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Abstract

Operational processes are at the core of many organisations. The failure and misuse of
these processes can cause significant economic losses to businesses or, in the worst cases,
endanger human life. As a result there has been significant research effort focused on the de-
velopment of techniques and tools for the model-based analysis and verification of reliability,
performance and quality-of-service properties of processes.

Constructing models which accurately represent the behaviour of real-world systems is very
challenging. The complexity and stochastic nature of real-world phenomena requires the use
of modelling assumptions which introduce errors that can significantly impact the results
of model-based analysis. Where inaccurate analyses are used as the basis of engineering or
business decisions, the consequences can be catastrophic.

Many operational processes are now routinely instrumented and capture information about
component interactions and the behaviour of human operators. This thesis introduces a set
of tool-supported techniques which exploit these logs in conjunction with tried and tested
probabilistic model checking. This produces Markov models and formal analysis techniques
which more accurately capture process behaviours and improve the quality of model-based
analysis for operational processes.

We show how observation data can be used to improve the modelling and analysis of contin-
uous time systems by refining continuous-time Markov models (CTMCs) to more accurately
reflect real-world behaviours. We apply the tools and techniques developed to real-world pro-
cesses and demonstrate how we may avoid the invalid decisions which arise from traditional
CTMC modelling and analysis techniques.

We also show how observation-enhanced discrete time Markov models may be used to char-
acterise the behaviour of users within an operational process. The self-adaptive role based
access control approach we develop uses a formal definition of adaptation policies to identify
potential threats in a real-world IT support system and mitigates risks to the system.
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Chapter 1

Introduction

1.1 Motivation

Complex systems are now a part of everyday life with software and hardware components
integrated to create business and safety-critical applications. These applications form the
core of many operational processes, the failure of which may cause significant economic loss to
businesses and may even endanger human life. Ensuring the correctness of such systems has
become a significant area of research with system monitoring, modelling and analysis utilised
to validate and verify the compliance of systems against functional and Quality-of-Service
(QoS) requirements.

Model checking has been suggested as one way to ensure the correctness of systems, providing
organisations with a level of assurance that the system will operate as expected [6]. Model
checking provides mathematical guarantees that system requirements are met and, where re-
quirements are violated, counter examples are provided as proof of failure. For hardware and
software design, model checking has become a commonplace activity. Whilst conventional
model checking focuses on an absolute guarantee of correctness with respect to the system
models, e.g. “the system will never fail”, this may not be appropriate for real-world systems
and processes in which stochastic variations exist. In such cases a probabilistic view of the
system allows for model-based performance evaluation [7] e.g. “The probability of failure for
the system within one year is below 0.01”. The verification of probabilistic models can be
undertaken through Monte Carlo based statistical techniques which provide an estimation
of results with bounds. The results provided by these techniques will eventually converge to
a correct answer but may require a very large number of simulation runs to do so. Typically
such techniques provide a confidence bound on the result and therefore limited guarantees
on the accuracy of the analysis. By contrast probabilistic model checking tools [8, 9, 10, 11]
have been developed which allow for the verification of such models and provide mathemati-
cally provable verification results. These tools have matured over the past decade and found
use in a wide range of contexts [12, 13].

One area where probabilistic model checking offers potential benefits is in the verification
of operational processes such as, air traffic control [14][15], pharmaceutical dispensing [16]
and e-Government service delivery [17]. Within this work we define a process as “a specific

15
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ordering of work activities across time and place, with a beginning, an end, and clearly
identified inputs and outputs” [18]. An operational process is then those processes which
enact the operations function of an organisation where the operations function delivers those
products and services which are the reason for existence of the organisation [19]. These
operational processes are critical to the success of modern organisations, and at the heart of
such processes are socio-technical systems which combine electronic components and human
participants to fulfil operational requirements.

The performance, cost, resource use and other quality-of-service (QoS) properties of these
systems and processes underpin important engineering and business decisions and failures
may lead to financial loss or, in the worst cases, the loss of life.

Formal verification is dependent on the construction of mathematical models which accu-
rately represent the system of interest. Modelling real-world phenomena is often difficult or
even impossible, however, and where modelling assumptions are incorrect the guarantees pro-
vided by formal verification are invalid. Uncertainty in models may arise from two primary
sources. Firstly a lack of knowledge concerning the behaviour of system components and
their interactions and; secondly from the dynamic and unpredictable behaviour of the envi-
ronments in which the process operates. The challenge of verifying models which incorporate
uncertainty is particularly relevant for operational processes involving human participants.
In such models the value of model parameters which characterise the probability of actions
occurring or the temporal characteristics of operations are uncertain and may be obtained
through limited observations or domain knowledge. In addition human centric processes are
typically constructed in the knowledge that flexibility exists within the process. Flexibility
allows processes to adapt to changing environments and comes in a number of forms [21]:

• Flexibility by design: to allow for a range of possible actions depending on the context
of the process instance e.g. high and low priority cases require different authorisation
activities,

• Flexibility by deviation to allow for a process instance to deviate at run-time without
the need to alter the published process e.g. we treat a patient before registering them
as the computer system is currently unavailable.

• Flexibility by underspecification: only after deployment will it become clear what the
precise steps required to complete a task are, and hence an abstract state is created
with the aim of future refinement.

Allowing flexibility within processes may allow organisations to gain a competitive advantage
by responding to environmental change [21], and a process that does not support change will
not benefit the organisation in the long run [22].

Whilst generating models for operational processes is difficult the need for accuracy is
paramount since a process model which does not sufficiently capture the behaviour of the
real world is of little value and any verification based on that model may lead to invalid
business decisions.

In the area of probabilistic model verification, modelling typically relies on domain expertise
to estimate model parameters such as state transition probabilities and rates. These are
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insufficient to capture many real-world behaviours. As operational processes have become
more complex, the amount of instrumentation applied to these processes has also increased
with logs of activity routinely stored for future analysis. This provides an opportunity to
develop modelling and analysis techniques which more accurately represent observed be-
haviours and better support decision making. It is this opportunity which we exploit in this
work.

1.2 Contributions

The primary hypothesis of this thesis is that by combining observation data with tradi-
tional modelling techniques we may more accurately represent the behaviour of operational
processes using Markovian models. When probabilistic model checking is applied to the
resulting models the results generated will better support business and engineering decisions
than traditional techniques.

In this PhD project we have developed a set of tool-supported techniques which allow for
observation data to be used in the modelling and analysis of continuous and discrete time
systems. The main contributions of the thesis are summarised below.

1. Improving the accuracy of CTMC model verification using observation data.
Chapter 3 introduces OMNI, an observation-based Markov chain refinement approach.
OMNI tackles the challenge of generating mathematical models which are sufficiently
accurate to support the design and verification of real-world systems and processes.
We demonstrate how phase-type distributions can be used to significantly improve the
accuracy of continuous time Markov chains models and hence improve the quality of
decisions based on these models. Using observation data obtained from real-world web-
services, from which we construct a web-based travel application, the OMNI refinement
method reduces QoS analysis errors by between 77–90.3% thus reducing the risk of
invalid decisions.

2. Controlling the size of CTMC models using property-centric model refine-
ment. Chapter 4 extends OMNI and introduces an approach for the classification of
Markov model states with reference to formal verification properties. This approach
allows for the generation of significantly smaller Markov chains whilst retaining the ac-
curacy gains achieved using observation-based model enhancement. We demonstrate
our approach on the web-based travel application from Chapter 3 as well as a second
real-world IT support system and show how verification times are reduced by 54–74%.

3. OMNI. In Chapter 5 we present the OMNI tool which implements observation-
enhanced QoS analysis of component based systems using automatic component clas-
sification and integrates with standard probabilistic model checkers. We have made
this tool freely available together with the two case studies used to evaluate the
tool as well as the models and datasets required to replicate our work. https:

//www.cs.york.ac.uk/tasp/OMNI/index.html

4. FACT: A tool for the formal verification of DTMCs with confidence in-
tervals. In Chapter 6 we present the FACT probabilistic model checking tool which

https://www.cs.york.ac.uk/tasp/OMNI/index.html
https://www.cs.york.ac.uk/tasp/OMNI/index.html
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computes confidence intervals for the evaluation of DTMCs with unknown transition
probabilities when observations of these transitions are available. FACT is joint work
with Kenneth Johnson from Auckland University of Technology, New Zealand and
builds on theoretical foundations developed by Radu Calinescu et al. [23]. FACT in-
tegrates existing components developed by Kenneth Johnson with a graphical user
interface to allow users to more easily leverage the underlying theory. We evaluate
FACT using a set of case studies across a range of application domains and the result-
ing tool and case studies are freely available on our website https://www-users.cs.

york.ac.uk/~cap/FACT/.

5. Detecting abnormal behaviour in business processes using observation data.
We present a formal method for the definition of adaptation policies in operational
processes. User behaviours are analysed in line with the policies to assess normality
and to mitigate potential threats. The approach integrates the FACT model checker
and parametric model templates to characterise user behaviour with respect to policy
requirements and to determine if user access permissions should be amended.

6. Evaluation of abnormal behaviour detection applied to a real-world appli-
cation. In Chapter 8 we present an evaluation of our approach with reference to
the real-world IT-Support system introduced in Chapter 4. We demonstrate how the
approach is able to capture a range of real-world policies and limit the potential for neg-
ative behaviours to impact system performance. The instrumentation of the process,
the implementation of the analysis approach and discussions with the IT management
staff was undertaken by our collaborators, Carlos Eduardo da Silva and José Diego
Saraiva da Silva at the IFRN1 in Brazil.

7. Case studies. Throughout this work we present two case studies and the data sets
which were captured from these real-world systems. The first case study is a web ser-
vices orchestration and demonstrates the challenges of working with components which
possess deterministic delays and whose timing characteristics are non-parametric. The
second case study presents a human centric operational process and as such has highly
variable timing characteristics. These two case studies together provide a opportunity
for other researchers to understand the challenges of applying probabilistic verification
to real-world systems and processes.

1.3 Thesis structure

The work presented in the thesis is organised into four parts as shown in Figure 1.1. Part
I includes the introduction and background information which underpins this work. Part II
then consists of three chapters which concern the analysis of continuous time systems and the
benefits which can be achieved when observation data exists. Part III switches to discrete
time systems and examines how observation data may be used to enhance the analysis of
system behaviours. The thesis concludes in Part IV with two chapters which summarises
findings of the work and suggesting areas of future work.

Chapter 2 introduces the key concepts, mathematical models and techniques that underpin

1Federal Institute of Education, Science and Technology of Rio Grande do Norte

https://www-users.cs.york.ac.uk/~cap/FACT/
https://www-users.cs.york.ac.uk/~cap/FACT/
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Part I: Introduction (Ch. 1) & Background (Ch. 2)

Part II : Continuous Time

Improving the accuracy of CTMC 
model verification using 

observation data. [3] (Ch. 3)

Controlling the size of CTMC 
models using property-centric 
model refinement. [4] (Ch. 4)

Evaluation of observation based 
refinement approaches. [4] (Ch. 5)

Part III : Discrete Time

FACT: A tool for the formal 
verification of DTMCs with 

confidence intervals. [1] (Ch. 6)

Detecting abnormal behaviour in 
business processes using 

observation data. [2] (Ch. 7)

Evaluation of abnormal behaviour 
detection applied to a real-world 

application. [2] (Ch. 8)

Part IV: Conclusions (Ch. 9) & Future Work (Ch. 10)

Figure 1.1: Thesis structure - References refer to the papers in which contributions were first
presented

the research carried out by the PhD project. This includes continuous and discrete time
Markov models and the temporal logics that are used to specify properties for those models.
In addition phase-type distributions are introduced since these are key to understanding the
Markov chain refinement work undertaken. Finally we discuss probabilistic model checking
software which is used extensively throughout the rest of the thesis.

Chapter 3 presents OMNI, an approach for improving the accuracy of continuous time
Markov chain (CTMC) model verification using observation data. In Section 3.1 we mo-
tivate this work by considering a web based travel application composed of real-world web
services and demonstrate how traditional analysis using CTMC models may lead to invalid
engineering decisions. Section 3.2 describes the OMNI approach and shows how, by utilising
log data gathered from system components, we are able to refine component models and
hence increase the accuracy of the model analysis. The two stage OMNI process uses Erlang
distribution modelling of deterministic delays (Section 3.2.2) and phase-type distributions
to model residual holding time (Section 3.2.3). Finally Section 3.3 compares our approach
to related research.

Chapter 4 then extends OMNI introducing a property-centric refinement approach which
reduces the size of the models produced whilst maintaining the accuracy of the observation
based refinement approach. Section 4.1 describes the activity classification step of the ex-
tended OMNI approach. This step partitions the states of the high-level CTMC into subsets
that require different amounts of refinement because of the different impact of their associ-
ated activities on the analysed property. The second step, selective refinement, is described
in Section 4.2 and shows how the methods developed in Chapter 3 are applied to the newly
classified stated. The chapter closes with a discussion of related work in Section 4.3.

In Chapter 5 we evaluate the property-centric OMNI approach developed in the previous
chapters. Section 5.1 describes the OMNI tool which allows for the definition of observation-



CHAPTER 1. INTRODUCTION 20

enhanced CTMC models and the language used to specify these models. In Section 5.2 we
then evaluate the OMNI approach with reference to the motivating example introduced in
Chapter 3 and a human centric IT support system currently implemented at a university in
Brazil. Finally, threats to the validity of our evaluation are considered in Section 5.3.

Chapter 6 presents FACT, a tool for the formal analysis of discrete time Markov chain models
using confidence intervals. In Section 6.1 we describe the theoretical foundations developed
by Calinescu et al. [23] upon which FACT is built. Section 6.2 then describes the FACT
tool, its architecture and the extension to the PRISM language which allows for models to be
defined with observation counts. In Section 6.3 we show how FACT may be used to analyse
a web application before evaluating FACT using five benchmark case studies in Section 6.4.
The chapter concludes with a discussion of related work in Section 6.5.

Chapter 7 presents a self adaptive role based access control framework (saRBAC) which
allows for the identification of abnormal behiour in operational processes through the analysis
of trace log data. Section 7.1 presents our motivating example based on the IT support
system first introduced in Chapter 5 as well as a set of informal policies specified by the
management team in natural language. Section 7.2 then describes the five stage saRBAC
approach and presents a method for formalising policies using Probabilistic computation tree
logic (PCTL) and first-order logic. Examples in this section utilise the FACT analysis engine
introduced in the previous chapter. Finally Section 7.3 discusses related work.

Chapter 8 presents an evaluation of the saRBAC approach using data logs gathered from
the IT support system over a period of 60 days. Section 8.1 presents the architecture of
the saRBAC implementation and describes how the method interfaces with the operational
process and utilises the FACT model checker for model analysis. Section 8.2.1 then presents
an evaluation of the approach in three parts. Firstly the policies are calibrated using real
data and we demonstrate that the policies are sufficient to recognise abnormal behaviours
in the trace data. Next we validate the policies using a set of traces which were not used in
the calibration process. In Section 8.2.3 we assess the performance of the implementation
before finally considering threats to the validity of our evaluation, in Section 8.3.

In the final part of the thesis Chapter 9 summaries the insights gained from the PhD project
and the contributions presented before Chapter 10 concludes the thesis with a range of areas
for further research which can extend or build on the results of the PhD project.



Chapter 2

Background

System verification is undertaken to ensure correctness and to support quality control against
a specification for systems design. In practice much of this work is carried out by hand
using peer reviewed dynamic testing. Such techniques require the development of prototypes
and tests which can prove the existence of errors rather than guaranteeing their absence.
Furthermore, as the complexity of systems increases such approaches become less effective
in finding errors.

Formal verification, however, does not require a completed prototype, but instead utilises
a formal specification and derived models for the system under investigation. In this way
formal verification can be considered a mathematical proof of correctness with respect to
model correctness.

In this chapter we present modelling and analysis techniques which allow for the formal
verification of system models. These underpin the work undertaken throughout the the-
sis. Section 2.1 defines the concept of model checking and its role in formal verification.
Section 2.2 then defines discrete-time and continuous-time Markov models and the formal
temporal logics which may be used to analyse system properties of models defined using
each time variant. In Section 2.3 we define phase-type distributions (PHDs) which utilise
continuous Markov chains before introducing two forms of PHD, Erlang and Hyper-Erlang
distributions, which are used in this work. Finally Section 2.4 briefly outlines the use of
probabilistic model checking software.

2.1 Model checking

Model checking originates in the independent work of two research teams Clarke and Emer-
son [24], and Quielle and Sifakis [25]. In 2007, Clarke, Emerson and Sifakis won the Turing
Award for 25 years of work which has defined the field [6]. In that time model checking
has become a well accepted technique for the verification of hardware and software systems
providing

... an algorithmic means of determining whether an abstract model represent-

21
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get coffee
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get tea
s0

s3 s1 s2

Figure 2.1: State transition system of a simple vending machine

ing, for example, a hardware or software design satisfies a formal specification
expressed as a temporal logic formula [6].

In model checking we wish to verify that a formal model of the system under review, M ,
satisfies a set of system properties, φ, specified in a precise language, such that

M � φ. (2.1)

System models are typically abstracted from the system under consideration as state tran-
sition systems. Figure 2.1 shows a simple four state model of a vending machine, adapted
from [26]. Starting in state s0 the system moves to s1 when a coin is inserted. The system
moves to either s2 or s3 contingent on the action of the user before dispensing the appropriate
drink and returning to the idle state.

From such a representation we can then examine properties of the system to ensure correct
operation, where properties are defined using formal logics.

Whilst model checking focuses on absolute guarantees of correctness for example “the system
will never reach deadlock”, for many real-world problems stochastic behaviours exist and,
as such, rigid guarantees are not possible. Under such conditions we turn to probabilistic
model checking techniques, where models are extended to include probabilities.

2.2 Markov models

Markov models are transition systems in which choice in the system is modelled as a proba-
bility. Certain behaviours of the system may then be modelled as stochastic processes, where
a stochastic process is defined as a family of random variables

{X(t), t ∈ T}.

X(t) is a random variable and as such is defined on a probability space. T is the index set
or parameter space and t is normally assumed to be time such that X(t) denotes the value
of the random variable at time t. For a discrete-time stochastic process T = {0, 1, 2, · · · }
whilst for continuous-time processes T = {t : 0 ≤ t < ∞}. The values assumed by X(t)
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are the system states and the set of all possible states is known as the state space. When
X(t) = s the process is said to be in state s at time t. Where the state space is discrete the
process is referred to as a chain and the states can be identified as a set of natural numbers.

A stochastic process is said to be Markovian if the probability of the next transition is
dependent only on the current state and not on any previous states i.e. the system is
memoryless.

Definition 2.1. A stochastic process {X(t)|t = 0, 1, 2, · · · } satisfies the Markov property if

P{Xt+1 = st+1|Xt = st, Xt−1 = st−1, · · ·X1 = s1, X0 = s0} = P{Xt+1 = st+1|Xt = st}

where s0, s1, · · · sk represent successive states of the process.

2.2.1 Discrete-time Markov chains

A discrete-time Markov chain is a state-transition system in which the state is observed at
discrete times. The system is assumed to only occupy a single state at any point in time and
transitions between states are assumed to be instantaneous. The next state at each point in
time is specified by a probability distribution.

2.2.1.1 Describing a state transition system as a DTMC

The following definition of a Discrete Time Markov Chain (DTMC) is adapted from [27]:

Definition 2.2. A labelled Discrete Time Markov Chain (DTMC) is a tuple: D = (S,P ,π0, AP, L)
where

• S is a countable, nonempty set of states;

• P : S × S → [0, 1] is the transition probability matrix such that for all states s:∑
s′∈S

P (s, s′) = 1; (2.2)

• π0 is the initial distribution such that
∑

s∈S π0(s) = 1 and

• AP is a set of atomic propositions and L : S → 2AP is a labelling function.

Time in the DTMC is abstract and movement between states may be considered to occur
at discrete moments in time. This may be clock ticks of a hardware system or an arbitrary
unit of time decided by the modeller.

The transient probability distribution πn for a DTMC may be calculated at time step tn
from an initial state π0 as:

πn = π0 × P n. (2.3)

The labelling of states allows for the allocation of meaningful names to states and allows us



CHAPTER 2. BACKGROUND 24

s0
|0|0|

s1
|1|0|

s3
|0|0|

s4
|0|1|

s2
|2|0|

p1

(1− p1)

0.3

0.7

0.1

0.9

start

{fail}

{success}{idle}

{ws1}

{ws2}

Figure 2.2: DTMC annotated with state rewards and costs

to ask questions such as “what is the probability of running for 10 steps without reaching
the fail state”.

2.2.1.2 Extending DTMCs with rewards

Quantitative analysis of Markov models may be enhanced through the addition of positive
real valued quantities associated with states and transitions in the model. These values may
then be interpreted as either rewards or costs which the analyst will aim to maximise or
minimise respectively1.

Definition 2.3. Given a DTMC D = (S,P ,π0, AP, L), a reward structure of D is a pair of
real-valued functions (ρ, ι) where:

• ρ : S → R≥0 : is a state reward function that defines the value (reward/cost) associated
with being in state s ∈ S for one time step.

• ι : S×S → R≥0 : is a transition reward function that defines the value associated with
each transition in the model.

Example 2.1. Figure 2.2 illustrates a software system which calls one of two web services,
ws1 (s1) or ws2 (s2). ws1 is cheap to call but has a failure probability of 0.3 whilst ws2
is more expensive but has a lower failure rate, 0.1. The failure rates are reflected in the
transition probabilities from each web service to the failure state (s3).

1Whilst we refer to costs and rewards the difference is purely semantic. There is no difference, mathemat-
ically, in how the quantities are evaluated.
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The DTMC is then:

S = {s0, s1, s2, s3, s4}
π0 = [1, 0, 0, 0, 0]

AP = {idle, ws1, ws2, fail, success}
L(s0) = {idle}
L(s1) = {ws1}
L(s2) = {ws2}
L(s3) = {success}
L(s4) = {fail}

P =


0 p1 (1− p1) 0 0
0 0 0 0.3 0.7
0 0 0 0.1 0.9
1 0 0 0 0
1 0 0 0 0



A systems designer wishes to maximise the number of successful calls whilst minimising the
cost associated with service calls and will select p1 (the probability of calling ws1) appropri-
ately.

To achieve this, the model is augmented with costs and rewards which represent the monetary
costs associated with calling the web service and reward for successfully completing a call.
In this case the designer chooses to place costs and rewards on states leaving all transitions
with zero rewards. These are annotated below the state and labelled as :

| < cost of calling service > | < reward for completion > |

such that s4 has a reward of 1, denoting a successful service call, and s1 and s2 have costs
of 1 and 2 respectively reflecting the price differential between them. The reward structures
are therefore defined as

ι = 05,5

ρcost = (0, 1, 2, 0, 0)

ρreward = (0, 0, 0, 0, 1)

where 05,5 denotes a 5× 5 matrix with the value zero in every element.

2.2.1.3 Analysing properties of a DTMC

Through model checking we wish to employ tools and techniques which allow for the formal
verification of system properties specified in a precise language such that our modelD satisfies
a specification φ.

D � φ (2.4)

Probabilistic computation tree logic (PCTL) [28] is a branching time temporal logic (based
on CTL [29]) which allows for the specification of probabilistic properties of a DTMC and
hence for the formal definition of specifications.

Properties are defined with reference to states and possible execution paths within the model
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D starting from an initial state s0. An execution path ω is a non-empty sequence of states
s0, s1, · · · where si ∈ S and P (si, si+1) > 0 for all i ≥ 0. Paths may be finite or infinite and
we denote the ith state of a path as ωi. The set of all paths starting in state s is denoted
PathD(s).

Model behaviour is then analysed by assessing the probability that a certain path is taken
and this is calculated for each state s ∈ S by defining a probability measure Prs over the
set of paths PathD(s) [27].

Definition 2.4. The syntax of PCTL is defined as follows:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./p[φ]

φ ::= X Φ | Φ U≤k Φ

and the cost/reward augmented PCTL state formulae are defined as:

R./r[C
≤k] | R./r[I=k] | R./r[F Φ]

where a ∈ AP, ./ ∈ {<,≤,≥, >} is a relational operator, p ∈ [0, 1] is a probability bound,
k ∈ N ∪ {∞} and r ∈ R≥0 is a reward bound. Φ and φ denote state and path formulae
respectively.

The path formula φ imposes a condition on the set of paths from a system such that P./p[φ]
is the probability that the set of paths which satisfy φ meet the bounds defined by ./ p. For
a path ω, the next operator X Φ holds if Φ is satisfied in the next state. The “bounded
until” operator, Φ1 U

≤kΦ2, holds if Φ2 becomes true within k time steps and Φ1 is true at
all time steps before this.

The reward operators may be interpreted as follows:

• R./r[C≤k] : The amount of reward accumulated along a path ω up to time step k meets
the bound defined by ./ r;
• R./r[I=k] : The expected reward at time step k satisfies the bound defined by ./ r;
• R./r[F Φ] : The expected reward accumulated before reaching a state which satisfies

Φ satisfies ./ r. Note that F Φ may be alternatively written as true U≤∞ Φ.

The semantics of PCTL are defined with a satisfaction relation � over the states, s ∈ S and
paths ω ∈ PathD of a DTMC by:

s � true for all s ∈ S
s � a iff a ∈ L(s)
s � ¬Φ iff s 2 Φ
s � Φ1 ∧ Φ2 iff s � Φ1 and s � Φ2

s � P./p iff ProbD(s, φ) ./ p

where
ProbD(s, φ) = Prs(ω ∈ PathsD(s) | ω � φ)
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Table 2.1: Examples of PCTL formulae

Description PCTL formula

The probability of of reaching the fail state within 100
time units is at less than 95%

P<0.95 [ true U≤100 fail ]

The probability of reaching the success state without
first visiting the fail state is at least 90%

P≥0.90 [ ¬ fail U success ]

The expected cost to reach the success state will be at
most 5

Rcost
≤5 [ F success ]

and for any path ω ∈ PathD(s):

ω � XΦ iff ω(1) � Φ
ω � Φ1U

≤kΦ2 iff ∃i ∈ N.(i ≤ k ∧ ω(i) � Φ2 ∧ ∀ j < i.(ω(j) � Φ1))

For a DTMC extended with rewards the semantics are defined as follows:

s � R./r[C≤k] iff ExpD(s, YC≤k) ./ r

s � R./r[I=k] iff ExpD(s, YI=k) ./ r

s � R./r[FΦ] iff ExpD(s, YFΦ) ./ r

where ExpD(s, Y ) denotes the expectation of the random variable Y : PathsD(s) → R≥0

with respect to the probability measure Prs and for any path ω [27].

Example 2.2. The software system described in Example 2.1 may be analysed using PCTL
in order to assess the proposed system against a requirements specification. The requirements
and PCTL formulae which encode them are provided in Table 2.1.

2.2.2 Continuous-time Markov chains

The continuous time Markov chain (CTMC) is a type of stochastic state transition model
used for Quality of Service (QoS) analysis at both design time [30],[31],[32] and runtime [33],[34].
CTMCs provides a representation for discrete state, continuous time models and may be con-
sidered as a DTMC where transition times occur according to a Poisson process [35]. In such
models the transition between states does not occur at discrete-time steps but at any point
in time. The CTMC, like the DTMC, possesses the Markov property and is therefore mem-
oryless such that the next state is only dependent on the current state and not previously
visited states. In addition the amount of time spent in previous states is also irrelevant.

2.2.2.1 Describing a state transition system as a CTMC

Definition 2.5. A CTMC over an atomic proposition set AP is a tuple: C = (S,R,π0, AP, L)
where

• S is a countable, nonempty set of states;

• R : S × S → R≥0 is the transition rate matrix
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• π0 is the initial distribution such that
∑

s∈S π0(s) = 1;

• AP is a set of atomic propositions and L : S → 2AP is a labelling function.

The transition rate matrix R describes the rate with which the system will transition be-
tween states where rates are assumed to have an exponential distribution. The exponential
distribution is chosen as it is the only continuous distribution that exhibits the memoryless
property i.e. the expected time for which a system will stay in state s is independent of the
time already spent in the state. Using this assumption, transitions between two states, i
and j can happen if R(si, sj) > 0 and the probability of a transition within t time units is
(1− e−tR(si,sj)).

The time spent in any state s, before a transition occurs is then exponentially distributed
with a rate:

E(s) =
∑
s′∈S

R(s, s′) (2.5)

where E(s) is known as the exit rate of s. A state si is said to be absorbing if R(si, sj) = 0
for all sj ∈ S\{si} and transient otherwise.

We can also determine the probability of being in state s′ next independently of the time
spent in s by extracting the embedded DTMC from the CTMC.

Definition 2.6. The embedded DTMC D of a CTMC C = (S,R, π0, AP, L) is the DTMC
emb(C) = (S,P emb(C), π0, AP, L)) where for s, s′ ∈ S

P emb(C)(s, s′) =


R(s,s′)
E(s) if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise

(2.6)

Using this definition we can consider the behaviour of the CTMC as staying in a state s for
a time exponentially distributed with rate E(s) after which time an instantaneous transition
will be made to state s′ with probability given by P emb(M)(s, s′).

