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Abstract

The perturbations triggered by free-stream vortical disturbances in compressible boundary
layers developing over concave walls are studied numerically and through asymptotic meth-
ods. We employ an asymptotic framework based on the limit of high Gortler number, the
scaled parameter defining the centrifugal effects, we use an eigenvalue formulation where
the free-stream forcing is neglected, and solve the receptivity problem by integrating the
compressible boundary-region equations complemented by appropriate initial and boundary
conditions which synthesize the influence of the free-stream vortical flow. In the limit of high
frequencies, the triple-deck equations are also solved and their results compared with the solu-
tion of the boundary-region equations. The boundary-layer perturbations, in the proximity of
the leading edge, develop as thermal Klebanoff modes and, when centrifugal effects become
influential, these modes turn into thermal Gortler vortices, i.e., streamwise rolls characterized
by intense velocity and temperature perturbations. The high-Gortler-number asymptotic
analysis reveals the condition for which the Gortler vortices start to grow and that the Mach
number is destabilizing when the spanwise diffusion is negligible and stabilizing when the
boundary-layer thickness is comparable with the spanwise wavelength of the vortices. The
theoretical analysis also shows that the vortices move towards the wall as the Mach number
increases when the Gortler number is large. These results are confirmed by the receptivity
analysis, which additionally clarifies that the temperature perturbations respond to this re-
versed behavior further downstream than the velocity perturbations. A matched-asymptotic
composite profile, found by combining the inviscid core solution and the near-wall viscous
solution, agrees well with the receptivity profile sufficiently downstream and at high Gortler

number. The Gortler vortices tend to move towards the boundary-layer core when the flow
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is more stable, i.e., as the frequency or the Mach number increase, or when the curvature
decreases. As a consequence, a region of unperturbed flow is generated near the wall. We
also find that the streamwise length scale of the boundary-layer perturbations is always
lower than the free-stream streamwise wavelength. During the initial development of the
vortices, only the receptivity calculations are accurate. Downstream where the free-stream
disturbances have fully decayed, the growth rate and wavelength are computed accurately by
the eigenvalue analysis, although the correct amplitude of the Gortler vortices can only be
determined by the receptivity calculations. It is further proved that the eigenvalue predictions
of the growth rate and wavenumber worsen as the Mach number increases, as these quantities
show a dependence on the wall-normal direction.

The receptivity analysis is also used to compute the neutral curves generated by free-
stream disturbances, i.e., curves that identify the region of growth and decay of the boundary-
layer perturbations, for different Gortler numbers, Mach numbers, wavelengths, and low
frequencies of the free-stream disturbance. The growth rate of the perturbation is used
to identify if the boundary-layer instability is in the form of Klebanoff modes or Gortler
vortices. A critical Gortler number can be identified below which Klebanoff modes are
the only source perturbations, even when curvature is present. From the receptivity and
eigenvalue formulation we define a streamwise-dependent receptivity coefficient and discuss
the N-factor approach for transition prediction.

Finally, the equations the triple-deck analysis reveals that the curvature effects do not
play a role in the limit of high frequencies, which is also confirmed by the boundary-region

results.
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Chapter 2

Introduction

In 1940 Gortler (1940) published a paper where a new type of boundary-layer instability was
introduced. This Gortler instability originates from an inviscid unbalance between pressure
and centrifugal forces caused by the curvature of flow streamlines. In most cases, curvature is

introuce thanks to a curved concave surface, as shown in figure 2.1. The resulting perturbation

Fig. 2.1 Representation of Gortler vortices edveloping along concave surfaces.

evolves in the form of counter-rotating vortices which are elongated in the streamwise
direction. Their streamwise velocity dominates over the cross-flow velocities. They evolve
slowly in the streamwise direction and with a constant spanwise wavelength. They have been
referred to as Gortler vortices. Gortler’s mathematical result was confirmed experimentally
by Liepmann (1945), who first showed that transition to turbulence is anticipated with respect
to the flat-plate case. Comprehensive reviews on Gortler flow have been published by Hall

(1990), Floryan (1991), and Saric (1994).



4 Introduction

2.1 Incompressible Gortler vortices

The original work of Gortler (1940) was based on a theory simplified by the parallel mean-
flow assumption which contrasts with the growing nature of boundary layers. Tani (1962)
first performed detailed measurements of the perturbed flow proving that Gortler vortices
evolve with a nearly constant spanwise wavelength. An improvement to the original theory
was achieved in the work of Floryan and Saric (1982) by introducing non-parallel effects and
using other assumptions which led to an eigenvalue system of ordinary differential equations.
When the dimensional spanwise wavelength of Gortler vortices is of the same order as the
boundary-layer thickness, Hall (1983) demonstrated that any assumption simplifying the
governing partial differential equations to ordinary differential equations does not lead to a
precise description of the evolution of the Gortler vortices, so that for example the amplitude
of the perturbations, the dependence of the growth rate on the wall-normal direction, and the
flow behaviour near the leading edge would not be computed correctly. In the same paper
several disturbance profiles were introduced at different streamwise locations near the leading
edge as initial conditions and, for each location and initial profile, the instability developed
in a different manner. The influence of the external disturbances was not accounted for and
the perturbations were assumed to vanish outside of the boundary layer. Swearingen and
Blackwelder (1983) and Kottke (1988) proved experimentally that receptivity of the base
flow to free-stream turbulence has a strong impact on the properties of Gortler instability,
such as the spanwise wavelength, and on the breakdown of the vortices to turbulence. Hall
(1990) was the first to introduce the effect of receptivity to free-stream turbulence on the
Gortler vortices, obtaining a better agreement with experimental data than for the cases
where artificial initial conditions were imposed at a fixed streamwise location. More recently,
Borodulin et al. (2017) also claimed that free-stream turbulence is one of the most efficient
ways to excite Gortler instability.

A further pioneering step towards understanding receptivity was achieved by Leib et al.
(1999), who formulated a rigorous mathematical framework based on the unsteady boundary
region equations that, through asymptotic matching, unequivocally fixes the initial and

outer boundary conditions based on the external free-stream vortical disturbances. They



2.1 Incompressible Gortler vortices 5

focused on the incompressible viscous instabilities that arise in flat-plate boundary layers
in the form of streamwise elongated vortices, known as Klebanoff modes, now widely
recognized to be initiators of bypass transition to turbulence (Matsubara and Alfredsson,
2001; Ovchinnikov et al., 2008). Localized streaks have also been investigated using the
boundary region equations (Hewitt and Duck, 2018). Recently, Ricco et al. (2016) highlighted
the strengths of the framework introduced by Leib et al. (1999) by comparing it to other
theoretical approaches found in literature for the analysis of bypass transition, and proved its
validity by showing good agreement with the experimental data and with the direct numerical
simulation data of Wu and Moin (2009). When streamwise concave curvature is present,
Klebanoff modes turn into Gortler vortices as they evolve downstream. This was first proved
by Wu et al. (2011) by extending the theory of Leib et al. (1999) for flows over concave
surfaces where free-stream turbulence was modeled by three-dimensional vortical external
disturbances. Their theoretical results agree well with the experimental data in the linear
region of evolution (Boiko et al., 2010b; Finnis and Brown, 1997; Tani, 1962). In the limit
of high Gortler number, the asymptotic analysis of Wu et al. (2011) revealed the different
stages through which the Gortler instability evolves. It goes through two pre-modal stages
and then it amplifies exponentially. During their growth, the vortices become trapped in a
wall layer. This is a distinctive feature of incompressible Gortler vortices and it is markedly
different from the behavior of Klebanoff modes, which tend to move to the upper part of the
boundary layer.

The effects of nonlinearity on the unsteady Gortler vortices triggered by free-stream
vortical disturbances have been studied by Boiko et al. (2010a), Xu et al. (2017) and Marensi
and Ricco (2017), whereas the effects of nonlinearity on the mean flow was investigated
by Hewitt and Duck (2014). In addition, the excitation of Gortler vortices by local surface

nonuniformities has been recently investigated by Boiko et al. (2017).



