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Abstract

With prior knowledge and experience, people can easily observe rich shape and texture

variation for a certain type of objects, such as human faces, cats or chairs, in both 2D and

3D images. This ability helps us recognise the same person, distinguish different kinds of

creatures and sketch unseen samples of the same object class. The process of capturing

this prior knowledge is mathematically interpreted as statistical modelling. The outcome

is a morphable model, a vector space representation of objects, that captures the variation

of shape and texture. This thesis presents research aimed at constructing 3DMMs of

craniofacial shape and texture using new algorithms and processing pipelines to offer

enhanced modelling abilities over existing techniques. In particular, we present several

fully automatic modelling approaches and apply them to a large dataset of 3D images

of the human head, the Headspace dataset, thus generating the first public shape-and-

texture 3D Morphable Model (3DMM) of the full human head. We call this the Liverpool-

York Head Model, reflecting the data collection and statistical modelling respectively.

We also explore the craniofacial symmetry and asymmetry in template morphing and

statistical modelling. We propose a Symmetry-aware Coherent Point Drift (SA-CPD)

algorithm, which mitigates the tangential sliding problem seen in competing morphing

algorithms. Based on the symmetry-constrained correspondence output of SA-CPD, we

present a symmetry-factored statistical modelling method for craniofacial shape. Also,

we propose an iterative process of refinement for a 3DMM of the human ear that employs

data augmentation. Then we merge the proposed 3DMMs of the ear with the full head

model. As craniofacial clinicians like to look at head profiles, we propose a new pipeline

to build a 2D morphable model of the craniofacial sagittal profile and augment it with

profile models from frontal and top-down views. Our models and data are made publicly-

available online for research purposes.
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Chapter 1

Introduction

“The human face – in repose and in movement, at the moment of death as

in life, in silence and in speech, when alone and with others, when seen or

sensed from within, in actuality or as represented in art or recorded by the

camera – is a commanding, complicated, and at times confusing source of in-

formation.” – Paul Ekman [58]

The theme throughout this thesis is how to model the 3D shape and texture variation

of some object class. With prior knowledge and experience, people can easily observe

rich shape and texture variation for a certain type of object, such as human faces, cats or

chairs, in both 2D and 3D images. This ability helps us recognise the same person, dis-

tinguish different kinds of creatures and sketch unseen samples of the same object class.

The process of capturing this prior knowledge is mathematically interpreted as statistical

modelling. One such outcome is a morphable model, a vector space representation of ob-

jects, that captures the variation of shape and texture. Any convex combination of vectors

of a set of object class examples generates a real and valid example in this vector space.

Morphable models have many applications in creative media, medical image analysis and

biometrics, by providing a useful encoding and prior statistical distribution of both shape

and texture.

Figure 1.1 demonstrates a toy example of a morphable model using triangles. The

training dataset is shown in red, the blue triangle is the mean shape, and the green triangle

is an unseen example for the dataset. When representing a set of triangles in a vector
1
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…
...

…
...

…
...

Vector Space

Dataset

1st

2nd

Figure 1.1: A morphable model of triangles. Red are the dataset shapes for training, blue

is the mean training shape and green is an unseen example.

space, those vectors describe different types of shape variation: in our toy example, the

first vector captures the size changing and the second vector captures horizontal motion

of the yellow point. (In real examples, the variations may not be so easily described.) A

certain linear combination of the first and second vectors of shape variation can represent

a green triangle, an unseen example, with both size variation and horizontal motion of the

yellow point. This new example is still within the same object class.

Statistical shape modelling is extensively studied in a variety of disciplines; for exam-

ple computer vision, where researchers focus on applications in medical imaging, biomet-

rics and the creative industries. In clinical usage, statistical shape analysis can help the

surgeon to do planning, assessment, and follow-up of operations. Statistical shape mod-

elling aims to characterise the mean shape, and the variances and covariances of different

object parts for various classes of object.

Shape, as defined by D.G. Kendall [86], is all the geometrical information that remains

when location, scale and rotational effects are filtered out from an object. In other words,

those similarity effects need to be filtered out by aligning a collection of shape when doing

shape analysis. A shape is described by locating a number of points on the outline. These

points are defined as points of correspondence on each object that matches between and

within populations. Statistical shape modelling is perhaps most commonly performed by

Principal Component Analysis (PCA) over a set of meshes, which finds the directions in
2



the vector space that have maximum variance, whilst being mutually orthogonal. This

process is feasible if and only if each mesh is reparametrised into a consistent form where

the number of vertices, the triangulation, and the (approximate) anatomical meaning of

each vertex are made consistent across all meshes. For example, given a vertex with index

i in one mesh corresponding to the left mouth corner, it is required that the vertex with the

same index in every mesh should correspond to the left mouth corner too. Meshes, every

vertex of which satisfies the above properties, are said to be in dense correspondence

with one another. This correspondence problem is easy to state informally, while it is

challenging to solve accurately and robustly between highly variable meshes. The smooth

area, such as cranium or cheek in our 3D head dataset, makes the objective measurement

of correspondence quality more difficult than that in face only dataset.

There are various ways in which such a correspondence can be established. One

promising approach is the template morphing method. Figure 1.2 describes the key in

this approach, which is to morph the template to the example shapes in the training set.

Template morphing brings shapes into dense correspondence by some combination of

global and local transformation. Template-based correspondence methods need very high

quality shape registration for good performance [151, 152]. When a template is moved

and deformed N times to fit each of N objects in some class of 3D objects, the set of

deformed templates has the same number of vertices and connectivity relationship as the

(original) template.

Unfortunately high quality 3DMMs are comparatively hard to obtain and use. To train

a model, a large and diverse set of high quality 3D scans are required. These scans need to

be brought into dense correspondence with a template morphing algorithm. High quality

data availability and non-trivial training are the main reasons for the limited adoption of

3DMMs, and there are very few readily-available 3DMM construction pipelines.

This thesis is concerned with 3D statistical shape modelling with particular refer-

ence to applications associated with craniofacial data. Statistical shape modelling is an

essential component in many 3D shape analysis tasks. In this research, we attempt to

build a mathematical and computational model of the human head - both face and cra-

nium. Traditional model building pipelines have used manual landmarking to initialise

surface alignment. However, this is extremely time consuming and laborious for large-
3
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Dense correspondence

Template morphing

Vertex i Vertex i

Figure 1.2: Template morphing for dense correspondence.

scale datasets. Here we present a fully automatic approach and apply it to a large dataset

of 3D images of the human head, the Headspace dataset, thus generating the first public

shape-and-texture 3D morphable model of the full human head: the Liverpool-York Head

Model (LYHM). The model is named as such to reflect the data collection and model

construction respectively. As illustrated in Figure 1.3, the Basel Face Model (BFM) [105]

and Large Scale Face Model (LSFM) [27] are face models and the LYHM is the only full

head model.

A full head model opens up new opportunities not afforded by existing 3D face mod-

els. For example: (i) we can reconstruct the most likely full head shape from partial data.

This allows the modelling of different hair styles onto a correctly proportioned cranium

(cranial shape usually cannot be directly observed), (ii) any part of the head shape can be

matched against population norms thus facilitating tools for craniofacial diagnoses and

surgical intervention evaluation, and (iii) the ability to complete partial views of the head
4



Figure 1.3: The proposed Liverpool-York Head Model. 1st block - shape compared to

the Basel Face Model (BFM) [105] and Large Scale Face Model (LSFM) [27]; 2nd-4th

blocks: the central head is the mean and the first four principal modes of variation are

shown.

may be exploited in biometric applications.

In the following four subsections, we introduce the four main themes presented in the

main body of the thesis, but first we motivate these. At the beginning of the research,

we treated the 2D morphable model construction as a training exercise for the full 3D

modelling. This familiarised us with the whole pipeline of morphable model construc-

tion. Furthermore 2D modelling is useful in itself. It is often useful, in terms of visual

clarity and attention focus, for the craniofacial clinician to examine shape outlines from

canonical viewpoints. After gaining familiarity with the morphable model construction

pipeline, we moved onto 3DMM construction. We proposed a fully automatic 3DMM

construction pipeline with contributions in pose normalisation method and correspon-

dence establishment method. We used this pipeline to build the first 3DMM of the full

head. When building this 3DMM, we noticed both the symmetry contour sliding problem

in the existing correspondence establishment methods, and the asymmetric shape varia-

tion in the model. In order to overcome the symmetry contour sliding problem and analyse

the asymmetric shape variation, we exploited the craniofacial symmetry and asymmetry

in template morphing and statistical modelling. Moreover, we noticed that the ear mesh

quality was not high enough. Therefore, a separate 3DMM of the ear was necessary to

represent the actual ear shape. So we used high quality 3D ear meshes from CT scans

with data augmentation to build a 3DMM of the ear. We then merged this ear model with
5
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the proposed head model.

1.1 Modelling of Orthogonal Craniofacial Profiles

In the medical analysis of craniofacial shape, the visualisation of 2D profiles is highly

informative when looking for deviations from population norms. It is often useful, in

terms of visual clarity and attention focus, for the clinician to examine shape outlines

from canonical viewpoints; for example, pre- and post-operative canonical profiles can be

overlaid. We view profile-based modelling and analyses as being complementary to that

of a full 3D shape model. Thus we present a pipeline that models 2D craniofacial profiles

in Chapter 6.

Profile visualisations should be backed up by quantitative analysis, such as the dis-

tance (in standard deviations) of a patient’s shape profile from the mean profile of a ref-

erence population. Therefore, we have developed a novel image processing pipeline to

generate a 2D morphable model of craniofacial profiles from a set of 3D head surface im-

ages. We construct morphable 2D profile models over three orthogonal planes to provide

comprehensive models and analyses of shape outline.

The morphable model of orthogonal craniofacial profiles provides two functions. Firstly,

it is a powerful prior on 2D profile shapes that can be leveraged in fitting algorithms to

reconstruct accurate and complete 2D representations of profiles. Secondly, the proposed

model provides a mechanism to encode any 2D profile in a low dimensional feature space;

a compact representation that makes tractable many 2D profile analysis problems in the

medical domain.

In summary, the contributions of this work is as follows: We propose a new pipeline to

build a 2D morphable model of the craniofacial sagittal profile and augment it with profile

models from frontal and top down views. We also integrate all three profiles into a single

model, thus capturing any correlations within and between the three profile shapes more

explicitly and clearly than is possible with PCA analysis on a full 3D model. Extensive

qualitative and quantitative evaluations reveal that the proposed normalisation achieves

state-of-the-art results.
6



1.2 3D Statistical Modelling Pipeline

1.2 3D Statistical Modelling Pipeline

Non-rigid 3D shape registration is the key component in our 3D statistical modelling

pipeline. This is also known as template morphing, and is a key component in many tasks,

such as 2D/3D image registration, morphable model construction and shape recognition.

The goal of non-rigid shape registration is to align and deform (morph) a source point set

to a target point set. By using some form of template shape as the source, morphing is

able to reparametrise a collection of raw 3D scans of some object class into a consistent

form. This facilitates full dataset alignment and subsequent 3DMM construction. In

turn, the 3DMM constitutes a useful shape prior in many computer vision tasks, such as

recognition and missing parts reconstruction.

Currently, methods that deform a 3D template to all members of a specific 3D object

class in a dataset use the same template shape. However, datasets representative of global

object classes often have a wide variation in terms of the spatial distribution of their

constituent parts. Our object class in this thesis is that of the human face/head, where

the relative positions of key parts, such as the ears, mouth, and nose are highly varied,

particularly when trying to build 3DMMs across a wide demographic range of age, gender

and ethnicity. Using a single template shape means that often key parts of the template

are not at the same relative positions as those of the raw 3D scan. This causes slow

convergence of shape morphing and, worse still, leads to end results that have visible

residual errors and inaccurate correspondences in salient local parts.

To counter this, we propose an adaptive template approach that provides an automat-

ically tailored template for each raw 3D scan in the dataset. The adaptive template is

obtained from the original template using sparse shape information (typically point land-

marks), thereby locally matching the raw 3D scan very specifically. Although this is a

pre-process that involves template shape adaptation, we do not consider it as part of the

main template morphing process, which operates over dense shape information.

In summary, the contributions of this work is as follows:

• We propose a fully automatic pipeline to build 3DMMs, with contributions in pose

normalisation and dense correspondence - in particular we proposed a fully auto-

matic registration framework using an adaptive template. We compared the pro-
7
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posed methods with our previous methods and other competing algorithms;

• We present a high quality texture map from several views of cameras for the mor-

phed template and use the texture map for texture modelling. This technique im-

proves the texture image quality, which is validated by traditional image quality

assessment methods.

• We build both global craniofacial 3DMMs and demographic sub-population 3DMMs

from more than 1200 distinct identities in the Headspace dataset [1, 57] and we

make both 3DMMs and Headspace dataset publicly available 1. To our best knowl-

edge, our models are the first public shape-and-texture craniofacial 3DMMs of the

full human head;

• We demonstrate flexibility modes of our model such that, when given a fixed face

shape, we compute the range of possible cranial shapes and vice-versa. We use a

linear regression between the shape and texture parameters against age to observe

the influence of age on craniofacial growth.

• We demonstrate the first clinical use of craniofacial 3DMMs in the assessment of

two different types of surgical intervention applied to the crania. We also provide a

fully automatic way to do facial anthropometric measurements.

1.3 Symmetric Morphing and Symmetry-factored Statis-

tical Modelling

In chapter 4, we present techniques to analyse craniofacial symmetry and asymmetry.

Most biological objects, including human heads and bodies, posses approximate symme-

tries. Often this is principally extrinsic, bilateral symmetry (i.e. reflective symmetry about

a vertical plane bisecting the object). Deviations from exact symmetry are an interesting

and potentially important geometric property in terms of modelling and understanding

3D shape variation. The degree of asymmetry may convey information about an object.

1https://www-users.cs.york.ac.uk/˜nep/research/
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For example, there is evidence that facial asymmetry is used by humans to measure ge-

netic health [81] and asymmetry in man-made objects may indicate imperfections in the

manufacturing process. For this reason, we suggest that statistical shape models should

separate symmetric from asymmetric shape variability in order to reveal interesting and

potentially subtle aspects of shape variation over population datasets.

Our symmetric deformation algorithm builds on Myronenko and Song [100], who

derived the Coherent Point Drift (CPD) point registration algorithm in the context of

both global affine deformations (CPD-affine) and local non-rigid deformations (CPD-

nonrigid). They noted that non-rigid point set registration is an ill-posed problem and to

obtain a unique solution, constraints on the solution space are required. They regularised

the non-rigid motion field using a Gaussian kernel, so that deformation varies smoothly

(‘drifts’ coherently) over the template surface.

Our hypothesis is that a restriction to symmetric deformations may improve template

morphing processes for (near) symmetric shapes; for example, it will not be possible

for the sagittal symmetry contour of the template to deform via shearing and tangential

surface sliding, which can occur in CPD-affine and CPD-nonrigid respectively. If the

shape that we are modelling has an approximate reflective symmetry, we can use this as a

powerful constraint that can be leveraged in any morphable model construction pipeline.

Thus our contribution is a new 3D shape template morphing algorithm that is suitable for

any class of shapes that has regularity associated with a plane of reflective symmetry. The

human face and full head are examples of such classes. Our approach requires strong

but not perfect symmetry, as a final stage in our algorithm morphs the symmetrically

deformed template to any asymmetries in the data. Therefore, our algorithm also permits

the decomposition of shape into symmetric and asymmetric components, which is an

interesting aspect of the study of shape variations and covariations within datasets.

We call our method Symmetry-aware CPD (SA-CPD). In SA-CPD, we symmetrise

both CPD-affine and CPD-nonrigid. In the global affine case, we remove any non-

symmetric shearing operations. In the local non-rigid case, we find the nearest symmetric

deformation, in a least squares sense, to that generated by CPD-nonrigid. These sym-

metric deformations allow us to generate a symmetric template shape that is usually very

close to the data. Finally, to account for shape detail in the data, the template uses a
9
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Laplace-Beltrami regularised projection operation.

The asymmetric variation in human head shape is much smaller than symmetric varia-

tion. The symmetric deformation algorithm facilitates the extraction of the symmetric and

asymmetric shape variation. Classical models obtained by applying PCA directly to head

shapes pools asymmetric variation with the much larger symmetrical variation. In this

thesis, we consider how to build a symmetry-factored statistical shape model in a prin-

cipled way. We address the problem with a symmetry-factored shape modelling pipeline

and a global description of the resulting morphable model.

Once built, the symmetry-factored statistical modelling of craniofacial shape opens

up new opportunities not afforded by existing 3D morphable models. Firstly, it provides

a different way to reconstruct a full head model from a profile scan beyond just using the

reflection of the profile. Secondly, we can analyze the asymmetry of multiple craniofa-

cial regions. Thirdly, we can investigate the different importance of symmetry-factored

information in different applications, e.g. face recognition or ergonomics.

In summary, the contributions of this work is as follows:

• We propose a shape template morphing approach suitable for any class of shapes

that exhibits approximate reflective symmetry over some plane. The human face

and full head are examples. A shape morphing algorithm that constrains all morphs

to be symmetric is a form of deformation regulation. This mitigates undesirable

effects seen in standard morphing algorithms that are not symmetry-aware, such as

tangential sliding.

• Our method builds on the Coherent Point Drift (CPD) algorithm and is called

Symmetry-aware CPD (SA-CPD). Global symmetric deformations are obtained

by removal of asymmetric shear from CPD’s global affine transformations. Sym-

metrised local deformations are then used to improve the symmetric template fit.

These symmetric deformations are followed by Laplace-Beltrami regularized pro-

jection which allows the shape template to capture the shape detail in the raw shape

data. The pipeline facilitates construction of statistical models that are readily fac-

tored into symmetrical and asymmetrical components. Evaluations demonstrate

that SA-CPD mitigates tangential sliding problem in CPD and outperforms other
10
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competing shape morphing methods, in some cases substantially.

• 3D morphable models are constructed from over 1200 full head scans, and we eval-

uate the constructed models in terms of age and gender classification. The best

performance, in the context of SVM classification, is achieved using the proposed

SA-CPD deformation algorithm;

• Based on the symmetry constrained correspondence output of SA-CPD, we present

a symmetry-factored statistical modelling method for craniofacial shape. Our main

contribution is to show how to build a statistical model with separate parameters for

symmetric and asymmetric variations.

• The resulting model is still linear and so can be used in place of any existing 3DMM

but with the additional ability to separate symmetric from asymmetric variation.

This include a method for symmetrisation regularised by the Laplace-Beltrami op-

erator, symmetry-aware Generalized Procrustes Analysis (GPA) and the symmetry-

factored statistical modelling method.

• We make available, for the first time, a morphable model of craniofacial symme-

try and asymmetry. Comprehensive evaluation shows that the proposed model has

significantly better performance than the standard methods.

1.4 Modelling and Merging High Resolution Ear Shape

In chapter 5, we will present research on part-based 3D morphable models, with particular

emphasis on modelling the complex shape of the ear as a separate part.

The shape of the ear has long been recognised as a means of biometric identification.

Morphable models provide powerful statistical priors on shape and so can be used in

biometric ear analysis. We present a pipeline capable of building a 3D morphable model

of the human ear from a very limited training sample of 3D ears, using data augmentation.

Deep learning can be used on 3D meshes, but a large-scale dataset is needed for train-

ing and it takes a huge effort to capture a sufficiently large number of 3D meshes. Since

3D data augmentation can generate new 3D data, it satisfies the need for a large dataset

and has become an active research field. Most 3D data augmentation methods employ
11
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Convolutional Neural Networks (CNNs) to generate the 3D data as realistically as pos-

sible. However, these works rely on an adequate morphable model. Thus, CNN-based

methods are not applicable with an inadequate morphable model i.e. one built from a

limited amount of training data.

We have 20 high quality 3D meshes of the ear [160], taken from 10 subjects, with

the left ear reflected to be compatible with the right ear shape. This is insufficient to

construct a 3D morphable model that is a good representation of the mean ear shape and

the variance and covariances of size-and-shape (form), over a large population. However,

with such a limited dataset, we construct an initial approximate model of the ear. The

model has over 7K vertices (7111) and we employ a modified version of our morphing

technique (Dai et al. [47]) to build the model, which is an extension of Coherent Point

Drift (CPD) [100]. Subsequently, 3D data augmentation is able to generate new samples

for the 3DMM construction, thereby boosting the initial morphable model in terms of its

accuracy in representing larger populations. Recently, Zhou et al. made a 2D ear image

dataset available with 55 ground-truth landmarks [155] over 600 images, partitioned into

500 training images and 100 test images. We leverage the large annotated 2D ear dataset

[155] to generate a large 3D ear dataset in the proposed data augmentation process. Our

process includes the following stages: 1) landmark-based 3DMMs fitting; 2) use of 3D

deformation to overcome the over-fitting (caused by an insufficient number of training

subjects); 3) 3D mesh editing, regularized by 2D image information.

Ear detail cannot be captured easily by a 3D head scanner. Thus there is not much

shape variation in the ear part of 3D head model. It is very useful to merge the ear

model with the head model. To merge two morphable models, the expectation is that any

sample meshes generated by one model can be perfectly merged into any sample meshes

generated by the other one. The standard method is to use patch smoothing to move the

noise data on the joint area between face and ear. However, this method omits the fact

that the edges of the face-without-ear and the ear part always mismatch badly. So it often

ends up with a discontinuous area, which is not a desirable outcome. To counter this, we

firstly use a shape alignment to align the ear mesh to the ear region of face mesh. Then we

use mesh manipulation to match the edges of the two separate parts. This is followed by

a mesh smoothing method to remove most of the small residual noise. The results show
12
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that the proposed method removes discontinuous areas in the merging process.

In summary, the contributions of this work is as follows:

• We present an iterative process of refinement for a 3D Morphable Model (3DMM)

of the human ear that employs data augmentation. The process employs the fol-

lowing stages 1) landmark-based 3DMM fitting; 2) 3D template deformation to

overcome noisy over-fitting; 3) 3D mesh editing, to improve the fit to manual 2D

landmarks.

• These processes are wrapped in an iterative procedure that is able to bootstrap a

weak, approximate model into a significantly better model. Evaluations using sev-

eral performance metrics verify the improvement of our model using the proposed

algorithm;

• We use this new 3DMM model-booting algorithm to generate a refined 3D mor-

phable model of the human ear, and we make this new model and our augmented

training dataset public;

• We merge the proposed 3DMMs of ear with the full head model, which ends up

with a part-based morphable model of the full head. This part-based morphable

model provides more shape variation and shape detail of the ear.

1.5 Overview of Chapters

The remainder of this thesis is arranged into the following chapters. In Chapter 2 we

thoroughly review the relevant literature. This is necessarily broad ranging, since this

thesis is concerned with topics from a number of fields: 3D face datasets, correspondence

establishment, Procrustes alignment and statistical modelling. The review focuses on

3D morphable models of the face. We also pay special attention to 3D facial symmetry

and asymmetry, which are explored in both correspondence establishment and statistical

modelling.

Chapters 3-6 are the main body of the thesis, covering (i) orthogonal profile modelling,

(ii) our 3D statistical modelling pipeline, (ii) symmetrical morphing and modelling, and

(iv) modelling and merging ear shape, as described in Sections 1.1-1.4 above.
13
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Finally, in Chapter 7, we review the contributions made in the thesis, highlight weak-

nesses in the work as it stands and suggest future areas for consideration and ways in

which the work could be extended.

14



Chapter 2

Literature Review

In this chapter, we provide a thorough review of relevant literature, initially taking a broad

historical perspective on shape analysis and modelling that pre-dates Blanz and Vetter’s

seminal work on 3D Morphable Models (3DMMs) [20]. The review then focuses specif-

ically on models of the facial region, giving examples of face and ear models in Section

2.2 and Section 2.3 respectively. Constructing a 3DMM is to set up a unified mathemat-

ical expression with a set of shape parameters. The general steps to build a 3DMM are

shown in Figure 2.1. According to these steps, the review covers 3D face/head datasets

(Section 2.4), correspondence establishment including both sparse data (i.e. landmarking

for initialisation, Section 2.5) and dense data (Section 2.6), Procrustes alignment (Section

2.7) and statistical modelling (Section 2.8). In Section 2.9, we pay special attention to 3D

symmetry and asymmetry, which are explored in both correspondence establishment and

statistical modelling. In Section 2.10, we review existing 3DMM modelling pipelines,

while the following section describes how to evaluate them. A final section is used to

summarise the review.

Figure 2.1: Statistical modelling flow.

15



Chapter 2: Literature Review

2.1 Historical Perspective

This section briefly highlights some key shape modelling developments that pre-date

modern 3DMMs. Early work in shape analysis was performed on 2D images. In 1942,

Thompson et al. [130] sketched transformation grids to show how one shape had to be

deformed to match another in terms of their corresponding landmarks. Kendall [85] de-

rived statistical developments concerning the shape space for Procrustes-registered data in

1984. Bookstein’s work on Thin Plate Splines (TPS) [24] was central to the development

of the related field of statistical shape analysis [56], which provides the theoretical under-

pinnings of the statistical shape modelling. Later Bookstein employed a combination of

Procrustes analysis and TPS in order to analyse shapes in terms of their landmark posi-

tions [25]. Meanwhile, relevant work was produced in Computer Vision. For example,

rigid transformation estimation between a pair of 3D shapes was solved by several Com-

puter Vision researchers including approaches based on Singular Value Decomposition

(SVD) that lead to least squares solutions are particularly popular [9].

In the 1990s, two groups of researchers Besl and McKay [18] and Chen and Medioni

[36] independently proposed the Iterative Closest Points (ICP) algorithm for rigid shape

alignment and registration. ICP cycles through three main steps: i) finding surface corre-

spondences as closest points; ii) computing the rigid transformation estimation between

them, and iii) applying the transformation to one of the surfaces to make it closer to the

other. Later several research groups investigated non-rigid registration approaches where,

for example, local affine deformations are permitted [5, 8].

Also in the 1990s, Cootes et al. developed shape models applied to 2D images, termed

Point Distribution Models (PDMs) [41]. The work is done with reference to 2D shapes,

where corresponding points are manually marked on the boundaries of a set of training

examples. The points are aligned to minimise the variance in distance between corre-

sponding points. This is done by encapsulating a Procrustes-based alignment in an itera-

tive procedure, where the mean is normalised to a default scale and pose at each iteration.

After such alignment, a standard principal component analysis (PCA) captures how the

shapes deviate from the mean shape. Cootes et al. presented Active Shape Models (ASM)

in [42], where pose, scale and shape parameters are determined in order to fit the model

to an image. This work was inspired by the earlier work on active contour models [83].
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The same research team also went on to include texture in their models to give active

appearance models [40]. They developed a set of shape modelling approaches where the

best correspondences are those that define the most compact shape model given some

quality of fit between the model and the data [50,91]. Terzopoulos and Metaxas [128] in-

troduced a physically-based approach to fitting 3D shapes. They formulated deformable

superquadrics which incorporate the global shape parameters of a conventional superel-

lipsoid with the local degrees of freedom of a spline. Kakadiaris et al. [82] presented

an integrated approach to do shape segmentation and motion estimation using a physics-

based framework.

2.2 3D Face Models

Existing 3D statistical face models mainly consist of either morphable models, multilinear

models and part-based models, as shown in Table 2.1. In the late 1990s, Blanz and Vetter

built a 3DMM from 3D face scans [20] and employed it in 2D face recognition [21]. Two

hundred scans were used to build the model (young adults, 100 males and 100 females).

Dense correspondences were computed using optical flow with an energy term dependent

on both shape and texture.