In order to allow for the analysis of the CTMC we also define the infinitesimal generator for
the CTMC.

Definition 2.7. The infinitesimal generator matrix for the CTMC C = (S,R, π0, AP, L) is
the matrix Q : S × S → R defined as:

Q(s, s′) =

{
R(s, s′) if s 6= s′

−
∑

s′′ 6=sR(s, s
′′
) otherwise

(2.7)

Using the solution of the Kolmogorov forward equations for the Markov chain [7] allows us
to calculate the probability distribution at time t as:

π(t) = π0e
Qt = π0

(
I +

∞∑
n=1

Qntn

n!

)
(2.8)
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Figure 2.3: CTMC annotated with rewards and costs

2.2.2.2 Extending CTMCs with rewards

Costs and rewards may be associated with a CTMC in a similar way to that described for
DTMCs. Unlike a DTMC however the state rewards are calculated with reference to the
amount of time a model stays within that state.

Definition 2.8. Given a CTMC C = (S,R, π0, AP, L), a reward structure of C is a pair of
real-valued functions (ρ, ι) where:

• ρ : S → R≥0 : is a state reward function that defines the rate at which the reward is
accumulated whilst the system remains in each state.
• ι : S×S → R≥0 : is a transition reward function that defines the value associated with

each transition in the model.

Example 2.3. Consider the system described in Example 2.1 this time modelled in the
continuous domain as shown in Figure 2.3. We assume a time unit of seconds and label each
edge with the rate of transition between states. From our idle state we would expect to see
the system to move to the next state with a rate of 20 (Eqn. 2.5) i.e. the mean time spent
in state s0 is 1

20s.

Two reward structures are applied to the model. A reward is associated with each state such
representing the power consumed whilst in the state and this is calculated as the product of
the time spent in the state and the reward value associated with the state. In this way state
s2 is seen to consume twice as much power as s1 per second. The second reward represents
the monetary cost of calling a service and is attached to the transitions with value c1 for s1

and c2 for s2.

The CTMC is then:

S = {s0, s1, s2, s3, s4}
π0 = [1, 0, 0, 0, 0]

AP = {idle, ws1, ws2, fail, success}

L(s0) = {idle}
L(s1) = {ws1}
L(s2) = {ws2}
L(s3) = {fail}
L(s4) = {success}
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where the system matrices are

R =


0 10 10 0 0
0 0 0 3 7
0 0 0 1.5 13.5
50 0 0 0 0
50 0 0 0 0

 P emb(C) =


0 0.5 0.5 0 0
0 0 0 0.3 0.7
0 0 0 0.1 0.9
1 0 0 0 0
1 0 0 0 0



Q =


−20 10 10 0 0

0 −10 0 3 7
0 0 −15 1.5 13.5
50 0 0 −50 0
50 0 0 0 −50


and the reward structures are defined as

ι =


0 c1 c2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


ρpower = (0, 1, 2, 0, 0)

2.2.2.3 Analysing properties of a CTMC

The properties of a CTMC C are analysed over its set of finite and infinite paths PathsC . A
finite path is a sequence s1t1s2t2 . . . sk−1tk−1sk, where s1, s2, . . . , sk ∈ S, π(s1)>0, sk is an
absorbing state, and, for all i=1, 2, . . . , k − 1, R(si, si+1)>0 and ti>0 is the time spent in
state si. An infinite path from PathsC is an infinite sequence s1t1s2t2 . . . where π(s1)> 0,
and, for all i≥1, si∈S, R(si, si+1)>0 and the time spent in state si is ti>0. For any path
ω∈PathsC , the state occupied by the path at time t≥0 is denoted ω@t. For infinite paths,
ω@t=si, where i is the smallest index for which t≤

∑i
j=1 tj . For finite paths, ω@t is defined

similarly if t ≤
∑k−1

j=1 tj , and ω@t = sk otherwise. Finally, the i-th state on the path ω is
denoted ω[i], where i ∈ N>0 for infinite paths and i ∈ {1, 2, . . . , k} for finite paths.

Just as PCTL allows for the definition of properties to evaluate DTMC models, Continuous
Stochastic Logic (CSL) is a branching time logic used to specify properties of a CTMC
models.

Building on the work of Hannson and Jonsson [28] Aziz first defined Continuous Stochastic
Logic (CSL) [36] and this work was further extended by Baier et al. to include a time
bounded until operator as well as a steady state operator [37].

Definition 2.9. The syntax of CSL is defined as follows:

Φ ::= true | a |Φ ∧ Φ | ¬Φ |P./p[Ψ] |S./p[Φ]

Ψ ::= XΦ |ΦU IΦ
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and the cost/reward augmented CSL state formulae are defined as:

R./r[C
≤T ] | R./r[I=T ] | R./r[F Φ] | R./r[S]

where

• a ∈ AP is an atomic proposition
• ./ ∈ {<,≤,≥, >} is a relational operator
• p ∈ [0, 1] is a probability bound or threshold
• r ∈ R≥0 is a reward bound
• I ⊆ R≥0 and T ∈ R≥0 are time interval and time instant respectively
• Φ and φ denote state and path formulae respectively.

The semantics of CSL are defined with a satisfaction relation |= over the states s ∈ S and
the paths ω∈PathsC of a CTMC [38]. CSL semantics are defined recursively by:

s |= true for all s ∈ S
s |= a iff a ∈ L(s)
s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= ¬Φ iff ¬(s |= Φ)

s |= P./p[Ψ] iff Prs{ω ∈ PathsM | ω |= Ψ} ./ p
ω |= XΦ iff ω = s1t1s2 . . . ∧ s2 |= Φ
ω |= Φ1U

IΦ2 iff ∃t∈I.(∀t′∈ [0, t). ω@t′ |=Φ1) ∧ ω@t |=Φ2

where a formal definition for the probability measure Prs on paths starting in state s is
available in [27, 38]. Finally, a state s satisfies a steady-state formula S./p[Φ] iff, having
started in state s, the probability of the CTMC being in a state where Φ holds in the long
run satisfies the bound ‘./ p’.

The shorthand notation Φ1UΦ2 ≡ Φ1U
[0,∞)Φ2 and F IΦ≡ trueU IΦ is used when I=[0,∞) in

an until formula and when the first part of an until formula is true, respectively. Probabilistic
model checkers also support CSL formulae in which the bound ‘./ p’ from P./p[Ψ] is replaced
with ‘=?’, to indicate that the computation of the actual bound is required. We distinguish
between the probability Prs{ω ∈ PathsM | ω |= Ψ} that Ψ is satisfied by the paths starting
in a state s, and the probability

P=?[Ψ] =
∑

s∈S π0(s)Prs{ω ∈ PathsM | ω |= Ψ}
= Prπ0{ω ∈ PathsM | ω |= Ψ}

that Ψ is satisfied by the CTMC.

The formal semantics associated with CSL when the CTMC is extended with rewards are
then:

s � R./r[C≤t] iff ExpC(s, YC≤t) ./ r

s � R./r[I=t] iff ExpC(s, YI=t) ./ r

s � R./r[FΦ] iff ExpC(s, YFΦ) ./ r

s � R./r[S] iff limt→∞(1
t ExpC(s, YC≤t)) ./ r

where ExpC(s, Y ) denotes the expectation of the random variable Y with respect to the
probability measure Prs and for any path ω [27].
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Table 2.2: Examples of CSL formulae

Description CSL formula

The probability of reaching the fail state within the first
T seconds is less than 0.2

P<0.2 [F [0,T ] fail ]

The probability of reaching the success state within T
seconds without first visiting the fail state is at least
0.8

P≥0.80 [ ¬ fail U [0,T ] success ]

The expected cost to reach the success state within T
seconds will be at most 50

Rcost
≤50 [ F [0,T ] success ]

Example 2.4. If we consider the CTMC presented in Example 2.3 then we can analyse the
model against a set of system requirements by encoding them in CSL as shown in Table 2.2.

2.3 Phase-type distributions

Whilst individual states within a CTMC are modelled with exponential holding times more
general stochastic distributions may be obtained through the composition of states using
phase-type distributions (PHDs) [39]. PHDs model stochastic processes where the event of
interest is the time to reach a specific state and are widely used in performance modelling
of systems from domains ranging from call centres to healthcare[40],[41],[42].

PHDs support efficient numerical and analytical evaluation [39], and can approximate ar-
bitrarily closely any continuous distribution with a strictly positive density in (0,∞) [43],
although PHD fitting of distributions with deterministic delays requires extremely large
numbers of states.

Definition 2.10. A PHD is defined as the distribution of the time to absorption in a CTMC
with one absorbing state [39]. The N ≥ 1 transient states of the CTMC are called the phases
of the PHD. With the possible reordering of states, the infinitesimal generator matrix of this
CTMC can be expressed as:

Q =

[
D0 d1

0 0

]
, (2.9)

where the N ×N sub-matrix D0 specifies only transition rates between transient states, 0 is
a 1×N row vector of zeros, and d1 is an N × 1 vector whose elements specify the transition
rates from the transient states to the absorbing state. The elements from each row of R add
up to zero, so we additionally have D01 + d1 = 0, where 1 and 0 are column vectors of N
ones and N zeros, respectively. Thus, d1 = −D01 and the PHD associated with this CTMC
is fully defined by the sub-matrix D0 and the row vector π0 containing the first N elements
of the initial probability vector π0 (as in most practical applications, we are only interested
in PHDs that are acyclic and that cannot start in the absorbing state). We use the notation
PHD(π0,D0) for this PHD.

Example 2.5. Consider the CTMC described in Figure 2.4 which has a single absorbing
state (s4).
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Figure 2.4: A CTMC with a single absorbing state and the associated infinitesimal generator
matrix

Since d1 is implicitly given by D0 Then the PHD is the fully defined by:

D0 =

−3 1 0.5
0 −2 0.5
0 0 −1

 (2.10)

π0 =
[

1
2

1
3

1
6

]
(2.11)

2.3.1 Erlang distributions

The Erlang distribution [7] was developed by A.K. Erlang to investigate telephone system
performance. An Erlang distribution is a form of PHD in which k exponential phases with
the same rate parameter (λ) are placed in series as shown in Figure 2.5.

s1 s2 sk sf
λ λ λ

Figure 2.5: CTMC of an Erlang distribution with n phases

The Erlang distribution is then denoted E(k, λ) where the initial probability vector is π0 =[
1, 0, · · · , 0

]
such that the system always starts in state s1 and traverses all successive

states until it reaches the absorbing state sf . The distribution then represents the expected
time to reach the absorbing state and has a probability density function (PDF) given by

f(x) =
λk

(k − 1)!
xk−1e−λx for x ≥ 0 (2.12)

such that f(x) = λe−λx for x ≥ 0 represents the density of the exponential function when
k = 1.

The cumulative distribution function (CDF) of an Erlang function is then defined by

F (x) = 1−
k−1∑
i=0

(λx)i

i!
e−λx for x ≥ 0 (2.13)
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Figure 2.6: Probability density function for an Erlang distribution as the number of phases
increases

A random variable Y with an Erlang distribution then has an expected (or mean) time to
reach the absorbing state of:

E[Y ] =
k

λ
(2.14)

and the variance is

VAR[Y ] =
k

λ2
(2.15)

Figure 2.6 shows the probability density function (PDF) for a set of Erlang distributions
where k ∈ {1, 2, 5, 10} and E[Y ] = 10. It can be seen that as k increases the peak in the
PDF becomes more pronounced with the center of the peak moving towards the expected
holding time.

We note that an Erlang distribution with mean m has variance m2

k and thus tends to be
deterministic as k → ∞. Whilst PHDs can approximate any continuous distribution, the
modelling of distributions with regions of zero density is difficult and [44]. Indeed it has been
shown that Erlang distributions are the be PHD for a fixed-delay distribution [45].

2.3.2 Hyper-Erlang distributions

Hyper-Erlang distributions [46],[47] are a class of phase-type distribution in which a mixture
of n mutually independent Erlang distributions are weighted with an initial probability
distribution π0 = [α1, α2, · · ·αn]. This is shown graphically in Figure 2.7 where each branch
is an Erlang distribution.
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Figure 2.7: Hyper-Erlang distribution

If ki is the number of phases in the ith Erlang distribution then the PDF is [39]

f(x) =

n∑
i=1

πi
(λix)ki−1

(ki − 1)!
λie
−λix for x ≥ 0 (2.16)

where πi is the ith element of the initial distribution vector π0. The CDF is then given by

F (x) = 1−
n∑
i=1

πi

ki−1∑
j=0

(λix)j

j!
e−λix for x ≥ 0 (2.17)

The state space of the Hyper-Erlang has
∑n

i=1 ki transient states and one absorbing state.
When n = 1 then the Hyper-Erlang is a simple Erlang distribution. The continuous time
Markov chain of a Hyper-Erlang can be described by an infinitesimal generator matrix Q
and the initial distribution vector where

Q =

Q1 0 · · · 0
0 Q2 · · · 0
0 0 · · · Qn

 (2.18)

and Qi represents the infinitesimal generator matrix of the ith Erlang branch.

2.4 Probabilistic model checking software

The mathematical foundations of model checking have long been understood but the practical
application of these techniques only became possible with the creation of suitable model
checking tools. The first such tool was developed by Clarke et al. [48],[49] and utilised
temporal logics, in computational tree logic, to specify system properties against which a
finite state system model could be verified. The same team went on to develop a symbolic
model checker [50], SMV, which was able of handling large real-world problems and provide
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counter examples where properties were violated.

The primary focus of SMV was the verification of hardware, e.g. integrated circuits, however,
SPIN [51], developed by Bell labs, was targeted at the “efficient verification of multi-threaded
software, not the verification of hardware circuits”. Again this tool was able to demonstrate
practical applicability and was successfully used to model control systems for flood defences
as well as mission critical systems for space exploration.

Whilst these tools provided support for a wide range of problem domains they were restricted
to finite state systems in which the transitions where deterministic. For a wide class of
problems however the transition between states is unreliable or unpredictable and therefore
the analysis of such problems requires the use of probabilistic model checking.

A model checker such as SMV or SPIN takes a state-transition model and a property de-
scribed in temporal logics and returns either “true” or “false”. A counterexample is also
returned should the property fail to be met. By contrast a probabilistic model checker ac-
cepts a probabilistic model (typically a Markov chain) that encodes the chance of a transition
occurring as a probability. Probabilistic temporal logics are then employed to define system
specifications and the results are returned as a likelihood.

Even though the algorithms for probabilistic model checking were first proposed in the
1980s [52], the first “industrial strength model checking tools” were not available until the
2000s [52]. Today there are numerous such tools which have been applied in a wide range of
contexts. Jansen et al, in their 2008 paper [53] compared five tools to assess their strengths
and weaknesses. PRISM [54],[8] performs well in this study and is a widely used tool which
provides an easy to use user interface and a modelling language which is now well supported
in newer tools such as Storm [11]. For this reason PRISM was chosen as the tool of choice
for probabilistic model checking within this work.

Model checking, and probabilistic model checking, have been successfully applied in the
analysis of real-world problems; however, challenges still remain [55]. In particular quanti-
fying many real-world behaviours is difficult and existing tools cannot support the design
and verification of real systems unless the analysed models are accurate representations of
those behaviours. Ensuring the accuracy of performance models, therefore, remains a major
challenge.
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Chapter 3

Observation-Enhanced CTMC
Refinement

In this chapter we present a new method for the accurate analysis of transient quality of
service (QoS) properties of operational processes. Our method takes as input a high-level
abstract continuous-time Markov chain (CTMC) model of the process to be analysed. Each
state in the high-level model represents an activity or task in the operational process. Each
state in the model is then refined, i.e. the accuracy of the state is improved, through the
addition of additional states which more accurately represent the execution times observed
for each task. The refined CTMC can then be analysed with existing probabilistic model
checkers to accurately predict the value of QoS properties.

Modern systems and processes are often constructed using complex interconnected units [56].
The performance, cost, resource use and other QoS properties of these underpin important
engineering and business decisions. As such QoS analysis has been the subject of intense
research [57],[58],[59],[60]. The solutions devised by this research can analyse a broad range
of QoS properties by using performance models such as Petri Nets [61],[62], layered queuing
networks [63], Markov chains [64],[30] and timed automata [65], together with tools for their
simulation (e.g. Palladio [66] and GreatSPN [67]) and formal verification (e.g. PRISM [8]
and UPPAAL [68]).

These advances enable the effective analysis of many types of performance models. However,
they cannot support the design and verification of real systems unless the analysed mod-
els are accurate representations of the real-world behaviour, and ensuring the accuracy of
performance models remains a major challenge. We address this challenge for continuous-
time Markov chains (CTMCs) and introduce a tool-supported method for Observation-based
Markov chaiN refInement (OMNI) and accurate QoS analysis of operational processes.

The OMNI method comprises the five activities shown in Figure 3.1. The key characteristic
of OMNI is its use of observed execution times for the operational activities of the analysed
process to refine a high-level abstract CTMC whose states correspond to individual activities.
As such, the first OMNI step is the collection of these execution time observations, which
can come from unit testing activities prior to system integration, from logs of other systems
that use the same activities, or from logs of the analysed process. The second OMNI step

38
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1. Collect observation
data

2. Develop high-level
CTMC model

3. Specify QoS
properties

4. Run OMNI model
refinement tool

5. Run probabilistic
model checker

- unit-test activities
- monitor activities

in other systems
- monitor process under

analysis

- generate from other
models (e.g., UML
activity diagrams)

- obtain from domain
experts

- formalise the QoS
properties of interest
in continuous stochas-
tic logic (CSL)

- synthesise refined
CTMC models
through observation
enhanced refinement

- verify refined CTMC
models using existing
probabilistic model
checker and formalised
QoS properties

Figure 3.1: OMNI workflow for the QoS analysis of operational processes

involves the development of a high-level CTMC model of the process under analysis. This
model can be generated from more general models such as annotated UML activity diagrams
as in [31],[69], or can be provided by the domain experts. The next OMNI step requires the
formalisation of the QoS properties of interest as continuous stochastic logic formulae.

In the fourth step of our OMNI method we use observed activity execution times to refine the
high-level abstract CTMC where states correspond with operational activities. The refine-
ment of model states in OMNI consists of two parts. The first part makes the CTMC more
realistic through the addition of states and transitions that model the non-zero minimum ex-
ecution times associated with operational activities. We use additional states and transitions
corresponding to Erlang Distributions for this purpose. The CTMC is then further refined
by using phase-type distributions to model the variation in execution times observed in ex-
ecution logs. The resulting OMNI-refined CTMCs model the execution times of operational
activities with much greater accuracy than traditional CTMC modelling techniques.

In the last activity of our method, the refined CTMC models generated by OMNI are analysed
with established probabilistic model checkers such as PRISM [8] and STORM [11]. These
models support the accurate and efficient analysis of a broad spectrum of QoS properties
specified in continuous stochastic logic [36] and, as such, OMNI’s observation-enhanced QoS
analysis can prevent many of the invalid engineering and business decisions associated with
traditional CTMC-based QoS analysis.

Several factors can impede or impact the success of our OMNI method:

1. Operational activities with execution times that are not statistically independent. Markov
models assume that the transition rates associated with different states are statistically
independent. If the execution times of different activities are not independent, then this
premise is not satisfied, and OMNI cannot be applied. For example a process composed
of two tasks requires that the time taken to complete task one has no effect on the time
taken to complete task two. For some applications this is not the case. The time taken
to write a program and the time taken to test it may, for example, be correlated.

2. Changing behaviour. If the temporal characteristics of an activity change significantly
over time, then OMNI cannot predict the changed behaviour. This is a more general diffi-
culty with model-based prediction. When the real-world system changes in a predictable
manner this may be accounted for through the modification of model structures or pa-
rameters. For example the time taken for a web-service to respond may be a function of
the load on the server. If we know that the load is high at certain times of day then we
may construct a model which uses different characteristics during this period. Where the
nature of the change is unknown, however, the model, and therefore its analysis, will be
inaccurate.
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Figure 3.2: High-level abstract CTMC modelling of a web based travel application

3. Insufficient observations of execution times. The accuracy of OMNI-refined models de-
creases when fewer observations of the system components are available. A task which is
characterised by a complex non-parametric distribution will require many data points to
describe it. Indeed for small sample sets we may not observe certain modes of operation
at all. We provide details about the impact of the training dataset size on the OMNI
accuracy in Section 5.2.4.

The remainder of this chapter is structured as follows. Section 3.1 describes the web process
which we use to evaluate OMNI, as well as to motivate and illustrate our QoS analysis
method. The method employed for state refinement is then presented in Section 3.2. Finally
Section 3.3 provides an overview of related work.

3.1 Motivating example: QoS analysis of a web application

To illustrate the limitations of traditional CTMC-based QoS analysis, we consider a web
application that enacts two processes in response to the following requests:

1. Requests from users who plan to meet and entertain a visitor arriving by train.

2. Requests from users looking for a possible destination for a day trip by train.

The handling of these requests by the application is modelled by the high-level abstract
CTMC from Figure 3.2, which can be obtained from a UML activity diagram of the appli-
cation. The initial state s1 of the CTMC corresponds to finding the location of the train
station. For the first request type, which is expected to occur with probability p1, this is
followed by finding the train arrival time (state s2), identifying suitable restaurants in the
area (state s4), obtaining a traffic report for the route from the user’s location to the station
(state s6), and returning the response to the user (state s7).

For the second request type (day trips), which occurs with probability 1 − p1, state s1 is
followed by finding a possible destination (state s3), and obtaining a weather forecast for
this destination (state s5). With a probability of p2 the weather is unsuitable and a new
destination is selected (back to state s3). Once a suitable destination is selected, the traffic
report is obtained for travel to the station (state s6) and the response is returned to the user
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Table 3.1: Web services considered for the web application

Label Thid-party service URL rate (s-1)

location Bing location service http://dev.virtualearth.net/REST/v1/

Locations

9.62

arrivals Thales rail arrival board http://www.livedepartureboards.co.uk/

ldbws/

19.88

departures Thales rail departures board http://www.livedepartureboards.co.uk/

ldbws/

19.46

search Bing web search https://api.datamarket.azure.com/Bing/

Search

1.85

weather WebserviceX.net weather
service

http://www.webservicex.net/

globalweather.asmx

1.11

traffic Bing traffic service http://dev.virtualearth.net/REST/v1/

Traffic

2.51

(state s7).

Each activity in the processes is implemented using a web service component. The execution
rates λ1 to λ6 depend on the implementations used for these components. We consider that
a team of software engineers wants to decide if the real web services from Table 3.1 are
suitable for building the application. If they are suitable, the engineers need:

1. To select appropriate request-handling times to be specified in the application service-
level agreement (SLA);

2. To choose a pricing scheme for the application.

Accordingly, the engineers want to assess several QoS properties of the travel application
variant built using these publicly available web services:

P1 The fraction of user requests handled in under T seconds, for 0<T ≤4.
P2 The fraction of “day trip” requests handled in under T seconds, for 0<T ≤4.
P3 The expected profit per request handled, assuming that 1 cent is charged for requests

handled within T seconds and a 2-cent penalty is paid for requests not handled within
3 seconds, for 0 < T ≤ 3.

Service response times are assumed exponentially distributed in QoS analysis based on
CTMC (as well as queueing network) models. In order to estimate the rate parameter
of the exponential distribution we make use of the maximum likelihood estimator. Deriva-
tion of the MLE for an exponential distribution is provided in Appendix A. For the observed
service execution times ti1, . . . , tin for service i the estimate for the service rate λi is

λi =

(
ti1 + ti2 + · · ·+ tin

n

)−1

. (3.1)

These execution times can be taken from existing logs (e.g. of other applications that use
the same services) or can be obtained through testing the web services individually. Finally,
a probabilistic model checker is used to analyse properties P1–P3 of the resulting CTMC.

http://dev.virtualearth.net/REST/v1/Locations
http://dev.virtualearth.net/REST/v1/Locations
http://www.livedepartureboards.co.uk/ldbws/
http://www.livedepartureboards.co.uk/ldbws/
http://www.livedepartureboards.co.uk/ldbws/
http://www.livedepartureboards.co.uk/ldbws/
https://api.datamarket.azure.com/Bing/Search
https://api.datamarket.azure.com/Bing/Search
http://www.webservicex.net/globalweather.asmx
http://www.webservicex.net/globalweather.asmx
http://dev.virtualearth.net/REST/v1/Traffic
http://dev.virtualearth.net/REST/v1/Traffic
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For this purpose, the three properties are first formalised as transient-state CSL formulae:

P1 P=?[F [0,T ]complete]

P2 P=?[¬arrivals U [0,T ]complete]/(1− p1)

P3 P=?[F [0,T ]complete]− 2 · P=?[F (3,∞)complete]

(3.2)

The value of T to be specified in the SLA is unknown a priori and hence we evaluate each
property for a range of T values where 0<T ≤4 for P1 and P2, and 0<T ≤3 for P3.

To replicate this process, we implemented a prototype version of the application and we used
it to handle 270 randomly generated requests for p1 = 0.3 and p2 = 0.1. Obtaining transi-
tion probabilities for Markov chains from real-world systems, and the effects of transition
probabilities on system performance, have previously been considered [70],[71]. To decouple
these effects from those due to the temporal characteristics of component behaviours, we
utilise fixed probabilities for our motivating example. We obtained sample execution times
for each web service (between 81 for arrivals and search and 270 for location and traffic), and
we applied (3.1) to these observations, calculating the estimated service rates from Table 3.1.
We then used the model checker PRISM to analyse the CTMC for these rates, and thus to
predict the values of properties (3.2).

To assess the accuracy of the predictions, we also calculated the actual values of these
properties at each time value T using detailed timing information logged by our application.
The error associated with a single property evaluation may be quantified as the absolute
difference between actual and predicted values

|actual(T )− predicted(T )| (3.3)

The predictions obtained through CTMC analysis and the actual property values across the
range of T values are compared in Figure 3.3. The errors reported in the figure are calculated
using the distance measure recommended for assessing the overall error of CTMC/PHD
model fitting in [72],[39],[73],[74], i.e., the area difference between the actual and the predicted
property values:

error =

∫ Tmax

0
|actual(T )− predicted(T )| dT, (3.4)

where Tmax =4 for properties P1 and P2, and Tmax =3 for property P3.1

Later in the chapter, we will use this error measure to assess the improvements in accuracy
due to the OMNI model refinement. In this section we focus on the limitations of CTMC-
based transient analysis. Therefore, recall that the software engineers must make their
decisions based only on the predicted property values from Figure 3.3; two of these decisions
and their associated scenarios are described below.

Scenario 1. The engineers note that:

1Both underestimation and overestimation of QoS property values contribute to the error because both can
lead to undesirable false positives or false negatives when assessing whether QoS requirements are met. For
example, overestimates of the overall success probability of a system can falsely indicate that a requirement
that places a lower bound on this probability is met and the system is safe to use (false negative), while
underestimates of the same property can falsely indicate that the requirement is violated and the system
should not be used (false positive).
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Figure 3.3: Predicted (dashed lines) versus actual (continuous lines) property values

(a) the predicted overall success probability (property P1) at T=1s is 0.415 (marked 1a in
Figure 3.4), i.e., slightly over 40% of the requests are predicted to be handled within 1s;

(b) the predicted day-trip success probability (property P2) at T = 1s is 0.363 (1b in Fig-
ure 3.4), i.e., over 36% of the day-trip requests are predicted to be handled within 1s;

(c) the expected profit (property P3) at T = 1s, i.e., when charging 1 cent for requests
handled within 1s, is 0.27 cents (1c in Figure 3.4).

Accordingly, the engineers decide to use the services from Table 3.1 to implement the travel
web application, with an SLA “promising” that requests will be handled within 1s with
0.4 success probability, “day trip” requests will be handled within 1s with 0.35 success
probability, and charging 1 cent for requests handled within 1s. As shown in Figure 3.4, the
actual property values at T = 1s are 0.164 for P1 (marked 1a′ in Figure 3.4), 0 for P2 (1b′

in Figure 3.4) and 0.09 cents for P3 (1c′ in Figure 3.4), so this decision would be wrong –
both promises would be violated by a wide margin, and the actual profit would be under a
third of the predicted profit.

Scenario 2. The engineers observe that the success probabilities of handling requests or “day
trip” requests within 2s are below 0.8 – the predicted values for properties P1 and P2 at
T = 2s are 0.79 (2a in Figure 3.3) and 0.74 (2b in Figure 3.3), respectively; and/or that the
expected profit is below 0.7 cents per request when charging 1 cent for each request handled
within 2s (2c in Figure 3.3). As such, they decide to look for alternative services for the
application. As shown by points 2a’–2c’ in Figure 3.3, all the constraints underpinning this
decision are actually satisfied, so the decision would also be wrong.

