition 2.4.1. A monoidal category (C ,⊗,1) is said to have a left duality if for

each object X of C there exist an object ∨X and morphisms

evX : ∨X ⊗X → 1, coevX : 1 → X ⊗∨X (2.4.1)

such that the following relations, called the snake relations for the left dual, are sat-

isfied.

(idX ⊗evX )◦ (coevX ⊗ idX ) = idX , (evX ⊗ id∨X )◦ (id∨X ⊗coevX ) = id∨X (2.4.2)

In that case, we say that the object (∨X ,evX ,coevX ) is a left dual of X .

Remark 2.4.2. If the left dual of an object X of a monoidal category C exists then

it is unique up to a unique isomorphism which preserves the evaluation and the

coevaluation, for details see [38, Section 1.6.1]

In the following, we discuss a fundamental example for a category with left du-

ality, that of finite dimensional vector spaces. First we fix some notation. For any

two finite dimensional k-vector spaces V and W there exists an isomorphism

φW,V : V ⊗Hom(W,k)
∼−→ Hom(W,V ), v ⊗ f 7→ (w 7→φW,V (v ⊗ f )(w)

)
where w ∈W , v ∈V and f ∈ Hom(W,k).

Example 2.4.3. Let Vect f (k) be the monoidal category of finite dimensional vector

spaces over k. For any k-vector space V with basis {vi } its left dual is defined as

follows. Let ∨V be the k-vector space Homk (V ,k) with basis denoted by {v i } and

consider morphisms

evV : ∨V ⊗V → k, v i ⊗ v j 7→ v i (v j ) = δi j (2.4.3)

and

coevV : k →V ⊗∨V , 1 7→φ−1
V ,V (idV ) =∑

i
vi ⊗ v i (2.4.4)

where φV ,V : V ⊗∨V
∼−→ Hom(V ,V ) as defined in 2.4. Then, (∨V ,evV ,coevV ) satisfies

the snake relations of Definition 2.4.2 and hence consists of a left dual for V . The

construction of the left dual is independent of basis, see for details [20, Section II.3].

For the following remark, we will denote by C op the opposite category of C

which has as objects the same as the objects of C and its morphisms are defined

as follows. Let X and Y be objects of C op, then HomC op (X ,Y ) := HomC (X ,Y ). The

composition in C op is defined by g ◦op f := f ◦ g .
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Remark 2.4.4. A left duality on a category C determines a functor C op → C such

that to each object X of C op assigns its left dual ∨X and to each morphism f : X → Y

in C op assigns the map ∨f : ∨Y → ∨X which is defined to be the following composite

∨f := (evY ⊗ id∨X )◦ (id∨Y ⊗ f ⊗ id∨X )◦ (id∨Y ⊗coevX ).

The map ∨f is called the left dual of f .

Proposition 2.4.5 ([20] p.344). Let C be a monoidal category with left duality. Then,

there are natural isomorphisms

HomC (X ⊗Y ,W )
∼−→ HomC (X ,W ⊗∨Y )

HomC (∨X ⊗Y ,W )
∼−→ HomC (Y , X ⊗W )

for all X , Y and Z objects of C . In other words, the functor −⊗Y is left adjoint to

−⊗∨Y and similarly, the functor ∨X ⊗− is left adjoint to the functor X ⊗−.

In a similar fashion, we define the category with a right duality as follows.

Definition 2.4.6. A monoidal category (C ,⊗,1) is said to have a right duality if for

each object X of C there exist an object X ∨ and morphisms

ev′X : X ⊗X ∨ → 1, coev′X : 1 → X ∨⊗X (2.4.5)

in the category C such that the following relations, called the snake relations for the

right dual, are satisfied.

(idX ∨⊗ev′X )◦ (coev′X ⊗ idX ∨) = idX ∨ , (ev′X ⊗ idX )◦ (idX ⊗coev′X ) = idX (2.4.6)

In that case, we say that the object (X ∨,ev′X ,coev′X ) is a right dual of X .

Remark 2.4.7. If the right dual of an object X of a monoidal category C exists then

it is unique up to a unique isomorphism which preserves the evaluation and the

coevaluation, for details see [38, Section 1.6.1]

Remark 2.4.8. A right duality on a category C determines a functor C op →C such

that to each object X of C op is assigned its right dual X ∨ and each morphism

f : X → Y in C op is assigned the right dual map f ∨ : Y ∨ → X ∨ defined to be the

following composite.

f ∨ := (idX ∨⊗ev′Y )◦ (idX ∨⊗ f ⊗ idY ∨)◦ (coev′X ⊗ idY ∨)

Notation 2.4.9. A monoidal category (C ,⊗,1C ) which has a left duality and a right

duality is called a rigid category.

The following lemma concerns symmetric monoidal cateogories with either left

or right duality and it will be useful for the following, since we will deal symmetric

monoidal categories.
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Lemma 2.4.10. Let C be a symmetric monoidal category with a left duality. Then C

has also a right duality. Similarly, if C is a symmetric monoidal category and has a

right duality then has also a left duality.

Proof. (Sketch) Assume that the category C has a left duality. In other words, for ev-

ery object X of C there exist a triple (∨X ,evX ,coevX ). Then, the right dual is defined

to be the triple (X ∨,ev′X ,coev′X ) where X ∨ = ∨X as objects and ev′X := evX ◦τX ,X ∨

and coev′X := τX ,∨X ◦ coevX . The snake relations of the right dual follow from the

snake relations of the left dual.

In the following, we will consider a pair of categories with left duality and a

strong monoidal functor between them and we will discuss relations between the

left duals of each category. The case of categories with right duality is similar. We

start with the fact that strong monoidal functors preserve objects with left duals. In

particular, we have the following.

Proposition 2.4.11 ([38] p. 25). Let C be a category with left duality and denote

by F : C → D a strong monoidal functor. Then, for an object X of C with left dual

(∨X ,evX ,coevX ), the object F (∨X ) is a left dual to F (X ) in D.

Sketch of the proof. We give here only the evaluation map (evX )F : F (∨X )⊗F (X ) →
1D and the coevaluation map (coevX )F : 1D → F (X )⊗F (∨X ). For more details the

reader is advised to see [38, Section 1.6.4]. The following composite gives the eval-

uation

F (∨X )⊗F (X )
∼−→ F (∨X ⊗X )

F (evX )−−−−→ F (1C )
∼−→ 1D

and the following composite gives the coevaluation map

1D
∼−→ F (1C )

F (coevX )−−−−−−→ F (X ⊗∨X )
∼−→ F (X )⊗F (∨X ).

Remark 2.4.12. Similarly, if C is a category with right duality and F : C → D is a

strong monoidal functor, then for an object X of C with right dual X ∨, the object

F (X ∨) is a right dual to F (X ) in D.

Next, we define what is a lift of a left duality along a strong monoidal functor.

Definition 2.4.13. Let F : C →D be a strong monoidal functor between categories

with left duality. Then, a lift of a left dual (∨d ,evd ,coevd ) in D along the strong

monoidal functor F is a left dual (∨c,evc ,coevc ) in C for all c ∈C such that(
F (∨c), (evc )F , (coevc )F )= (∨F (c),evF (c),coevF (c)

)
For the following theorem, we use the following notation. Let F : C → D be

a functor between categories. Then, we denote by F op : C op → Dop the opposite

functor which as functor is equal to F .
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Theorem 2.4.14 ([38] p. 25). Let C and D be categories with left duality and let F :

C →D be a strong monoidal functor. Then, there is a natural isomorphism between

the functors ∨(−)◦F op : C op →D and F ◦∨(−) : C op →D. On the level of objects, the

above natural isomorphism means that F (∨X )
∼−→ ∨F op(X ) for all objects X of C .

Proof. (Sketch) We will give here only the natural transformations ∨F op(X ) → F (∨X )

and F (∨X ) → ∨F op(X ) and for more details the reader is advised to see [38, Section

1.6.4].

∨F op(X ) → ∨F op(X )⊗1D → ∨F op(X )⊗F (1C ) → ∨F op(X )⊗F (X ⊗∨X )

→ ∨F op(X )⊗ (
F (X )⊗F (∨X )

)→ (∨F op(X )⊗F (X )
)⊗F (∨X )

→ 1D ⊗F (∨X ) → F (∨X )

F (∨X ) → F (∨X )⊗1D → F (∨X )⊗F (1C ) → F (∨X )⊗ (
F (X )⊗∨F (X )

)
→ (

F (∨X )⊗F (X )
)⊗∨F (X ) → F (∨X ⊗X )⊗∨F (X )

→ F (1C )⊗∨F (X ) → 1D ⊗∨F (X ) → ∨F (X )

Remark 2.4.15. Similarly, for categories C and D with right duality and a strong

monoidal functor F : C → D between them, there is a natural isomorphism be-

tween the functors (−)∨◦F op : C op →D and F ◦ (−)∨ : C op →D.

The following theorem will be important in Section 7.2.

Theorem 2.4.16 ([40] Theorem 5.6). If F is a strong monoidal functor, then U com-

mutes with evaluation and coevalution. In other words, the diagrams below com-

mute.

∨F op(X )⊗F (X ) 1

F (1)

F (∨X )⊗F (X ) F (∨X ⊗X )

1 F op(X )⊗∨F (X )

F (1)

F (X ⊗∨X ) F (X )⊗F (∨X )

2.5 Closed categories

In this section, we discuss left closed categories and right closed categories fol-

lowing [7] and [23] closely.
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Definition 2.5.1. Let C be a monoidal category. Then, C is said to be a left closed

category if for each object X of C the functor −⊗ X : C → C has a right adjoint

Hom(X ,−) : C →C with adjunction unit and adjunction counit to be defined by

coevX
Y : Y →Hom(X ,Y ⊗X ), evX

Y :Hom(X ,Y )⊗X → Y (2.5.1)

such that the diagrams below commute for all objects X and Y of C .

Y ⊗X Hom(X ,Y ⊗X )⊗X

Y ⊗X

coevX
Y ⊗X

id
evX

X⊗Y

Hom(X ,Y ) Hom
(
X ,Hom(X ,Y )⊗X

)

Hom(X ,Y )

coevX
Hom(X ,Y )

id
Hom(idX ,evX

Y )

Notation 2.5.2. In the following, the functor Hom(X ,−) : C →C will be also called

internal hom functor.

Categories with objects complexes will be of special importance in this thesis

and the following example will be fundamental.

Example 2.5.3. For a commutative ring R the category Ch(R) of Z-graded chain

complexes of R-modules with differetial of degree −1 is a symmetric monoidal cat-

egory, see Example 2.1.4 and the Example 2.3.5. Furthermore, the category Ch(R)

is a left closed category with internal hom defined by

HomR (X ,Y )n =∏
i
HomR (Xi ,Yi+n), d( f )i = d ◦ fi − (−1)n fi−1 ◦d .

Categories with left duality can be made in to left closed categories. To be pre-

cise, we give the following example.

Example 2.5.4. Let C be a monoidal category with left duality, see Definition 2.4.1.

Then, the category C is a left closed category with right adjoint to −⊗X to be given

by Hom(X ,Y ) := Y ⊗∨X such that the counit is given by evX
Y := idY ⊗evX and the

unit is given by coevX
Y := idY ⊗coevX .

Next we define right closed categories.
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Definition 2.5.5. Let C be a monoidal category. Then, C is said to be a right closed

category if for each object X of C the functor X ⊗− : C → C has a right adjoint

[[X ,−]] : C →C with adjunction unit and adjunction counit given by

�coevX
Y : Y → [[X , X ⊗Y ]], ẽvX

Y : X ⊗ [[X ,Y ]] → Y (2.5.2)

for all objects X and Y of C satisfying relations similar to that of Definition 2.5.1.

In this thesis, we will be mostly interested in symmetric monoidal categories

and especially in one category, that of the derived category of coherent sheaves,

see Chapter 4. The following result establishes that a symmetric monoidal category

which is left closed it is also right closed.

Lemma 2.5.6 ([23]). Let C be a left closed and symmetric monoidal category. Then

C is also a right closed category.

Proof. (Sketch) Set ẽvX
Y : X ⊗ [[X ,Y ]] → Y and �coevX

Y : Y → [[X , X ⊗Y ]] to be the

composites ẽvX
Y := evX

Y ◦τX ,Hom(X ,Y ) and �coevX
Y := Hom(id,τY ,X ) ◦ coevX

Y . Due to

the symmetry relations of τ and triangle equations of evX
Y and coevX

Y all the required

triangles for being a right closed category are satisfied.

Notation 2.5.7. A category which is left closed and right closed, will be referred

simply as a closed category.

Next, we define the notion of a left closed functor.

Definition 2.5.8. Let F : C →D be a monoidal functor between left closed monoidal

categories. Then, F is said to be a left closed monoidal functor if the map

θl : F Hom(X ,Y ) →Hom(F X ,F Y )

which is defined by

F Hom(X ,Y )
coevF X

F Hom(X ,Y )−−−−−−−−−−→Hom(F X ,F Hom(X ,Y )⊗F X )

Hom(id,β)−−−−−−−→Hom(F X ,F Y )

is an isomorphism, where β is the composite

β : F Hom(X ,Y )⊗F X → F (Hom(X ,Y )⊗X )
F (evX

Y )−−−−→ F Y

for all X and Y objects of C .

Similarly, it is defined the notion of a right closed monoidal functor.
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Definition 2.5.9. Let F : C →D be a monoidal functor between right closed monoidal

categories. Then, F is said to be a right closed monoidal functor if the map

θr : F [[X ,Y ]] → [[F X ,F Y ]]

defined by

F [[X ,Y ]]
ãcoevF X

F [[X ,Y ]]−−−−−−−→ [[F X ,F X ⊗F [[X ,Y ]] ]]
[[id,β̃]]−−−−→ [[F X ,F Y ]] (2.5.3)

is an isomorphism, where β̃ is the following

β : F X ⊗F [[X ,Y ]] → F (X ⊗ [[X ,Y ]])
F (�evX

Y )−−−−→ F Y

for all X and Y objects of C .

Notation 2.5.10. A functor which is left closed and right closed will be called a

closed functor.

In Chapter 7 we will be interested in closed functors between closed symmet-

ric monoidal categories and the notion of a strong dualisable object of a category

which we introduce below will be essential to determine whether a functor is a

closed functor. In the following, we discuss strongly dualisable objects of a closed

symmetric monoidal category following [13] closely.

Notation 2.5.11. In the following, we will denote by D X the object Hom(X ,1C ) of

C .

Definition 2.5.12. Let C be a closed symmetric monoidal category C and X an

object of C . Then, X is said to be dualisable object or a strongly dualisable object if

the map

ν : D X ⊗X →Hom(X , X ) (2.5.4)

defined to be the composite

D X ⊗X
coevX

D X⊗X−−−−−−−→Hom(X , (D X ⊗X )⊗X )
Hom(idX ,γ)−−−−−−−−→Hom(X , X )

is an isomorphism where γ : (D X ⊗X )⊗X
evX

X ⊗ idX−−−−−−→ 1C ⊗X ∼= X .

Remark 2.5.13. It is worth mentioning here, that the map ν is defined as the ad-

junct of the map γ.

The following lemma, characterises the dual objects in closed symmetric monoidal

categories.

Lemma 2.5.14 ([18] Proposition 2.2.9). Let C be a closed symmetric monoidal cat-

egory and X be a strongly dualisable object of C . Then, its dual is defined to be the

object Hom(X ,1C ).
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The following lemma will be essential for determining whether the map θ of

Definition 2.5.8 is an isomorphism.

Lemma 2.5.15 ([13]). Let C be a closed symmetric monoidal category C . Then, the

map ν : D X ⊗Y →Hom(X ,Y ) which is obtained as the adjunct of the map

D X ⊗Y ⊗X ∼= D X ⊗X ⊗Y
coevX

D X⊗X−−−−−−−→ 1C ⊗Y ∼= Y

is an isomorphism if either X or Y is a strongly dualisable object of C .

Proposition 2.5.16 ([13]). Let F : C → D be a strong monoidal functor between

closed symmetric monoidal categories and let X an object of C . If X is dualisable,

then the objects D X , F (X ) and D
(
F (X )

)
are dualisable and in particular we have

F
(
D X

)∼= D
(
F (X )

)
. (2.5.5)

The following theorem establishes that the existence of strongly dualisable ob-

jects in a closed symmetric monoidal category determines closed monoidal fucn-

tors.

Theorem 2.5.17 ([13]). Let F : C → D be a strong monoidal functor between closed

symmetric monoidal categories and let U : D →C be the right adjoint of F and X of

C is strongly dualizable object of C . Then the natural map

θ : F Hom(X ,Y ) →Hom
(
F (X ),F (Y )

)
as defined in 2.5.8 is an isomoprhism for all Y of C . Moreover, the map

π : Y ⊗U (X ) →U (F (Y )⊗X )

as defined in 2.1.1 is an isomorphism for all Y of D. If all the objects of the category

are strongly dualisable then the maps θ and π are isomorphisms.

Proof. By Lemma 2.5.15, the strong monoidality of F , the Proposition 2.5.16 and

Lemma 2.5.15, we obtain the following chain of maps which proves that the map θ

is an isomorphism.

F Hom(X ,Y ) ∼= F (D X ⊗Y ) ∼= F (D X )⊗F Y ∼= D(F (X ))⊗F Y ∼=Hom(F (X ),F Y ).

Now for the second map, we have the following chain of maps.

HomD

(
Z ,Y ⊗U (X )

)∼= HomD

(
DY ⊗Z ,U (X )

)
(Proposition 2.4.5)

∼= HomC

(
F (DY ⊗Z ), X

)
(F aU )

∼= HomC

(
F (DY )⊗F (Z ), X

)
(F strong monoidal)

∼= HomC

(
D

(
F (Y )

)⊗F (Z ), X
)

(Proposition 2.5.16)
∼= HomC

(
F (Z ),F (Y )⊗X

)
(Proposition 2.4.5)

∼= HomD

(
Z ,U (F (Y )⊗X )

)
(F aU )

By Yoneda lemma we have that π is an isomorphism.



Chapter 3

Derived categories of abelian
categories

In this chapter, we discuss derived categories of abelian categories and how the

derived functors between such categories are constructed. Derived categories were

introduced by Grothendieck and Verdier as the suitable notion of a category on

which the derived functors of homological algebra can be defined naturally. Our

presentation follows [14] and [16] closely.

Notation 3.0.1. In this section, A will denote an abelian category, see Definition

1.3.9.

3.1 The derived category of an abelian category

In this section, we give the definition of the derived category of an abelian cat-

egory and some properties. The basic idea is to define the derived category of an

abelian category as the localisation of a category of complexes on a specific class of

morphisms.

Definition 3.1.1. Let A be an abelian category. We define the category Ch(A ) to be

the category of cochain complexes in A . Objects of Ch(A ) are unbounded cochain

complexes of the form

· · · d i−2

−−−→ Ai−1 d i−1

−−−→ Ai d i

−→ Ai+1 d i+1

−−−→ ·· · , Ai ∈A

such that d i ◦d i−1 = 0 for all i ∈ Z and its morphisms are maps between cochain

complexes which commute with the differentials.

For example, a morphism f • : A• → B• between cochain complexes is depicted

in the following diagram and it is true that f i ◦d i−2
A = d i−1

B ◦ f i−1 for all i ∈Z.

31
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· · · Ai−1 Ai Ai+1 · · ·

· · · B i−1 B i B i+1 · · ·

d i−2
A d i−1

A

d i−1
B d i

B

f i−1 f i f i+1

Notation 3.1.2. We will denote by Ch+(A ) the subcategory of Ch(A ) with objects

A• such that Ai = 0 for i < i0 for some integer i0. Similarly, we will denote by

Ch−(A ) the subcategory of Ch(A ) with objects with objects A• such that Ai = 0

for i > i0 for some integer i0. Also, let Chb(A ) = Ch+(A )∩Ch−(A ) with objects A•

such that Ai = 0 for |i | > i0 for some integer i0.

Proposition 3.1.3 ([16] Proposition 2.3). The category Ch(A ) of complexes in A is

an abelian category.

Remark 3.1.4. There is a fully faithful functor J : A → Ch(A ). Indeed, every object

A of A is assigned to the complex depicted below

· · · −→ 0 −→ A −→ 0 −→ ·· ·

and any map f : A → B of objects of A is assigned to a map of complexes as it is

depicted below.

0 A 0

0 B 0

f

Now, for a cochain complex A• of Ch(A ), the i -th cohomology object is the

quotient

H i (A•) = ker(d i )/ im(d i−1)

and the operation which assigns the i -th cohomology object to an object A• of

Ch(A ) defines a functor

H i : Ch(A ) −→A . (3.1.1)

What we are really want to do in the following is to consider complexes in some

abelian category A up to some specific equivalence relation. The following defini-

tion is essential for doing this.

Definition 3.1.5. Let A be an abelian category and let A• and B• be objects of

Ch(A ). Then a map f • : A• → B• of cochain complexes is said to be a quasi-

isomorphism if f induces isomorphisms on all cohomology objects. In other words,

if the map H i ( f •) : H i (A•) → H i (B•) is an isomorphism for all i ∈Z.
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Notation 3.1.6. Two complexes A• and B• are said to be quasi-isomorphic if they

are related by a chain of quasi-isomorphisms; symbolically

A• ←− E • −→ ·· ·←−F • −→ B•

where E • and F • are objects of Ch(A ).