6 Introduction

2.2 Compressible Gortler vortices

The initiation of the transition to turbulence caused by Gortler instability affects the perfor-
mance of several technological applications, especially in the compressible regime. A typical
important example is the high-speed flow in turbine engine intakes, where the free stream is
highly disturbed. It is thus crucial to study the influence of free-stream disturbances to predict
transition in these systems and to evince how the change of the flow regime from laminar to
turbulent affects the performance of turbomachines (Mayle, 1991; Volino and Simon, 1995).
Additional examples of Gortler flows in the compressible regime include airfoils (Mangalam
et al., 1985), hypersonic air breathing vehicles (Ciolkosz and Spina, 2006), and supersonic
nozzles (Chen et al., 1992).

Compressible Gortler vortices were originally described by the parallel theory of Hammer-
lin (1961) and were first visualized by Ginoux (1971). A parallel theory was also employed
later by Kobayashi and Kohama (1977) and was further extended to include non-parallel
effects by El-Hady and Verma (1983), Hall and Malik (1989), and Hall and Fu (1989). The
eigenvalue approach was improved by Spall and Malik (1989) by solving a system of partial
differential equations coupled with prescribed initial conditions under the assumption of
vanishing perturbations outside the boundary layer. Spall and Malik (1989) also mentioned
that physically meaningful initial conditions do require receptivity, i.e., the process by which
external disturbances interact with the perturbations inside the boundary layer. This work was
later modified by Wadey (1992) through a new set of improved initial conditions, but recep-
tivity was still not introduced. The eigenvalue approach with vanishing perturbations in the
free stream was also adopted by Dando and Seddougui (1993) to study compressible Gortler
vortices. From these early theories it was first noticed that increasing the Mach number leads
to a more stable flow and to a shift of the vortices away from the wall. More recently, two
conference papers by Whang and Zhong (2002, 2003) reported direct numerical simulation
results on the influence of free-stream disturbances on Gortler vortices in the hypersonic
regime, Li et al. (2010) investigated the nonlinear development of Gortler instability through

nonlinear parabolized stability equations and direct numerical simulations, and Ren and Fu
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(2015) showed how differences in the primary instability lead to considerable changes in the
secondary instability, thereby impacting the transition to turbulence.

Experimental works on compressible Gortler flows are more limited than incompressible
flows. De Luca et al. (1993) experimentally confirmed that in the compressible regime
Gortler vortices also evolve with a constant spanwise wavelength. Ciolkosz and Spina (2006)
ran experimental tests on transonic and supersonic Gortler vortices and showed that the
spanwise wavelength of the vortices remained approximately constant as the Mach number
and Gortler number varied and that the measured growth rates agreed reasonably well with
existing stability results. Gortler vortices were also noticed to be the unwanted cause of
transition for the design of quiet hypersonic wind tunnels (Schneider, 2008). Wang et al.
(2018) performed a flow visualization of the complete evolution of Gortler vortices from
the laminar to the turbulent regime reporting that, although the linear growth rate decreases
as the Mach number increases, the secondary instability was enhanced. They also stressed
that the theoretical works are steps ahead of the limited number of experimental works on
compressible Gortler instability. To the best of our knowledge, rigorous experiments on
compressible flows over concave surfaces describing the effect of free-stream turbulence on
the Gortler vortices are indeed not available in the literature. This has arguably been one of
the reasons why, although progresses have been made, there are no theoretical works on the
receptivity of compressible boundary layers over concave surfaces to free-stream vortical

disturbances and on the engendered unsteady Gortler vortices.

2.3 Neutral stability

Thanks to the theoretical advancements for the incompressible flows, which culminated in
the work of Wu et al. (2011), and compressible flows, here presented, the Gortler flow is
connected in a unique and precise way to the properties of free-stream disturbances. However,
the neutral curves associated to concave surfaces, i.e., curves that identify regions of stability
and instability of the boundary-layer, were not investigated by Wu et al. (2011) and it does

continue to be an unsolved issue for both incompressible and compressible flows. On the
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contrary, the problem of neutral curves for flat plates subject to TS waves instability was
solved by Tollmien (1929).

The first neutral curves were computed based on the simplified parallel flow theories, such
as the original work of Gortler (1940), which lead to inconsistent results for wavenumbers of
order one and unphysical results for small wavenumbers. Only in the limit of high spanwise
wavenumbers the parallel flow theories are acceptable (Hall, 1990). Hall (1983) showed
the influence of different initial conditions on the neutral curves and, thanks to a receptivity
analysis, improved his results in Hall (1990). However, even this last formulation was unable
to capture all the experimental unstable points of Tani (1962) which are indeed included
in the unstable regions computed by Viaro and Ricco (2018). The neutral stability curves
of Viaro and Ricco (2018) were computed with the theory of Wu et al. (2011) and are here
extended to include the effects of compressibility. In their neutral curves the complete range
of low frequencies and spanwise wavenumbers is covered, starting from the leading edge and
including the flat plate scenario. They also demonstrate the existence of a Gortler number
below which only Klebanoff modes are present, even over curved surfaces, and a Gortler

number above which Klebanoff modes shift into Gortler vortices directly.

2.4 Objectives

The objective of this research is to study the receptivity to free-stream vortical disturbances of
compressible boundary layers over streamwise-concave surfaces and the consequent growth
of unsteady Gortler vortices. We use asymptotic methods and numerical computations to
solve the equations of motion. We achieve this goal by combining the theoretical framework
of Wu et al. (2011) for incompressible flows over concave surfaces and the one of Ricco and
Wu (2007), who extended the theory by Leib et al. (1999) to study compressible Klebanoff
modes over flat surfaces. We focus on boundary layers where the free-stream Mach number
is of order one and the instability only takes the form of Gortler vortices, i.e., at sufficiently
low frequencies for which oblique Tollmien-Schlichting waves do not appear at realistic

streamwise locations. We thus exclude the range of frequencies for which the receptivity
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mechanism discovered by Ricco and Wu (2007) is operational. Our rigorous theoretical
framework allows us to compute the neutral stability curves for different flow conditions. We
finally adopt a triple-deck approach to show that there is no curvature effect in the limit of
high frequencies.

Section §3.1.1 outlines the flow scaling and decomposition, while §3.2 presents the
unsteady boundary-region equations with curvature effects. Starting from these equations,
in §3.3 we derive a compressible eigenvalue framework with and without the parallel-flow
assumption, in §3.4 we adopt an asymptotic framework valid at high Gortler numbers to study
the different evolution stages and in §3.5 we derive the triple-deck equations valid at high
frequencies. Section §4.1.1-§4.1.4 show the influence of compressibility, radius of curvature,
oncoming vortical disturbances and frequency on the development of the instability. The
growth rate is shown in §4.1.5 whereas in §4.1.6 a qualitative comparison with the direct
numerical simulation (DNS) results by Whang and Zhong (2003) is proposed. The results
for the neutral stability curves are presented in §4.1.7. Through the receptivity analysis, we
modify the receptivity coefficient introduced by Wu et al. (2011) in §4.2.3 in order to recover
the maximum amplitude of the perturbation inside the boundary layer starting from the local
eigenvalue solution. Additionally, we discuss in §4.2.4 the N-factor approach when receptivity
is introduced in the analysis of boundary layers subject to free-stream disturbances. The
numerical boundary-region solutions are compared with the eigenvalue, the asymptotic and

triple-deck solutions in §4.2, §4.3 and §4.4, respectively.






Chapter 3

Theoretical results

3.1 Scaling and equations of motion

We consider a uniform compressible air flow of velocity U and temperature 7.5 past a
slightly concave plate with constant radius of curvature r*. Hereinafter the asterisk * iden-
tifies dimensional quantities. In the proximity of the surface, the flow is described by the
orthogonal curvilinear coordinate system x = {x,y,z} (Floryan and Saric, 1982) that defines
the streamwise, wall-normal, and spanwise directions. Therefore, x is the streamwise coordi-
nate, y is the wall-normal coordinate, and z is the spanwise coordinate, orthogonal to x and y.
The conversion from the Cartesian to the curvilinear coordinates system is achieved through
the Lamé coefficients i, = 1 —y*/r*,h, =1, and h; = 1 (Wu et al., 2011). The flow domain
is represented in figure 3.1.