We chose the times and constrains in the two hypothetical decisions to show how the cur-
rent use of idealised CTMC models in QoS analysis may yield invalid decisions. The fact
that choosing different times and constrains could produce valid decisions is not enough:
engineering decisions are meant to be consistently valid, not down to chance. It is this ma-
jor limitation of traditional CTMC-based QoS analysis that our CTMC refinement method
addresses as described in the next section.
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Figure 3.4: SLA property evaluation using CTMC verification

3.2 The OMNI method for CTMC refinement

3.2.1 Overview

OMNI addresses the refinement of high-level CTMC models CTMC(S,π,R) that satisfy the
following assumptions:

• Each state si ∈ S corresponds to an activity of the process, and π(si) is the probability
that si is the initial activity executed;

• For any distinct states from si, sj ∈ S, the transition rate R(si, sj) = pijλi, where
pij represents the (known or estimated) probability (2.6) that activity i is followed
by activity j and λi is obtained by applying (3.1) to ni observed execution times
τi1, τi2, . . . , τini of activity i;

• Each state si∈S is labelled with the name of its corresponding activity, which we will
call “activity i” for simplicity.

This CTMC model makes the standard assumption that execution times are exponentially
distributed. However, this assumption is typically invalid for two reasons. First, each activity
i has a delay δi (i.e. minimum execution time) approximated by

δi ≈
ni

min
j=1

τij (3.5)

such that its probability of completion within δi time units is zero. In contrast, modelling
the execution time of the activity as exponentially distributed with rate λi yields a non-zero
probability 1− e−λiδi of completion within δi time units. Second, even the holding times

τ ′i1 = τi1 − δi, τ ′i2 = τi2 − δi, . . . , τ ′ini = τini − δi (3.6)

of the activity are rarely exponentially distributed. An extreme scenario when this is not
the case is when an activity is implemented using a web service with instances running on
multiple non-identical computers for load balancing purposes: in this scenario, the execution
times will have a multimodal distribution.

Example 3.1. Figure 3.5a shows the empirical cumulative distribution functions (CDFs)
for the execution times of the six services from our motivating example (cf. Table 3.1), and
the associated exponential models with rates given by (3.1). The six services have minimum
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(a) Empirical CDF for the service execution times (continuous lines) versus exponential models with
rates computed from observed data (dashed lines)
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(b) Empirical CDF for the service holding times (continuous lines) versus exponential models with
rates computed from observed holding times (long dashed lines); for all services except Arrivals the
difference between the two (short dashed lines) exceeds 20% for multiple values of T

Figure 3.5: The services from the motivating example have non-zero delays and non-
exponentially distributed holding times

observed execution times δ1 to δ6 between 45ms and 0.71s (due to network latency and re-
quest processing time), and their exponential model is a poor representation of the observed
temporal behaviour. Furthermore, the best-fit exponential model of the observed holding times
for these services (shown in Figure 3.5b) is also inaccurate.

OMNI overcomes these significant problems, which can lead to erroneous analyses of the
transient QoS properties of the modelled system, and thus to invalid verification conclusions
and design decisions as shown in our motivating example. To this end, OMNI generates a
refined CTMC where each activity is replaced with an Erlang representation of the delay
associated with each activity and a phase-type distribution model of the residual holding
time for the activity once the delay has been extracted. For our motivating example then
the system may be considered as shown in Figure 3.62.

3.2.2 Delay modelling

Where an activity exhibits a non-zero execution time OMNI extends the CTMC with ad-
ditional states and transitions that model the minimum execution times (i.e. delays) by
means of Erlang distributions, i.e., a sum of several independent exponential distributions
with the same rate [7]. Whilst phase-type distribution models can theoretically approxi-
mate any continuous distribution arbitrarily closely, regions of zero density (delays) pose a
particular problem for PHD fitting algorithms. Erlang models have been shown to be the

2The graphical notion introduced in Figure 3.6 is reused in Chapter 4.
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Figure 3.6: Motivating example with delay and holding time abstraction

best possible fit for these delays [44] and OMNI therefore automatically provides for the
automatic extraction and modelling of models where they are present in the observed data.

As shown in Figure 3.7, this involves replacing each state si with a sequence of delay-
modelling states zi1, zi2, . . . , ziki that encode an Erlang-ki distribution of rate λEi , followed
by a state s′i with transitions matching those from the high-level CTMC but of rate λ′i.

si

pi1λi

pi2λi zi1 s′izi2 ziki

pi1λ
′
i

pi2λ
′
i

λEi λEi λEi

Erlang delay model

(a) (b)
pimi

λi pimi
λ′i

Figure 3.7: Modelling component i in the (a) abstract and (b) refined CTMC

However, delays are not modelled perfectly by Erlang distributions: for any error ε∈ (0, 1),
there is a (small) probability p that the refined CTMC leaves state ziki within δi(1− ε)
time units of entering zi1. Given specific values for ε and p, the theorem below supports
the calculation of the parameters ki, λ

E
i and λ′i for our delay modelling. Figure 3.8 shows

the cumulative distribution for an Erlang-k distribution for a delay of 10 time units and
illustrates the error bound ε as k is increased.

Theorem 1. Given an error bound ε ∈ (0, 1), if the delay modelling parameters ki, λ
E
i and

λ′i satisfy

(a) 1−
∑ki−1

l=0
(ki(1−ε))le−ki(1−ε)

l! = p

(b) λEi = ki
δi

(c) λ′i = λi
1−λiδi

(3.7)

for some value p ∈ (0, 1) then the following properties hold for the refined CTMC:

(i) The probability that the CTMC leaves state ziki within δi(1−ε) time units from entering
state zi1 is p;

(ii) The expected time for the refined CTMC to leave s′i after entering state zi1 is λ−1
i . This
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is also the expected time for the high-level CTMC to leave state siNi after entering state
si1, so the delay modelling preserves the first moment of the distribution associated with
the refined CTMC states.

Proof. To prove (i), we note that the cumulative distribution function of an Erlang-k dis-

tribution with rate λ is F (k, λ, x) = 1 −
∑k−1

l=0
(λx)le−λx

l! , so (3.7a) can be rewritten as
F (ki, λ

E
i , δi(1 − ε)) = p since ki = λEi δi according to (3.7b). Therefore, the probability

that the Erlang delay model from Figure 3.7 will transition from entering state zi1 to exiting
state ziki within δi(1 − ε) time units is p. For part (ii), the expected time for the CTMC
to leave state s′i after entering zi1 is the sum of the mean of the Erlang-ki distribution with
rate λEi and the mean of the exponential distributions with rate λ′i, i.e.

ki
1

λEi
+

1

λ′i
= δi +

1− λiδi
λi

=
δiλi
λi

+
1− λiδi
λi

=
1

λi

Theorem 1 supports the calculation of the delay model parameters for a state si ∈ S as
follows:

1. Approximate the delay δi for the activity associated with si using (3.5).

2. Choose a small error ε∈(0, 1) and a small probability p (e.g. ε=0.1 and p=0.05), and
solve (3.7a) for ki. This can be done using a numeric solver and rounding the result
up to an integer value or, since ki only depends on ε and p, and is independent of ∆i,
by using precomputed ki values as in Table 3.2;

3. Calculate λEi and λ′i using (3.7b) and (3.7c), respectively.
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Table 3.2: Precomputed probability of leaving an Erlang delay for a set of ki values and and
error bound ε. The highlighted cell corresponds to p < 0.05 as required in Example 3.2.

(1− ε) ki = 10 ki = 50 ki = 100 ki = 259 ki = 500

0.80 0.283376 0.070335 0.017108 0.000289 8.11×10−7

0.81 0.295858 0.082033 0.022651 0.000567 2.85×10−6

0.82 0.308481 0.095025 0.029572 0.001069 9.33×10−6

0.83 0.321226 0.109348 0.038085 0.001942 0.000028
0.84 0.334080 0.125024 0.048407 0.003408 0.000081
0.85 0.347026 0.142062 0.060744 0.005776 0.000213
0.86 0.360049 0.160454 0.075287 0.009468 0.000529
0.87 0.373132 0.180174 0.092202 0.015025 0.001230
0.88 0.386260 0.201181 0.111616 0.023107 0.002687
0.89 0.399419 0.223415 0.133612 0.034471 0.005526
0.90 0.412592 0.246802 0.158221 0.049937 0.010717
0.91 0.425765 0.271252 0.185416 0.070318 0.019642
0.92 0.438924 0.296660 0.215109 0.096347 0.034083
0.93 0.452054 0.322910 0.247147 0.128582 0.056105
0.94 0.465142 0.349875 0.281319 0.167321 0.087793
0.95 0.478174 0.377421 0.317357 0.212526 0.130876
0.96 0.491138 0.405404 0.354944 0.263777 0.186282
0.97 0.504021 0.433681 0.393723 0.320267 0.253760
0.98 0.516812 0.462104 0.433311 0.380834 0.331673
0.99 0.529498 0.490528 0.473304 0.444037 0.417054

Example 3.2. Consider the arrivals state from from our running example which, according
to our experimental data, has a delay of δ = 45ms Suppose that we want to model this delay
with an error bound ε= 0.1 and a probability p= 0.05 (highlighted in Table 3.2). This gives
k=259 and the other delay modelling parameters are calculated as:

λE = k
δ = 259

0.045 = 5756s−1,

λ′ = λ
1−λδ = 19.88

1−19.88·0.045 = 188.61s−1

(where the rate λ is taken from Table 3.1).

Example 3.3. Consider again the web application from our motivating example, and its
three quality properties from (3.2). We applied the OMNI delay extraction to each state
associated with a service in the CTMC from Figure 3.2. We set ε = 0.1 and p = 0.05, so
state si, 1≤ i≤ 6, from the original CTMC was replaced with an Erlang delay model as in
Figure 3.7(b), where ki = 259 and the values for λEi and λ′i are given in Table 3.3. Accord-
ingly, the refined CTMC had 6 × 259 more states and transitions than the original CTMC.
Figure 3.9 compares the actual values of properties P1–P3 with the values predicted through
the analysis of the refined CTMC. As anticipated, the error (3.4) decreased significantly (by
between 49%–70%) for all three properties, reducing the margin for engineering decision er-
rors. Nevertheless, there are still time points T where the actual and predicted property values
differ noticeably, e.g., the predicted P1 and P2 values for T = 1.4s are 0.565 (instead of an
actual value of 0.723) and 0.462 (instead of 0.674), respectively. In Section 3.2.3 we show
how OMNI addresses this difference.
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Table 3.3: Erlang delay model parameters for the states of the CTMC from Figure 3.2

si label δi(ms) λEi (s−1) λ′i (s−1) si label δi (ms) λEi (s−1) λ′i(s
−1)

s1 location 49 5286 18.20 s4 search 209 1239 3.02
s2 arrivals 45 5756 188.61 s5 weather 706 367 5.08
s3 departures 45 5756 156.56 s6 traffic 179 1447 4.56
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Figure 3.9: Predicted after OMNI delay extraction (dashed lines) versus actual (continuous
lines) values for properties P1–P3, where error0 and errorI are calculated as in (3.4), before
and after delay extraction

3.2.3 Holding-time modelling

Having modelled the delay associated with an activity we now turn our attention to the
modelling of residual holding time. For each activity for which we have observation data,
we synthesise a phase-type distribution PHD(π0,D0) that models the holding times (3.6),
and we replace the relevant state s′ of the model CTMC(S′,π′,R′) obtained after the OMNI
delay modelling with this PHD.

Our holding time modelling exploits recent advances in the fitting of phase-type distributions
to empirical data. Given the usefulness of PHDs in performance engineering, this area has re-
ceived considerable attention [39],[75], with effective PHD fitting algorithms developed based
on techniques such as moment matching [76],[77], expectation maximisation [78],[79],[80] and
Bayes estimation [81],[82]. Recently, these algorithms have been used within PHD fitting
approaches that: (a) partition the dataset into segments [80] or clusters [73] of “similar”
data points; (b) employ an established algorithm to fit a PHD with a simple structure to
each data segment or cluster; and (c) use these simple PHDs as the branches of a PHD that
fits the whole dataset. These approaches achieve better trade-offs between the size, accuracy
and complexity of the final PHD than the direct algorithms applied to the entire dataset.

The OMNI HoldingTimeModeling function from Algorithm 1 achieves similar benefits
by employing Reinecke et al.’s cluster-based PHD fitting approach [73, 83, 84] to fit a PHD
to the holding time sample τ ′i1, τ

′
i2, . . . , τ

′
ini

from (3.6). The PHD fitting is carried out by the
while loop in lines 7–22, which iteratively assesses the suitability of PHDs obtained when
partitioning the sample assembled in line 2 into c = MinC ,MinC + 1, . . . ,MaxC clusters.
Line 8 obtains a PHD with c branches (corresponding to partitioning sample into c clusters)
and up to MaxP phases by using the function CBFitting, which implements the cluster-
based PHD fitting from [73]. The FittingAlg argument of CBFitting specifies the basic PHD
fitting algorithm applied to each cluster as explained above, and can be any of the standard
moment matching, expectation maximisation or Bayes estimation PHD fitting algorithms.
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Algorithm 1 Holding-time modelling with parameters:
• MinC — minimum number of PHD clusters
• MaxC — maximum number of PHD clusters
• MaxP — maximum number of cluster phases
• FittingAlg — basic PHD fitting algorithm
• MaxSteps — maximum steps without improvement

1: function HoldingTimeModeling(α, τ ′i1, τ
′
i2, . . . , τ

′
ini

)
2: sample ← (τ ′i1, τ

′
i2, . . . , τ

′
ini

)
3: minErr =∞
4: improvement ← 0
5: steps ← 0
6: c← MinC
7: while c ≤ MaxC ∧ steps ≤ MaxSteps do
8: phd ← CBFitting(sample, c,FittingAlg ,MaxP)
9: err ← ∆CDF(sample, phd)

10: if err < minErr then
11: best phd ← phd
12: improvement ← improvement +(minErr−err)
13: minErr ← err
14: end if
15: if improvement ≥ α then
16: improvement ← 0
17: steps ← 0
18: else
19: steps ← steps + 1
20: end if
21: c← c+ 1
22: end while
23: return best phd
24: end function

The quality of the c-branch PHD is assessed in line 9 by using the CDF-difference metric [73]
to compute the difference err between sample and the PHD. The if statement in lines 10–
14 identifies the PHD with the lowest err value so far, retaining it in line 11. Reductions
in err (i.e., “improvements”) are cumulated in improvement (line 12), and the while loop
terminates early if the iteration counter steps exceeds MaxSteps before improvement reaches
the threshold α ≥ 0 provided as an parameter to HoldingTimeModeling and the steps
counter is reset in line 17. Finally, the best PHD achieved within the while loop is returned
in line 23.

Figure 3.10 shows examples of two PHDs generated by Algorithm 1 when applied to sample
data produced by parametric distributions. Figure 3.10(a) illustrates a sample set of 1000
data points extracted from a normal distribution with a mean of 10ms and a standard
deviation of 2ms, plotted as a histogram. Since an exponential model based on the first
moment of the distribution is typically used to model holding times in a CTMC we also
provide this as a comparison to the probability density estimation of the derived PHD.
Figure 3.10(b) shows 1000 data points extracted from a bimodal distribution with one mode
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Figure 3.10: Distribution fitting: (a) Normal distribution; and (b) Bimodal Distribution

at 25ms and a second at 15ms along with the exponential estimator and a probability density
estimation of the derived PHD. Visual inspection of the graphs show that in both cases the
PHD is a much more accurate model of the sample set.

Using a phase-type distribution PHD(π0,D0) generated by Algorithm 1 to apply the OMNI
holding-time modelling procedure to the state s′ of a model CTMC(S′,π′,R′) yields a model
CTMC(S′′,π′′,R′′) with:

S′′=(S′ \ {s′}) ∪ {w1, w2, . . . , wN} ;

π′′(s)=


π′(s), if s ∈ S\{s′}
π′(s′)π0(wi), if s = wi, 1≤ i≤N ;
0, otherwise

R′′(s, u)=



R′(s, u), if s, u∈S′\{s′}
D0(s, u), if s, u∈{w1, w2, . . . , wN}
R′(s, s′)π0(wi), if s∈S′\{s′} ∧ u=wi,

1 ≤ i ≤ N
R′(s′,u)

λ′ d1(wi), if s=wi ∧ u∈S′\{s′},
1 ≤ i ≤ N

if s 6= u; and R′′(s, s) = −
∑

u∈S′′\{s}R′′(s, u), where:

• w1, w2, . . . , wN are the transient states of PHD(π0,D0);

• λ′ is the total outgoing transition rate for s′;

• d1 = −D01.

Example 3.4. We used our OMNI implementation to perform refinement of each web service
in the motivating example. Algorithm 1 was executed for each of our six services, with α=0.1
and with the configuration parameters MinC =2, MaxC =30, MaxP =300, MaxSteps =3 and
FittingAlg an expectation-maximisation PHD fitting algorithm that produces hyper-Erlang
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Figure 3.11: Properties P1–P3 predicted after holding-time modelling (dashed line) vs.
actual (continuous line); error0, errorI and errorII are the prediction errors before OMNI and
after each OMNI stage, respectively

distributions. OMNI produced a refined CTMC with 1766 states and 1797 transitions. The
time taken to verify properties for this larger model increased from less then 0.1 second, for
the high-level CTMC, to approximately 5 seconds per property for the OMNI refined model.
Figure 3.11 compares the actual values of properties P1–P3 with the values predicted by the
analysis of this CTMC. Both the visual assessment and the errorII error values associated
with these predictions (which are significantly lower than the error values error0 before the
OMNI refinement and errorI after the first OMNI stage) show that this CTMC supports the
accurate analysis of the three properties.

3.3 Related work

Analytical analysis of non-Markovian processes is an active research area with phase-type
Distributions being used to overcome limitations in the software tool support. OMNI builds
on recent approaches to using PHDs to fit non-parametric distributions, a research area that
has produced many efficient PHD fitting algorithms over the past decade [77],[81],[80],[82].
Buchholz et al. [39] and Okamura and Dohi [75] present overviews of the theory and ap-
plications of PHDs in these types of analysis, in domains including the modelling of call
centres [41] and healthcare processes [40],[42]. However, these algorithms and applications
consider the distribution of timing data for a complete end-to-end process rather than sep-
arate timing datasets for the activities within a larger system or process as is the case for
OMNI. This focus on a single dataset also applies to the cluster-based PHD fitting method
from [73] and its implementation within the efficient PHD-fitting tool HyperStar [83], which
OMNI uses for its holding-time modelling.

Recent work by Karmakar and Gopinath [85] has shown that PHD models can be used in
conjunction with CTMC solvers to verify storage reliability models. In this work, Weibull
distributions are assumed to more accurately describe the processes of concern, and PHDs
are used to approximate these distributions. The PRISM probabilistic model checker is then
used to assess properties concerned with system reliability. Unlike this approach, OMNI
is applicable to the much wider class of problems where additional QoS properties need
to be analysed and where the relevant component features correspond to non-parametric
distributions that cannot be accurately modelled as Weibull distributions.

The analysis of non-Markovian processes using PHDs is considered in [86], where a pro-
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cess algebra is proposed for use with the probabilistic model checker PRISM. However, [86]
presents only the analysis of a simple system based on well-known distributions, and does
not consider PHD fitting to real data nor how its results can be exploited in the scenarios
tackled by OMNI.

Delays within a process present particular problems for PHD fitting, and probabilistic regions
of zero density are considered in [44], where interval distributions are used to separate discrete
and continuous features. Similar work [87] supports the synthesis of timeouts in fixed-delay
CTMCs by using Markov decision processes. Unlike OMNI, [87],[44] do not consider essential
non-Markovian features of real data such as multi-modal and long-tail distributions, and thus
cannot handle empirical data that has these common characteristics.

Finally, non-PHD-based approaches to combining Markov models with real data range from
using Monte Carlo simulation to analyse properties of discrete-time Markov chains with
uncertain parameters [88] to using semi-Markov chains to model holding times governed
by general distributions [89]. However, none of these approaches can offer the guarantees
and tool support provided by OMNI thanks to its exploitation of established CTMC model
checking techniques.



Chapter 4

Property-Centric CTMC
Refinement

In Chapter 3 we showed how, through the use of observation-enhanced Markov chain refine-
ment the accuracy of transient QoS property analysis could be greatly improved. Whilst
the refined CTMC models are more accurate they are also larger and more complex and
therefore take more time to verify. Indeed we observed that applying the OMNI approach
to a Markov model of a web application led to an increase in the number of states in the
model from 8 to 1766.

In this Chapter we introduce a property-centric refinement method which, through the ap-
propriate classification of system states, is able to maintain the accuracy of observation based
Markov chain refinement whilst controlling the size of the resulting model. By analysing the
original CTMC structure with respect to a QoS property of interest we are able to produce a
smaller model for each property without losing model accuracy. Where multiple properties
exist refinements are cached to reduce the construction time associated with other properties.
Figure 4.1 shows an overview of the proposed refinement process.

The first OMNI step, called Activity classification, partitions the states of the high-level
CTMC into subsets that require different types of refinement because of the different impact
of their associated activities on the analysed property. For instance, activities which do not
appear on an execution path have no effect on QoS properties (e.g. response time) associated
solely with that path, and therefore their corresponding states from the high-level CTMC
need not be refined.

The second OMNI step, called selective refinement, replaces the states which correspond to
activities that impact the analysed property with new states and transitions that model the
delays and holding times as outlined in Chapter 3.

54
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Figure 4.1: OMNI CTMC refinement and verification

4.1 Activity classification

CTMC models of system processes are typically constructed to allow for the verification of
properties encoded in continuous stochastic logic (CSL) and to investigate questions about
what might happen if the characteristics of activities were to be replaced. As such one model
may contain information that is not required for the analysis of one or more CSL properties.

Given a high-level CTMC model CTMC(S,π,R) of a process, and a QoS property encoded
by the transient CSL formula P=?[Φ1U

IΦ2], this OMNI step builds a partition

S = SX ∪ SO ∪ S1 ∪ S2 ∪ . . . ∪ Sm (4.1)

of the state set S. Intuitively, the “eXclude-from-refinement” set SX will contain states
with zero probability of occurring on paths that satisfy Φ1U

IΦ2; the “Once-only” set SO
will contain states with probability 1.0 of appearing once and only once on every path that
satisfies Φ1U

IΦ2; and each “together” set Si will contain states that can only appear as a
sequence on paths that satisfy Φ1U

IΦ2.

For simple Markov chain models the classification of states may be possible through a visual
inspection. Let us consider the web based travel application used as a motivating example
in Chapter 3 (Figure 3.2) and the properties P1 and P2 defined in Section 3.1.

Figure 4.2(a) illustrates all possible paths which satisfy property P1 : P=?[F [0,T ]complete].
Paths branch where a probabilistic choice exists in the CTMC and the total number of
possible paths is infinite, however, all of the paths include the states s1 and s6 once and
only once. These states therefore form the “Once-only” set. State s7 denotes the end of the
process and can therefore be “excluded” from the refinement. Finally we can see that where
state s3 exists on a path it is always immediately followed by state s5, the same is true of
states s2 and s4. These state pairs then form the “together” set.

Figure 4.2(b) shows the paths which satisfy property P2 : P=?[¬arrivals U [0,T ]complete]/(1−
p1). States s2 and s4 do not exist on any path which satisfies P2 and hence are moved to
the “eXclude-from-refinement” set.

More generally, however, analysis through visual inspection is not possible in this way and
therefore we provide formal definitions of the disjoint sets SX, SO, and S1 to Sm and descrip-



CHAPTER 4. PROPERTY-CENTRIC CTMC REFINEMENT 56

s1

s2

s4

s6

s7

s3

s5

s6

s7

s3

s5

s6

s7

s3

s5

…

(a) Execution paths which sat-
isfy property P1

s1

s3

s5

s6

s7

s3

s5

s6

s7

s3

s5

…

(b) Execution paths which sat-
isfy property P2

Exists once on every path

Exclude from refinement

Exists in a together set

Together set

Key
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tions of their roles in OMNI in Sections 4.1.1–4.1.3.

4.1.1 Exclude-from-refinement state sets

Since activities which are not used can have no effect on the system performance the refine-
ment of states associated with these activities is unnecessary and should be avoided. As such
we wish to identify such states and so exclude them from the model refinement stage. For
example, if we examine Figure 4.2b we observe that for P2 states s2 and s4 are not present
on any path which does satisfy the QoS property. As such refining the states associated with
these web services (arrivals, search) is not necessary.

Definition 4.1. The exclude-from-refinement state set SX associated with an until path
formula P=?[Φ1U

IΦ2] over the continuous-time Markov chain C = CTMC(S,π,R) is the set
of CTMC states

SX = {s ∈ S | P=?[(¬s ∧ Φ1)UΦ2] = P=?[Φ1UΦ2]}, (4.2)

where, for each state s ∈ S, AP is extended with an atomic proposition also named ‘s’
that is true in state s and false in every other state. Thus, SX comprises all states s for
which the probability P=?[(¬s ∧ Φ1)UΦ2] of reaching a state satisfying Φ2 along paths that
do not contain state s and on which Φ1 holds in all preceding states is the same as the
probability P=?[Φ1UΦ2] of reaching a state that satisfies Φ2 along paths on which Φ1 holds
in all preceding states.
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Theorem 2. Let SX be the exclude-from-refinement state set associated with the until path
formula P=?[Φ1U

IΦ2] over the continuous-time Markov chain C = CTMC(S,π,R) with
atomic proposition set AP. Then, for any I ⊆ R≥0, the probability P=?[Φ1U

IΦ2] does not
depend on the transition times from states in SX.

Proof. The proof is by contradiction. Consider a generic state sX ∈ SX and the following
sets of paths:

A={ω∈PathsC |∃t > 0 . (ω@t |=Φ2 ∧
(∀t′∈ [0, t).ω@t′ |=Φ1))}

B={ω∈PathsC |∃t > 0 . (ω@t |=Φ2 ∧
(∀t′∈ [0, t).ω@t′ |=Φ1 ∧ ω@t′ 6=sX))}

C={ω∈PathsC |∃t > 0 . (ω@t |=Φ2 ∧
(∀t′∈ [0, t).ω@t′ |=Φ1) ∧ (∃t′ ∈ [0, t).ω@t′ = sX))}

As A=B ∪ C and B ∩ C = ∅, we have Prπ(A) = Prπ(B) + Prπ(C). However, according
to (4.2), Prπ(A)=P=?[Φ1UΦ2] =P=?[(¬s ∧ Φ1)UΦ2]=Prπ(B), so Prπ(C)=0.

Assume now that the time spent by the CTMC in state sX has an impact on the value of
P=?[Φ1U

IΦ2] over PathsC for an interval I ⊆ R≥0. This requires that, at least for some
(possibly very small) values of the time tX > 0 spent in sX, sX appears on paths from a set

C ′={ω∈PathsC |∃t∈I. (ω@t |=Φ2 ∧
(∀t′∈ [0, t).ω@t′ |=Φ1) ∧ (∃t′ ∈ [0, t).ω@t′ = sX))}

such that Prπ(C ′) > 0; otherwise, varying tX cannot have any impact on

P=?[Φ1U
IΦ2] = Prπ{ω∈PathsC |∃t ∈ I . (ω@t |=Φ2 ∧

(∀t′∈ [0, t).ω@t′ |=Φ1))}

However, since C ′ ⊆C we must have Prπ(C)≥ Prπ(C ′)> 0, which contradicts our earlier
finding that Prπ(C)=0, completing the proof.

Theorem 2 allows OMNI to leave the states from SX unrefined with no loss of accuracy in the
QoS analysis results. The theorem also provides a method for obtaining SX by computing
the until formula P=?[(¬s ∧ Φ1)UΦ2] for each state s of the high-level CTMC (i.e. for each
activity) and comparing the result with the value of the CSL formula P=?[Φ1UΦ2], which is
only computed once. Existing probabilistic model checkers compute these unbounded until
formulae very efficiently, as they only depend on the probabilities of transition between
CTMC states and not on the state transition rates [27],[38].1

1To asses the time taken by model checking, an experiment was carried out to evaluate each state from
the motivating example for inclusion in SX. This experiment was repeated 30 times and the average time
taken by model checking each state was found to be 1.6ms.
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Example 4.1. Consider the QoS properties (3.2) of the web application from our motivating
example. For property P2 and the high-level CTMC model from Figure 3.2, we have

P=?[¬arrivals U complete] = 1− p1 =
P=?[(¬s2 ∧ ¬arrivals) U complete] =
P=?[(¬s4 ∧ ¬arrivals) U complete] =
P=?[(¬s7 ∧ ¬arrivals) U complete],

(and P=?[(¬s ∧ ¬arrivals)Ucomplete] 6=1−p1 for any other state s), so SX ={s2, s4, s7} for
P2. Applying Theorem 2 to the other two properties from (3.2) yields SX={s7}.

4.1.2 Once-only state sets

In this section we will show that for any states which occur once-only on all paths which
satisfy the QoS property it is not necessary to model the delay associated with the activity
which the state represents. Since delays are expensive to model this can reduce the size and
complexity of the resulting model.