In the following, we give a formal construction of the derived category of an

abelian category via localisation.

Theorem 3.1.7 ([14] III.2). Let A be an abelian category and Ch(A ) the category of

cochain complexes in A . Then, there exists a category D(A ) and a functor

l : Ch(A ) → D(A )

such that the following are satisfied:

1. Any quasi-isomorphism f • : A• → B• between complexes in Ch(A ) is mapped

to an isomorphim l ( f ) in D(A ) .

2. Any functor G : Ch(A ) →C which maps quasi-isomorphisms to isomorphisms

can be factorised in a unique way through D(A ) i.e. there is a unique functor

F : D(A ) →C such that G = F ◦ l ; symbolically we have the following commu-

tative triangle.

Ch(A ) D(A )

C

l

G F

The category D(A ) is called the derived category of the abelian category of A .

Recall from Remark 3.1.4 that an object A of A can be considered as a complex

concentrated in degree zero. Then we have the following.

Corollary 3.1.8 ([14] III.5.2). The abelian category A is equivalent to the the full

subcategory of D(A ) which consists of all complexes A• such that H i (A•) = 0 for

i 6= 0.

This enable us to describe the derived category of an abelian category A as the

category with the same objects as Ch(A ) and morphisms formally inverting quasi-

isomorphisms.

Remark 3.1.9. Similarly, localisation of the categories Ch+(A ), Ch−(A ) and Chb(A )

on the class of quasi-isomorphisms yields the derived categories D+(A ), D−(A )

and Db(A ).



34 CHAPTER 3. DERIVED CATEGORIES OF ABELIAN CATEGORIES

Working with complexes it is natural to consider maps between cochain com-

plexes up to homotopy. In the following, we introduce the homotopy category of

Ch(A ) and establish a relation between the derived category of an abelian cate-

gory with the associated homotopy category. This relation will be useful later to

discuss derived functors on the level of derived categories.

Definition 3.1.10. Let f , g : A• → B• be two maps between cochain complexes. We

say that f and g are homotopically equivalent and write f ∼ g , if there exists a col-

lection of homomorphisms hi : Ai → B i−1 for all i ∈Z such that

f i − g i = hi+1 ◦d i
A +d i−1

b ◦hi .

Definition 3.1.11. Let A be an abelian category. Then, the homotopy category

Ho(A ) of A is the category of which objects are cochain complexes of objects in

A and its morphisms are maps between cochain complexes which are homotopi-

cally equivalent.

Definition 3.1.12. Let f • : A• → B• a map of cochain complexes. The mapping cone

of f • is the complex C ( f •) defined by

C •( f ) := Ai+1 ⊕B i , d i
C ( f ) :=

(
−d i+1

A• 0

f i+1 d i
B•

)
(3.1.2)

Notation 3.1.13. We will denote by Ho+(A ) the subcategory of Ho(A ) with ob-

jects A• such that Ai = 0 for i < i0 for some integer i0. Similarly, we will denote by

Ho−(A ) the subcategory of Ch(A ) with objects A• such that Ai = 0 for i > i0 for

some integer i0. Also, let Hob(A ) = Ho+(A )∩Ho−(A ) which has objects A• such

that Ai = 0 for |i | > i0 for some integer i0.

The following result establishes the relation between D(A ) and Ho(A ) for some

abelian category A .

Theorem 3.1.14 ([14] III.4.2). Let A be an abelian category and Ho(A ) its homo-

topy category. Then, the localisation of Ho(A ) at the class of quasi-isomorphisms is

canonically isomorphic to the derived category D(A ). The same is true for Ho∗(A )

and D∗(A ) for ∗=+,−,b.

In the following, we give a description of the objects, of morphisms and the

composition of morphisms in the derived category D(A ) of an abelian category A .

Proposition 3.1.15 ([14] III.2.8). Let A be an abelian category.

1. The objects of Ch(A ), of Ho(A ) and D(A ) are the same; symbolically

Ob
(

Ch∗(A )
)= Ob

(
Ho∗(A )

)= Ob
(
D∗(A )

)
for ∗= b,+,−,;.
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2. Let X , Y be two objects of D(A ). A morphism from X to Y is an equivalence

class of roofs, i.e. of diagrams of the form

Z

X Y

s t

where s is a quasi-isomorphism and t is a map in Ch(A ), such that any two

roofs (s1, t1) and (s2, t2) are equivalent if there exists a third roof (s′, t ′) forming

commutative diagrams of the following form.

Z

X ′ Y ′

X Y

s3 t3

s1

t1s2

t2

where s1, s2 and s3 are quasi-isomorphisms and t1, t2 and t3 are morphisms

of Ch(A ). The identity morphism id : X → Y is the class of the roof (idX , idX ).

The same is true for morphisms in D∗(A ), for ∗=+,−,b.

3. Let X
f−→ Y and Y

g−→ Z be two morphisms in D(A ) which are represented by the

roofs (s, t ) and (s′, t ′). To define the composition of f and g , we need a third roof

(κ,λ) such that t ◦κ = s′ ◦λ of which the existence is proved in [14, III.2.6(b)],

and the composite g ◦ f is represented by the class (κs,λt ). Diagrammatically

we have the following.

C

A B

X Y Z

κ λ

s t s′ t ′

f g

Proposition 3.1.16 ([14] III.4.5). Let A be an abelian and let D(A ) be the associated

derived category. Then, D(A ) is an additive category.
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The derived category of an abelian category is not an abelian category. Instead it

has the structure of a triangulated category. That is an additive category with an ad-

ditive autoequivalence, called the translation or shift and a collection of diagrams

called the distinguished triangles. In the case at hand, the additive autoequivalence

is given by the shift functor [1] : D(A ) → D(A ) which is defined as follows. On the

level of objects, the complex A•[1] is defined by
(

A•[1]
)i := Ai+1 with differential

d i
A•[1] to be (−1)nd i+n

A• and on the level of morphisms, the shifted morphism f •[1]

is the morphism of complexes A•[1] → B•[1] defined by
(

f •[1]
)i := f i+1.

Next, we discuss the distinguished triangles in Ho(A ) and so in D(A ). Assume

first that f • : A• → B• is a morphism of cochain complexes and let C •( f •) be the

mapping cone of f •. Then, a distinguished triangle in Ho(A ) is a diagram of the

form

X • → Y • → Z • → X •[1]

which is isomorphic to a triangle of the form

A• f−→ B• →C •( f ) → A•[1]

Theorem 3.1.17 ([14] IV.2). Let A be an abelian category. Then, the derived category

of A is a triangulated category with triangles as discussed above.

In what we will be really interested in are exact functors between triangulated

categories. Below we give the precise definition.

Definition 3.1.18. An additive functor F : A →B between triangulated categories

is said to be an exact functor if the following are satisfied:

• There exists a natural isomorphism φ : F ◦ [1]
∼−→ [1]◦F

• Any distinguished triangle

X
u−→ Y

v−→ Z
w−→ X [1]

in A is mapped to

F (X )
F (u)−−−→ F (Y )

F (v)−−−→ F (Z )
φ◦F (W )−−−−−→ (

F (X )
)
[1]

which is a distinguished triangle in B.

Lemma 3.1.19. Let A be a triangulated category and [1] : A →A be the shift func-

tor. Then, the functor [1] is an exact functor between triangulated categories.

Proof. This follows by takingφ=− id[2] in the Definition (3.1.18) and applying Lemma

8.1.3.

Notation 3.1.20. In the following, when we mention that the suspension functor is

an exact functor we will write ([1],− id[2]).
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In Section 1.4 we discussed the notion of a Serre functor on a k-linear, hom-

finite category.

Theorem 3.1.21 (Bondal-Kapranov [6]). Any Serre functor on a triangulated cate-

gory over a field k is an exact functor.

3.2 Derived functors

In this section, we discuss how an additive functor between abelian categories

can be extended to a functor on the level of derived categories. A functor between

derived categories should map quasi-isomorphisms to quasi-isomorphisms and

distinguished triangles to distinguished. Our presentation follows [14] closely.

We start with the case of an exact functor between abelian categories. Then, the

following proposition establishes that exact functors extend to functors between

derived categories.

Proposition 3.2.1 ([14] III.6.2). Let F : A →B be an additive exact functor between

abelian categories, see Definition 1.3.13. Then, the induced functor on the level of

homotopy categories

Ho∗(F ) : Ho∗(A ) → Ho∗(B), ∗=;,+,−,b

defined by Ho∗(F )(A •) := F (Ai ) for all Ai in A and i ∈Z, maps quasi-isomorphisms

to quasi-isomorphisms and induces a functor on the level of derived categories

D∗(F ) : D∗(A ) → D∗(B).

Moreover, the functor D∗(F ) is an exact functor. In particular, it maps distinguished

triangles to distinguished triangles.

If we have a left exact functor between abelian categories, then its right derived

functor is defined as follows.

Definition 3.2.2 ([14] III.6.6). Let F : A → B be an additive left exact functor be-

tween abelian categories. Then, the right derived functor of F is a pair (RF,εF ) such

that RF : D+(A ) → D+(B) is an exact functor and εF : lB ◦Ho+(F ) → RF ◦lA is a nat-

ural transformation such that the following universal property is satisfied. For any

exact functor G : D+(A ) → D+(B) and any natural transformation ε : lB ◦Ho+(F ) →
G ◦ lA there exists a unique natural transformation η : RF →G such that the follow-

ing diagram commutes.

lB ◦Ho+(F )

RF ◦ lA G ◦ lA

εF ε

η◦ lA
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Remark 3.2.3. In a similar way, if F ′ : A → B is an additive right exact functor

between abelian categories, then the left derived functor of F ′ is a pair (LF ′,εF ′)

where LF ′ : D−(B) → D−(A ) and εF ′ : LF ◦ lB → lA ◦Ho−(F ′) such that a similar

universal property is satisfied.

In the above we just gave the definition of a right derived functor of a left exact

functor. Next, we describe how we construct such right derived functors. To do this,

we need the notion of an adapted class.

Definition 3.2.4. Let F : A → B be an additive left exact functor between abelian

categories. Then, a class R of objects of A is said to be adapted to F if it is stable

under finite direct sums and the following two conditions are satisfied.

• The functor F maps acyclic complexes of Ch+(R) into acyclic complex of

Ch+(B).

• Any object of A is a sub-object of an object of R.

Remark 3.2.5. In a similar way it is defined the notion of an adapted class for a right

exact functor.

Moreover, we need the following proposition.

Proposition 3.2.6 ([14] III.5.4 and III.5.8). Let A be an abelian category with R be-

ing a class of objects of A adapted to a left exact functor F : A → B and SR be a

class of quasi-isomorphisms in Ho+(R). Then, SR is a localising class of morphisms

in Ho+(R) and the canonical functor

Ho+(R)[S −1
R ] → D+(A )

is an equivalence of categories. A similar statement is true for right exact functors.

Following [14, III.5.5] we define the right derived functor RF : D+(A ) → D+(B)

as follows. First we fix an equivalence Θ−1 : D+(A ) → Ho+(R)[S −1
R

]. Then, define

F̃ : Ho+(R)[S −1
R

] → Ho+(B) by sending a complex A• to
(
F̃ (A•)

)i = F (Ai ). Then

define RF to be the composite RF (A•) = (lB ◦ F̃ ◦Θ−1)(A•). Pictorially, we have the

following diagram.

Ho+(R)[S −1
R

] Ho+(B)

D+(A ) D+(B)

Θ−1

F̃

lB

RF

A natural question is what an adapted class of an abelian category would look

like. The following definition is in this direction.
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Definition 3.2.7. Let A be an abelian category.

• The category A is said to be a category with enough injectives if for every ob-

ject A of A there exists an injective morphism A → I with I to be an injective

object of A .

• The category A is said to be a category with enough projectives if for every

object A of A there exists an projective morphism P → A with P to be an

projective object of A .

Theorem 3.2.8 ([14] III.6.12). Let A and B be abelian categories. Then the following

are true.

• If A is a category with enough injectives, then the class I of injective objects

of A is adapted to an additive left exact functor F : A →B.

• If A is a category with enough projectives, then the class P of projective objects

of A is adapted to an additive right exact functor F ′ : A →B.

Remark 3.2.9. We have to underline here that it is possible to construct derived

functors between derived categories of abelian categories which have neither enough

injectives nor enough projectives. Such an example is the abelian of coherent sheaves

which we discuss in a later section.

The following result describes how we restrict a functor between unbounded

above derived categories to bounded derived categories and it will be useful later,

when we will discuss the construction of derived functors between bounded de-

rived categories of coherent sheaves.

Proposition 3.2.10 ([16] Corollary 2.68). Let A be an abelian category with enough

injectives and let F : Ho+(A ) → Ho+(B) be an exact functor which admits a right

derived functor RF : D+(A ) → D+(B).

Then, if all objects A of A is mapped to RF (A) ∈ Db(B) then any complex A• of

Db(A ) is mapped to RF (A•) ∈ Db(B). In other words, RF descends an exact functor

RF : Db(A ) → Db(B).

Let F : A → B be an additive functor between abelian categories. Then, the

higher derived functors R i F associated to F are just the composites of the coho-

mology functors H i : Ch(B) → Ab with RF ; symbolically we have R i F = H i ◦RF . A

similar statement is true for the left derived functors.

Theorem 3.2.11 ([16] Proposition 2.56). Let A,B be objects of the abelian category

A . Then there exists an isomorphism Exti
A

(A,B) ∼= HomD(A )(A,B [i ]). Moreover, this

can be generalised also in the case where A• and B• are complexes. In this case, we

have a Exti
A

(A•,B•) ∼= HomD(A )(A•,B•[i ]).
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Chapter 4

Derived categories of coherent
sheaves

In this section, we consider a smooth complex projective variety X and discuss

the bounded derived category of coherent sheaves on X . We are in particular in-

terested in the various geometric functors which are defined between bounded de-

rived categories of sheaves and the adjunctions which are formed between these

functors.

The material of this chapter is presented in the following order. In Section 4.1 we

discuss basic properties of the derived category of coherent sheaves on a smooth

complex projective variety which will be essential in the following. In Section 4.2

we explain how to obtain derived functor defined between bounded derived cate-

gories of coherent sheaves. In Section 4.3 we discuss various adjunctions between

the derived functors of coherent sheaves. Actually, we will be mainly interested

in the adjunctions between the derived functors in the following. In Section 4.4

we discuss the dual objects of the bounded derived category of coherent sheaves

which will play a fundamental role in Chapter 7 where we will investigate the Hopf

algebra object in the derived category of coherent sheaves. Our presentation of the

above material follows [15] and [16] closely.

Notation 4.0.1. In this chapter X will denote a smooth complex projective variety.

Even if all the definitions and results can be defined in greater generality i.e. for

schemes, we choose to restrict ourselves to varieties since this is the case we are

interested in.

4.1 Basic definitions

Let X be a smooth complex projective variety and let Coh(X ) be the abelian cat-

egory of coherent sheaves on X , see Example 1.3.12 for the definition of a coherent

sheaf. Coherent sheaves will be denoted by E , F and G and bounded complexes of

41
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coherent sheaves by E •, F • and G •.

Definition 4.1.1. Let X be a smooth complex projective variety. We define the

bounded derived category of coherent sheaves on X to be the category Db
(

Coh(X )
)

which is obtained by localising Chb (
Coh(X )

)
on the class of quasi-isomorphisms.

Notation 4.1.2. In the following, we will use the notation Db(X ) for the bounded

derived category of coherent sheaves on a smooth complex projective variety X .

By Theorem 3.1.17, we have that Db(X ) is a triangulated category. In particular,

the translation functor is given by the shift functor [1] : Db(X ) → Db(X ) which is de-

fined as follows. On the level of objects, the complex E •[1] is defined by
(
E •[1]

)i :=
E i+1 with differential d i

E •[1] to be (−1)nd i+n
E • and on the level of morphisms, the

shifted morphism f •[1] is the morphism of complexes E •[1] → F •[1] defined by(
f •[1]

)i := f i+1.

In a similar way, we can define the shift functor [n] : Db(X ) → Db(X ) where the

complex E •[n] is defined by
(
E •[n]

)i := E i+n and differential d i
E •[n] to be (−n)nd i+n

E • .

Coherent sheaves E and F on X can be considered as complexes concentrated

in degree zero and HomDb (X )(E ,F ) ∼= HomOX (E ,F ) where the right hand side of

the isomorphism is the space of OX -module homomorphisms. Moreover, we have

that

Extn(E ,F ) = HomDb (X )(E ,F [n]) (4.1.1)

or for more general bounded complexes of of sheaves E •, F • we have

Extn(E •,F •) = HomDb (X )(E
•,F •[n]). (4.1.2)

The following two results characterise the bounded complexes of coherent sheaves.

Proposition 4.1.3 ([16] Proposition 3.13 ). Let X be a smooth complex projective

variety of dimension n and E and F be coherent sheaves on X . Then Exti (E ,F ) = 0

for i > n.

Proposition 4.1.4 ([16] Proposition 3.26). If X is smooth projective variety over a

field k, then any F • ∈ Db(X ) is isomorphic to a bounded complex G • ∈ Db(X ) of

locally free sheaves G i .

We will be mainly interested in functors defined on the level of bounded derived

categories of coherent sheaves and of particular importance is the Serre functor

which we discuss now.

For a smooth complex projective variety X of dimension d with canonical bun-

dle ωX := ∧dim X T ∗
X there is a functor denoted by SX : Db(X ) → Db(X ) which is

defined by the composite

Db(X )
(−)⊗ωX−−−−−→ Db(X )

[dim(X )]−−−−−−→ Db(X ). (4.1.3)
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Theorem 4.1.5 ([6]Bondal-Kapranov). The functor SX : Db(X ) → Db(X ) defined by

SX (−) = (−)⊗ωX [dim(X )] (4.1.4)

is a Serre functor for Db(X ) in the sense of Definition 1.4.1.

4.2 Derived functors between derived categories of sheaves

In this section, we will discuss the construction of the derived functors which

associated to a smooth map f : X → Y between smooth complex projective vari-

eties. Recall from Section 3.2 that we constructed right derived functors for a left

exact functor assuming that the category has enough injectives. Similarly, to define

a left derived functor to a right derived were based on the fact that the abelian cate-

gory has enough projectives. However, the abelian category of coherent sheaves on

X contains neither enough injectives nor enough projectives due to the finiteness

conditions of coherent sheaves. The idea is to define derived functors on the level

of unbounded derived categories of quasi-coherent sheaves and then restrict these

functors between bounded derived categories of coherent sheaves. For full details

the reader is advised to see [16, Section 3.3].

The following result establish that the abelian category of quasi-coherent sheaves

has enough injectives.

Theorem 4.2.1 ([15] II.7.18). Let X be a smooth complex projective variety. Then any

quasi-coherent sheaf E on X admits a resolution

0 → E → I 0 → I 1 →··· (4.2.1)

of quasi-coherent sheaves I i which are injectives as OX -modules.

The following results we be useful in the following.

Theorem 4.2.2 ([15]Proposition 3.3). For a smooth complex projective variety X , the

natural functor

D∗(Qcoh(X )) → D∗
qcoh

(
ShOX (X )

)
for ∗= b,+, is an equivalence of categories.

Proposition 4.2.3 ([16] Proposition 3.5). Let X be a smooth complex projective vari-

ety. Then, there is an equivalence of categories between the bounded derived category

of coherent sheaves on X and the full triangulated subacategory of Db
(

Qcoh(X )
)

which consists of bounded complexes of quasi-coherent sheaves with coherent coho-

mology; symbolically

Db(X )
'−→ Db

coh

(
Qcoh(X )

)⊂ Db(
Qcoh(X )

)
.
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ln the following, we explain how to obtain the derived direct image functor, the

derived internal hom functor and the derived tensor product functor on the level of

bounded derived categories of coherent sheaves on X . Once we will define them,

then we will not need it again. What will be of particular interest for us and for our

purposes is the adjunctions which are formed between these derived functors.

The derived direct image functor

Let f : X → Y be a smooth map of smooth complex projective varieties. On

the level of quasi-coherent sheaves is defined the functor f∗ : Qcoh(X ) → Qcoh(Y )

which is left exact. Since the category of quasi-coherent sheaves has enough injec-

tives it is defined the right derived functor

R f∗ : D+(
Qcoh(X )

)→ D+(
Qcoh(Y )

)
. (4.2.2)

In order to restrict the derived functor R f∗ to the level of bounded complexes, the

following result is essential.

Theorem 4.2.4 ([16] Theorem 3.22). Let f : X → Y be a map of smooth complex

projective varieties and E be a quasi-coherent sheaf on X . Then, the higher direct

image sheaves R i f∗E are trivial for i > dim(X ).

As a result, there exists the functor R f∗ : Db
(

Qcoh(X )
)→ Db

(
Qcoh(Y )

)
. Now, in

order to obtain R f∗ on the level of coherent sheaves we use the result below.

Theorem 4.2.5 ([16] Theorem 3.23). Let f : X → Y be a smooth map of smooth com-

plex projective varieties and F be a coherent sheaf on X . Then, the higher direct

images R i f∗(F ) are coherent.