The free-stream disturbances are assumed to be of small intensity, passively advected
by the uniform free-stream flow, and of the gust-type. These three-dimensional vortical

disturbances, far upstream and away from the wall, take the form

e e RNk | o 3.1)

where c.c. indicates the complex conjugate, € is a small parameter, i is the unit vector along

the streamwise direction, and 7 is the dimensionless time defined below. The oncoming veloc-
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3D gust
disturbances

mean

Fig. 3.1 Sketch of the receptivity mechanism to free-stream vortical disturbances and the
asymptotic regions I,I1I,III,IV,FS of the boundary layer. A, is the streamwise wavelength
of the free-stream disturbance and Ay, is the streamwise wavelength of the boundary-layer
perturbation { sufficiently downstream from the leading edge.

ity u is therefore decomposed into its dimensionless mean, —i, and a three-dimensional dis-

k-x—k,Rf)

turbance 6 ¢'( that is assumed to be convected by the mean flow of non-dimensional

velocity of one. The wavenumber vector k = {ky,ky,k;} and the amplitude of the free-stream
velocity disturbance @ = {4*,9, W™} satisfy the solenoidal condition k-@* = 0. The
characteristic length scale is A} = A /27, where A* is the spanwise wavelength of the gust.
As the flow is periodic along the spanwise direction and the boundary-layer dynamics is linear
because the perturbation is assumed of small amplitude, A" is also the spanwise wavelength
of the Gortler vortices. This is supported by laboratory evidence as experiments in both
incompressible and compressible boundary layers over concave plates have reported a con-
stant spanwise length scale of the vortices (Ciolkosz and Spina, 2006; De Luca et al., 1993;
Tani, 1962). The characteristic velocity, temperature and pressure are Uz, 7.5, and pj;U;f,z,
respectively, where p is the mean density of air in the free stream. R = UZAL/vi > 1
defines the Reynolds number, where vZ is the kinematic viscosity of air in the free stream,
G =R?A}/r* = 0(1) defines the Gortler number, and M = U, /a%, = ¢'(1) defines the Mach

1/2 .

number, where al, = (yZ*T.) "/~ is the speed of sound in the free stream, #* = 287.06 J
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kg~! K~ is the ideal gas constant for air, and v = 1.4 is the ratio of specific heats. The
parameter for frequency becomes kR = 2wAS2U%/ (A} V%) and the dimensionless spanwise
wavenumber is k; = 1. Time and the streamwise coordinate are scaled as 7 = UJ%t*/(RAY)
and £ = x*/(RA}), respectively, due to our interest in streamwise elongated perturbations.
The streamwise scaling used in Ricco and Wu (2007) could have been implemented, i.e.,
X = kyx, but we would have not been able to investigate the steady perturbations k, = 0 as in
Wu et al. (2011).

Ricco and Wu (2007) proved that, for certain flow conditions defined by the param-
eter kK = k;/ (ka)l/ 2, the spanwise pressure gradient of the disturbance couples with the
boundary-layer vortical disturbances to generate highly oblique TS waves at sufficiently
large streamwise locations X.. For M = 3, this instability appears when 0 < k¥ < 0.03. As M
decreases, the neutral point £, moves downstream and if M < 0.8 the X, location is too far
downstream to be physically relevant. In our study we restrict ourselves to cases for which
Kk > 0.15, a value that comes from our choice of experimental parameters for the investigation
of the frequency influence in §4.1.4 , and therefore the highly-oblique TS waves investigated
by Ricco and Wu (2007) do not occur.

3.1.1 Flow decomposition

The boundary-layer velocity, pressure, and temperature q = {u,v,w, p, T} are decomposed

into their mean Q = {U,V } and perturbation q as

q(x,1) = Q(x) + €q(x,1). (3.2)

Under the assumption r > 1, curvature effects on the mean flow can be neglected (Spall and
Malik, 1989). Consequently, at leading order the mean flow behaves as if the plate were flat.
The Dorodnitsyn-Howarth transformation, which is the equivalent of the Blasius formulation

but for compressible flows, can then be applied to obtain the mean-flow momentum equation
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/ and energy equation & in similarity form (Stewartson, 1964)

/AN
Va (“5 ) FFF" =0, (3.3)
[.LT/ / ,uF”Z
& <ﬁ) + M2 (y—1) - +FT' =0, (3.4)

where we have introduced the compressible Blasius function F = F(n), the temperature
T =T(n), and the dynamic viscosity u(7) = T®, where ® = 0.76 (Stewartson, 1964).
The prime ’ indicates the derivative with respect to the independent similarity variable
n=Y/(2%) 12 where ¥ (£,y) = [3 1/T(%,y)dy. The Prandtl number, assumed to be constant,
is Pr = 0.707. The boundary conditions for (3.3) and (3.4) are

n=0] F=F' =0, T'=0, (3.5)

n—o| F' =1, T—1. (3.6)

The streamwise velocity U and the wall-normal velocity V of the mean flow are

o T(ncF/_F)

U=F, ;
R(2%)1/2

(3.7)

where n.(n) =T~ [T (f))dA (Stewartson, 1964).

3.2 The compressible boundary-region equations

The theoretical framework used herein is a combination of the work of Wu et al. (2011) on
incompressible Gortler flows over concave surfaces with the work of Ricco and Wu (2007) on
compressible Klebanoff modes over flat surfaces. Both papers are extensions of the original
theory proposed by Leib et al. (1999) for the incompressible flat-plate case.

Before introducing the boundary-region equations with curvature effects it is instructive
to discuss the different asymptotic flow regions, represented in figure 3.1. The flow domain

is divided in five main regions: region FS (free stream) for which x> +y” > 1, and regions I,
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II, III, and IV. Goldstein (1978) developed an analytic framework for the description of the
free-stream vortical disturbances in region I. Here, the external disturbances are described
as a superposition of inviscid harmonic vortical disturbances which, in the limit € < 1,
can be analyzed separately due to the linearity of the problem. As the free-stream vortical
disturbances evolve further downstream, the outer flow enters region IV where the mean
flow is also inviscid. Here, the displacement effect caused by the boundary-layer growth and
the energy decay due to viscous dissipation are analytically treated (Leib et al., 1999). The
dynamics of the flow disturbance in these outer regions causes the origin and growth of the
perturbation in the viscous regions II and III inside the boundary layer. The method of
matched asymptotic expansion is used to link the outer regions I and IV with the boundary-
layer regions II and III. Region II is governed by the linearized unsteady boundary-layer
equations, i.e., the linearized unsteady boundary-region (LUBR) equations with the spanwise
diffusion and normal pressure gradient terms neglected. Originally introduced by Kemp
(1951), the LUBR equations are the full Navier-Stokes and continuity equations with the
terms pertaining to the streamwise viscous diffusion and the streamwise pressure gradient
neglected. This is a rigorous simplification that follows directly from the assumptions R — oo
and k, — 0. Gulyaev et al. (1989), Choudhari (1996), and Leib et al. (1999) recognized that
the linearized unsteady boundary-layer equations are appropriate only in a small region near
the leading edge where the spanwise wavelength A.* is much larger than the boundary-layer
thickness 8* = @((x*vZ/UZ)Y/?). As the boundary layer grows to a thickness comparable
with the spanwise wavelength, i.e., 8" = €/(4}), the spanwise diffusion terms become of
the same order of the wall-normal diffusion terms. This occurs in region III, where the
Klebanoff modes in the flat-plate case and the Gortler vortices for flows over concave surfaces
are fully developed. The LUBR equations, complemented by rigorous initial and free-stream
boundary conditions, must therefore be used to study the flow in region II1I. The boundary-
layer perturbations are assumed to be periodic in time ¢ and along the spanwise direction z.