Let us consider the CTMC model shown in Figure 4.3a where each state si has a deterministic
delay di. Figure 4.3b then shows the model after the each state has been refined such that
each state si is replaced by an Erlang distribution representing the delay di and an phase-type
distribution PHDi which models the residual holding time.

For a property P=?[F T complete] we are only concerned in the time taken to reach the “com-
plete” state and hence the order in which activities are carried out is not important as long
as we maintain the temporal characteristics of the model. The activities represented by
states s1 and s4 occur once, and only once, for all paths which satisfy this property. We
know, therefore, that the delays associated with those states are also experienced once for
every process execution that satisfies the property of interest. We can, therefore, re-arrange
the chain as shown in Figure 4.3c, moving the delays to the start of the chain and summing
them to form a single delay.

The probability of reaching complete in the time interval [0, d1 + d4) is then 0 and model
checking is not required in this interval. Instead we may remove the delay as shown in
Figure 4.3d and return a probability of zero for T < (d1 + d4).

Definition 4.2. The once-only state set SO associated with an until path formula P=?[Φ1U
IΦ2]

over the continuous-time Markov chain C = CTMC(S,π,R) is the set

SO={s∈S\SX | P>0[Φ1UΦ2] ∧ P≤0[(¬s∧Φ1)UΦ2] ∧
∀s′ ∈ S . (s |= P>0[Xs′]→ s′ |= P≤0[¬SXUs])}, (4.3)

where the until formula ¬SXUs holds for paths that reach state s without going through any
states from SX (which corresponds to labelling the states from SX with the atomic proposition
‘SX’).

The next theorem asserts that for every state sO from SO, P=?[Φ1U
IΦ2] can be calculated by

applying the probability measure Prπ to the set of paths ω which, in addition to satisfying
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Figure 4.3: Removing delays from once-only states

the clause specified by the CSL semantics (i.e., ∃t∈ I.(∀t′ ∈ [0, t). ω@t′ |= Φ1) ∧ ω@t |= Φ2),
contain sO once and only once before time instant t. Using the unique existential quantifier
∃!, the last clause can be formalised as ∃!i . (ω[i] = sO ∧

∑i
j=1 tj < t), where tj is the time

spent in the j-th state on the path.

Theorem 3. Let SO be the once-only state set associated with the until path formula P=?[Φ1U
IΦ2]

over the continuous-time Markov chain C = CTMC(S,π,R). Then, for any state sO ∈ SO
and interval I⊆R≥0,

P=?[Φ1U
IΦ2] = Prπ{ω∈PathsC |

∃t∈I . (ω@t |=Φ2 ∧ (∀t′∈ [0, t) . ω@t′ |=Φ1) ∧
∃!i . (ω[i] = sO ∧

∑i
j=1 tj < t))}.

(4.4)

Proof. LetA′ denote the subset of PathsC from (4.4). According to CSL semantics, P=?[Φ1U
IΦ2] =

Prπ(A) where

A = {ω∈PathsC |∃t ∈ I . (ω@t |=Φ2 ∧
(∀t′∈ [0, t).ω@t′ |=Φ1))}.
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Since A′ ⊆ A, we have P=?[Φ1U
IΦ2] = Prπ(A) = Prπ(A′) + Prπ(A \ A′), so to prove the

theorem we must show that Prπ(A\A′) = 0. To this end, we partition A\A′ into two disjoint
subsets: A1, comprising the paths that do not contain state sO before time t from the first
line of (4.4), and A2, comprising the paths that contain state sO before time t more than once.
Since P≤0[(¬sO∧Φ1)UΦ2] holds (according to the definition of SO), Prπ(A1) = 0. Similarly,
since ∀s′ ∈ S . (sO |= P>0[Xs′] → s′ |= P≤0[¬SXUsO]) holds, the set of paths satisfying
Φ1U

IΦ2 and containing sO twice (without reaching states in SX) occur with probability
zero. As A2 is included in this set, we necessarily have Prπ(A2) = 0. We conclude that
Prπ(A \A′) = Prπ(A1) + Prπ(A2) = 0, which completes the proof.

OMNI exploits Theorem 3 in two ways. First, since SO states correspond to activities always

executed before Φ1U
IΦ2 becomes true, P=?[Φ1U

IΦ2] = 0 for any interval I ⊆
[
0,
∑

si∈SO
δi

)
,

where δi is the delay (3.5) of the activity i associated with state si. Therefore, OMNI returns
a zero probability in this scenario without performing probabilistic model checking. Second,
because the activities associated with SO states are executed precisely once on relevant
CTMC paths, no modelling of their delays is required, and OMNI only needs to model
the holding times of these states. Importantly, obtaining SO to enable these simplifications
only requires the probabilities of unbounded until and next path formulae (cf. (4.3)), which
probabilistic model checkers can compute efficiently for the reasons we explained earlier in
this section.

Example 4.2. Consider property P1 from the QoS properties (3.2) in our motivating ex-
ample: P=?[F [0,T ]complete]. In line with definition (4.3), we obtain the set SO for this
property by first evaluating the following CSL formulae for the high-level CTMC from Fig-
ure 3.2:

• P>0[true Ucomplete] which holds as P=?[F complete]=1

• P≤0[(¬s ∧ true) Ucomplete]=P≤0[¬sUcomplete], which holds only for states s1 and s6.

The constraint ∀s′∈S.(s |=P>0[Xs′]→ s′ |=P≤0[¬SXUs]) is then checked only for the SO-
candidate states s = s1 and s = s6, taking into account the fact that SX = ∅ (cf. Example 4.1).
For instance, since s1 |= P>0[Xs′] only for s′ ∈ {s2, s3}, and s2, s3 |= P≤0[true U s1], we
conclude that s1 ∈ SO. Similarly, s6 |= P>0[Xs′] only if s′ = s7 and s7 |= P≤0[true U s6],
so s6 ∈ SO, giving SO = {s1, s6}. It is easy to show that the same “once-only” state set is
obtained for the other two properties from (3.2).

4.1.3 Together state sets

Finally, the result in this section supports the calculation and exploitation of the “together”
state sets from (4.1). If we consider once more the CTMC fragment as shown in Figure 4.3a
then we observe that on any path s2 is always followed by s3 and, s3 is always preceded
by state s2. For this sequence of states we may then combine the delays associated with
each activity and reduce the number of delays to be modelled in the system. The result of
combining these delays is shown in Figure 4.4. Comparing this model with the initial CTMC
fragment as refined by OMNI without property-centric refinement (Figure 4.3b) shows that
we have reduced the number of delays which require modelling from 3 to 1.
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Algorithm 2 Generation of “together” state sequences

1: function TogetherSeqs(CTMC(S,π,R), SX, SO)
2: TS ← ∅, States ← S \ (SX ∪ SO)
3: while States 6= ∅ do
4: s← PickAnyElement(States)
5: T ← 〈s〉, States ← States \ {s}
6: left , right ← true
7: while (left ∨ right) ∧ States 6= ∅ do
8: if left then
9: s← Pred(Head(T ),States, S,π,R)

10: if s 6= NIL then
11: T ← 〈s〉_T , States ← States \ {s}
12: else
13: left ← false
14: end if
15: end if
16: if right then
17: s← Succ(Tail(T ),States, S,π,R)
18: if s 6= NIL then
19: T ← T_〈s〉, States ← States \ {s}
20: else
21: right ← false
22: end if
23: end if
24: end while
25: TS ← TS ∪ {T}
26: end while
27: return TS
28: end function

29: function Pred(s,States, S,π,R)
30: if π(s) > 0 then return NIL end if
31: for s′ ∈ States do
32: if R(s′, s)>0 ∧ ∀s′′∈S\{s, s′} .

(R(s′, s′′)=0 ∧ R(s′′, s)=0) then
33: return s′

34: end if
35: end for
36: return NIL
37: end function

38: function Succ(s,States, S,π,R)
39: for s′ ∈ States do
40: if π(s′) = 0 ∧R(s, s′)>0 ∧ ∀s′′∈S\{s, s′} .

(R(s, s′′)=0 ∧ R(s′′, s′)=0) then
41: return s′

42: end if
43: end for
44: return NIL
45: end function
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Figure 4.4: CTMC model showing the combination of delays from together states

The function TogetherSeqs, from Algorithm 2, takes as input the CTMC(S,π,R) and the
state sets SX and SO for the QoS property P=?[Φ1UΦ2], and builds the m state sequences
in successive iterations of its outer while loop (lines 3–26). The set States maintains the
states yet to be allocated to sequences (initially S \ (SX ∪ SO), cf. line 2), and each new
sequence T starts with a single element picked randomly from States (line 4). The inner
while loop in lines 7–24 “grows” this sequence. First, the if statement in lines 8–15 tries to
grow the sequence to the left with a state s that “precedes” the sequence, in the sense that
the only outgoing CTMC transition from s is to the sequence head, and the only way of
reaching the sequence head is through an incoming CTMC transition from s. Analogously,
the if statement in lines 16-23 grows the sequence to the right, by appending to it the state
that “succeeds” the state at the tail of the sequence, if such a “successor” state exists. The
predecessor and successor states of a state s are computed by the functions Pred and Succ,
respectively, where these functions return NIL if the states they attempt to find do not exist.
The inner while loop terminates when the States set becomes empty or the sequence T has
no more predecessors or successors, so the flags left and right are set to false in lines 13
and 21, respectively. On exit from this while loop, the sequence T is added to the set of
sequences TS , which is returned (line 27) after the outer while loop also terminates when
States becomes empty. Termination is guaranteed since at least one element is removed from
States in each iteration of this while loop (in line 5).

To analyse the complexity of TogetherSeqs, we note that the worst case scenario corre-
sponds to SX = SO = ∅ and to the function returning only sequences of length 1, in which
case the outer while loop is executed |S| times with both Pred and Succ invoked once in
each iteration. The if statements from Pred and Succ perform O(|S|) comparisons, and
are executed within for loops with O(|S|) iterations, yielding an O(|S|2) complexity for each
function, and an overall O(|S|3) complexity for the algorithm. Calculation of together states
is therefore practical with modest computing hardware since the number of states in the
high-level CTMC is a small, since a single state is used to represent each task or activity in
the operational process.

Theorem 4. If T = 〈si1, si2, . . . , siNi〉 is one of the sequences returned by TogetherSeqs,
ω a path that satisfies Φ1U

IΦ2 for an interval I ⊆ R≥0, and t ∈ I the earliest time when
ω@t |= Φ2 (with ω@t′ |= Φ1 for all t′ ∈ [0, t)), then up to time t the states from T can only
appear on ω as complete sequences . . . si1ti1si2ti2 . . . siNitiNi . . ..

Proof. The case Ni = 1 is trivial, so we assume Ni>1 in the rest of the proof. We have two
cases: either ω contains no states from T , or it contains at least one state from T . In the
former case, the theorem is proven. In the latter case, consider any state sij that occurs on
ω, 1≤ j ≤Ni. The states si1, si2, . . . , si,j−1 must also occur on ω, in this order and just
before sij , as transitioning through each of these states is the only way to reach sij in the
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Table 4.1: CTMC state partition for the web application properties

Property SX SO S1, S2, . . . , Sm

P1 {s7} {s1, s6} {s2, s4}, {s3, s5}
P2 {s2, s4, s7} {s1, s6} {s3, s5}
P3 {s7} {s1, s6} {s2, s4}, {s3, s5}

CTMC. Moreover, si,j+1, si,j+2, . . . , siNi must immediately follow sij on ω (in this order)
because sij is not an absorbing state and its only outgoing transition is to si,j+1, etc. Hence,
the path is of the form ω=s1t1s2t2 . . . sxtxsi1ti1si2ti2 . . . siNitiNi . . . for some x≥0. To prove
that this occurrence of all states from T on ω is either up to or after time t, we show that it is
not possible to have ω@t=sij for any j < N . Indeed, if we assume ω@t=sij then according
to the hypothesis sij |= Φ2 must hold. As this must be true not only for ω but also for any
other path ω′ that satisfies Φ1UΦ2 and contains the states from T , definition (4.2) implies
that si,j+1, si,j+2, . . . , siNi ∈ SX because ω′ comprises states that satisfy Φ1 followed by state
sij that satisfies Φ2, followed by the si,j+1, si,j+2, . . . , siNi . However, having states from T in
SX is not possible since line 2 of TogetherSeqs removes Sx from the set of states used to
generate T .

Theorem 4 allows OMNI to model the delays of all states in the same “together” set Si,
1 ≤ i ≤ m, as a joint delay

∆i =

Ni∑
j=1

δij , (4.5)

since the relevant part of any path that influences the value of P=?[Φ1U
IΦ2] = 0 contains

either all these states or none of them.

Example 4.3. Consider again the QoS properties (3.2) of the web application from our mo-
tivating example. For property P2, TogetherSeqs is called with SX = {s2, s4, s7} (cf. Ex-
ample 4.1) and SO = {s1, s6} (cf. Example 4.2), so it starts with States = {s1, s2, . . . , s7} \
(SX ∪ SO) = {s3, s5} in line 2. Irrespective of which of s3 and s5 is picked in line 5, the
other state will be added to the same “together” sequence since the two states always follow
one another with no intermediate states. The “together” sets for the other two properties
from (3.2) are given in Table 4.1, which brings together the results from Examples 4.1–4.3.

4.2 Selective refinement

The second OMNI step models the delays and holding times of the relevant activities of
the analysed system according to the rules established in the previous section. These rules
are summarised in Table 4.2, and require methods for joint delay modelling (for activities
associated with “together” CTMC states) and for individual holding time modelling (for
activities not associated with SX states). The two methods are described next.
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Table 4.2: OMNI rules for modelling the delays and holding times of different types of process
activities

SX activities SO activities Si activities, 1 ≤ i ≤ m
delay no modelling needed no modelling needed† joint delay modelling

holding time no modelling needed per activity modelling per activity modelling
†SO activities introduce a deterministic delay

∑
si∈SO

δi

(a) Model of “together” states i1, i2, . . . , iNi in the high-level CTMC
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Figure 4.5: Joint delay modelling for “together” state set Si whose final state siNi has Mi ≥ 1
outgoing transitions

4.2.1 Joint delay modelling

For each “together” set Si = {si1, si2, . . . , siNi}, OMNI extends the CTMC with additional
states and transitions that model the joint delay ∆i from (4.5) by means of an Erlang
distribution as described in section 3.2.2. As shown in Figure 4.5 (c.f. Figure 3.7), this
involves replacing the states from Si with a sequence of delay-modelling states zi1, zi2, . . . ,
ziki that encode an Erlang-ki distribution of rate λEi , followed by states s′i1, s

′
i2, . . . , s

′
iNi

with
transitions matching those from the high-level CTMC but of rates λ′i1, λ′i2, . . . , λ′iN .

Theorem 1 supports the calculation of the delay model parameters for a “together” state set
Si={si1, si2, . . . , siNi} as follows:

1. Approximate the delays δi1, δi2, . . . , δiNi for the activities associated with each state
from Si using (3.5).

2. Compute the joint delay ∆i =
∑Ni

j=1 δij .

3. Choose a small error ε∈(0, 1) and a small probability p (e.g. ε=0.1 and p=0.05), and
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solve (3.7a) for ki;

4. Calculate λEi and λ′i1 to λ′iNi using (3.7b) and (3.7c), respectively.

Example 4.4. Consider the “together” set S1 = {s2, s4} for property P1 from our running
example (cf. Table 4.1). States s2 and s4 correspond to the invocations of the arrivals and
search web services from the travel web application, which according to our experimental
data have delays δ2 = 45ms and δ4 = 209ms, respectively. Therefore, the joint delay is
∆1 = δ2 + δ4 = 254ms. Suppose that we want to model this joint delay with an error bound
ε = 0.1 and a probability p = 0.05. This gives k1 = 259 (cf. Table 3.2) and the other joint
delay modelling parameters are calculated as: λE1 = k1

∆1
= 259

0.254 = 1019s−1, λ′2 = λ2
1−λ2δ2 =

19.88
1−19.88·0.045 = 188.61s−1 and λ′4 = λ4

1−λ4δ4 = 1.85
1−1.85·0.209 = 3.01s−1 (where the rates λ2 and

λ4 are taken from Table 3.1).

The next theorem gives the format of the refined CTMC after joint delay modelling is applied
to all “together” state sets S1 to Sm.

Theorem 5. Applying the OMNI joint delay modelling procedure to the “together” state set
Si of a high-level model CTMC(S,π,R) yields a model CTMC(S′,π′,R′) with:

S′=(S \ Si) ∪ {zi1, zi2, . . . , ziki , s′i1, s′i2, . . . , s′iNi};

π′(s)=


π(s), if s ∈ S \ Si
π(si1), if s = zi1 ;
0, otherwise

R′(s, u)=



R(s, u), if s, u∈S \ Si
R(s, si1), if s∈S \ Si ∧ u=zi1
λEi , if (s, u)∈{(zi1, zi2), . . . ,

(zi,ki−1, ziki), (ziki , s
′
i1)}

λ′ij , if s = s′ij ∧ u = s′i,j+1,

1 ≤ j ≤ Ni − 1
R(siNi ,u)

λiNi
λ′iNi , if s=s′iNi ∧ u∈S \ Si

R(siNi ,si1)

λiNi
λ′iNi , if s=s′iNi ∧ u=zi1

0, otherwise

if s 6= u; and R′(s, s) = −
∑

u∈S′\{s}R′(s, u), where the terms
R(siNi ,u)

λiNi
and

R(siNi ,si1)

λiNi
correspond to the probabilities p1, p2, . . . from Figure 4.5 and are obtained using (2.6).

Proof. The proof is by construction, cf. Figure 4.5.

4.2.2 Holding-time modelling

As indicated in Table 4.2, we model the holding times of process activities associated with
high-level CTMC states from SO ∪ S1 ∪ S2 . . . ∪ Sm individually. For each such activity, we
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Figure 4.6: Actual (continuous lines) property values versus property values predicted
(dashed lines) using the OMNI-refined CTMC model; error0 and errorI represent the er-
ror (3.4) for the high-level CTMC and the refined CTMC, respectively.

synthesise a phase-type distribution PHD(π0,D0) that models the holding times (3.6), and
we replace the relevant state s′ of the model CTMC(S′,π′,R′) obtained after the OMNI joint
delay modelling with this PHD. For operations corresponding to states sO ∈ SO the replaced
state is s′ = sO, while for operations corresponding to a state sij ∈ Si, 1 ≤ i ≤ m, 1 ≤ j ≤
Ni, the replaced state is the state s′ = s′ij obtained after the joint delay modelling of Si
(cf. Figure 4.5b).

Example 4.5. We used our OMNI refinement tool (Section 5.1) to perform the CTMC
state classification and selective refinement steps of our approach on the high-level CTMC
from the motivating example. Algorithm 1 was executed for each activity associated with a
CTMC state from the SO or the S1 to Sm state sets in Table 4.1, with α=0.1 and with the
configuration parameters MinC = 2, MaxC = 30, MaxP = 300, MaxSteps = 3 and FittingAlg
an expectation-maximisation PHD fitting algorithm that produces hyper-Erlang distributions.
We obtained refined CTMCs comprising 730 states and 761 transitions for property P1, 367
states and 387 transitions for property P2, and 730 states and 761 transitions for property
P3. Each of the models produced are therefore considerably smaller than the 1766 state
model derived without property-centric refinement. Figure 4.6 compares the actual values of
properties P1–P3 with the values predicted by the analysis of these refined CTMCs.

4.3 Related work

Whilst there has been major advances in model checking over recent years [55] one problem
that remains is that of a “State space explosion” [90] where the number of states required
to represent complex real-world systems results in models which are too large for modern
model checking engines.

This challenge has long been an area of research with Clarke and Emerson using synchroniza-
tion skeletons [24, 91] as an abstraction of concurrent programs. In such models, any detail
irrelevant to the synchronization is suppressed and the complexity of temporal logic model
checking reduced [92]. This method of deriving models requires a deep understanding of
the system under investigation however. To tackle this Counterexample-Guided Abstraction
Refinement (CEGAR) [93],[90] was proposed and abstraction was describes as the “most
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important technique for handling this (state explosion) problem”. In [94] a probabilistic
version of CEGAR was developed in which the authors stated that the major challenge
associated with extending CEGAR to probabilistic systems was the notion and analysis of
counterexamples. CEGAR uses an “upper approximation” of the original system such that
when a specification is true in the abstract model it is also true in the concrete design.
Failure to meet specification may, however, be due to artefacts in the abstraction and so the
abstraction is refined until the behaviour is eliminated. State explosion is reduced by only
refining those states in the counterexample trace.

Whilst OMNI uses the concept of abstraction refinement the approach used is quite different
from that proposed in earlier works. OMNI makes use of the high-level CTMC to reason
about the temporal characteristics of activities . The refinement then introduces new states
to the CTMC that did not exist in the original model. These new states do not change model
structure but instead increase the accuracy of the temporal modelling in line with observed
traces.

A second method for controlling the state space explosion problem is to use compositional
verification techniques [95] which are applicable to component based systems such as those
considered by OMNI. Assume-Guarantee reasoning is one such approach and was first ad-
vocated in the context of temporal logic by Pnuelli [96] and has since been shown to be
effective in extending the applicability of formal verification to large component based sys-
tems [97],[98],[99],[100],[101]. Compositional verification techniques analyse system com-
ponents independently and derive global system properties through a composition of the
component-level properties and proof rules. The construction of abstract models for analysis
in OMNI is different. The model which represents the structure of the process is defined
with only one state per activity. Activities are therefore decoupled as part of the modelling
process and the effect of one activity on another not need to be reasoned about in the analysis
phase.

Recent work by Ashok et al. [102] proposed a method for speeding up reachability analysis for
continuous-time Markov Decision processes that, like OMNI, only explores a partial model.
The approach involves adding states to the system for analysis until the change in the
reachability property is small enough that the process terminates. Unlike OMNI however
the analysis starts with a subset of states from the complete CTMC model and through
simulation adds states where increased precision is required. OMNI by contrast starts with
a structural model of interconnected activities whose temporal characteristics are described
by observation data. The refinement process then replaces states in the model with more
complex phase-type distribution models. In addition OMNI does not rely on simulation
techniques to explore the high-level CTMC but instead uses probabilistic model checking.



Chapter 5

Evaluation of the OMNI Approach

5.1 OMNI refinement tool

We implemented OMNI as a Java tool that takes as input a high-level CTMC model. This
model is specified in a variant of the PRISM modelling language [8] where state transition
commands are expressed using components labels. For example, the PRISM command

s=1 → p1∗λ1 : (s′=2) + (1−p1)∗λ1 : (s′=3);

that defines the outgoing transitions for state s1 of our high-level CTMC model from Fig-
ure 3.2 is replaced by

s=〈location〉 → p1 : (s′=〈arrival〉) + (1−p1) : (s′=〈departures〉);

in the OMNI variant of the modelling language. This indicates that the CTMC transitions
from the state associated with the location web service to either the state associated with
the arrival web service (with probability p1) or to the state associated with the departures
web service (with probability 1−p1). An XML configuration file is then used to map each of
these web service labels to a file of comma-separated values containing the observed execution
times for the relevant web service. In addition, this configuration file allows the user to define
the OMNI refinement parameters (i.e. ki from Theorem 1, and α, MinC , MaxC , MaxP and
MaxSteps from Algorithm 1). The FittingAlg parameter is fixed in the current version of the
tool, so that OMNI uses the expectation-maximisation PHD fitting algorithm mentioned in
Example 3.4.

When multiple QoS properties (for the same high-level CTMC) are provided to the OMNI
tool, we avoid the overheads associated with the repeated execution of the modelling tasks
from Table 4.2 for the same process activities by maintaining a cache of all completed tasks
and their results. As such, each of these tasks is executed at most once per process activity,
and its cached result is used when needed instead of repeating the task. By comparison,
refining the whole CTMC indiscriminately for even a single QoS property would require the
execution of these modelling tasks for every process activity.

68
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Finally, to support the scenario where the delays (3.5) are negligible compared to the holding
times (3.6), the configuration file allows the specification of a delay threshold, and activities
with delays below this threshold are not included in the joint delay modelling step of the
OMNI refinement. We found experimentally that this leads to significant reductions in the
size of the refined CTMC with no impact on the accuracy of the QoS analysis.

Our OMNI tool uses the HyperStar PHD fitting tool from [83] for the CBFitting function
from Algorithm 2, and produces the refined CTMCs as standard PRISM models. The OMNI
tool is freely available from our project webpage https://www.cs.york.ac.uk/tasp/OMNI/,
together with detailed instructions and all the models and datasets from this evaluation.

5.2 Evaluation

We evaluated OMNI by performing a set of experiments aimed at answering the following
research questions.

RQ1 (Accuracy/No overfitting): How effective are OMNI models at predicting QoS
property values for other system runs than the one used to collect the execution-time obser-
vation datasets for the refinement?

RQ2 (Refinement granularity): What is the effect of varying the OMNI refinement
granularity on the refined model accuracy, size and verification time?

RQ3 (Training dataset size): What is the effect of the training dataset size on the refined
model accuracy?

RQ4 (Component classification): What is the benefit of using an activity classification
step within OMNI?

To assess the generality of OMNI, we carried out our experiments within two case studies
that used real systems and datasets from different application domains. The first case study
is based on the travel web application presented as a motivating example in Section 3.1. In
the second case study, we applied OMNI to an IT support system. This system is introduced
in Section 5.2.1, followed by descriptions of the experiments carried out to address the four
research questions in Sections 5.2.2–5.2.5.

5.2.1 IT support system

The real-world IT support system we used to evaluate OMNI is deployed at the Federal
Institute of Education, Science and Technology of Rio Grande de Norte (IFRN), Brazil. The
system enables the IFRN IT support team to handle user tickets reporting problems with
the institute’s computing systems. As part of our collaboration with IFRN researchers [2],
system logs covering the handling of 1410 user tickets were collected from this IT support
system over a period of six months between September 2016 and February 2017.

A high-level abstract CTMC model of the business process implemented by the IT system

https://www.cs.york.ac.uk/tasp/OMNI/
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Figure 5.1: High-level CTMC model of IT support system

is shown in Figure 5.1. In this model, state s0 corresponds to a ticket being created by a
“client” and awaiting allocation to a member of the support team. Once allocated, the ticket
is processed (state s1) and, if the issue can be resolved, the client is informed and the ticket
awaits sign off (s2) before being marked as complete (s6). The client may choose to reopen
(s5) the ticket rather than close it, in which case the ticket is returned to the support team
member for further processing. Whilst processing a ticket, the support staff may require
additional information from the client (s3) or may need to reallocate the ticket to another
member of the IT support team (s4). A ticket may also be abandoned (s7) either during
processing or whilst awaiting additional information from the client.

We used our OMNI tool to refine the high-level CTMC from Figure 5.1 in order to support
the verification of the response time of the IT support system through the analysis of two
properties:

P1 P=?[F [0,T ]complete]

P2 P=?[(¬reopen & ¬addInfo) U [0,T ]complete]
(5.1)

where P1 specifies the probability of a ticket reaching the complete state within T (working)
hours, and P2 represents the probability of ticket handling being completed within T working
hours without further input from the client who raised the ticket and without the ticket being
reopened.

We used only half of the six-month logs (covering 705 tickets created over the first approx-
imately three months) for the OMNI refinement, so that we could use the other half of the
logs to answer research question RQ1 (cf. Section 5.2.2.2). For each ticket, the time spent
in a particular state was derived from the log entries, taking into account only the working
hours for the IT support team.1 Assuming exponentially distributed execution times for
the components of the IT support process, we used (3.1) to calculate the component exe-
cution rates shown in Table 5.1. Finally, we used the logs to calculate the frequencies of
state transitions, and thus to estimate the CTMC state transition probabilities as shown in
Table 5.2.

1The working hours for the period covered by the logs were identified through consultation with the IFRN
owner of the IT support process.
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Table 5.1: Execution rates for the IT support system

Component Rate (hours−1)

allocate λ0 = 0.08248
process λ1 = 0.09799
signOff λ2 = 0.01167
addInfo λ3 = 0.02006
reallocate λ4 = 0.02839
reopen λ5 = 0.09988

Table 5.2: Transition probabilities for the IT support system

CTMC states Transitions Transitions Estimate transition
si sj from si to sj leaving si probability si → sj
s1 s2 533 705 p12 =533/705=0.76
s1 s3 24 705 p13 =24/705=0.03
s1 s4 34 705 p14 =34/705=0.05
s1 s6 114 705 p16 =114/705=0.16
s2 s6 501 533 p25 =501/533=0.94
s2 s5 32 533 p26 =32/533=0.06
s3 s1 16 24 p31 =16/24=0.67
s3 s7 8 24 p37 =8/24=0.33

Figure 5.2 compares the actual values of properties P1 and P2 from (5.1) – computed based
on the system logs – with the values predicted by the analyses of: (a) the high-level CTMC
from Figure 5.1 (with the parameters given in Tables 5.1 and 5.2); and (b) OMNI-refined
CTMC models for the two properties. The refined CTMCs were obtained using the same
OMNI parameters as in Example 3.4, except α = 0.2 and a delay threshold of 0.01 hours.2

As explained in Section 5.1, this threshold meant that components with a delay (3.5) below
0.01 hours (which amounted to all component of the IT support system) were not included
in the joint delay modelling of OMNI.