There are very few publicly-available morphable models of the human face and, to our

knowledge, none that include the full cranium. The Basel Face Model (BFM) is the most

well-known and widely-used and was developed by Paysan et al. [105]. Again 200 scans

were used, but the method of determining corresponding points was improved. Instead of

optical flow, a set of hand-labelled feature points is marked on each of the 200 training

scans. The corresponding points on a template mesh are known, which is then morphed

onto the training scan using under-constrained per-vertex affine transformations, which

are constrained by regularisation across neighbouring points [8]. The technique is known

as optimal-step Non-rigid Iterative Closest Points (NICP).

The Basel Face Model (BFM) [79] was released as both a global model and a part-

based model that is learned for four regions (eyes, nose, mouth and the rest of face). In

the part-based version, the regions are fitted to the data independently and merged in a

post-processing step. The part-based model was shown to lead to a higher data accuracy
17
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than the global model. This method and its follow-up work [15,127] are implemented by:

• Manual face segmentation into several local regions;

• Morphable model construction for each segmented part;

• A post-processing step to stitch the segmented parts.

De Smet et al. [52] proposed a method to find the optimal segmentation automatically

by clustering the vertices, which is based on features derived from their displacements.

In order to address the potential discontinuities at the boundaries of the segments, they

smoothly weight the segments to obtain regionalised basis functions for the training data.

A statistical model called the multi-linear model [22, 136, 146, 147] is employed to

statistically model the varying facial expressions. By using a multi-linear model, Vlasic

et al. [136] modelled facial shape using a combination of identity and expression variation.

Yang et al. [147] modelled the expression of a face in a different input image of the same

subject. A number of PCA shape spaces for each expression are built and combined with

a multi-linear model. A follow-up work [22, 146] used this model for a better description

of expressions in videos. When a sequence of 3D meshes is given, Bolkart et al. [22] fitted

a multi-linear model to parametrise a 4D sequence. In 2015, they demonstrated a direct

construction of multi-linear model from a set of meshes using a global optimization of

3DMM parameters along with a group-wise registration over the 3D scans [23]. Another

alternative to modelling faces with expression is to blend different shape models with

expressions, which was introduced by Salazar et al. [113] to establish correspondence

among faces with expression.

A hierarchical pyramids method was introduced by Golovinskiy et al. to build a lo-

calised model [69]. In order to model the geometric details in a high resolution face

mesh, this statistical model is able to describe the varying geometric facial detail. Brun-

ton et al. [31] described 3D facial shape variation at multiple scales using wavelet basis.

The wavelet basis provided a way to combine small signals in local facial regions which

are difficult for PCA to capture.

Claes et al. [37] explored the independent effects of the sex, genomic ancestry and

genotype on facial shape variation. The experimental results showed that a set of 20

genes has significant effects on facial shape variation.
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In 2017, Booth et al. [27] built a Large Scale Facial Model (LSFM), using the NICP

template morphing approach, as was used in the BFM, but with error pruning, followed

by Generalised Procrustes Analysis (GPA) for alignment, and PCA for the model con-

struction. This 3DMM employs the largest 3D face dataset to date, and is constructed

from 9663 distinct facial identities.

Marcel et al. [94] model the shape variations with a Gaussian process, which they

represent using the leading components of its Karhunen-Loeve expansion. This Gaussian

Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models

with B-splines and PCA models as examples. In their follow-on work, they present a

novel pipeline for morphable face model construction based on Gaussian processes [67].

GPMMs separate problem-specific requirements from the registration algorithm by incor-

porating domain-specific adaptions as a prior model.

Tran et al. [131] proposed a framework to construct a nonlinear 3DMM model from

a large set of unconstrained face images, without collecting 3D face scans. Specifically,

given a face image as input, a network encoder estimates the projection, shape and texture

parameters. Two decoders served as the nonlinear 3DMM to map from the shape and

texture parameters to the 3D shape and texture, respectively.

Tan et al. [125] employed mesh variational auto-encoders to explore the probabilistic

latent space of 3D meshes. The training is performed on the mesh directly rather than

the UV parameterization for the mesh. Genova et al. [66] presented a method for training

a regression network from image pixels to 3D morphable model coordinates, where su-

pervised training data is not necessary. Tewari et al. [129] fused a convolutional encoder

with a differentiable renderer and a self-supervised training loss in a end-to-end training

framework. Kim et al. [88] employed a deep convolutional inverse rendering framework

for faces that aimed at estimating facial pose, shape, expression, reflectance and illumina-

tion, by estimating all parameters from just a single image.

2.2.1 Critical Analysis

Over the last 20 years, research in 3DMM construction has mainly been focused on

two main techniques: 1) dense correspondence establishment and 2) statistical modelling

methods. The theme throughout this thesis is to develop better correspondence establish-
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Table 2.1: 3D face models
Basis functions Methods

Global Morphable model (PCA) [7, 20]

Global Multilinear model [22, 27, 136, 146]

Part-based Part-based model [15, 52, 127]

Localised detail Hierarchical pyramids [69]

Local Local wavelet model [31]

ment algorithms and statistical modelling methods. Most of the methods need landmarks

in either the initialization or the correction of correspondence establishment. Even some

local models require manual division of the shape into several parts. So most methods are

not fully automatic over the whole procedure.

2.3 Ear Models

The shape of the ear has long been recognised as a means of biometric identification

[2,108]. There are many existing ear recognition systems, with a recent survey by Emers̆ic̆

et al. [60] and ear biometrics continues to be an active research area [59]. Morphable

models provide powerful statistical priors on shape and so can be used in biometric ear

analysis.

Zolfaghari et al [160] described the only construction of a morphable model for exter-

nal ear shapes based on a deformation framework using diffeomorphic metric mapping.

They release high quality 3D meshes of the ear for 10 subjects [160]. This is insufficient

to construct a 3D morphable model that is a good representation of the mean ear shape

and the variance and covariances of size-and-shape (form), over a large population.

Recently, Zhou et al. made a 2D ear image dataset available with 55 ground-truth land-

marks [155] over 600 images, partitioned into 500 training images and 100 test images.

Figure 2.2 shows the 55 landmarks and their semantic annotations. These landmarks may

be used for data augmentation to reconstruct the outer ear without losing the topology

information.
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Ascending helix (0- 3)
Descending helix (4-7) 
Helix (8-13)
Ear lobe (14-19)
Ascending inner helix (20-24)
Descending inner helix (25-28)
Inner helix (29-34)
Tragus (35-38)
Canal (39) 
Antitragus (40-42) 
Concha (43-46) 
Inferio crus (47-49)
Supperio crus (50-54)

Figure 2.2: 55 landmarks on ear and their semantic annotations taken from [155].

2.3.1 Critical Analysis

High quality 3D ear data is very limited in its public availability. To our knowledge,

Zolfaghari et al. [160] published the only work on a 3D morphable model of ear, but

the morphable model is not publicly available. Zhou et al. [155] built a 2D morphable

model of the ear and made a 2D ear image dataset publicly available with 55 manually-

labelled ground-truth landmarks [155]. A large 3D ear dataset is desirable to build a

representative 3D morphable model of the ear, but a high quality 3D ear is very difficult

to collect directly. It is possible to leverage the large annotated 2D ear dataset [155] to

generate a large 3D ear dataset in some form of data augmentation process.

2.4 3D Face/Head Database

The form of a 3D face dataset is application dependent. Most face databases are face

recognition oriented. Only the Bosphorus dataset contains facial occlusions. FRGC v.2

[109] used to be the largest 3D face database. However, in 2016, MeIn3D replaced FRGC

v.2 as the largest. The BU-3DFE [150] database has various emotional expressions. Every

subject displays four intensity levels in each of six emotions. Table 2.2 lists the 3D face

databases used in research. Not all of them are publicly available. Note that our database

is new and is called the Headspace dataset and this is the first publicly-available full head

database.

The Face Recognition Grand Challenge (FRGC) has been organized for several rea-
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Table 2.2: List of 3D face/head databases. Sub.: subjects, Occl.: occlusions

Database Sub. Total Expression Pose Occl.

FRGC v.2 [109] 466 4007
Anger, happiness, sadness,

surprise, disgust, puffy
NA NA

BU-3DFE [150] 100 2500
Anger, happiness, sadness,

surprise, disgust, fear
NA NA

ND2006 [62] 888 13450
Happiness, sadness, surprise,

disgust, other
NA NA

York [76] 350 5250
Happiness, anger, eyes

closed, eye-brows raised
NA NA

CASIA [154] 123 1845
Smile, laugh, anger,

surprise, closed eyes
NA NA

GavabDB [99] 61 549
Smile, frontal accentuated laugh,

frontal random gesture

Left, right,

up, down
NA

3DRMA [19] 120 720 NA
Slight left/right

and up/down
NA

Bosphorus [114] 105 4652
34 expressions (action

units and six emotions)

13 yaw, pitch

and cross rotations
4 occl.

MeIn3D [27] 9663 12000 NA NA NA

FaceBase [117] 3500 3500 NA NA NA

sons. There were three main directions to be pursued : 1) high resolution still images, 2)

multiple still images both on the enrollment and challenge side, 3) 3D face shape. Such

databases were a challenge for teams in industry and academia. Since this dataset has

various expression, it is very challenging to solve landmark localisation in FRGC. How-

ever, the mesh quality and resolution is relatively lower than those captured by the latest

techniques.

The MeIn3D [27] database includes over 10,000 3D facial scans. It was collected by

ibug group in Imperial London College in the Science Museum. Booth et al. [27] used
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this dataset to construct a large scale 3D morphable model of face. They aimed at 3D face

reconstruction and surgical planning. However, this dataset is face-only and not made

public yet. The 3D mesh in this dataset composes of about 60,000 vertices joined into

120,000 triangulated faces associated with a high resolution texture image. Meta-data,

including gender, age and ethnicity, is provided to build specific demographic model and

analyze the shape variation for certain demographic group.

The FaceBase [117] dataset collects 3D face meshes along with DNA information.

This dataset includes 35 age groups from 3 to 40 years old. It aims at collecting 50 males

and 50 females in each age group. They released their measurements of craniofacial

shape. This dataset has the potential to explore the relation between craniofacial shape

and gene information.

2.4.1 Critical Analysis

The MeIn3D and FaceBase dataset for craniofacial researchers contain a large amount of

3D face scans, but the full cranium is not included. The only other full head (including

full cranium) dataset that we are aware of is that of the Size China project, but there is

no 3DMM developed from Size China data. It is expensive for researchers to get access

to Size China. Meanwhile, our Headspace dataset is the only full head dataset publicly

available and free for researchers, which is why this work is the first to generate a publicly

available 3DMM of the full head.

2.5 Facial Landmarking

In this thesis, we use template morphing methods to establish dense correspondences.

Such methods need an automatic initialisation to bring them within the convergence basin

of the global minimum of alignment and morphing. Automatic initialisation is to align

the input 3D data to the template, which demands 3D facial landmarks to act as sparse

correspondences. The landmark detection can be done over two major data resources: 1)

detection directly on the 3D mesh, 2) detection on the associated registered 2D image and

project these 2D landmarks onto the 3D mesh.

Facial landmarking algorithms can be grouped into three noteworthy classes: holistic
23



Chapter 2: Literature Review

2D Landmarks 
Detection

Holistic methods

Whole face

Constrained Local 
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Regression Based

Local patch/whole 
face

Local patch

Figure 2.3: 2D facial landmarks detection systems.

methods, Constrained Local Model (CLM) methods, and regression-based methods [145].

These classes of methods may use pixel values or extracted features on the face or in local

facial patches around the landmarks, as summarised in Figure 2.3. The following three

subsections discuss these approaches.

2.5.1 Holistic Methods:

Cootes et al. [40] introduced the Active Appearance Model (AAM) which aims at fitting

the facial images with a small number of coefficients using a statistical model. AMM

consists of the global facial shape model and the holistic facial appearance model, which

can be learned by PCA. The parameters appearance model control the shape and texture

variation according to

x = x̄+ ψsα (2.1)

g = ḡ + ψtα (2.2)

where x̄ is the mean shape and ḡ is the mean texture, ψs and ψt include the shape and

texture variation in the training set. The appearance model can be learned from a set of

holistic pixel values or extracted features, such as SIFT [84] and HOG [49]. In order to

locate the landmarks, the learned appearance and shape models are fit to the test images
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for searching the best match. As a classic approach of facial landmark detection and pose

estimation, many improvements over the original AAM have been proposed [74, 132].

Matthews and Baker [96] introduced an inverse compositional image alignment algorithm

to solving the AAM fitting problem. This demonstrated that the appearance variation

could be pre-computed and extended to use a 2D similarity transformation.

2.5.2 Constrained Local Models

The CLM [12, 13, 45] strategies locate facial landmarks based totally on the global facial

shape models as well as the independent local appearance of each landmark. The AAM

approach learns the appearance model for the whole face, while CLM models a set of

local pixel values or extracted features [10]. The local features make it easier to deal with

illumination variations and occlusion.

In this thesis, we make use of the Zhu and Ramanan [157] face detector and land-

marker, which follows the CLM approach. Zhu and Ramanan [157] use a tree structured

part model of the face, which both detects faces and locates facial landmarks. One of the

major advantages of their approach is that it can handle extreme head poses even at rela-

tively low image resolutions. A mixture of trees model is used as a part for every facial

landmark. Global mixtures are subject to capturing topological adjustments because of

perspective. Such mixtures for different viewpoints are shown in Figure 2.4. Zhu and

Ramanan [157] demonstrated that the global mixtures can be employed to summarise the

motion of deformation for a single perspective. Each tree can be represented in a linearly-

parameterized and tree-structured way [148] . The score of a configuration of the parts L

can be defined as:

S(I,L,m) = AppM(I,L) + ShapeM(L) + αm (2.3)

where I is the input image. AppM indicates appearance model, the evidence of which

is to place a viewpoint template for part. Appearance model is built based on extracted

features (e.g. HoG feature) other than directly on pixel values. ShapeM indicates shape

model , the score of which is defined as mixture-specific spatial arrangement of parts. m

indicates a mixture of one mixture-of-trees model. αm is a scalar bias in terms of mixture

m.
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Figure 2.4: Mixture-of-trees model taken from [157] encodes topological changes due to

viewpoint.

2.5.3 Regression Methods

The regression-based strategies use machine learning methods to learn the mapping from

2D images to the landmarks [32, 53, 158]. The main difference from the previous two

classes of methods is that regression methods normally do not construct any explicit

global face shape constraints. The regression based techniques can be categorized into

direct regression methods [144] and cascaded regression methods [54]. The former strate-

gies predict the landmark positions in one iteration with no initialization, while the latter

methods perform cascaded prediction and they normally require landmark ground-truth

for learning. The regression-based methods using deep learning have a trend in prediction

of 3D landmarks from 2D images [32, 53, 54].

2.5.4 Critical Analysis

It is less computationally expensive to detect landmarks on 2D images and project to the

3D mesh, compared to doing this directly on the 3D mesh [44]. More importantly, there

are several publicly available pose-invariant 2D facial landmarks detection systems. We

are aware of the recent trend in prediction of 3D landmarks from 2D images [32, 53, 54].

This can detect the repeatable facial landmarks from different pose, but it needs to solve

the bias between 2D view and actual 3D locations.

2.6 Correspondence Establishment

Correspondence establishment is a very challenging problem regarding the fact of non-

linear shape representation and non-rigid shape deformation. The main approach to dense

correspondence is shape registration. As shown in Table 2.3, many methods are provided
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Table 2.3: Registration methods

Transformation Examples

Rigid Transformation all rigid cases

Rigid Transformation with Nonrigid Deformation [4, 34, 107]

Nonrigid Deformation [8, 29, 30, 80, 92, 101, 102]

to register a mesh using different transformations. Four main types are common: rigid

transformation, rigid deformation followed with nonrigid deformation and nonrigid de-

formation.

Rigid transformation follows the assumption that the objects can be registered by a

Euclidean transformation consisting of rotation and translation [17,64,73]. This transfor-

mation, which has 6 Degrees of Freedom (DoF), is applied for all the points. When global

scaling is also permitted, this is termed a similarity transformation.

Rigid transformation with non-rigid deformation allows surface to undergo a combi-

nation of global rigid transformations and local non-rigid deformation. Allen et al. [4]

used a skeleton template for articulation. As related to other joints by rigid transforma-

tion, each joint allows for some DoF. Pekelny et al. [107] employed prior information

of bone to estimate the transformations. Chang and Zwicker [34] used a finite set of

rigid transformations to estimate the global transformations. Local deformations can be

estimated by blending the transformations of the adjacent parts [34].

Nonrigid deformation methods include more generic and local deformations. There

are two ways to perform deformation: displacement fields [67,101] and local transforma-

tion [8, 92]. In the following five subsections, we describe leading non-rigid registration

methods that are relevant to this thesis.

2.6.1 Non-rigid ICP

Amberg et al. [8] proposed the optimal-step nonrigid iterative closest point (NICP) frame-

work, which extended Iterative Closest Point (ICP) to nonrigid deformations. Like ICP,

there is an iteration loop that finds closest points between source and target shapes, which

helps retain the convergence property of ICP. However, rather than the source moving
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rigidly, small changes in movement are permitted between neighbouring vertices with

mesh connectivity. Following Alen et al. [6] they define per-vertex locally affine deforma-

tions. Since these are under constrained, regularisation is necessary and this is achieved

by minimising the weighted difference of affine transformations between neighbouring

mesh vertices. The weighting is relative to other items in the cost function (primarily the

sum of squared differences between corresponding vertices) and can be thought of as a

mesh stiffness, which is gradually reduced through the iteration sequence. Regularised

movement and deformation are termed an optimal step, which is achieved via a single

linear solve within each iteration, for some level of mesh stiffness.

2.6.2 Global Correspondence Optimization

In contrast to rigid ICP, Li et al. [92] showed that using proximity heuristics to determine

correspondences is less reliable when large deformations are present. Instead of estimat-

ing approximated corresponding points alone, the algorithm simultaneously solves for

correspondences, confidence weights, and deformation field within a single non-linear

least squares optimization, using the Levenberg-Marquardt algorithm. The global cor-

respondence optimization solves simultaneously for both the deformation parameters as

well as the correspondence positions.

2.6.3 Coherent Point Drift

Myronenko et al. consider the alignment of two point sets as a probability density estima-

tion [100] and they call the method Coherent Point Drift (CPD). There is no closed-form

solution for this optimisation, so it employs an EM algorithm to optimize the Gaussian

Mixture Model (GMM) fitting. Algorithms are provided to solve for several shape defor-

mation models such a affine (CPD-affine) and generally non-rigid (CPD-nonrigid). The

‘non-rigid’ motion model in [100] employs anM×M Gaussian kernel G for motion field

smoothing, and the M-step requires solving for an M × 3 matrix W that generates the

template deformation (GMM motion field) as GW. Such motion regularisation is related

to motion coherence, and inspired the algorithm’s name. The approach of CPD [100] is

to transform the point registration problem into a probability density estimation problem.
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The template point set is represented as a Gaussian Mixture Model (GMM), where the

means of the mixture components are situated at M template points, ym, in the template

point set, Y. The Gaussian distribution around these points is equal for all points, and

isotropic with variance σ2. The CPD algorithm adjusts the position of the mixture com-

ponents and the variance parameter to maximise the posterior probability of the GMM

model generating the N data points xn in the data point set, X.

There is no closed-form solution for this optimisation and so the usual two-stage it-

erative procedure is adopted, the Expectation-Maximisation (EM) algorithm. In the ex-

pectation step (E-step), the probabilities of correspondence between template and data,

P are computed, initially using assumed parameters for the GMM. i.e. the initial tem-

plate position and shape, and a suitable estimate of isotropic variance σ2. A given entry

Pm,n = P (m|xn) in P is a posterior probability computed using Bayes theorem as:

P (m|xn) =
exp

− 1
2

(
||xn−ym(θ)||2

σ2

)

∑M
k=1 exp

− 1
2

(
||xn−yk(θ)||2

σ2

)
+ (2πσ2)

3
2 ωM

(1−ω)N

(2.4)

where ω is the weighting of a uniform distribution added to the GMM to account for data

noise. The symbol θ indicates that the template points are deformed according to the

current estimate of the template deformation parameters.

The maximisation step (M-step) then optimises the GMM parameters, based on these

expected correspondence probabilities, and this two-step process iterates until conver-

gence. Myronenko and Song [100] present three motion models for deformation of the

template which they term (i) rigid, (ii) affine and (iii) non-rigid. Their ‘rigid’ motion

model is, assuming the R3 implementation, a 7-parameter similarity transform includ-

ing a 6-DOF 3D rigid transform and a global scale parameter, whereas the affine motion

model is the standard unconstrained 12 parameter formulation. For the affine case they

optimise for

B = fB(X,Y,P), t = ft(X,Y,P) , σ2 = fσ(X,Y,P) (2.5)

where B is an affine transformation matrix (excluding translation), t is a translation vector

and σ2 is a scalar representing variance. We omit the functional forms of fB, ft, fσ given

in [100] due to page restrictions.
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The CPD method was has been extended by various groups [70, 78, 133, 137]. Com-

pared to TPS-RPM, CPD offers superior accuracy and stability with respect to non-rigid

deformations in presence of outliers. A modified version of CPD imposed a Local Lin-

ear Embedding topological constraint to cope with highly articulated non-rigid deforma-

tions [65]. However, this extension is more sensitive to noise than CPD. A non-rigid

registration method used Students Mixture Model (SMM) to do probability density es-

timation [156]. The results are more robust and accurate on noisy data than CPD. Our

morphing technique (Dai et al. [47]), a hierarchical parts-based CPD-LB morphing frame-

work, is able to avoid under-fitting and over-fitting. It overcomes the sliding problem to

some extent, but the end result still has a small tangential error.

Recent techniques emphasized intrinsic models and performed isometric deformation.

Intrinsic geometry concerns geometry properties, such as face area and angle. Jain et

al. [80] sought a low-dimensional embedding method to preserve all pairwise geodesic

distances. [29] used generalized multidimensional scaling to embed one mesh in another

for partial mesh matching. Based on previous work, Bronstein et al. [30] used a different

distance measurement known as diffusion distance and Gromov-Hausdorff distance to

deal with topological noise. The result in [102] demonstrated that a single correspondence

was able to be established for all points by means of the heat kernel.

2.6.4 Laplace-Beltrami Mesh Manipulation

The Laplace-Beltrami (LB) operator is widely used in 3D mesh manipulation. The LB

term regularises the mesh manipulation in two ways: 1) the manipulated points on the

mesh template are forced to move towards their corresponding position on the raw 3D

scan; 2) all other points in mesh template are moved as rigidly as possible regarding the

manipulated points’ movement, according to an optimised cost function.

Following Sorkine et al. [121], the idea for quantifying the rigid deformation energy

is to sum up the deviations from rigidity. Thus, the energy functional can be formed as:

E(S′) =
n∑
i=1

wi

∑
j∈N(i)

wij‖(p′i − p′j)−Ri(pi − pj)‖, (2.6)

where we denote a mesh by S, with S′ its deformed mesh and R is a rotation. The mesh

consists of n vertices and m faces. Also N(i) is the set of vertices connected to vertex
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i. The parameters wi, wij are fixed cell and edge weights. Note that E(S′) relies on the

geometries of S, S′, which is also on the vertex positions p, p′. Specifically, since the

reference mesh (our input shape) is fixed, the only variables in E(S′) are the deformed

vertex positions p′i. The gradient of E(S′) is computed with respect to the positions p′.

The partial derivatives p′i can be written as:

dE(S′)

dp′i
=
∑
j∈N(i)

4wij

(
(p′i − p′j)−

1

2
(Ri + Rj)(pi − pj)

)
(2.7)

Setting the partial derivatives to zero, each p′i represents the following linear system of

equations: ∑
j∈N(i)

wij(p
′
i − p′j) =

∑
j∈N(i)

wij

2
(Ri + Rj)(pi − pj) (2.8)

The linear combination on the left-hand side is the discrete Laplace-Beltrami operator

applied to p′, hence the system of equations can be written as:

Lp′ = b, (2.9)

where b is an n-vector whose i-th row contains the right-hand side expression from (2.8).

We also need to incorporate the modeling constraints into this system. In the simplest

form, those can be expressed by some fixed positions

p′j = ck, k ∈ F , (2.10)

where F is the set of indices of the constrained vertices.

2.6.5 Parametrisation Methods

Parametrisation is another approach to shape correspondence. Parametrisation of shape

allows points insertion, points sliding, and points deletion to establish correspondence.

Some methods [33] use geodesic distances between each landmark to insert correspond-

ing points. Others tend to find the best parametrisation among all the subjects [50].

Contour Subdivision: Correspondences can be found by localisation of salient fea-

ture points (‘landmarks’) and then by dividing the length of the contour equally in terms

of geodesic distances between each landmark. Landmarks are detected and labelled by

virtue of their learned local properties and their relative configuration. Relative local
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properties can be enforced by a model-fitting approach based on sample consensus, such

as RANSAC [33].

Minimum Description Length: Davies et al. [50] posed the correspondence estab-

lishment as one of finding the best parameterisation for each shape in the training set. The

algorithm selects the set of parameterisations by minimising the description length of the

training set. This objective function captures both the model complexity itself and the

data values required to express each of the training scans with the model.

2.6.6 Critical Analysis

There exists lots of correspondence establishment methods including template morphing,

isometric deformation and shape parameterisation. The most recent progress in 3DMM

construction pipelines reveals that template morphing method is a better choice in this

case than other methods [124]. The goal of template morphing is to align and morph a

source point set (or mesh) to a target point set. By using some form of template shape

as the source, non-rigid shape morphing is able to reparametrise a collection of raw 3D

scans of some object class into a consistent form. This is feasible when the optimisation

of a cost function forces the template to morph towards the shape of target mesh. The cost

function can be defined as a distance error or a functional energy between the morphed

template and the target mesh. The most recent progress has a trend in correspondence

matching by deep learning [28, 119, 142]. Once trained, correspondence matching can be

a real-time process. Lots of features in the face can be used for the optimisation of the cost

function. However, this is not the case in cranium, which makes it a more complicated

problem than face-only template morphing.

With correct correspondences, a 3DMM is able to sensibly describe the shape varia-

tion within the object class [123]. The ground-truth of dense correspondence is required

for the evaluation of correspondence accuracy. When the ground-truth of dense corre-

spondence is often unknown, the manual landmarks can be used as the ground-truth in

evaluation [123, 124]. Based on this evaluation metric, Ericsson et al. [61] used the mean

absolute distance, which is calculated between the manual landmarks and points corre-

sponding to the same landmarks in a mesh template, for benchmarking.
32



2.7 Procrustes Alignment

2.7 Procrustes Alignment

In some techniques in the literature, establishing correspondences and attaining align-

ment are tightly coupled, whereas in others they are more separate. In previous section,

we consider the tightly coupled methods and in following section, we consider the stan-

dalone alignment procedure GPA [71, 72, 126], which operates on the assumption that

correspondences are known. It is of course possible to realign, if there is good rationale

to do so, using GPA after correspondences have been found using any method.

We now briefly recap the well-known Procrustes alignment procedure. The collec-

tion of scans in dense correspondence are subjected to Generalised Procrustes Analysis

(GPA) to remove similarity effects (rotation, translation, scale), leaving only shape in-

formation. Let X and Y be a pair of (m × n) matrices representing two objects with n

corresponding points in m dimensional space. Full Procrustes alignment seeks an opti-

mal similarity transformation with (R, t, s) denoted as rotation, translation and scaling

respectively, such that

(R, t, s) = arg min
R,t,s

||s(RX + tuT)−Y||22 (2.11)

where u is an n-dimensional column vector of unit values. If one is interested in form

models, the scaling is unity, otherwise it is determined by ensuring X and Y have the

same mean (or RMS) distance to centroid. The translation component can be eliminated

by centering all shapes on their centroids. The solution to the rotation can readily be

found using Singular Value Decomposition (SVD).