They are expressed as in Gulyaev et al. (1989),

11 . A
4(x,1) = ik,w {Rﬁ, (28)'/2%3, TR Rf} ki hRl) 4 ¢ ¢ (3.8)
Kz
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where W = W™ + ik, 0™ (k2 + k2)~1/2 and q(%,n) = {@,7,W, p, 7}(%,n). Equation (3.25) rep-
resent the three-dimensional part of the disturbance in which the periodicity of the spanwise
direction and time is included in the exponential term, and the term w comes from the
matching with the oncoming flow field. Starting from the full compressible continuity and
Navier-Stokes equations in curvilinear coordinates, using the Lamé coefficients and the
scaling previously introduced, we find the perturbation equations. The mean flow (3.7) and
perturbations (3.8) are then introduced into the equations of motion. Finally, taking the limits

R — oo and k, — 0 with k,R = &'(1), the LUBR equations are obtained:

o MeT'p 00 meon T 10v (o1 LFTN FOT
%7 " 9% 2kon T2 TTon T \RRT T T 0%
| F 9%
2_.*\?%— 9 (3.9)
B _nc Y O 1 wr  pT'\ di 1 uda
2 ( kR — ok rk “T> STt (F T T2 )on 28T n?
F//— 1 ! 1B nlike sl ‘LL/F//T/ I8l 1 "LIF” (91'
T+ <FF e e i L L v o il (3.10)
Y 15 ! [n (FT'—F'T) —n2F'T+FT]a +“/T/@—£ 0% Mell 0%

3% df 6fdfdn 1282912

1 NeuT"\ dii 1 FT"\ . ]
W(ncﬂlTl—i_u_ T >%+ Z@ F/+77CF//_T —1ka+kZ2uT v+

ov 1[2 [uT Flov 2ud* uT _ upnuow 19p
/ I o 1¥e ol . =z -
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where ¢, Z°, %, %, & indicate the continuity, x-momentum, y-momentum, z-momentum,
and energy equations. In these equations the prime  represents differentiation with respect
to the independent variable (n or T). The equations of Ricco and Wu (2007) for the
compressible flow over a flat surface and of Wu et al. (2011) for the incompressible flow
over a concave surface are recovered by setting G = 0 and M = 0, respectively. Curvature
effects derive from the centrifugal force and only appear in the convective terms of the %
equation (3.11). These terms, boxed in (3.11), are proportional to the Gortler number G and,
in the compressible case, also include the temperature perturbation (El-Hady and Verma,
1983; Hall and Malik, 1989). The LUBR equations are parabolic along the streamwise
direction and are influenced by G, ky, kxR, and M, which account for the effects of curvature,
ratio of the free-stream spanwise wavelength to the wall-normal wavelength, frequency, and
compressibility, respectively.

The streamwise velocity i and the temperature perturbation 7 inside the boundary layer
tend to zero as the free stream is approached because they amplify inside the boundary layer
to an order of magnitude larger than the corresponding free-stream disturbances (Ricco and

Wu, 2007). Therefore, the boxed curvature terms in (3.11) can be neglected as 7 — oo and
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we recover the free-stream boundary conditions used by Ricco and Wu (2007):

AL Iz (22) /29 — iy (22) /2 TeeRi R (28) 2 (n—Be)) = (I +42)

an
Ip
an

+ k| (28) %5 — 0,

T—0,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where compressibility effects are taken into account by the parameter (M) = limy o (1 —

F), which is computed numerically (Ricco et al., 2009). These boundary conditions are

derived based on the matching between the inner boundary layer flow and the outer flow.

Since curvature effects are also negligible in the limit X — 0, the initial conditions of Ricco

and Wu (2007) apply:

20] i — 28Uy + (28)?Uy,

1 1/
7= Vo+ (28)/2v) — [Vc 581 \kz’(b?)l/z} eIkl
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where 1 = n — B.. The common parts v, w,, and p,, the constants g; and V., and the
solutions Uy, Vo, Wy, Py, Ty, U1, V1, W1, Py, Ti are derived in Appendix B. The numerical
procedure for solving the LUBR equations is described in Appendix A. The significance
of receptivity can be emphasized by noting that k, only influences the solution through the
initial and boundary conditions. This is because the LUBR equations (3.9)-(3.13) do not

include k, as a parameter.

3.2.1 Neutral curve parameters

In early studies (Hall, 1990), the abscissa and ordinate of neutral curves associated to the
Gortler instability were represented with a scaled spanwise wavenumber and a scaled Gortler
number, using the boundary-layer thickness as the characteristic length. Translated into
our scaling, the neutral curves would be plotted in a 2 -¢ plane, with the abscissa being
2 = (2%)"/? and the ordinate ¢ = G.2"3 /+/2. However, the neutral curves would collapse
on a .23 curve and the behavior of the flow would not be revealed, particularly in the vicinity
of the leading edge. We found that our neutral curves are better represented in an £-G plane in
order to demonstrate the connection between Klebanoff modes, Gortler vortices and stability
of the flow as the values of k,R, k, and M are changed.
Two parameters are introduced to represent the neutral curves:

dE(% d?|a(
()= B9, po) = Tl (3:25)

where E(£) = [ |@(%,1)|?dn is the perturbation energy scaled by (2£)!/2 (Hall, 1990)

and |i(%)

mx = Max |#(x, 1) is the maximum value of the streamwise velocity perturbation
amplitude along 1;1 —y/(2£)"/2. The parameter f3 is here introduced to identify the streamwise
location where the perturbation shift from Klebanoff modes to Gortler vortices. By defining
G(%) in this manner the information from the amplitude of the perturbation is retained, which
is of particular importance for a receptivity analysis. If we had normalized the parameter (%)
by the energy E(£), as in Hall (1990), we would have lost the information of the perturbation

amplitude. The scaled perturbation energy in (3.25) is computed with the |i| velocity alone
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as, when Gortler vortices are present, the physical transverse velocities are much smaller

than the physical streamwise velocity (Wu et al., 2011).

3D gust
mean flow disturbance

—_ m
., 7y
_— m
-

.

>0 >0 >0
scenario ;<0 @ ;>0 @ ;<O ¢<0
) s>0
scenario 8<0 s<0

Fig. 3.2 Sketch of the boundary layer representing K-vortices (K), Gortler vortices with
strong growth @, Gortler vortices with weak growth @, and stable flows (5) through the
two parameters ¢ and 3 defined in (3.25). A typical scenario for G < G; = 10.9 and for
G > G. = 17 are represented by [ 1] and [2], respectively, for a steady flow.

The instabilities can be classified based on (3.25) as shown in figure 3.2. When ¢ <0
the flow is stable whereas it is unstable when ¢ > 0. The neutral points, located at £ = %,
are associated to ¢ = 0. In the proximity of the leading edge, curvature effects do not play
any role. As a consequence, the boundary layer perturbations start growing as Klebanoff
modes, herein labelled K-vortices (¥), associated to ¢ > 0 and 8 < 0. As G, ky, M and kR
change, the K-vortices can stabilize downstream of £ = X or shift into Gortler vortices for
£ = f. This last location is associated with 8/(£) > 0 and 8 = 0, where the prime indicates
the derivative with respect to X. Initially, the growth of the Gortler vortices is characterized
by B > 0, classified as strong growth and identified by @ (Gs-vortices). Downstream of
X = X, the location with the maximum local growth rate, the growth of Gortler vortices,
characterized by 8 < 0, weakens (G, -vortices, @) with B = 0 and B’ < 0. Finally, stability

is reached for £ > )?go.
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3.3 The eigenvalue equations

Because of the inviscid unbalance between the centrifugal force and the wall-normal pressure,
the Gortler instability exhibits an exponential streamwise amplification. Following the
work of Wu et al. (2011), we can take advantage of this property by adopting a simplified
mathematical framework based on an additional decomposition of the quantities defined in
(3.8),

(8.1) = {@,7,9, 5,7} = d(n) e 0, (3.26)

Oy re(£) is the local growth rate and the imaginary part o, ,, (%) is proportional to the stream-

wise wavenumber of the boundary-layer perturbation, i.e.,

ke () = = / 6 (). (3.27)

Expression (3.26) is a local eigenvalue (EV) decomposition, i.e., valid at a specified stream-
wise location, which implies that the streamwise dependence of the perturbation is absorbed
in o(%), while the wall-normal variation is distilled in q(7n7). The EV perturbation (3.26)
is only defined to within an undetermined amplitude which can only be found through the
receptivity analysis, i.e., by accounting for the influence of the free-stream disturbance.
Nevertheless, the EV approach has the advantage of identifying the streamwise locations
where the perturbation exhibits exponential growth and where its growth rate and streamwise
length scale are not influenced by the initial and free-stream boundary conditions.

By substituting (3.26) into (3.9)-(3.13) we obtain the non-parallel EV system of equations,
which preserves the growing nature of the boundary-layer mean flow. The equations can be
further simplified by invoking the 1n-based parallel mean-flow assumption, which implies
V =0, and by taking the limit X > 1 (Wu et al., 2011). This work is intended to show the
results of both the parallel and non-parallel assumptions. For numerical reasons, the system

of ordinary differential equations (ODE) is written as a system of first order equations by
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introducing three new variables,

~ ou N ow ~ ot
fm=2% am=2 h(n)zﬁ- (3.28)

=
]

The non-parallel compressible EV equations are given in the following, where the terms
between () can be neglected under the parallel flow assumption because they arise from the

wall-normal velocity V given in (3.7).
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The EV system (3.29)-(3.33) is solved with homogeneous boundary conditions: u = v =
w=1T=0atn =0and u,v,w,T — 0 as 11 — . For M = 0, the equations of Wu et al. (2011)
for the incompressible case are recovered. The numerical procedure for solving the EV
equations is described in Appendix A. This procedure is based on an iterative method that
requires an accurate initial guess, and does not compute all the possible eigenvalue that could

be computed using a global procedure.