Having introduced the system used in our second case study, we will use the next sections
to describe the experiments carried out to answer our four research questions.

5.2.2 RQ1 (Accuracy/No overfitting)

The generation of OMNI-refined CTMC models requires the processing of finite datasets
produced by the components of the analysed system, in order to extract key model features.
To be useful, these CTMCs should accurately predict the values of the system properties for
other system runs, i.e. should not be overfitted to the datasets used to generate them.

2The threshold value was chosen to be approximately three orders of magnitude smaller than the smallest
mean execution time of a system component, i.e. 1/λ5 = 10.012 hours for the IT support system (cf. Table 5.1).
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Figure 5.2: Actual values of the IT support system properties versus property values pre-
dicted using the high-level and the refined CTMC models, over 100 working hours from ticket
creation; the prediction error (3.4) for the refined CTMCs (i.e. errorI) is 94.7% smaller (for
property P1) and 97% smaller (for property P2) than the corresponding prediction errors
for the high-level CTMC (i.e. error0).

(a) (b)

Figure 5.3: Prediction error for the web application properties, for training and testing
datasets from different runs

5.2.2.1 Travel web application

To assess whether the OMNI web application models accurately predict the value of system
properties without overfitting, we obtained three additional datasets (labelled ‘Data Set 2’,
‘Data Set 3’ and ’Data Set 4’) for the travel web application. Each new dataset corresponds
to a four-hour run, with all datasets (including the original dataset, ‘Data Set 1’) captured
over a period of two days. Figure 5.3 (a) shows the difference between the property values
predicted by the CTMC analysis and the actual property values taken from each of the four
datasets. Results are shown for the initial CTMC from Figure 3.2 (labelled ‘Exponential’
in the diagrams) and the refined models obtained using ‘Data Set 1’ (labelled ‘Omni’ in the
diagrams). In all cases, the OMNI-refined CTMCs significantly improve the accuracy of the
analysis when compared to the traditional CTMC analysis approach.

To ensure that the reduction in error was not due to a favourable partition of the dataset,
a further set of experiments was carried out. All four available datasets were combined
into a single dataset from which four new disjoint subsets were created by random sampling
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without replacement. One of the resulting datasets was designated the training set and used
to create a high level CTMC and OMNI-refined CTMCs for each property. These models
were then tested against the remaining datasets to calculate the cumulative error (3.4) for
each property. The process was repeated 30 times, and the results - presented as box plots in
Figure 5.3(b) - show that the refined CTMCs always improved the accuracy of the predictions
by a wide margin.

5.2.2.2 IT support system

For the IT support system, OMNI-refined CTMCs for the two properties were produced
from half of the available system logs (‘Data Set 1’) as described in Section 5.2.1. We
then assessed the accuracy of the predictions obtained using these refined CTMCs against
the actual property values extracted from the training set (‘Data Set 1’) and from the test
dataset (‘Data Set 2’) produced from the second half of the system logs. Figure 5.4(a) shows
the error when the predicted values are compared to actual values for the two datasets. For
both datasets, the OMNI-refined CTMCs produce results which significantly outperform the
results obtained by analysing the high-level CTMC.

As for the first case study, we performed additional experiments to confirm that the positive
results from Figure 5.4(a) were not due to a favourable partition of the available observations.
To this end, we combined the two datasets and randomly partitioned them into new training
and test datasets of equal size. A high-level CTMC and OMNI refined CTMCs were then
created using the new training dataset, and all models were used to predict the values of the
two properties for the test dataset. This experiment was repeated 30 times and each time
the cumulative errors in the predictions were calculated for each property. The box plots
in Figure 5.4(b) summarise these experimental results, confirming the improved accuracy of
the OMNI-refined CTMCs.

5.2.2.3 Discussion

The experiments described in the previous sections show that OMNI consistently outper-
formed the traditional CTMC modelling and analysis approach in both case studies, irre-
spective of the choice of training set. This confirms that OMNI models can effectively predict
QoS property values for other system runs than the one used to collect the training datasets
employed in the refinement.

Our experiments also showed that the error profiles from Figures 5.3 and 5.4 capture several
general features for the type of QoS analysis improved by OMNI:

1. The initial peak in the ‘Exponential’ prediction error for properties P1 and P2 from
Figure 5.3 is characteristic of the inability of exponential distributions to model delays,
as also explained in Section 3.2.2. OMNI does not suffer from this limitation. Note that
this modelling error does not affect properties P1 and P2 from Figure 5.4 because the
delays for the IT support system are insignificant compared to the holding times.

2. The second peak in the ‘Exponential’ prediction error for properties P1 and P2 from
Figure 5.3, and the first peak for properties P1 and P2 from Figure 5.4 are representa-
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Figure 5.4: Prediction error for the IT support system properties, for training and testing
datasets from different three-month time periods

tive of the inability of exponential distributions to model long tails (due to operations
occasionally having much longer execution times than their typical execution times). As
such, the estimated rates of the exponential distributions are too low, and the predictions
are overly conservative. These error peaks are particularly high (above 0.3) for the IT
support system, as IT support personnel occasionally required very long times to address
a user request. Again, OMNI yields much smaller prediction errors around these peaks.

3. The multiple peaks in the ‘Exponential’ prediction error for property P3 from Figure 5.3
is characteristic of derived properties, i.e., properties defined using multiple “primitive”
properties (in this case, P3 represents profit, and is defined as the difference between
revenue and penalties). The multiple peaks are due to the prediction errors for the
primitive properties peaking at different time moments. As before, OMNI significantly
dampens these peaks.

5.2.3 RQ2 (Refinement granularity)

To evaluate the effects of refinement granularity we constructed a set of OMNI models by
varying:

1) ki, the number of states in the Erlang delay models from the joint delay modelling of
OMNI (cf. Theorem 5);

2) α, the PHD model fitting threshold used in the holding time modelling of OMNI (cf. Al-
gorithm 1).

Larger values of ki are associated with increased accuracy in the modelling of delays, whilst
reducing α corresponds to finer-grained refinement in the PHD modelling.



CHAPTER 5. EVALUATION OF THE OMNI APPROACH 75

Table 5.3: Effects of the OMNI refinement granularity on web application model

P1 P2 P3

ki α #states Error TV (s) #states Error TV (s) #states Error TV (s)

Initial CTMC 7 0.325 1.9 7 0.402 1.9 7 0.377 1.9

10 0.2 82 0.085 3.9 45 0.126 3.5 82 0.094 5.0
100 0.2 262 0.049 5.6 135 0.066 4.3 262 0.077 7.7
259 0.2 580 0.045 8.8 294 0.060 5.8 580 0.074 12.6

10 0.1 232 0.078 6 118 0.112 4.3 232 0.083 8.1
100 0.1 412 0.043 7.8 208 0.049 5.1 412 0.063 11.0
259 0.1 730 0.038 11.4 367 0.042 6.8 730 0.059 16.5

10 0.05 618 0.075 13.8 376 0.106 7.9 618 0.081 19.6
100 0.05 798 0.041 16.0 466 0.044 8.8 798 0.061 22.7
259 0.05 1116 0.036 20.6 625 0.036 10.8 1116 0.057 29.4

5.2.3.1 Travel web application

The experimental results from the web application case study are presented in Table 5.3.
As ki is increased from 10 to 100 and from 100 to 259, the error is reduced.3 However, this
improvement shows diminishing returns for all properties as ki becomes large. The same
pattern occurs as α is decreased, with smaller errors for smaller α values but only a marginal
reduction in error as α is reduced from 0.1 to 0.05.

Since ki controls the number of states associated with delays, increasing ki also increases
the total number of states associated with the model. The model size also increases as α is
decreased.

Finally, the experimental results confirm that the models for property P2 are consistently
much smaller than for P1 and P3 since more states from the initial CTMC are in the “exclude
from refinement” set SX when evaluating P2 than when evaluating the other properties (cf.
Table 4.1). TV is the total time for PRISM to verify each property in the interval [0, Tmax]
with a time step of 0.05s and includes the time taken for model construction. All experiments
presented here were carried out on a MacBook Pro with 2.9 GHz Intel i5 processor and
16Gb of memory. As the model increases in size, and accuracy improves, the time taken for
verification also increases, up to 29.4s for the finest-grained model used to evaluate property
P3 across the entire interval [0, Tmax].

5.2.3.2 IT support system

When OMNI is applied to the IT support system, the delay threshold of 0.01 hours chosen
as explained in Section 5.2.1 means that the delay modelling was omitted (i.e. delays were
approximated to zero). As such, we were not interested in varying ki in this case study, and
Table 5.4 only shows the effects of decreasing α on the refined models. Like in the first case
study, decreasing α gradually reduces the prediction error, with a significant error reduction
obtained even for the largest α from our experiments (e.g. an over tenfold reduction from 26.3

3These ki values are taken from Table 3.2 on page 48.
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Table 5.4: Effects of the OMNI refinement granularity on the IT support system model

P1 P2

α #states Error TV (s) #states Error TV (s)

Initial
CTMC 8 26.3 3.0 8 26.5 3.0

0.6 44 2.45 42.8 41 2.11 41.7
0.4 61 2.24 48.2 51 1.74 44.4
0.2 202 1.39 95.8 174 0.95 84.4
0.1 329 1.27 139.6 259 0.87 110.6

0.05 722 1.01 274.6 346 0.84 139.8

for the initial, high-level CTMC and property P1 to just 2.45 for the coarsest-granularity
CTMC generated for α = 0.6). Diminishing returns in terms of error reduction are achieved
for property P2; for P1, this trend is not clearly distinguishable for the tested α values.

As expected, the model size grows as α is decreased, leading to a corresponding increase in
the verification time TV . TV includes the time for the construction of the model and for
PRISM to analyse the property in the interval [0, 100h] with a time step of one hour (i.e. 100
verification sessions). The largest verification time is 274.6s for the finest-granularity CTMC
obtained for property P1, which is entirely acceptable for an offline verification task.

During the activity classification step of OMNI, the exclusion sets for the two properties are
calculated as SX = {s6, s7} for P1 and SX = {s3, s5, s6, s7} for P2. Therefore, the models
associated with P2 are consistently smaller than those associated with P1, whose exclusion
set SX contains only two states.

5.2.3.3 Discussion

For both case studies and all considered QoS properties, considerable improvements in model
accuracy are obtained even with small, coarse-grained OMNI models. As such, OMNI can
offer significant improvements in accuracy over traditional CTMC modelling techniques even
when computational resources are at a premium. Additional, but typically diminishing, gains
in prediction accuracy are obtained through increasing the granularity of the refinement.
Expectedly, this leads to a corresponding increase in verification time. For our two systems,
this time did not exceed 10 minutes (and was typically much smaller) for all considered
properties and model granularities – an acceptable overhead for the offline verification task
performed by OMNI. The selection of values for k can be made with respect to the maximum
error one is willing to accept in delay modelling, as shown in Section 3.2.2. Selecting a
value for α, which produces an acceptable trade off between model accuracy and time to
compute, may be more difficult and our case studies have shown that acceptable values
vary by application domain. The development of a heuristic for the selection of α, from the
observed data and high level CTMC structure, presents an area for further work.
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Table 5.5: Web application – training dataset size effect on prediction accuracy, shown as
average error and standard deviation over 30 runs

Dataset† P1 Error P2 Error P3 Error

100%†† 0.038 sd N/A∗ 0.042 sd N/A∗ 0.059 sd N/A∗

80% 0.038 sd 0.006 0.043 sd 0.005 0.058 sd 0.023
60% 0.046 sd 0.013 0.048 sd 0.014 0.078 sd 0.041
40% 0.057 sd 0.017 0.063 sd 0.022 0.105 sd 0.054
20% 0.083 sd 0.032 0.076 sd 0.026 0.156 sd 0.075

Initial CTMC 0.325 sd N/A∗ 0.402 sd N/A∗ 0.377 sd N/A∗

†Percentage of complete 270-element training dataset
††Single run using entire data set
∗Single run, so no standard deviation

5.2.4 RQ3 (Training dataset size)

In both case studies, we ran a set of experiments to evaluate the effect of reducing the training
dataset size on the accuracy of OMNI models. For each experiment, training subsets were
constructed by randomly selecting a percentage of all available datasets used to answer the
previous research questions. The sizes of these selected subsets were 80%, 60%, 40% and
20% of the complete training dataset from Sections 5.2.2.1 and 5.2.2.2. For each system
and each of its analysed QoS properties, the experiments were repeated 30 times, with the
property errors recorded.

5.2.4.1 Travel web application

Table 5.5 shows the mean error and standard deviation (labelled ‘sd’) for the web application
case study with ki = 259 and α = 0.1. As the training dataset size decreases, the error and
standard deviation associated with each property show an increasing trend. However, we
note that at 80% the prediction errors show little difference to the 100% figures – the mean
errors at 100% are very close to the 80% errors, and well within one standard deviation of
the 80% mean. This suggests that 80% of the complete dataset is sufficient to capture the
characteristics of the underlying component distributions for this case study.

5.2.4.2 IT support system

For the IT support system, the experimental results are provided in Table 5.6. As for the
other case study, we observe that reducing the size of the training sets leads to a trend
where the prediction error and the standard deviation increases. This also happens when
the size of the training dataset is reduced from 100% to 80%, suggesting that additional
slight improvements may be possible by further increasing the size of the initial training
dataset.
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Table 5.6: IT support system – training dataset size effect on prediction accuracy, shown as
average error and standard deviation over 30 runs

Dataset† P1 Error P2 Error

100%†† 1.39 sd N/A∗ 0.95 sd N/A∗

80% 1.53 sd 0.774 1.35 sd 0.570
60% 1.57 sd 0.942 1.55 sd 0.797
40% 2.37 sd 1.450 2.19 sd 1.396
20% 3.70 sd 2.825 3.81 sd 3.039

Initial CTMC 26.31 sd N/A∗ 26.46 sd N/A∗

†Percentage of complete 705-element training dataset
††Single run using entire data set
∗Single run, so no standard deviation

5.2.4.3 Discussion

For both case studies we note that even modest training dataset sizes show a significant
improvement over the traditional approach to CTMC-based analysis of QoS properties. For
the web application, a training set consisting of 20% of the original dataset equates to only
54 request handling observations, and reduces the mean estimation error by between 50–81%
for the properties of interest. For the IT system, 20% of the original training dataset equates
to 141 tickets processed, with the processing of only five tickets using the addInfo component
of the system, yet the prediction errors for P1 and P2 are both reduced by approximately
86%.

5.2.5 RQ4 (Property-centric refinement)

We evaluated the effects of extending the CTMC-refinement method from Chapter 3 with
the property-centric refinement step described in Chapter 4. To this end, we performed
experiments to compare the model size, verification time and accuracy of the refined CTMCs
generated by the complete OMNI method described and refined CTMCs which did not use
property-centric refinement. A version of the OMNI tool which excluded property-centric
refinement was developed and presented in [3] and is used here for comparison with the
newer, complete OMNI solution.

5.2.5.1 Travel web application

For the web application, refined CTMCs were built using first OMNI method from Chapter 3
and then the complete OMNI method which considers the property to be refined, initially
with parameters ki = 259 and α = 0.1. The first two rows from Table 5.7 summarise
these experimental results, which show that the use of property-centric refinement yields
significant reductions in the number of model states and the verification time for all three
properties compared to the method without this step. As expected given the CTMC state
partition from Table 4.1 and OMNI rules from Table 4.2, the largest reductions are achieved
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for property P2 (79% fewer model states, and 71% shorter verification time). For properties
P1 and P3, the use of property-centric refinement led to a reduction in model size of over
58%, and to reductions in verification time of 54% and 57%, respectively.

The prediction errors are very close for both OMNI variants, and considerably smaller than
the errors for the high-level CTMC (provided in the last row of Table 5.7 for convenience).
However, the errors are negligibly larger when property-centric refinement is used. This is
due to the use of fewer states for OMNI’s joint delay modelling compared to the separate
modelling of component delays in [3]. As shown in Table 5.3, additional reductions in
prediction error may be achieved by increasing ki or reducing α if required. For example, by
setting α = 0.05, the refined models still have much fewer states than the preliminary OMNI
model, show an improvement in verification time of between 17–54%, and are more accurate.
The third row of Table 5.7 shows again these experimental results for ease of comparison.

5.2.5.2 IT support system

For the second case study, the experimental results are presented in Table 5.8. Whilst our
fully fledged OMNI allows for component delays to be omitted from the refinement when
they are below a delay threshold (cf. Section 5.1), this was not possible in the initial OMNI
tool presented in [3]. Therefore, to ensure a fair comparison, we used a small ki value
(ki = 10) when generating refined CTMCs with the preliminary OMNI variant. As shown
by the experimental results, using the fully fledged OMNI yields smaller refined models that
take significantly less time to verify for both of the IT system properties. Furthermore, these
smaller refined models achieve the same prediction accuracy as the larger models generated
by the preliminary OMNI.

5.2.5.3 Discussion

The property-centric refinement step which the OMNI method employs in its model con-
struction uses the high-level CTMC model only and the time taken for its execution is very
small. For the web application, the time taken to classify the high-level CTMC states for all
three properties was 2.3s, and for the IT support system this step took only 1.8s.

For both case studies presented we have shown that for all the properties considered it was
possible to generate OMNI models which are smaller, faster to verify and no less accurate
than those produced when property-centric refinement is omitted. The amount of verification
time saved depends on the number of states for which delays can be combined, and on the
number of states which can be excluded from refinement – but these savings were considerable
in all our experiments with the two real-world systems.
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Table 5.7: Web application – comparison of OMNI with and without property centric refine-
ment

P1 P2 P3

Model # Error TV (s) # Error TV (s) # Error TV (s)

OMNI no classification
(α = 0.1, ki = 259)

1766 0.037 24.95 1766 0.039 23.79 1766 0.063 38.21

OMNI (α = 0.1, ki =
259)

730 0.038 11.40 367 0.042 6.80 730 0.059 16.5

OMNI (α = 0.05, ki =
259)

1116 0.036 20.6 625 0.036 10.8 1116 0.057 29.4

High-level CTMC 7 0.325 2.53 7 0.402 2.50 7 0.377 2.47

Table 5.8: IT support system – comparison of OMNI with the preliminary CTMC refinement
approach from [3]

P1 P2

Model #states Error TV (s) #states Error TV (s)

Preliminary OMNI (α = 0.2,
ki = 10)

265 1.39 261.5 265 0.95 239.6

OMNI (α = 0.2) 202 1.39 95.8 174 0.95 84.4

High level CTMC 8 26.3 3.0 8 26.5 3.0

5.3 Threats to validity

5.3.1 External validity

External validity threats may arise if the stochastic characteristics of the systems from our
case studies are not indicative of the characteristics of other systems. To mitigate this threat,
we used two significantly different systems from different domains for the OMNI evaluation.
The section labelled ‘System’ from Table 5.9 summarises the multiple characteristics that
differ between these systems.

In addition, the datasets used in the two case studies present different characteristics, as
shown in the ‘Datasets’ section from Table 5.9. In particular, the datasets for the service-
based system were obtained from real web services, while for the IT support system they were
taken from the actual system logs. This gives us confidence that the stochastic characteristics
of the two systems (including regions of zero density, multi-modal response times, and long
tails) are representative for many real-world systems.

The next section from Table 5.9 summarises the different types of QoS properties analysed
in our case studies. The transient fragment of continuous stochastic logic (whose analysis
accuracy is improved by OMNI supports, cf. Section 2.2.2.3) supports the specification of
multiple classes of QoS properties of interest, including success probability, profit/cost and
response time, and our case studies considered examples of all of these.
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Figure 5.5: Refined CTMC states, transitions and verification time for property P1 at a
single time point, for system sizes up to 16 times larger than the web application

Finally, as shown in the ‘Purpose of QoS analysis’ section from Table 5.9, the first case study
applied OMNI during the design stage of the development process, whereas the second case
study assessed OMNI by verifying QoS properties of an existing system.

Another external threat may arise if the OMNI-refined CTMC models were too large to
be verified within a reasonable amount of time. The OMNI approach mitigates this threat
by allowing for the refinement to be carried out at different levels of granularity, and our
experiments indicate that significant improvements in prediction accuracy is achievable with
modest enlargement of the models.

Our two case studies are based on real systems, but these systems have a relatively small
number of modelled activities. For the large IT system from the second case study, the small
number of modelled activities is due to model abstraction such that the model only includes
activities that influence the analysed QoS properties.

For systems with larger numbers of modelled activities, we note that the increase in model
size due to the OMNI refinement is only linear in the number of activities to be modelled.
Moreover, as OMNI uses acyclic PHDs, the number of transitions also increases linearly.
Modern model checkers can handle CTMCs with a large number of states and as such we
expect OMNI to scale well with much larger systems. We confirmed these hypotheses by
constructing models with 12, 24, 48 and 96 activities by combining 2, 4, 8 and 16 instances of
our web application CTMC from Figure 3.2.4 OMNI was then used to refine the composite
models with ki = 259 and α = 0.1. For each refined CTMC, we measured the number of
states, the number of transitions, and the time taken to verify property P1 of the travel
web application at the single time point T =20s (since P2 and P3 can not be meaningfully
extrapolated to these larger systems). The results of these experiments, shown in Figure 5.5,
confirm the predicted linear increase in the verification overhead with the system size.

5.3.2 Construct validity

Construct validity threats may be due to the assumptions made when collecting the datasets
or when defining the QoS properties for our model refinement experiments. To address the
first threat, we collected the datasets from a real IT support system and from a prototype
web application that we implemented using standard Java technologies and six real web

4We did not perform similar experiments for the IT support system as they would not have been qualita-
tively different.
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services from three different providers. For the first system, the datasets were collected over
a period of six months, and for the second system they were collected on two different days,
at different times of day. Furthermore, we used different datasets for training and testing.
To mitigate the second threat, we analysed three performance and cost properties of web
application, and two typical performance properties of the IT system.

5.3.3 Internal validity

Internal validity threats can originate from the stochastic nature of the two analysed systems
or from bias in our interpretation of the experimental results. We addressed these threats by
providing formal proofs for our CTMC refinement method, by reporting results from multiple
independent experiments performed for different values of the OMNI parameters, and by
analysing several QoS properties at multiple levels of refinement granularity. Additionally,
we made the experimental data and results publicly available on our project webpage in
order to enable the replication of our results.
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Table 5.9: Characteristics of the case studies used to evaluate OMNI

Characteristic Case study 1 Case study 2

System

Type of system Prototype service-based system developed
by the OMNI team

Production IT support system developed
by, running at, and managed by university
in Brazil

System components Mix of six high-performance (commercial)
and budget (free) third-party web services
invoked remotely over the Internet

Proprietary software components deployed
on university computing infrastructure,
and supporting human tasks with high
variance in temporal characteristics

Size of system 3188 lines of code 1276131 lines of code

Component
execution times

Tens to hundreds of milliseconds Minutes to hours

Operational profile Assumed values for the probabilities of the
different types of requests

Probabilities of different operation out-
comes extracted from the real system logs

Datasets

Dataset source Obtained from invocations of real web ser-
vices

Taken from actual system logs

Key dataset features Significant delays (compared to holding
times) due to network latency

Long tails and outliers due to a small num-
ber of complex user tickets; multi-modal
response times and regions of zero density
due to different experience levels of IT sup-
port personnel; negligible delays

Analysed QoS properties

Types of properties Overall success probability (P1) Overall response time (P1)
Success probability for “day-trip” requests
(P2)

Response time for “straightforward” user
tickets (P2)

Profit = revenue − penalties (P3)

Purpose of QoS analysis

Supported stage of Design of new system Verification of existing system
development process
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Chapter 6

Observation-Enhanced DTMC
Verification

Quantitative verification of discrete time systems allows for mathematically provable guaran-
tees of operational correctness. The development of tools such as PRISM [8] and MRMC [9]
has led to the adoption of these techniques in a range of applications [103]. The usefulness
of such techniques is, however, limited by the accuracy of the discrete time Markov models
on which the analysis depends. Whilst states and transitions within these model may easily
be identified (e.g. from process diagrams or systems analysis techniques), obtaining accurate
values for model parameters is often difficult and, where parameter inaccuracies exist, the
analysis of such models may be misleading.

When considering model parameters we may classify the uncertainty associated with them
into two major categories [104]: Epistemic uncertainty arises from a lack of knowledge
of system components or the environment in which the system operates. This type of un-
certainty may be reduced as our knowledge of the system under consideration increases.
Eliminating such uncertainty may, however, be impracticable. Aleatory uncertainty is as-
sociated with the inherent stochastic nature of a system, process, or environment, under
consideration. This category of uncertainty cannot be reduced.

In this chapter we consider how observation data may be used to parametrise a discrete time
Markov model and how traditional assumptions for such parameter estimates may produce
misleading results. We then present techniques which allow for more accurate analysis of the
Markov models. Using these techniques we develop a probabilistic model checker for formal
verification with confidence intervals, FACT. In the next chapter we show how the analysis
of models using FACT can be used to identify abnormal behaviour from logged data traces
of system processes.

The common practice for obtaining parameter estimates is through domain expertise, or by
model fitting to log data or run-time observations [105],[71]. Ghezzi et al [70] demonstrated
how this approach may be used to extract models of user activity from log data. The
technique which they call BEAR also allows for states to be added to the model as they are
identified in the log.

85
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Estimating parameters using a maximum likelihood estimators (MLE) is a well established
technique [106]. Where the transition probabilities are stationary the maximum likelihood
estimate for the probability of transitioning from state i to state j is given as

pij =
nij
ni

(6.1)

where nij is the number of observed transitions from state i to state j and ni is the total
number of transitions observed to leave state i.

These estimates, however, contain estimation errors which are then propagated and amplified
by quantitative verification since Markov models are non-linear. This then leads to imprecise
results that can in turn yield invalid design decisions or verification conclusions.

One problem with using the estimator presented in (6.1) is that it does not tell us how
much information the estimate is based on or the potential size of the error. Intuitively we
know that using two samples to create our estimate will be less accurate than using 1000
samples and hence a point estimate is insufficient to capture our confidence in the estimation.
Indeed generating point estimates from successive sample sets will yield a set of non identical
estimates meaning that we are unsure which, if any, is correct.

One alternative is to calculate an interval estimator which provides a bound within which
we expect the estimate to lie. The use of confidence intervals for parameters which are
characterised as stochastic processes was first proposed by Neyman [107] and have become
widely used as a method for inferring parameter values from sample data [108],[109],[110].

An interval estimate of the value θ is then of the form

θ̂1 < θ < θ̂2 (6.2)

where θ̂1 and θ̂2 are upper and lower bounds such that for some specified probability (1−α),
θ exists in the range specified by the interval.

P (θ̂1 < θ < θ̂1) = (1− α) (6.3)

where θ̂1 and θ̂2 define our confidence interval and (1− α) is our confidence level [108].

Example 6.1. Let us consider the state transition model shown in Figure 6.1a. Starting
in state s0 the system will transition to one of three states s1, s2 or s3 with probability
p1 = 0.25, p2 = 0.6 and p3 = (1− p2− p3) = 0.15 respectively. If we assume that the absolute
values of the probabilities are unknown but a count of transitions is available then a point
estimate for each probability may be calculated using (6.1).

Six sets of observations were obtained with sample sizes {10, 50, 100, 200, 500, 1000}. For
each sample set a point estimate for each probability (p1, p2, p3) was calculated and the results
plotted in Figure 6.1(b) – (d). As the number of samples increases the point estimate generally
gets closer to the true value, however we can not guarantee this and indeed examining the
absolute errors in Table 6.1 shows that the point estimate for 1000 samples is less accurate
than that obtained with 500 samples for both p1 and p2.

The state transition process is described by a multinomial distribution [108] and as such we
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(c) Estimation of p2
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(d) Estimation of p3

Figure 6.1: Estimating multinomial probabilities using sample sets of varying size.

calculate simultaneous confidence intervals [111] for the three probabilities which characterise
the process1. These intervals, calculated with a confidence level of 0.95, are then reported in
Figure 6.1(b) – (d). The width of these intervals can be seen to reduce in size as the number
of samples increases and, for this experiment, includes the true value for all probabilities in
all sample sets.

The remainder of this chapter is structured as follows. Section 6.1 summarises a method for
the formal verification of discrete time Markov models with confidence intervals as developed
by Calinescu et al. [23]. Section 6.2 then describes FACT, a probabilistic model checking tool
which implements this method. The tool is then evaluated in Section 6.4. Finally Section 6.5

1In this case we use the MultinomialCI package in R.
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Table 6.1: Absolute error associated with point estimate of stochastic process

sample size | p̂1 − p1 | | p̂2 − p2 | | p̂3 − p3 |

10 0.050 0.000 0.050
50 0.010 0.080 0.070
100 0.000 0.020 0.020
200 0.005 0.050 0.055
500 0.008 0.006 0.002
1000 0.018 0.018 0.000

describes an overview of related work.