Generalising the above to many sets of corresponding points, Generalized Procrustes

Analysis (GPA) is a widely used alignment method in statistical modeling for aligning

training datasets. It aims to align to the mean shape of the dataset, but the mean shape

depends on alignment and so the GPA process is iterative, as follows:

1. Set the initial estimate of the mean shape to one example from the data set (e.g. the

first or the nearest to mean size);

2. Align all the remaining shapes to the estimated mean shape (updated in every loop);

3. If the estimated mean has changed significantly, go to step 2.

The convergence of GPA alignment is detected by the stabilization of the mean shape.
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2.7.1 Critical Analysis

A collection of scans in dense correspondence can be subjected to Procrustes alignment

to remove similarity effects (rotation, translation, scale), leaving only shape information

where GPA is the standard method. Since the size of human face grows with age, it

is of great interests to model this motion of face growth. So it is still questionable to

remove scaling among the similarity effects when doing Procrustes analysis. In our case,

we suggest that we should retain the size information in constructing 3DMMs of the

face/head.

2.8 Statistical Modelling

Statistical modelling is the final step of 3DMM construction. It represents shape using

a reduced set of parameters and models their multivariate distribution. The number of

parameters is small relative to 3N where N is the number of 3D points in the mesh. PCA

is one form of this that decorrelates the parameters that control shape variation. The

standard method (PCA) and recent progress are discussed in the following sections.

2.8.1 Principal Component Analysis

The processed meshes are statistically analysed, typically with Principal Component Anal-

ysis (PCA), generating a 3DMM as a linear basis of shapes. This allows for the gener-

ation of novel shape instances. Each deformed template is represented by p 3D points

(xi, yi, zi) and is reshaped to a 3p row vector. Each of these vectors is then stacked in a

k × 3p data matrix, and each column is made zero mean. Singular Value Decomposition

is applied from which eigenvectors are given directly and eigenvalues can be computed

from singular values. This yields a linear model as:

X∗ = X̄ + PU = X̄ +
k∑
i=1

PiUi (2.12)

where X̄ is the mean head shape vector and P is a matrix whose columns U = [U1, ..., Uk]

are the eigenvectors of the covariance matrix. The vector P holds the shape parameters
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{Pi}, that weight the shape variation modes which, when added to the mean shape, model

a shape instance X∗.

2.8.2 Gaussian Process Morphable Model

Marcel et al. [94] employed Gaussian process (GP) to statistically model the shape vari-

ations. The modelling by GP is represented by the leading components of its Karhunen-

Loeve expansion. A Gaussian Process Morphable Model (GPMM) uses manually defined

arbitrary kernel functions to describe the deformation’s covariance matrix. This enables

a GPMM to aid the construction of a 3DMM, without the need for training data. The

posterior models (PMs) of GPMMs are regression models of the shape deformation field.

Given partial observations, such posterior models are able to determine what is the poten-

tial complete shape. A posterior model is able to estimate other points’ movements when

some set of landmarks and their target positions are given.

A Gaussian Process Morphable Model (GPMM) uses manually defined arbitrary ker-

nel functions to describe the deformation’s covariance matrix. This enables a GPMM to

aid the construction of a 3DMM, without the need for training data. The posterior models

of GPMMs are regression models of the shape deformation field. Given partial observa-

tions, such posterior models are able to determine what is the potential complete shape. A

posterior model is able to estimate other points’ movements when some set of landmarks

and their target positions are given.

Instead of modelling absolute vertex positions using PCA, GPMMs represent the

shape variation as a vector field u from a template X ∈ Rp×3 towards a target shape

X′ represented as

X′ = X + u(X) (2.13)

for some deformation vector field u ∈ Rp×3. We model the deformation as a Gaus-

sian process u ∼ GP (µ,k) where µ ∈ Rp×3 is a mean deformation and k ∈ R3×3 a

covariance function or kernel. The core idea behind this approach is that a parametric,

low-dimensional model can be obtained by representing the Gaussian process using the r

leading basis functions ψi ∈ Rp×3 of its Karhunen-Loève expansion:

u = µ+
r∑
i=1

αi
√
λiψi, αi ∈ N (0, 1) (2.14)
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Since GPMMs have much more freedom in defining the covariance function, much

more shape variation is modelled when compared to standard PCA models. However, the

shape generated by such models may not well-represent the shape required.

2.8.3 Statistical Modelling using Auto-encoder

Recently Ranjan et al. [111] introduced a Convolutional Mesh Autoencoder (CoMa) con-

sisting of mesh downsampling and mesh upsampling layers with fast localized convolu-

tional filters defined on the mesh surface. Bagautdinov et al. [11] proposed a method to

model multi-scale face geometry that learns the facial geometry using UV parameteri-

zation for mesh representation, which started with the observation that both global and

local linear models can be viewed as specific instances of autoencoders. This approach

featured a variational autoencoder with multiple layers of hidden variables that capture

various level of geometrical details.

2.8.4 Critical Analysis

PCA is a very well known and widely used procedure that works well for linear shape

spaces. Gaussian processes and auto-encoders can replace PCA in statistical modelling.

Deep learning methods may be used methods, but are not the focus of the thesis.

2.9 3D Facial Symmetry and Asymmetry

Thesis contributions include symmetric morphing and explicit modelling of symmetric

and asymmetric shape variation. Most biological objects, including human heads and

bodies, posses approximate symmetries. Often this is principally extrinsic, bilateral sym-

metry (i.e. reflective symmetry about a vertical plane bisecting the object). Deviations

from exact symmetry are an interesting and potentially important geometric property in

terms of modelling and understanding 3D shape variation. The degree of asymmetry may

convey information about an object. For example, there is evidence that facial asymmetry

is used by humans to measure genetic health [81] and asymmetry in man-made objects

may indicate imperfections in the manufacturing process.
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There is a large body of work on detecting symmetries in images [104], 2D shapes, 3D

meshes and point clouds. These symmetries could be exact or approximate [98], extrinsic

[110] or intrinsic [103], partial [104, 118], hierarchical or full [103]. Once detected, this

enables symmetry-aware mesh processing [68] to take place in which symmetries help

regularise and denoise a range of processing tasks.

The geometric morphometrics community [87, 89, 90, 95] have built models of devi-

ations from symmetry, though this has largely been in 2D. Savriama et al. [115] present

a decomposition of asymmetric shape into a symmetric shape and asymmetry variation.

There are many works on how to measure facial asymmetry variation. There is much

literature from both the Computer Vision perspective [35, 93, 97, 159] and the Biology

perspective [38, 75, 89].

The ICP based approach to computing the symmetry plane of bilateral objects in point

sets [51, 143, 153] employed a rigid-body transformation-based approach to estimate the

symmetry plane. The rigid-body transformation called ICP algorithm is an iterative rigid

shape alignment algorithm developed by Besl et al. [18]. Given some shape data, with

any shape structures that we wish to align the data to. We can refer to points only and

thus ICP can be summarised in three discrete iterative steps, as follows: 1) Compute the

closest points; 2) Compute the aligning rigid transformation; 3) Apply the aligning rigid

transformation. The major advantage of this approach is to benefit from the ICP algorithm

relying on known closed-form solutions for the absolute orientation problem [9,63] to find

transformation matrix. However, computing the symmetry plane from the optimal rigid-

body transformation is an ill-posed problem and has different solutions.

The concern about facial asymmetry analysis is that most of the existing symmetry

plane estimation methods took no consideration of accurate correspondence between the

shape and its reflection. The closest point correspondence searching method is commonly

used in the symmetry plane estimation methods. However, the closest point is obviously

not the best choice as there are a lot of more accurate correspondence methods [8,92,100].

2.9.1 Critical Analysis

Craniofacial symmetry and asymmetry are very interesting properties to exploit in tem-

plate morphing and statistical modelling. Craniofacial symmetry can be used as a corre-
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spondence constraint, which has the potential to improve the accuracy of correspondence.

Statistical shape models should separate symmetric from asymmetric shape variability in

order to reveal interesting and potentially subtle aspects of shape variation over population

datasets.

2.10 Existing 3DMM Construction Pipelines

A 3DMM construction pipeline is an automatic procedure that includes initialisation,

dense correspondence establishment, alignment and statistical modelling methods. The

input is a 3D face dataset and the output is a 3D morphable model. The pipeline should

be able to be demonstrated on a publicly-available dataset. We compare the two recent

works of 3DMM construction pipeline: the LSFM pipeline (2017) [27], and the Basel’

Open Framework (2017) [67]. Later in the thesis, we compare these pipelines with the

one that we propose, which is called the LYHM pipeline.

2.10.1 LSFM Pipeline

LSFM used a 2D facial landmarker to detect 2D facial landmarks and then project them

onto 3D mesh. The 3D landmarks are used to globally align all meshes to a face template

mesh. With such a large cohort of data, there will be some convergence from either

landmarking error or NICP. They employed an error pruning process to avoid undesirable

deformation results because of the failures of algorithm convergence. Then the registered

data is processed by GPA for alignment, and PCA for the shape variation modelling.

2.10.2 Basel Open Framework

Basel Open Framework (OF) [67] requires manual landmarks for the initialisation of reg-

istration. They employed GPMM registration to establish dense correspondence, where

the model is obtained by modelling the possible deformation of a reference mesh, using a

Gaussian process. This initial GPMM models not the actual shape variation but the pos-

sible deformation defined by a combination of handcrafted Gaussian kernels. They have

five level regularisation terms corresponding to five parts in the face. The deformation
38



2.11 Evaluation Criteria

Table 2.4: Pipelines comparison

Initialisation Dense correspondence Alignment Modelling

LSFM Automatic facial landmarks NICP with error pruning GPA PCA

OF Manual landmarks needed GPMM registration GPA GP

of ear is the most regularised and the nose is the least regularised. There usually exists

much noise in the ear region of 3D mesh. More regularisation makes the ear deformation

more robust to the noise. In order to capture the detail of local region, less regularisa-

tion enables more flexible deformation. Then the registered data is subjected to GPA to

remove similarity effects. The shape variation is modeled by Gaussian process using the

leading components of its Karhunen-Loeve expansion. The 3DMM construction pipeline

comparison can be seen in Table 2.4.

2.10.3 Critical Analysis

Well-known 3DMMs of the human face are the BFM and LSFM, which also present their

own facial 3DMM construction pipelines. The LSFM pipeline used the same NICP tem-

plate morphing approach as the BFM pipeline, but improved by an error pruning method.

The new version of the BFM has adopted the GPMM registration framework for corre-

spondence establishment and the Gaussian process for statistical modelling. They are

widely used in 3D face reconstruction from 2D images. LSFM uses its automatic land-

marking system on synthetic images. The OF needs manual landmarks, which is highly

time-consuming. We aim to enable fully-automatic 3DMM construction of the full human

head and we compare the LSFM and OF pipelines with our proposed pipeline in Chapter

3.

2.11 Evaluation Criteria

For quantitative evaluation of the 3DMM construction pipelines, three performance met-

rics are used for evaluation, compactness, generalization and specificity [123].
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2.11.1 Compactness

The compactness of the statistical shape model describes the number of parameters re-

quired to express some fraction of the variance in the training set used to construct that

model. A more compact model used fewer parameters to express a given fraction of

variance, or expresses a bigger fraction of variance for a given number of shape parame-

ters. So compactness measures the efficiency of a model to capture the shape variability.

Compactness can be defined as:

C(m) =

∑m
i=1 αi∑N
i=1 αi

. (2.15)

where αi is the i-th eigenvalue, m is the number of shape parameters and N is the total

number of shape parameters in the model.

2.11.2 Generalization

Generalization measures the capability of the model to represent unseen examples of the

class of objects. It can be measured using the leave-one-out strategy, where one example

is omitted from the training set and used for reconstruction testing. The accuracy of de-

scribing the unseen example is calculated by the mean point to point Euclidean distance

error. With an increasing number of model parameters, the generalization error is ex-

pected to decrease. For the same number of model coefficients, the lower mean Euclidean

distance error, the better the model.

2.11.3 Specificity

Specificity measures the ability to generate shape instances of the class that are similar to

those in the training set. In order to assess specificity, a set of shape instances should be

sampled from the shape space. Then the Euclidean distance error to the closest training

shape is calculated for each shape instance and the average is taken for all the shape

instances. The mean Euclidean distance error is expected to increase with increasing

number of parameters, as the increasing number of PCA coefficients gives more flexibility

to shape reconstruction. It also increase the likelihood of the reconstructed shape instances

being away from the real data. For specificity measurement, the lower Euclidean distance

error, the closer the model is to the training data data, so the specificity is better.
40



2.12 Summary

2.11.4 Critical Analysis

A high quality of the correspondences is desirable to improve the performance of 3DMM.

The compactness of the model describes the number of shape components required to ex-

press some fraction of the variance in the training set. More shape components enable

the 3DMM to retain more shape variation in the dataset. The generalisation of the model

demonstrates the ability in sketching unseen examples. The combination of more shape

components has better performance in describing the unseen example. Specificity mea-

sures how well a model is able to generate instances that are similar to real data. In

contrast to the previous two metrics, more shape components includes more noisy shape

variation [123], which is not desirable for generating instances that are similar to real data.

Overall, more components is not always desirable for the performance of 3DMM. There

is a trade-off among compactness, generalisation and specificity.

2.12 Summary

The last 20 years of research in 3DMM construction has mainly focused on two main

techniques: 1) dense correspondence establishment and 2) statistical modelling methods.

The theme throughout this thesis is to develop better correspondence establishment algo-

rithms and statistical modelling methods.

For dense correspondence establishment, one promising method is template morphing

algorithms which is to find the best combination of global and local transformation. This

is feasible when optimising a cost function that forces the template to morph towards the

shape of target mesh. The cost function can be defined as distance error or functional

energy between morphed template and target mesh. The most recent progress has a trend

in correspondence matching by deep learning.

In terms of statistical modelling methods, the standard method is PCA that finds the

directions in the vector space that have maximum variance, whilst being mutually or-

thogonal. Multi-linear models use several PCA models built from sub-regions of the

meshes with a post process merging them into a global PCA model. A Gaussian pro-

cess can model shape variation by just defining different Gaussian kernels. It still loses

high frequency signals in statistical modelling. Recently, there exists a trend in statistical
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modelling for using auto-encoders. The input meshes either need re-meshing before the

learning process when processing 3D meshes directly, or need to be transferred into a

functional space, e.g. UV map representation. At the end of the decoder, there requires a

back-transformation from the functional space to 3D spatial coordinates.
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Chapter 3

Modelling of Orthogonal Craniofacial

Profiles

In the medical analysis of craniofacial shape, the visualisation of 2D profiles [112] is

highly informative when looking for deviations from population norms. It is often useful,

in terms of visual clarity and attention focus, for the clinician to examine shape outlines

from canonical viewpoints; for example, pre- and post-operative canonical profiles can

be overlaid. We view profile-based modelling and analyses as being complementary to

that of a full 3D shape model. Profile visualisations should be backed up by quantitative

analysis, such as the distance (in standard deviations) of a patient’s shape profile from

the mean profile of a reference population. Therefore, we have developed a novel image

processing pipeline to generate a 2D morphable model of craniofacial profiles from a set

of 3D head surface images. Building on the initial work of Pears and Duncan [106], who

modelled a single craniofacial profile over the sagittal plane, we construct morphable

2D profile models over three orthogonal planes to provide comprehensive models and

analyses of shape outline.

The chapter is structured as follows. Section 3.1 discusses our new pipeline used

to extract profiles and construct 2D morphable models. Section 3.2 evaluates several

variants of the constructed models both qualitatively and quantitatively and compares our

single-profile models with our multi-profile model. A final section concludes the work.
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3.1 Model Construction Pipeline

Our pipeline to build a 2D morphable model is illustrated in Figure 3.1. Input data

(left of figure) consists of 1212 3D images of subjects with an even split of males and

females. This is a subset of the Headspace dataset, captured using 3dMD’s 5-camera

3dMD head system. All subjects are wearing tight-fitting latex caps to expose the shape of

the cranium, and we excluded around 300 scans from the dataset, primarily due to visible

hair bulges or poor fitting of the cap. The processing pipeline in Figure 3.1 employs a

range of techniques in both 3D surface image analysis and 2D image analysis and has

three main stages:

(i) 2D shape extraction: The raw 3D scan from the Headspace dataset undergoes pose

normalization and pre-processing to remove redundant data (lower neck and shoul-

der area), and the 2D profile shape is extracted as closed contours from three or-

thogonal viewpoints: the side view, top view and frontal view (note that we auto-

matically remove the ears in the top and frontal views, as it is difficult to get good

correspondences over this section of the profiles).

(ii) Dense correspondence establishment: A collection of profiles from a given view-

point is reparametrised into a form where each profile has the same number of

points joined into a connectivity that is shared across all profiles.

(iii) Similarity alignment and statistical modelling: The collection of profiles in dense

correspondence are subjected to Generalised Procrustes Analysis (GPA) to remove

similarity effects (rotation, translation and scale), leaving only shape information.

The processed meshes are statistically analysed, typically with PCA, generating a

2D morphable model expressed using a linear basis of eigen shapes. This allows

for the generation of novel shape instances, over any of the three viewpoints.

Each of the profiles is represented by m 2D points (yi, zi) and is reshaped to a 2m

row vector. Each of these vectors is then stacked in a n × 2m data matrix, and each

column is made zero mean. Singular Value Decomposition (SVD) is applied from which

eigenvectors are given directly and eigenvalues can be computed from singular values.
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Figure 3.1: The pipeline for 2D morphable model construction. Note that 2D profiles are

extracted as closed contours from three orthogonal viewpoints.

This yields a linear model as:

xi = x̄ + Pbi = x̄ +
k∑
i=1

pkbki (3.1)

where x̄ is the mean head profile shape vector and P is a matrix whose columns pk are

the eigenvectors of the covariance matrix (after pose alignment), describing orthogonal

modes of head profile variation. The vector b holds the shape parameters {bk} that weight

the shape variation modes, which when added to the mean shape, model a shape instance

xi. The three main stages of the pipeline are described in the following subsections.

3.1.1 2D Shape Extraction

2D shape extraction requires three stages, namely (i) pose normalisation, (ii) cropping,

(iii) edge detection and (iv) subdivision. Each of these stages is described in the following

subsection.

Pose Normalisation: Using the colour-texture information associated with the 3D

mesh, we can generate a realistic 2D synthetic image from any view angle. We rotate

the scan over 360 degrees in pitch and yaw (10 steps of each) to generate 100 images.

Then, the Viola–Jones face detection algorithm [135] is used to find the frontal face image

among this image sequence. A score is computed that indicates how frontal the pose

is. The 2D image with the highest score is chosen to undergo 2D facial landmarking.

We employ the method of Constrained Local Models (CLMs) using robust discriminative

response map fitting [10] to do the 2D facial image landmarking. Then, the trained system
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Figure 3.2: 3D pose normalization using the texture information.

is used to estimate the three angles for the image with facial landmarks. Finally, 3D facial

landmarks are captured by projecting the 2D facial landmarks to the 3D scan. As shown

in Figure 3.2, by estimating the rigid transformation matrix T from the landmarks of a 3D

scan to that of a template, a small adjustment of pose normalization is implemented by

transforming the 3D scan using T .

Cropping: 3D facial landmarks can be used to crop out redundant points, such as

the shoulder area and long hair. The face landmarks delineate the face size and its lower

bounds on the pose normalised scan, allowing any of several cropping heuristics to be

used. We calculate the face size by computing the average distance from facial landmarks

to their centroid. Subsequently, a plane for cropping the 3D scan is generated by moving

the cropping plane downward an empirical percentage of the face size. We use a sloping

cropping plane so that the chin area is included, but that still allows us to crop close to

the base of the latex skull cap at the back of the neck to remove the (typically noisy) scan

region, where the subject’s hair emerges from under the cap (see Figure 3.1).

Edge Detection: We use side view, top view and frontal view from the 3D scan to

reveal the 2D profile shape, and we can generate a 2D contour within the three views

by orthogonal projection. For example, in the side view (Y-Z view), we traverse the Y

direction in small steps, and at each step, we compute the minimum and maximum Z

value. The points with the minimum and maximum Z value are the contour points in the

side view.
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Subdivision: In order to extract profile points using subdivision, an interpolation

procedure is needed to ensure there is a fixed number of profile points across all profiles.

The cranial region is smooth and approximately elliptical in structure. In particular for

the cranial region, vectors are projected from the ellipse centre. Then we intersect a set of

fitted cubic spline curves with a fixed angle, which starts from the nasion.

3.1.2 Correspondence Establishment

As well as using subdivision points directly in model construction, we form a model tem-

plate as the mean of the population of subdivided and aligned profiles, and we use tem-

plate deformation on the dataset. The resulting deformed templates are re-parametrised

versions of each subject that are in correspondence with one another. The correspondence

establishment including two steps:

1. use a machine learning method to find facial landmark localisations.

2. use the automatic landmarks for rigid alignment to bring all profiles within the

convergence basin of the global minimum of alignment and morphing.

3. employ template morphing algorithms to reparametrise all the profiles into a con-

sistent form where the number of vertices, the triangulation, and the (approximate)

anatomical meaning of each points.

Automatic Annotation Following the work of Pears and Duncan [106], we employ

a machine learning method to find facial landmark positions. In this method, a disc is

centered on some point on the head profile among the largest scale that we are interested

in. Then we fit a quartic polynomial to the profile points within that disc, which can be

solved by least squares. We can also select a quartic to fit to the area on the lips with

flexibility. Thus, quartic parameters pT can be solved to fit a set of profile points [xp,yp]

such that, with n = 4:

ŷp = pTxp, p = [p0...pn]T ,xp = [x0p...x
n
p ]T (3.2)

In order to implement the disc operator, a dense set of n point samples are selected

within that disc, [xd,yd] and the operator value can be computed as:

α =
1

n

n∑
i=1

sign(yd − pTxd) (3.3)
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When the values of (−1 ≤ α ≤ 1) are close to zero, this indicates locally flat regions.

The positive values indicates convexities, such as nose tip, while negative values indicates

concavities, such as the nasion. This pattern is a discrete approximation to finding the

area, which gives a high frequency noise on the signal. This can be filtered with a 10th

order low pass Butterworth filter.

Rigid Alignment: We then use the automatic landmarks for rigid alignment from pro-

file points to a morphing template. The same landmarks are picked once on the morphing

template [xt,yt]. Given the indices of automatic landmarksM from profile points [xp,yp]

and the indices of the same landmarks N from the morphing template [xt,yt], the rigid

alignment transformation matrix can be solved from:

(R, t)→ argmin||[xt(N),yt(N)]− ([xp(M),yp(M)]R + t)||2 (3.4)

where R is the rotation matrix and t is the transformation matrix. This can be solved by

ICP algorithm.

Template Morphing: We form a model template as the mean of the population of

subdivided and aligned profiles, and we use template deformation on the dataset. In this

paper, we apply subdivision, Thin Plate Splines (TPS) [24], Non-rigid Iterative Closest

Points (NICP) [8], Li’s method [92], Coherent Point Drift (CPD) [100] and Minimum

Description Length (MDL) [50] to the proposed pipeline for comparative performance

evaluation.

3.1.3 Similarity Alignment

We use similarity alignment methods to remove the similarity effects such as rotation and

translation. We use both the standard GPA approach and Ellipse Centre Nasion (ECN)

method [106]. We compare the performace of these two alignment methods along with

different correspondence establishment methods. The ECN method was motivated by the

fact that the cranial shape appears to be elliptical. This suggests a natural centre and frame

origin when aligning craniofacial profiles. The large shape variation in the nose induces

displacements in the cranial alignment, which causes wrong alignment in the cranium. So

in ECN method the nasion’s position is used to segment out the cranium region from the

face region.
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3.2 Morphable Model Evaluation

We built four 2DMM variants of the side-view profile from the Headspace dataset and

animated shape variation along the principal components (later, the full dataset is used).

The four model variations correspond to full head, scale normalised and unscaled, and

cranium only, scale normalised and unscaled.

For quantitative evaluation of morphable models, Styner et al. [123] give detailed

descriptions of three metrics: compactness, generalisation and specificity, now used on

our scale-normalised models.

Compactness: This describes the number of parameters (fewer is better) required to

express some fraction of the variance in the training set. As illustrated in Figure 3.3, the

compactness using ECN alignment is superior to that of GPA alignment, for all corre-

spondence methods. Among these correspondence methods, subdivision, TPS and MDL,

all aligned with ECN, are able to generate the most compact models.

Specificity: Specificity measures the model’s ability to generate shape instances of the

class that are similar to those in the training set. In order to assess specificity, a set of shape

instances should be sampled from the shape space. Then the Euclidean distance error to

the closest training shape is calculated for each shape instance and the average is taken for

all the shape instances. We generate 1000 random samples and take the average Euclidean

distance error to the closest training shape for evaluation; lower is better. We show the

specificity error as a function of the number of parameters in Figure 3.4. Across all

correspondence methods with GPA, it gives better specificity against all correspondence

methods with ECN. This suggests that GPA helps improve the performance of modelling

the underlying shape space. NICP with GPA capture the best specificity.

Generalisation: Generalisation measures the capability of the model to represent un-

seen examples of the class of objects. It can be measured using the leave-one-out strategy,

where one example is omitted from the training set and used for reconstruction testing.

The accuracy of describing the unseen example is calculated by the mean point-to-point

Euclidean distance error; the lower the better. Generalization results are shown in Figure

3.4, and for more parameters, the error decreases, as expected. NICP with GPA performs

better in terms of Euclidean distance once less than seven model dimensions are used. Be-

tween seven and 20 model dimensions, TPS with ECN outperforms other methods. When
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Figure 3.3: Compactness; higher is better. The right figure is used to zoom into where

the differences between the methods is greatest. Alignment methods: ECN, Ellipse Cen-

tre Nasion; GPA, Generalised Procrustes Analysis. Correspondence methods: Subdiv,

Subdivision; TPS, Thin Plate Splines; NICP, Non-rigid Iterative Closest Points; Li, Li’s

method [92]; CPD, Coherent Point Drift; MDL, Minimum Description Length. Please

view in colour to distinguish the plots.

more than 20 model dimensions are used, CPD with GPA has the best generalization abil-

ity. Overall, GPA is able to help more successfully model the underlying shape against

ECN for the same correspondence method, thereby generating better reconstructions of

unseen examples.

3.2.1 Single Profile vs. Global Multi Profiles

We used the proposed pipeline to build three separate viewpoint 2DMM profile models

with GPA and PCA with over 1212 subjects and an even split of males and females. The

variations of the four main modes are shown in Figure 3.5. These models can be used

for the analysis of 2D shape from the profile, the side, top and frontal view, respectively.

However, clearly, the the three views are correlated with each other, and constructing a

global model comprising all three views allows us to analyse this correlation. In order to

do that, we put the 2D shape back to 3D within the respective orthogonal planes, as shown

in Figure 3.6. In X-Y-Z frames, the global similarity can be removed by GPA, and the

correlation among the three views can be revealed by PCA. Four modes from the global
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Figure 3.4: (a) specificity; (b) generalization. A lower error is better for both metrics.

Alignment methods: ECN, GPA. Correspondence methods: Subdiv, TPS, NICP, Li [92],

CPD, MDL. Please view in colour to distinguish the plots.