3.4 Asymptotic equations

In most experiments where flows over concave surfaces have been investigated in incom-

pressible and compressible conditions, the Gortler number has been larger than 102, This
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motivated Wu et al. (2011) to study the asymptotic limit G — oo, which revealed the neces-
sary conditions for the inviscid instability and the different stages of the evolution of the
incompressible Gortler vortices. We herein extend the analysis of Wu et al. (2011) to the
compressible case with M = &(1). A summary of the physical results extracted through the
asymptotic analysis of this section is given in §3.4.5 on page 44. Even though this theoretical
analysis unveils crucial physical characteristics which are not revealed by a purely numerical
approach, it will become evident that the numerical solution of the LUBR equations is never-
theless needed for a thorough understanding of the flow and for its accurate computation,
especially for G = 0/(1), where the asymptotic analysis is invalid.

Figure 3.3 shows the different streamwise stages through which the perturbation evolves

in the limit G > 1. In this limit we can identify four main layers, namely the main layer ML,

3D gust disturbances
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Fig. 3.3 Sketch of the boundary-layer asymptotic stages for G — oo: Klebanoff modes K, main
layer ML, viscous sublayer VS, outer layer OL and wall layer WL.

the outer layer OL, the viscous sublayer VS, and the wall layer WL.
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3.4.1 Stage I. Pre-modal regime: t < G2/3

We first consider the region in the proximity of the leading edge, i.e., £ < 1, where the
power-series expansion (B.7) is valid. By assuming that w= &'(1), n = (1), n. = 0(1),
and T, T',F,F' = €(1), an order of magnitude analysis of the terms in the € equation (3.9)
leads to

i=0(%), T=0(%), p=0(1). (3.34)

The terms of the % equation (3.11) become of order

1 P 1
o) +0(=)+0 (ﬁl/zG) _ kR ) (3.35)
£ (2£)3/2 £
~—— —_——  N——— —— ——
unsteadiness inertia curvature n pressure gradient  diffusion

by using the power-series expansion (B.7) for the pressure. When £ < G2/3

, the equations
are steady and the curvature effects are negligible compared to the other terms. Therefore,
the perturbation evolves as flat-plate Klebanoff modes, denoted by the letter K in figure
3.3, and the wall-normal gradient of the pressure perturbation is negligible because the
term dominates as X < 1. Further downstream where X = & (G‘z/ 3) , curvature effects start
to influence the other terms, including the pressure field, rendering the asymptotic series

expansion (B.7) invalid. The gradient of the pressure p along 17 grows to an order-one

magnitude as it balances the centrifugal term. Substituting the scaled variables
xF=%623, ut =623, th = 76?3, (3.36)

into (3.9)-(3.13) and neglecting terms < 1, the perturbation field is described by

neT . ou' meou' T _ 19y FT' . F ot

O T T o “adan T2 T Ton T Tar

F ot'

57 gy F=0 (3.37)
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Tc ", ,ou 1 (uT’ u'r’ u’ n *u" F"
F— _F—
Hl gt 9x}+2x*( T )on 24T an? Tt
/F//T/ /F//a T

S (FF” u F”T’+”T—u’F”’> o a; , (3.38)

, OW 1 uT’ wrT\ ow  u 9*w

2
Ty L (y—DwF'out T 1 [FT L, WF"
e N Ty T e | g

1 0 (WT'\] + o1 1 [ uT’ 2u'T" o1t
E%( T HT “’W*ﬁ@m‘“ peT ) 9

1 pd?tf

a2 4

2x"Pr T dn? (3.40)

It is sufficient to solve ¥, 2", 2, and & to find the velocity and temperature perturbations.

The pressure p is solved a posteriori from %/, which reads

1 2F' w'T' du’
@y FT —n.F'T —n’F"T +n.FT' +
: (2x") n e n 2x1)!/? Bxt ooxt
d%u’ e d%ut N T"\ Ju’
6 a9 T e g+ (T o
6xT dnaxt 122 IN? 124t T an
1 FT' ov 1 [2uT’ 2u'T ov 2 u o
— (F' F— — F’ -7 -7 o7
m( 1 T ) TroETt (3 T2 3 T )an 37 T on?
N/T/_ pow 1 9dp 1 2 / y  FT 11
P | nF?—FF +n.FF" -~ —W'F"—
+ 3 6t on + 2xtan | (2xt)? n + T M
JF'T 1 /T/ZF
T]cI-LHF”T/ n .uT . TIcN' ///) . TzT (,LL”T/ZF— H - —l—‘u/T”F—i—
X
F? 'F" 91t T'F  n.F" | att
WT'F | = — [ - B 2 e[ 5o=0. (4D
(2x"'/' T 2xT dx 3T (2xT) n




3.4 Asymptotic equations 27

Equation (3.41) is decoupled from the other equations since, in the new scaling (3.36), the
pressure term in 2 is negligible, so the flow is governed by the boundary-layer equations,
i.e., the effects of the spanwise viscous diffusion and of the spanwise pressure gradient
are negligible (although the boundary-layer equations may also apply if a mean spanwise
pressure gradient is imposed).

As the flow evolves further downstream we seek the location where the curvature effects
begin to influence the perturbation velocity also through the pressure gradient along the
z direction in the 2 equation (3.12). The pressure has now grown to an unknown order
of magnitude. This is found by balancing the curvature and the pressure terms of the %
equation (3.11) to obtain Gfl/2 ~ p/%, hence p=0C (G £/ 2). The terms of the 2 equation
(3.12) become of order

1 1
o(1) +ﬁ(7) = ﬁ<G£3/2)+ﬁ<;), (3.42)
X X
—~— —_——— —— ——
unsteadiness inertia pressure diffusion

from which it is inferred that the pressure comes into play in the 2 equation when £ =

o <G_2/ 5). A new scaling can be introduced for n = &/(1), as follows
x=%G6*°, i =it G2/°, ¥ =165, p=pGa 2. (3.43)
After substitution into the LUBR equations (3.9)-(3.13), the equations of motion become
N T’ dii ne.ou T 1 dv FT' 2 F’ai' F 01

Ol T " o o 2 T Tan Y T amt Tax Tzmwan O G4

neF",  0u 1 (uT’ u'T dii  p i F”
ety 21 F
e el A TR T on wrom Tt
/F//T/ F//“/ 8T
FF// _ //F//T/ ILL _ /F/// 5 ‘4
23T ( A ) YT on (345)
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x| it ot~ #=0, (3.46)
X

ow 1 [uT’ wWr\ ow  u 9*w
e - A A A -
21 F 53 2)?(T2 T )an a5t oz TP =0, (3-47)
n T L (y-DwpF"Ja T 0t 1/ 1uT 2T JT
-t T Tt e Foe 7 ) o
1 [T'F , w oo 19 [WT'\]. no 9%
w7 R () s g =0 (348

In (3.44)-(3.48), the unsteady effects are still negligible and the perturbation is thus steady.
Since we know that the Gortler vortices eventually acquire a modal form it can be inferred
that, if (3.44)-(3.48) admit an asymptotic eigensolution, X = & <G*2/ 5 ) is the location where

the Gortler instability ensues (Wu et al., 2011).