To sum up the above discussion, we define the functor

R f∗ : Db(X ) → Db(Y )

to be the composition of the inclusion Db(X ) → Db(Qcoh(X )) —see Proposition

4.2.3— followed by the functor R f∗ : Db
(

Qcoh(X )
)→ Db

(
Qcoh(Y )

)
and finally ap-

plying Theorem 4.2.5.

Remark 4.2.6. For the smooth map f : X → Spec(k) the associated direct image

functor f∗ on the level of coherent sheaves is the global sections functor

Γ : Coh(X ) → Vect f (k).

Its right derived functor is RΓ : Db(X ) → Db
(

Vect f (k)
)
.
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Derived internal hom functor

For a quasi-coherent sheaf E on X is defined the left exact functor

Hom(E ,−) : Qcoh(X ) → Qcoh(X ) (4.2.3)

which is called the internal hom functor. If in particular E is coherent, then we have

a left exact functor

Hom(E ,−) : Coh(X ) → Coh(X ) (4.2.4)

and we have that Γ◦Hom(E ,−) = Hom(E ,−) where Γ is the global section functor

and Hom(E ,−) : Coh(X ) → Db
(

Vect f (k)
)
.

Now, since the category Qcoh(X ) has enough injectives, the right derived func-

tor RHom(E ,−) : D+(
Qcoh(X )

) → D+(
Qcoh(X )

)
is well defined. Now, for any two

quasi-coherent sheaves E and F we set

Exti (E ,F ) := R i Hom(E ,F ).

If E is a coherent sheaf, then we have that Exti (E ,F )x ' Exti
OX ,x(Ex ,Fx) and if both

E and F are coherent then, Exti (E ,F ) is coherent. As a result, we obtain the right

derived functor

RHom(E ,−) : D+(X ) → D+(X ). (4.2.5)

The above functor can be defined for complexes of coherent sheaves and so we

have the functor

RHom•(−,−) : Db(X )op ×Db(X ) → Db(X )

Remark 4.2.7. Since we work with a smooth complex projective variety X , by Propo-

sition 4.1.4 we can replace any complex E • of Db(X ) with a bounded complex of

locally free sheaves and compute RHom•(E •,−) as the underived Hom•(E •,−).

Derived tensor product

Let E be a coherent sheaf on a smooth complex projective variety X . Then, the

functor E ⊗− : Coh(X ) → Coh(X ) is a right exact functor. Since we work with a

smooth projective variety X by Proposition 4.1.4 any coherent sheaf admits a reso-

lution of locally free sheaves of length n. Tensoring E with a bounded above acyclic

complex F • of locally free sheaves, then E ⊗F • is still acyclic. That yields that the

class of locally free sheaves in Coh(X ) is adapted to the right exact functor E ⊗−
and hence the left derived functor E ⊗L − : D−(X ) → D−(X ) exists and it is well de-

fined. Since X is smooth and projective and combined this with Proposition 4.1.4

the derived tensor product functor restricts to bounded complexes.

E ⊗L − : Db(X ) → Db(X ). (4.2.6)
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Replacing the coherent sheaf E by a complex of coherent sheaves E • and apply-

ing similar arguments with the above, we obtain the left derived functor

E •⊗L − : D−(X ) → D−(X ) (4.2.7)

such that

(E •⊗F •)k := ⊕
i+ j=k

E i ⊗F j , d = dE ⊗1+ (−1)k 1⊗dE (4.2.8)

and since X is a smooth projective variety this yields a functor

−⊗L− : Db(X )×Db(X ) → Db(X ). (4.2.9)

The following proposition states that the derived tensor product is a associative

and symmetric.

Proposition 4.2.8 ([15] II.5.13). Let X be a smooth complex projective variety. Then,

for all E •, F • and G • of Db(X ) there exist the following natural isomorphisms.

E •⊗L F • ∼−→F •⊗L E • (4.2.10)

(E •⊗L F •)⊗L G • ∼−→ E •⊗L (F •⊗L G •) (4.2.11)

Proof. (Sketch) Any bounded complex in Db(X ) can be replaced by a bounded

complex of locally free sheaves since X is a smooth projective variety and Proposi-

tion 4.1.4. Hence, the derived tensor product in the natural isomorphisms (4.2.10)

and (4.2.11) need not be derived anymore and the category of cochain complexes

is a symmetric monoidal category under the underived tensor product.

Notation 4.2.9. From now on, we will treat the bounded derived category Db(X )

of a smooth complex projective variety X as a symmetric monoidal category under

the derived tensor product with monoidal unit the structure sheaf of OX . In other

words, that it satisfies all the axioms of a symmetric monoidal category as it was

defined in Chapter 2.

The derived pullback

Let f : X → Y be a smooth map of smooth complex projective varieties. On the

level of sheaves of OX modules there exists the right exact functor

f ∗ : ShOY (Y ) → ShOX (X ) (4.2.12)

which is defined to be the composition of the exact functor f −1 : ShOY (Y ) → Sh f −1OY
(X )

with the right exact functor OX ⊗ f −1OY
− : Sh f −1OY

(X ) → ShOX (X ). Then, the right

derived functor of f ∗ is defined to be the functor

L f ∗ := (OX ⊗L
f −1OY

−)◦ f −1 : D−(Y ) → D−(X ). (4.2.13)

and can be restricted to a functor on the level of bounded derived categories of

coherent sheaves.
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4.3 Relations between derived functors

In this section, we give some basic relations between derived functors on the

level of bounded derived categories of coherent sheaves. Our presentation follows

[15, II.5]

Notation 4.3.1. Although all the following results can be stated in greater general-

ity and it is actually done in [15], we have adapted them to the case in which X is

a smooth complex projective variety, since this is the case in which we are particu-

larly interested.

Theorem 4.3.2 ([15]II.5.12). Let X be a smooth complex projective variety. For any

E •, F •, G • complexes of Db(X ) there exists a natural isomorphism

RHom•(E •⊗L F •,G •)
∼−→ RHom• (

E •,RHom•(F •,G •)
)

(4.3.1)

determined by the natural morphism of sheaves

Hom(E ⊗F ,G )
∼−→Hom

(
E ,Hom(F ,G )

)
.

Moreover, taking H 0RΓ of both sides of the above isomorphism yields the following

adjunction.

HomDb (X )

(
E •⊗L F •,G •) ∼−→ HomDb (X )

(
E •,RHom(F •,G •)

)
. (4.3.2)

In other words, for any E • of Db(X ) the derived tensor product −⊗L E • is left adjoint

to the derived internal hom functor RHom(E •,−).

From the above theorem and Proposition 4.2.8 we have the following.

Lemma 4.3.3. Let X be a smooth complex projective variety. Then, the category

Db(X ) of bounded complexes of coherent sheaves on a smooth complex projective

variety X is a closed symmetric monoidal category.

Next, we discuss the relations of the derived functors L f ∗, R f∗, f ! and RHom.

Of particular interest will be the left and the right adjoint of the derived functor

R f∗ : Db(X ) → Db(Y ) associated to a smooth map f : X → Y .

First we give a proposition, which is essential for the next theorem.

Proposition 4.3.4 ([15] II.5.5). Let f : X → Y be a smooth map between smooth com-

plex projective varieties. Then, for all E •, F • of Db(X ) there exists a natural trans-

formation

R f∗RHom•
X (E •,F •) → RHom•

Y (R f∗E •,R f∗F •) (4.3.3)

determined from the natural isomorphism of sheaves

f∗HomX (E ,F ) →HomY ( f∗E , f∗F ).
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Theorem 4.3.5 ([15]II.5.10). Let f : X → Y be a smooth map between smooth com-

plex projective varieties. Then, for all E • of Db(Y ) and F • of Db(X ) there exists a

natural isomorphism

R f∗RHom•
X (L f ∗E •,F •)

∼−→ RHom•
Y (E •,R f∗F •) (4.3.4)

defined by composing the natural isomorphism (4.3.3) with the natural map id →
R f∗L f ∗ in the first variable. Moreover, taking H 0RΓ of both sides of (4.3.4) yields the

following adjunction.

HomDb (X )(L f ∗E •,F •)
∼−→ HomDb (Y )(E

•,R f∗F •). (4.3.5)

In other words, the functor L f ∗ : Db(Y ) → Db(X ) is the left adjoint to the functor

R f∗ : Db(X ) → Db(Y ); symbolically L f ∗ a R f∗.

For a smooth complex projective variety let ωX be its canonical, also called the

relative dualizing sheaf and let f ! be the functor from Db(Y ) to Db(X ) defined by

f !(E •) := L f ∗(E •)ωX ⊗ f ∗ω−1
Y [dim(X )−dim(Y )]. We have the following adjunction.

Theorem 4.3.6 ([15] III.5). Let f : X → Y be a smooth map between smooth complex

projective varieties. Then, for all E • of Db(X ) and F • of Db(Y ) there exists a natural

isomorphism

R f∗RHomX (E •, f ! F •)
∼−→ RHomY (R f∗E •,F •). (4.3.6)

by composing the homomorphism (4.3.3) with the natural isomorphism f !R f∗ → id,

called the trace isomorphism, as defined in [15, III.4]. Moreover, taking H 0RΓ of both

sides of (4.3.6) yields the following adjunction.

HomDb (X )(E
•, f ! F •)

∼−→ HomDb (Y )(R f∗E •,F •) (4.3.7)

In other words, the functor f ! : Db(Y ) → Db(X ) is the right adjoint to the functor

R f∗ : Db(X ) → Db(Y ); symbolically R f∗ a f !.

Proposition 4.3.7 ([26]Proposition3.2.4(a)). Let f : X → Y be a smooth map of smooth

complex projective varieties. Then, there is a natural isomorphism

L f ∗ (E •⊗L F •)
∼−→ L f ∗E •⊗L L f ∗F •, L f ∗OY

∼−→OX (4.3.8)

and satisfy the relations of Definition 2.1.5.

Since, R f∗ is the right adjoint of L f ∗, by the general theory of Lemma 2.1.9 R f∗
is becoming a monoidal functor. To be precise, for all E • and F • of Db(X ) there

exist natural maps

R f∗E •⊗L R f∗F • → R f∗(E •⊗L F •), OY → R f∗OX . (4.3.9)

The monoidality of R f∗ and the adjunction unit of the adjunction L f ∗ a R f∗
gives rise the following natural isomorphism, which is referred as projection for-

mula in [15, II.5.6].
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Proposition 4.3.8 ([15] II.5.6). (Projection formula) Let X be a smooth map of smooth

complex projective varieties. Then, for all E • of Db(X ) and F • of Db(Y ) there exists

a natural isomorphism

R f∗E •⊗L F • ∼−→ R f∗(E •⊗L L f ∗F •) (4.3.10)

defined by the following chain of maps.

R f∗E •⊗L F • id⊗η−−−→ R f∗E •⊗L R f∗L f ∗F • ∼−→ R f∗(E •⊗L L f ∗F •)

4.4 Strongly dualisable complexes

In this section, we discuss the notion of a dual complex and of the strongly du-

alisable complex in the Db(X ). We start with a result which will be useful for the

following.

Proposition 4.4.1 ([15]Proposition 5.14). For a smooth complex projective variety X

and E •, F • and G • objects of Db(X ) there exists a natural isomorphism

RHom•(E •,F •)⊗L G • ∼−→ RHom•(E •,F •⊗L G •). (4.4.1)

Idea of the proof. Since X is a smooth complex projective variety, any bounded com-

plex of coherent sheaves is isomorphic to a complex of locally free sheaves, see

Proposition (4.1.4). So the derived tensor product is computed as the usual tensor

product and the required isomorphism is determined by the natural isomorphism

of sheaves

Hom(E ,F )⊗G
∼−→Hom(E ,F ⊗G ). (4.4.2)

which is discussed in detail in [18, Proposition2.2.9].

Lemma 4.4.2. Let X be a smooth complex projective variety. Then, every complex E •

in Db(X ) is a strongly dualisable object, as defined in 2.5.12.

Proof. This follows from Proposition 4.4.1 setting F • =OX and G • = E •.

Since Db(X ) is a closed symmetric monoidal category and has strongly dual-

isable objects then by Lemma 2.5.14 we have the following Proposition which will

play crucial role for our work.

Proposition 4.4.3. Let X be a smooth complex projective variety. Then, the bounded

derived category of coherent sheaves is a rigid monoidal category. In particular, for

any bounded complex E • its dual is the object E •∨ of Db(X ) which is defined by

E •∨ := RHom(E •,OX ) ∈ Db(X ). (4.4.3)
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Lemma 4.4.4. Let X be a smooth complex projective variety and E • an object of

Db(X ). Then it is true that

E •∨ = ∏
n∈Z

Hom(F n ,OX ) (4.4.4)

for some complex F • of locally free sheaves F n .

Proof. Since X is smooth and projective variety, then by Proposition 4.1.4 any bounded

complex E • of coherent sheaves is isomorphic to a bounded complex F • of locally

locally free sheaves F i . Therefore, RHom(F •,OX ) need not be derived and so can

be computed as Hom(F •,OX ). Now, since the functor Hom(−,OX ) is a contravari-

ant functor, sends colimits to limits and so we have

Hom(
⊕
n∈Z

F n ,OX ) = ⊕
n∈Z

Hom(F n ,OX ).

This completes the proof.



Chapter 5

Hopf algebras in braided categories

In this chapter, we outline the basics of Hopf algebras in braided monoidal cat-

egories. Of particular interest will be the correspondence between Hopf algebras

and rigid monoidal structures on the associated category of representations. For

example, the coproduct of a Hopf algebra determines the monoidal product of the

category of representations.

The material of this chapter is presented in the following order. In Section 5.1

we cover the basics of algebras in braided monoidal categories and their modules.

By reversing the arrows in the definition of an algebra, we obtain the notion of a

coalgebra which is discussed in Section 5.2. In Section 5.3 we discuss those objects

of a category which are endowed simultaneously with an algebra structure and a

coalgebra structure in a compatible way. Such objects are called bialgebras. In Sec-

tion 5.4 we discuss Hopf algebras which are defined to be bialgebras with an invert-

ible antipode. In Section 5.5 we discuss the notion of a fusion operator as studied

by Street [37]. The notion of a fusion operator was generalised appropriately by

Brugières, Lack and Virelizier in [7] to define generalisations of Hopf algebras in

braided monoidal categories to a non-braided setup. Our presentation on Hopf

algebras follows [20] and [38] closely.

Notation 5.0.1. In this chapter, (C ,⊗,1C ,τ) will be a braided monoidal category, a

notion which was discussed in Section 2.3.

5.1 Algebras

In this section, we discuss the notion of an algebra in a braided monoidal cate-

gory and the associated category of representations.

Definition 5.1.1. An object A in a monoidal category C is said to be an algebra if

it is equipped with morphisms m : A ⊗ A → A and u : 1 → A called the product and

the unit such that the following diagrams commute.
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A⊗ A⊗ A A⊗ A

A⊗ A A

m ⊗ idA

m

idA ⊗m m

A A⊗ A A

A

idA ⊗u u ⊗ idA

m
idA idA

Notation 5.1.2. The left diagram above expresses the associativity of the product

and the right diagram expresses the unitality of the unit.

A morphism of algebras f : (A,m,u) → (A′,m′,u′) is a morphism on the level of

objects f : A → A′ such that the following diagrams commute.

A⊗ A A′⊗ A′

A A′

f ⊗ f

m m

f

1 A

A′

uA

f
uA′

We will be interested in the category of modules of an algebra and so we recall

this definition here.

Definition 5.1.3. A left A-module for an algebra (A,m,u) is a pair (X ,r ) where X is

an object of C and r : A⊗X → X is a morphism in C called the action such that the

following diagrams commute.

A⊗ A⊗X A⊗X

A⊗X X

m ⊗ idX

idX ⊗r r

r

X A⊗X

X

u ⊗ idX

r
idX

A morphism between two left A-modules (M ,r ) and (N , s) is a morphism on the

level of objects f : M → N in C such that the following diagram commutes.

A⊗M M

A⊗N N

r

fidA ⊗ f

s

5.2 Coalgebras

In this section, we discuss the notion of a coalgebra which is obtained by revers-

ing the arrows in the definition of an algebra. In particular, we have the following

definition.
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Definition 5.2.1. An object C of C is said to be a coalgebra if C is equipped with

morphisms δ : C →C ⊗C and ε : C → 1 called the coproduct and the counit respec-

tively, such that the following diagrams commute.

C C ⊗C

C ⊗C C ⊗C ⊗C

δ

δ⊗ idC

δ δ⊗ idC

C C ⊗C C

C

idC ⊗ε ε⊗ idC

δ
idC idC

The left diagram above expresses the coassociativity of the coproduct and the

right diagram expresses the counitality of the counit. If moreover for the coproduct

δ the following diagram commutes.

C

C ⊗C C ⊗C

δ

τC ,C

δ

then the coalgebra (C ,δ,ε) is said to be cocommutative.

Example 5.2.2. Let X be a set and denote by k[X ] the k-vector space
⊕

x∈X kx with

basis the elements of X . Then, k[X ] has a coalgebra structure given by

δ(x) = x ⊗x, ε(x) = 1 (5.2.1)

for any x of X .

A morphism of coalgebras f : (C ,δ,ε) → (C ′,δ′,ε′) is a morphism on the level of

objects f : C →C ′ such that the following diagrams commute.

C ⊗C C ′⊗C ′

C C ′

f ⊗ f

δ δ′

f

C C ′

1

f

ε′ε

5.3 Bialgebras

In this section, we discuss objects in a braided category which are endowed with

an algebra and a coalgebra structure and these structures are compatible in the way

which is described below. Such objects are called bialgebras. The structure of the

bialgebra determines the monoidal product of the category of representations of

this bialgebra in a specific way and it is discussed in Theorem 5.3.5.
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Definition 5.3.1. A tuple (A,m,u,δ,ε) of C is said to be a bialgebra if (A,m,u) is an

algebra and (A,δ,ε) is a coalgebra and moreover the following diagrams commute.

A⊗ A A A⊗ A

A⊗ A⊗ A⊗ A A⊗ A⊗ A⊗ A

m δ

δ⊗δ

idA ⊗τA,A ⊗ idA

m ⊗m

1 A

1⊗1 A⊗ A

u

id

u ⊗u

δ

1 A

1

u

εid

A⊗ A 1⊗1

A 1

ε⊗ε

m

ε

id

Remark 5.3.2. In other words, a bialgebra in a braided monoidal category C is an

object with an algebra structure and a coalgebra structure on it such that the prod-

uct and the unit are morphisms of coalgebras or equivalently the coproduct and

the counit are morphisms of algebras.

Remark 5.3.3. Note here that only one compatibility condition makes use the braid-

ing of the category and it is the top diagram in the above definition.

Example 5.3.4. Recall from Example 5.2.2 that for a set X the vector space k[X ]

is a coalgebra. If moreover X has an associative product m : X × X → X and left

and right units e, i.e. X is a monoid, then m and e induce an algebra structure on

k[X ] which is compatible with the coalgebra structure of k[X ]. In particular, the co-

product δ : k[X ] → k[X ]⊗k[X ] and the counit ε : k[X ] → 1 are algebra morphisms.

Indeed, we have that

δ(x y) = x y ⊗x y = (x ⊗x)(y ⊗ y) = δ(x)δ(y)

and ε(x y) = 1 = ε(x)ε(y) for all x and y elements of X .

Let A be an algebra in a braided monoidal category C . Then, for any two left A-

modules (M ,r ) and (N , s), there is a naturally defined left A⊗A-module structure on

M ⊗N . If A is also a bialgebra i.e. A has a coalgebra structure on it in a compatible

way with the algebra structure, then an A-module structure is defined on M ⊗N as

follows.

Theorem 5.3.5 ([38] Section 6.1.3). Let (A,m,u,δ,ε) a bialgebra in C . The category

Rep(A) is a monoidal category with monoidal unit the pair (1C ,ε) and monoidal

product defined on objects by

(M ,r )⊗ (N , s) = (
M ⊗N , (r ⊗ s)◦ (idA ⊗τA,M ⊗ idN )◦ (δ⊗ idM⊗N )

)
.
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5.4 Hopf algebras

In this section, we study Hopf algebras in a braided monoidal category. The

difference between a bialgebra and a Hopf algebra is that the latter has an invertible

endomorphism.

Definition 5.4.1. A Hopf algebra in a braided monoidal category C is a bialgebra

(H ,m,u,δ,ε) in C with an invertible map S : H → H called the antipode map such

that S satisfies the following relation

m ◦ (id⊗S)◦δ= u ◦ε= m ◦ (S ⊗ id)◦δ (5.4.1)

Example 5.4.2. Recall from Example 5.3.4 that for a set X with a monoid structure

on it, the vector space k[X ] is a bialgebra. Now, k[X ] has an antipode if and only

if X is a group i.e. every element of X has an inverse. In this case, the antipode is

defined to be S(x) = x−1 for all x ∈ X .