6.1 Background

Formal verification with confidence intervals [23] makes use of a parametric Markov chain
(PMC) for which some of the transition probabilities are unknown and establishes confidence
intervals for QoS properties described in PCTL. Given a PCTL property, Φ, parametric
model checking [112],[113],[114],[115] produces a symbolic expression of Φ in which the PMC
parameters appear.

The approach then takes as input:

1. a parametric Markov chain describing the system to be analysed D = (S,P ,π0, AP, L).

2. a PCTL formula Φ for a QoS requirement of interest where Φ may be a probabilistic
state formula or a cost/reward formula.

3. A confidence level (1− α) where the error level α ∈ (0, 1)

4. a set O of observations of outgoing transitions from the states of the model D which
are associated with unknown transition probabilities. For each state s ∈ S, O contains
the tuple

obsi = (ni1, ni2, · · · , nin) (6.4)

where nij is the number of observed transitions from state si to state sj .

To establish if a PCTL state formula Φ = P./p[Ψ] is satisfied we calculate the actual prob-
ability that Ψ is satisfied and then compare it with the bound p. We therefore calculate a
confidence interval [a, b] for P=?[Ψ] with a confidence level of (1− α) such that the interval
calculated guarantees that the probability of any path which satisfies Ψ being outside this
interval is less that α.

Prob{Prs0{π ∈ PathsD(s0)|π � Ψ} /∈ [a, b]} < α (6.5)

In order to evaluate [a, b] ./ p relational operator rules are established between an interval
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Figure 6.2: A parametric Markov chain model of an IT support system.

[a, b] ⊂ R and a scalar x ∈ R where ./∈ {≤, <,>,≥} and:

[a, b] < x iff b < x

[a, b] ≤ x iff b ≤ x
[a, b] ≥ x iff a ≥ x
[a, b] > x iff a > x

(6.6)

The confidence interval is then calculated by first using parametric model checking to gen-
erate an algebraic expression for Φ. This expression is a multivariate rational function that
depends on some or all of the unknown transitions probabilities.

Whilst the computation of this expression may be expensive it need only be computed once
after which time the expression may be used many times to assess changes in the system
parameters.

Example 6.2. Consider the DTMC shown in Figure 6.2 which is adapted from Figure 5.1.
Each of the transitions is now labelled with the probability of transition as a parameter and
unlabelled edges have a fixed probability of 1. If we wish to assess the probability of reaching
the complete state, s6, having started in state s0. then we can construct a PCTL formula as:

Φ = P=?[F “complete”] (6.7)

Using the PRISM parametric model checking engine we obtain the expression:

Φ =
a1b1

1 + a1b1 − c1a2 − a1 − a3
(6.8)

Having obtained an algebraic expression for Φ the second stage makes use of the transition
observations to obtain confidence intervals for the expressions parameters. These are then
used to derive the required confidence interval for Φ.
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In order to calculate the confidence intervals associated with the state transitions the ap-
proach utilises simultaneous confidence intervals [116],[117],[118]. Assuming a state si ∈
S with unknown transition probabilities then the probability of transition from state si
to state sj is pij and the associated confidence interval is [

¯
pij , p̄ij ]. The simultaneous

(1 − αi) confidence intervals for the transition from si to each of the n states in S is then
[
¯
pi1, p̄i1], [

¯
pi2, p̄i2], · · · [

¯
pin, p̄in]..

The algebraic expression, Φ, is a function of the unknown model probabilities, as shown in
(6.8), and more generally:

Φ(pi1j1 , pi2j2 , · · · , pimjm) (6.9)

where pi1j1 , pi2j2 , · · · , pimjm are m > 0 unknown transition probabilities of D.

A (1−α) confidence interval [a, b] for Φ may be calculated and, given the memoryless property
of a Markov chain, the transitions from different states si are independent and therefore

(1− α) =
∏
i∈I

(1− αi) (6.10)

where αi is the error level associated with the confidence interval for state si and I =
{i1, i2, · · · , im}. The interval limits a and b may be calculated using the following:

a = minimize Φ(pi1j1 , pi2j2 , · · · , pimjm)

subject to
¯
pi1j1 < pi1j1 < p̄i1j1

· · ·

¯
pimjm < pimjm < p̄imjm
n∑
j=1

pij = 1 for i ∈ I

(6.11)

and

b = maximize Φ(pi1j1 , pi2j2 , · · · , pimjm)

subject to
¯
pi1j1 < pi1j1 < p̄i1j1

· · ·

¯
pimjm < pimjm < p̄imjm
n∑
j=1

pij = 1 for i ∈ I

(6.12)

In order to solve the optimization problem above we must determine the bounds for the simul-
taneous confidence intervals. A number of different simultaneous confidence intervals have
been proposed but, by default, FACT utilises those proposed by Kwong and Iglewicz [117]
as these achieve a good trade-off between computational complexity and precision. The au-
thors note however that this may be substituted without affecting the validity of the FACT
approach.
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Whilst (6.10) provides a means of calculating the confidence interval it does not suggest how
the values of αi should be selected. A naive method is to set all values to be the same i.e.

αi = 1− (1− α)1/#I (6.13)

where #I is the number of distinct intervals present in the algebraic equation. This method
is suboptimal, however, and narrower confidence intervals are possible. Consider a property
applied to the IT support system where the algebraic expression returned is

Φ(a1, b1) = 0.9a1 + 0.0001b1 (6.14)

and we desire a 0.95 confidence interval for Φ.

The parameters a1 and b1 are associated with states s1 and s2 respectively which have
associated confidence error levels α1 and α2. Therefore

(1− α1)(1− α2) = 0.95 (6.15)

and naively we would choose

(1− α1) = (1− α2) =
√

0.95 = 0.975. (6.16)

If we consider (6.14) then we see that Φ is more sensitive to changes a1 and therefore it
is desirable to have a narrower confidence interval for a1 at the expense of increasing that
associated with b1 as this would decrease the interval associated with Φ. A better solution
would therefore be

(1− α2) = 0.951 (6.17)

(1− α1) = 0.95/0.951 = 0.998 (6.18)

A similar analysis shows that our naive assumption of confidence interval symmetry is sub-
optimal when the number of observations associated with transitions is very different, e.g.
N1 � N2.

Finding the optimal confidence intervals then requires an optimization procedure and a hill
climbing heuristic is suggested for this purpose.

6.2 The FACT tool

To ease the adoption of formal verification with confidence intervals we developed FACT
which accepts parametric Markov chains specified in an extended version of the PRISM [8]
high-level modelling language. Whilst we have chosen PRISM as our parametric model
checking engine of choice, improving the efficiency of parametric model checking is an active
research area with new tools and techniques being produced regularly [11, 5, 115]. The
theory which underpins FACT is agnostic to the choice of model checking engines and as
such FACT has been architected to allow for the use of alternate model checking engines.
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PRISM models, and by extension FACT, describe systems as a parallel composition of a set
of modules. The state of a module is encoded by a set of finite-range local variables, and its
state transitions are defined by probabilistic guarded commands that change these variables,
and have the general form:

[action] guard− > e1 : update1 + e2 : update2 + · · ·+ en : updaten (6.19)

In this command, guard is a boolean expression over all model variables. If guard evaluates
to true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability with which the updatei
change of the module variables occurs. When action is present then all commands with this
action, across all modules, have to synchronise (i.e., to carry out one of these commands
simultaneously).

FACT extends the PRISM language to allow the replacement of arithmetic expressions
e1, e2, · · · , en with parameters x1, x2, · · · , xn which are specified with the FACT declaration:

param double x = t1 t2 · · · tn (6.20)

where ti ∈ N, 1 ≤ i ≤ n is the number of transitions associated with updatei that were
observed from states which satisfy the guard.

Example 6.3. Consider the DTMC of the IT ticket support process as shown in Figure 6.2
where the observed system transitions are those given in Table 5.2. A traditional DTMC
model using point estimates could be described as:

// Abstract IT ticket support model

dtmc

const double p_12 = 533/(533+114+24+34);

const double p_13 = 24/(533+114+24+34);

const double p_14 = 34/(533+114+24+34);

const double p_17 = 114/(533+114+24+34);

const double p_25 = 32/(501+32);

const double p_26 = 501/(501+32);

const double p_31 = 16/(16+8);

const double p_37 = 8/(16+8);

module main

s: [0..7] init 0;

[] s=0 -> (s’=1);

[] s=1 -> p_12:(s’=2) + p_13:(s’=3) + p_14:(s’=4) + p_17:(s’=7);

[] s=2 -> p_26:(s’=6) + p_25:(s’=5);

[] s=3 -> p_31:(s’=1) +p_37:(s’=7);

[] s=4 -> (s’=1);

[] s=5 -> (s’=1);

[] s=6 -> (s’=6);

[] s=7 -> (s’=7);

endmodule
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In order to rewrite this as a FACT program and utilise the observation counts we replace the
constant definitions associated with transitions. For transitions leaving state s1 we therefore
write:

param double x = 533 24 34 114; (6.21)

It is then necessary to modify the guarded command in order to reference the count variables
x as shown in (6.19). For state s1 the guarded command therefore becomes:

[] s=1 -> x1:(s’=2) + x2:(s’=3) + x3:(s’=4) + (1-x2-x3):(s’=7); (6.22)

where x1 is calculated with reference to the first observation count for the variable x and
represents the probability of transitioning to state s2. x2 and x3 are then calculated with
reference to the second and third observation count respectively.

A complete FACT model for the IT support system is then written as follows:

// FACT model for IT ticket support system

dtmc

param double x = 533 114 24 34;

param double y = 32 501;

param double z = 16 8;

module main

s: [0..7] init 0;

[] s=0 -> (s’=1);

[] s=1 -> x1:(s’=2) + x2:(s’=3) + x3:(s’=4) + (1-x1-x2-x3):(s’=7);

[] s=2 -> y1:(s’=6) + (1-y1):(s’=5);

[] s=3 -> z1:(s’=1) + (1-z1):(s’=7);

[] s=4 -> (s’=1);

[] s=5 -> (s’=1);

[] s=6 -> (s’=6);

[] s=7 -> (s’=7);

endmodule

FACT has a modular architecture as shown in Figure 6.3. Each step of the process is then
carried out by a different module. The tool was written in Java and provides a graphical user
interface for users to enter models and PCTL properties for analysis as well as evaluation
parameters.

The user provides a description of the system using the FACT modelling language and a
PCTL property for analysis. When the property is selected for evaluation the user is asked
to enter a range of confidence levels over which to calculate the property value. The user may
also optionally, choose to use the hill climbing heuristic to reduce the width of the confidence
interval. Given these inputs the verification manager generates a confidence interval for each
confidence level α in a four step process.

For the parametric quantitative verification engine FACT utilises PRISM which is called
to generate the algebraic equation. This is time consuming but is only called once. This
module could be replaced by alternate modelling checking engines such as PARAM [115] or
STORM [11].
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Figure 6.3: Estimating the mean of a stochastic process using sample sets of varying sizes.

Simultaneous confidence intervals are constructed using the solution proposed by Kwon and
Iglewicz as proposed in the theoretical work by Calinescu et al. although several alternative
calculations are available as described in [23] and could be substituted if appropriate.

The confidence interval synthesis utilises MATLAB and the YALMIP optimization toolbox.
Since MATLAB is a commercial product it may be worth investigating alternate open source
optimization tool kits using frameworks such as Octave (http://www.gnu.org/software/octave).

Finally, if the hill climbing optimization heuristic has been selected, this is called. Whilst
FACT implements the heuristic proposed in [23] there are numerous such optimization heuris-
tics which could be substituted for this module.

6.3 Using the FACT tool

In order to demonstrate the FACT tool we consider a business-critical web application taken
from [23] which comprising an HTTP proxy server, a web server and an application server.
To serve client requests, the web application accesses structured data and static content, for
example text files and images, stored in a database and on a file server, respectively. Both
types of static content are cached by ad-hoc cache servers.

The parametric Markov chain shown in Figure 6.4 models the functionality that handles an
HTTP request within the web application. Each state represents a stage of the handling
process. The initial state s1 corresponds to the request being received, and the shaded states
are absorbing states, i.e., states that once entered cannot be left. These states indicate the
outcome of the request handling, i.e., whether the request handling succeeds (s9) or fails due
to an unavailable server (s8) or to the overloading of a component of the application (s10).

When the process transitions from states s1, s4, s6 and s7 these are recorded in a log and
the number of observed transitions are listed in Table 6.2. These transition counts were
generated through simulation using a model with fixed probabilities. These probabilities are
then assumed unknown in the analysis phase. All other transition probabilities are obtained
as point estimates from domain experts.

http://www.gnu.org/software/octave
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Figure 6.4: PMC modelling the handling of an HTTP request process taken from [23].

Table 6.2: Web application observation counts

from to parameter O# Point Estimate

s1 s2 y1 4050 0.4054
s1 s4 y2 5938 0.5944
s1 s8 y3 2 0.0002

s4 s10 x1 5723 0.5622
s4 s9 x2 4 0.0004
s4 s5 x3 4452 0.4374

s5 s9 w1 9784 0.9995
s5 s10 w2 4 0.0005

s6 s7 z1 2467 0.2499
s6 s10 z2 10 0.0010
s6 s9 z3 7395 0.7491

s7 s9 k1 9964 0.9964
s7 s10 k2 6 0.0006
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A FACT model is created with five parameters and their associated observation counts. A
full listing of the model is given in Listing 6.1. Each of the non-absorbing states in the model
are annotated with costs c/t where c is the average cost (in tenths of a cent) of entering that
state and t is the average time (ms) the process is expected to spend in that state.

Table 6.3 shows the Quality-of-Service (QoS) properties that we will assess for the process
with an informal description and PCTL formula for each.

probabilistic

param double y = 4050 5938 2;

param double x = 5723 4 4452;

param double w = 9784 4;

param double z = 2467 10 7395;

param double k = 9964 6;

module M1

q : [0..9] init 0;

[] q=0 -> y1:(q’=1) + y2:(q’=3) + (1-y1-y2):(q’=7);

[] q=1 -> 0.2:(q’=1) + 0.55:(q’=2) + 0.25:(q’=8);

[] q=2 -> 0.7:(q’=5) + 0.3:(q’=8);

[] q=3 -> x1:(q’=8) + x2:(q’=9) + (1-x1-x2):(q’=4);

[] q=4 -> w1:(q’=8) + (1-w1):(q’=9);

[] q=5 -> z1:(q’=6) + z2:(q’=9) + (1-z1-z2):(q’=8);

[] q=6 -> k1:(q’=8) + (1-k1):(q’=9);

[] q=7 -> 1:(q’=7);

[] q=8 -> 1:(q’=8);

[] q=9 -> 1:(q’=9);

endmodule

rewards "cost"

q=1 : 1;

q=2 : 2;

q=3 : 1;

q=4 : 1;

q=5 : 1;

q=6 : 4;

endrewards

rewards "time"

q=4 : 4;

q=6 : 7;

endrewards

Listing 6.1: FACT model for a web application

The model and properties are then entered in to the FACT tool as shown in Figure 6.5
and FACT is used to generate confidence intervals for each of the properties with confidence
levels in the range 85 − 99%. The resulting graphs are shown in Figure 6.6 and, for each
confidence level, an upper and lower bound on the interval is displayed such that any value
outside of this interval may be interpreted as violating the property at the stated confidence
level. For all of the results returned we see that the interval widens as the confidence level
increases, as expected.
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Table 6.3: PCTL properties for the web application process

ID Formula Description

P1 Reliability: What is the probability of successfully han-
dling a request?

P=?[F HttpResponse]

P2 Cache hit probability: What is the probability that re-
quests are handled without accessing the database or
the file server?

P=?[¬(Database∨FileServer)U
HttpResponse]

R1 Cost: What is the expected cost for handling a request
?

Rcost
=? [F Done]

R2 Response time: What is the expected response time? Rtime
=? [F Done]

Figure 6.5: Screenshot of the FACT application for the HTTP request process
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Figure 6.6: Confidence intervals for HTTP request process

Let us consider then a requirement that the cache hit probability is at least 0.7 with a
confidence level of 0.95. When the PMC is constructed using point estimates, and evaluated
using PRISM, the value returned is 0.6906 which indicates that the designer would reject
the process as it falls below the 0.7 threshold. Verification with confidence intervals however
shows that the value of 0.7 falls within the confidence bounds for all confidence levels between
0.85 and 0.99. This is shown in Figure 6.7a. Rejecting this process on the basis of the
observation evidence would therefore be incorrect.

Choosing a confidence level at which to evaluate a property is not always straight forward
however. Consider the case where the requirement is for a cache hit probability of at least
0.72. This is shown in figure 6.7b. With a confidence level of 0.90 the property is violated
however we can not say that the property is violated at the 0.95 confidence level as 0.72 lies
within the confidence bounds.
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Figure 6.7: Interpreting FACT verification results.

6.4 Evaluation

To evaluate FACT we applied the tool to five systems from a range of application domains.
For each system we synthesise confidence intervals for PCTL-encoded reliability, performance
and cost properties of parametric Markov chains. Table 6.4 summarises the experimental
results obtained for the PMCs of:

• a web application, shown in Section 6.3, and taken from [23] (Web);

• a tele-assistance service-based system adapted from [69, 105] (TAS);

• the low-power wireless bus communication protocol taken from [23] (LWB);

• the bounded retransmission protocol from the PROPhESY [119] site (BRP);

• the Zeroconf IP address selection protocol from the PARAM [115] website (Z).

The timing results were obtained on a standard OS X 10.8.5 MacBook computer with 1.3GHz
Intel Core i5 processor and 8GB 1600MHz DDR3 RAM. The models, PCTL property files,
results and descriptions for all case studies are available on our FACT website http://

www-users.cs.york.ac.uk/~cap/FACT.

These case studies demonstrated several key benefits of our probabilistic model checker.
First, FACT supports the analysis of systems for which state transition probabilities are
unknown, but observations of these transitions are available from logs or run-time monitoring.
Second, it enables the analysis of reliability, performance and other QoS properties of systems
at the required confidence level. Third, it can prevent invalid design and verification decisions
(as shown in Figure 6.7). In many scenarios, the quantitative analysis of Markov models
built using point estimates of the unknown transition probabilities misleadingly suggested
that requirements were met. In contrast, FACT showed that this was only the case with low
confidence levels that are typically deemed unacceptable in practice. Last but not least, our
case studies showed that FACT can be used to analyse systems from multiple domains.

http://www-users.cs.york.ac.uk/~cap/FACT
http://www-users.cs.york.ac.uk/~cap/FACT
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Table 6.4: Experimental results for the case studies from Section 6.4

PMC psetsa paramsb PCTL property tcexp tdCI

Web 5 13 P=?[F HttpResponse] 0.75s 3.96s
P=?[¬(Database∨FileServer)U HttpResponse] 0.84s 3.43s
Rcost

=? [F Done] 0.86s 3.31s
Rtime

=? [F Done] 0.89s 3.29s

TAS 3 6 P=?[F FailedAlarm] 0.24s 4.32s
P=?[¬Done U FailedService] 0.12s 2.82s
P=?[¬Done U FailedAlarm{MedicalAnalysis}] 0.11s 2.78s

LWB 1 2 Rpower
=? [S] 0.24s 3.03s
Renergy

=? [F StartedUp] 0.27s 2.98s

BRP 2 4 P=?[F SenderNoSuccessReport] 0.44s 31.6s

Z 2 4 RnumTests
=? [F DecisionMade] 0.15s 5.41s

anumber of parameter sets (6.20) in the PMC btotal number of PMC parameters
ctime to compute algebraic expression dtime to synthesise confidence interval

Whilst FACT has been shown to be applicable in a range of contexts the models considered
and the number of parameters are relatively small. As models become more complex para-
metric model checking becomes infeasible and increasing the scalability of parametric model
checking remains an active research area [5].

In Chapter 7 we show how the concepts which underpin FACT, and the tool itself, can
be used to compare models with reference to observed observation logs in order to identify
normal and abnormal behaviours in operational processes. We then evaluate the application
of FACT within this context in chapter 8.

6.5 Related work

Deriving DTMC models from observation data is a well known statistical problem [106],[120]
and has become a common approach for deriving DTMC models of user behaviour [70],[121].
Unlike FACT, however, this work assumes that a single point estimate is sufficient to char-
acterise the parameters of the model under consideration.

These techniques, and those proposed by FACT, assume that the observations describe pa-
rameters which, whilst stochastic in nature, do not change over time. A parallel stream of
research concerns the identification of parameters at run-time such that changes in parame-
ters values can be reflected in the models used for verification. Zheng et al. [122] describe how
Kalman filters can be used to update performance models continuously through observed
data streams. Epifani et al. [123],[124] utilise a Bayesian estimator to update models at run
time to ensure that the performance models more accurately reflect the current state of the
system under review. Calinescu et al. [125],[105] use a technique of observation ageing in
which older observations are weighted to reduce their effect on current parameter estimates.
These techniques are complimentary to the FACT approach and extending FACT to allow
for run-time adaptation in this presents an interesting avenue for future work.
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Whilst interval-valued discrete time Markov chains (IDTMC) have previously been pro-
posed [126],[127] and extended to allow for PCTL verification with uncertainty [128],[129]
FACT still offers several unique benefits. Firstly FACT operates with parametric Markov
chains in which transition probabilities are specified as observation counts and as such this
makes FACT particularly useful for practical applications in which transition probabilities
are unknown but log data is available. Secondly FACT is able to establish confidence in-
tervals for PCTL at any requested confidence level. Thirdly the hill-climbing optimization
technique used in FACT is able to reduce the width of the confidence interval produced over
a number of iterations. Finally FACT can be readily used due to the availability of a freely
downloadable model checking tool.

FACT relies on parametric model checking as a key component of the analysis. Whilst
parametric model checking tools has matured over recent years, with support offered by the
leading model checkers PARAM [115], PRISM [8] and Storm [11], the computational cost
of parametric model checking remains high and, as such, the range of models analysable by
these tools remains limited. In recent work [5] we show how reductions in model checking
times of several orders of magnitude can be achieved for service based systems and envisage
that other domains could benefit similarly. The modular nature of the FACT architecture
allows for the current PMC of choice (PRISM) to be replaced as new model checking tools
are developed.

An alternative approach to evaluating Markovian models with parameter uncertainty is to
use statistical model checking [130]. Unlike the numerical algorithms used for model check-
ing in FACT which require certain model structures to hold, e.g. Markovian, statistical
approaches allow these restrictions to be relaxed. Furthermore statistical approaches al-
low for the verification of much larger systems. Just as PARAM, PRISM and Storm have
been developed to implement numerical model checking algorithms, tools which allow for
statistical model checking have been developed including YMER [131], VESTA [132] and
MRMC [133].

Statistical techniques utilise a simulation-based approach [134]. The key idea is to observe the
system over many sample executions and then draw conclusions about the performance of the
system with respect to the system requirements. Work by Meedeniya et al. [88] demonstrated
how statistical model checking could be used to evaluate probabilistic models with uncertain
model parameters. Statistical methods have low memory requirements and are applicable to
a wider range of system modelling paradigms than numerical techniques however, they are
computationally expensive when high accuracy is required. By contrast numerical methods
allow for highly accurate results but the computational expense increases as the number of
states required to model a system grows. Properties analysed with statistical model checking
tools are typically given as a confidence interval but, unlike FACT, this interval describes the
uncertainty associated with the simulation process itself rather than a confidence interval
based on the level of uncertainty associated with model parameters. Indeed, a confidence
interval is generated even when all parameters are fixed and known precisely.



Chapter 7

Detecting Abnormal User
Behaviour using
Observation-Enhanced DTMC
Analysis

Using observation data to improve the accuracy of DTMC model analysis relies on the
assumption that all entries in the trace data are identically distributed. Consider a task for
which two options are available. The first option is costly but safe while the second is less
costly but incurs a greater level of risk. The probability of a user adopting option one can
be considered to be a function of the user’s risk profile. As such aggregating user behaviours
results in a probability which may be inaccurate for all users. Conversely, knowing which user
is involved in the process would allow for a more accurate assessment of the model parameters
associated with the task of interest. Indeed Ghezzi et al. [70] suggest that by partitioning log
data, using information about users such as geographical location, and constructing models
for each partition it is possible to compare the behaviour of users.

In this chapter we consider operational processes which are enacted by a strictly controlled
set of authenticated system users. These users are entrusted with the correct operation of
the process and, where their behaviour is abnormal, the effect on the organisation can be
detrimental. However, identifying users who are displaying abnormal behaviours through
the partitioning logs is not a simple task. We do not know in advance which users, if any,
are acting abnormally and indeed identifying normal behaviour in a human-centric process
can be challenging.

If we are able to identify abnormal behaviour the potential rewards are great since security
incidents caused by abnormal user behaviour may result in severe financial and reputational
loss [135],[136]. Insider threats arise when trusted users of an information system can ex-
ploit their access permissions to compromise the confidentiality, integrity or availability of
an organisation’s information assets [137],[138]. These trusted users include employees, con-
tractors and business partners who can cause harm intentionally (e.g. for personal gain or
revenge) or through error (e.g. due to negligence or insufficient training) [139].

102
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To mitigate these threats, information systems may employ control mechanisms that restrict
access to their assets. More often than not, these mechanisms implement the role-based
access control (RBAC) [140] model, where the permissions to execute operations on infor-
mation assets are associated with roles, and the users are only assigned the role(s) they
need to perform their jobs. As such, RBAC restricts user access, and helps detect access
violation attempts. However, it cannot detect users who maliciously or accidentally abuse
their legitimate access permissions. Furthermore, it is unable to mitigate such abuse [141],
even when a separate insider attack detection mechanism [142] is available. For example,
in the context of a ticket support system, a support attendant with an elevated number of
tickets opened on behalf of clients that are abandoned can be considered an anomaly not
detectable by RBAC.

We propose an approach which addresses this limitation of traditional RBAC in the context
of business processes. To this end, we exploit activity logs already available for many im-
portant businesses processes, which also enable the monitoring of the activities undertaken
by individual users of these processes. Using this information, dynamic access control mech-
anisms can be employed to respond to abnormal user behaviour through actions decided
based on risk analysis and pre-defined adaptation policies. Such actions may include changes
to authorisation policies, modifications of user assignment to roles and of role permissions,
user training, and changes to the business process.

We introduce a self-adaptive RBAC (saRBAC) approach that enacts these general principles
by dynamically reconfiguring user assignments to roles in order to mitigate insider threats. As
an example, users with abnormal behaviour may be removed from a role or may be demoted
to roles with restricted permissions. Our saRBAC approach is underpinned by observation-
enhanced DTMC analysis that enables the comparison of individual user behaviour to the
average behaviour of the other users in the same role. Given a business process and traces of
its execution obtained through monitoring, saRBAC (a) builds a parametric Markov model
of the process, and (b) uses FACT to establish confidence intervals for model properties
associated with key aspects of user behaviour. For each user and analysed property, two
confidence intervals are computed corresponding to the property value for the user, and for
all the other users taken together, respectively. If the two confidence intervals do not overlap,
then saRBAC concludes that the examined user behaves (statistically) differently from the
other users. The analysed properties, the definition of what constitutes abnormal behaviour,
and the actions required when such behaviour is detected are formally specified in saRBAC
adaptation policies.

The rest of this chapter is organised as follows. In Section 7.1 we present a real-world
case study which will serve as our motivating example and aid in evaluating our approach.
Section 7.2 then describes the saRBAC approach and the formulation of formalised policies
for analysing user behaviour and adaptation of user access. Finally, Section 7.3 compares
our approach with related research.
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Figure 7.1: Ticket support business process (UML activity diagram produced during IFRN’s
development of the SUAP information system)

7.1 Motivating example

We motivate and evaluate our abnormality detection approach using the IT support system
first introduced in Section 5.2.1. The IT support system is part of SUAP1, the information
system of the Federal Institute of Education, Science, and Technology of Rio Grande do
Norte (IFRN), Brazil. The IFRN SUAP users comprise 12,500 academic, administrative,
technical staff and contractors, and 32,000 students, located at the 26 IFRN campuses in
the state of Rio Grande do Norte.

In this work we once more consider the Ticket Support process and a UML activity diagram
for this process is provided in Figure 7.1. This process allows IFRN users to request IT
support services (e.g. access and password changes) and report IT-related problems. Many
of SUAP’s business processes, including IT support, are security sensitive, and the RBAC
access control model is used to enforce security policies.

In this context, the Ticket Support process involves three roles: Client, Support and Admin-
istrator. A Client is any user who needs an IT related service performed on their behalf.
They can raise issues by opening tickets and subsequently accept the work done by closing
the ticket once marked as solved. A Support user is an employee responsible for dealing with
tickets, e.g. an IT technician or analyst. The system also includes the Administrator role,
which comprises users responsible for supervising the work carried out by Support users.