3.4.2 Stage II. Asymptotic eigensolution regime: P <ixl

Following the incompressible case of Wu et al. (2011), we assume that the leading order

asymptotic eigensolution for ¥ > 1 and n = &'(1) for the middle layer ML is of the form
q=i? [()E’O‘HUE, V. W,, X %+3/ 2JDE,)TO‘“TE) n } S (3.49)
where the eigenvalue G (X) is expanded at leading order as
G(X) = &px* + ..., (3.50)

d(5,m) = {ii. 5,99, 5, £} (5,0), Qu(1) = {Up, Vis Wi, P, T} (), and &, @, ¢ are unknown
constants. Substituting (3.49) and (3.50) into (3.47) yields

SoF ¥ W, — k2x % 32TP, = 0(1), (3.51)
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from which, equating the exponentials, oo = 5/4. A system of ODE for the eigenfunctions
Q:(n) is then derived by substituting (3.49) and (3.50) into (3.44)-(3.48) and taking the limit

x> 1,1e, x> G2/5. The resulting inviscid equations are

b T' 1, L F'
€| adyU; — EVE + TVE + W, — OCGO?TE =0, (3.52)
F//
2F"?
Y| 2V2F'U, +P.— \/_T T, =0, (3.54)
Z| abyF'W, — kTP, =0, (3.55)
T/
&) adoF'T, + ?VE =0. (3.56)

These equations can be rearranged to obtain an equation for V,,

dn? T dn F'T F (&) \ F
subject to the boundary conditions
n=0] V,=0, (3.58)
- i_fluo, (3.59)

which correspond to the no-penetration and bounded conditions, respectively. Equation
(3.57) is solved with the same numerical method used to solve the EV system (3.29)-(3.33).

For M = 0 the results agree with those of Wu et al. (2011). The first three eigenvalues &



30 Theoretical results

0 0.5 0.9 L.5 3 4

V1 0.811 0828 0864 | 0949 1259 1.501
1 0505 0516 0538 | 0.591 0.785 0.937
“(3) 0.370 0377 0394 | 0.433 0.575 0.685
)
)
)

50
O
(2

C

0
W 11567 -1.580 -1.608 | -1.676 -1.927 -2.122
(

21l -1.656 -1.670 -1.700 | -1.773 -2.042 -2.248

C

1
(3

C

) -1.709 -1.723 -1.754 | -1.829 -2.105 -2.316

B 1.016 1.004 0978 | 0.925 0.779 0.701
Table 3.1 The first three eigenvalues &y from (3.50) and & from (3.75), and the wall-normal
scaling coefficient B used in (3.61) for different Mach numbers.

are shown in table 3.1 for different values of the Mach number M. There is a very mild
influence of M in subsonic flow conditions while in supersonic flow conditions Gy increases as
M increases, so the Gortler vortices are more unstable as the compressibility effects intensify.
To study the flow in the vicinity of the wall, we take the mean-flow values at = 0,
ie, F=F =F"=T =0, while F', T, T" = 0/(1). Locally, since = 0 is a regular
singular point, the solution V;; can be written as a Frobenius series (Wu et al., 2011) which
gives V/(0) = 1 when normalized. Additionally, the no-penetration condition requires
V¢(0) = 0. Taking the derivative of (3.55) and substituting P, from (3.54) shows that the
spanwise velocity component satisfies the no-slip condition, i.e., W;(0) = 0. However, the
streamwise velocity component does not satisfy the no-slip condition since, from (3.52) we
find U,(0) — — (8paTy) ", where Ty = T(0). This is consistent with the inviscid nature
of the governing equations (3.52)-(3.56) for £ = & (G*Z/ 5> from which (3.57) is derived.
In order for the streamwise velocity to satisfy the no-slip condition at the wall, a viscous
sublayer VS is introduced in the near-wall region. Substituting (3.49) into (3.45) and balancing

convection and diffusion in the limits n — 0 and X > 1 yields
U/, (3.60)

from which

n~Bx /12 (3.61)
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where B = [/ (24 occ”roTo)]l/3 and Tp, to = 1(0), A = F”(0) arise from Taylor-expanding
the mean flow at 1 = 0. The thickness of the VS is nys = & <)Z*5/ 12) where the constant
of proportionality B decreases as the Mach number increases, as shown in table 3.1. The

wall-normal scaled variable for the VS becomes
G =B8"1%/12n. (3.62)

An order of magnitude balance of the equations for n — 0 reveals that P, = (1) from
(3.55), Vi, = 0(n) from (3.52), and consequently 7, = &'(n) from (3.56). Therefore, the

solution in the VS expands as

q =30 | (¥ g, g, w, i) ] 0, (3.63)
where q(£, §,) = {i,V,w, p, T}(£, §,). Starting from the system of equations (3.44)-(3.48) for
n = 0(1) and X = O(1), introducing the change of variable (3.62) and the expansion (3.63),

the system of equations for §, = &/(1) and X > 1 becomes

€| adous+ %vg +wy =0, (3.64)
2| ady (Gus—uy) + %vs =0, (3.65)
| p.=0, (3.66)
Z| Aasy (Gws—w!) — k2T ps =0, (3.67)

&l =0, (3.68)
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where the prime ’ indicates the derivative with respect to {,. The energy equation & in the
VS does not contain the pressure and the velocity components. Equations (3.64)-(3.68) are

rearranged to obtain an equation for vs(&,),

d2
(ﬂ — CH> v =0, (3.69)
subject to the boundary conditions
Li=0] vy=0, V.=0, (3.70)
Gi—oo] Vi 1. (3.71)

The first boundary condition, i.e., vy = 0, represents the no-penetration condition, while
the derivatives of the wall-normal velocity come from the continuity equation. Only three
boundary conditions are needed since two constants of integration can be obtained from
(3.71). The solution of (3.69) has the same form as in the incompressible case of Wu et al.

(2011),

CH — -
—r /O (& —C)ai(8)dE, (3.72)

where C; = 1/ [,"Ai({,)d{, = 3 and A1 is the Airy function of the first kind. For §, — oo

the solution becomes vy — §; + v, Where the transpiration velocity ve is

SE— /0 i (8)d (3.73)

For {, — o the VS solution must match the ML solution for 1 = &/(1).
The transpiration velocity (3.73) thus induces a correction term of order & ()E_S/ 12) in
the ML. We can then further expand (3.49) and (3.50) to take this viscous correction into

account. We obtain

q =5 | (¥ VAU, v, W, & VAR, AT ) +

57312 (gl v Wil s D e D) o), (3.74)
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where the eigenvalue G (X) expands as

6( )—60x5/4

5/12( u5/4)

(3.75)

Substituting (3.74) and (3.75) into (3.44)-(3.48) for x = O (G_z/S) and n = O(1), and

collecting the & ( -5/ 12) terms gives

5(70 T . 1,0 1) 560 F' ) 267 (F" T’
——V =V W' ———T; ' =—— | —=——= 1V,
¢l u; 27 Tpte (W 4 T * 36T \F' T) "
56y a F" (1) _ 261 F"
Z —F —V,
| Vet Ve T35 T 7
2F"?
2| 2v2F'ul) + P - \/_T 7" —o,
56 1) 2mn(1) SO61F 561 F"
Z| —F'w, — kTP ———=V, = —V,
| 4 6 T* 6T "
T' (1) 56 1) 26 T’
&l =V —F'T, —Vz.
: T Ty 36T "
An equation for VE(I) can be derived from (3.76)-(3.80)
v ral) [FT P 2WAEE'T VAR )
dn? T dn F'T F' (a&)? F (a&)® |
10V2k28, (F'T 1
\/_ 3 ( ’ __T/) VEa
3(0()06) F 2

subject to the boundary conditions

n=0] V)(0) = Bve,

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)
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av,V
dn

n— | — 0, (3.83)
where (3.82) comes from the matching at & (”_5/ 12) of the wall-normal velocity in the
ML for 1 — O with the wall-normal velocity in the VS for ¢, — co. Condition (3.83) comes
from requiring that the solution be bounded. The eigenvalue &; can either be computed
numerically from the solution of (3.81) with its boundary conditions (3.82) and (3.83) or

from the solvability condition

10\/§k§61( F” V24 / ', 2dn ) ZlcoaT ( 2/ z’ﬂd )
0

3 (adp)?

(3.84)

derived by multiplying (3.81) by V,, integrating from zero to infinity, and matching the
% <)€’5/ 12) terms of (3.74) with (3.63), using (3.57) and (3.62). The numerical values of &}
are shown in table 3.1. They are all negative, thus indicating decaying perturbations. Similar
to the eigenvalues Gy, the effect of Mach number is very small for subsonic conditions, while
in the supersonic regime &7 grows in absolute value as compressible effects intensify as the
Mach number increases.