In the following we describe a different perspective for S : H → H , which is actu-

ally the way from which relation 5.4.1 is obtained. First we introduce the notion of

the convolution algebra. Let (A,m,u) be an algebra in the braided category C and

let (C ,δ,ε) be a coalgebra in C . Then, it is formed the k-vector space HomC (C , A)

of all maps from C to A. The convolution product for any two maps f and g of

HomC (C , A) is defined to the composite

C
δ−→C ⊗C

f ⊗g−−−→ A⊗ A
m−→ A. (5.4.2)

Lemma 5.4.3 ([38] Section 6.2.1). Let (A,m,u) be an algebra in C and (C ,δ,ε) be a

coalgebra in C .

1. Then, the triple (Hom(C , A)),∗,η ◦u) is an algebra with product ∗ and unit

η◦u.

2. If A = C = H then the antipode S : H → H is a left and right quasi-inverse to

the identity map under the convolution product.

3. Let (H ,m,u,δ,ε,S) be a Hopf algebra in C . Then, it is true that

δ◦S = (S ⊗S)◦τ◦δ, u ◦S = u. (5.4.3)

In Theorem 5.3.5 it is discussed that the category of left A-modules of a bialge-

bra A is monoidal with the monoidal product to be determined by the coproduct

of A. If moreover A is a Hopf algebra, i.e. has an invertible antipode then the an-

tipode and its inverse determines a left duality and a right duality to the monoidal

category of left A-modules. The following theorem establishes this relation.

Theorem 5.4.4 ([38] Lemma 6.1). Let A be a bialgebra in a braided rigid category C .

Then, A is a Hopf algebra if and only if the monoidal category Rep(A) is rigid, in the

sense of Section 2.4.
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5.5 Fusion operators

In [37] a characterisation of a Hopf algebra H in a braided monoidal category

was given in view of an endomorphism V of H ⊗H . This endofunctor is called the

fusion operator. It is the notion of the fusion operator which was generalised appro-

priately by Brugières, Lack and Virelizier in [7] in order to define generalisations of

Hopf algebras in non-braided monoidal categories. In this section, we present the

notion of a fusion operator, emphasising the example of the group algebra and the

relation of the inverse of the fusion operator with the antipode of the Hopf algebra.

Proposition 5.5.1 (Street [37]). Let (C ,⊗,τ) be a braided monoidal category with

braiding τX ,Y : X ⊗Y
∼−→ Y ⊗X for all X and Y of C .

1. Let H is a bialgebra in C with the inverse braiding. The endomorphism V :

H⊗H → H⊗H which is defined by V = (1⊗m)◦(δ⊗ idH ) satisfies the following

equation

V23 ◦V12 =V12 ◦V13 ◦V23

where V13 = (idH ⊗τH ,H )−1◦(idH ⊗V )◦(τH ,H ⊗idH )−1 : H⊗H⊗H → H⊗H⊗H,

V12 = V ⊗ idH and V23 = idH ⊗V . Equation (1) is called the fusion equation

and an endomorphism which satisfies it a fusion operator.

2. Assume also that H is a Hopf algebra in C with antipode S : H → H. Then, the

fusion operator V is invertible with inverse V −1 : H ⊗H → H ⊗H given by the

composite

V −1 = (idH ⊗m)◦ (idH ⊗S ⊗ idH )⊗ (δ⊗ idH ).

Example 5.5.2. For a finite group G , the group algebra k[G] is a bialgebra with co-

product defined by δ(g ) := g ⊗ g and counit ε(g ) = 1 for g ∈G . Consider the endo-

morphism VkG : k[G]⊗k[G] → k[G]⊗k[G] defined to be the composite

g1 ⊗ g2
δ⊗ id−−−→ (g1 ⊗ g1)⊗ g2

id⊗m−−−−→ g1 ⊗ g1g2

where g1 and g2 elements of G . Since, k[G] is a Hopf algebra with antipode defined

by S(g ) = g−1, the inverse V −1
k[G] of the endomorphism Vk[G] is defined to be the

composition

g1 ⊗ g1g2
δ⊗ id−−−→ (g1 ⊗ g1)⊗ g1g2

id⊗S⊗id−−−−−→ g1 ⊗ g−1
1 ⊗ g1g2

id⊗m−−−−→ g1 ⊗ g−1
1 g1g2 = g1 ⊗ g2

for all g1 and g2 elements of G .

It is stated without proof in [37] that the antipode S : H → H of the Hopf algebra

H in C is given by S = (ε⊗idH )◦V −1◦(idH ⊗η1) where V −1 is the inverse of the fusion

operator. In the remainder of this section we check that S is indeed the antipode.

First we establish the commutativity of some diagrams which will be essential for

the proof.
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Lemma 5.5.3. Let (H ,m,η,δ,u) be a bialgebra in a braided monoidal category and

let V : H ⊗H → H ⊗H its fusion operator. Then, the following diagrams are commu-

tative.

H ⊗H H ⊗H

H

V

m
ε⊗ id

H ⊗H H ⊗H

H

id⊗η1

V

δ

Proof. For the commutativity of the left diagram we work as follows. First we un-

pack V and obtain the following commutative diagram due to interchange law and

the counitarity axiom of the coalgebra.

H ⊗H H ⊗H ⊗H H ⊗H

1⊗H ⊗H

H

δ⊗ id id⊗m

m ε⊗ id

ε⊗ id⊗ id

m

For the commutativity of the right diagram we work as follows. First we uncpack

V and obtain the following commutative diagram due to interchange law and the

unitarity axiom of the algebra.

H ⊗H H ⊗H ⊗H H ⊗H

H ⊗H

H

δ⊗ id id⊗m

id⊗η δ

δ

id⊗ id⊗η
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Lemma 5.5.4. Let (H ,m,η,δ,u) be a bialgebra in a braided monoidal category and

let V : H ⊗H → H ⊗H its fusion operator. Then, the following diagrams are commu-

tative.

H ⊗H ⊗H H ⊗H ⊗H

H ⊗H H ⊗H

V ⊗ id

id⊗mid⊗m

V

H ⊗H ⊗H H ⊗H ⊗H

H ⊗H H ⊗H

id⊗V

δ⊗ idδ⊗ id

V

Proof. For the commutativity of the left diagram we work as follows. First, we un-

pack V and obtain the following diagram.

H ⊗H ⊗H H ⊗H ⊗H ⊗H H ⊗H ⊗H

H ⊗H ⊗H ⊗H

H ⊗H H ⊗H ⊗H H ⊗H

δ⊗ id⊗ id id⊗m ⊗ id

id⊗mid⊗m

δ⊗ id id⊗m

δ⊗ id⊗ id

id⊗ id⊗m

The commutative of the above boundary diagram follows from the interchange law

and the associativity of the product m.

The commutativity of the right diagram follows similarly from the interchange

law and the coassociativity of the coproduct as it shown below.

H ⊗H ⊗H H ⊗H ⊗H ⊗H H ⊗H ⊗H

H ⊗H ⊗H ⊗H

H ⊗H H ⊗H ⊗H H ⊗H

id⊗δ⊗ id id⊗ id⊗m

δ⊗ idδ⊗ id

δ⊗ id id⊗m

δ⊗ id⊗ id

id⊗ id⊗m
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Now, with the use of the above commutative diagrams and the fact that V is

invertible, we check that S satisfies the relations 5.4.1. The commutative diagram

below express the equality m ◦ (S ⊗ id)◦δ= η◦ε.

H ⊗H ⊗H H ⊗H ⊗H

H ⊗H H ⊗H H ⊗H H ⊗H

H 1 H

1 2

3

4 5

V −1 ⊗ id

δ

(id⊗η1)⊗ id id⊗m id⊗m

m

(ε⊗ id)⊗ id

id
V −1

id⊗η1

ε⊗ id

ε η

The commutativity of the triangle with number one is the unitary axiom of the al-

gebra, see Definition 5.1.1. The commutativity of the square with number two is

checked in Lemma 5.5.4. The commutativity of the square with number three is

the interchange law between the product m and the counit ε. The commutativity

of the triangle with number four is checked in Lemma 5.5.3.

Similarly, the diagram below express the relation m ◦ (id⊗S)◦ δ= η◦ ε of which

commutativity follows for similar reasons with the above.

H ⊗H ⊗H H ⊗H ⊗H

H ⊗H H ⊗H H ⊗H H ⊗H

H 1 H

1

2
3

4 5

id⊗V −1

δ

id⊗(id⊗η1) δ⊗ id δ⊗ id

m

id⊗(ε⊗ id)

id
V −1

id⊗η1
ε⊗ id

ε η



60 CHAPTER 5. HOPF ALGEBRAS IN BRAIDED CATEGORIES



Chapter 6

Hopf monads on monoidal categories

The aim of this chapter is to discuss a generalisation of Hopf algebras due to

Brugières, Lack and Virelizier [7]. This generalisation is called a Hopf monad and

was established firstly for categories with duals in [8], based on previous work of

Moerdijk [30].

The material which covered in this chapter is presented in the following order.

In Section 6.1 we cover the basics of monads on a category and the associated cat-

egory of modules of a monad. The analogue of a bialgebra on the level of monads,

is called a bimonad, and introduced first by Moerdijk [30]. We discuss the theory of

bimonads in Section 6.2. In Section 6.3 we discuss the notion of a Hopf monad as

established in [7]. In particular, we explain how the authors of [7] generalised the

notion of the fusion operator of Hopf algebra due to Street to defined the notion

of a Hopf monad on a monoidal category. In Section 6.4 we discuss Hopf monads

on monoidal categories which are obtained from pairs of adjoints functors. In par-

ticular, our goal in this section is two fold. On the one hand, we want to explain

the theory of Hopf operators of an opmonoidal and how this is related with the

fusion operators of the previous section. On the other hand, we want discuss the

particular case of a Hopf monad on a rigid monoidal category which introduced

by Brugières and Virelizier in [8]. Finally, in Section 6.5 we discuss under which

circumstances a Hopf monad on a monoidal category is obtained from a Hopf al-

gebra.

Our presentation of the above material follows [7], [8] and [38] closely.

6.1 Monads

In this section, we introduce the notion of a monad on a monoidal category.

Our exposition follows [7] and [28] closely.

Definition 6.1.1. Let C be a category. A monad on C is a triple (T,µ,η), where

T : C →C is a functor, µ : T T → T is a natural transformation called the product of

61
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the monad and η : 1C → T is a natural transformation called the unit of the monad

such that the following diagrams commute for all X of C .

T T T (X ) T T (X )

T T (X ) T (X )

T (µX )

µX

µT X µX

T (X ) T T (X )

T T (X ) T (X )

T (ηX )

µX

ηT X µX
idT X

Remark 6.1.2. In an equivalent way, a monad T on a category C is the algebra ob-

ject in the category End(C ) of endofunctors of C . It is worth mentioning here that

End(C ) is a monoidal category with monoidal product the composition of endo-

functors and unit object the identity functor but it is neither symmetric nor braided.

Notation 6.1.3. In the following, we will refer to µ and η as product and unit and it

will be clear from the context that we are referring to the product and to the unit of

a monad.

Important examples of monads are obtained from adjoint functors and algebra

objects in some category.

Example 6.1.4. Let C and D be categories and let F : C →D be a functor with right

adjoint U : D → C ; symbolically F a U . Denote by η : idC → U F the adjunction

unit and by ε : FU → idD the adjunction counit. Then, the endofunctor T :=U F is

a monad on C , called the adjunction monad, with product µ :=U (εF ) and unit the

adjunction unit.

Example 6.1.5. Let (A,m,u) be an algebra object in a monoidal category C with

product m : A ⊗ A → A and unit u : 1 → A. Then, the endofunctor T ′ = A ⊗− with

product µ= m ⊗ id and unit η= u ⊗ id, is a monad on C .

Example 6.1.6. The identity functor id : C → C is a monad with product and unit

the identity.

Monads on a category C form a category. Since a monad is an algebra object

in the category End(C ), morphisms between monads are essentially morphisms

between algebra objects. To be more explicit we have the following definition.

Definition 6.1.7. Let (T,µ,η) and (T ′,µ′,η′) be monads on a category C . Then, a

morphism of monads from (T,µ,η) to (T ′,µ′,η′) is a natural transformation f : T →
T ′ such that the following diagrams commute for all X of C .

T T (X ) T
(
T ′(X )

)
T ′T ′(X )

T (X ) T ′(X )

T ( fX ) fT ′(X )

µX

fX

µ′
X

X T (X )

T ′(X )

ηX

fXη′X
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An action of a monad T on an object of a category C is defined as follows.

Definition 6.1.8. Let (T,µ,η) be a monad on a category C . An action of T on an

object X of C is a morphism r : T (X ) → X in C such that the following diagrams

commute.

T T (X ) T (X )

T (X ) X

µX

rT (r )

r

X T (X )

X

ηX

r
idX

The pair (X ,r ) is called a T -module in C . A morphism of T -modules from (X ,r ) to

(Y , s) is defined to be a map f : X → Y such that the following diagram commute.

T (X ) T (Y )

X Y

T ( f )

sr

f

Example 6.1.9. Let (A,m,u) be an algebra in a monoidal category C and denote by

T ′ = A ⊗− the associated monad. Then, the category of modules of the monad T ′

is the category of left A-modules of the algebra A.

Proposition 6.1.10 ([8] Lemma 1.7). Let C be a category, T and T ′ be monads on C

and let g : T → T ′ be a natural transformation. Then, the following are equivalent.

• The natural transformation g : T → T ′ is a morphism of monads.

• For any T ′-module (N , s) the module (N , s ◦ gN ) is a T -module.

6.2 Bimonads

In this section, we discuss the analogue of a bialgebra in a braided monoidal

category on the level of monads on any monoidal category. In particular, we start

with a monad on a category and endow it with extra structure. We have the follow-

ing definition.

Definition 6.2.1. A monad (T,µ,η) on a monoidal category C is said to be a bi-

monad if the functor T : C →C is opmonoidal and the product µ and the unit η of

the monad are opmonoidal natural transformations.

Notation 6.2.2. Bimonads are also called opmonoidal monads meaning monads in

the category of opmonoidal functors and opmonoidal natural transformations.
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Bimonads will play a fundamental role in the following Chapter, where we will

define a bimonad on the orbit category of the derived category of coherent sheaves.

For this reason we consider it useful to unpack in the form of diagrams what does

it mean that the functor T is opmonoidal and the natural transformation µ and η

opmonoidal.

By Definitions 2.2.1 and 2.2.3, the fact that the functor T : C →C is opmonoidal

is expressed as the commutativity of the following diagrams for all X ,Y and Z ob-

jects of C .

T (X ⊗Y ⊗Z ) T (X )⊗T (Y ⊗Z )

T (X ⊗Y )⊗T (Z ) T (X )⊗T (Y )⊗T (Z )

T2(X ,Y ⊗Z )

T2(X ,Y )⊗ idT (Z )

T2(X ⊗Y , Z ) idT (X )⊗T2(Y , Z )

T (X ) (X )⊗T (1C )

T (1C )⊗T (X ) T (X )

T2(X ,1)

T0 ⊗ idT (X )

idT (X )
T2(1, X ) idT (X )⊗T0

In a similar fashion, the fact that the product µ : T T → T is an opmonoidal natural

transformation is expressed as the commutativity of the following diagrams for all

X and Y of C .

T T (X ⊗Y ) T (T (X )⊗T (Y ))

T (X ⊗Y ) T T (X )⊗T T (Y )

T (X )⊗T (Y )

T (T2(X ,Y ))

T2(T X ,T Y )µX⊗Y

µX ⊗µYT2(X ,Y )

T (T (1)) T (1)

T (1) 1

T (T0)

µ1 T0

T0

Similarly, the fact that the unit η : idC → T is an opmonoidal natural transformation

expressed as the commutativity of the following diagrams for all X and Y of C .



6.2. BIMONADS 65

X ⊗Y T (X ⊗Y )

T (X )⊗T (Y )

ηX⊗Y

T2(X ,Y )ηX ⊗ηY

1 T (1)

1

η1

T0id1

Bimonads form a category in which the morphisms are defined as follows.

Definition 6.2.3. A morphism between two bimonads (T,µ,η) and (T ′,µ′,η′) on a

category C is a moprhism of monads f : T → T ′ which is opmonoidal as natural

transformation.

Important examples of bimonads are obtained from strong monoidal functors

with left adjoints and bialgebras in braided monoidal categories.

Theorem 6.2.4 (Brugières-Virelizier [8] p. 690). Let U : D →C be a strong monoidal

functor between monoidal categories with left adjoint F : C →D. Then, the adjunc-

tion monad T =U F is a bimonad with constraints

T2(X ,Y ) =U2(F X ,F Y )◦U
(
F2(X ,Y )

)
, T0 =U0 ◦U (F0) (6.2.1)

for all X and Y of C .

Opmonoidal adjunctions, as defined in 2.2.5, will be important in Section 6.4

where we will discuss Hopf monads obtained from adjoint functors. For the mo-

ment, we want to establish the following result which follows from Theorem 6.2.4.

Corollary 6.2.5. Let F a U be an opmonoidal adjunction. Then, the adjunction

monad T =U F has a bimonad structure.

Example 6.2.6 (Brugières-Virelizier [8] p.689). Let (A,m,η) be an algebra in a braided

monoidal category C of which the braiding is denoted τX ,Y : X ⊗Y
∼−→ Y ⊗ X for

all X , Y of C . Since A is an algebra, the functor T ′ = A ⊗− is a monad on C . If

also are given maps δ : A → A ⊗ A and ε : A → 1C then the following is true: the

tuple (A,m,η,δ,ε) is a bialgebra in C if and only if T ′ = A ⊗− is a bimonad with

opmonoidal constraint T ′
2 defined by

T ′
2(X ,Y ) = (idA ⊗τA,X ⊗ idY )◦ (δ⊗ idX⊗Y )

for all X and Y of C and opmonoidal constraint T ′
0 to be defined by T ′

0 = ε⊗id where

ε : A → 1 is the counit of the bialgebra A.

Example 6.2.7. The identity functor id : C → C is a bimonad with opmonoidal

structure given by identities.
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In the same way that a bialgebra determines the monoidal structure of the as-

sociated category of representations see Theorem 5.3.5, a bimonad determines a

monoidal structure on the associated category of modules. In particular, we have

the following.

Theorem 6.2.8 (Moerdijk [30] Theorem 7.1). Let T be a monad on a monoidal cate-

gory C and let C T be the category of T -modules. Then, the following are equivalent.

• Bimonad structures on the monad T of C .

• Monoidal structures on the category of modules C T such that the forgetful

functor C T → T is a strict monoidal functor. In particular, the monoidal prod-

uct and the monoidal unit of C T is defined by

(M ,r )⊗C T (N , s) = (
M ⊗N , (r ⊗ s)◦T2(M , N )

)
, 1C T = (1,T0)

for any T -modules (M ,r ) and (N , s).

Remark 6.2.9. It is worth mentioning here that Moerdijk in [30] used the nomen-

clature Hopf monads for the notion of a bimonad.

6.3 Fusion operators and Hopf monads

Brugières, Lack and Virelizier in [7] associated to any bimonad on a monoidal

category two natural transformations, called fusion operators generalising the no-

tion of a fusion operator of a bialgebra in a braided monoidal category as discussed

in Section 5.5. With the use of the generalised fusion operators the notion of a bi-

monad can be made to a Hopf monad, a notion which was defined in [7] and con-

sists of a generalisation of Hopf algebras in braided monoidal categories to a non

braided setup. In the following, we outline the basics of fusion operators and Hopf

monads. Our presentation follows [7] closely.

First, we introduce the notion of a left fusion operator and a right fusion opera-

tor.

Definition 6.3.1. Let T be a bimonad on C . The left fusion operator of T is the

natural transformation H l : T ◦⊗◦ (idC ×T ) →⊗◦ (T ×T ) defined by

H l
X ,Y = (idT X ⊗µY )◦T2(X ,T Y ) : T (X ⊗T Y ) → T X ⊗T Y (6.3.1)

for all X , Y of C . Similarly, the right fusion operator of T is the natural transforma-

tion H r : T ◦⊗◦ (T × idC ) →⊗◦ (T ×T ) defined by

H r
X ,Y = (µX ⊗ idT Y )◦T2(T X ,Y ) : T (T X ⊗Y ) → T X ⊗T Y (6.3.2)

for all X , Y of C .
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Bimonads for which the associated fusion operators are invertible are called

Hopf monads. More precisely, we have the following definition.

Definition 6.3.2. Let C be a monoidal category, T be a bimonad on C with left

fusion operator H l and right fusion operator H r as defined above.

1. The bimonad T is said to be a left Hopf monad if its left fusion operator is an

isomorphism.

2. The bimonad T is said to be a a right Hopf monad if its right fusion operator

is an isomorphism.

3. The bimonad T is said to be a Hopf monad on C if both left and right fusion

operators are isomorphisms.

Remark 6.3.3. It is worth mentioning here that the category on which the Hopf

monad is defined is just a monoidal category.