Figure 3.5: Separate models: (a) profile, (b) top and (c) frontal.

model are illustrated in Figure 3.7. Obviously, the variations in Y-Z, X-Z and X-Y within

the global model are different from those variations in the separate models in Figure 3.5.

To validate the effectiveness of the global model, we use the parameters from the

morphable model to do age and gender classification in the Headspace dataset over 1212

subjects. Using the demographic information (metadata) within the dataset we train a
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Figure 3.6: Three orthogonal profiles placed within a 3D frame.

Figure 3.7: Global model, showing the first four modes (a) – (d) of shape variation.
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Table 3.1: Gender classification.

Models Precision Recall F-score

Top 0.64 0.65 0.64

Frontal 0.73 0.73 0.73

Profile 0.77 0.77 0.77

Global 0.79 0.79 0.79

Table 3.2: Age classification.

Models Precision Recall F-score

Top 0.72 0.72 0.72

Frontal 0.71 0.71 0.71

Profile 0.73 0.73 0.73

Global 0.75 0.76 0.75

Support Vector Machine (SVM) classifier for each model, which maps the corresponding

shape vectors to the gender groups and four age groups (0–11, 12–21, 22–60 and over 60).

To measure the classification accuracy, we use the classifier to predict the age bracket and

the gender for the test subjects via a 10-fold cross-validation evaluation so that no test

subject ever appears in the classifier’s training set. As can be seen in Tables 3.1 and 3.2,

the global model has the best performance in both gender and age classification, and the

side profile is slightly stronger than the other two separate profiles, as may be expected

from the larger curvature variability within that profile.

3.3 Summary

We have presented a fully-automatic, general and powerful head profile modelling pipeline

that can extract 2D profiles from three orthogonal planes and build both separate and

global (combined) morphable models of these profiles. We have thoroughly evaluated

two profile alignment methods and six correspondence methods, giving twelve possible
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model-building systems enabling the research community to compare and contrast per-

formance across these variants using three different metrics: compactness, specificity and

generalisation. Texture based 3D pose normalisation and facial landmarking are applied

to extract the sagittal profile from raw 3D scans. Automatic profile annotation, subdivision

and registration methods are used to establish dense correspondence among sagittal pro-

files. ECN builds more compact side profile models when compared to GPA. Subdivision,

TPS and MDL with ECN are recommended for a more compact side profile model, while

NICP with GPA is recommended to capture more specificity. NICP with GPA is able to

generate better reconstructions of unseen profiles when fewer than 7 model dimensions

are used. If using between 7 and 20 model dimensions, TPS with ECN is recommended

for a better generalisation ability. When more than 20 model dimensions are used, CPD

with GPA builds a model with better ability to reconstruct unseen examples. We make

our profile models and the data employed to build them publicly available for the research

community, enabling others to build models with their own algorithms and compare them

to ours.
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3D Statistical Modelling Pipeline

Our 3DMM training pipeline, illustrated in Figure 4.1, operates in three main functional

blocks. These are outlined below.

Data Pre-processing: We use automatic 2D landmarking and map to 3D using the

known 2D-to-3D registration supplied by the 3D camera system. These 3D landmarks

can then be used for pose normalisation and template adaptation (personalisation of the

template).

Dense Correspondence: A collection of 3D scans are reparametrised into a form

where each scan has the same number of points joined into a triangulation that is shared

across all scans. Furthermore, the semantic or anatomical meaning of each point is shared

across the collection, as defined by a template mesh.

Alignment and Statistical Modelling: The collection of scans in dense correspon-

dence are subjected to Generalised Procrustes Analysis (GPA) to remove similarity ef-

fects (rotation, and translation), leaving only shape information. The processed meshes

are statistically analysed, typically with Principal Component Analysis (PCA), generat-

ing a 3DMM as a linear basis of shapes. This allows for the generation of novel shape

instances.

Correspondence 

Establishment

Procrustes 

Alignment

Shape Variance 

Modelling (e.g. PCA)3D face data

Data pre- 

processing

Figure 4.1: The flowchart of 3DMM construction pipeline.
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Figure 4.2: Age distribution of subjects.

Each of these functional blocks is detailed in the following four sections, as follows.

In section 4.1, we give an overview of the first full head dataset publicly available for

academic use. Section 4.2 describes data pre-processing including pose normalisation

and 3D facial landmark detection. Section 4.3 presents the correspondence establishment

method using an adaptive template. Similarity alignment and statistical modelling are

included in section 4.4. Then, section 4.5 presents a texture mapping method that can

capture the same resolution as the raw texture image. We compare our 3DMM construc-

tion pipeline with other competing construction pipelines in section 4.6 for evaluation of

correspondence, and in section 4.7 for evaluation of the resulting 3DMMs. We include

applications of our 3DMM in section 4.8 for age regression, craniosynostosis operation

outcome assessment, and craniofacial anthropometric measurements. Finally section 4.9

concludes the chapter.

4.1 Overview of Headspace Dataset

The Headspace dataset was collected by the Alder Hey Hospital Craniofacial Unit (Liver-

pool, UK). This unit performs surgery for patients with craniofacial conditions. The aim

of such surgery is to protect vital structures (brain, eyes, airway) and normalise appear-

ance, such that patients obtain maximal quality of life through optimal functioning and
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avoidance of stigmatisation because of their conditions. Toolsets to define normal appear-

ance and assist with planning of surgery and define optimal outcomes from a range of

surgical interventions are currently either crude or lacking. Therefore, the unit collected

a large, high quality 3D image dataset of 1519 human heads, with the aim of developing

an understanding of the normal variations in the human cranium and face, thus informing

software tools for surgical planning and outcome assessment.

The data was collected over a wide age range of 1 to 89 years (see Figure 4.2), but is

somewhat unbalanced, with the highest frequency of participants in their 20s. However it

is well-balanced in gender. The dataset also includes information like eye color (33.36%

brown, 46.38% blue, 19.89% green and 0.37% other) and ethnicity (90% White, 5.3%

Asian, 2.7% Mixed Heritage, 1% Black and 1% other). We have made this full head

dataset publicly available for research purposes.

4.2 Data Pre-processing

Our overall method requires 3D landmark positions, but there are more 2D landmark-

ers available than 3D, and the higher spatial frequency in 2D allows for more accurate

localisations. Therefore we use 2D landmarkers and project to 3D using the known 2D

to 3D registration in the raw data. However, the most accurate 2D landmarking is view-

dependent, with some poses being more desirable than others, such as frontal. Since in our

dataset, the poses of the 3D scans are not fixed to be frontal, it needs data pre-processing

for 3D scan frontalisation. Data preprocessing of the raw 3D scan serves to place the data

in a frontal pose, which also allows us to get a complete and accurate set of automatic

3D landmark positions, for every 3D image, that correspond to a set of manually-placed

landmarks on the template (this is done only once). This preprocessing comprises five

sub-stages, as shown in Figure 4.3: (i) 2D landmarking, (ii) projection to 3D landmarks,

(iii) pose normalisation (iv) synthetic frontal 2D image landmarking and (v) projection to

3D landmarks.

Thus there are two stages of landmarking, the first to approximately normalise pose,

the second to localise landmarks that correspond to the template mark up, both for fine

alignment and template adaptation purposes.
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Data preprocessing

Texture 
facial 

landmarking

2D to 3D 
landmark 
projection

2D to 3D 
landmark 
projection

Synthetic 
image facial 
landmarking

Pose 
normalisation 

Figure 4.3: Top-left shows raw data from the 3D camera: the textured 3D shape in its

original pose, and the composite 5-view 2D colour-texture image. Pre-processing of this

raw data comprises five sub-stages: (i) 2D landmarking, (ii) projection to 3D landmarks,

(iii) pose normalisation (iv) synthetic frontal 2D image landmarking and (v) projection to

3D landmarks.

We first use the ‘Mixture of Trees’ method of Zhu and Ramanan [157] to localise 2D

facial landmarks on the raw 5-view composite texture image. In particular, the mixture

we use has 13 landmark tree models for 13 different yaw angles of the head. Two face

detections are found, of approximately 15 degrees and 45 degrees yaw from the frontal

pose, corresponding to the left and right side of the face respectively. The detected 2D

landmarks are then projected to 3D using the OBJ texture coordinates in the raw data.

Given that we know where all of these 3D landmarks should be for a frontal pose, it

is possible to do standard 3D pose alignment in a scale-normalised setting [47].

We automatically learn how to orientate each of the trees to frontal pose, based on

their 3D structure. To do this, we apply Generalised Procrustes Analysis (GPA) to each

collection of 3D trees and find the nearest-to-mean tree shape in a scale-normalised set-

ting. We then apply a 3D face landmarker [43] to the 3D data of the nearest-to-mean tree

shape, which generates a set of 14 landmarks with clear semantic meaning. Finally, we

find the alignment that moves the symmetry plane of these 14 landmarks to the Y-Z plane
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and the nasion directly above the subnasale. To complete the training phase, the mean 3D

tree points for each of the 13 trees are then carried into this canonical frontal pose using

the same rotation, and are used as reference points for the frontal pose normalisation of

the 3D trees.

In around 1% of the dataset, only one tree is detected and that is used for pose normal-

isation, and in the rest 2-3 images are detected. In the cases where 3 trees are detected, the

lowest scoring tree is always false positive and can be discarded. For the remaining two

trees, a weighted combination of the two rotations is computed using quaternions, where

the weighting is based on the mean Euclidean error to the mean tree, in the appropriate

tree component.

After we have rotated the 3D image to canonical frontal view, we wish to generate a

set of landmarks that are accurate and correspond to the set marked up on the template.

This is the set related to the central tree (0 degrees yaw) in the mixture. After these 2D

facial landmarks are extracted, they are again projected onto 3D mesh.

The work of Zhou et al. [155] shows that an AAM with SIFT features has excellent

performance in ear landmark detection. We just need three non-colinear ear landmarks for

ear alignment, which is a simpler task than that in [155]. For each subject, we generate

two synthetic images in profile view by rotating 90 degrees and -90 degrees yaw. We

then use an AAM with SIFT features to detect the three ear landmarks on each synthetic

image. We then project the 2D landmarks onto 3D mesh. The detected facial landmarks

and ear landmarks are shown in Figure 4.4.

4.3 Correspondence Establishment

We present a new pipeline in fully-automatic non-rigid 3D shape registration by integrat-

ing several powerful ideas from the computer vision and graphics. These include Iterative

Closest Points (ICP) [18], Coherent Point Drift (CPD) [100], and mesh editing using the

Laplace-Beltrami (LB) operator [120]. We also provide comparisons of the latter ap-

proach with the use of Gaussian Processes (GPs) [67].

Our contributions include: 1) an adaptive shape template method to accelerate the

convergence of registration algorithms and achieve a better final shape correspondence;
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Figure 4.4: Landmarks detection results: 1st column - right ear landmarks; 2nd column -

facial landmarks; 3rd column - left ear landmarks.

and 2) a new iterative registration method that combines ICP with CPD to achieve a more

stable and accurate correspondence establishment than standard CPD. We call this ap-

proach Iterative Coherent Point Drift (ICPD). These two processing stages are illustrated

in Figure 4.5, and are presented in Section 4.3.1 and Section 4.3.2 respectively.
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Template adaptation

Global 
alignment

Adaptive template 
generator

Ldmks on T     Ldmks on scan  Adaptive TTemplate

ICPD with LBRP

Registration

 Adaptive T

Figure 4.5: Template morphing framework: the upper row - template adaption process;

the lower row - registration for dense correspondence using ICPD with Laplace-Beltrami

regularised projection.

Figure 4.6 is a qualitative illustration of a typical result where our method achieves a

more accurate correspondence than standard CPD. Note that the landmarks in our method

are almost exactly the same position as their corresponding ground-truth points on the

raw 3D scan. Even though standard CPD-affine is aided by Laplace-Beltrami regularised

projection (LBRP, a component of our new pipeline), the result shows a squeezed face

around the eye and mouth regions and the landmarks are far away from their correspond-

ing ground-truth positions.

4.3.1 Template Adaptation

As shown in Figure 4.5, template adaptation consists of two sub-stages: (i) global align-

ment followed by (ii) dynamically adapting the template shape to the data. For global
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Template                3D scan                  Proposed             CPD-affine         

 Template  CPD-affine + LBRP    CPD-nonrigid   CPD-nonrigid + LBRP

Figure 4.6: Proposed method compared with standard CPD. Ground truth points on target

raw 3D data shown in red, corresponding template points shown in cyan.

alignment, we manually select the same landmarks on the template as we automatically

extract on the raw data (i.e. using the zero yaw angle tree component from [157]). Note

that this needs to be done once only for some object class and so does not impact on the

autonomy of the online operation of the framework. Then we align rigidly (without scal-

ing) from the 3D landmarks on raw 3D data to the same landmarks on the template. The
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rigid transformation matrix is used for the raw data alignment to the template.

The template is then adapted to better align with the raw scan. A better template

helps the later registration converge faster and gives more accurate correspondence at the

beginning and end of registration. A good template has the same size and position of local

facial parts (e.g. eyes, nose, mouth and ears) as the raw scan. This cannot be achieved by

mesh alignment alone. We propose two method to give a better template that is adapted to

the raw 3D scan: (1) Laplace-Beltrami mesh editing; (2) Template estimation via posterior

GPMMs. For both methods, three ingredients are needed: landmarks on 3D raw data, the

corresponding landmarks on template, and the original template.

Laplace-Beltrami Mesh Manipulation:

We decompose the template into several facial parts: eyes, nose, mouth, left ear and

right ear. We rigidly align landmarks on each part separately to their corresponding land-

marks on 3D raw data. These rigid transformation matrices are used for aligning the

decomposed parts to 3D raw data. The rigidly transformed facial parts tell the original

template where it should be. We treat this as a mesh manipulation problem. We use

Laplace-Beltrami mesh editing to manipulate the original template towards the rigidly

transformed facial parts, as follows: (1) the facial parts (fp) of the original template are

manipulated towards their target positions - these are rigidly transformed facial parts; (2)

all other parts of the original template are moved as rigidly as possible [121]. As shown

in Figure 4.7, the facial parts include the eyes region, the nose region, the mouth region

and the ears region. We manually select these facial parts on the template, which is also a

one-shot offline process.

Given the vertices of a template stored in the matrix XT ∈ Rp×3 and a better template

obtained whose vertices are stored in the matrix XbT ∈ Rp×3, we define the selection

matrices Sfp ∈ [0, 1]l×p as those that select the l vertices (facial parts in XT and XbT) from

the raw template and a better template respectively. This linear system can be written as: λL

Sfp

XbT =

 λLXT

Xfp

 (4.1)

where L ∈ Rp×p is the cotangent Laplacian approximation to the LB operator [121]

and XbT is the better template that we wish to solve for. The parameter λ weights the

relative influence of the position and regularisation constraints, effectively determining
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Figure 4.7: Annotation of facial parts on the template: eyes region - red, nose region -

blue, mouth region - orange, and ears region - green.

(1)                    (2)                 (3)                      (4)                 (5)                      (6)                  (7)        

Figure 4.8: (1) raw scan; (2) template with global rigid alignment; (3) 2 compared with

the raw scan; (4) adaptive template via LB mesh editing; (5) 4 compared with the raw

scan; (6) the mean template estimation via posterior models; (7) 6 compared with the raw

scan in (7).

the ‘stiffness’ of the mesh manipulation. As λ → 0, the facial parts of the original

template are manipulated exactly to the rigidly transformed facial parts. As λ → ∞,

the adaptive template will only be at the same position as the original template XT.
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Template Estimation via Posterior Models:

A common task in shape modelling is to infer the full shape from a set of measure-

ments of the shape. This task can be formalised as a regression problem. The posterior

models of Gaussian Process Morphable Models (GPMMs) are regression models of the

deformation field. Given partial observations, posterior models are able to answer what is

the potential full shape. Posterior models show the points’ potential movements when the

landmarks are fixed to their target position.

In a GPMM, let {x1, ..., xl} ∈ Rl×3 be a fixed set of input 3D points and assume that

there is a regression function f0 → Rp×3, which generates a new vector field yi ∈ Rp×3

according to

yi = f0(xi) + εi, (i = 1, ..., n). (4.2)

where εi is independent Gaussian noise, i.e. εi ∼ N(0, δ2). The regression problem is to

infer the function f0 at the input points {x1, ..., xl}. The possible deformation field yi is

modelled using a Gaussian process model GP (µ, k) that models the shape variations of a

given shape family.

In our case, the reference shape is the original template, the landmarks on the original

template are the fixed set of input 3D points. The same landmarks on 3D raw data are

the target position of the fixed set of input 3D points. We construct a GPMM GP (µ, k)

by pre-defining Gaussian kernels to model the shape variations of a shape family. The

pre-defined Gaussian kernels follows the same strategy in [67]. The adaptive template is

Xi
bT = XT + yi, (i = 1, ..., n). (4.3)

The mean of Xi
bT is shown in Figure 4.8 (6) and (7).

4.3.2 Iterative Coherent Point Drift

After template alignment and adaptation, we employ a new shape morphing (non-rigid

3D registration) algorithm. The task is to deform and align the template to the target raw

3D scan. Non-rigid Coherent Point Drift (CPD) [100] has better deformation results when

partial correspondences are given and we have found that it is more stable and converges

better when the template and the raw data have approximately the same number of points.

However, the correspondence is often not known before registration. Thus, following
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an Iterative Closest Points (ICP) scheme [18], we supply CPD registration with coarse

correspondences using ‘closest points’. We refine such correspondences throughout iter-

ations of our Iterative Coherent Point Drift (ICPD) approach. ICP assumes that we do

not know the correspondence in advance, but we can obtain a better one in an iterative

way when starting from a coarse correspondence. There are many methods to compute

the correspondence, but we adopt the standard nearest point search approach.

We use the original code package of CPD available online as library calls for ICPD.

Other option parameters can be found in the CPD author’s release code. The global affine

transformation is used as a small adjustment of correspondence computation. A better

correspondence is used as the priors for CPD non-rigid registration.

Algorithm: We update the correspondence priors for ICPD iteratively. The corre-

spondence priors are refined in a coarse-to-fine manner following the idea ICP approach.

So the convergence of outer loop is the stabilization of correspondence priors. The matlab

pseudocode of ICPD is given as:

Algorithm 1 : Nonrigid registration using adaptive template
1: Solve for the similarity (scaled rigid) transformation between the

landmarks on the template and on the scan (data):
[R, t, s]⇐ argmin||(sSldmkTXTR + t)− SldmkSXscan||

2: Global alignment of the template using the similarity transformation:
X

′

T = sXTR + tn

3: Obtain adaptive template XbT by solving Equation 4.1
4: Set flag = 0,Xdeformed = XbT

5: while flag = 0 do
6: Compute the selection matrix Sold that selects the nearest

neighbours of Xdeformed in Xscan

7: Solve for the optimal affine transformation:
[Ra, ta]⇐ argmin||(XdeformedRa + ta)− SoldXscan||

8: Update the mesh deformation: Xdeformed⇐XdeformedRa + ta
9: Compute the new selection matrix Snew that selects the nearest

neighbours of Xdeformed in Xscan

10: Use the CPD-nonrigid algorithm to solve for the non-rigid
deformation between Xdeformed and SnewXscan

11: Update Xdeformed using this non-rigid deformation
12: Update the selection matrix Snew

13: if fdiff (Sold,Snew) < 0.001 ∗ n, where n is the number of points in template,
fdiff indicates the number of different entries when comparing Sold and Snew, then

14: flag = 1
15: end if
16: end while

where SldmkS and SldmkT are the selection matrices of the landmarks on 3D scan Xscan

and morphing template XT . [R, t, s] are the rotation, translation and scaling, respectively.
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[Ra, ta] define the affine transformation.

The rigid, affine and nonrigid deformation algorithms are from the original code pack-

age of CPD. fdiff indicates the number of different entries when comparing Sold and Snew.

The qualitative output of ICPD is very smooth, a feature inherited from standard CPD.

A subsequent regularised point projection process is required to capture the target shape

detail, and this is described next.

4.3.3 Laplace-Beltrami Regularised Projection

When ICPD has deformed the template close to the scan, point projection is required

to eliminate any (normal) shape distance error. Point projection is a potentially fragile

process. If the scan data is incomplete or noisy then projecting vertices from the deformed

template to their nearest vertex or surface position on the scan may cause large artefacts.

Again, we overcome this by treating the projection operation as a mesh editing problem

with two ingredients. First, position constraints are provided by those vertices with mutual

nearest neighbours between the deformed template and raw scan. Using mutual nearest

neighbours reduces sensitivity to missing data. Second, regularisation constraints are

provided by the LB operator which acts to retain the local structure of the mesh. We call

this process Laplace-Beltrami regularised projection (LBRP), as shown in the registration

framework in Figure 4.5.

We write the point projection problem as a linear system of equations. Given the

vertices of a scan stored in the matrix Xscan ∈ Rn×3 and the deformed template obtained

by CPD whose vertices are stored in the matrix Xdeformed ∈ Rp×3, we define the selection

matrices S1 ∈ [0, 1]m×p and S2 ∈ [0, 1]m×n as those that select the m vertices with

nearest neighbours from deformed template and scan respectively. This linear system can

be written as:  λL

S1

Xproj =

 λLXdeformed

S2Xscan

 (4.4)

where L ∈ Rp×p is the cotangent Laplacian approximation [121] to the LB operator and

Xproj ∈ Rp×3 are the projected vertex positions that we wish to solve for. The parameter

λ weights the relative influence of the position and regularisation constraints, effectively

determining the ‘stiffness’ of the projection. As λ → 0, the projection tends towards
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nearest neighbour projection. As λ→∞, the deformed template will only be allowed to

rigidly transform.

4.4 Similarity Alignment and Statistical Modelling

We use GPA to align our deformed templates before applying PCA-based statistical mod-

elling. This generates a 3DMM as a linear basis of shapes, allowing for the generation of

novel shape instances. Note that we may select all of the full head template vertices for

this modelling, or any subset. For example, we select the cranial vertices when we build

models to analyse cranial medical conditions.

In many applications, vertex resolution is not uniform across the mesh. For exam-

ple, we may use more vertices to express detail around facial features of high curvature.

However, standard PCA attributes the same weight to all points in its covariance analysis,

making it difficult to handle shape variance modelling over such meshes. To counter this,

we employ weighted PCA in our statistical modelling.

4.4.1 Weighted PCA

The first step of Weighted PCA (WPCA) is to construct the symmetric positive-definite

matrix YTMY for Y = X−X, where the mass matrix M is a sparse symmetric mass

matrix based on the areas of the mesh triangles [141]. The first k eigenvectors Vk
i solving

YTMYV
k

i = λiV
k
i (4.5)

are computed. From [77], the relation between the left singular vector Uk
i and the right

singular vector Vk
i of SVD decomposition is Uk

i = ( 1√
λ
k
i

)M
1
2 YVk

i . For 1 ≤ i ≤ k, we

infer that the weighted PCA Ψk
i is obtained by multiplying the eigenvectors with Y and

normalisation(w.r.t‖.‖) of the result:

Ψk
i = M− 1

2 Uk
i = (

1
√
λ
k

i

)YVk
i (4.6)

4.4.2 Reconstruction

In an analogous fashion to standard PCA, WPCA can also be used for reconstructing

shapes.
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Complete data reconstruction: Given the average X, the basis matrix Uk
i , the mass

matrix M and some (possibly unseen) shape X ∈ R3n, we first compute the zero mean

U = X−X. Then U is projected to WPCA space:

Pk : U→ PkΨk = PkM− 1
2 Uk

i (4.7)

Finally we are able to reconstruct X by:

X = X + PkΨk = X + PkM− 1
2 Uk

i (4.8)

Incomplete data reconstruction: Given partial data, we can divide the shape com-

ponents into two parts: one for the partial data Ψa and the other for missing data Ψb [3].

The zero mean for the partial data is Ua = Xa −Xa:

P : Ua → PΨa = PaM
− 1

2 Ua (4.9)

Then P can be used to reconstruct the complete data. The aim is to model the remaining

flexibility of the variable points Xa when the fixed points Xb. The deformation is give as

PΨa and PΨb. We formulate the aim as a constrained maximization problem:

max PΨaΨ
T
aPT , subject to PΨbΨ

T
b PT = c (4.10)

where c quantifies the amount of change allowed in the fixed shape principle components.

Introducing a Lagrangian multiplier µ and differentiating with respect to P leads to the

eigenvalue decomposition of:

PΨaΨ
T
a = µPΨbΨ

T
b (4.11)

where for each parameter in P, ‖PiΨb‖2 = PiΨbΨ
T
b PT

i .

4.5 Texture Map

It is preferable to store texture information in a UV space texture map, where resolution

is unconstrained, rather than store only per-vertex colours, where resolution is limited by

mesh resolution. To do so requires the texture information from each scan to be trans-

formed into a standard UV texture space for which the embedding of the template is
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. .

(1) Pixel embedding and affine transformation refinement                                                                      

Pixel 
embedding

(2) Before                                                                      

(3) After                                                                      

Figure 4.9: Texture mapping flow: (1) Pixel embedding, (2) UV coordinates of mesh

facets before affine refinement, here we are unable to use facets that straddle viewpoints,

(3) After affine refinement, all facet UV coordinates can be used.

known. The key to obtaining a high quality texture map is embedding all the pixels in

one face from the texture image to its corresponding face in the template UV faces (see

Figure 4.9 (1)). Compared to a per-vertex color-texture map, a pixel embedding texture

map keeps all the pixels in each template mesh face, thus capturing more texture detail.

After template morphing, the deformed template has the same number of points joined

into a triangulation that is shared across all scans. Thus in UV coordinates, UV faces of
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Raw image               Per-vertex color           Texture map

Figure 4.10: Per-vertex color texture (centre) vs. texture map (right).

the morphed template are shared with the template. Given the morphed vertex positions

Xmorphed ∈ Rp×3 from template morphing stage, we can first compute the UV coordinates

for each point of the morphed template in original texture image:

[u,v] = g(S3Xscan) (4.12)

where S3 ∈ Rp×n is the selection matrix that select the p vertices with nearest neighbours

from morphed template Xmorphed to the scan Xscan and g is the UV coordinates mapping

from the raw mesh to texture image. The UV coordinates mapping from texture image to

raw mesh is a surjection but not an injection. Thus the points from the raw mesh may have

several sets of UV coordinates [u,v]cand in the texture image, depending on the number

of capture viewpoints. To overcome this, we minimise the face area of UV face UVk
faces

to find the exact UV coordinates:

[u∗i ,v
∗
i ] = arg min

ui,vi

h([ui,vi], [uj1,vj1], [uj2,vj2]) (4.13)

where [ui,vi] ∈ [u,v]cand, [uj1,vj1] and [uj2,vj2] ∈ UVk
face, and h is the face area

computation.

Due to multiple capture viewpoints, the minimization of face area is not enough to

guarantee that all the UV coordinates are in the image of same view (see Figure 4.9 (2)).

To overcome this, we employ affine transformations to refine the UV coordinates. If the

UV coordinates in one mesh face are placed in different views, we compute the affine
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transformation T from its adjacent face to the corresponding face in the template UV

faces. Then its corresponding face is inverted by T−1 to find the correct position (see

blue point in Figure 4.9 (1)). The outcome of affine transformation refinement is shown

in Figure 4.9 (2), (3). As shown in Figure 4.10,the quality of texture map improves a lot

such that the freckles can be seen from the texture rendering.