The no-slip condition is now satisfied, but we still need to require that the ML solution
respects the condition V,; — 0 for 1 — o. By requiring the solution to be bounded as the
free stream is approached, condition (3.59) gives V; = C,, where C; is an undefined constant
determined by numerical solution. Therefore an outer layer OL must be introduced to allow
V; to vanish as 11 — oo. Introducing the mean-flow simplification for n — e, ie., F — 1 — 8
and 7 = 1, into (3.52), (3.53), (3.55), and (3.56) we find U, =0, T, = 0, W, =0, and P, =0,
respectively. We then expand (3.43) as

i=iaG 25+ 0 (G*/S) R e (G’3/5> . p=pie <G1/5> . (3.85)

Substituting these expansions into the 2 equation (3.11) and neglecting terms < G2/5,

the equation is balanced if 1, ~ G'/3/ (2)?)1/ 2. It follows that the new ¢/(1) wall-normal
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coordinate for the OL is

yo=G""5(2%)!2n. (3.86)

From (3.9) and (3.85), the scaling in the OL for yg = &'(1) is
(_1 = {G_3/5ﬂ07 Vo, G_l/sw()a Gl/sﬁ()? G_S/Sf()} 5 (387)

where q(X,y0) = {i,v,w, p,T}(¥,y0). Substituting (3.87) into the LUBR equations (3.9)-

(3.13) and taking the limit 7 — oo gives the OL system

A (2%)1/2%“00 =0, (3.88)
9o
2| diig _ 0, (3.89)
dyo

Vo  dvy 1 dpo

% | STREET 207 v =0, (3.90)
Z| %—k%ﬁo:o (3.91)
dyo ° ’
27
€| 20 o, 3.92
] 0 (3.92)

where, in order to satisfy the boundary condition V, — 0 as 7 — oo, ity and Ty must be set to

zero. The solution to (3.88)-(3.92) is

{Bo, W0, 70} = {80 k280, |ke|g0/ (2%) } e ke, (3.93)

where

go(¥) =12 Vg o 0 (87912 | 56 (3.94)
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and Vg o = V(1 — o) is determined by solving (3.57) numerically.

3.4.3 Stage IIIL. Fully developed regime: £ = &/(1)

As the instability develops further downstream the local boundary-layer thickness 6* becomes
of the same order as the spanwise wavelength 1, i.e., 6* = 0'(A1}), and the spanwise viscous
diffusion and the spanwise pressure gradient are at work. At this location the Gortler vortices
are fully developed (Wu et al., 2011) with ¥ = & (GZ/S), ie., = 0(1), Mo = 6(1) and the
OL merging with the ML. Stage III is therefore only composed of the ML and the VS. Equations
(3.74), (3.75), and (3.85) suggest that the solution in the fully developed regime can be
expanded in the WKBJ form (Wu et al., 2011)

(_l :{ [Gil/zu(bV05W07G1/2p07G71/270] +

g 1/6 [G_l/zul,vl,wl,Gl/zpl,G_l/z’Cl} + ...}eGl/zf)?&(x)dx, (3.95)
where
6(%) =60+61%6,+ ..., (3.96)

and the second term of order & (G’l/ 6) takes into account the effect of the VS. Substituting
(3.95) into the LUBR equations (3.9)-(3.13) gives the system at leading order for £ = &/(1)
andn =0(1),

) T 19w _F
%] GOMO—ﬁVO‘f‘T%‘f‘WO_GO?TO =0, (3.97)
F//
2| GoF'ug+ —vo =0, (3.98)
2F' F? 19
Y| ——ug+ GoF'vo — PO _, (3.99)

(28)1/2 2o 27 2% an
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%| 60F'wo— k2T po =0, (3.100)
T/
&| 6oF 1o+ V0 = 0. (3.101)

We can rearrange (3.97)-(3.101) to find

9%vg 2T’ v 2F'T’  F" i k2 (2F'T
S w0 4 (T 1) =0 a0
0

subject to the boundary conditions

n=0] vo=0, (3.103)

n— o] vo—0. (3.104)

Note that vy vanishes as 1 — oo since no outer layer is needed to bring the wall-normal
velocity to zero like in stage II. Equation (3.102), also derived by Dando and Seddougui
(1993), is solved with the same method used to solve (3.57) and the EV system (3.29)-(3.33).
In the limit £ — O the solution in the fully developed regime of stage III must be consistent
with the solution of the asymptotic stage II. The dominant balance in (3.102) shows that, in
order for all the terms except the third term in the brackets to remain & (1), 6y = & ()21/ 4)

and, from the exponential in (3.95),

s 4
/ Golw)de ~ 22, (3.105)

which is consistent, at leading order, with the exponential in (3.74).

Changing the Mach number affects the boundary-layer thickness &gy, i.e., the wall-normal
location where U* = 0.99U, and 7 through the mean temperature 7. We therefore use the
dimensionless wall-normal coordinate yg9 = y* /85 when comparing results at different Mach
numbers. Figure 3.4 (left) shows the growth rate of the perturbation along the streamwise

direction for the first eigenvalue 6(51). As M increases, the stabilizing effect of M begins
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closer to the leading edge. Up to M = 2, the growth rate at X ~ 15 converges to a weakly
varying function of the Mach number. The wall-normal location of the vortices, shown in
the inset of figure 3.4 (left), decreases as the Mach number increases. However, for M > 3
and high enough X the vortices location tends to a nearly constant value. Figure 3.4 (right)
demonstrates that for £ < 1 the growth rate (3.96) from stage III matches asymptotically the

growth rate (3.50) from stage II.

’ ‘ ‘ 1

M=4
0.75

stage 111 |

0.7
stage 111

(1)
90

0.65

0.6 0.4 0.5

Fig. 3.4 The effect of the Mach number on 6(51) (left) and detail of the graph on the left in
the region £ < 1 for comparison with stage II (right). Inset: the wall-normal location of
Gy-vortices (right) for stage II1.

In stage III, as for the asymptotic eigensolution regime of stage II, a VS has to be
introduced in order to guarantee the no-slip condition at the wall will be satisfied because
it is found that uy — — (60T0)_] as 1 — 0. Substituting (3.95) into the .2 equation (3.10)
and balancing the convection and the diffusion terms in the limit 7 — 0, the new /(1)

wall-normal scaling variable, proportional to the VS thickness, becomes
Gu=G/OB £/, (3.106)

where B(%) = [uo/ (24 60T0)]1/ 3. A comparison with (3.62) shows that, by fixing G and B, if
# increases the VS becomes thinner more rapidly in stage II ( % (32_5/ 12)) than in stage III
(ﬁ (32_1/ 3)) since §, and {, are of order one. The value of B(£) approaches a constant for

£ >5. From (3.106) it can be noticed that, in order to maintain §, = ¢'(1), 11 must increase
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when G increases, i.e., the VS thickness is larger for flows over strong curvature. Substituting
(3.95) into the LUBR equations (3.9)-(3.13), and balancing the convection and diffusion

terms gives the expansion of the flow in the VS,

. {G—l/zub,G—1/6ﬁf—1/3vb,wb,G—2/3@)e—1/3pb,G—l/sz}ecl/%*«wdx, G107)

(3.9)-(3.13), we recover the system of equations for £ = &(1) and n — 0,

A 60ub+%v2,—|—wb20, (3.108)
Z | 60(§Ilub—ug)—l—%vb:0, (3.109)
| p,=0, (3.110)
Z| A6y (Cuwp —w)y) — k2T py =0, (3.111)
&| 1,=0, (3.112)

where the prime ’ indicates the derivative with respect to {,.. The equations are similar to the
asymptotic eigensolution regime (3.64)-(3.68) and therefore v;, satisfies the Airy equation
(3.69) along with the boundary conditions (3.70) and (3.71). A composite solution for the
streamwise velocity u. can be constructed from the solution in the ML and VS, i.e., ug and uy,
respectively, as

Ue = Uy + Up — Ucom, (3.113)
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where

1
Ueom = lim ug = lim up, = — (3.114)
n—o0

C—oo 6OTO
is the common solution.
The streamwise velocity u;, is computed by integrating (3.109) through the method of

variation of parameters with the known velocity v, as the forcing term. The solution is:

Cme' - CmfA' —
w(Ga) = Cihi+CBi— a1 [Tl +B1 [T, GaIS)

where A1 = Ai({,) and Bi = Bi({,) are the two linearly independent solutions of the Airy
equation, £(§,) =v,(&y)/(60Ty) and W(§,) = AiBi’ —BiAi’ is the Wronskian. The constant
C, = —0.2061 is found first by numerically imposing the outer boundary condition (3.114) as
the term proportional to C; vanishes as ¢, — . Once C; is known, the constant C; = 0.3571
is found by imposing the first of (3.59).