Example 6.3.4. Let (H ,m,u,δ,η,S) be a Hopf algebra in a braided monoidal cat-

egory C with an invertible antipode S. Then, the endofunctor T ′ = H ⊗− is a bi-

monad on C with constraints T ′
2(X ,Y ) and T ′

0 as discussed in Example 6.2.6. De-

fine the left fusion operator H l
X ,Y : H ⊗ (

X ⊗ (H ⊗Y )
)→ (H ⊗ X )⊗ (H ⊗Y ) to be the

composite

H ⊗ (
X ⊗ (H ⊗Y )

) δ⊗ idX⊗(H⊗Y )−−−−−−−−−→ H ⊗H ⊗ (
X ⊗ (H ⊗Y )

)
idA ⊗τH ,X ⊗idH⊗Y−−−−−−−−−−−−→ H ⊗X ⊗ (

H ⊗ (H ⊗Y )
)

idH⊗X ⊗µ′Y−−−−−−−→ (H ⊗X )⊗ (H ⊗Y )

and the right fusion H r
X ,Y : H ⊗ (

(H ⊗X ) ⊗Y
)→ (H ⊗X )⊗ (H ⊗Y ) defined to be the

composite

H ⊗ (
(H ⊗X )⊗Y

) δ⊗ id(H⊗X )⊗Y−−−−−−−−−→ H ⊗H ⊗ (
(H ⊗X )⊗Y

)
idH τH ,H⊗X ⊗idY−−−−−−−−−−−→ (

H ⊗ (H ⊗X )
)⊗H ⊗Y

µ′X ⊗idH⊗Y−−−−−−−→ (H ⊗X )⊗ (H ⊗Y ).

Since H is a Hopf algebra, using the antipode S we can find an inverse (H l )−1

for the left fusion operator. To be precise, the inverse (H l )−1 is defined to be the

following composite.
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H ⊗X ⊗H ⊗Y
δ⊗ idX ⊗ idH⊗Y−−−−−−−−−−→ H ⊗H ⊗X ⊗H ⊗Y

idH ⊗τH ,X ⊗idH⊗Y−−−−−−−−−−−−→ H ⊗X ⊗H ⊗H ⊗Y

idH⊗X ⊗S⊗idH⊗Y−−−−−−−−−−−→ H ⊗X ⊗H ⊗H ⊗Y

idH⊗X ⊗µ′Y−−−−−−−→ H ⊗ (
X ⊗ (H ⊗Y )

)

Similarly, the inverse (H r )−1 of the right fusion operator uses the inverse of the

antipode S−1 : H → H and it is given by the following composite.

H ⊗X ⊗H ⊗Y
τH⊗X ,H⊗idY−−−−−−−−→ H ⊗ (H ⊗X )⊗Y

δ⊗ idH⊗X ⊗ idY−−−−−−−−−−→ (
(H ⊗H)⊗H ⊗X

)⊗Y

S−1⊗idH ⊗ idH⊗X ⊗ idY−−−−−−−−−−−−−−−→ H ⊗H ⊗H ⊗X ⊗Y

τH ,H⊗idH⊗X ⊗ idY−−−−−−−−−−−−→ H ⊗ (
(H ⊗H ⊗X )⊗Y

)
idH ⊗µ′X ⊗idY−−−−−−−−−→ H ⊗ (

(H ⊗X )⊗Y
)

Remark 6.3.5. If we set X = Y = 1C in the definition of the left fusion operator, then

we recover the formula for fusion operator as defined by Street, see Definition 5.5.1.

In the next chapter we will be interested in a rigid monoidal category and a

pair of adjoint functors. The following theorem establishes that a pair of adjoint

functors between rigid monoidal categories gives rise to a Hopf monad.

The following theorem will be fundamental for our work.

Theorem 6.3.6 ([8] p.701). Let (F : C → D,U : D → C ) be a pair of adjoint between

rigid monoidal categories, such that the right adjoint U is a strong monoidal functor.

Then, the adjunction monad T =U F is a Hopf monad.

Remark 6.3.7. Hopf monads on rigid monoidal categories were studied by Brugières

and Virelizier in [8]. In [7, Section 3.4] is explained why the definition of a Hopf

monad with the use of the fusion as above consists of a generalisation of the Hopf

monad on a rigid monoidal category.

The following is the analogue of the Theorem 5.4.4 on the level of Hopf monads

with left duality.

Theorem 6.3.8 ([38] p. 166). Let (T,µ,η) be a bimonad on a category with left duality.

Then the following are equivalent.
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• The bimonad T is a left Hopf monad.

• The Hopf monad T has a left antipode. In particular, for each X of C there is a

natural transformation sl
X : T (∨X ) → ∨X defined by

sl
X =

((
T0 ◦T (evT (X ))◦ (H l

∨T (X ),X )−1)⊗∨ηX

)
◦ (

idT (∨T (X ))⊗coevT (X )
)

such that the following relations are satisfied.

T0 ◦T (evX )◦T (∨ηX ⊗ idX ) = evT (X ) ◦
(
sl

T (X )T (∨µX )⊗ idT (X )
)◦T2

(∨T (X ), X
)

(ηX ⊗ id∨X )◦coevX ◦T0 = (µX ⊗ sl
X )◦T2

(
T (X ),∨T (X )

)
T (coevT (X ))

• The monoidal category of T -modules has a left duality which is computed

from the left antipode as follows.

∨(X ,r ) = (∨X , sl
X ◦T (∨r )

)
, ev(X ,r ) = evX , coev(X ,r ) = coevX .

In a similar way, we can consider a bimonad on a category with right duality.

Then, there exists analogous statements for right Hopf bimonads, right antipodes

and right duality on the category of the T -modules.

Example 6.3.9 ([8] p.699). Let C be a braided category with left duality and let

(H ,m,η,δ,u,S) be a Hopf algebra in C . Then, the bimonad H ⊗ (−) is a left Hopf

monad with left antipode sl
X : H ⊗∨X ⊗∨H → ∨X given by

sl
X = (

(evH ◦τ∨H ,H )⊗ id∨X
)◦ (

S ⊗τ−1
∨H ,∨X

)
.

The next lemma relates morphisms of Hopf monads, which are morphisms of

the underlying bimonads and the left antipodes.

Lemma 6.3.10 ([8] p.702). Let (T, sl
X ) and (T ′, sl

X ) be Hopf monads with sl and sl

their associated left antipodes on a monoidal category C with left duality. Then, a

morphism f : T → T ′of Hopf monads preserves the antipodes. That means that the

following diagram commutes for any object X of C .

T
(∨T ′(X )

)
T ′(∨T ′(X )

)

T
(∨T (X )

) ∨X

T (∨fX )

sl
X

f∨T ′(X )

sl
X
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6.4 Hopf monads from Hopf operators

In this section, we discuss a way for obtaining Hopf monads starting from an

opmonoidal adjunction. Our presentation follows [7] closely.

First, recall from Definition 2.2.5 that an adjunction F a U between functors

F : C → D and U : D → C is said to be an opmonoidal adjunction if both functors

F and G are opmonoidal and the adjunction unit and adjunction counit are op-

monoidal natural transformations. To any such opmonoidal adjunction a pair of

natural transformations, called Hopf operators is assigned. To be precise, we give

the following definition.

Definition 6.4.1. A left Hopf operator of the opmonoidal adjunction F a U is the

natural transformationHl : F (1C ⊗U ) → F ⊗1D defined by

Hl
X ,Y := (F X ⊗εY )◦F2(X ,U Y )

for all X ∈ C and Y ∈ D. Similarly, the right Hopf operator of the opmonoidal ad-

junction F aU is the natural transformationHr : F (U ⊗1C ) → 1D ⊗F defined by

Hr
X ,Y := (εY ⊗F X )◦F2(U Y , X )

for all X ∈C and Y ∈D.

For any opmonoidal adjunction of the form F aU , the endofunctor T =U F of

C has a bimonad stucture on it, see Corollary 6.2.5. Moreover, to any bimonad T is

assigned fusion transformations, see Section 6.3. The following result establishes a

relation between the Hopf operators of the opmonoidal adjunction F aU and the

fusion operators of the bimonad T =U F .

Proposition 6.4.2 ([7] p.755). Let T = U F be the bimonad of an opmonoidal ad-

junction F a U . Then the fusion operators of T as defined in 6.3.1 are related with

the Hopf operators of the opmonoidal adjunction by the following formuli.

H l
X ,Y =U2(F X ,F Y )◦U (Hl

X ,F Y ), H r
X ,Y =U2(F X ,F Y )◦U (Hr

F X ,Y ). (6.4.1)

Proof. We will show the first formula for H l
X ,Y and Hl

X ,F Y . The second equation is

proved in a similar fashion.

H l
X ,Y

(1)= (idT X ⊗µY )T2(X ,T Y )

(2)= (idU F X ⊗U (εF Y ))U2(F X ,FU F Y )U (F2(X ,U F Y )

(3)= U2(F X ,F Y )U ((idF X ⊗εF Y )F2(X ,U F Y )

(4)= U2(F X ,F Y )U (HX ,F Y ).

Equalities (1) and (4) are the definitions of the fusion operator of the bimonad T =
U F and the Hopf operator of the opmonoidal adjunction F a U . Equality (2) is

the definition of the product map µ and of the natural transformation T2. Finally

equality (3) is due to the naturality of U2.
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Opmonoidal adjunctions for which the Hopf operators are invertable are called

Hopf adjunctions. To be explicit we have the following definition.

Definition 6.4.3. Let F aU be an opmonoidal adjunction.

1. The opmonoidal adjunction F a U is said to be left Hopf adjunction if Hl is

invertible.

2. The opmonoidal adjunction F aU is said to be right Hopf adjunction if Hr is

invertible.

3. The opmonoidal adjunction F aU is said to be a Hopf adjunction if both Hl

andHr are invertible.

Proposition 6.4.4 ([7] p.755). The monad of a left Hopf adjunction is a left Hopf

monad. Similarly, the monad of a right Hopf adjunction is a right Hopf monad.

Moreover, the monad of a Hopf adjunction is a Hopf monad.

The following proposition consists of a criterion for an opmonoidal adjunction

F aU to be a Hopf adjunction.

Proposition 6.4.5 ([7] p.760). Let F aU be an opmonoidal adjunction between left

closed monoidal categories. Then, the adjunction F aU is a left Hopf adjunction if

and only if U is a left closed. In particular, the inverse of H l is given by

evY
F (X⊗U Y ) ◦

(
εRHom(Y ,F (X⊗U Y ) ◦F

(
α−1 ◦RHom(id,η)◦coevU Y

X

)⊗ id
)

where α−1 :Hom(U X ,U Y )
∼−→U RHom(X ,Y ).

Similarly, if F aU is an opmonoidal adjunction between right closed monoidal

categories then, the adjunction F a U is a right Hopf adjunction if and only if U is

right closed.

The above proposition will be used as follows. Assume that we have an op-

monoidal adjunction F a U where the functors are defined between closed sym-

metric monoidal categories. By proving that F is a left closed functor yields that

the adjunction F a U is a Hopf adjunction and hence the associated bimonad is

actually a Hopf monad.

6.5 Hopf algebras from Hopf monads

In Section 6.3 we were in the situation where a Hopf algerba H in a braided

monoidal category C gives rise to a Hopf monad T ′ := H ⊗− on C . However it is

not generally true that all Hopf monads are coming from Hopf algebras in some

category. A detailed study of those Hopf monads which are represented by Hopf

algebras has been done by Brugières, Lack and Virelizier in [7]. We present this

theory here.

We start with a definition which is essential for the following.
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Definition 6.5.1. Let T be an opmonoidal endofunctor of a monoidal category

C and e : T → idC be an opmonoidal natural transfromation. Define the natural

transformations ue : T → T (1)⊗− and ve : T →−⊗T (1) by

ue
X = (idT (1)⊗eX )◦T2(1, X ), ve

X = (eX ⊗ idT (1))◦T2(X ,1). (6.5.1)

The augmentation map e is said to be left regular if ue is invertible.

If the above opmonoidal endofunctor is a bimonad and e : T → idC is a mor-

phism of bimonads we obtain the notion of an augmented bimonad.

Definition 6.5.2. Let C be a monoidal category. A bimonad T on C is augmented

if it is endowed with a bimonad morphism e : T → 1C . In this case, e is called an

augmentation for the bimonad T .

Augmented bimonads for which the augmentation map is left regular define

bialgebras in the center of the category C .

Proposition 6.5.3 ([7] p.782). Let T be an augmented opmonoidal endofunctor of

C such that the augmentation e : T → idC is left regular and define the following

natural transformation

σ= ve ◦ (ue )−1 : T (1)⊗ (−) → (−)⊗T (1). (6.5.2)

Then, σ is a half braiding in C and (T (1),σ) is a central coalgebra of C with coprod-

uct T2(1,1) and counit T0. Moreover, the natural isomorphism ue : T → T (1)⊗σ− is

an opmonoidal isomorphism.

The fact that ue is an opmonoidal isomorphism means that T ′ = T (1)⊗σ− is

given an opmonoidal structure by

T ′
2(X ,Y ) = (idT (1)⊗σX ⊗ idY )◦ (T2(1,1)⊗X ⊗Y ), T ′

0 = T0 ⊗ id.

If moreover, the above augmented opmonoidal endofunctor T is given the struc-

ture of a bimonad, see Definition 6.2.1 and e : T → id is a morphism of bimonads,

then (T (1),σ,T2(1,1),T0) is a bialgebra in the centre of the category C . More pre-

cisely, we have the following result.

Proposition 6.5.4 ([7] p. 783). Let (T,µ,η,e) be an augmented bimonad on C such

that the augmentation e : T → idC is left regular. Then, σ := ve ◦ (ue )−1 is a half

braiding for T (1) and the pair (T (1),σ) is a bialgebra in the Drinfel’d centre Z (C )

of C with product m = µ1 ◦ (ue
T (1))

−1, unit u = η1, coproduct T2(1,1) and counit T0.

Moreover, ue : T → T (1)⊗σ− is an isomorphism of bimonads.

The following lemma gives an explicit formula for the inverse (ue
X )−1 in the case

which T is an augmented Hopf monad.
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Lemma 6.5.5 ([7] p.783). Let T be an augmented left Hopf monad on C . Then, its

augmentation e : T → idC is left regular and

(ue )−1 = T (e)◦H l−1

1,− ◦ (idT (1)⊗η)

All the above material lead to the following fundamental theorem which is the

cornerstone of our work in the next chapter.

Theorem 6.5.6 ([7] p.784). Let C be a monoidal category. Then, there is a one to

one correspodence between augmented Hopf monads on C such that augmentation

map is left regular and Hopf algebras in the Drinfel’d centre Z (C ) of the monoidal

category C .

We have to make the point out here that the above theorem is true for Hopf

monads on arbitrary monoidal categories for which no requirement about braiding

or symmetry has been made. In the following proposition a further characterisation

of Hopf monads on braided categories which are represented by Hopf algebras is

given.

Proposition 6.5.7 ([7] p.780). Let T be a Hopf monad on a braided category (C ,⊗,1,τ).

Then, the monad T is isomorphic to the Hopf monad H ⊗− for some Hopf algebra H

in C if and only if the monad T is endowed with an augmentation map e : T → id

which is compatible with the braiding τ of C in the following way

(eX ⊗ idT (1))◦T2(X ,1) = (eX ⊗ idT (1))◦τT (1),T (X ) ◦T2(1, X ) (6.5.3)

for all X of C .

The above proposition, in view of Theorem 6.5.6 tells us that if we have a braided

monoidal category C and an augmented Hopf monad on C then T is isomorphic

to the T ′ = T (1)⊗−. Among other that means that the augmentation map e of the

Hopf monad T and augmentation of T ′ which is defined by e ′ = T0 ⊗− coincide.

Since, we couldn’t find it written in [7] we make this check here.

Lemma 6.5.8. For the augmented Hopf monads (T,e) and (T ′,e ′ = T0) it is true that

e = ue ◦e ′.

Proof. Unpacking the relation e = ue ◦ e ′ comes down to check the commutativity

of the diagram below.
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U F (1⊗X ) U FUW (1⊗X ) UW (1⊗X )

U F (1)⊗U F (X ) 1⊗U F (X )

U F (1)⊗X 1⊗X 1⊗X

U (εW )

T2(1, X )

id⊗e

idT (X )

id⊗e

T0 ⊗ id

T0 ⊗ id id

Tthe commutativity of the top left triangle follows from the fact that T is a bimonad,

see Definition 6.2 and the bottom left square from the interchange law.

If moreover ζ : T (X ) → X is an action of the Hopf monad T on the objects of C

then, from the fact that ue is a natural isomorphism of monads, we can define an

action of the Hopf monad T ′ on the objects of C by

ρ : T (1)⊗X
(ue )−1

−−−−→ T (X )
ρ−→ X .

for any X of C . Now, being both of them Hopf monads on rigid monoidal categories

we can define antipodes and by Theorem 6.3.8 these Hopf monads act on the dual

objects of the category C . In the following, we denote the left antipode of T by sl
X

and the left antipode of T ′ by sl
X and check the following, since we couldn’t find it

in [7].

Proposition 6.5.9. Let C be a category with left duality and let T and T ′ = T (1)⊗−
be isomorphic Hopf monads on C . Then, the natural isomorphism ue preserves the

actions of T and T ′ on the left dual ∨X of C .

Proof. What we want to prove comes down to the proof of the commutativity of the

following diagram.

T (1)⊗∨X T
(∨X

)

T
(∨X ⊗∨T (1)

)

T (1)⊗∨X ⊗∨T (1) T
(∨T (X )

)

∨X

ue
∨X

ue
∨X⊗∨T (1) T (∨ue )

id⊗∨ρ

sl
X

T (∨ζ)

sl
X

T (∨ρ)
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The commutativity of the top left square follows from the naturality of the natural

transformation φ. The top right triangle commutes since we defined the action of

the Hopf monad T ′ via the action of U F . Finally, the commutativity of the bottom

square follows from Lemma 6.3.10. The proof is complete.



76 CHAPTER 6. HOPF MONADS ON MONOIDAL CATEGORIES



Chapter 7

Hopf algebras, Hopf monads and orbit
categories

In this chapter we bring together the theory of Hopf monads on monoidal cate-

gories and the theory of derived categories of coherent sheaves on smooth complex

projective varieties.

In Section 7.1 we associate to a smooth complex projective variety the orbit cat-

egory Dor(X ) which is obtained from the bounded derived category of X and the

functor [2] : Db(X ) → Db(X ). Then, we prove that if the variety is even dimensional

and has trivial canonical bundle, then the functor T = L∆∗ R∆∗ is a Hopf monad

on Dor(X ), where ∆ : X → X × X is the diagonal embedding and L∆∗, R∆∗ denote

the associated functors of ∆ on the level of orbit categories.

In Section 7.2 we are motivated from the structure of the orbit category Dor(X )

and the properties of the functors R∆∗ and L∆∗ and we prove in a general categor-

ical level the following: given a pair of adjoint functors (F,U ) defined between rigid

monoidal categories such that the right adjoint U is strong monoidal and for which

there exists a right quasi-inverse W which is also strong monoidal and moreover

the natural isomorphism α : UW
∼−→ id is a monoidal natural transformation, then

the adjunction monad is an augmented Hopf monad.

In Section 7.3 we explain why the Hopf monad T = ∆∗∆∗ is an example of the

above general categorical setup and so T is an augmented Hopf monad. As an ap-

plication of this general theory, in combination with the theory of Hopf monads,

we obtain that the object U :=∆∗∆∗OX is a cocommutative Hopf algebra object in

Dor(X ) of which the antipode is an involution. This is the main result of this thesis.

7.1 Hopf monad on the orbit category

In this section we consider a smooth complex projective variety X and its asso-

ciated bounded derived category of coherent sheaves Db(X ) and define the orbit

77



78 CHAPTER 7. HOPF ALGEBRAS, HOPF MONADS AND ORBIT CATEGORIES

category Dor(X ) as in Section 1.5 where the essential autoequivalence of Db(X ) is

the shift functor [2] : Db(X ) → Db(X ). We prove that if X is an even dimensional

smooth complex projective variety with trivial canonical bundle and ∆ : X → X ×X

is the diagonal embedding, then the endofunctor T = L∆∗ R∆∗ of Dor(X ) is a Hopf

monad on Dor(X ).

Notation 7.1.1. In the following, we will denote by X a smooth complex projec-

tive variety, by ∆ : X → X × X the diagonal embedding and by Db(X ) the bounded

derived category of coherent sheaves on X .

Definition 7.1.2. Let X be a smooth complex projective variety. We define the cat-

egory Dor(X ) to be the category with objects bounded cochain complexes of coher-

ent sheaves on X and morphisms to be defined by

HomDor(X )(E
•,F •) := ⊕

n∈Z
HomDb (X )

(
E •,F •[2n]

)
(7.1.1)

The composition of two morphisms f : E • → F •[2n] and g : F • → G •[2m] is de-

fined by
(
g [2n]

)◦ f : E • →G •[2(m +n)].

An important property of the objects of Dor(X ) which will be essential for our

purposes is the following.

Lemma 7.1.3. For each E • of Dor(X ), there exists an isomorphism E •[2] ' E •.

Proof. We will find morphisms f : E •[2] → E • and g : E • → E •[2] in Dor(X ) such

that f ◦g = IdE • and g ◦ f = IdE •[2]. Take f = IdE •[2] and g = IdE • . Then, we compute

that

f ◦ g = (IdE •[2])[−2]◦ IdE • = IdE • , g ◦ f = IdE •[2]◦ IdE •[2] = IdE •[2]

and the proof is complete.