As shown in Figure 7.1 the Ticket Support process starts with the opening of a ticket, either
by a client (Open ticket) or by a support attendant on behalf of a client (Open ticket of
behalf ), e.g., the client might go to the IT department in person to raise an issue. An open
ticket can be cancelled by the client (Cancel ticket by user), e.g., if the ticket was opened
by mistake, or can be allocated to a support attendant. Ticket allocation can be done by an
administrator (Allocate to support), or by support attendants themselves (Allocate to self ).

Once allocated, a support attendant will work on the ticket (Check ticket)—solving the issue
(Solve ticket), reallocating the ticket to a different support attendant (Reallocate ticket),
cancelling the ticket (Cancel ticket by support), or suspending the ticket and asking the

1Sistema Unificado de Administrao Pública – Unified System for Public Administration
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Figure 7.2: A high level diagram of the saRBAC approach

client to provide more information about the issue (Suspend ticket). Suspended tickets are
sent back to clients, who can either reply to the support attendant (Add more information),
or cancel the ticket (Cancel ticket by user). If the client does not reply within a specific
time, the ticket is considered abandoned and is cancelled by the support attendant (Cancel
abandoned ticket).

A solved ticket is sent back to its client, who can confirm the resolution of the issue by
closing it (Close ticket), or reopen the ticket (Reopen ticket) indicating that the issue is not
resolved. A solved ticket not handled by the client within a certain time frame is closed by
an administrator (Close expired ticket).

Our collaborators at IFRN used SUAP’s extensive logging capabilities to obtain detailed
execution traces of the Ticket Support process for the three-month period between May–
July 2016, and interviewed the IFRN management team to determine the organisation’s
concerns for the process. As such, we learnt about concerns based both on past cases of
internal abuse and on yet unconfirmed incident scenarios identified by their security risk
management procedures.

Using these concerns, we defined a set of adaptation policies that capture abnormal be-
haviours of Ticket Support users, and preferred ways of dealing with them. Table 7.1 shows
a representative subset of these policies, expressed informally for measurable attributes of
user behaviour. The informal and ambiguous nature of these policies is typical of require-
ments specified in natural language [143] and highlights the need for a more formal policy
specification.

7.2 The saRBAC approach

Our five stage approach, shown diagrammatically in Figure 7.2, is applicable to business
processes where a description of the process is available as a UML activity diagram such as
that provided in Figure 7.1 and a set of policies, such as those shown in Table 7.1, have been
defined.

As each individual interacts with the system they will leave entries in a trace log which
records information about the activity undertaken by the user. In order to evaluate the
behaviour of system users, with respect to the informal policy set, it is necessary for us to
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Table 7.1: Adaptation policies for the IT support system

ID Description

P1 A client whose expected number of reopens per ticket is larger than that of the
other clients should be not be allowed to open new tickets.

P2 A support attendant whose expected number of suspensions per ticket exceeds
that of the other attendants should be closely monitored and should need approval
for suspending tickets. Additionally, the clients that have been served by this
attendant should be considered; if their expected number of suspensions per ticket
for tickets handled by other attendants is lower than that of the other clients, then
the investigated attendant should be suspended.

P3 A support attendant whose probability of cancelling ticket that have not been
suspended exceeds that of the other support team members should need approval
for cancelling tickets.

P4 A support attendant whose expected number of tickets opened on behalf of clients
are abandoned exceeds that of the other support team members should no longer
be allowed to open tickets on behalf of clients.

P5 A support attendant whose expected number of reallocations, suspensions, cancel-
lations or reopens per ticket exceeds that of the other support attendants should
be placed under observation. Additionally, if this discrepancy is also confirmed at
a higher confidence level then the support attendant should need approval for his
or her actions.

P6 A client whose expected number of suspensions, reopens, abandonments or can-
cellations by support per ticket exceeds that of the other clients should be placed
under observation. Additionally, the support attendants that have dealt with by
this client should be considered; if their expected number of suspensions, reopens,
abandonments or cancellations by support per ticket is lower than that of the other
support attendants, then the investigated client should not be allowed to open new
tickets.

describe these policies in a more formal manner where the resultant policy is composed of
four elements:

• Filter criteria: Used to control the partitioning and filtering of the trace log to examine
user behaviours.

• Analysis parameters: Used by a model analysis engine to exercise the models and
obtain a result set which characterises the user behaviour.

• Comparison parameters: Used to compare results of model analysis and assess whether
users have violated thresholds which will lead to action having to be taken.

• Permission change rule: The action to take to modify the user’s permissions if a viola-
tion is detected.

The first stage of our approach is to filter and partition the trace log such that the resultant
trace sets contain traces associated with individuals or groups of users. The second stage,
model synthesis, makes use of a parametric model template and derives model parameters
through an analysis of the filtered logs from the previous stage. In this way the resultant
models characterise the behaviour of users associated with each trace sub set. In the third
stage the models are passed to an analysis engine along with analysis parameters from the
formal policy. The results generated represent a quantitative evaluation of user behaviours.
In the forth stage we compare these results using parameters specified in the policy. This
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Figure 7.3: saRBAC architecture utilising FACT

comparison identifies those users that have violated the policy and returns a list of users
exhibiting abnormal behaviours. The final stage takes a permission change rule from the
policy and applies this to the role based access control system to modify the user permissions
for those users identified in the previous stage.

In order to demonstrate how the approach may be implemented in practice we consider
the motivating example given in Section 7.1 when the FACT probabilistic model checker
described in Chapter 6 is used as the analysis engine of choice. Figure 7.3 then shows a high
level implementation architecture of the saRBAC approach using FACT.

The trace log is first partitioned into two sub logs using the filter criteria. These sub logs
are labelled “test” and “reference”. The test sub log contains those traces associated with
users that we wish to examine for abnormality, and the reference sub log contains all other
users.

Having obtained our sub logs through the partitioning process we then undertake model
synthesis by counting transitions observed in each sub log and using these as values for
parameters in our model template. The template used is a FACT model with place-holder
variables for the observation counts. The result is then two FACT models which correspond
to the “test” and “reference” sub logs.

Next, model analysis is undertaken by the FACT engine described in Section 6.2 which
requires a confidence level and a PCTL formula to encode our natural language analysis
requirement. The analysis results generated for the saRBAC instantiation based on FACT
are then intervals.

These intervals are then compared using an operator derived from the natural language
requirement. When the comparer returns true the list of users associated with the test sub
log is returned otherwise an empty list is generated.

Finally the permission change rule is used to update the access permission of any users
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identified in the previous stage.

In the remainder of this section we describe the role based nature of the systems to which our
approach applies before defining how log data must be structured to enable trace analysis
within our approach. Finally we show how the policies from Table 7.1 can be encoded with
examples based on the FACT implementation applied to the motivating example.

7.2.1 Users and roles

Our approach considers systems whose users are organised into n > 0 roles such that:

Role1,Role2, · · · ,Rolen (7.1)

are the sets of users associated with each role and the set of all users is

Users =

n⋃
i=1

Rolei. (7.2)

The complete set of p distinct activities in the process is then defined as A = {α1, α2, · · · , αp}
and we define Ai ⊂ A to be the set of activities which a user u ∈ Rolei, 1 ≤ i ≤ n may
perform. Accordingly the set of activities that a generic user u ∈ Users has permissions to
execute is:

perm(u) = {α ∈ A | ∃ 1 ≤ i ≤ n • u ∈ Rolei ∧ α ∈ Ai} (7.3)

7.2.2 Log data

In order to allow for the implementation of saRBAC the business process must be instru-
mented to capture a log of process instantiations such that the complete log L is a set of
traces:

L = {T1, T2, · · · , Tm} (7.4)

where m is the number of observed instantiations of the business process.

A trace Ti comprises a unique identifier id (for an instantiation of the process) and a sequence
of events (or log entries) E = 〈ei1, ei2, . . . , eiNi〉:

Ti = (id, E), (7.5)

where 1 < i < m and Ni is the number of events in a trace sequence. Each event e is
an object with q attributes B = (β1, β2, · · · , βq) that characterise features of the activity
undertaken as part of the process. As a minimum each event must contain the following
attributes:

e.user is the user from Users
e.activity is an activity from A
e.time is the time at which the activity was completed.
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Additional attributes, such as location or priority, may also be present in the log and used
to filter log data and this is discussed in the next section.

Example 7.1. The Ticket Support process from Section 7.1 uses n=3 roles, i.e.

Role1 = Client ,

Role2 = Support ,

Role3 = Admin.

The activity sets for these roles are

A1 = {Open,Reopen,AddInformation,Close,CancelByUser},
A2 = {OpenOnBehalf,AllocateToSelf,Check,Reallocate,Solve,

Suspend,CancelBySupport,CancelAbandoned},
A3 = {AllocateToSupport,CloseExpired},

and the entire activity set is A = A1 ∪A2 ∪A3.

A client user u1 ∈ Client starts a process by opening a ticket which is allocated a unique
identifier of 1. Support user, u2 ∈ Support, decides they can service the ticket without
involving other members of the support team and therefore allocates it to themself. They
check the ticket and undertake the work required to service the request before marking it as
solved. Finally user u1 sees the work has been completed and decides that the ticket can be
closed.

The trace is added to the complete log L as T = (1, E) where E contains 5 distinct events
E = 〈e1, e2, e3, e4, e5〉 and:

e1.user = u1 e1.activity = Open e1.time = 09 : 00

e2.user = u2 e2.activity = AllocateToSelf e1.time = 09 : 12

e3.user = u2 e3.activity = Check e1.time = 09 : 13

e4.user = u2 e4.activity = Solve e1.time = 09 : 48

e5.user = u1 e5.activity = Close e1.time = 10 : 04

7.2.3 Step1 : Partitioning and filtering trace data

The first step of the approach is to partition and filter the data log with reference to rules
and constraints which encode the intention of the informal policy. These rules define the
scope of the policy which comprises combinations (i.e., tuples) of r ≥ 1 subsets of traces.

Given a generic trace set L, the complete scope of a policy is:

scope(L) =
{

(Tlabel1 , Tlabel2 , . . . , Tlabelr ) ∈ (PL)r | rule1 ∧ rule2 ∧ . . .
}
, (7.6)

where PL denotes the powerset (i.e., the set of all subsets) of L and rule1, rule2, . . . are
constraints over the elements of traces from L, expressed in first order logic. Note that labels
label1 , label2 , . . . , labelr are associated with the r subsets of traces from each combination to
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enable the other policy components to refer to these subsets easily.

Example 7.1. Let us consider Policy P1 from Table 7.1. This policy requires the log data
to be partitioned into two sub logs for every client user u ∈ Client. The first sub log contains
those traces associated with tickets in which the client of interest has been involved. The
second contains the traces of all other tickets.

For each client u ∈ Client, a partition (Ttest , Tref ) of the trace data may be constructed such
that (

Ttest = {(id , 〈e1, e2, . . . eN 〉)∈L | ∃1 ≤ j ≤ N • ej .user = u} ∧
Tref = L \ Ttest

) (7.7)

The resulting partition is labelled such that Ttest contains those traces associated with a client
user u and Tref is the reference set against which u will be compared.

The complete scope of this policy is then the following set of (Ttest , Tref ) combinations:

scope(L) =
{

(Ttest , Tref ) ∈ PL×PL | ∃u∈Client •(
Ttest = {(id , 〈e1, e2, . . . eN 〉)∈L | ∃1 ≤ j ≤ N • ej .user = u} ∧

Tref = L \ Ttest
)} (7.8)

This partitions the entire log L into pairs of sets without any filtering, i.e., Ttest ∪ Tref = L
and Ttest ∩ Tref = ∅.

Let us now consider a policy which is only concerned with those tickets created after a time
τ . Since the ticket creation event is always the first in a trace sequence we can add a single
rule and our complete policy rule becomes:

scope(L) =
{

(Ttest , Tref ) ∈ PL×PL | ∃u∈Client •(
Ttest = {(id , 〈e1, e2, . . . eN 〉)∈L | e1.time ≥ τ ∧ ∃1 ≤ j ≤ N • ej .user = u} ∧

Tref = {(id , 〈e1, e2, . . . eN 〉)∈L | e1.time ≥ τ} \ Ttest
)} (7.9)

7.2.4 Step 2 : Model synthesis

Model synthesis requires a model template in which place-holder variables are replaced by
values derived from an analysis of filtered logs. A function, Fm, is applied to each partition
of the filtered log data using the model template, MT , to generate the r models necessary
to evaluate the policy requirement for that log partition.

For each partition (Tlabel1 , Tlabel2 , . . . , Tlabelr ) ∈ scope(L)

Fm((Tlabel1 , Tlabel2 , . . . , Tlabelr ),MT ) = (M1,M2, · · · ,Mr)

In general Fm will be constructed with knowledge of the analysis engine to be utilised and
the nature of the parameters present in the template model.

Example 7.2. For policy P1 the log data is partitioned into trace sets which characterise
the behaviour of users from the Client role. With the remaining data characterising the
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behaviour of all other users. For each u ∈ Client a tuple of FACT models is synthesized as:

Fm
(
(T utest , T

u
ref ),MT

)
= (Mu

test ,M
u
ref ) (7.10)

where Mu
test is a FACT model which characterises the behaviour of user u based on transitions

observed in the partitioned log models. Mu
ref is then a model against which the behaviour of

u will be compared2.

In order to analyse models using the FACT framework the model templates are stored as
parametric FACT models. The parameters of these models are then the number of observed
transitions in the sub logs of the trace partition. The model template may be generated
from a UML activity diagrams such as that shown in our motivating example, Figure 7.1,
and can be derived as follows.

First, we build the finite state set S comprising a state for each activity node from the
diagram, and an initial state s0 and a final state sF for the initial and final nodes of the
activity diagram, respectively; let node(s) denote the activity diagram node associated with
state s ∈ S. We then assemble the transition probability matrix P :

• We set P (s, s′) = 1.0 for every pair of states s, s′ ∈ S for which the node reached
immediately after node(s) (i.e. without going through intermediate nodes associated
with states from S) is always node(s′), and for s = s′ = sF.

• We associate an unknown transition probability P (s, s′) with each pair of states s, s′

for which node(s′) can be reached from node(s) going only through decision nodes in
the activity diagram.

• We set P (s, s′)=0 for every other pair of states s, s′∈S.

Next, we define a labelling function L that labels each state s ∈ S with an atomic proposition
that suggestively reflects the state of the system after the execution of the activity associated
with node(s). For instance, we used the label Allocated for the DTMC state associated
with the activity AllocateToSupport of our Ticket Support process. Finally, we augment the
resulting DTMC with cost/reward structures with reference to the policies to be analysed
such as those found in Table 7.1.

Example 7.3. Applying the DTMC derivation method described above to the Ticket Support
activity diagram from Figure 7.1 yields the DTMC shown in Figure 7.43. The 17 states
of this DTMC correspond to the 15 activities of the business process plus the initial and
final states of the activity diagram, and the labelling captures the state of a ticket during
the execution of the process. The number combinations r1|r2|r3|r4 annotating the DTMC
states define four cost/reward structures used to formalise the policies from Table 7.1: an
“expensive” client structure (r1, cf. policy P6 from Table 7.1), a “suspended” structure (r2,
cf. policy P2), a “reopened” structure (r3, cf. policy P1), and a “lazy” support staff structure

2We assume that the number of users acting abnormally is a small fraction of the total population such
that any aggregated performance measure based on Mu

ref will not be materially affected by abnormal user
activity when the population as a whole is evaluated.

3Note that the level of abstraction used here is different to that used when considering the continuous
time properties of the IT support process where several states are combined to simplify the model without
losing accuracy with respect to the properties of interest.
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Figure 7.4: Parametric FACT model of the IT support system. Transition probabilities are
parameters of our model (for states with multiple outgoing transitions) or 1.0 (for states
with a single outgoing transition).

(r4, cf. policy P5). For example, state s6 (which corresponds to a ticket being reallocated by
a member of the support team) is annotated with r1|r2|r3|r4 = 0|0|0|2, indicating that ticket
reallocation is not characteristic of an expensive client (r1 =0), is not a reopen or suspension
(r2 = r3 = 0), but is a strong characteristic of “lazy” support staff (r4 = 2). Selecting values
for rewards in the model requires domain expertise or a level of experimentation in order to
obtain values which reflect the intention of the policy.

7.2.5 Step 3 : Model analysis

The next step in the process is to analyse the models generated in the previous step using
an analysis function, Fa. The function is configured through analysis parameters, Pa =
(p1, p2, · · · ) where the number and form of parameters will vary depending on the type of
analysis to be conducted. The analysis function Fa then generates a tuple of results as:

Fa((M1,M2, · · · ,Mr),Pa) = (R1, R2, · · · , Rr) (7.11)

where the type of each result object is defined by the analysis undertaken and the result
quantifies the observed user behaviour.

Example 7.4. In order to analyse policy P1 using FACT we need to provide two analysis
parameters. A property specified in PCTL and a confidence level α. P1 may be encoded as
a PCTL property,

Φ = Rreopened
=? [F End] (7.12)

and hence
Pa = (Φ, α) (7.13)

The FACT model checking engine will return one result for each model passed to it such that:

Fa
(
(Mu

test ,M
u
ref ),Pa

)
= (Rutest , R

u
ref ). (7.14)
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where Rutest and Ruref are confidence intervals for the property Φ at the given confidence level
for the test and reference models, associated with a user u ∈ Users, respectively.

7.2.6 Step 4 : Comparer

The comparer function Fc accepts the results from the previous stage and a set of comparison
parameters CP = (cp1, cp2, · · · ) where the number and form of the parameters vary depend-
ing on the form of the results produced in the previous step and the type of comparison to
be carried out.

The function then generates a set of users UT ⊆ Users, associated with each log partition
T = (Tlabel1 , Tlabel2 , . . . , Tlabelr ), for which the comparison holds.

Fc((R1, R2, · · · , Rr),CP) = UT (7.15)

Example 7.5. For policy P1, evaluated using the FACT model analysis engine, the results
obtained are confidence intervals. In order to compare intervals we use the rules defined
in (6.6). We therefore wish to establish if

Rtest > Rref (7.16)

and, therefore, the comparison parameter is:

CP = (>) (7.17)

and the comparer function is:

Fc((Rutest , Ruref ), (>)) =

{
u if Rutest > Ruref
∅ otherwise

(7.18)

7.2.7 Step 5 : Executor

Where the comparer evaluates to true the users associated with the log partition that gen-
erated the results are stored in a list UT . These users are then assumed to be behaving
abnormally. For all u ∈ UT we wish to amend the permissions which they possess in order to
protect the process. This is achieved through an executor which can amend their permissions
through the application of a permission change rule, CR, specified in the policy using first
order logic.

Example 7.6. For policy P1 any users identified as abnormal, u ∈ UT with have the ability
to open tickets on behalf of clients, {OpenOnBehalf}, removed and hence the change rule CR
is:

∀u ∈ UT • perm′(u) = perm(u)\{OpenOnBehalf}. (7.19)
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7.2.8 Formalised policies

In order to implement the saRBAC approach we must first define a model synthesis function
Fm, a model analysis function Fa and a comparer function Fc. When using the FACT
analysis engine we use the model synthesis method outlined in section 7.2.4. The analysis
function is then implemented as an instantiation of the FACT analysis engine. Finally the
comparer function utilises the rules from rules established in (6.6).

Table B.1 then shows the formal policies as derived from the informal policies given in
Table 7.1. We note that the confidence level for each policy is unknown at this stage and
must be obtained by calibrating the policies so as to minimise false positives and false
negatives. We will consider the calibration of these values in the next chapter where we will
evaluate the approach using real-world data.

We also note that Policies P2, P5 and P6 are multi-part policies in which the results of
stage one of the policy influence stage two. When reading these policies we note that UT

in a filter refers to the users identified by the previous policy stage whilst UT in the change
rule refers the the users identified by the comparer in the current stage.

We also note that where multi-part policies are used the confidence interval in each stage
can be different. Indeed Policy P5 indicates that a higher level of confidence is required to
apply the change rule in part two of the policy.

7.3 Related work

The are several works on increasing the flexibility of access control mechanisms. These
have been focused on adding dynamism to access control decisions, usually by means of
incorporating risk and benefit values in the access control decision making process [144].
For example, Shaikh et al. [145] presented a method for risk-based access control decision,
in which risk and trust are calculated based on historic user behaviour of granted access.
Cheng et al. [146] employed Fuzzy Logic, which is quantified and used to define several
thresholds according with risk tolerance. Based on trade-off analysis of risk versus benefit
the solution grants access but with additional actions to mitigate risk depending on the
threshold. Examples of such additional actions include: stronger logging, extra charge for
the user, different access levels token. Kandala et al. [147] presents an abstract formal model
for expressing risk-based access control policies. The model is then applied to UCON access
control model [148], which is extended to accommodate risk-awareness.

However, there is a distinction between dynamic access control decisions and dynamic mod-
ification of access control policies. The approaches based on the first consider that risk
related information are encoded in the access control policy beforehand, restricting the deci-
sion making process to whether or not to grant access to a particular request. On the other
hand, it is possible to notice a number of works moving towards the dynamic modification
of the access control policies in response to detected situations.

Bijon et al. [149] presents a formalisation of an adaptive quantified risk-aware RBAC sys-
tem, identifying how to utilize estimated risk values and thresholds in the access control
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decision making. Additionally, their approach also considers that risk values/threshold can
be dynamically modified, identifying the need for monitoring, anomaly detection and risk
re-estimation functions together with mechanisms to automatically revoke roles and permis-
sions from users and roles respectively. Another approach is the Self-Adaptive Authorization
Framework (SAAF) [141], which focus on adapting authorisation policies during run-time.
SAAF has been demonstrated in the context of PERMIS authorisation system [150], in which
access control policies are dynamically modified for dealing with insider threats, such as, an
elevated number of downloads in a short time window. Ariadne [151],[152],[153] is an ap-
proach for dealing with security threats in Cyber-Physical systems by modelling the topology
of the system (its physical objects and agents) together with its security requirements. This
model is then used for conducting threat analysis and response planning at run-time about
possible future changes in the topology, such as access of an agent to a particular area, for
detecting violations of security requirements. Based on this, the approach suggests changes
in the access controls rules for mitigating the identified threats.

Similar to those approaches, our work looks for means of adapting access control policies.
However, different from them, we have focused on how to identify anomalous behaviour as
triggers for adaptation. In this context, Legg et al. [135],[154],[155] presented an insider
threat detection and analysis system. Their solution builds tree profiles of users based on
different types of logging information, and applies a semi-supervised approach to assess how
the current observations deviate from previously observed activities. In case of abnormality
detection, the system raises an alarm. Probabilistic techniques have also been used for
responding to network attacks, particularly as part of Intrusion Response Systems. [156]
employs a Markov Decision Process as planning for deciding how to respond to a detected
intrusion. Unlike this approach, our work focuses on insider threats operating inside trusted
network boundaries, which the work in [150] does not consider.

Different from these approaches, we are looking at the application level, applying our ap-
proach to socio-technical systems based on business processes, where there is a strong human
interaction. We also employ confidence level calculations for improving our decision making
process. As we have more observations of normal behaviour, the confidence in our model
(“profile”) of normal behaviour and in making decisions based on it increases, allowing us to
take different actions. Thus, adaptation is needed/useful. One clear observation from these
related work is that access to real-world data is difficult, and thus, researchers synthesize
data that are similar to that of a real-world enterprise, or use a subset of data points, or
apply insider threat detection techniques to other problem domains. In our work, we gather
a variety and volume of data observed in a modern real-world organization.



Chapter 8

Evaluation of the saRBAC
Approach

We evaluated saRBAC with a prototype implementation within the information system
running the IT support business process at the Federal Institute of Education, Science, and
Technology of Rio Grande do Norte (IFRN), Brazil. Because of the business-critical nature
of the system, we ran saRBAC as an advisory system suggesting access control modifications
that IT managers could verify instead of implementing them directly.

8.1 Implementation

Our collaborators at IFRN implemented a prototype for saRBAC using Python and followed
a service-oriented architecture as shown in Figure 8.1. This architecture allows for the
deployment of saRBAC components across several processing nodes, and thus the parallel
analysis of multiple users. The prototype was integrated into the unified system for public
administration (SUAP) as an advisory tool for IFRN management.

The Manager component co-ordinates activities in the saRBAC approach and interfaces with
the system under analysis, represented by the SUAP. The Manager also takes as input the

Policy

Model
Template

Manager

SUAP

Database

Model
Synthesis

FACT
Model 

Checker

Log
Analyser

Figure 8.1: saRBAC architecture
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policy for analysis and a model template. The Database component stores the intermediate
data produced during the analysis process.

The Manager accesses logging information from SUAP which contains the execution traces
of all business processes undertaken. The Manager passes the filter definition to the Log
Analyser component in order to partition and filter log data for users identified in the
policy definition. Trace sub sets are passed to the Model Synthesis component along with
the model template in order to construct FACT models for analysis. These models are
analysed by the FACT Model Checker and the resultant confidence intervals are returned
to the Manager which implements the comparison function and thus generates an RBAC
adaptation recommendation.

When a policy contains more than one rule, the Manager processes one rule at a time parsing
and chaining rule stages as appropriate.

8.2 Evaluation

To evaluate saRBAC, and demonstrate its feasibility to the IT management directorate, a
series of experiments using the prototype implementation were conducted by our collabora-
tors at IFRN using real data from SUAP. This section summarises the main results obtained
in these experiments, divided in three parts. We begin by describing the experiments con-
ducted to calibrate the confidence levels used for each policy (Section 8.2.1), followed by
results about the use of the approach after calibration (Section 8.2.2). Finally, we present
experiments that assess the performance of saRBAC (Section 8.2.3).

8.2.1 Preliminary experiments and confidence level calibration

For each policy it is necessary to calibrate the confidence level used to identify deviations in
user behaviour whilst minimising the number of false positives.

Let us consider a policy which examines if the probability of a user re-opening a ticket
is higher than normal. The complete log is partitioned into two trace sets for each user
such that a partition for a user u is (T utest , T

u
ref ). Models (Mu

test ,M
u
ref ) are then built for

each trace partition and analysed with reference to a PCTL property using FACT. Since
we do not know the confidence level to select we generate intervals at four confidence levels,
α = {0.8, 0.85, 0.9, 0.95}. For the example policy we are interested in triggering the policy
only if (Rtest > Rref ). Since Rtest and Rref are intervals we use the interval comparison
function (6.6). Figure 8.2 then shows the confidence intervals at each confidence level for
three simulated users.

From Figure 8.2 we can see that, in all cases, as the confidence level is increased the intervals
associated with the property analysis widen. We also note that the intervals associated with
the reference trace set are typically narrower than those associated with the test trace set.
This is because the reference set contains a larger number of observations.

The user shown in Figure 8.2a represents a user with normal behaviour. The results confirm
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Figure 8.2: Comparison of confidence intervals for a set simulated users where (a) is a user
behaving normally , (b) is a using behaving abnormally for whom insufficient observations
exist to identify abnormal and (c) is a user behaving abnormally and behaviour.

this since the intervals overlap across the range of confidence levels considered. This means
that there is no evidence that the results for this user are abnormal. We would not want
the policy to be triggered at any confidence level for this user and, based on this data. the
policy is never triggered.

The user shown in Figure 8.2b represents a user with abnormal behaviour for whom little
observation data is available. This lack of observation data means that analysis of the test
model returns wide intervals. These intervals then overlap the results for the reference model
across the range of confidence levels considered. If we were to reduce the confidence level
significantly, e.g. to 0.3, then we may find a level at which it was possible to classify the
user as acting abnormally. However at this lower level we are also likely to identify a large
number of false positives. While failing to identify this user as abnormal may be considered
as a false negative this feature of saRBAC can be seen as a positive advantage. When policy
adaptations are triggered they typically restricted the activities a user can undertake, or add
additional checks to the existing process. This is likely, therefore, to increase the work load
for the team as a whole and make the process less efficient. In addition the policy restriction
may trigger user reviews which are costly to the organisation. This level of impact is unlikely
to be acceptable based on limited observation data.

Finally the user shown in Figure 8.2c represents a user who displays abnormal behaviours
and for whom a reasonable amount of observation data is available. Using the interval
comparison function (6.6), we can see that (Rtest > Rref ) returns true for all confidence
intervals up to 0.90. At higher levels the intervals overlap and there is insufficient evidence
to say that the policy is violated [157].

Since we know that the policy should be triggered for this particular user we can use this
as the basis for calibrating the confidence level in the policy. Selecting a confidence level
α implies that there is evidence at all levels below α for the policy to hold. A confidence
level of 0.9 would then cause the policy to trigger for this user and for all users for whom
there is at least this level evidence of abnormality. Choosing a lower level may result in false
positives whilst selecting a level greater than 0.9 would not trigger the policy for this user.
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Using a single user for calibration is not advisable however, since the user selected may not
be representative of the population at large. Where many observations exist for a users
displaying abnormal behaviour the intervals may never overlap, even at very high confidence
levels. Using such a user for calibration may result in a large number of false negatives.
Indeed, it may not be possible to select a confidence level that produces zero false negatives
and false positives. Selecting a suitable confidence level for a policy may therefore require a
level of subjective analysis.