4.6 Evaluation of Correspondences

We evaluated the proposed template morphing algorithms using both the BU3D dataset

[149] and the Headspace dataset [1]. Section 4.6.1 presents the validation of the tem-

plate adaptation approach. In this thesis, we proposed three registration methods: (1) the

method detailed in this chapter, (2) the symmetric deformation algorithm detailed in chap-

ter 4, and (3) our earlier method described in Appendix B and [47]. These are compared

in section 4.6.2. In section 4.6.3, we present the qualitative and quantitative evaluation of

the correspondence establishment with other competing template morphing approaches.

4.6.1 Validation of Template Adaptation

In order to validate the effectiveness of each key step in the proposed registration pipeline,

we first remove the process of template adaption from the pipeline and evaluate perfor-

mance. We then replace this and remove LB regularised projection from the proposed

framework and again evaluate performance qualitatively and quantitatively, comparing

both modified pipeline cases with the full pipeline. Typical results for a child in the

Headspace dataset are shown in Figure 4.11. After pure rigid alignment without template

adaptation, the nose of the template is still bigger than the target. As can be seen in Figure

4.11 (3), the nose ends up with a bad deformation result. The same problem happened

in the ear. Without LB regularised projection, shown in Figure 4.11 (4), it fails in cap-

turing the shape detail compared with the proposed full pipeline. The adaptive template

improves the correspondence accuracy in local regions, while the LB regularised point

projection helps in decreasing the correspondence error in the normal direction.

Using the BU3D dataset for quantitative validation, we compared the performance of

(i) the proposed ICPD registration, (ii) ICPD with an adaptive template using LB mesh
72



4.6 Evaluation of Correspondences

(1)Target scan                                  (2) proposed

(3) no template adaptation        (4) no LB regularised projection

Figure 4.11: Internal comparison of approaches: (1) target scan; (2) proposed full pipeline

method; (3) template adaptation removed; (4) LB regularised projection removed. Error

map shown in mm.

Table. Convergence of ICPD

ICPD              LB             PM

ICP loops      6.47            3.52           3.74 

Time (s)      831.35       426.13      434.53               

Figure 4.12: Improvement in correspondence and convergence performance when using

adaptive templates: 1) ICPD without an adaptive template (cyan); 2) ICPD with LB-based

adaptive template (blue); 3) ICPD with adaptive PM-based template (blue dashed).

manipulation and (iii) ICPD with an adaptive template, using a posterior model (PM). The

mean per-vertex error is computed between the registration results and their ground-truth.

The number of ICPD iterations and computation time is recorded, when using the same

computation platform. The per-vertex error plot in Figure 4.12 illustrates that the adaptive

template improves the correspondence accuracy of ICPD. The number of ICPD iterations
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and computation time is significantly decreased by the adaptive template method. In par-

ticular adaptive template using LB mesh manipulation has better performance than adap-

tive template using a posterior model. Thus, we employ an adaptive template approach

using LB mesh manipulation for later experiments.

4.6.2 Comparison Between Proposed Approaches

During this thesis work, we proposed three different template morphing algorithms, as

discussed earlier. We believe that the template morphing framework in this chapter is

our current best system. To validate this, we compare our proposed template morph-

ing algorithms: ICPD with adaptive template [46] presented in this chapter, hierarchical

parts-based CPD-LB [47] (also in Appendix B) and symmetry-aware CPD [48] (also in

Chapter 4). Figure 4.13 illustrates that the eye region and mouth region can have a small

over-fitting problem in morphing when using either hierarchical parts-based CPD-LB

or symmetry-aware CPD. The third row in Figure 4.13 shows that ICPD with adaptive

template gives a better morphing in ear region where outliers exists in the raw data.

To evaluate the three approaches quantitatively, we use 14 manual facial landmarks

over 100 subjects to measure landmark error of each template deformation method. The

mean per-vertex error is calculated by the mean nearest point error between the morphed

template and its corresponding 3D mesh. As can be seen from Figure 4.14 (1), ICPD with

adaptive template is much better than the other two in terms of mean per-vertex error. Fig-

ure 4.14 (2) shows that ICPD with adaptive template achieves slightly better performance

in the metric of landmark error. The technique detail of hierarchical parts-based CPD-LB

is included in Appendix A. We introduce the symmetry-aware CPD in Chapter 4, which

shows that symmetry-aware CPD achieves better performance in craniofacial symmetry

preservation. These comparison results imply that the method described in this chapter

is the best correspondence establishment framework. It may be possible to integrate the

work in this chapter with our symmetry work in Chapter 4, but this was not attempted.
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(1)  Raw data                  (2)  proposed            (3) symmetryCPD             (4) CPD-LB

Figure 4.13: Morphing results: (1) raw mesh; (2) ICPD with adaptive template (this

chapter); (3) symmetry-aware CPD (Chapter 4); (4) hierarchical parts-based CPD-LB

(Appendix B).

4.6.3 Comparison with Existing Literature

In this section, we compare the proposed method with two publicly-available registra-

tion frameworks, namely the Large-Scale Face Model (LSFM) pipeline [27] and Open

Framework (OF) [67], using the Headspace dataset.

Qualitative Evaluation: Figure 4.15 shows a typical example where the proposed

method is qualitatively superior to other methods with respect to shape detail capture,

and the accuracy of the mouth region. The LSFM pipeline captures shape detail but the
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(1)                                                                                           (2)

Figure 4.14: (1) Mean per-vertex nearest point error; (2) Landmark error.

Scan

(1)                               (2)                               (3)                              (4)

Figure 4.15: First row - correspondence results and their landmarks compared with

ground-truth on raw scan; Second row - the color map of per-vertex nearest point error.

(1) proposed method with LB template adaptation; (2) proposed method without adaptive

template; (3) Open Framework morphing [94]; (4) LSFM morphing [26].

mouth region is not close to the raw scan. The OF pipeline has a smooth deformation

field, thereby failing to capture shape detail. The OF approach requires a point projection

stage after the shape registration to eliminate the shape normal error.

Quantitative Evaluation: Figure 4.16-left shows cumulative histograms for shape

error, where shape error is computed by measuring the nearest point distance from the de-
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Figure 4.16: Proportion of subjects with < Euclidean distance error: left-landmark error,

right-per-vertex nearest point error. The higher, the better.

formed template to the raw scan. Note that 99.12% of shape errors from our method are

under 2.00mm, which is better than the other two pipelines and their extensions, which

appends LB-regularised point projection to their pipelines. We use 14 manual facial land-

marks over 100 subjects to measure landmark error of each template deformation method.

As shown in Figure 4.16-right, 80% of landmark errors are less than 6mm for our method.

Overall, the proposed method outperforms the LSFM and OF pipelines. LB-regularised

point projection improves LSFM and OF in both shape error and landmark error evalua-

tion.

4.7 Evaluation of 3DMMs

We select 1212 individuals (606 males and 606 females) from the Headspace dataset [1] to

derive our global 3DMM by applying our fully-automatic 3DMM construction pipeline.

Note that the full dataset contains 1519 subjects, but we exclude 307 subjects on the

following grounds:

1. Poor fitting of the latex cap (not pulled on tightly enough).

2. Excessive hair bulge under the latex cap.

3. Excessive noise or missing parts in the 3D image.
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Table 4.1: Comparison of 3DMM construction pipelines

Initialisation Dense correspondence Alignment Modelling

LSFM Automatic facial landmarks NICP with error pruning GPA PCA

OF Manual landmarks needed GPMM registration GPA GP

proposed Automatic pose normalisation ICPD GPA WPCA

Figure 4.17: The global model of craniofacial shape: the mean and most significant 7

shape components are shown at +3SDs (top row) and -3SDs (bottom row).

4. Declared craniofacial conditions or historical head trauma.

5. A desire to balance the number of males and females in the global model build.

Subpopulations are employed to build gender-specific models, LYHM-male, LYHM-

female, and four age-specific models (LYHM-age-X), focusing on demographic-specific

shape variation. Section 4.7.1 is used for the visualisation of the proposed global models

and sub-models on gender and age. Quantitative evaluation is presented in section 4.7.2.

The performance of our 3DMMs is compared with both the LSFM pipeline [27] and Basel

Open Framework (OF) [67] in section 4.7.3. Table. 4.1 shows the difference in techniques

employed in pipelines. Section 4.7.4 is used for the description of shape reconstruction

from an incomplete mesh. Section 4.7.5 is used for texture map image quality assessment

using standard criteria.
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Global

Male

Female

Age <15

Age 15-30

Age 30-50

Age >50

Figure 4.18: Shape models: 1st block - global model; 2nd-3rd block - gender-specific

models (male and female); 4th-7th block - four age-specific models (< 15, 15-30, 30-50,

> 50). In each block, the mean and most significant 7 shape components are shown at

+3SDs (top row) and -3SDs (bottom row).
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Global

Male

Female

Age <15

Age 15-30

Age 30-50

Age >50

Figure 4.19: Texture models: 1st block - global model; 2nd-3rd block - gender-specific

models (male and female); 4th-7th block - four age-specific models (< 15, 15-30, 30-50,

> 50). In each block, the mean and most significant 7 texture components are shown at

+3SDs (top row) and -3SDs (bottom row).

80



4.7 Evaluation of 3DMMs

4.7.1 3DMM Visualisation

We present visualisations that provide insight into how different regions of the high-

dimensional space of human face/head shape and texture are naturally related to different

demographic characteristics. Figure 4.17 demonstrates the most significant modes of the

global model of craniofacial shape. From +3SDs to -3SDs, the first mode shows a child

head turns into an adult head, and the second mode shows a male head turns into a fe-

male head. The third mode demonstrates an obvious shape variation in jaw region. Since

the craniofacial asymmetric variation is so small, it is not captured in the main modes of

shape variation extracted by PCA. So, in the most important modes of the global PCA

model, we cannot observe asymmetric shape variation. Taking also into account the de-

mographics of the training data available, we define the following groups: male (all ages)

and female (all ages). The dataset is further clustered into four age groups: under 15

years old, 15− 30 years old, 30− 50 years old and over 50 years old. The mean and most

significant 7 shape components of the 6 demographic-specific models are given in Figure

4.18. Likewise, Figure 4.19 shows the mean and most significant 7 texture components of

the six demographic-specific models visualized on the mean shape. The shape and texture

is varied from +3SDs to −3SDs.

We apply t-Distributed Stochastic Neighbor Embedding (t-SNE) [134] to the shape

components from all training samples to visualise the manifold of high-dimensional train-

ing shapes. By applying t-SNE between the shape parameters and its corresponding de-

mographic data in our dataset, we are able to label samples in this space by their gender,

see Figure 4.20 (left). We observe that t-SNE has produced a nonlinear 2D embedding that

emphasises gender difference. Figure 4.20 (right) shows the visualisation of the space by

age. Interestingly, a clear trend of increasing age can be seen across the space, suggesting

that the facial shape space has age-related structure.

4.7.2 Evaluation of Sub-models

According to the demographic data in our dataset, we build sub-models based on gender

and age. For quantitative model evaluation, Styner et al [123] give detailed descriptions of

three metrics: compactness, generalisation and specificity. The compactness of the model
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Figure 4.20: t-Distributed Stochastic Neighbor Embedding in terms of gender (left) and

age (right) groups.

Figure 4.21: Compactness of sub-models.

describes the number of parameters required to express some fraction of the variance in

the training set, fewer is better. As can be seen from Figure 4.21, LYHM-male and LYHM

(<15) have better compactness than other demographic specific models. In Figure 4.22,

LYHM-female and LYHM (15-30) have the lower generalisation error, which implies that

LYHM-female and LYHM (15-30) have better performance in describing unseen exam-

ples. Specificity measures how well a model is able to generate instances that are similar

to real data. Figure 4.23 shows LYHM-male and LYHM (15-30) have lower distance er-

ror, which implies that LYHM-male and LYHM (15-30) is better at generating instances
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Figure 4.22: Generalisation of sub-models.

Figure 4.23: Specificity of sub-models.

close to real data.

4.7.3 Evaluation of Full Head 3DMMs using 3DMM Pipelines in the

Literature

We build full head 3DMMs using the proposed method, the LSFM pipeline [27], and

the OF pipline [67], again with 1212 subjects in Headspace dataset. The compactness

of the model describes the number of parameters required to express some fraction of

the variance in the training set, fewer is better. We use the same subjects as LYHM-

global to build 3DMMs. As can be from Figure4.24 (a), when less than 33 components
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(56,0.950)
(146,0.980)

(79,0.966)

(33,0.926)

Figure 4.24: Compactness, higher is better.

(48,1.364)

Figure 4.25: Generalisation (left), lower is better; Specificity (right), lower is better.

used, LSFM is more compact than the proposed method and OF. Between the first 33

and 79 components, the model constructed by OF is more compact than the other two.

When more than 79 components used, the proposed method has better compactness than

LSFM [27] and OF [67]. With the first 56 and the first 146 components used, the 3DMM

constructed by the proposed method retains 95% and 98% of the shape variation in the

training set.

The generalisation of the model demonstrates the ability in generating unseen exam-

ples. With fewer than 48 model parameters, LSFM is better than the proposed method in

terms of generalisation error. With more than 48 components, the proposed method has

the lowest generalisation error, which in this case implies that proposed method has the

best performance in describing unseen examples.
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(95,0.98)

2.100

0.843

1.517

1.193
1.020

0.941 0.892 0.865 0.842 0.825 0.811

0.923
0.954 0.967 0.973 0.977 0.979 0.981 0.983 0.984

3.121

3.397
3.510

3.561 3.587 3.603 3.613 3.621 3.627 3.633

Figure 4.26: Critical analysis of the proposed model in term of the number of model

components.

Specificity measures how well a model is able to generate instances that are similar

to real data. The proposed method has the lowest distance error, which implies that the

proposed method is best at generating instances close to real data.
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Overall, with more 79 components used, the proposed pipeline is better than LSFM

[27] and OF [67] in terms of the compactness of model. The generalisation error of LSFM

decreases faster than the proposed method. But with more components used, the proposed

method has the lowest generalisation error when compared with the other two pipelines.

The proposed method outperforms LSFM and OF in specificity.

Critical Analysis of the Number of 3DMM Components: It is desirable to have a

lower generalisation and specificity error for a 3DMM, but there is a trade-off between

generalisation and specificity. The compactness is also important to ensure that most of

shape variation is captured by the model using a relatively small number of model param-

eters. So we now perform a critical analysis of the number of components that should

be used for 3DMM. The actual measurements are provided in Figure 4.26. When the

application requires that the error of describing unseen examples should be less than 1.00

mm, the distance error from random sample to real data should be less than 3.60 mm,

and the model should capture more than 97% of the shape variation, the best choice is

the first 100 components to be used in the 3DMM. In general, when more than 80 com-

ponents are used in the 3DMM, the specificity error and compactness curves flatten (i.e

they increase slower and slower), also the generalisation curve flattens (i.e. the errors

decrease slower and slower). With the first 80 components used in the 3DMM, 96.7% of

the shape variation is captured, the error in describing unseen examples is 1.02 mm and

the distance error from random sample to real data is 3.56 mm. As discussed in the evalu-

ation results, with more than 79 components used, the model constructed by the proposed

method has the best performance when compared with LSFM and OF across all three

metrics: compactness, generalisation and specificity. With more components used, more

noisy shape variation is introduced and more computation is required. Taking all these

into consideration, in this chapter we choose to employ the first 100 model components

for our applications.

4.7.4 Reconstruction

The task of reconstruction of an unseen example with missing parts can validate the cor-

respondence quality, model fitting and generalisation ability [3]. In the first row of Figure

4.27, we fix the shape of the cranium and reconstruct the full head from that shape, while
86



4.7 Evaluation of 3DMMs

Figure 4.27: The flexibility of reconstruction from incomplete data: (a) example; (b) crop

(incomplete data); (c)-(g) are the flexibility modes, and (e) is the mean.

5                  10                 15                   20                    30                  40                   50                  60                  70                  80

Figure 4.28: Age regression from 5 years to 80 years.

permitting the shape of the face to vary. Here we found that most variation occurs over the

chin region. The second row of Figure 4.27 is the reconstruction from the face only, and

we note that the principal variation in reconstructed cranium is from high/short to low/-

long. This offers a way to augment existing face models with a cranium. Reconstruction

from one side of the sagittal symmetry plane demonstrates asymmetrical variation of the

head. This application can aid shape-from-shading using 2D profile images to predict the

3D shape of the self-occluded half of the face.
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Table 4.2: Texture map image quality assessment

SSIM MS-SSIM IW-SSIM

Per-vertex color 0.8790 0.8618 0.6238

Texture mapping 0.8926 0.8712 0.6505

4.7.5 Texture Map Image Quality Assessment

As shown in Figure 4.10, the proposed texture map technique outperforms per-vertex tex-

ture image qualitatively. We use several metrics, namely: SSIM [138], MS-SSIM [140],

and IW-SSIM [139] to measure the texture map quantitatively. Under the assumption that

human visual perception is highly adapted for extracting structural information from a

scene, Structural SIMilarity (SSIM) is based on the degradation of structural information

(higher is better). We save the rendering of the raw image, the proposed texture map and

the per-vertex texture image into the same image size. When using the full-reference im-

age quality assessment indices, we treat the rendering of the raw image as the reference

image for image quality assessment. The rendering of the proposed texture map and per-

vertex texture image are compared with this reference image, respectively. As can be seen

in Table. 4.2, the proposed texture mapping technique improves the texture image quality

for texture modelling, when compared with that of per-vertex color texture image.

4.8 Applications

We now demonstrate three applications of 3DMMs, including: age regression in section

4.8.1, clinical intervention outcome evaluation in section 4.8.2 and craniofacial anthropo-

metric measurements in section 4.8.3.

4.8.1 Age Regression

Model regression can validate the model’s generalisation ability on some property (e.g.

age, gender). We use a multiple linear regression function regress in Matlab between

the shape-and-texture parameters against age. This function returns a vector of coefficient

estimates for a multiple linear regression of the responses in shape-and-texture parameters
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TCR
(pre)

TCR
(post)

BS
(pre)

BS
(post)

Figure 4.29: 3D meshes of patients (pre-operation and post-operation) after registration.

on the predictors in the matrix of age. After this learning process, shape parameters

can be revisited when given the age value. Then the shape for the specific age can be

reconstructed by adding the shape variation to the mean shape. Figure 4.28 demonstrates

a sequence of 3D images generated from age regression of the proposed model, ranging

from 5 to 80 years. Note that the cranium develops before the face in children, and the

shape of the cranium is not changing in adults.

4.8.2 Clinical Intervention Outcome Evaluation

In this section, we use one of our demographic models to describe post surgical change

in a sample of 17 craniosynostosis patients (children), 10 of which have undergone one

type of cranial corrective procedure Barrel Staving (BS) and the other 7, another cranial

corrective procedure Total Calvarial Remodelling (TCR).

Note that both facial structure and overall scale are now irrelevant and that major cra-

nial shape changes are not thought to occur after 2 years old. The LYHM (<15, cranium)

model is applied to intervention outcome evaluation and its mean is used as the template.
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Figure 4.30: BS intervention outcome: left - first two principal components of patients

compared to general population; right - pre-operation against post-operation in terms of

Mahalanobis distance of first two principal components of patients.

Figure 4.31: TCR intervention outcome: left - first two principal components of patients

compared to general population; right - pre-operation against post-operation in terms of

Mahalanobis distance of first two principal components of patients.

We treat the patients as the unseen example for LYHM (<15, cranium). We can then

plot their pre-operative and post-operative parametrisations and compare them with the

parameterisations of LYHM (<15, cranium). The expected result is that the parameteri-

sations should show the head shapes moving nearer to the mean of the training examples.

Figure 4.29 demonstrates the 3D meshes of patients (pre-operation and post-operation)

after registration. The results are shown in Figure 4.30 and Figure 4.31. The parameter-
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Figure 4.32: A case study on pre-operation and post-operation of a specific patient in

terms of full head shape.

isations are validated to move nearer to the mean, which is at the origin of the plots. To

our knowledge, this is the first use of full head 3DMMs in a craniofacial clinical study.

Figure 4.32 demonstrates a case study on pre-operation and post-operation of a spe-

cific patient. The surgeons are also interested in the influence of operation on facial shape.

Here, we use the shape of full head, both face and cranium, for analysis. We can clearly

observe the improvement after operation when viewing the 3D shape. This is validated

by the shape analysis. The shape parameters of pre-operation is outside 2 Standard De-

viations (SDs) ellipse of the training set, while the shape parameters of post-operation is

within 2 Standard Deviations (SDs) ellipse.

To evaluate it quantitatively, we calculate the Mahalanobis distance of each patient.

As can be seen in Figure 4.30-right and Figure 4.31-right, the mean of Mahalanobis dis-

tance for all patients decreases from 3.21 to 1.18 standard deviations in terms of the BS

operation. For the TCR operation, the mean of Mahalanobis distance for all patients de-

creases from 3.52 to 2.23 standard deviations. The improvement with BS is 63.24 % and

the improvement with TCR is 36.65 %. In our case study, BS has better outcomes of

clinical intervention than TCR, but the population sample is too small to be conclusive.
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Figure 4.33: Craniofacial measurements: left - Maximum Cranial Length; right - Upper

Facial Depth (red line), Middle Facial Depth (yellow line) and Lower Facial Depth (green

line).

4.8.3 Craniofacial Anthropometric Measurements

Craniofacial anthropometric measurements are very useful for plastic surgery. The sur-

geons usually use many measuring instruments to do the measurements directly on a

patient’s face. As shown in Figure 4.33, four types of length are provided for the mea-

surements of maximum cranial length, upper facial depth, middle facial depth and lower

facial depth. Once these six landmarks are clicked on the template mesh, the indices of

these landmarks are known for calculation of the four types of length.

With the proposed method, we provide a fully automatic way to do facial anthropo-

metric measurements with 3D scanners. After capturing the 3D shape of one patient, we

use the proposed template morphing framework to build dense correspondences. Since

the morphed template has the same indices of these landmarks as the template mesh. Then

we use these indices to search the 3D axis coordinates of these landmarks on the morphed

template.

We can expect a significant growth of the face and cranium during youth and a smaller

growth in old age. This is validated in Figures 4.34 and 4.35. The noisiness of the

measurements in old age is due to fewer samples. We compare the measurements in

Headspace for 1212 subjects with those in FaceBase [117]. In both datasets, we can
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Headspace                                       FaceBase

Maximum Cranial Length

Upper Facial Depth

Figure 4.34: Craniofacial Anthropometric Measurements over Headspace (right) and

FaceBase (left) dataset: 1st row - Maximum Cranial Length and 2nd row - Upper Fa-

cial Depth.

observe that the face and cranium grows significantly before 20 years old. After that, the

growth is very small and stable. In Headspace, we can see the motion of face and cranium

growth after 40 years old. A small growth can be observed after 40 years old. We can

chose a starting point Ms and an ending point Me. We can calculate the growth rate of

face and cranium from 0 to 20 years old:

Gr =
(Me −Ms)

Ms

(4.14)

where Gr indicates the growth-rate. The growth rate for maximum cranial length, up-
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Middle Facial Depth

Lower Facial Depth

Headspace                                       FaceBase

Figure 4.35: Craniofacial Anthropometric Measurements over Headspace (right) and

FaceBase (left) dataset: 1st row - Middle Facial Depth and 2nd row - Lower Facial Depth.

per facial depth, middle facial depth and lower facial depth are about 18.75%, 33.33%,

33.33% and 40.00%. The face grows more significantly than the cranium. The lower

facial depth has the most significant growth when compared with the other three mea-

surements.

4.9 Summary

We released the first publicly-available full head dataset with meta-data for academic

research. We proposed a fully-automatic 3DMM training pipeline and used it to build
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the first shape-texture 3DMM of the full head. The correspondence framework avoids

over-fitting and under-fitting in template morphing. The adaptive template improves the

correspondence accuracy in local regions, while the LB regularised point projection helps

in decreasing the correspondence error in the normal direction. The correspondence ac-

curacy is state-of-the-art, in terms of publicly-available pipelines. The texture mapping

technique captures high quality texture for texture modelling. The proposed 3DMMs have

a powerful ability in reconstruction of incomplete data and model regression to observe

the influence of age on craniofacial growth. The flexibility of reconstruction from in-

complete craniofacial data helps in many computer vision applications. We present the

first use of statistical 3D craniofacial shape models in a clinical study. Both BS and TCR

operations show a shape improvement due to clinical intervention. We provided a fully

automatic way to do facial anthropometric measurements.
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Chapter 5

Symmetric Morphing and

Symmetry-factored Statistical

Modelling

Most biological objects, including human faces and heads, possess approximate sym-

metries. Often this is principally extrinsic, bilateral symmetry (i.e. reflective symmetry

about a plane bisecting the object). Deviations from exact symmetry are an interesting

and potentially important geometric property in terms of modelling and understanding

3D shape variation. The degree of asymmetry may convey information about an object.

For example, there is evidence that facial asymmetry is used by humans to measure ge-

netic health [81] and asymmetry in man-made objects may indicate imperfections in the

manufacturing process. For this reason, we suggest constructing statistical shape models

that separate symmetric from asymmetric shape variability, in order to reveal interesting

and potentially subtle aspects of shape variation over population datasets.

The asymmetric variation in human head shape is much smaller than symmetric vari-

ation. Hence, classical statistical models, obtained by applying PCA directly to aligned

and normalised head shape datasets, pools asymmetric variation with the much larger

symmetric variation. The asymmetric variation is thus difficult to capture in a single

linear model. The decomposition of morphable models into symmetric and asymmetric

variation is able to express asymmetry variation in heads explicitly, without that variation

being pooled with the much larger symmetrical variation.
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Symmetry-factored statistical modelling of craniofacial shape opens up new oppor-

tunities not afforded by existing 3D morphable models (3DMMs). We can analyse the

asymmetry of multiple craniofacial regions. We can also investigate the importance

of symmetry-factored information in different applications, e.g. face recognition or er-

gonomics.

As shown in Figure 5.1, our symmetry modelling framework includes two main stages:

1) symmetric deformation and 2) symmetry-factored modelling. We decompose the sym-

metric deformation into global symmetric deformation and local symmetric deformation,

which can be seen as symmetry-plane aware CPD (SA-CPD), followed by LB-regularised

point projection. The global/local symmetric deformation is to symmetrise the global/lo-

cal deformation field.

3D face data

Symmetric 

Deformation

Symmetry-factored 

Modelling
Registered data

3DMM of sym/

asymmetry

Figure 5.1: Symmetry-factored statistical modelling framework.

Why do we need symmetric deformation results for symmetry-factored modelling?

When extracting the symmetric and asymmetric shape variation from the registered data,

we have the hypothesis that the meshes have been symmetrically remeshed. This means

that for any vertex i, its symmetric partner is given by sym(i). Vertices lying on the

symmetry line are self-symmetric, i.e. i = sym(i). As can be seen from Figure 5.2, a

symmetric partner exists in a template with a perfectly symmetric face. However, this is

not true when the symmetry contour slides to one side, as shown in Figure 5.2 (3). In other

words, vertex j is not the symmetric partner of vertex i in this deformation result. Figure

5.2 (4) shows a typical result of the proposed symmetric deformation. The symmetry

contour of the deformation result (red points) is very close to the symmetry contour of the

target data (blue points).

Pipeline Design Motivation. Note that, as well as motion field symmetrisation during

deformation, we use point set symmetrisation later in the pipeline. Why is this necessary?

Figure 5.3 (1) demonstrates the end result of symmetry-plane aware CPD, in which the

deformation field is symmetrised. The symmetry contour is forced to be fixed to the
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(1)                           (2)                            (3)                            (4)

Figure 5.2: Blue points are the symmetry contour on the target data. Red points are

from the symmetry contour indices of the source template: (1) scan, (2) template, (3)

deformation result with no symmetry constraint, (4) proposed symmetric deformation.