Corollary 7.1.4. For each E • of Dor(X ) and n ∈Z is true that E •[2n] ' E • for n ∈Z.

The hom sets of the orbit category have the following property.

Lemma 7.1.5. For all E •, F • of Dor(X ) it is true that

dimC

(
HomDor(X )(E

•,F •)
)
<∞ (7.1.2)

Proof. This follows by the definition of the hom sets in the orbit category, see 7.1.1,

and from the fact that dimC

(⊕
i∈ZHomDb (X )

(
E •,F •[i ]

)) <∞ since X is a smooth

complex projective variety and Proposition 4.1.3.
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In Section 4.2 we discussed derived functors on the level of bounded derived

categories of coherent sheaves. A fundamental property of derived functors is that

they are exact functors between triangulated categories. For example, if f : X → Y

is a smooth map between smooth projective varieties, then the derived functor

R f∗ : Db(X ) → Db(Y ) is equipped with a natural isomorphism R f∗ ◦ [2]
∼−→ [2]◦R f∗,

in other words R f∗ is a [2]-equivariant functor. Similarly, the derived functors L f ∗ :

Db(Y ) → Db(X ) and f ! : Db(Y ) → Db(X ) enjoy this property. From the general the-

ory about functors on the level of orbit categories, see Section 1.5 we have the fol-

lowing lemma.

Lemma 7.1.6. Let f : X → Y be a smooth map between smooth complex projective

varieties. Then, the derived functors R f∗, L f ∗, f ! which are defined on the level of

bounded derived categories induce functors on the level of orbit categories.

In Section 4.3 we discussed various adjunctions between derived functors on

the level of derived categories of coherent sheaves. In the following, we are verifying

that these adjunctions hold also on the level of orbit categories.

Lemma 7.1.7. Let f : X → Y be a smooth map of smooth complex projective varieties

and let L f ∗ : Dor(Y ) → Dor(X ) and R f∗ : Dor(X ) → Dor(Y ) be the functors which are

induced from the derived functor L f ∗ and R f∗. Then, there exists a natural isomor-

phism

HomDor(X )(L f ∗E •,F •)
∼−→ HomDor(Y )(E

•,R f∗F •). (7.1.3)

for all E • of Dor(Y ) and F • of Dor(X ).

Proof. By the definition of the hom-sets of the orbit category, the fact that L f ∗ is

left adjoint to R f∗ on the level of bounded derived categories, the exactness of the

derived functors R f∗ and again the definition of the hom-sets of the orbit category

we obtain the following chain of maps.

HomDor(X )(L f ∗E •,F •) = ⊕
n∈Z

HomDb (X )(L f ∗E •,F •[2n])

∼=
⊕
n∈Z

HomDb (X )

(
E •,R f∗ (F •[2n])

)
(L f ∗ a R f∗)

∼=
⊕
n∈Z

HomDb (X )(E
•, (R f∗F •)[2n])

= HomDor(Y )(E
•,R f∗F •).

In a similar way, we obtain for R f∗ : Dor(X ) → Dor(Y ) its right adjoint.

Lemma 7.1.8. Let f : X → Y be a smooth map of smooth complex projective varieties

and let f ! : Dor(Y ) → Dor(X ) and R f∗ : Dor(X ) → Dor(Y ). Then, there exist a natural

isomorphism

HomDor(Y )(R f∗E •,F •)
∼−→ HomDor(X )(E

•, f ! F •) (7.1.4)

for all E • of Dor(X ) and F • of Dor(Y ).
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The objects of orbit category are bounded complexes of coherent sheaves and

so the derived tensor product as defined in 4.2 which turns Db(X ) to a symmet-

ric monoidal category, see Proposition 4.2.8 is well defined also on the level of or-

bit categories. The following lemma establishes that the orbit category Dor(X ) is a

closed category, a notion which was discussed in Section 2.5.

Proposition 7.1.9. Let X be a smooth complex projective variety. Then, there exists

a natural isomorphism

HomDor(X )
(
E •⊗L F •,G •) ∼−→ HomDor(X )

(
E •,RHom(F •,G •)

)
. (7.1.5)

for all E •, F • and G • of Dor(X ). In other words, Dor(X ) is a closed symmetric monoidal

category.

Proof. By the Definition 7.1.1 of the hom sets of Dor(X ) and by Proposition 4.3.2 we

have the following chain of maps.

HomDor(X )(E
•⊗L F •,G •) = ⊕

n∈Z
HomDb (X )(E

•⊗L F •,G •[2n])

' ⊕
n∈Z

HomDb (X )

(
E •,RHom•(F •,G •[2n]

)
' ⊕

n∈Z
HomDb (X )

(
E •,RHom•(F •,G •)[2n]

)
= HomDor(X )

(
E •,RHom(F •,G •)

)
.

In Section 4.4 we discussed the construction of a dual object for a bounded

complex of coherent sheaves E •. Since the objects of the orbit category are the

same as the bounded derived category and the internal hom functor is well defined

we have the following.

Proposition 7.1.10. Let X be a smooth complex projective variety. Then, the category

Dor(X ) is a rigid monoidal category.

In Theorem 4.1.5 we discussed the Serre functor on the bounded derived cate-

gory of coherent sheaves and gave emphasis on the fact that SX is an exact functor,

see Theorem 3.1.21. In the following, we check that the Serre functor SX : Dor(X ) →
Dor(X ) defined by SX (−) = (−)⊗ωX [dim(X )] is indeed a Serre functor for the orbit

category Dor(X ).

Lemma 7.1.11. The functor SX (−) := (−)⊗ωX [dim X ] is a Serre functor for Dor(X ).

Proof. For any E •, F • in Dor(X ) we will prove that there is natural isomorphisms

HomDor(X )(E
•,F •)

∼−→ (
HomDor(X )(F

•,E •⊗ωX [dim X ])
)∨. (7.1.6)
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Starting with the left hand side of (7.1.6) then by the definition of Hom-spaces in

Dor(X ) and Serre duality on Db(X ) we have the following.

HomDor(X )(E
•,F •) : = ⊕

n∈Z
HomDb (X )(E

•,F •[2n])

' ⊕
n∈Z

HomDb (X )(F
•[2n],E •[dim X ])∨

'
( ⊕

n∈Z
HomDb (X )(F

•[2n],E •⊗L ωX [dim X ])
)∨

(Lemma 7.1.5)

'
( ⊕

n∈Z
HomDb (X )(F

•,E •⊗L ωX [dim X ][−2n])
)∨

'
(

HomDor(X )(F
•,E •⊗L ωX [dim X ])

)∨
.

In the following, we will be interested in n-dimensional smooth complex pro-

jective varieties X with trivial canonical bundle ωX := ∧nΩX . An example of such

variety is a K 3 surfaces which is defined below.

Example 7.1.12 ([16] Definition 10.1). A K 3 surface is a compact complex surface

X with trivial canonical bundle, i.e. ωX 'OX and H 1(X ,OX ) = 0.

By Theorem 6.3.6, we have that given a pair of adjoint functors (F : C → D,U :

D → C ) between rigid monoidal categories such that the right adjoint U is strong

monoidal, we obtain a Hopf monad on C . In the case at hand, for a smooth map

f : X → Y between smooth projective varieties we obtain adjunctions L f ∗ a R f∗
and R f∗ a f ! on the level of adjoint functors where only L f ∗ is a strong monoidal

functor, see Proposition 4.3.7. The following lemma is essential for obtaining pairs

of adjoint functors with the right adjoint to be strong monoidal.

Lemma 7.1.13. Let X be an even dimensional smooth complex projective variety

with trivial canonical bundle. Then, the Serre functor SX of Dor(X ) is trivial; sym-

bolically SX
∼= id.

Proof. The following chain of maps gives the required natural isomorphism.

SX (E •) : = E •⊗L ωX [dim(X )]

' E •⊗L OX [dim(X )] (ωX 'OX )

' E •[dim(X )]

' E • (E • ∼= E •[2] in Dor(X ))

In particular, the isomorphism E • ∼= E •[2] is the identity.

As a direct application of the above lemma we obtain functors on the level of

orbit categories with the same left and right adjoint functor. More explicitly, we

have the following.
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Proposition 7.1.14. Let f : X → Y be a smooth map between even dimensional

smooth complex projective varieties with trivial canonical bundles. Then, the func-

tor f ! : Dor(Y ) → Dor(X ) is isomorphic to L f ∗ : Dor(Y ) → Dor(X ). Moreover, the func-

tor R f∗ : Dor(X ) → Dor(Y ) has simultaneously the functor L f ∗ as a left and right

adjoint. Symbolically, L f ∗ a R f∗ a L f ∗.

Proof. By Theorem 4.3.6 we have that f ! is a right adjoint to R f∗. Since, R f∗ has

as left adjoint the functor L f ∗ and Dor(X ) and Dor(Y ) admit Serre functors, then

by Theorem 1.4.4 we have that the right adjoint R f∗ is defined by SX ◦L f ∗ ◦ S−1
Y ,

where SX and SY are the Serre functors on the associated orbit categories. From the

uniqueness of the right adjoints we have that f ! ' SX ◦L f ∗ ◦S−1
Y . Then, by Lemma

7.1.13 we have that SX = id = SY for even dimensional Calabi-Yau varieties X and

Y and the proof is complete.

With the use of the above proposition, we obtain a Hopf monad on the orbit

category Dor(X ).

Proposition 7.1.15. Let X be an even dimensional smooth complex projective vari-

ety with trivial canonical bundle. Then, the functor T = L∆∗ R∆∗ is a Hopf monad

on Dor(X ), where R∆∗ : Dor(X ) → Dor(X ×X ) and L∆∗ : Dor(X ×X ) → Dor(X ).

Proof. Setting in Proposition 7.1.14 X = Y and taking f to be the diagonal embed-

ding ∆ : X → X × X , we obtain the adjunction R∆∗ a L∆∗ of which the counit is

ε : R∆∗ L∆∗ → id and its unit is η : id → L∆∗ R∆∗. Then, the functor T = L∆∗ R∆∗
is the adjunction monad with product map µ := L∆∗(εR∆∗) and unit the adjunc-

tion unit η. Since, L∆∗ is a strong monoidal functor and Dor(X ) is a rigid monoidal

category, by Theorem 6.3.6 we obtain that T =∆∗∆∗ is a Hopf monad.

Remark 7.1.16. The functor L∆∗ : Dor(X ×X ) → Dor(X ) has more interesting prop-

erties. First of all, L∆∗ is a strong monoidal functor and so an opmonoidal functor.

That means, that there are natural isomorphisms

(L∆∗)2(G •,I •) : L∆∗(G •⊗I •)
∼−→ L∆∗G •⊗L∆∗I •, (L∆∗)0 : L∆∗OX×X

∼−→OX

which satisfy relations of Definition 2.1.5 for any objects G • and I • of Dor(X ×X ).

Moreover, L∆∗ has a right quasi-inverse. To be precise, let π : X ×X → X be the

projection map on the first coordinate and let Lπ∗ : Db(X ) → Db(X × X ) be its left

derived functor which induces a functor on the level of orbit categories which will

also denote by Lπ∗ : Dor(X ) → Dor(X ×X ). Notice that Lπ∗ is also a strong monoidal

functor as being the derived pullback, and so an opmonoidal functor. That means

that there exist natural isomorphisms

(Lπ∗)2(E •,F •) : Lπ∗(E •⊗F •)
∼−→ Lπ∗E •⊗Lπ∗F •, (Lπ∗)0 : Lπ∗OX

∼−→OX×X
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which satisfy relations of Definition 2.1.5 for any E • and F • objects of Dor(X ).

Then, for the functors L∆∗ and Lπ∗ there exists the natural isomorphism

α : L∆∗ ◦Lπ∗ ∼−→ L(π◦∆)∗ = L id∗ = id. (7.1.7)

where the first isomorphism holds by [15, Proposition 5.4] and so Lπ∗ is a right

quasi-inverse for L∆∗.

Following [26, Section 3.6], the natural isomorhismα : L∆∗ Lπ∗ ∼−→ id is monoidal,

see Definition 2.1.7 and since L∆∗ and Lπ∗ are strong monoidal functors the natu-

ral isomorphism α : L∆∗ Lπ∗ ∼−→ id is also an opmonoidal natural isomorphism. In-

deed, the strong monoidality of L∆∗ and Lπ∗ yields that they are also opmonoidal

functors and their composite L∆∗ Lπ∗ is an opmonoidal functor with opmonoidal

constraints to be given by L∆∗ Lπ∗ are given by

(L∆∗ Lπ∗)2 : = (L∆∗)2 ◦L∆∗(Lπ∗)2, (L∆∗ Lπ∗)0 : = (L∆∗)0 ◦L∆∗(Lπ∗)0 (7.1.8)

such that the relations of Definition 2.1.5 are satisfied for any two object E • and F •

of Dor(X ). Now, the fact that α is an opmonoidal natural isomoprhism means that

the diagrams below are commutative. For simplicity we drop L from L∆∗ and Lπ∗.

∆∗π∗(E •⊗F •) (π◦∆)∗(E •⊗F •) id∗(E •⊗F •) id(E •⊗F •)

∆∗(π∗E •⊗π∗F •)

∆∗π∗E •⊗∆∗π∗F • (π◦∆)∗E •⊗ (π◦∆)∗F • id∗E •⊗ id∗F • idE •⊗ idF •

' = =

∆∗(π∗)2

(∆∗)2

(
(π◦∆)∗

)
2 (id∗)2

' = =

id2

∆∗π∗(OX ) (π◦∆)∗(OX ) id∗(OX ) id(OX )

∆∗OX×X

OX

' = =

(
(π◦∆)∗

)
0

∆∗(π∗)0

(∆∗)0

The only thing we need to check are the the far left pentagon on the top diagram

and the far left square (triangle shape diagram) on the diagram above. Their com-

mutativity follows from the fact that the morphisms 7.1.8 are compatible with pseud-

ofunctoriality, see [1, Section 2.3, diagram (2.26)] and [26, Section 3.6].
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This observation will be fundamental in the following. It is this structure of the

right quasi-inverse of L∆∗, the fact that both L∆∗ and Lπ∗ are strong monoidal and

the fact that α : L∆∗ Lπ∗ ∼−→ id is a monoidal natural isomorphism which enable us

to construct for T an augmentation map and turn T to an augmented Hopf monad.

7.2 Augmented Hopf monads on orbit categories

In the previous section, we proved that the functor T = L∆∗ R∆∗ defined by

the functors R∆∗ : Dor(X ) → Dor(X × X ) and L∆∗ : Dor(X × X ) → Dor(X ) is a Hopf

monad on Dor(X ) where X is an even dimensional smooth complex projective va-

riety with trivial canonical bundle. Key role in the proof of this was the fact that on

the level of orbit categories we have the adjunction R∆∗ a L∆∗ and that Dor(X ) is a

rigid monoidal category. The goal of this section is to prove that T = L∆∗ R∆∗ is an

augmented Hopf monad.

Actually, we prove something more general. Motivated from Remark 7.1.16 and

in particular from the fact that the right adjoint L∆∗ has a right quasi-inverse Lπ∗

which is also a strong monoidal functor and moreoverα : L∆∗ Lπ∗ → id is a monoidal

natural isomorphism, we work in the following categorical setup. We assume that

C and D are rigid symmetric monoidal categories and that (F : C →D,U : D →C )

is a pair of adjoint functors such that the right adjoint U is a strong symmetric

monoidal functor and has a right quasi-inverse W which is also a strong monoidal

and moreover the natural isomorphism α : UW
∼−→ id is monoidal. We prove that

the Hopf monad T =U F is an augmented one of which the augmentation map is

left regular.

Notation 7.2.1. In the following, we will denote by C and D monoidal categories.

Moreover, we will assume also that there is a pair (F : C →D,U : D →C ) of adjoint

functors with U being the right adjoint and let the adjunction unit be η : id →U F

and the adjunction counit be ε : FU → id. We assume also that U is a strong sym-

metric monoidal functor and has as a right quasi-inverse the functor W : C → D;

symbolically we have α : UW
∼−→ id.

Definition 7.2.2. Let F a U be the adjunction as discussed in Notation 7.2.1. We

define T = U F to be the associated monad with product µ := U (εF ) and unit the

adjunction unit η : id →U F .

With the use of the right quasi-inverse W of U we define an action of the ad-

junction monad T on the objects of the category C .

Lemma 7.2.3. Let T =U F be the monad on C as defined above. Then, for any object

X of C , the morphism ρ : T (X ) → X of C defined by

T (X ) :=U F (X ) =U FUW (X )
U (εW X )−−−−−→UW (X ) = X . (7.2.1)
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is an action of T on the objects of C .

Proof. We will check that the relations of Definition 6.1.8 are satisfied. The com-

mutative diagram below express the left diagram of Definition 6.1.8 where all the

morphisms have been unpacked for the case at hand. We denote by α−1 : id →UW

the inverse of α.

U FU F (X ) U F (X ) U FUW (X ) UW (X )

U FU FUW (X )

U FUW (X )

U F (X ) U FUW (X ) UW (X ) X

U (εF ) U F (α−1
X ) U (εW )

id αX

U FU F (α−1
X )

U FU (εW )

U F (αX )
id

U F (α−1
X ) U (εW ) αX

The commutativity of the hexagon in the middle follows from the interchange law.

Now, the commutativity of the triangles on the bottom right corner and on the

bottom left corner follows from the fact that U has W a right quasi-inverse i.e.

UW ∼= id. From this follows that the boundary diagram commutes. Now, the com-

mutative diagram below express the right diagram of Definition 6.1.8 where all the

morphisms have been unpacked for the case at hand.

X U F (X ) U FUW (X ) UW (X )

UW (X )

X

η U (εW )

id

id

ηUW
id

The above commutative diagrams prove that ρ : T (X ) → X is indeed an action of

the monad T on the objects of the category.

Since T =U F is the monad obtained from the adjunction F aU and U is strong

monoidal we have that T is a bimonad. Assuming that there exists a strong monoidal

functor W which is also a right quasi-inverse to U and assuming moreover that the

natural isomorphism α : UW → id is monoidal, we will define now an augmenta-

tion map for the bimonad T .
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Proposition 7.2.4. Let C and D be monoidal categories and consider the pair of

adjoint functors (F : C → D,U : D → C ) such that the right adjoint U is a strong

monoidal functor. Denote by U F the adjunction bimonad. Let W : C → D be a

strong monoidal functor which is right quasi-inverse to U i.e. that there exists a

natural isomorphism α : UW
∼−→ id. Assume also that α : UW

∼−→ id is a monoidal

natural transformation. Then, the natural transformation e : U F → id defined by

U F
U F (α−1)−−−−−−→U FUW

U (εW )−−−−→UW
α−→ id (7.2.2)

is an augmentation for the bimonad T =U F of C .

Notation 7.2.5. In the following, we will denote byα−1 : id →UW the inverse of the

natural isomorphism α : UW
∼−→ id.

For the strong monoidal functor U we will denote by U2 : U (X ⊗Y )
∼−→U X ⊗U Y

and U0 : U (1)
∼−→ 1 its opmonoidal constraints and by U−1

2 : U X ⊗U Y → U (X ⊗Y )

and U−1
0 : 1 → U (1) their inverses respectively, for all X and Y of D. Similarly, for

the strong monoidal functor W we have W2 : W (X ′⊗Y ′) ∼−→W X ′⊗W Y ′ with inverse

W −1
2 : W X ′⊗W Y ′ → W (X ′⊗Y ′) and W0 : W (1)

∼−→ 1 with inverse W −1
0 : 1 → W (1),

for all X ′ and Y ′ objects of C .

The fact that α : UW
∼−→ id is a monoidal natural transformation means that the

following diagrams are commutative.

UW (X ⊗Y ) id(X ⊗Y )

U (W X ⊗W Y )

UW (X )⊗UW (Y ) id(X )⊗ id(Y )

U−1
2

U (W −1
2 )

α

id−1
2

α⊗α

UW (1) id(1)

U (1)

1
U−1

0

U (W −1
0 )

α

id0

Since U and W are strong monoidal functors, their composition is also a strong

monoidal functor and so we obtain also thatα : UW
∼−→ id is an opmonoidal natural

transformation. That means that the diagrams below commute.

UW (X ⊗Y ) id(X ⊗Y )

U (W X ⊗W Y )

UW (X )⊗UW (Y ) id(X )⊗ id(Y )

U (W2)

U2

α

id2

α⊗α

UW (1) Id(1)

U (1)

1

U (W0)

U0

α

id0
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Proof of Proposition 7.2.4. We will prove that e is a morphism of bimonads, in other

words a moprhism of monads which is also opmonoidal as a natural transforma-

tion.

The following two commutative diagrams are the relations 6.1.7 and show that

e is a moprhism of monads.

U FU F U F U FUW UW

U FU FUW U (FUW )

U FUW id

U F U FUW UW id

U (εF ) U F (α−1) U (εW )

U FU Fα

α
U (εFUW )

U FU (εW )

U (εW )

α
U F (id)

U F (α−1) U (εW ) α

id

id U F

UW U FUW

id UW

η

α−1

id

U F (α−1)

U (εW )

ηUW

id

α

Next, we prove that the natural transformation e : T → id is an opmonoidal natural

transformation, in other words we check that the relations 2.2.3 hold. The diagram

below is the right relation of 2.2.3 adapted and expanded for our case.