The automatic calibration of confidence levels remains a topic for further work and therefore
in our evaluation a manual calibration was carried out as follows.

Data collected for 63 users of the system was considered over a time window of 30 days and,
for users with the Client role, three different subsets were considered. Initially, we selected
users that were known to the management team for displaying undesirable behaviours. We
refer to these as “famous” users in the rest of the section. A second subset was defined as the
most active users in which we selected the users with the largest volume of handled tickets.
Finally, we selected two random clients, not present in the other sets.

For the Support role, a subset of famous users was also identified as well as the most active
users. We then chose five users who had handled a similar volume of tickets to those famous
users. Finally two random support users were selected.

In addition we created several synthetic users to exercise specific policies deemed important
by the IT managers, but which were not “triggered” by any current support user, e.g. policy
P3.

Tables 8.1 and 8.2 present the saRBAC analysis results for these users in the Client and
Support roles, respectively. The ID for each user is anonymised in both tables. For each
user and policy, we computed confidence intervals for the examined behaviour characteristic
at multiple confidence levels, and the tables report the highest confidence level, α, for which
the policy is triggered, i.e. the confidence level at which the interval result obtained for the
test traces is outside the interval obtained for the reference traces.

A ‘0’ indicates that the user does not trigger the policy at any confidence level between 0.75
and 0.99. To decide the confidence level threshold of each policy, we started to compute
confidence intervals at a confidence level α = 0.99 and analysed the obtained results, iden-
tifying any false positive/negatives.1 Next, we lowered the confidence level to 0.95 and then
in steps of 0.05 repeating the analysis at each stage.

We start with the policies targetting the Client role, whose results are shown in Table 8.1.
For policy P1 we wish to identify clients who reopen tickets more frequently than normal.
A manual analysis of the trace logs was conducted for the famous users as a baseline for
calibration. This resulted in an expectation that, for policy P1, we would expect users
101701, 101702 and 101704 to trigger the policy and that user 101703 would not. The
results for users 101702 and 101704 are as expected, with both users triggering the policy
(at 0.95 and 0.9 confidence levels, respectively). The result for user 101703 was also in line
with expectations and this user did not trigger the policy at any confidence level considered.

1This involved an independent manual analysis of the activity of these users in consultation with the IT
management team. This discussion was undertaken by our collaborators at IFRN.
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Table 8.1: Results obtained for the policies targeting the Client role. Highlighted cells
indicate those users that we wish to trigger the policy.

User type User ID P1 P6
famous 101701 0.8 0.95

101702 0.95 0.95
101703 0 0
101704 0.9 0
101705 0.85 0.95

most 101706 0.95 0.95
active 101707 0.8 0.95

101708 0 0
101709 0 0

random 101710 0.95 0
101711 0 0.8

Whilst user 101701 did trigger the policy, we found that the level at which the policy was
triggered was lower than that found for others users, i.e. 0.8 rather than 0.9. We therefore
repeated our manual analysis of the trace logs for this user. This confirmed that the result
produced by our approach was correct. User 101701 should NOT trigger policy P1. This
discrepancy was due to an error in the initial manual analysis process which is rather time
consuming and complex. Indeed this illustrates one of the benefits of the formal analysis
undertaken by our approach.

From the most active users, only user 101706 triggered policy P1. Whilst this was an
unexpected result, a manual inspection of the user’s activity traces confirmed this as correct.
The same was found for user 101710 from the random subset. Users 101705 and 101707
trigger the policy if the confidence level associated with the policy is reduced. Discussions
with the IT managers and manual analysis of the trace logs for these users agreed that the
policy should not mark them as abnormal and to do so would be deemed a false positive. A
confidence level of α = 0.9 was therefore selected for policy P1.

Policy P6 was designed to detect clients whose behaviour is considered expensive within the
Ticket Support System. This expense is encoded through rewards in our FACT model which
are associated with reopening, suspending and cancelling tickets. The results from Table
8.1 are in line with a manual analysis for the famous user set with users 101701 and 101702
triggering the policy at a confidence level of 0.95.

For the most active users, the results were unexpected, but confirmed by manually inspecting
the behaviour of the “offending” users (i.e. 101705, 101706, 101707). For the random users
we note that user 101711 would trigger the policy if the confidence level were 0.8, a false
positive, and therefore a confidence level of α = 0.9 for policy P6 was selected.

The results for the policies targeting the Support role are presented in Table 8.2.

Policy P2 handles support attendants with high rates of suspended tickets. Manual analysis
of the data highlighted users 201703 and 201708 had a suspension rate of over 50% and
these users should therefore trigger the policy. After an analysis of the results obtained, a
confidence level of 0.8 was selected, which correctly identified these as “offending” users and
noted that lowering the confidence level to 0.75 would produce three false positives for the
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Table 8.2: Results obtained for the policies targeting the Support role. Highlighted cells
indicate those users that we wish to trigger the policy.

User type User ID P2 P3 P4 P5
201701 0 0 0 0.95 0.95
201702 0.75 0 0.8 0.99 0.99

famous 201703 0.85 0 0 0.99 0.99
201704 0.75 0 0.8 0.99 0.99
201705 0.75 0 0 0.99 0.99

most 201706 0 0 0.85 0.99 0.99
active 201707 0 0 0.85 0 0

201708 0.8 0 0 0.99 0.99
201711 0 0 0 0.90 0.90
201712 0 0 0 0 0
201713 0 0 0 0.99 0.99

similar 201714 0 0 0 0 0
201715 0 0 0 0.85 0
201716 0 0 0 0.99 0.99

x1 0 0.95 0 0 0
synthetic x2 0 0.95 0 0 0

x3 0 0.9 0 0 0
x4 0 0.85 0 0 0

random 201721 0 0 0 0.99 0.99
201722 0 0 0 0 0

dataset considered.

Policy P3 deals with Support users that cancel tickets without requiring more information.
This is a very unusual behaviour for the Ticket Support System, however, guarding against
it was explicitly requested by the management team. Since this policy was not triggered by
any of the users,several synthetic users were created to ensure that the policy would trigger
as expected. Four users were synthesized: two offenders, and two regular users with similar
levels of activity a confidence level of 0.95 was then selected to separate the two types of user.
Since the results for this policy were obtained with synthetic users, it will require careful
monitoring and revision. Examining a larger dataset, i.e. the complete user base of SUAP,
may allow us to identify users displaying this behaviour.

Policy P4 deals with support users that open tickets on behalf of clients where the ticket is
subsequently abandoned. This is considered suspicious and we were not aware of any users
displaying this behaviour before running the experiment. However, the approach identified
four users with this behaviour. Users 201702 and 201704 trigger the policy at a confidence
level 0.8. A manual analysis of these users and discussion with the management team,
however, decided that these would be a false positive. Users 201706 and 201707 require a
higher confidence level to trigger the policy (0.85) and these are indeed displaying abnormal
behaviour. Selecting a confidence level of 0.85 is therefore able to distinguish between real
and false triggers for this dataset.

Finally, policy P5 addresses support users that are “lazy”, which according to the manage-
ment team is a support user with a high combined rate of suspended, cancelled, reopened
and reallocation tickets (cf. the “lazy” cost/reward structure from our DTMC model Fig-
ure 7.4). An analysis of the results obtained showed that a confidence level of 0.95 in stage
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Table 8.3: Confidence levels for each policy after calibration.

Policy Confidence Level
P1 0.90
P2 0.80
P3 0.95
P4 0.85

P5.1 0.95
P5.2 0.99
P6 0.90

one of the policy and 0.99 in stage two resulted in the policy being triggered as expected for
the calibration set. Again we found users which had not been expected to trigger the policy,
but the policy was proved correct when validated through manual data analysis. We note
however that the level of confidence is very high and may thus lead to false negatives. A
larger dataset may be required to fully calibrate this policy.

We wanted our approach to be able to differentiate between users whose behaviour is within
acceptable limits of normal and those whose behaviour is abnormal and likely to pose a risk
to the operational process. We also required that the policies were resistant to false alarms.
We believe that the calibration process has achieved this. The experiments presented so far
calibrated the confidence level threshold for each policy from Table B.1 with the resultant
confidence levels given in Table 8.3. Using these calibrated confidence levels we were able
to distinguish between users who are acting normally with respect to the reference set and
those who exhibit abnormal behaviour.

8.2.2 Validating the confidence interval

Having identified which users act normally and abnormally with respect to a policy during
the calibration stage we now wish to show that saRBAC is applicable to other trace sets.
Using a second dataset gathered for these users then allows us to validate that the policies
are not over-fitted to the calibration dataset.

The calibration dataset consists of half the data gathered from the IT support process,
days 1–30. We can therefore use the remaining data to validate saRBAC. In this section we
consider two new datasets for testing. The first consists of those log entries generated in days
31–45. By selecting a dataset which considers a smaller time window than the calibration set
we are able to identify if 30 days is required to identify abnormal behaviour. Using a smaller
set will widen the confidence interval associated with model analysis but, if abnormality can
be detected in this smaller set, then the speed with which abnormal behaviour could be
detected will also be increased.

The second dataset consists of traces from days 31–60. This second set which, like the
calibration set, consists of 30 days allows us to consider if the results found in the previous
section are applicable to other datasets from the same system captured at other points in
time.

Having identified normal and abnormal behaviours for users during the calibration stage we
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Table 8.4: Policies for the support role where #1=policy triggered on by test set one and
#2=policy triggered on test set two

User User P2 P4 P5
type ID α=0.8 α=0.85 α=0.95 α=0.99

201701 – – – –
201702 – – #2 #2

famous 201703 #2 – #1, #2 #1,#2
201704 – – – –
201705 – – – –
201706 #2 #1, #2 #1, #2 #1, #2

most 201707 – #1, #2 – –
active 201708 #2 – #1, #2 #1,#2

201711 – – – –
201712 – – – –

similar 201713 #2 – #1, #2 #1,#2
201714 – – – –
201715 #1 – #1 –

random 201721 – – #1, #2 #1,#2
201722 #1 – – –

would expect the behaviour of these users to continue in the period over which data for
the validation set was gathered. In the following analysis we therefore highlight those users
where this is not the case. Where a user is identified as no longer triggering a policy, or where
a user triggers a policy who did not previously do so, we manually analyse the trace set and,
in discussion with the management team, decide if saRBAC is operating as intended.

Whilst it would be beneficial to increase the size of the validation set to include additional
users not included in the calibration set, the manual analysis and subsequent discussion
stage is resource intensive. Due to the limited resources available this was not possible and
remains an area for further evaluation.

In this section we consider only those policies which concern support users and omit policy
P3 as this only considers synthetic users. We also note that user 201716 is omitted from the
validation set since the user was away from the office in the period over which this data was
gathered.

Table 8.4 shows the support users that triggered each policy for the analysis carried out
using each of the validation datasets.

Policy P2, ticket suspensions, is triggered for users 201703 and 201708. These are the same
users identified using the calibration set. We note however that the abnormality was not
triggered for the 15 day set (set one) indicating that, for these users, their is insufficient
evident evidence gathered in the shorter time window. This is not surprising since a lower
number of observations leads to a wider confidence interval and therefore the likelihood of
overlapping with the normal behaviour set is increased.

For the other four users identified (201706, 201713, 201715 and 201722) we find that the
analysis is working as expected and that in these time periods the behaviour identified
is different to the “normal” behaviour. Given that the process is undertaken by human
operators it is not surprising that the behaviour is inconsistent across time periods. It
is interesting to note that for users 201715 and 201722 the abnormal behaviour was not
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Table 8.5: Results obtained for the performance experiments (reported in seconds, as mean
time ± standard deviation)

Policy Log analyser Model Synthesis FACT Total

P1
0.00069 32.71 30.65 63.37
±0.00017 ±0.53 ±0.20 ±0.68

P2
0.00059 32.46 30.80 63.27
±0.000010 ±0.31 ±0.21 ±0.36

P3
0.00048 32.45 30.61 63.06
±0.0000087 ±0.35 ±0.1127 ±0.3433

P4
0.00056 32.74 30.69 63.43
±0.00004 ±0.50 ±0.31 ±0.81

P5
0.00060 32.52 30.71 63.24
±0.000024 ±0.2201 ±0.04907 ±0.2875

P6
0.0005 31.86 30.76 62.63
±0.000007 ±0.84 ±0.20 ±0.73

noticed when considering the longer time window. This would suggest that the size of the
time window is a factor in determining the behaviour of individuals. Further work is required
to identify the optimal time window to use and this may be on a per policy basis. Using
the formal specification defined in the previous chapter these time windows can be added to
policies as log filters.

For Policy P4, abandoning client tickets, we find that the users identified are consistent with
the calibration set and users are identified using both the 30 and 15 day time windows.

For Policy P5 we find that a number of users are consistently identified across both calibration
and validation tests, 201702, 201703, 201706, 201708, 201713 and 201721 and that for user
201715 the first part of the policy is triggered (for the short time window) which is similar
to the calibration set, i.e. for calibration there is some evidence of abnormality in this stage
but insufficient to trigger the policy. We also not that for user 201702 there is only sufficient
evidence of abnormality over the longer time window.

Users 201704 and 201705 do not trigger the policy in this stage. This could be because of
a change in user behaviour for the time periods considered, or because the confidence level,
α = 0.99 requires further calibration using a larger dataset.

8.2.3 Evaluation of saRBAC performance

We also conducted experiments to assess the computational overheads of our approach. The
experiments examined the performance of the saRBAC prototype when running on a single
processing node, by measuring the execution times of its three main components, i.e. Log
Analyser, Model Synthesis and FACT Model Checker. All experiments used real log data
from SUAP over a 30-day time window (the same window considered for the calibration
experiments), and involved a total of 919 tickets and 63 users (23 support users and 40 client
users). All experiments were executed on 2.2 GHz Core i7 computer with 8GB of RAM, and
were repeated three times.
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Table 8.5 presents the mean and standard deviation of the component execution times in
seconds. The analysis of each policy takes approximately one second per user (above 60 sec-
onds for the 63 users). While this overhead may seem too high for large business processes,
it must be noted that saRBAC is meant to run infrequently (e.g. every few days) because the
detection of insider threats within business processes with infrequent user activities requires
multiple days of logs. Moreover, the performance of saRBAC can be improved dramati-
cally by carrying out the essentially independent analyses required for different policies and
different users concurrently, potentially after refactoring the architecture of our saRBAC
prototype in line with existing self-adaptive system architectures [158],[159],[160],[161].

8.3 Threats to validity

8.3.1 External validity

External validity threats may arise for our approach if the characteristics of the system under
test are not representative of a wider range of systems.

By applying our approach to data logs obtained from a real-world system we have shown
that the approach is not limited to theoretical processes with well behaved parametric dis-
tributions. We also used a range of policies for the system analysis to demonstrate that
the formalisation defined in Chapter 7 is sufficient to capture real-world concerns, including
policies which require multiple stages of analysis. Although we believe that the approach is
applicable to a wide class of system processes, SUAP may not be typical of other business
critical processes. Further evaluation is required to apply saRBAC to other system processes
in order to evaluate the generalisability of our approach.

Another external threat may arise if models required to analyse the system under review
are too large for parametric model checking. We believe that under such cases alternative,
simulation based, model analysis techniques may be substituted for FACT and the modular
nature of our approach and implementation would allow for such techniques. This remains,
however, an area for further work.

8.3.2 Construct validity

Construct validity threats may arise due to the assumptions made when collecting data for
our experiments or when defining the policies for analysis. To address these problems we
made use of real-world data logs extracted from the SUAP system to evaluate our approach.
The policies were then developed in consultation with the management team at IFRN.
Certain policies were rejected from the implementation as they were not suitable for analysis
using DTMC approaches, e.g. simple log counts, however by choosing six policies we where
able to examine two different groups of users, clients and support, and a range of property
types for analysis. In addition the dataset obtained was split into two sets for confidence
level calibration and test/validation.
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8.3.3 Internal validity

Threats to internal validity may arise from our bias or in our interpretation of the experi-
mental results. The use of confidence intervals to classify difference in observed behaviours
is based by formal proofs and FACT itself is a formal verification technique which shows the
effects of observation uncertainty on system performance.

Our selection of confidence levels for policies is a manual process at present and although
a heuristic has been used to select the level, this requires further work to ensure the pro-
cess is not only robust but free of bias since it involves manual analysis and a subjective
interpretation of data.
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Chapter 9

Conclusions

In this thesis, we introduced a range of tool-supported techniques for the modelling and
analysis of real-world systems. These techniques integrate logs of observed behaviour with
tried and tested probabilistic model checking to provide models and analysis results which
more accurately reflect real-world behaviours. We demonstrated how using observation data
in both CTMC and DTMC models can support improved decision making by avoiding the
incorrect decisions which arise from using the analysis of models which do not fully capture
the complexities of real-world systems and processes.

For continuous time systems we showed how transient quality-of-service properties may be
more accurately assessed by constructing phase-type distribution models for process activi-
ties. This technique is applicable to processes where the structure of the process is well known
but the temporal characteristics are poorly represented by traditional modelling techniques.
The phase-type distribution models are fitted to logs of timing data captured from real
process instantiations, ensuring that the models generated reflect the behaviour observed.

For discrete time systems, we demonstrated how observation data can be combined with
formal verification techniques to allow for formal verification with confidence intervals. We
then showed how this technique could be used to support the identification of abnormal
behaviour patterns in a real-world IT support processes. By developing a formal definition
for abnormality detection policies, we showed how our approach is able to capture real-world
requirements, detect negative behaviours and limit the potential for users to compromise
operational processes.

In the remainder of this chapter we summarise the main contributions of the thesis and the
part they play in supporting observation-enhanced verification of operational processes.

We developed OMNI, an observation-based CTMC refinement method that significantly im-
proved the accuracy with which transient quality-of-service properties can be analysed using
CTMC models. The technique makes the CTMC more realistic through the addition of states
and transitions in the model which more accuracy represent the temporal characteristics of
the process activities. Adding states to the model not only increases model accuracy but
also increases the computational costs required for model-analysis. Our approach therefore
offers a trade off between model accuracy and size. OMNI uses a two stage approach for
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refinement. The first stage addresses the problem of modelling areas of zero density in the
behaviour of real-world activities. This is required since real activities rarely have non-zero
minimum execution times i.e. deterministic delays. Erlang distributions are used for this
purpose and we demonstrate how the error associated with the delay modelling may be com-
puted. Selecting the appropriate refinement level for the delay modelling is then achieved
through the selection of a single parameter which defines the number of states to add to the
model. The second stage refines the CTMC further through the use of phase-type distribu-
tions which model the observed holding time for each activity. Phase-type distributions can
approximate any continuous distribution, with a strictly positive density, arbitrarily closely.
This may require an infinite number of states to be added however. We therefore developed
a fitting algorithm which allows for bounds on the size of the model produced and uses a
refinement parameter to specify the termination criteria as a bound on the fitting error.

Controlling the size of models produced by OMNI is further enhanced through the use
of property-centric model refinement. This approach reduces the size of CTMC models
produced by OMNI significantly and does so without impacting on the accuracy of the
analysis provided. Our approach uses the CSL property, which encodes our transient quality-
of-service requirement, and a high level CTMC model of the process to classify states in
the model and therefore the activities which they represent. Where states are identified as
having no impact on the property analysis their refinement is not required hence reducing the
amount of computational effort required for analysis. Where states appear only once on all
paths which satisfy the CSL property the need to model delays associated with those states is
removed by amending the CSL property. Finally those states which we define as “together”
sets may have their delays combined. Since modelling delays is computationally expensive
this again reduces the size of the model and the computational expense of verification. Since
the approach makes use of the high level CTMC for the classification process this requires
little computational effort and the reduction in size of the resultant models for the systems
considered is significant. We also showed how activity refinements can be cached such that
multiple properties can be analysed without the need to refine activities more than once.

Whilst the property-centric refinement stage of OMNI helps to control the size of the models
produced, this increase in OMNI model accuracy comes at a cost. The increased size and
complexity of models leads to an increase in the amount of computational power required to
analysis these refined models. For operational processes, however, the size of the high-level
abstract models are typically small and, as such, the models produced by OMNI are still
analysable with modest resources.

The techniques developed for OMNI were implemented in a tool which we have made freely
available. In order to evaluate the tool we developed two case studies. The first utilises real-
world web-services composed as a process for services requests on a web-application. The
second was developed using a real-world IT support system implemented at a University in
Brazil. The case studies are from different domains demonstrating the generalisability of the
approach. Our experimental results showed that OMNI-refined models support the analysis
of transient QoS properties of processes with greatly increased accuracy compared to the
high-level CTMC models typically used. Furthermore, we showed that significant accuracy
improvements are achieved even for small training datasets. Where computational resources
are at a premium, we showed that using a coarse-granularity for refinements produced rela-
tively modest increases in model size whilst still improving the accuracy of model-analysis.
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For discrete time systems we developed a tool for the formal verification of discrete time
Markov chains with confidence intervals. The tool, which we call FACT, builds on the the-
oretical framework developed by Calinescu et al. [23]. FACT accepts a parametric DTMC
model defined in an extended version of the PRISM language which allows for the specifica-
tion of transition observation counts. This avoids the need for point estimates for transition
probabilities and enables the calculation of confidence intervals. We demonstrated the use
of FACT using a case study concerning a business critical web application. The PRISM lan-
guage is reused where possible to aid in model understanding and requires no modification to
the PCTL formulae. We demonstrated how the confidence interval results can be interpreted
and how invalid decisions may be avoided. Finally we showed how FACT can be applied in
a range of contexts by applying FACT to five systems from multiple application domains.
The tool and the models from each application domain have been made freely available.

Having shown how confidence intervals may be derived for models where observation data
exists we then developed an approach for the identification of abnormal behaviours using the
FACT tool. Our motivating example was based on a real-world IT support system and the
requirements considered were generated in consultation with the IT support management
team. Our approach involved the development of a formal policy framework which was able
to encode a range of policies. These policies serve as the input to our approach along with
the trace data obtained from the systems and a parametric DTMC derived from the UML
description of the operational process. We showed how filtering and partitioning rules could
be defined to allow for the analysis of user behaviours from the source trace set. We then
demonstrated how rules for model analysis and result comparison could be encoded. Finally
we showed how change rules could be defined within a role based access control system in
order to limit user permissions and hence mitigate against invalid behaviours.

We have evaluated our approach using data from a real-world system and examined the
behaviour of a set of users using the formal policies we defined. A prototype implementation
of the system was built and deployed in an advisory manner on the IT support system. The
policies defined required an initial manual calibration of the confidence level and we did this
using a set of data extracted from the log specifically for this purpose. The policies were
able to identify those users exhibiting harmful behaviours and indeed found a number of
users who had not previously been identified. A second log set was then used to evaluate
the approach and again users were correctly identified.

In order to implement the saRBAC approach a number of manual activities must be un-
dertaken which are resource intensive i.e. modelling the process, instrumenting the system,
defining formal properties from narrative specifications and calibrating parameters for saR-
BAC. This expensive will only be justified in processes for which abnormal behaviours present
significant risks to operational performance.

Finally the web based travel application and IT support system case studies used to evaluate
OMNI and saRBAC have been made available with all relevant log data. We envisage that
these case studies will be used by other researchers to gain an insight into the development
of modelling and verification techniques for real-world processes.



Chapter 10

Future Work

There are multiple ways in which the research presented in this thesis may be refined and
extended. In this chapter we present those areas which we believe are the most significant
research directions.

10.1 Updating observation-enhanced models at runtime

The techniques presented in this thesis assume that the characteristics of process activities
remain relatively constant over time. In practice this assumption may not hold in all con-
texts due to: the dynamic nature of the environment in which the process is deployed; the
experience of users who enact activities; or because the characteristics of mechanical and
software components used in the process change over time. One important research direc-
tion, therefore, is found in the investigation of techniques which are able to update models
so that they more accurately reflect the current state of dynamic real-world processes.

In practice the nature of the change to which the process activities are subject is unknown.
Changes may be broadly characterised as a drift in the observed distribution, e.g. increasing
load, or as point changes due to the process entering a new mode of operation, e.g. change
of personnel or configuration. When activities are subject to drift, models may need to be
generated continuously at runtime with the data upon which models are based extracted
from observations using a moving window. A longer window provides more data for the
model fitting algorithms but is slower to react to changes while a shorter window responds
quickly but may provide insufficient data for accurate modelling. Windows may also be
shaped to weight the value of data such that more recent observations are given a higher
weight. For systems which move between distinct modes of operation change point detection
can be difficult when the change is triggered by external factors. Once detected, all of the
data previously observed may be invalid for predicting future performance. In such cases
new models will need to be constructed using very limited data.

A number of such techniques have been previously developed for the runtime adaptation
of models [122],[123],[124],[125],[105] and integrating these with OMNI and saRBAC may
increase their applicability to a wider range of domains.
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10.2 Additional application domains

In this work we have demonstrated that both OMNI and saRBAC can be applied to a real-
world IT support system. We have also shown that OMNI is able to capture the temporal
characteristics of software components and those of human centric processes. To further as-
sess the generalisability of these approaches we would like to examine a number of additional
domains and this presents another area for future research. For saRBAC one such domain
may be health care. We would expect an increased level in the complexity of processes used
in this domain when compared to the IT support system used in our study. The policy
requirements for health care are also likely to be more complex and would help to validate
our formal policy encoding.

10.3 Efficient parametric model checking techniques

Increasing the complexity of the domains for which the saRBAC approach is applicable will
also require the development of new and novel parametric model checking (PMC) techniques.
Whilst PMC techniques have seen significant advances in recent years [114],[162],[113] they
are still computationally very expensive.

In recent work [5] we have shown how domain-specific modelling patterns may be exploited
to provide efficient PMC and provide significant reductions in the time taken for the model
checking of component based systems. Integrating these techniques with FACT and saRBAC
is therefore an interesting area of future work and may be essential in order to allow for more
complex problems to be analysed.

10.4 Alternative model analysis techniques in saRBAC

The saRBAC framework presented in this thesis has been instantiated using FACT as the
model analysis engine of choice and, as such, the requirements encoded are limited to those
which may be represented using discrete time Markov chains. However, the framework
allows for the model synthesis and analysis stages to be replaced by alternate modelling
formalisms. Using CTMCs rather than DTMCs, for example, would enable us to reason
about the normality of the temporal characteristics of users within the process, e.g. Is the
time taken for a client user to mark a ticket as complete higher than normal? The framework
is not limited to Markovian models and we could also apply traditional statistical tests such
as outlier detection or the Mann-Whitney test to allow for a wider range of policies to be
encoded.

10.5 Verification with confidence intervals for CTMCs

The FACT model checker has been shown to be applicable in a range of contexts and effective
as the model analysis engine for the saRBAC approach. FACT is, however, only applicable
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to DTMC models. Parameter uncertainty also exists within CTMC models affecting the
quality of verification results. Extending FACT to CTMC models therefore represents an
opportunity for further research. This in turn would allow OMNI to provide verification
results which quantify the uncertainty associated with transition probabilities within the
high level abstract model. FACT for CTMCs could then be used to identify abnormal
behaviour in saRBAC for policies which consider temporal features of CTMC models.

At present probabilistic model checkers provide limited support for parametric model check-
ing of CTMC models and, as such, new techniques will need to be developed to transfer
FACT into the continuous domain.

10.6 Unstructured data sources

For both the OMNI and saRBAC approaches presented in this work we have used observation
data extracted from structured data sources. Recent advances in machine learning have
introduced techniques which allow for data to be extracted from unstructured sources such
as Twitter [163],[164],[165]. An opportunity exists therefore to integrate these data sources
with probabilistic model checking in order to derive model parameters from natural language
sources. We have recently undertaken preliminary work in this area to produce a prototype
for the continuous planning of operational processes. Our solution applied natural language
processing to Twitter data to derive parameters for a route planning model represented by
a DTMC. The data extracted from Twitter was used to derive probabilities and reward
structures within the DTMC model. In this way events were detected in the Twitter stream
and used to trigger model updates and a re-verification of the model. From the updated
model we generated revised plans which better reflect the status of the real-world.



Appendix A

MLE estimation of rate parameter
for an exponential distribution

A random variable X is exponentially distributed with rate parameter lambda.

The likelihood function for λ given an independent and identically distributed distributed
sample x = (x1, x2, · · ·xn) drawn from the variable is:

L(λ) =
n∏
i=1

λexp(−λxi) = λnexp

(
−λ

n∑
i=1

xi

)
= λnexp(−λnx̄) (A.1)

where

x̄ =
1

n

n∑
i=1

xi (A.2)

is the sample mean.

The derivative of the likelihood function’s logorithm is:

d

dλ
ln(L(λ)) =

d

dλ
(nln(λ)− λnx̄) =

n

λ
− nx̄ =


> 0, λ < 1

x

= 0, λ = 1
x

< 0, λ > 1
x

(A.3)

Hence the maximum likelihood estimate for the rate parameter is:

λ =
1

x̄
=

n∑n
i=1 xi

(A.4)
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Self-Adaptation policies
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