X = 0 plane. We then use LB-regularised point projection to capture the shape detail,

which breaks the morphed template symmetry. Therefore we then symmetrise the end

result to generate the symmetric face for the given subject. The symmetric face for the

subject can be defined as: 1) the mirror of right face is exactly the same as the left face; 2)

when this symmetric face is subtracted from the end result shown in Figure 5.3 (2), only

the asymmetric shape variation is left. Note that the end result of the deformation field

symmetrisation is also symmetric, as shown in Figure 5.3 (1), but it includes other sym-

metric shape variation that does not belong to the specific subject. This is why point-based

symmetrisation is not redundant, when deformation field (i.e motion-based) symmetrisa-

tion is performed on previous stage. Deformation field symmetrisation is required so as

not to destroy the symmetry property during the deformation. Overall, the symmetric

deformation aims at preserving the symmetry-plane. This ensures that vertices lying on

the symmetry line are self-symmetric, which is necessary for point set symmetrisation.

Point set symmetrisation aims at generating the symmetric face for the specific subject

and extracts the asymmetric shape variation.

Chapter Structure. The remainder of this chapter is structured as follows. Section

5.1 is used for mathematical notation and preliminaries. In Section 5.2, we describe

our new symmetric shape morphing process. Registered data is the output of symmetric

deformation algorithms. We evaluate this in section 5.3. We use the registered data as the

input of our symmetry-factored modelling. We present our symmetry-factored modelling
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3D face data

Symmetry-

aware CPD

LB 

Regularised 

Projection

Point Set 

Symmetrisation

- Asymmetric 

shape variation =

Avg. 0.86 mm, Left face 

≠ Mirror(Right face) 

Symmetric Deformation Symmetry-factored  Modelling

…….

(1)                               (2)                                    (3)

Avg. 1.06 mm, Left face 

= Mirror(Right face) 

Avg. 2.23 mm, Left face 

= Mirror(Right face) 

Figure 5.3: End results of symmetry-plane aware CPD, LB regularised projection and

face symmetrisation. The color maps are the per-vertex nearest point error calculated

from these results to target scan.

method in section 5.4. The constructed 3DMM of symmetry and asymmetry is evaluated

in section 5.5. Finally Section 5.6 concludes the chapter.

5.1 Notation and Preliminaries

We represent a mesh either as a matrix of vertex positions X ∈ RN×3 or as a vector

x = vec(X) = [x1, y1, z1, . . . , zN ]T , where x ∈ R3N . The ith vertex in the mesh, pi ∈

R3, i ∈ [1, N ] is given by pi = [x3i−2, x3i−1, x3i]
T . We assume that the meshes have been

symmetrically remeshed. This means that for any vertex i, its symmetric partner is given

by sym(i). Vertices lying on the symmetry line are self-symmetric, i.e. i = sym(i).

Therefore, each mesh is composed of N = 2M + S vertices, S of which are self-

symmetric, leaving M = (N − S)/2 pairs of proper symmetric vertices. Without loss

of generality, we assume that the ordering of vertices is such that the proper-symmetric
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vertices on one side of the mesh (e.g. left) come first, followed by the self-symmetric

vertices and finally the proper-symmetric vertices on the other (e.g. right) side. Hence:

x =


xleft

xself

xright

 ,
with

xleft = Sleftx, xself = Sselfx, xright = Srightx,

where

Sleft =
[
I3M 03M×3(M+S)

]
∈ {0, 1}3M×3N ,

Sright =
[
03M×3(M+S) I3M

]
∈ {0, 1}3M×3N ,

Sself =
[
03S×3M I3S 03S×3M

]
∈ {0, 1}3S×3N

are selection matrices that select the proper symmetric vertices from the left and right

halves of the mesh and the self symmetric vertices respectively. The vectors xleft and xright

are assumed to appear in symmetry pair order and so the symmetry operator has a very

simple form:

sym(i) =


i+M + S if 1 ≤ i ≤M

i if M + 1 ≤ i ≤M + S

i−M − S if M + S + 1 ≤ i ≤ N

A symmetrised mesh is one with exact extrinsic symmetry. For clarity, when we refer to a

mesh that has been symmetrised, we use a tilde, x̃. We assume (without loss of generality)

that such symmetrised meshes have their symmetry planes aligned with the x = 0 plane.

A single vertex is reflected about the x = 0 plane by premultiplying with the reflection

matrix:

F =


−1 0 0

0 1 0

0 0 1

 .
so that Fv is the reflection of v. This can be extended to the whole template by

G(M) = IM ⊗ F

so that G(N)x is the reflection of x (we use ⊗ to denote the Kronecker product).
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To avoid redundancy in symmetrised meshes, we store only the vertices on one side of

the mesh since those on the other can be reconstructed by reflection. Moreover, we need

only store the y and z coordinates for the self-symmetric vertices since, by definition,

their x coordinate is zero. Hence, if x̃ is a symmetrised mesh, we select the non-redundant

entries by:

xsym =

 Sleft

Sself,yz

 x̃ ∈ R3M+2S

where

Sself,yz =

02S×3M IS ⊗

0 1 0

0 0 1

 02S×3M


is a selection matrix that selects only the y and z components of the self-symmetric ver-

tices.

We can reconstruct a complete mesh from its reduced representation xsym using:

x̃ = Txsym (5.1)

where

T =

 I3M+3S

G(M)S−self




I3M 03M×2S

03S×3M IS ⊗


0 0

1 0

0 1




and

S−self =
[
I3M 03M×3S

]
∈ {0, 1}3M×3(M+S)

is a selection matrix that removes the self-symmetric vertices.

We can apply the same notation and principles to symmetric point motion, in addition

to the point positions themselves, in order to facilitate symmetry maintenance during

deformation. Thus we represent the template motion field as a matrix V ∈ RN×3. or as

a vector v ∈ R3N = vec(V) = [vx1 , vy1 , vz1 , . . . , vzM ]T . The ith vertex motion in the

template, vi ∈ R3, n ∈ [1, N ] is given by vn = [v3n−2, v3n−1, v3n]T . Let any residual

local template motions, v, not explained by globally-symmetric deformations vsg(Y), be

defined as;
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v = v(Y)− vsg(Y) =


vleft

vself

vright

 (5.2)

and we can use the same selection matrices for vertex motions, as defined earlier for

vertex positions.

vleft = Sleftv, vself = Sselfv, vright = Srightv (5.3)

5.2 Symmetric Shape Morphing

Our symmetric morphing work builds on Myronenko and Song [100], who derived the

Coherent Point Drift (CPD) point registration algorithm in the context of both global

affine deformations (CPD-affine) and local non-rigid deformations (CPD-nonrigid). They

noted that non-rigid point set registration is an ill-posed problem and to obtain a unique

solution, constraints on the solution space are required. They regularised the non-rigid

motion field using a Gaussian kernel, so that deformation varies smoothly (‘drifts’ co-

herently) over the template surface. Our hypothesis is that a restriction to symmetric

deformations may improve template morphing processes for (near) symmetric shapes;

for example, it will not be possible for the sagittal symmetry contour of the template to

deform via non-symmetric shearing and non-symmetric tangential surface sliding, which

can occur in CPD-affine and CPD-nonrigid respectively.

If the shape that we are modelling has an approximate reflective symmetry, we can

use this as a powerful constraint that can be leveraged in any morphable model construc-

tion pipeline. Thus our contribution is a new 3D shape template morphing algorithm that

is suitable for any class of shapes that has regularity associated with a plane of reflec-

tive symmetry. The human face and full head are examples of such classes. Our approach

requires strong but not perfect symmetry, as a final stage in our algorithm morphs the sym-

metrically deformed template to any asymmetries in the data. Therefore, our algorithm

also permits the decomposition of shape into symmetric and asymmetric components,

which is an interesting aspect of the study of shape variations and covariations within

datasets. This is discussed in the following section. We call our symmetric deformation
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Figure 5.4: Symmetry contour comparisons after template deformation. Blue points are

the pseudo ground truth symmetry contours on the target data (see section 5.3.1 for full

explanation). Red points are from the symmetry contour indices of the source template.

The deformed templates in (iii)-(v) show varying amounts of tangential sliding.

method Symmetry-plane Aware CPD (SA-CPD).

In SA-CPD, we symmetrise both CPD-affine and CPD-nonrigid. In the global affine

case, we remove any non-symmetric shearing operations. In the local non-rigid case,

we find the nearest symmetric deformation, in a least squares sense, to that generated by

CPD-nonrigid. These symmetric deformations allow us to generate a symmetric template

shape that is usually very close to the data. Finally, to account for any asymmetry in the

data, we use a Laplace-Beltrami regularised projection operation, as presented in chapter

3.

Evaluations demonstrate that the proposed method outperforms many other template

morphing (point registration) methods in the elimination of shape difference and sliding

error. As can be seen in Figure5.4, the shape difference in (iii)-(v) is small. However, (iii)

has a large tangential sliding error, whereas (iv) and (v) have small sliding error, with (v)

being the best. The proposed method can also deal with noise, outliers, and missing data.

We also provide a means to perform gender and age classification from 3D shape. The

proposed template deformation method gives the best performance in both gender and age

classification tasks, as compared to other leading template deformation algorithms.

An overview of the process is shown in Figure 5.5. This consists of (i) a global

symmetric deformation, which is a symmetrised affine transformation, derived from CPD-

affine and (ii) a local symmetric deformation, derived from CPD-nonrigid. We can iterate

the CPD-affine and CPD-nonrigid processes and this is indicated by the feedback path in
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Figure 5.5. The motivation for this is that only relatively small non-rigid deformations

are permitted between symmetrisations, and so the symmetry constraints acts as a kind of

deformation regularisation. Note that small residual asymmetries can be accounted for by

using a final regularised closest-point projection of the symmetrically deformed template

onto the data mesh, which is the final step shown in Figure 5.5.

The remainder of this section describes the component processes in Figure 5.5 in

more detail. In section 5.2.1, we describe the approximate input scan alignment. Then

we present the global symmetric deformation in section 5.2.2 and local symmetric de-

formation in section 5.2.3. The LB regularised point projection is described in section

5.2.4.

5.2.1 Approximate Input Scan Alignment

The data in our Headspace dataset is not pose normalised and needs to be aligned to an ap-

proximate frontal pose, such that it approximately matches the pose of the template. This

does not need to be accurate. It is sufficient that the initial alignment process reorientates

the input scan such that it is within the convergence basin of CPD-affine. This alignment

approach was described in the previous chapter and our paper [47]. In brief summary, our

3D input scans have an associated and registered colour-texture channel from which we

detect 2D features using the approach of Zhu and Ramanan [157]. These 2D points are

then projected to 3D points allowing pose normalisation by reorientating the detected 3D

features to a template set of desired positions. The procedure was successful on all 1212

scans tested in the Headspace dataset.

5.2.2 CPD-affine for Global Symmetric Deformation

The global scale parameter in CPD’s so-called ‘rigid’ deformation formulation (it is actu-

ally a similarity transform) is often insufficiently general to give good deformation results.

We prefer to use anisotropic scaling, which allows each dimension of the template to be

scaled independently. Of course, the affine motion model can express this, but it also al-

lows for XY and XZ shear, which are not permitted when the symmetry plane is at x = 0,

although YZ shear is. The isotropically-scaled similarity motion model (termed ‘rigid’
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Figure 5.5: Symmetry aware CPD process. The left dashed outline shows alignment pro-

cesses applied to the input data. The right dashed outline shows deformation processes

applied to the template data. All but the final regularised projection are symmetric defor-

mations.

in [100]) is given as:

T (ym; R, t, s) = sRym + t (5.4)
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and the analysis to extract the optimal motion employs the orthogonality constraint RTR =

I. If we augment the isotropic scale, s, to anisotropic scaling matrix Sa = D(sx, sy, sz),

and we include a symmetric shear, we have a non-rigid symmetric transformation:

Usx =


sx 0 0

0 sy m

0 0 sz

 , (5.5)

then the motion model is more flexible than the similarity case, but is restricted to sym-

metric deformation and becomes:

T (ym; R,Usx, t) = RUsxym + t (5.6)

where the subscript sx denotes that the deformation is symmetric about the X = 0 plane.

We can optimise for CPD’s global symmetric motion (R,Usx, t) and variance (σ2) pa-

rameters directly, but this is complicated as, in addition to the orthogonality constraint on

R, we need to handle the structural constraint on Usx. An alternative is to optimise with

respect to a general affine motion, with the translation component expressed seperately,

i.e. Ta = [B, t]. This is a more straightforward unconstrained optimisation, and the

solution is presented in [100], which here we term CPD-affine. We then determine how

to extract the nearest symmetric deformation to the general affine transformation. We

achieve this by decomposing the affine transformation into a rigid part (a rotation) and a

non-rigid part:

B = RU (5.7)

where U is an upper-triangular matrix with anisotropic scalings on its diagonal and shears

on its off-diagonal. Due to the orthogonality of R, we have equivalent symmetric matrices

such that

BTB = UTU (5.8)

The known left side of the above equation is real and square-symmetric, and so we can

form its Cholesky decomposition as:

BTB = LTL (5.9)

and we set U = LT as the upper-triangular matrix representing non-rigid deformation.

We then extract the rotation matrix as

R = BU−1 (5.10)
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Given we have U, we can zero any non-symmetric shears in the X-Y and X-Z planes by

zeroing the off-diagonal elements, in the first row of that matrix to give a deformation

matrix Usx. Finally we can reconstruct the symmetrised affine matrix from its rigid and

non-rigid parts as:

B = RUsx (5.11)

Recalling the template deformation model from Equation 5.6, we split the update

across the template and data such that the (inverse) rigid part of the affine update is applied

to the data and the non-rigid part is applied to the template. The intent is to maintain

the template in a frame where its sagittal symmetry plane is coincident with the X = 0

plane, thus maintaining simplicity of form in any reflection matrix required for subsequent

processing. Thus we update M template points ym non-rigidly as:

ym ← Usxym, m = (1 . . .M) (5.12)

and N data points xn rigidly as:

xn ← RT (xn − t), n = (1 . . . N). (5.13)

These operations are indicated in the process flow in Figure 5.5.

5.2.3 CPD-nonrigid for Local Symmetric Deformation

We now propose to find the nearest (in a least-squares sense) local symmetric deformation

to the non-rigid component of any CPD-nonrigid deformation. For the required local

shape deformation, we need to ensure that the displacement of proper symmetric point

pairs is reflected across the symmetry plane. We assume the template maintains the pose

of its symmetry plane on the Y Z axis, with the inverse rigid motion being applied to the

data, as described in the previous section.

Non-rigid CPD displaces the template,Y, according to some displacement function,

v:

T (Y, v) = Y + v(Y) (5.14)

The general non-rigid motion can be considered to incorporate some (possibly zero)

global-symmetric deformation. Hence, we decompose the displacement function as global
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and local symmetric displacements:

v(Y) ≈ vsg(Y) + vsl(Y) (5.15)

Our aim is to employ non-rigid CPD to generate the small displacements v(Y), which

can then be decomposed, to some approximation, into its symmetric global (sg) and sym-

metric local (sl) components. The vector field v(Y) will be a smooth motion field, with

CPD-nonrigid using a Gaussian kernel to ensure smoothness. Any (small) global sym-

metric deformation, vsg(Y), contained within this can be determined from the process

described in Sec. 5.2.2, using the template points before and after the non-rigid deforma-

tion as the initial points and target points of this incremental global-symmetric deforma-

tion respectively. Finally, we need to find an optimal, symmetrised, residual motion field

vsl(Y) in Equation 5.15, after vsg(Y) is subtracted from v(Y).

Proper Symmetric Deformation:

We define a reflection in the x = 0 symmetry plane by the matrix F, where

F =


−1 0 0

0 1 0

0 0 1

 . (5.16)

and we define vsleft as the symmetric-left non-rigid local motion field that we wish to

recover (symmetric deformation is distinguished from non-symmetric by the superscript).

The required symmetric-right motion is recovered by a reflection of this. The reflection

can be applied to the P vertices on the left side of the template motion by

G(P ) = IP ⊗ F (5.17)

so that

vsright = G(P )vsleft (5.18)

is the reflection of vsleft (we use ⊗ to denote the Kronecker product). Then we can for-

mulate the computation of a proper symmetric motion field as: IP

G(P )

vsleft =

 Sleft

Sright

v (5.19)

and we solve this linear LS problem for the symmetric-left motion vsleft and we recover

the right symmetric motion as from Equation 5.18.
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Self-symmetric Deformation:

Finally, we require the motion of the self-symmetric points on the template symmetry

plane to be restricted to that plane. The closest in-plane motion vectors to those of CPD-

non-rigid are obtained by projecting to the x = 0 plane with matrix, Px

Px =


0 0 0

0 1 0

0 0 1

 . (5.20)

we define

Px(S) = IS ⊗Px (5.21)

and the optimal S self-symmetric vertices vsyms are computed as:

vsself = Px(S)Sselfv (5.22)

5.2.4 Regularised Projection using Laplace-Beltrami

After symmetric template deformation, point projection to the aligned input data can elim-

inate any (normal) shape error. The template shape before and after this projection rep-

resents the symmetrised and non-symmetrised versions of template deformation respec-

tively. Point projection is fragile if the input data is incomplete or noisy and may cause

large artefacts. We overcome this by treating the projection operation as a mesh editing

problem. We use the same method as described in Section 4.3.3. We write the LB mesh

editing problem as a linear system of equations. Given the vertices of a data scan stored

in the matrix X ∈ RN×3 and the deformed template obtained by CPD whose vertices are

stored in the matrix Y ∈ RM×3, we define the selection matrices S1 ∈ [0, 1]Q×M and

S2 ∈ [0, 1]Q×N as those that select the Q vertices with mutual nearest neighbours from

deformed template and data respectively. This linear system can be written as: λL

S1

Yproj =

 λLY

S2X

 (5.23)

where L ∈ RM×M is the cotangent Laplacian approximation to the LB operator [121] and

Yproj ∈ RM×3 are the projected vertex positions that we wish to solve for. The parameter

λ weights the relative influence of the position and regularisation constraints, effectively
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determining the ‘stiffness’ of the projection. As λ → 0, the projection tends towards

nearest neighbour projection. As λ→∞, the deformed template will only be allowed to

rigidly transform.

5.3 Evaluation of Symmetric Deformation

In order to evaluate the symmetric deformation method described in section 5.2, we com-

pare it with several other deformation methods in the literature. This is performed both

qualitatively and quantitatively, using 1212 3D images in the Headspace dataset [47],

which is publicly available. The following subsections describe: 1) qualitative and quan-

titative tangential sliding evaluation in section 5.3.1, 2) robustness to noise in section

5.3.2, and 3) gender and age classification performance using SVMs in section 5.3.3.

5.3.1 Tangential Sliding Evaluation

Qualitative Evaluation: We compare our SA-CPD method with NICP [8], the LSFM

pipeline [27] (an NICP extension [8]), Li‘s method [92], standard CPD (affine and non-

rigid) [100] and CPD-LB [47]. Figure5.6 shows a typical example where the proposed

symmetric morphing method is qualitatively superior to other methods in terms of tan-

gential sliding. All methods excluding the proposed and CPD-affine have observable

tangential sliding problems. However, CPD-affine by itself significantly underfits to the

target shape, some form of more flexible yet non-sliding deformation is required, as is

provided by our method. We built a 3DMM using SA-CPD, as shown in Figure5.7, the

symmetry contour is stable in the middle when the shape is varied from +3SDs to -3SDs

over the first ten principal components. This validates that the proposed method signifi-

cantly mitigates tangential sliding over the full dataset.

Quantitative Evaluation: Pseudo ground truth symmetry contours are shown in blue

in Figure 5.4 and can be compared to the template sagittal symmetry plane contour, shown

in red. We compare our method with the LSFM pipeline [27] and CPD-LB [47]. Since

the correspondence between the template and data target is unknown, it is not possible

to compute the correspondence error directly. Instead, we employ two metrics: 1) the

Nearest Point Error (NPE) to quantify the shape difference from the deformed template to
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Figure 5.6: Deformation of the template to the first scan using competing methods. Note

the tangential sliding in all methods except the proposed and CPD-affine. CPD-affine is

likely to have some small shear and significantly underfits, but the proposed method has

an excellent fit to the target data.

the target; 2) Symmetry Contour Error (SCE) to quantify the tangential sliding error. The

NPE is computed by measuring the nearest point distance from the deformed template to

raw scan and averaging over all vertices. As illustrated in Figure 5.8 (a), 87% of the NPE

from our method is under 1mm, which compares to 30% for CPD-LB and 28% for the

LSFM pipeline. We use piecewise-trimmed ICP between the raw scan and its reflection

[106] to detect the local symmetry contour (blue contour in Figure 5.4) in the raw scan

and we use this as a pseudo ground truth. This allows us to compute the SCE metric.

(This blue symmetry contour is far less subject to surface sliding problems as it employs

local-piecewise registration of the data to its self-reflection [16], and it employs robust

outlier rejection. This contour can track local asymmetries, such as the nose bending to

the left/right.) Figure 5.8 (b) shows that 99% of SCE from our method is under 2mm,

which compares to 82% for CPD-LB and 0.6% for LSFM. Overall, the proposed method

significantly outperforms the other two methods across both metrics.
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Figure 5.7: 3D morphable model constructed by SA-CPD. The mean and the first five

principal components are shown at +3SD (top row) and -3SD (bottom row). Note the

stability of the symmetry contour, with no tangential sliding across the main eigenvectors.

Figure 5.8: (a) Proportion of subjects with a Nearest Point Error (NPE) less than abscissa

value. (b) Proportion of subjects with a Symmetry Contour Error (SCE) less than abscissa

value.

5.3.2 Robustness

We use a 3D data mesh with outliers, missing data and Gaussian noise to test the robust-

ness of the proposed method. When dealing with these situations, deformation algorithms

need to choose the proper parameters. So in this section, it is unfair to compare other algo-
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Figure 5.9: (a) NPE and (b) SCE for 100 3D data scans against level of Gaussian noise.

Table 5.1: Gender classification results
Precision Recall F-score

LSFM 0.79 0.80 0.79

CPD-LB 0.81 0.81 0.81

Proposed 0.84 0.84 0.84

rithms with the proposed method, without extensive parameter tuning. We add Gaussian

noise data to 100 3D meshes in the dataset. The mean of the Gaussian noise is set at the

mean of the target data and variance is set to be compatible with head size, by scaling a

unit normal distribution by 80mm, as shown by the blue points in Figure 5.10, row (3).

We define ‘ratio of noise’ as the number of Gaussian noise points as a fraction of the

number of template points, M . In Figure 5.9, we demonstrate the NPE of the proposed

method when dealing with different percentages of Gaussian noise. Figure 5.10 shows the

qualitative results of the proposed method when dealing with outliers, missing data and

Gaussian noise (ratio 0.6) along with error metric computations. Overall, the proposed

SA-CPD method is shown to be robust to outliers, missing data and Gaussian noise.

5.3.3 Gender and Age Classification

We use the deformation results of the proposed SA-CPD method, LSFM pipeline [27],

and CPD-LB [47] to build three 3D morphable models. Then all of the 1212 face meshes
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Figure 5.10: Deformation results against: (1) outlier, NPE = 1.3023, SCE = 0.2843; (2)

cranial data missing, NPE = 0.4418, SCE = 0.3081; (3) Gaussian noise (ratio 0.6), NPE =

0.9342, SCE = 0.6992.

in the dataset are reparameterised using each of the the models. Using the demographic

information (metadata) within the Headspace dataset we train a Support Vector Machine

(SVM) classifier for each model, which maps the corresponding shape vectors to the

gender groups and four age groups (0-11, 12-21, 22-60 and over 60). To measure the

classification accuracy, we use the classifier to predict the age bracket and the gender

for the test subjects via a 10-fold cross-validation evaluation so that no test subject ever

appears in the classifier’s training set. This provides an application-oriented evaluation of
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Table 5.2: Age classification results

Precision Recall F-score

LSFM 0.71 0.71 0.71

CPD-LB 0.72 0.72 0.72

Proposed 0.73 0.74 0.73

the quality of the correspondence and low-dimensional representation. As can be seen in

Table. 5.1 and 5.2, the proposed SA-CPD deformation method has the best performance

in both gender and age classification.

5.4 Symmetry-factored Statistical Modelling of Cranio-

facial Shape

Here we present the first 3D Morphable Model of craniofacial symmetry and asymme-

try. In our proposed symmetry-factored statistical modelling pipeline, we employ five

processes to models the symmetric and asymmetric deformations as follows:

Section 5.4.1 Symmetry Detection and Symmetric Remeshing: Given an arbitrary

mesh, for every vertex attempt to find a corresponding symmetric partner vertex

or point on the surface. Then remesh the surface with symmetric topology so that

every vertex has a symmetric partner or is self-symmetric. This is done by the pro-

posed symmetric deformation method described in the previous section.

Section 5.4.2 Symmetry Plane Alignment: Given a mesh with symmetric topology, es-

timate a plane which maximises the symmetry about the plane.

Section 5.4.3 Point Set Symmetrisation: Given a mesh with symmetric topology, find

the ‘closest’ shape with exact geometric symmetry.

Section 5.4.4 Symmetry-plane Aware GPA: Given a collection of meshes with sym-

metric topology with symmetry planes aligned, solve for the remaining degrees of

freedom to best align the collection.

Section 5.4.5 Symmetry-factored Statistical Modelling: Separately model symmetric

and asymmetric modes of shape variation.
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Our specific aim in this section is to model deviations from exact extrinsic symmetry for

a set of 3D head scans with neutral facial expression.

5.4.1 Symmetry Detection and Remeshing

Symmetry detection and remeshing can be done simultaneously using template morphing

methods and we apply the symmetric deformation method in section 5.2. This process

is able to avoid over-fitting and under-fitting and these two properties ensure that the

symmetry detection and remeshing is reliable.

5.4.2 Symmetry Plane Alignment

For a given mesh, we wish to find a best-fit symmetry plane that maximises bilateral

extrinsic symmetry. Denote a plane with equation:

ax+ by + cz = d (5.24)

by p = [a, b, c, d]. We denote by p : R3 7→ R3 the reflection of a point about the plane

given by p. We seek the plane which satisfies the following optimisation problem:

argminp

∑
i

||p(verti)− vertsym(i)||2. (5.25)

This problem can be solved in closed form in a straightforward manner. First we compute

a modified point cloud in which we take the average of each vertex and its symmetric

partner. This gives an almost planar point cloud (it would be exactly planar for a mesh

with exact extrinsic symmetry). Second, we apply PCA to this modified point cloud and

select the eigenvector with the smallest eigenvalue to give the plane normal. The centre of

mass gives a point on the plane. Finally, having found the symmetry plane p, compute a

rigid transformation [R, t] such that the symmetry plane coincides with the x = 0 plane.

5.4.3 Point Set Symmetrisation

We pose symmetrisation as finding the symmetric mesh that minimises distortion relative

to a given mesh, x, where distortion is measured via linear operators Ma,Mb ∈ R3N×3N .
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We write this as a linear least squares optimisation problem:

arg min
xsym∈R3M+2S

∥∥∥∥∥∥∥∥∥Qxsym −


Mbx

0

0


∥∥∥∥∥∥∥∥∥
2

, (5.26)

where

Q =


MaT

11×M ⊗

0 1 0

0 0 1

 11×S ⊗

1 0

0 1


 . (5.27)

The bottom two rows of Q resolve translational ambiguities by setting the zeroeth moment

to zero.