U F (1) U FU (1)

U FUW (1)

UW (1) U (1)

1 1

U Fα−1

U (εW )

α

U F (U−1
0 )

U (ε)

U0

id
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To prove its commutativity we work as follows. Using the fact that W is a strong

monoidal functor, in particular that the composite W (1)
W0−−→ 1

W −1
0−−−→ W (1) is the

identity on W (1), and then applied the naturality of the counit, we expand the left

vertical column of the above diagram as it is shown below.

U F (1) U FUW (1) UW (1) U (1) UW (1) 1

U FU (1)

U Fα−1 U (εW ) U (W0) U (W −1
0 ) α

U FU (W0) U (ε)

Next, using the fact that U is a strong monoidal functor and in particular that the

composite U (1)
U0−−→ 1

U−1
0−−→U (1) is the identity on U (1), we obtain the diagram be-

low.

U F (1) U FU (1)

U FUW (1)

U FU (1) U F (1) U (1)

U F (1)

U FU (1)

U (1) 1 U (1) UW (1) 1 1

U F (α−1)

U FU (W0)

U F (U0)

U F (U−1
0 )

U (ε)

U0 U−1
0 U (W −1

0 ) α id

U F (U−1
0 )

U (ε)

U0

id

U F (α)

U F (id0)

id0

The commutativity of the above diagram follows from the fact that the natural iso-

morphism α : UW
∼−→ id is monoidal and opmonoidal.

To complete the proof that e : T → id is a morphism of bimonads, we need to

prove the commutativity of the next diagram below which corresponds to the left

relation of 2.2.3, adapted and expanded for our case.
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U F U FUW UW id

U F (UW ⊗UW ) U F (UW ⊗UW )

U F (U F ⊗U F ) U F (U FUW ⊗U FUW )

U FU (F ⊗F ) U FU (FUW ⊗FUW ) U FU (W ⊗W )

U (F ⊗F )

U F ⊗U F U (FUW ⊗FUW ) U (W ⊗W )

U FUW ⊗U FUW UW ⊗UW id⊗ id

U Fα−1 U (εW ) α

id2

U F (α−1 ⊗α−1)

U F (η⊗η)
id

U F (ηU ⊗ηU )

U F (U−1
2 )

U F (U−1
2 )

U (ε)

U F (U−1
2 )

U F (U (ε)⊗U (ε))

U FU (ε⊗ε)

U (ε) U (εW ⊗W )

U2

U (ε⊗ε)

U2 U2

U (ε)⊗U (ε) α⊗α

The commutativity of the boundary diagram follows from the triangle equations of

the adjunction F aU , the natural isomorphism α : UW
∼−→ id and the naturality of

the adjunction unit η and the adjunction counit ε. The tricky part is the commuta-

tivity of the far right decagonon for which we proceed as follows. First we expand

the decagonon it as it is shown below. We do that using the fact that U and W are

strong monoidal functors, in particular that the composite U (1)
U0−−→ 1

U−1
0−−→ U (1) is

the identity on U (1) and W (1)
W0−−→ 1

W −1
0−−−→ W (1) is the identity on W (1) as well as

that α : UW
∼−→ id is a natural isomorphism with inverse α−1 : id →UW .
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U F U FUW UW id⊗ id

U F (UW ⊗UW ) U F (id⊗ id) UW ⊗UW

U FU (W ⊗W ) id U (W ⊗W )

U FUW UW

U F id

U FUW UW UW

U FU (W ⊗W ) U (W ⊗W )

U Fα−1 U (εW ) α

U F (α−1 ⊗α−1)

U F (U−1
2 )

U FU (W −1
2 )

U Fα

U Fα−1

U FU (W2) U (W −1
2 )

α

α−1

U (W2)

U2

α⊗α

U (εW )

U (W2)

id

U (εW ⊗W )

α

id2

id

U F (α⊗α)

U F (id−1
2 )

The final essential bit for the commutativity of the internal diagram is the fact that

α is a monoidal and an opmonoidal natural isomorphism.

Lemma 7.2.6. Let C be a symmetric monoidal category and consider a pair of ad-

joint functors (F : C → D,U : D → C ) such that the right adjoint U is a strong

monoidal functor. Let W be a strong monoidal functor which is right quasi-inverse

to U i.e. there exists a natural isomorphism α : UW
∼−→ id. Assume also that α is a

monoidal natural transformation. Then, the associated bimonad T =U F of C with

augmentation map e : T → id as defined above is compatible with the symmetry of

C as follows

(eX ⊗ idT (1))◦T2(X ,1) = (eX ⊗ idT (1))◦τT (1),T (X ) ◦T2(1, X ) (7.2.3)

for all objects X of C .

Proof. First observe that we have the following commutative diagram.
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U F (X ⊗1) U F (1⊗X )

U F
(
U F (X )⊗U F (1)

)
U F

(
U F (1)⊗U F (X )

)

U FU
(
F (X )⊗F (1)

)
U FU

(
F (1)⊗F (X )

)

U
(
F (X )⊗F (1)

)
U

(
F (1)⊗F (X )

)

U F (X )⊗U F (1) U F (1)⊗U F (X )

U F (τ)

U F (τ)

U FU (τ)

U (τ)

τ

U F (η⊗η)

U (ε)

U F (η⊗η)

U (ε)

We read the diagram from the top to the bottom. The commutativity of the top

square follows from the naturality of τ. The commutativity of the third from the top

square follows from the naturality of the counit ε. The commutativity of the sec-

ond and of the fourth square follows from the fact that U is a symmetric monoidal

functor. The proof of the commutativity of the above hexagon is now complete.

Next, we unpack the morphisms of equation 7.2.3 and obtain the diagram be-

low.

T (X ) T (1⊗X ) T (1)⊗T (X )

T (X ⊗1) T (X )⊗T (1)

T (X )⊗T (1) X ⊗T (1)

T (l−1) T2(1, X )

τT (1),T (X )

eX ⊗ idT (1)

T (r−1)

T2(X ,1)

eX ⊗ idT (1)

T (τ1,X )

id⊗ id

The commutativity of the triangle on the top left corner follows from the symmetry

of the tensor product of Dor(X ). The commutativity of the hexagon in the middle

was discussed above. The proof is now complete.

Remark 7.2.7. As part of the proof we have that T2(X ,1) = τT (1),T (X ) ◦T2(1, X ). This

will be important for the following.

Remark 7.2.8. There is a good reason for assuming that C is symmetric monoidal

category and U is symmetric monoidal functor. The example which motivates
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all the above for the above is the orbit category Dor(X ) of an even dimensional

smooth complex projective variety with trivial canonical bundle which is a sym-

metric monoidal category. Moreover, the main example for U which we have in our

mind is the functor L∆∗ : Dor(X ×X ) → Dor(X ).

Recall from Definition 6.5.1 that the augmentation map e : T → id of an op-

monoidal endofunctor T is said to be left regular, if the natural transformation

ue : T → T (1)⊗− which is given by ue = (idT (1)⊗eX ) ◦T2(1, X ) is invertible. Now,

if the categories C and D are rigid categories, then by Theorem 6.3.6 we have that

the bimonad T =U F which is obtained from the adjunction F aU as discussed in

Notation 7.2.1 is a Hopf monad on C . Then, applying Lemma 6.5.5 we obtain that

the augmentation map is a left regular. We have the following.

Proposition 7.2.9. Let C and D be rigid and symmetric monoidal categories and

consider a pair of adjoint functors (F : C →D,U : D →C ) such that the right adjoint

U is a strong symmetric monoidal functor. Let W : C → D be a strong monoidal

functor which is a right quasi-inverse to U i.e. there exists a natural isomorphism

α : UW
∼−→ id. Assume also that α is a monoidal natural transformation. Then, the

adjunction monad T = U F is an augmented Hopf monad on C with left regular

augmentation map where the latter defined in Proposition 7.2.4.

Now, looking in Lemma 6.5.5 we observe the following. The inverse of the nat-

ural transformation ue is defined with the use of the inverse of the left fusion op-

erator H l which is assigned to any bimonad T on a monoidal category C , see Sec-

tion 6.3. In the following, we explain why assuming C to be a rigid monoidal cate-

gory C the left fusion operator H l is invertible.

First, recall from Section 6.4 that to any opmonoidal adjunction F aU , see Def-

inition 2.2.5, there are associated natural transformations called Hopf operators,

see Definition 6.4.1. Opmonoidal adjunctions with invertible Hopf operators are

called Hopf adjunctions. Now, the Hopf operators associated to an opmonoidal

adjunction and the fusion operators associated to the bimonad obtained from the

opmonoidal adjunction are related as in Proposition 6.4.2. So, to prove that the left

fusion operator H l associated to a bimonad is invertible is enough to prove that

the left Hopf operator associated to the adjunction from which the bimonad is ob-

tained is invertible.

By Proposition 6.4.5 we have that an opmonoidal adjunction F aU between left

closed monoidal categories is a Hopf adjunction if and only if the right adjoint U is

a left closed functor, for the latter see Definition 2.5.8. Conisdering that C is sym-

metric monoidal category with left duality then it has also right duality, see Lemma

2.4.10. Now, a category with left duality is a left closed category, see Example 2.5.4

and so if C is symmetric monoidal category with left duality then it is a closed cat-

egory. Now, a strong monoidal functor on a closed symmetric monoidal category

is a left closed, see Theorem 2.5.17 and so the opmonoidal adjunction F a U is a
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Hopf adjunction. As a result the left Hopf operator is invertible and the left fusion

operator is invertible too.

In the following, we discuss further the natural transformation ue : T → T (1)⊗−
defined by ue = (idT (1)⊗eX ) ◦T2(1, X ). In particular, we construct another natural

transformation φ : U F →U F (1)⊗ (−) with the used of 2.1.1 and then we prove that

φ has the form ue = (idT (1)⊗eX ) ◦T2(1, X ). The motivation for doing this is that

we want to understand in more depth the adjunction R∆∗ a L∆∗ on the level of

orbit categories which is obtained by Proposition 7.1.14 with X = Y and f to be the

diagonal map and compare it with natural isomorphisms on the level of bounded

derived categories of coherent sheaves.

Definition 7.2.10. Let U : D → C be a strong monoidal functor with left adjoint

F : C → D and let W : C → D be a strong monoidal functor such that W is a right

quasi-inverse of U i.e. there exists a natural isomorphismα : UW
∼−→ id. Then, there

exists a natural transformation φ : U F →U F (1)⊗ (−) defined to be the composite

U F (A) →U F (1⊗ A) ∼=U F (1⊗UW A) →U F
(
U F (1)⊗UW A

)
→U FU

(
F (1(⊗W A

) U (ε)−→U
(
F (1)⊗W A

)
→U F (1)⊗UW A ∼=U F (1)⊗ A

for all A of C .

Remark 7.2.11. Alternatively,φ is defined by applying the strong monoidal functor

U on the natural transformation ψ : F → F (1)⊗W (−) as defined in 2.2.8. We want

to think the natural transformation ψ as the analogue of the natural isomorphism

Lπ∗
1 (−)⊗L O∆ ∼= Lπ∗

1 (−)⊗L R∆∗OX

∼= R∆∗(L∆∗Lπ∗
1 (−)⊗L OX ) (Proposition 4.3.8)

∼= R∆∗(id(−)⊗L OX ) (L∆∗ ◦Lπ∗ = id)
∼= R∆∗

(
(−)⊗L OX

)
∼= R∆∗(−)

Observe that both the above natural isomorphism and ψ are obtained using the

general categorical formula 2.1.1. The difference is that they are applied from dif-

ferent adjunctions. Our case at hand which motivates this general categorical ap-

proach is the adjunction R∆∗ a L∆∗ where the above natural isomorphism

Lπ∗
1 (−)⊗L O∆ ∼= R∆∗(−)

is obtained from the adjunction L∆∗ a R∆∗.
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Proposition 7.2.12. Let T =U F be the bimonad obtained from F aU with the prop-

erties as stated in Notation 7.2.1. Then, the natural isomorphismφ : U F →U F (1)⊗−
is of the form ue

X = (idT (1)⊗e)◦T2(1, X ) where T2 is the opmonoidal constraint of T

and e the augmentation map of T .

Proof. Unpacking the morphisms of the relation which we want to prove we ob-

tain the diagram below. Its commutativity follows from the triangle relations of the

adjunction F aU , the strong monoidality of U and the interchange law.

U F U F
(
U F ⊗U F

)

U F
(
U F ⊗UW

)

U F (U F ⊗UW ) U F (U F ⊗U FUW (X )) U FU (F ⊗F )

U FU (F ⊗W ) U FU (F ⊗FUW )

U (F ⊗W ) U (F ⊗FUW ) U (F ⊗F (X ))

U F ⊗UW U F ⊗U FUW U F ⊗U F

U F ⊗ id

The category of augmented Hopf monads on monoidal category for which the

augmentation map is left regular is by Theorem 6.5.6 equivalent to the category of

Hopf algebras in the Drinfel’d centre of the category C . Now from this theorem, by

Proposition 6.5.7 and Lemma 7.2.6 we obtain the following.

Proposition 7.2.13. Let C and D be rigid symmetric monoidal categories and let

(F : C →D,U : D →C ) be a pair of adjoint functors such that the right adjoint U is

a strong symmetric monoidal functor. Assume also that there is a strong monoidal

functor W : C → D which is right quasi-inverse to U i.e. there exists a natural iso-

morphism α : UW
∼−→ id. Assume also that α is a monoidal natural transformation.

Then, the following are true.



7.2. AUGMENTED HOPF MONADS ON ORBIT CATEGORIES 95

1. The object T (1) := U F (1) is a Hopf algebra in C with product m = µ1 ◦φ−1
T (1),

coproduct δ= T2(1,1), unit u = η1, counit ε= T0 and antipode

S = eT (1) ◦ (H l
1,1)−1 ◦ (idT (1)⊗η1).

2. The Hopf monad T =U F is isomorphic to the Hopf monad T ′ =U F (1)⊗− on

C .

The opmonoidal constraint T ′
2 of T ′ is given by T ′

2(X ,Y ) = (idT (1)⊗τT (1),X ⊗Y )◦
(T2(1,1)⊗ id). In the following, we make the following calculation with the use of

the natural isomorphism φ as defined in Definition 7.2.10.

Lemma 7.2.14. The morphism of bimonads φ : U F →U F (1)⊗ (−) preserves the op-

monoidal constraints, in other words the following diagram commutes.

U F (X ⊗Y ) U F (X )⊗U F (Y )

U F (1⊗X ⊗Y )

U F (1)⊗X ⊗Y U F (1)⊗X ⊗U F (1)⊗Y

U F (1)⊗U F (1)⊗X ⊗Y

(U F )2

φX⊗Y

φX ⊗φY

(U F )2 ⊗ id
id⊗τ⊗ id

Proof. We prove the commutativity of the boundary diagram due to commutativity

of all the internal diagrams below.

U F (X ⊗Y ) U F (X )⊗U F (Y )

U F (1⊗X ⊗Y ) U F (1⊗X ⊗1⊗Y )

U F (1)⊗X ⊗Y U F (1⊗1⊗X ⊗Y ) U F (1)⊗X ⊗U F (1)⊗Y

U F (1)⊗U F (1)⊗X ⊗Y

(U F )2

φX⊗Y

φX ⊗φY

(U F )2 ⊗ id
id⊗τ⊗ id

The commutativity of the square on the top left corner we have the following com-

mutative diagram
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1⊗1⊗X ⊗Y 1⊗ (X ⊗1)⊗Y

1⊗X ⊗ (1⊗Y )

X ⊗ (1⊗Y )

1⊗X ⊗Y X ⊗Y

id⊗τ⊗ id

l1 ⊗ id⊗ id id⊗rX ⊗ id

id⊗ id⊗lY

id⊗αX ,1,Y

lX ⊗ id⊗ id

id⊗lY

lX ⊗ id

whereαX ,1,Y is the associator. Indeed, by the naturality of the natural isomorphism

l : 1⊗X
∼−→ X follows that

id1⊗lX = l1⊗X = l1 ⊗ idX .

From this, the far left vertical arrow is becoming id1⊗lX ⊗ idY and in combination

with the triangle relation of the symmetry τ, see 2.3.3, follows that the top left trian-

gle is commutative. The commutativity of the triangle in the middle follows from

the triangle relation of the associator α, see 2.1.1 and the commutativity of the bot-

tom triangle follows from the interchange law. Then, applying the functor U F on

the above diagram we obtain the commutativity of the pentagon.

The commutativity of the remaining diagrams follow from technical lemmas

who have stated in Section 2.2. In particular for the commutativity of the square on

the top right corner we apply in the diagram of Lemma 2.2.9 the strong monoidal

functor U and taking in to account that UW ∼= id. In a similar way the commuta-

tivity of the triangle on the bottom and on the left of the diagram follows from the

application of the strong monoidal functor on the commutative diagram of Lemma

2.2.10 and the strong monoidal functor U . To complete the proof, the commutativ-

ity of the bottom right square follows from the application of the strong monoidal

functor U on the commutative diagram of Lemma 2.2.13.

7.3 Hopf algebra object in the orbit category

In this section, we put together all the pieces and discuss the Hopf algebra ob-

ject in the orbit category Dor(X ) of an even dimensional smooth complex projective

variety with trivial canonical bundle.

Recall from Proposition 7.1.15 that the functor T = L∆∗ R∆∗ is a Hopf monad on

Dor(X ), of which product we denote by µ : L∆∗ R∆∗ L∆∗ R∆∗ → L∆∗ R∆∗. Funda-

mental role for proving this was the fact that Dor(X ) is a rigid symmetric monoidal

category and T is the adjunction monad of the adjunction R∆∗ a L∆∗ where L∆∗

is a strong monoidal functor. Denote by ε : R∆∗ L∆∗ → id the adjunction counit.
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Motivated from the structure of the functors R∆∗ and L∆∗ on the level of orbit

categories and in particular the fact that L∆∗ has a right quasi-inverse, see Remark

7.1.16, we considered in Section 7.2 a more general categorical level.

In particular, given a pair of adjoint functors (F : C → D,U : D → C ) between

monoidal categories such that the left adjoint U is strong monoidal and assuming

U has a right quasi-inverse functor W : C → D i.e. there exists a natural isomor-

phism α : UW
∼−→ id, such that W is a strong monoidal and that α is a monoidal

natural transformation, then it is proved in Proposition 7.2.4, that the associated

adjunction bimonad T =U F is augmented.

In Lemma 7.2.6 we considered the same setup with Proposition 7.2.4 and as-

suming that the categories are morever symmetric, we proved that the above aug-

mentation map is compatible with the symmetry of the category C .

Last but not least, a natural isomorphism φ : U F →U F (1)⊗− was constructed

in Definition 7.2.10 where 1 is the unit object of C which we want to think about as

the analogue of the natural isomorphism obtained from the projection formula for

the adjunction R∆∗ a L∆∗ on the level of orbit categories.

The main result of this thesis is the following.

Theorem 7.3.1. Let X be an even dimensional smooth complex projective variety

with trivial canonical bundle and Dor(X ) the associated orbit category. Then the

following are true.

1. The functor T = L∆∗ R∆∗ is an augmented Hopf monad on Dor(X ) with aug-

mentation map e : L∆∗ R∆∗ → id to be given by the composite

L∆∗ R∆∗
∼−→ L∆∗ R∆∗ L∆∗ Lπ∗ L∆∗(εLπ∗ )−−−−−−−→ L∆∗ Lπ∗ ∼−→ id.

Moreover, the above augmentation map is compatible with the symmetry of

the category Dor(X ).

2. The object U := L∆∗ R∆∗OX is a Hopf algebra in Dor(X ). The product map

is given by m = µOX ◦φ−1
T (OX ), the unit map by u = ηOX , the coproduct δ =

T2(OX ,OX ), the counit by ε= T0, the antipode

S = eTOX
◦ (H l

OX ,OX
)−1 ◦ (idT (OX )⊗ηOX )

and the inverse of the antipode is given by

S−1 = eT (OX ) ◦ (H r
OX ,OX

)−1 ◦ (ηOX ⊗ idT (OX )).

Moreover, the Hopf algebra U is cocommutative (that is, δ= τU ,U ◦δ) and in-

volutory (that is, S2 = idU ).

3. There is a natural isomorphism of Hopf monads between T = L∆∗ R∆∗ and

T ′ = L∆∗ R∆∗OX ⊗− on Dor(X ).
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To sum up, we pinned down the Hopf algebra object in the orbit category of an

even dimensional smooth complex projective variety with trivial canonical bun-

dle, based on the rigid and symmetric monoidal structure of the orbit category,

analysing the properties of the functors R∆∗ and L∆∗ and proving firstly that on

the orbit category we have a generalised version of a Hopf algebra.
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Appendix

8.1 Triangulated categories

In this section, we give the definition of a Triangulated category. See [15] for

more details.

Definition 8.1.1. An additive category C is said to be triangulated if it is given an

additive equivalence

Σ : C →C ,

called the suspension functor or the shift functor or the translation functor, and a

set of distinguished triangles of the form

X → Y → Z →Σ(X ) (8.1.1)

such that the following axioms (TR0)–(TR5) are satisfied for all objects X , Y , Z of

C .

(TR0) Any triangle of the form

X
id−→ X → 0 →Σ(X ) (8.1.2)

is distinguished.

(TR1) Any triangle isomorphic to a distinguished triangle is distinguished.

(TR2) Any morphism f : X → Y can be completed to a distinguished triangle

X
f−→ Y → Z →Σ(X ). (8.1.3)

(TR3) The triangle

X
u−→ Y

v−→ Z
w−→Σ(X ) (8.1.4)

is a distinguished triangle if and only if the triangle

Y
v−→ Z

w−→Σ(X )
−Σ(u)−−−−→Σ(Y ) (8.1.5)

is a distinguished triangle.

99
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(TR4) Given two distinguished triangles

X
u−→ Y

v−→ Z
w−→Σ(X ) (8.1.6)

and

X ′ u′
−→ Y ′ v ′

−→ Z ′ w ′
−→Σ(X ′) (8.1.7)

and morphisms f : X → X ′, g : Y → Y ′ which commute with u and u′ then

there exists a morphism h : Z → Z ′, not necessarily unique, such that ( f , g ,h)

is a morphism of the first triangle into the second.

(TR5) (Octahedral axiom)

Given distinguished triangles X
u−→ Y → Z ′ → ΣX ,Y

v−→ Z → X ′ → ΣY and

X
vu−−→ Z → Y ′ →ΣX , there exists a distinguished triangle Z ′ → Y ′ → X ′ →ΣZ ′

making the following diagram commutative.

X Y Z ′ ΣX

X Z Y ′ ΣX

Y Z X ′ ΣY

Z ′ Y ′ X ′ ΣZ

u

vu

v

idX

u idZ

idX ′

idΣX

Σu

Remark 8.1.2. There are many variations of the axiom (TR5) in the bibliography.

Here, we gave that one which appears in Kashiwara and Schapira [18].

The following lemma will be used in the following. Although seems to be known,

we were unable to find a proof in the literature and so we give one below.

Lemma 8.1.3. If X
u−→ Y

v−→ Z
w−→ X [1] is a distinguished triangle in C then

ΣX
Σu−−→ΣY

Σv−−→ΣZ
−Σw−−−→ (ΣX )[1] (8.1.8)

is a distinguished triangle too.

Proof. By the third axiom of triangulated categories (TR3) we obtain that

Y
v−→ Z

w−→Σ(X )
−Σ(u)−−−−→Σ(Y )
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is a distinguished triangle. Applying twice the axiom (TR3) yields the following dis-

tinguished triangles.

Z
w−→Σ(X )

−Σu−−−→Σ(Y )
−Σ(v)−−−−→Σ(Z )

ΣX
−Σu−−−→ΣY

−Σv−−−→ΣZ
−Σw−−−→Σ2 A (8.1.9)

By the commutativity of the diagram below

ΣX ΣY ΣZ Σ2 A

ΣX ΣY ΣZ Σ2 A

−Σu −Σv −Σw

Σu Σv −Σw

id − id id id

we obtain that the distinguished triangle 8.1.9 is isomorphic to the

ΣX
Σu−−→ΣY

Σv−−→ΣZ
−Σw−−−→Σ2 A.

Applyin axiom (TR2) we obtain the required distinguished triangle. This completes

the proof.



102 CHAPTER 8. APPENDIX

8.2 Some technical proofs

In this section, we provide detailed proofs for the statements stated at the end of

Section 2.2. Each subsection is entitled with the proof of the proposition or lemma.

8.2.1 Proof of proposition 2.2.9

We will verify the commutativity of the following diagram, which is the expan-

sion of the arrows the

F (A⊗B) F (A)⊗F (B)

F
(
(1⊗ A)⊗ (1⊗B)

)
F (1⊗ A)⊗F (1⊗B)

F
((

U F (1)⊗UW A
)⊗ (

U F (1)⊗UW B
))

F
(
U F

(
U F (1)⊗UW A

)⊗U F
(
U F (1)⊗UW B

))

FU
(
F

(
U F (1)⊗UW A

)⊗F
(
U F (1)⊗UW B

))
F

(
U F (1)⊗UW A

)⊗F
(
U F (1)⊗UW B

)

FU
(
FU

(
F (1)⊗W A

)⊗FU
(
F (1)⊗W B

))
FU

(
F (1)⊗W A

)⊗FU
(
F (1)⊗W B

)

FU
(
F (1)⊗W A⊗F (1)⊗W B

)
F (1)⊗W A⊗F (1)⊗W B

F (η⊗ id⊗η⊗ id)

F (η⊗η)

F (U 2)

F2

F2

ε

ε

ε

F (η⊗ id)⊗F (η⊗ id)

The commutativity of the top square follows from the naturality of F2. Now for

the commutativity of the hexagon in the middle we underline that the left hand

arrow is F (η⊗ id⊗η⊗ id) followed by F2(U F (1)⊗W A,U F (1)⊗W B), see Definition

2.2.1 and so the commutativity of hexagon follows from the naturality of F2. The

commutativity of the bottom two squares follows again from the naturality of ε.
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8.2.2 Proof of Proposition 2.2.10

The commutativity of the above diagram comes down to the verification of the

commutativity of the diagram in the next page. first observe that we have the fol-

lowing commutative diagram.

U F (1⊗1)⊗U (W A⊗W B)

U F (1)⊗U F (1)⊗U (W A⊗UW B)

U (F (1)⊗F (1))⊗U (W A⊗W B)

U (F (1⊗1)⊗W A⊗UW B)

U (F (1)⊗F (1))⊗U (W A⊗UW B)

U (F (1)⊗F (1)⊗W A⊗W B)

(U F )2(1,1)⊗ id

U 2

U 2 ⊗ id

U 2

U (F2)⊗ id

U2 ⊗ id

id

U (F2 ⊗ id⊗ id)

U 2

Applying the functor F on the above diagram we obtain the commutative diagram

C in the next page. The square on the top left corner commutes from the naturality

of η⊗ id⊗ id. The second square from the top and on the left commutes due from

the naturality of id⊗U 2. The third square from the top and on the left commutes by

the naturality of U 2. Now, the top right triangle is commutative due to the bimonad

relation (6.2). The second square from the top and on the right commutes due to

interchange law of morphisms.The bottom square is the definition of the F2(1,1),

see 2.2.1. The commutativity of the hexagon follows from the naturality of ε.
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F
(1

⊗
A
⊗B

)
F

(1
⊗1

⊗
A
⊗B

)

F
(U

F
(1

)⊗
U

W
A
⊗U

W
B

)
F

(U
F

(1
⊗1

)⊗
U

W
A
⊗U

W
B

)
F

(U
F

(1
)⊗

U
F

(1
)⊗

U
W

A
⊗U

W
B

)

F
(U

F
(1

)⊗
U

(W
A
⊗W

B
))

F
(U

F
(1

⊗1
)⊗

U
(W

A
⊗W

B
))

F
(U

F
(1

)⊗
U

F
(1

)⊗
U

(W
A
⊗W

B
))

F
U

(F
(1

)⊗
W

A
⊗W

B
)

F
U

(F
(1

⊗1
)⊗

W
A
⊗W

B
)

F
(U

(F
(1

)⊗
F

(1
))
⊗U

(W
A
⊗W

B
))

F
(1

)⊗
W

A
⊗W

B
F

U
(F

(1
)⊗

F
(1

))
⊗W

A
⊗W

B
)

F
(1

⊗1
)⊗

W
A
⊗W

B
F

(1
)⊗

F
(1

)⊗
W

A
⊗W

B

F
(U

F
(1

)⊗
U

F
(1

))
⊗W

A
⊗W

B
F

U
(F

(1
)⊗

F
(1

))
⊗W

A
⊗W

B

C

F
(η

⊗i
d
⊗i

d
)

F
(i

d
⊗U

2
)

F
(U

2
) ε

F
(l

−1 1
)⊗

id
⊗i

d

F
(η

⊗i
d
⊗i

d
)

F
(i

d
⊗U

2
)

F
(U

2
)

F
(i

d
⊗i

d
⊗U

2
)

F
(U

2
⊗i

d
)

F
(U

2
)

ε ε
⊗i

d
⊗i

d

F
(l

−1 1
⊗i

d
A
⊗i

d
B

)

F
(η

⊗η
⊗i

d
⊗i

d
)

F
(U

F
(l

−1 1
)⊗

id
⊗i

d
)

F
((

U
F

) 2
(1

,1
)⊗

id
⊗i

d
)

F
(U

F
(l

−1 1
)⊗

id
)

F
((

U
F

) 2
(1

,1
)⊗

id
)

F
U

(F
(l

−1 1
)⊗

id
⊗i

d
)

F
(U

(F
2

(1
,1

)⊗
id
⊗i

d
))

F
(η

⊗η
)⊗

id
⊗i

d

F
(U

2
))
⊗i

d
⊗i

d

F
2

(1
,1

)⊗
id
⊗i

d



8.2. SOME TECHNICAL PROOFS 105

8.2.3 Proof of Lemma 2.2.11

The commutativity of the required diagrams comes down to the verification of

the diagram in the next page where the commutativity of the top square, the mid-

dle triangle and the bottom square on the left follows from the naturality of the

monoidal U 2. The far right diagram is the triangle equality for the unit and the

counit of the adjunction F aU .
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( U
F

(1
)⊗

U
F

(1
)) ⊗( U

W
A
⊗U

W
B

))
U

(F
(1

)⊗
F

(1
))
⊗U

(W
A
⊗W

B
)

U
F

( U
F

(1
)⊗

U
F

(1
)) ⊗U

F
( U

F
(1

)⊗
U

W
B

))

U
( F

( U
F

(1
)⊗

U
F

(1
)) ⊗F

( U
W

A
⊗U

W
B

))
U

( F
U

(F
(1

)⊗
F

(1
)) ⊗U

( F
U

(W
A
⊗W

B
))

U
( F

U
( F

(1
)⊗

F
(1

)) ⊗F
U

( W
A
⊗W

B
))

U
( F

(1
)⊗

F
(1

)⊗
W

A
⊗W

B
)

U
( F

(1
)⊗

F
(1

)) ⊗U
( W

A
⊗W

B
))

η
⊗η U

2

U
(F

(U
2
)⊗

F
(U

2
))

U
(ε
⊗ε

)

η
U
⊗η

U

U
(ε

)⊗
U

(ε
)

U
2
⊗U

2

U
F

(U
2
)⊗

U
F

(U
2
))

U
2

U
2

Id
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8.2.4 Proof of Proposition 2.2.13

The commutativity of the above diagram comes down to the verification of the
diagram below, which is obtained by expanding the arrows γ1,A and ζA,1 as shown
below.

F (1⊗1⊗ A⊗B) F (1⊗ A⊗1⊗B)

F
(
(U F (1)⊗U F (1))⊗ (UW A⊗UW B)

)
F

(
(U F (1)⊗UW A)⊗ (U F (1)⊗UW B)

)

F
(
U F (U F (1)⊗U F (1))⊗U F (UW A⊗UW B)

)
F

(
U F (U F (1)⊗UW A)⊗U F (U F (1)⊗UW B)

)

FU (F (U F (1)⊗U F (1))⊗F (UW A⊗UW B) FU (F (U F (1)⊗UW A)⊗F (U F (1)⊗UW B)

FU (FU (F (1)⊗F (1))⊗FU (W A⊗W B)) FU (FU (F (1)⊗W A)⊗FU (F (1)⊗W B))

FU (F (1)⊗F (1)⊗W A⊗W B) FU (F (1)⊗W A⊗F (1)⊗W B)

F (1)⊗F (1)⊗W A⊗W B F (1)⊗W A⊗F (1)⊗W B

F (η⊗η⊗ id⊗ id)

F (η⊗η)

F (U 2)

FU (F (U 2)⊗F (U 2))

FU (ε⊗ε)

ε

F (η⊗ id⊗η⊗ id)

F (η⊗η)

F (U 2)

FU (F (U 2)⊗F (U 2))

FU (ε⊗ε)

ε

F (id⊗τ⊗ id)

FU (id⊗τ⊗ id)

id⊗τ⊗ id

The commutativity of the top square and of the bottom square are commutative

follows from naturality of the symmetry. For the middle diagram we work as follows.

First apply the functor F to the commutative diagrams of Lemma 2.2.11 and Lemma

2.2.12 and so the middle diagram is simplified to the following.
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F
(
(U F (1)⊗U F (1))⊗ (UW A⊗UW B)

)

F
(
(U F (1)⊗UW A)⊗ (U F (1)⊗UW B)

)

F (U (F (1)⊗F (1))⊗U (W A⊗W B))

F (U (F (1)⊗W A)⊗U (F (1)⊗W B))

FU (F (1)⊗F (1)⊗W A⊗W B)

FU (F (1)⊗W A⊗F (1)⊗W B)

F (U 2 ⊗U 2)

F (U 2)

F (U 2 ⊗U 2)

F (U 2)

F (id⊗τ⊗ id)

FU (id⊗τ⊗ id)

The left and the right columns of the above diagram simplifies further as it is shown

in the next two pages in landscape position.
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((
U

F
(1

)⊗
U

F
(1

))
⊗U

W
A

)⊗
U

W
B

(U
(F

(1
)⊗

F
(1

))
⊗U

W
A

)⊗
U

W
B

(U
F

(1
)⊗

(U
F

(1
)⊗

U
W

A
))
⊗U

W
B

U
(F

(1
)⊗

F
(1

))
⊗(

U
W

A
⊗U

W
B

)
U

((
F

(1
)⊗

F
(1

))
⊗W

A
)⊗

U
W

B
(U

F
(1

)⊗
U

(F
(1

)⊗
W

A
))
⊗U

W
B

U
(F

(1
)⊗

F
(1

))
⊗U

(W
A
⊗W

B
)

(U
(F

(1
)⊗

(F
(1

)⊗
W

A
))
⊗U

W
B

U
((

F
(1

)⊗
F

(1
))
⊗(

W
A
⊗W

B
))

U
((

(F
(1

)⊗
F

(1
))
⊗W

A
)⊗

W
B

)
U

((
F

(1
)⊗

(F
(1

)⊗
W

A
))
⊗W

B
)

(U
2
⊗i

d
)⊗

id

α
U

(F
(1

)⊗
F

(1
))

,U
W

A
,U

W
B

id
⊗U

2

U
2

U
2

U
2

U
2

U
(α

)⊗
id

U
(α

⊗i
d

)

α
⊗i

d

U
2

U
2

U
(α

)⊗
id
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((
U

F
(1

))
⊗U

W
A

)⊗
U

F
(1

))
⊗U

W
B

(U
F

(1
)⊗

(U
W

A
⊗U

F
(1

))
)⊗

U
W

B
(U

(F
(1

)⊗
W

A
)⊗

U
F

(1
))
⊗U

W
B

(U
F

(1
)⊗

U
(W

A
⊗F

(1
))

)⊗
U

W
B

U
((

F
(1

)⊗
W

A
)⊗

F
(1

))
⊗U

W
B

U
(F

(1
)⊗

W
A

)⊗
(U

F
(1

)⊗
U

W
B

)

(U
(F

(1
)⊗

(W
A
⊗F

(1
))

)⊗
U

W
B

U
(F

(1
)⊗

W
A

)⊗
U

(F
(1

)⊗
W

B
)

U
((

F
(1

)⊗
(W

A
⊗F

(1
))

)⊗
W

B
)

U
((

(F
(1

)⊗
W

A
)⊗

F
(1

))
⊗W

B
)

U
((

F
(1

)⊗
W

A
)⊗

(F
(1

)⊗
W

B
))

U
2

U
2

U
2

(U
2
⊗i

d
)⊗

id

α
U

(F
(1

)⊗
F

(1
))

,U
W

A
,U

W
B

id
⊗U

2

U
2

U
(α

)⊗
id

U
(α

⊗i
d

)

α
⊗i

d

U
2

U
2

U
(α

)⊗
id
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After the simplification, we have to prove the commutativity of the diagram be-

low.

U F (1)⊗U F (1)⊗UW A⊗UW B U F (1)⊗UW A⊗U F (1)⊗UW B

U F (1)⊗U (F (1)⊗W A)⊗UW B U F (1)⊗U (W A⊗F (1))⊗UW B

U (F (1)⊗ (F (1)⊗W A))⊗UW B U (F (1)⊗ (W A⊗F (1)))⊗UW B

U ((F (1)⊗ (F (1)⊗W A))⊗W B) U ((F (1)⊗ (W A⊗F (1)))⊗UW B)

id⊗U 2 ⊗ id

U 2 ⊗ id

U 2

id⊗U 2 ⊗ id

U 2 ⊗ id

U 2

id⊗τ⊗ id

id⊗U (τ)⊗ id

U (id⊗τ)⊗ id

U (id⊗τ⊗ id)

The commutativity of the top square follows from the fact that U is a symmet-

ric monoidal functor. The commutativity of thehe second square and of the third

squares follows from the naturality of U 2 ⊗ id and U 2 respectively and the proof is

complete.

In Definition 7.2.10 we defined a natural transformation φ from T = U F to

T ′ = U F (1)⊗− and in Proposition 7.2.12 we proved that φ is of the form ue . In

the following, we check that φ is an opmonoidal natural transformation.

Lemma 8.2.1. The morphism of bimonads φ : U F → U F (1)⊗ (−) preserves the op-

monoidal constraints, in other words the following diagram commutes.
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U F (X ⊗Y ) U F (X )⊗U F (Y )

U F (1⊗X ⊗Y )

U F (1)⊗X ⊗Y U F (1)⊗X ⊗U F (1)⊗Y

U F (1)⊗U F (1)⊗X ⊗Y

(U F )2

φX⊗Y

φX ⊗φY

(U F )2 ⊗ id
id⊗τ⊗ id

Proof. We prove the commutativity of the boundary diagram due to commutativity

of all the internal diagrams below.

U F (X ⊗Y ) U F (X )⊗U F (Y )

U F (1⊗X ⊗Y ) U F (1⊗X ⊗1⊗Y )

U F (1)⊗X ⊗Y U F (1⊗1⊗X ⊗Y ) U F (1)⊗X ⊗U F (1)⊗Y

U F (1)⊗U F (1)⊗X ⊗Y

(U F )2

φX⊗Y

φX ⊗φY

(U F )2 ⊗ id
id⊗τ⊗ id

The commutativity of the square on the top left corner we have the following com-

mutative diagram

1⊗1⊗X ⊗Y 1⊗ (X ⊗1)⊗Y

1⊗X ⊗ (1⊗Y )

X ⊗ (1⊗Y )

1⊗X ⊗Y X ⊗Y

id⊗τ⊗ id

l1 ⊗ id⊗ id id⊗rX ⊗ id

id⊗ id⊗lY

id⊗αX ,1,Y

lX ⊗ id⊗ id

id⊗lY

lX ⊗ id
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whereαX ,1,Y is the associator. Indeed, by the naturality of the natural isomorphism

l : 1⊗X
∼−→ X follows that

id1⊗lX = l1⊗X = l1 ⊗ idX .

From this, the far left vertical arrow is becoming id1⊗lX ⊗ idY and in combination

with the triangle relation of the symmetry τ, see 2.3.3, follows that the top left trian-

gle is commutative. The commutativity of the triangle in the middle follows from

the triangle relation of the associator α, see 2.1.1 and the commutativity of the bot-

tom triangle follows from the interchange law. Then, applying the functor U F on

the above diagram we obtain the commutativity of the pentagon.

The commutativity of the remaining diagrams follow from technical lemmas

who have stated in Section 2.2. In particular for the commutativity of the square on

the top right corner we apply in the diagram of Lemma 2.2.9 the strong monoidal

functor U and taking in to account that UW ∼= id. In a similar way the commuta-

tivity of the triangle on the bottom and on the left of the diagram follows from the

application of the strong monoidal functor on the commutative diagram of Lemma

2.2.10 and the strong monoidal functor U . To complete the proof, the commutativ-

ity of the bottom right square follows from the application of the strong monoidal

functor U on the commutative diagram of Lemma 2.2.13.
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G. W. Moore, G. Segal, B. Szendrői, and P. M. H. Wilson. Dirichlet branes

and mirror symmetry, volume 4 of Clay Mathematics Monographs. American

Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge,

MA, 2009.

[4] M. Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ.

Math., (68):175–186 (1989), 1988.

[5] S. Baaj and G. Skandalis. Unitaires multiplicatifs et dualité pour les produits

croisés de C∗-algèbres. Ann. Sci. École Norm. Sup. (4), 26(4):425–488, 1993.

[6] A. I. Bondal and M. M. Kapranov. Representable functors, Serre functors, and

reconstructions. Izv. Akad. Nauk SSSR Ser. Mat., 53(6):1183–1205, 1337, 1989.

[7] A. Bruguières, S. Lack, and A. Virelizier. Hopf monads on monoidal categories.

Adv. Math., 227(2):745–800, 2011.

[8] A. Bruguières and A. Virelizier. Hopf monads. Adv. Math., 215(2):679–733,

2007.
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