This provides quite a general formulation of the symmetrisation problem. If Ma =

Mb = I3N then the above simply performs linear averaging of the left and right halves of

the mesh, i.e. it minimises Euclidean distance between the symmetric and original mesh.

If instead we construct Ma and Mb from the cotangent Laplacian matrix L ∈ RN×N as

Mi,j = Ldi/3e,(j−1 mod N)+1

such that vec(LX) = M · vec(X), then it minimises local bending distortion relative to

the original mesh.

5.4.4 Symmetry-plane Aware GPA

In Sec. 5.4.2, we computed a best fit symmetry plane for all meshes. This determines

three dimensions of the six degrees of freedom needed to align the meshes to a common

mean (three out of seven if we also allow scaling). Supposing that all faces have been

aligned such that their symmetry plane is equal to the x = 0 plane then the remaining

degrees of freedom are: scaling, rotation about the x axis and translation in y and z.

Denote by X ∈ R3×N a training mesh aligned to the x = 0 plane and by X̄ ∈ R3×N

the current estimate of the mean (initialised using one of the samples). The Procrustes

alignment of a sample to the mean is given by a translation [0, ty, tz], a rotation:

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (5.28)
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and an optional scale s. To factor out translation, all samples (and the mean) have their

y, z centre of mass subtracted:

ty = − 1

N

N∑
i=1

X2,i, (5.29)

tz = − 1

N

N∑
i=1

X3,i, (5.30)

Ignoring scale for now and assuming that X and X̄ have had their y, z centre of mass

subtracted, we solve the following optimisation problem in terms of the angle of rotation:

arg min
θ

∥∥Rx(θ)X− X̄
∥∥2

Fro

= arg min
θ

N∑
i=1

(cos θX2,i − sin θX3,i − X̄2,i)
2

+ (sin θX2,i + cos θX3,i − X̄3,i)
2

Differentiating with respect to θ, setting to zero and solving for θ yields:

F1 =
N∑
i=1

(X2,iX̄3,i −X3,iX̄2,i),

F2 =
N∑
i=1

(X2,iX̄2,i + X3,iX̄3,i),

θ = atan2 (F1,F2) .

Having aligned all of the meshes to the mean using the above steps, we compute a new

mean and iterate. We refer to this process as Symmetry-plane aware GPA (SA-GPA).

5.4.5 Building a Symmetry-factored Model

We now build a statistical model composed of two parts: a symmetric part (which only

need model points on one side of the symmetry plane, and the self-symmetric points on

the symmetry plane, since the other half is by definition given by a reflection), and an

asymmetric part (modelled as displacements to the output of the symmetric model).

We now construct a symmetric data matrix Dsym ∈ R(3M+2S)×K from the K sym-

metrised and SA-GPA aligned training meshes. We apply PCA to find eigenvectors/eigen-

values of the symmetrised meshes. The symmetric statistical model is given by:

xsym = x̄sym + Psymbsym (5.31)
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where Psym ∈ R(3M+2S)×K , x̄sym ∈ R3M+2S . A complete symmetric mesh can be built

from xsym using (5.1).

The data matrix for the asymmetric model, Dasym ∈ R3N×K , is constructed by sub-

tracting the symmetrised meshes from the original meshes, such that the ith column is

given by:

Dasym,i = xi −TDsym,i. (5.32)

We again apply PCA to this matrix but without computing and subtracting a mean since

the data matrix directly dsecribes displacements. The final combined model is hence

given by:

x = T(x̄sym + Psymbsym) + Pasymbasym (5.33)

Note that this could be rewritten in the form:

x = x̄ + P

 bsym

basym

 (5.34)

where

x̄ = Tx̄sym (5.35)

P =

 Psym

G(M)S−selfPsym

Pasym

 . (5.36)

Hence, it is still just a standard linear model but for which the parameters can be parti-

tioned into those that only vary the shape symmetrically and those that vary it asymmet-

rically.

5.5 Evaluation of Symmetry-factored Modelling

We use the registered data from the proposed symmetric deformation algorithm to de-

rive our symmetry-factored 3D craniofacial model, by applying the model construction

pipeline, detailed in section 5.4. We compare the proposed model with linear PCA mod-

els which are symmetry-plane aware GPA + PCA and standard GPA + PCA. In section

5.5.1, we demonstrate our 3DMM of craniofacial symmetry and asymmetry. In section

5.5.2, we show the outcome of each step in symmetry-factored modelling and the model

fitting error. The evaluation of the proposed 3DMMs is included in section 5.5.3. We
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`x

1                        2                      3                        4                      5

Figure 5.11: Visualisation of 5 principal components (mean ±5 SDs) of symmetry varia-

tion.

compare linear averaging symmetrisation method with the proposed method in section

5.5.4. Section 5.5.5 describes the reconstruction from a half head mesh using the pro-

posed 3DMMs. In section 5.5.6, we present age classification in terms of craniofacial

symmetry and asymmetry.

5.5.1 3D Morphable Model of Asymmetry

Figure 5.11 shows the morphable model of symmetrical variation; specifically, mean ±5

standard deviations of symmetrical variation; Figure 5.12 shows the morphable model

of asymmetry variation: Top - without symmetric morphing; Bottom - with symmetric

morphing (i.e. using SA-CPD). In order to observe pure asymmetry variation, we add in

the mean of the symmetry model ±5 standard deviations of asymmetrical variation. The

red points are the symmetry contour. Note that the major mode of asymmetry is the angle

between the head and neck. When not using symmetric morphing (SA-CPD), we can

observe an obvious tangential sliding of the symmetry contour in the third mode of the

morphable model. So there is tangential sliding motion in the asymmetric variation, which

is not desirable for asymmetry modelling. With symmetric deformation, the symmetry
121



Chapter 5: Symmetric Morphing and Symmetry-factored Statistical Modelling

`x

1                        2                      3                       4                      5

`x

1                        2                      3                        4                      5

Figure 5.12: Visualisation of 5 principal components (mean ±5 SDs) of asymmetry vari-

ation: Top - without symmetric deformation; Bottom - with symmetric deformation.

contour is fixed to the X = 0 plane. So there is no asymmetric tangential sliding motion

included in the proposed framework. This also validates that symmetric deformation is

necessary for symmetry-factored modelling.
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Sample                             ADE =  1.12                             ADE =  0.58                               

Figure 5.13: (1) Symmetry plane alignment, red line shows deformed symmetry contour

from initial template morphing (2) model fitting using 3DMM of symmetry; (3) model fit-

ting using 3DMM of symmetry + asymmetry; Average distance error (ADE, mm) against

the shape sample (1).

5.5.2 Model Fitting

Figure 5.13 illustrates the end results of symmetry plane alignment and model fitting.

Figure 5.13 (2) shows the reconstruction of symmetric face for this specific sample. The

distance error color map becomes symmetrical, see Figure 5.13 (2). The symmetry plane

of Figure 5.13 (2) is the X = 0 plane. The aim of model fitting is to find the parameters

P in Equation 5.34 and validate the effectiveness of morphable models. Figure 5.14 (1)

shows the cumulative error distributions of the per-vertex fitting error. For very small

fitting errors (less than 0.487 mm), the standard PCA model is better than the proposed

model, but for larger fitting errors, which is 91.3% of the dataset, the proposed model is
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Figure 5.14: (1) Cumulative error distributions of the per-vertex fitting error (mm): pro-

posed vs. standard PCA model (higher is better); (2) Plot of eigenvalues. Fewer PCs

describe more variation.

Figure 5.15: Left - compactness, higher is better; Right - generalisation error of the pro-

posed model and PCA model with the number of principal components retained, lower is

better.

better than the standard PCA models. The proposed symmetry-plane aware GPA improves

the performance of the standard PCA model.

5.5.3 Model Evaluation

We compute model compactness and generalisation error in order to evaluate the pro-

posed model quantitatively. To ensure a fair comparison, when we compute these two
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criteria, the number of principal components (PCs) from the standard PCA model is the

sum of PCs from symmetry-factored model, i.e. if we use Npc PCs from the standard

PCA model, the number of PCs from the symmetry model is Npc
2

and also Npc
2

from the

asymmetry model. As can be seen from Figure5.14 (2), the asymmetry model requires

fewer components to express its variation than the symmetry model, which in turn re-

quires fewer components than the PCA model. When we combine Npc
2

symmetry and
Npc
2

asymmetry components with Npc PCA components in the compactness plot in Figure

5.15, we find that the proposed model is slightly better than the standard PCA model and

more compact than the symmetry-plane aware GPA + PCA model.

The generalization ability of a model measures its capability to represent unseen in-

stances of the object class [123]. The generalization ability of each model is measured

using leave-one-out reconstruction. A model is built using all but one member of the

training set and then fitted to the excluded example. The generalisation error shown on

the right of Figure5.15 implies that the proposed model has significantly better general-

isation ability than the standard PCA models. The symmetry-plane aware GPA + PCA

model has slightly lower reconstruction error than the standard PCA model, which implies

that the proposed symmetry-plane aware GPA can improve model generalization ability.

5.5.4 Symmetrisation Comparison

Figure 5.16 (1) shows a subject with a slightly bending nose. Figure 5.16 (2) demonstrate

linear averaging of the left and right halves of the mesh, and Figure 5.16 (3) demonstrate

the proposed point set symmetrisation. The nose bridge becomes thinner with linear

averaging. We also calculate the geodesic distance error for the symmetry pairs shown in

Figure 5.16. Since the sample data with specific distortion is limited, we use 5 subjects

with bending noses in Headspace dataset. When compared with symmetry pairs in sample

data, the average Geodesic distance error for linear averaging is 0.42 cm and that for the

proposed method is 0.19 cm.
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(1)                           (2)                            (3)                          

Width: 1.1cm                   0.8cm                      1.2cm                    

Figure 5.16: point set symmetrisation comparison: (1) Sample mesh with bending nose;

(2) Linear average reduces width; (3) Proposed symmetrisation method has a smaller

error.

5.5.5 Half Head Completion

When shade-from-shading is applied to a 2D profile image, the standard way to make

the depth information complete is to calculate the reflection of the half head. There is no

asymmetry variation in this completion. A PCA model can retain asymmetry variation in

completion, but it tends to lose more symmetry information. The proposed model is able

to overcome the loss of both symmetry and asymmetry information. From Equation5.34,

the reconstruction from the proposed model can be decomposed into two steps:

(i) Find the closest symmetry head, computing the symmetry parameters Psym by least

squares;

(ii) Use Psym to find the closest asymmetry variation, computing the asymmetry param-

eters Pasym by least squares.
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Figure 5.17: Simulation of half head completion from profile image.

Table 5.3: Age classification using shape parameters

Precision Recall F-score

PCA 0.733 0.735 0.731

Sym 0.737 0.741 0.736

Asym 0.709 0.712 0.710

Sym+Asym 0.739 0.741 0.741

Step (i) retains symmetry information and step (ii) retains asymmetry information. This

can be validated by the results in Figure5.17 and Figure5.18 in half-head completion

experiments. We use 606 training samples to build the 3DMMs of craniofacial asymmetry

and use the rest of dataset (606 subjects) for the half-head completion task. 200 PCs from

PCA model are used to do the half head completion. For a fair comparison, 100 PCs from

symmetry model and 100 PCs from asymmetry model are used. As shown in Figure5.18,

the proposed model has much greater proportion of subjects with lower reconstruction

error from half head.
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Figure 5.18: Cumulative error distributions of the per-vertex fitting error (mm) from half

head: proposed model vs. standard PCA model (higher is better).

5.5.6 Age Classification: Asymmetry vs. Symmetry

We divide the dataset into four age groups: age 0-11, 12-21, 22-60 and > 60. Psym and

Pasym are used for the age classification task and compared with the standard PCA model.

The comparison uses

• the first 10 parameters from the PCA model

• the first 10 from Psym

• the first 10 from Pasym

• the first 5 from Psym and 5 from Pasym

A linear SVM is trained with 10-fold cross-validation. As can be seen from Table 5.3,

symmetry parameters have slightly better accuracy than that of PCA model, while asym-

metry parameters alone are worse in age classification than that of PCA model. This

implies that symmetry information is more discriminative in age classification than asym-

metry information. Since asymmetry variation is relevant to the age (faces in age group

0-11 are more symmetrical than that in > 60 age group), the asymmetry parameters are

still valid in age classification. The combination of 5 Psym and 5 Pasym are better in age
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classification than PCA model and Psym alone, which implies that the asymmetry infor-

mation can improve the performance in age classification when combined with symmetry

parameters.

5.6 Summary

We proposed a Symmetry-plane aware Coherent Point Drift (SA-CPD) algorithm and

evaluated it on 3D images of the human head. This deformation method mitigates the

tangential sliding problem seen in competing morphing algorithms, sometimes signifi-

cantly, thereby improving the correspondence quality. The proposed method is also robust

to outliers, missing data and Gaussian noise. The constructed morphable model based

on the proposed deformation method has the best performance in both gender and age

SVM-based classification compared to the leading competing methods. The deformation

method is applicable to any shape sets that exhibit bilateral symmetry over a reflective

symmetry plane.

We presented a craniofacial symmetry-factored statistical modelling pipeline and ap-

plied it to a craniofacial dataset of 1212 subjects. Contributions included Laplace-Beltrami

regularized symmetrisation, symmetry-plane aware GPA and symmetry-factored statisti-

cal modelling method. We used it to build the first morphable model that makes cranio-

facial asymmetry explicit. A comprehensive evaluation shows that the proposed model

has significantly better performance than standard PCA models, especially in terms of

generalisation error and in the completion of head data. Symmetry-plane aware GPA

can improve the performance of the standard PCA model. Additionally, we found that

symmetry information is more discriminative than asymmetry information in age clas-

sification. Future work should focus on region-based asymmetry modelling and give a

comprehensive study of facial symmetry/asymmetry in 3D face recognition.
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Chapter 6

Modelling and Merging High

Resolution Ear Shape

The shape of the ear has long been recognised as a means of biometric identification.

There are many existing ear recognition systems and ear biometrics continues to be an

active research area [60]. Morphable models provide powerful statistical priors on shape

and so can be used in biometric ear analysis. However, it is very difficult to capture the

detailed structure of the ear when morphing over the whole head. The high frequency de-

tail of the fleshy folds is not captured and we are unable to construct a powerful statistical

prior in the ear region. Thus we choose to model this in a separate process, which then

generates the problem of having to merge separate parts together, namely the ear and the

remainder of the head.

We present a pipeline capable of building a 3D Morphable Model (3DMM) of the

human ear from a very limited training sample of 3D ears, using data augmentation. Deep

learning can be used on 3D meshes, but a large-scale dataset is needed for training and

it takes a huge effort to capture a sufficiently large number of 3D meshes. Since 3D data

augmentation can generate new 3D data, it satisfies the need for a large dataset and has

become an active research field.

We have 20 high quality 3D meshes of the ear [160], taken from 10 subjects, with

the left ear reflected to be compatible with the right ear shape. This is insufficient to

construct a 3D morphable model that is a good representation of the mean ear shape and

the variance and covariances of size-and-shape (form), over a large population. However,
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Figure 6.1: 55 landmarks on ear and their semantic annotations taken from [155]. Defor-

mation: (1) template, (2) over-fitting, (3) deformed template.

with such a limited dataset, we construct an initial approximate model of the form:

X(α) = X̄ + Pα (6.1)

where the 3DMM parameters are the mean shape X̄, the shape variation components

P, and shape parameters α. The model has over 7K vertices (7111) and we employ a

modified version of our morphing technique (Dai et al. [47]) to build the model. Subse-

quently, 3D data augmentation is able to generate new samples for the 3DMM construc-

tion, thereby boosting the initial morphable model in terms of its accuracy in representing

larger populations. Recently, Zhou et al. [155] made a 2D ear image dataset available with

55 ground-truth landmarks and over 600 images, partitioned into 500 training images and

100 test images. Figure 6.1 (left) shows the 55 landmarks and their semantic annotations.

The chapter is structured as shown in Figure 6.2: in Section 6.1 we describe the ear

model construction process including landmark-based 3DMM fitting, use of 3D defor-

mation to overcome over-fitting, and 3D mesh manipulation regularized by 2D image

information; in Section 6.2 we describe the process of ear merging with a 3DMM of full

head. Section 6.3 describes the evaluation of both processes, while a final section is used

for conclusions.

6.1 A 3DMM of the Ear

The process of data-augmented 3DMM construction is shown in Figure 6.3. Here, data

augmentation has three stages: A) 3DMM fitting with 2D ear landmarks; B) 3D de-
132



6.1 A 3DMM of the Ear

3D ear data

3DMM of the 

Ear construction

3DMM of the 

Ear

3DMM of Full 

Head

Merge
Merged 

3DMMs

Figure 6.2: The flowchart of modelling and merging high resolution ear shape.

formation to overcome the over-fitting of the initial approximate 3DMM; C) 3D mesh

manipulation to manipulate the projection of the landmarks in the augmented 3D mesh

towards the manually-labelled 2D landmark positions. These three stages are described in

the following subsections, with the iterative loop for model construction described. Our

contributions are (i) the data-augmented model building pipeline and (ii) the first publicly-

available 3DMM of the ear. This model is shown in Figure 6.4. In addition to the model,

the augmented training data is made publicly available.

6.1.1 Landmark-based 3DMM Fitting

The scaled orthographic projection (SOP) [14] model assumes that variation in depth

over the object is small relative to the mean distance from camera to object. Under this

assumption, the projected 2D position of a 3D point Xi = [xi, yi, zi]
T ∈ R3, given by

SOP (Xi; R, t, s) ∈ R2 does not depend on the distance of the point from the camera,

but only on a uniform scale s given by the ratio of the focal length of the camera and the

mean distance from camera to object:

SOP (Xi; R,T, s) = sPo (RXi + T) (6.2)

where the 3D pose parameters are given by a rotation matrix R s.t.R ∈ R3×3, RTR = I3

and 3D translation T ∈ R3. Po is the orthogonal projection from 3D to 3D defined by

Po =

1 0 0

0 1 0

 .
and so, defining the 2D translation, t in the image plane we have

SOP (Xi; R, t, s) = sPoRXi + t, t = sPoT (6.3)
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Figure 6.3: Iterative model construction process: A) 3DMM fitting with 2D ear land-

marks; B) 3D deformation to overcome the over-fitting of the initial approximate 3DMM;

C) 3D mesh manipulation to manipulate the projection of the landmarks in the augmented

3D mesh towards the manually-labelled 2D landmark positions.

We begin by showing how to fit a morphable model to M observed 2D positions

xi = [ui, vi]
T (i = 1...M) arising from the SOP projection of corresponding vertices in

the morphable model. Without loss of generality, we assume that the i-th 2D position cor-

responds to the i-th vertex in the morphable model. The objective of fitting a morphable
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Figure 6.4: 3D morphable model of ear. The mean and the first five principal components

are shown at +3SDs (top row) and -3SDs (bottom row).

model to these observations is to obtain the shape and pose parameters that minimise the

reprojection error, Elmk, between observed and predicted 2D landmark positions:

Elmk(α,R, t, s) =
1

M

M∑
i=1

||xi − SOP (X̄i + Piα; R, t, s)||2 (6.4)

The problem is non-linear least squares that can be solved by various means. Here we use

the trust region approach [39] encapsulated in Matlab’s lsqnonlin function.

6.1.2 3D Mesh Deformation

The number of training subjects for the initial 3DMM is insufficient, so the 3DMM fit-

ting to a 2D image with landmarks, described in Sec. 6.1.1 is over-fitted, appearing as

surface noise, see Figure 6.1 (2). To overcome this, we employ the mean of the initial

3DMM, see Figure 6.1 (1) as a template, and we deform it using the Coherent Point

Drift (CPD) algorithm [100] applied with a non-rigid deformation model, followed by a

projection to corresponding points that is regularised by the template shape-preserving

Laplace-Beltrami (LB) operator. The motivation for the deformation process is that the

deformed template is able to preserve the same shape, the same number of vertices and

also the same triangulation relationship as the over-fitted data, while it can overcome the

noise due to over-fitting. The deformation algorithm works well because there is a known
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one-to-one correspondence between the 7111 vertices on the template and the 7111 ver-

tices on the target. The outcome is shown in Figure 6.1 (3).

6.1.3 Mesh Manipulation Regularised by 2D Landmarks

The locations of the fitted landmarks after the initial 3DMM fitting and the template defor-

mation are not accurate, relative to the manually-labelled 2D landmarks. We overcome

this by treating the template mesh manipulation as a mesh manipulation problem with

two ingredients. First, position constraints are provided by those 2D landmarks, the cor-

respondences of which are known in 3D mesh. Second, regularisation constraints are

(again) provided by the LB operator, which acts to retain the local structure of the mesh.

The LB mesh manipulation problem can be written as a linear system of equations.

Given the vertices of a 3D mesh stored in the matrix X = [x1, y1, z1, ..., xN , yN , zN ]T ∈

R3N and the 2D landmarks stored in the matrix x = [u1, v1, ..., uM , vM ]T ∈ R2M , we

define the selection matrices S ∈ [0, 1]3M×3N that select the M vertices which are the

correspondences of the 2D landmarks. This linear system can be written as: λL3

G(M)S

Xedit =

 λL3X

x

 (6.5)

G(M) = IM ⊗

1 0 0

0 1 0


where IM is the M ×M identity matrix and G(M) ∈ R2M×3M project the 3D landmarks

to 2D, L3 ∈ R3N×3N is the cotangent Laplacian approximation to the LB operator [121]

and Xedit ∈ R3N are the edited vertex positions that we wish to solve for. The param-

eter λ weights the relative influence of the position and shape regularisation constraints,

effectively determining the template shape ‘stiffness’ of the mesh manipulation process.

As λ→ 0 (reducing shape stiffness) the projected 3D landmarks in Xedit tend towards the

same positions as the 2D manual landmarks.

6.1.4 Similarity Alignment & Statistical Modelling

The collection of the augmented meshes are subjected to Generalised Procrustes Analysis

(GPA) [72] to remove similarity effects (rotation, translation, scale), leaving only shape
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information. (Scale cannot be included as we have no notion of scale within the 2D image

dataset.) The aligned meshes are then subject to Principal Component Analysis (PCA),

generating a 3DMM as a linear basis of shapes. This allows for the generation of novel

shape instances.

6.1.5 3DMM Bootstrapping

We propose a 3DMM bootstrapping procedure where, at each bootstrap iteration, we

rebuild the 3DMM and reapply it to the augmented dataset for an improved fitting to

that dataset, and hence we can generate a better 3DMM in the next iteration. This

approximate-to-accurate iterative system encapsulates each of the three key stages in Sec.

6.1.1 to Sec. 6.1.3 within each iteration. We push each procedure harder relative to the

previous iteration, as follows: 1) we increase the number of the shape components in Sec.

6.1.1 to give the algorithm more variance to do the fitting; 2) we decrease λ in Sec. 6.1.3

to manipulate the projection of the landmarks in Xedit towards the 2D landmarks position.

3DMM fitting and mesh manipulation are potentially fragile processes when the 3DMM

is approximate, thus we push the algorithm step-by-step in this iterative fashion.

6.2 Merging 3D Morphable Models

Given that it is desirable to create a separate ear model to capture its detailed shape, we

then have the problem of replacing the ear shape on the full head model with the improved

ear model. As shown in Figure 6.5, the proposed framework for this operation includes

two stages: 1) rigid alignment: rigidly align an ear sample randomly generated from the

ear model to the ear part of the head sample that is randomly generated by head model; 2)

mesh manipulation with Poisson field: typically there is a gap between the two samples,

so it needs an extra transformation to merge the two meshes. These two processes are

detailed in the following subsections.
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Rigid alignment Mesh manipulation

Smooth patch

bump

Figure 6.5: The merging flowchart includes two stages: 1) rigid alignment; 2) mesh ma-

nipulation. If the output of the rigid alignment undergoes a patch smoothing operation

only, it suffers from a discontinuity problem, ending up with a bump. The mesh manipu-

lation overcomes this.

6.2.1 Joint Template

The high resolution ear template replaces the ears on the head template, ending up with a

joint template: a head template with a high resolution ear. We use the software package

meshmixer [116] to blend a high resolution ear template with the head template to create

our joint template. In other words, the triangulation relationship is already known. The

problem that we need to solve is how to merge these two morphable models. Figure 6.6

demonstrates the difference between the triangulation of the original template and that

of the joint template. We cut off the high resolution ear from the joint template. The

connection relation between the two separate parts are known from the joint template.

Then we can use this connection relation to merge the two separate morphable models.

The key in this process is to solve the correct position and matched edge for the high

resolution ear shape. The red points represent the shared vertices for the high resolution

ear X′e and the rest of the head X∗h−e. When splitting the joint template into two parts:

X′e and X∗h−e, the correct position of the red points on the ear part X′e should be the same

position of the red points on the no-ear head part X∗h−e. Now these red points are called

a ‘Poisson field’. Given the selection matrix S′pf as those that select the Poisson field on
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Original template                                Joint template

Figure 6.6: Joint template.

the high resolution 3D ear part X′e, this Poisson field can be represented as S′pfX
′
e. Given

the selection matrix S∗pf as those that select the red points on the no-ear head part X∗h−e,

these red points can be represented as S∗pfX
∗
h−e. For a sample generated by the part-based

morphable model which merge the two models, it should satisfy the requirement:

S′pfX
′
e = S∗pfX

∗
h−e (6.6)

6.2.2 Rigid alignment

We begin by showing how to rigidly align the high resolution 3D ear sample X′e to the

low resolution 3D ear X∗e on the head mesh sample X∗. Given a selection matrix S∗e as

those that select the low resolution 3D ear, we can form X∗e = S∗eX
∗. We aim to find the

rigid transformation matrix that can rigidly transform X′e to X∗e. This can be solved by

normalising the scale of the high-resolution ear to that of the low-resolution ear, and then

using ICP [18].
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6.2.3 Mesh Manipulation with Poisson Field

These rigid transformation matrices are used for aligning the decomposed parts to the 3D

raw data. The rigidly transformed facial parts tell the original template where it should

be. We treat this as a mesh manipulation problem. We use Laplace-Beltrami mesh ma-

nipulation to manipulate the Poisson field on X′e towards the Poisson field on X∗e and the

rest of X′e is moved ‘as rigid as possible’ along with this manipulation, as follows: (1)

the Poisson field (pf) of the high resolution 3D ear mesh X′e is manipulated towards their

target positions - red points in Figure 6.6; (2) all other parts of X′e are moved as rigidly as

possible.

Given a refined high resolution 3D ear mesh, whose vertices are stored in the matrix

X′refine ∈ Rp×3. This linear system can be written as:

 L

λS′pf

X′refine =

 LX′e

λS∗pfX
∗
h−e

 (6.7)

where L ∈ Rp×p is the cotangent Laplacian approximation to the LB operator [121] and

X′refine is the refined ear position that we wish to solve for. The parameter λ weights the

relative influence of the position and regularisation constraints, effectively determining

the ‘stiffness’ of the mesh manipulation. As λ → 0, the ear part stays in its original

position. As λ → ∞, the Poisson field on the ear part is moved exactly onto its target

positions - i.e. the red points on X∗. After this mesh manipulation, the small artefacts

can be removed by a simple patch smoothing technique proposed by Desbrun et al. [55],

which employed an implicit integration method along with a scale-dependent Laplacian

operator and a robust curvature flow operator to portray a smooth surface.

Given a selection matrix S∗h-e that selects the no-ear head part X∗h−e on the a head

sample X∗, which is generated by the head model, a new instance X′ generated by the

merged model can also be represented as X′ = [X′refine; S
∗
h-eX

∗]. X′refine can be solved from

a linear system and S∗h-eX
∗ can obtained from the head model linearly. So this part-based

morphable model is still a linear PCA model, which facilities its application in 3DMMs

fitting to 2D images.
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6.3 Evaluation

We used the proposed method to build a 3DMM of the ear over 500 training images and

used the remaining 100 images for testing the performance in the given dataset [155].

There is no public 3DMM of the ear available for direct comparison. However, in sec-

tion 6.3.1 and section 6.3.2 we evaluate the performance of model construction, both

qualitatively and quantitatively, for several variants of our method. These include: i)

the proposed method, using several bootstrapping iterations, and 500 data augmentation

images, ii) the proposed method without any bootstrapping iterations (i.e. one pass of

the three steps in Sec. 6.1) and 500 data augmentation images, iii) the initial 20-image

3DMM passed through the three steps in Sec. 6.1, with no data augmentation (Initial-v1

method) and iv) the initial 20-image 3DMM with just 3DMM fitting, i.e. no template mor-

phing or mesh manipulation stages, and no data augmentation (Initial-v2 method). The

performance improvement of ear model is presented in section 6.3.3. We compare the

proposed ear merging method with other methods in section 6.3.4. The merged 3DMMs

are presented in section 6.3.5.

6.3.1 Qualitative Evaluation

In order to validate the effectiveness of each step in augmentation, we demonstrate the

outcome of each step in Figure 6.7. The landmark positions of the fitted results get closer

and closer to the landmark ground-truth. Due to insufficient data, there exists obvious

over-fitting from the 3DMM fitting to 2D landmarks at the beginning. The CPD-nonrigid

deformation removes the noise, but it still keeps the same landmark position as the first

step. The outcome of final step (LB mesh manipulation) is almost the same landmark

positions as the ground-truth. This implies that the LB mesh manipulation refines the

landmark position. Quantitative evaluation is included in next subsection. In order to

demonstrate the accuracy of the ear shape, we rigidly align the 3D ear shape to the 2D

landmarks on the 2D image. Then the ear shape with texture is cropped. As can be seen in

Figure 6.8, there are almost no other pixels other than ear texture in the images of the 3D

ear with texture, which implies that the end result is very accurate. The proposed method

can handle different head poses. After mesh manipulation, the projected positions of the
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(1)                                                        (2)                                                          (3)

Figure 6.7: Results of each step in data augmentation: (1) 3DMM fitting to 2D land-

marks; (2) deformation to overcome over-fitting; (3) LB mesh manipulation to refine the

landmark position.

model’s 3D landmarks are almost the same as the ground-truth 2D landmarks.

6.3.2 Quantitative Evaluation

We use two metrics: landmark error and fitting consistency to evaluate the performance

quantitatively.

Landmark Error: This measure is calculated by the average landmark distance error

between the projected 3D landmarks and the 2D landmarks, over the test set (100 images).

As shown is Figure 6.9(1), the proposed method has the lowest landmark error. Initial-v1

indicates the results with data augmentation. When compared with no data augmentation

version (only 3DMM fitting to 2D images), the mean of landmark error decreases from

3.7 to 2.2, which implies that the data augmentation improves the accuracy of ear shape

generation. The bootstrapping stage makes the accuracy of ear shape generation even

better.
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Figure 6.8: Augmentation results: 1st row - original images, 2nd row - 3D landmarks

projection to 2D images, 3rd row - augmented data with texture.

Figure 6.9: Average landmarks distance error for four system variants: (1) Landmark

error, (2) Fitting consistency.

Fitting Consistency: The dataset contains multiple images of the same person, as

shown in the first two columns of Figure 6.8. This allows us to do some consistency
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Figure 6.10: Model evaluation: (1) Compactness, (2) Generalisation, (3) Specificity.

checking in the following way. First we fit the 3D model to the first image of a pair, thus

fixing the 3D model shape. Then, without changing the model shape, we project it into the

second image and measure the mean landmark error relative to the manual 2D landmarks.

We compensate for differences in scale between the two images in the fitting process. As

shown is Figure 6.9(2), the proposed method has the lowest distance error, which implies

that the fitting from the proposed method is more consistent with the other images of the

same person.

6.3.3 Ear Model Evaluation

Since model evaluation requires that the models should have the same number of principal

components, we compare the proposed method and the proposed method without boot-

strapping. For quantitative model evaluation, Styner et al. [123] give detailed descriptions

of three metrics: compactness, generalisation and specificity. The compactness of the
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Mean

+3SDs

-3SDs

Figure 6.11: The first 4 modes of high resolution 3DMM of ear merged into a mean head

from LYHM.

model describes the number of parameters required to express some fraction of the vari-

ance in the training set, fewer is better. As can be from Figure 6.10, the proposed method

without bootstrapping has better compactness than the proposed method when < 25 prin-

cipal components are used. When > 25 principal components are used, the compactness

is similar. The proposed method has the lower generalisation error, which implies that

proposed method has the better performance in describing unseen examples. Specificity

measures how well a model is able to generate instances that are similar to real data. The

proposed method has the lower distance error, which implies that the proposed method is

better at generating instances close to real data.

6.3.4 Comparison of Ear Merging

We compare the proposed ear merging method with mesh smoothing [55] after ear align-

ment and Laplacian mesh manipulation [122]. As shown in Figure 6.13 (2), with ear

alignment, the high resolution ear mesh is rigidly transformed to the right position. If we

use mesh smoothing directly after ear alignment, the joint area ends up with bumps which

is presented in Figure 6.13 (3). It is desirable to have smoothed joint area for ear merg-

ing. Laplacian mesh manipulation is based on the Laplacian to do interactive free-form

deformation. As can be seen from Figure 6.13 (4), Laplacian mesh manipulation presents
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Mean

+3SDs

-3SDs

Figure 6.12: The first 4 modes of high resolution 3DMM of ear merged into the first 4

modes of head model.

(1)                                         (2)                                           (3)

(4)                                          (5)                                         

Figure 6.13: Comparison of ear merging: (1) original head mesh; (2) ear alignment; (3)

mesh smoothing after ear alignment; (4) Laplacian mesh manipulation; (5) proposed.

a non-rigid deformation in ear shape. This changes the high resolution ear shape, which

is not desirable in this process. Figure 6.13 (5) demonstrates the merging outcome of the

proposed method. It shows a smoothed joint area between the ear part and face part. The
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Figure 6.14: Ear merging results: every pair of images include one original head mesh

and a merged result.

ear shape is the same as that after rigid alignment, which results from the ‘as rigid as

possible’ property of LB mesh manipulation. Figure 6.14 shows the ear merging results

for different identities using the proposed method.

6.3.5 Visualisation of the Merged Morphable Model

The merged morphable model is derived from merging the proposed ear model with a

head model. Figure 6.11 demonstrates the first 4 modes of high resolution 3DMM of

ear merged into a mean head from LYHM. In this case, the head shape is fixed and the

ear shape is varied. Figure 6.12 presents the first 4 modes of high resolution 3DMM of

ear merged into the first 4 modes of head model. Here, the head shape and ear shape

are both varied. In order to validate the improvement in 3DMM fitting to 2D images,
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Figure 6.15: Fitting results of a single 3DMM and the proposed part-based 3DMM.

we use the landmark fitting algorithm in iBug ear dataset [155]. The ear landmarks are

given and we use a facial landmarking system from [157] for 3DMM fitting. The fitting

results are shown in Figure 6.15. It shows that the part-based morphable model improves

the performance of 3DMM fitting to 2D images when compared with a head model only.

Actually, there is not much shape variation in the ear that is generated by the head model

only.
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6.4 Summary

We proposed an iterative 3DMM construction using 3D data augmentation to bootstrap

a strong 3DMM of the human ear from a weak one. The method overcomes noisy over-

fitting and manipulates the projection of 3D landmarks towards the desired 2D landmark

positions. Evaluation demonstrates that the method lowers the landmark error and the fit-

ted data is more consistent within images of the same person. The bootstrapping strategy

improves the model performance in both generalisation and specificity. The limitation is

the requirement for manual 2D landmarks. We proposed a framework of merging high

resolution ear shape with a 3DMM of the head. The merged morphable models provide

more ear shape variation.
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Chapter 7

Conclusions

In this chapter, we summarise the main contributions of the thesis in several areas of 3D

morphable model construction. We then critically analyse weaknesses and finally present

directions for further work.

7.1 Summary of Contributions

In the introduction and literature review, we highlighted the following facts: (i) most pre-

vious methods on morphable model construction are not fully automatic; (ii) craniofacial

surgeons often like to employ a 2D profile view for operation outcome assessment; (iii)

craniofacial symmetry properties are not considered in existing template morphing al-

gorithms and statistical modelling techniques, and (iv) useful 3DMMs of the ear region

demand more ear shape variation. Contributions to address each of these is presented in

the following four subsections.

7.1.1 Modelling of Orthogonal Craniofacial Profiles

We propose a new pipeline to build a 2D morphable model of the craniofacial sagittal

profile and augment it with profile models from frontal and top down views. We also

integrate all three profiles into a single model, thus capturing any correlations within and

between the three profile shapes more explicitly and clearly than is possible with PCA

analysis on a full 3D model.
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7.1.2 3D Statistical Modelling Pipeline

We propose a fully automatic pipeline to build 3DMMs, with contributions in pose nor-

malisation and dense correspondence. In particular we present a fully automatic regis-

tration framework using an adaptive template. We also present a high quality texture

map from several views of cameras for the morphed template and use the texture map

for texture modelling. We build both global craniofacial 3DMMs and demographic sub-

population 3DMMs from more than 1200 distinct identities in the Headspace dataset

[1,57] and we make them publicly available 1. To our best knowledge, our models are the

first public shape-and-texture craniofacial 3DMMs of the full human head. We demon-

strate flexibility modes of our model such that, when given a fixed face shape, we compute

the range of possible cranial shapes and vice-versa. We demonstrate the first clinical use

of craniofacial 3DMMs in the assessment of two different types of surgical intervention

applied to the crania. Finally, we describe a fully automatic way to do the craniofacial

anthropometric measurements using the proposed 3DMMs. The results validate that the

face and cranium grow significantly before 20 years old, and face grows more signifi-

cantly than the cranium.

7.1.3 Symmetry-factored Statistical Modelling

We propose a Symmetry-aware Coherent Point Drift (SA-CPD) algorithm and evaluated it

on 3D images of the human head. This deformation method mitigates the tangential slid-

ing problem seen in competing morphing algorithms, sometimes significantly, thereby

improving the correspondence quality. The proposed method is also robust against out-

liers, missing data and Gaussian noise. Based on the symmetry constrained correspon-

dence output of SA-CPD, we present a symmetry-factored statistical modelling method

for craniofacial shape. Our main contribution is to show how to build a statistical model

with separate parameters for symmetric and asymmetric variations. The resulting model

is still linear and so can be used in place of any existing 3DMM but with the additional

ability to separate symmetric from asymmetric variation. This includes a method for sym-

metrisation regularised by the Laplace-Beltrami operator, symmetry-aware GPA and the

1https://www-users.cs.york.ac.uk/˜nep/research/
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symmetry-factored statistical modelling method. Comprehensive evaluation shows that

the proposed model has better performance than competing algorithms in the literature.

7.1.4 Modelling and Merging High Resolution Ear Shape

We present an iterative process of refinement for a 3D Morphable Model (3DMM) of the

human ear that employs data augmentation. The process employs the following stages

1) landmark-based 3DMM fitting; 2) 3D template deformation to overcome noisy over-

fitting; 3) 3D mesh editing, to improve the fit to manual 2D landmarks. These processes

are wrapped in an iterative procedure that is able to bootstrap a weak, approximate model

into a significantly better model. Evaluations using several performance metrics verify

the improvement of our model using the proposed algorithm. We use this new 3DMM

model-booting algorithm to generate a refined 3D morphable model of the human ear,

and we make this new model and our augmented training dataset public. We merge the

proposed 3DMMs of ear with the full head model. This merged morphable model pro-

vides significantly more shape variation and shape detail of the ear than when the head is

modelled as a single part.

7.2 Critical Analysis

There are a number of angles from which criticisms may be levelled at the work pre-

sented in this thesis. Some of these weaknesses could be addressed by further work or by

incorporating the techniques we have developed into other frameworks.

7.2.1 3D Facial Landmarking:

The 3D facial landmarking in this thesis relies on texture coordinates to project 2D land-

marks onto the 3D mesh. Even though there are landmarking systems detecting 3D land-

marks from 2D images, the 3D landmarks detection is still limited by the ambiguity of

2D view. A fast and pose-invariant facial landmarks detection directly on 3D mesh is

urgently needed.
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7.2.2 Template Morphing:

The proposed template morphing algorithms address the dense correspondence problem

for craniofacial data with subjects having a neutral expression. It may end up with a poor

morphing result when dealing with a strong facial expression. A more robust algorithm

is required for data with strong and complex expressions, which would help a lot in dy-

namic 3D data registration. Another problem is that the current methods are not real-time

applicable. It is very interesting problem to make real-time template morphing feasible

for high resolution 3D data.

7.2.3 Symmetry-factored Modelling:

The asymmetric variation is a small signal for PCA when compared with symmetric vari-

ation. Some high frequency signals which may be very interesting for researchers in

different domains are easy to filter out using PCA. This is the same for all PCA-based

statistical modelling methods.

7.2.4 Merging 3D Morphable Models:

Merging multiple morphable models provides more shape variation for those local parts

like the ear, nose and eye regions. However, the separate parts of the merged morphable

models are still uncorrelated. In other words, they may generate an invalid face that does

not exist in the real world. This incredible flexibility of shape variation is favored by

the games and film industry, but it is less meaningful for shape analysis. The proposed

merged morphable model bridges two separate models. The next generation should have

the ability to turn the uncorrelated part-based model into a correlated one.

7.3 Future Work

Throughout this thesis we have drawn attention to areas which warrant further research

and routes by which the results presented may be improved upon. We conclude the thesis

by providing clear directions for future research in 3DMMs.
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7.3.1 3D Statistical Modelling Pipeline

Recent progress on geometric deep learning features a promising development in 3D mesh

landmarking and correspondence establishment. One feasible way is to transform the 3D

mesh into a UV map. Unlike a depth map, there is no spatial information loss in the

UV map transformation. Then an auto-encoder can use these ingredients for landmarking

and correspondence establishment. Once trained, the landmarking and correspondence

establishment operating directly on a 3D mesh can be performed in real time. An auto-

encoder also has the ability to replace PCA in the statistical modelling process. Auto-

encoding with one layer is an analogue to PCA in statistical modelling. It is expected that

more layers in an auto-encoder would help in explaining the shape variation and retaining

high frequency signals.

The traditional methods like PCA need GPA to filter out similarity effects before mod-

elling the shape variation. Moreover, two separate models are needed for shape and tex-

ture modelling. In future work, we aim at modelling the shape and texture variation using

deep learning to achieve three goals: 1) learn a latent representation of shape variation

which is invariant to similarity effects, 2) compose a six-channel input to model shape

and texture variation at the same time, 3) use the 3D point sets as the input instead of a

geometric image representation, such as the UV representation.

7.3.2 Merging 3D Morphable Models

The problem in our current part-based morphable model is that the separate parts are

unrelated. In fact, both unrelated and related parts are required according to different ap-

plications. In order to make it correlated, we can generate synthetic data from 2D images

using the current merged morphable model. Then we can build a new morphable model

from the synthetic data. The vertex resolution is not uniform across the mesh, where

weighted PCA can be applied to overcome this problem. In this way, the separate parts

become correlated. However, this will end up with a global morphable model includ-

ing all the shape variation in the separate 3DMMs. This may introduce an invalid shape

variation to the 3DMM. How to solve this is the key to the the next version of merged

morphable models.
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Hierarchical Parts-based Template

Morphing Framework

Figure B.1: Parts-based template morphing framework
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B.0.1 Automatic 2D/3D Facial Landmarking

We use the method of Zhu and Ramanan [157] to locate facial landmarks on the texture

channel of each 3D image. This 2D image contains all 5 viewpoints of the capture system

and usually two face detections are found, 15-45 degrees yaw from frontal pose, corre-

sponding to the left and right side of the face. Detected 2D points are in a tree structure

and are projected to 3D using OBJ texture coordinates.

B.0.2 Pose Normalisation

Each face detection employs one of thirteen tree models [157] and we automatically learn

how to orientate each of these to frontal pose, based on their 3D structure. To do this, we

apply GPA to each collection of 3D trees (11 of the 13 models are used by the dataset)

and find the nearest-to-mean tree shape in a scale-normalised setting. We then apply a

3D face landmarker [43] to the 3D data of the nearest-to-mean tree shape (11 of these),

which generates a set of 14 landmarks with clear semantic meaning. Finally, we find the

alignment that moves the symmetry plane of these 14 landmarks to the Y-Z plane with the

nasion above the subnasale (larger Y coordinate) and at the same Z-coordinate, in order

to normalise the tilt (X rotation). To complete the training phase, the mean 3D tree points

for each of the 13 trees are then carried into this canonical frontal pose using the same

rotation, and are used as reference points for the frontal pose normalisation of the 3D

trees.

In around 1% of the dataset, only one tree is detected and that is used for pose normal-

isation, and in the rest 2-3 images are detected. In the cases where 3 trees are detected, the

lowest scoring tree is always false positive and can be discarded. For the remaining two

trees, a weighted combination of the two rotations is computed using quaternions, where

the weighting is based on the mean Euclidean error to the mean tree, in the appropriate

tree component.
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B.1 Dense Correspondence

In this section, we propose a new template morphing framework along with optical flow

correspondence refinement. Both shape information and texture information are used for

correspondence establishment.

B.1.1 Template Morphing

Compared to NICP, CPD can avoid tangential point sliding and over-fitting, resulting

in a good fit and good symmetry preservation. But standard CPD fails to resolve the

under-fitting problem, where convergence terminates before good correspondence is es-

tablished over the ears. This is because there are relatively few points on the ears and

the facial/cranial points dominate. To avoid under-fitting, we propose a two-stage ap-

proach that consists of CPD followed by mutual nearest neighbour projection regularised

by the Laplace-Beltrami (LB) operator. This two-stage approach is then applied within a

parts-based framework.

Two-stage CPD-LB Approach: When CPD has deformed the template close to the

scan, point projection is required to eliminate any (normal) shape distance error. Point

projection is a potentially fragile process. If the scan data is incomplete or noisy then

projecting vertices from the deformed template to their nearest vertex or surface position

on the scan may cause large artefacts. We overcome this by treating the projection op-

eration as a mesh editing problem with two ingredients. First, position constraints are

provided by those vertices with mutual nearest neighbours between the deformed tem-

plate and raw scan. Using mutual nearest neighbours reduces sensitivity to missing data.

Second, regularisation constraints are provided by the LB operator which acts to retain

the local structure of the mesh.

Thus we optimise two cost functions in a sequential manner. The Expectation-Maximization

(EM) algorithm is used to solve the CPD cost function ECPD. For this cost function, we

refer to [101]. For the second stage, we write the LB mesh editing problem as a linear

system of equations. Given the vertices of a scan stored in the matrix Xscan ∈ Rn×3

and the deformed template obtained by CPD whose vertices are stored in the matrix

Xdeformed ∈ Rp×3, we define the selection matrices S1 ∈ [0, 1]m×p and S2 ∈ [0, 1]m×n
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as those that select the m vertices with mutual nearest neighbours from deformed tem-

plate and scan respectively. This linear system can be written as: λL

S1

Xproj =

 λLXdeformed

S2Xscan

 (B.1.1)

where L ∈ Rp×p is the cotangent Laplacian approximation to the LB operator and Xproj ∈

Rp×3 are the projected vertex positions that we wish to solve for. The parameter λweights

the relative influence of the position and regularisation constraints, effectively determin-

ing the ‘stiffness’ of the projection. As λ → 0, the projection tends towards nearest

neighbour projection. As λ → ∞, the deformed template will only be allowed to rigidly

transform.

Hierarchical Parts-based CPD-LB Framework: Our template fitting algorithm, us-

ing temporary splitting of the template into parts and multiple applications of the two-

stage CPD-LB deformation process is illustrated in the central panel of FigureB.1 and

consists of the following six steps:

1. CPD-affine deforms the full-head template to fit the pose-normalised input until it

converges to a global minimum according to the convergence criterion.

2. The template is then divided into two parts: cranial (red part in FigureB.1) and facial

(blue part in FigureB.1) using a predetermined manual mesh segmentation. The

input mesh is also divided into two corresponding parts using nearest neighbours.

3. The segmentation in step 2 releases the two individual parts from the global mini-

mum in step 1 and CPD affine continues on the two parts separately to re-establish

convergence. In practice, the cranial part is already very close to its global mini-

mum, but the facial part continues to deform over many more iterations.

4. After convergence, the two parts of the template are updated using LB-regularised

projection; however, there may exist a gap or an overlap between the two parts, due

to the separate deformation processes.

5. The deformed full template from step 1 is now used to deform towards the two

deformed parts-based templates from the previous step. Note that we now have a

known one-to-one correspondence between the full template and the two template

parts. Under these circumstances CPD-nonrigid performs well and is used.
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6. After CPD-nonrigid converges, a final stage of LB-regularised projection is used to

give the final morphed template of the full head, which is devoid of any overlaps or

discontinuities that appear between the two separate parts in step 4 and is superior

to the initial deformation from step 1 (standard CPD-affine).

7. Morphed template mesh subdivision followed by LB-regularised projection is used

to upscale resolution.

B.2 Results

We select 1212 individuals (606 males and 606 females) to evaluate our part-based tem-

plate morphing framework.

B.2.1 Correspondence Comparison

Figure B.2: Deformation results and their expression rendering with texture.
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Figure B.3: Proportion of subjects with < Euclidean distance error: left-landmark error,

right-shape error. The higher, the better.

Qualitative Evaluation: The proposed method is compared with NICP [8], LSFM pipeline

[27], Li’s method [92] and standard CPD [101]. Expression rendering with texture is

used to validate correspondence accuracy. Figure B.2 shows that the proposed method

is qualitatively superior to other methods with respect to accuracy of the symmetry line,

correspondence accuracy, and shape preservation relative to the input scan. Note that, the

symmetry line slides to one side on the cranium for several methods due to over-fitting.

NICP overfits in both the eye and mouth regions. Although, the (normal) shape error is

low, the registered mouth is not in the correct position. Li’s method also overfits in the ear

region. In contrast, CPD underfits that region in both affine and nonrigid versions. Figure

B.2 shows that the proposed method with subdivision improves the quality of texture and

captures more shape detail. But it also causes over-fitting in the eye region.

Quantitative Evaluation: We use 14 manual facial landmarks over 100 subjects to

measure landmark error of each template deformation method. As shown in Figure B.3-

left, 80% of landmark errors are less than 6 mm for our method. Figure B.3-right shows

that 60% of shape errors from our method are under 1.7 mm. The shape error is computed

by measuring the nearest point distance from deformed template to raw scan. Overall, the

proposed method outperforms all others.
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with multilinear models. In ACM Transactions on Graphics (TOG), volume 24,

pages 426–433, 2005.

[137] Peng Wang, Ping Wang, ZhiGuo Qu, YingHui Gao, and ZhenKang Shen. A re-

fined coherent point drift (cpd) algorithm for point set registration. Science China

Information Sciences, 54(12):2639–2646, 2011.

[138] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on

image processing, 13(4):600–612, 2004.

[139] Zhou Wang and Qiang Li. Information content weighting for perceptual image

quality assessment. IEEE Transactions on Image Processing, 20(5):1185–1198,

2011.

[140] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similar-

ity for image quality assessment. In The Thrity-Seventh Asilomar Conference on

Signals, Systems & Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[141] Max Wardetzky, Miklós Bergou, David Harmon, Denis Zorin, and Eitan Grinspun.

Discrete quadratic curvature energies. Computer Aided Geometric Design, 24(8-

9):499–518, 2007.

[142] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. Dense

human body correspondences using convolutional networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1544–1553,

2016.

[143] Yijun Wu, Gang Pan, and Zhaohui Wu. Face authentication based on multiple pro-

files extracted from range data. In International Conference on Audio-and Video-

Based Biometric Person Authentication, pages 515–522, 2003.

[144] Yue Wu, Tal Hassner, KangGeon Kim, Gerard Medioni, and Prem Natarajan. Fa-

cial landmark detection with tweaked convolutional neural networks. IEEE trans-

actions on pattern analysis and machine intelligence, 2017.
180



References

[145] Yue Wu and Qiang Ji. Facial landmark detection: A literature survey. International

Journal of Computer Vision, pages 1–28, 2017.

[146] Fei Yang, Lubomir Bourdev, Eli Shechtman, Jue Wang, and Dimitris Metaxas. Fa-

cial expression editing in video using a temporally-smooth factorization. In Com-

puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages

861–868. IEEE, 2012.

[147] Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri Metaxas. Ex-

pression flow for 3d-aware face component transfer. In ACM Transactions on

Graphics (TOG), volume 30, page 60, 2011.

[148] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible mixtures-of-

parts. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pages 1385–1392. IEEE, 2011.

[149] Lijun Yin, Xiaochen Chen, Yi Sun, Tony Worm, and Michael Reale. A high-

resolution 3d dynamic facial expression database. In Automatic Face & Ges-

ture Recognition, 2008. FG’08. 8th IEEE International Conference on, pages 1–6.

IEEE, 2008.

[150] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J Rosato. A 3d facial

expression database for facial behavior research. In 7th international conference

on automatic face and gesture recognition (FGR06), pages 211–216. IEEE, 2006.

[151] Rui Yu, Chris Russell, Neill Campbell, and Lourdes Agapito. Direct, dense, and

deformable: Template-based non-rigid 3d reconstruction from rgb video. In IEEE

International Conference on Computer Vision (ICCV 2016), 2015.

[152] Kun Zhang, Yuan Cheng, and Wee Kheng Leow. Dense correspondence of skull

models by automatic detection of anatomical landmarks. In Computer Analysis of

Images and Patterns, pages 229–236, 2013.

[153] Liyan Zhang, Anshuman Razdan, Gerald Farin, John Femiani, Myungsoo Bae,

and Charles Lockwood. 3d face authentication and recognition based on bilateral

symmetry analysis. The Visual Computer, 22(1):43–55, 2006.
181



References

[154] Cheng Zhong, Zhenan Sun, and Tieniu Tan. Robust 3d face recognition using

learned visual codebook. In 2007 IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 1–6. IEEE, 2007.

[155] Yuxiang Zhou and Stefanos Zaferiou. Deformable models of ears in-the-wild for

alignment and recognition. In 2017 12th IEEE International Conference on Auto-

matic Face & Gesture Recognition (FG 2017), pages 626–633. IEEE, 2017.

[156] Zhiyong Zhou, Jian Zheng, Yakang Dai, Zhe Zhou, and Shi Chen. Robust non-

rigid point set registration using student’s-t mixture model. PloS one, 9(3):e91381,

2014.

[157] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and landmark

localization in the wild. In Proceedings of CVPR, pages 2879–2886, 2012.

[158] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z Li. Face alignment

across large poses: A 3d solution. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 146–155, 2016.

[159] Alexei I Zhurov, Stephen Richmond, Chung How Kau, and Arshed Toma. Averag-

ing facial images. Three-dimensional imaging for orthodontics and maxillofacial

surgery. London: Wiley-Blackwell, pages 126–44, 2010.

[160] Reza Zolfaghari, Nicolas Epain, Craig T Jin, Joan Glaunès, and Anthony Tew.

Generating a morphable model of ears. In Acoustics, Speech and Signal Processing

(ICASSP), 2016 IEEE International Conference on, pages 1771–1775. IEEE, 2016.

182