The resulting solutions i, itg, and iz, for M = 0.5 and M = 3 are displayed in figure 3.5.
These results confirm that as the Mach number increases, but still remaining an order-one
quantity, the vortices tend to move towards the wall when G > 1. The requirement of a
very high G value in figure 3.5 arises from the inner coordinate being proportional to Gl/6
in (3.106) and is necessary to guarantee that the VS is thinner than the ML. The composite
solution follows the inner VS solution near the wall and the outer ML solution away from the
wall.

The viscous correction for £ = &/(1) and 1 = €/(1) is found by substituting the expan-
sion (3.95) into the LUBR equations (3.9)-(3.13) and collecting the &' <G’1/ 6) terms for
up,vi,wi, p1, T in (3.95),

T’ 1 dv F' F'

€| 6our — — - —6p—=11—61—7+61up=0 3.116
1 6our T2v1+T8n+W1 07 Tl = 617 To + G1ug =0, (3.116)

"

F
%’ 60F’u1+7v1+61F’u0:0, (3.117)
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0.8

0.6

0.2y

0 L L L
-1 -08 —-06 —-04 -02 0

Uy

Fig. 3.5 Normalized profiles of the streamwise velocity perturbation for M = 0.5 (left) and
M = 3 (right) from the eigensolution of stage III at G = 10'> and £ = 1. Insets: details of the
solutions near the wall.

2F' 10 F? X
iz )1/2u1+60Fv1+2 ;:71 (A)I/ZTT1+61F'V():0, (3.118)
)C
Z| 60F'wi — k2T pi +61F'wo =0, (3.119)
/
& 7V1+60F’71+61F’ro=0, (3.120)

from which the equation for vy is derived

82\/1 T/(9v1 F'r! F" 2Ak2T2 ( )1/2k2F// (zx)l/zsz
anz Ton T|TFT CF T P &
0 0
20282126, [ _F'T
(29 K61 (GETT i)y, 3.121)
3 F'
i

along with its boundary conditions

n=0] vy =By, (3.122)
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7o) aa_j?wo. (3.123)

As for the asymptotic eigensolution regime, the boundary condition for 11 — 0 stems from

the matching with the ML solution. Applying the solvability condition to (3.121) gives

T/ 8\}0 2&6071 -1/3 ~—1/3 .
<1+2/ T&n )( " ) x Voo =

2 (2% 1/2k2 = F''T
_2(2%) k61 (/ T'v3dn — 2/ = dn—2/0 i v(z)dn>. (3.124)

The eigenvalue 6 can either be calculated from the solvability condition or from the numeri-

cal integration of (3.121).

3.4.4 Stage IV. Wall layer regime: X > 1

It has been shown by Hall (1983) and Wu et al. (2011) for the incompressible case that,
contrary to the Klebanoff modes generated over flat plates, Gortler vortices move towards
the surface as they develop downstream in the limit £ > 1 (6* > A). It will be shown in §4
that this is true only up to M ~ 3. For M > 3, the perturbation initially tends to concentrate
near the wall, but then, as X increases, it moves to the core of the boundary layer. Following
the work of Wu et al. (2011), the eigenvalue problem for the inviscid regime (3.102) can
be simplified in the limit X > 1 and 7 — 0. From the simplifications of the mean flow near

the wall and introducing a new WL variable Am = (2)?)1/ 2 N 7Ty to cancel the dependence on X,

(3.102) simplifies to

9° 2

: - (1 = ﬁ) kv = 0. (3.125)
IIIG()

it
This equation is the same as for the incompressible case and has a set of eigenvalues

6p = (kz/n)l/z, with n =1,2,3,... (Denier et al., 1991). Applying the same procedure to
(3.121), we find that 61 = & ()21/ 6> for £ > 1 and n — 0, which implies that, referring to
(3.96), the viscous correction terms for the growth rate at n = &'(1) become of leading order

as the flow evolves to £ = 0(G).
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For £ > 1, we investigate the flow at £ = &'(G), where the viscous correction term

becomes of leading order. The streamwise and wall-normal variables rescale as

=
I

= (28?2 n6' 21y, (3.126)

Q| =

respectively. From an order of magnitude analysis of the LUBR equations (3.9)-(3.13) the
flow expands as

= {0, 0,61/, 1/, G /25 | 477 ST, (3.127)

(3.13) and using the near-wall approximations for the mean flow, the system of equations for

X = O(G) becomes

¢ aa0+(2x)‘/2%+wo+[’k’£— A6nG ]%0:0, (3.128)

. CIV6 A 2 - 821/70 )LN A{‘u/ 8%0
3{" [—lka+ (2~)1/2T‘|‘kZ,U.T MO—HTB—I%—FTVO—WTCWZO, (3.129)
CW A vaé A 2 5 82\7() T 8150
@| x Tu0+ (2~)1/2T lkXR+kZ“T "0 ‘uTa 1% " (272)1/2 aCIV
(GA)? | owA  GowA  GpA | | ikBu  GGuA| 9% _
(2)?)3/2T 2% (2)2)2 6xT 3 (2)3)1/2 6xT | ¢,
(3.130)

A d
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k? Cy6A uT? 9%%,
E| | ZuT —ik R+ | %) — ——= =0. 132
| oM lkR+(2)Z)l/2T] [ . 0 (3.132)

These equations could be rearranged to eliminate Wy and ¥y. The boundary conditions are
iip = Vo = T = 0 for §, = 0 and iy, Vo, Tp — O for {, — . Finally, for ¥ = &(1) and from
the boundary-layer thickness 0* = & ((voox*/U;)l/2>, we find that 6*/Af = 0 <G1/2>,

identified by Denier et al. (1991) as the most unstable regime for incompressible Gortler

flow.

3.4.5 Physical summary

From the asymptotic analysis in the limit of large Gortler number, we can infer the following

physical properties:

* as in the incompressible case, the unbalance between pressure and centrifugal forces
triggers the Gortler instability at a streamwise location £ = & (G_Z/ 5) , 1.e., when both
the wall-normal and the spanwise pressure gradients are active in the wall-normal and

spanwise momentum equations, respectively;

* in stage I, i.e., where the boundary-layer equations describe the flow as the spanwise

viscous diffusion effects are negligible, increasing the Mach number causes:
— the boundary-layer perturbation to intensify (table 3.1);
— the perturbation to shift away from the wall;

* in stage III, i.e., further downstream where the flow is described by the boundary-region
equations because the spanwise viscous diffusion and the spanwise pressure gradient
are at work:

— the growth rate decreases slightly downstream (figure 3.4);

— increasing the Mach number has a stabilizing effect on the growth rate, which is

more intense in supersonic flow conditions (figure 3.4);
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— for M = &/(1), the vortices move towards the wall as the Mach number increases

(figure 3.4 and figure 3.5);

— we have obtained a composite asymptotic solution, whose near-wall part is fully

viscous and adiabatic, while the part in the boundary-layer core is inviscid.

3.5 Triple-deck equations

The previous paragraph focused on the cases for which k¥ > 0.15. As a consequence, also
mentioned in §3.1, the highly-oblique TS waves investigated by Ricco and Wu (2007) did
not occur. In this section only we evaluate the influence of curvature when Kk < 1.

Due to the need to extend the investigation to steady flows we have scaled the streamwise
coordinate as X. However, since TS-waves are unsteady, we can scale our equations using
X instead which allows for a straightforward comparison with Ricco and Wu (2007). The

following transformation

X=XkR (3.133)

applied to (3.9)-(3.13) allows to recover the LUBR equations of Ricco and Wu (2007),
hereafter referred to as X-LUBR equations, derived in a (X, 1) coordinate system with the

curvature effect

2F'a(x,n) — —1T(%,n)| — (3.134)
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added to the % equation. Ricco and Wu (2007) demonstrated that the highly oblique TS-
waves originate from a decaying Lam-Rott solution (Lam and Rott (1993); Saric et al. (2002)).
In the double limits k¥ < 1 and X >> 1 the curvature term (3.134) becomes negligible, hence
the Lam-Rott solution is not influenced by curvature effects, and the solution of Ricco and
Wu (2007) is recovered. We now also demonstrate analytically that the dispersion relation
derived from the triple-deck interactive regime is not influenced by curvature effects.
Starting from the main deck for which 1 = &/(1), the variable x; = kX = /(1) is intro-

duced and the solution expands as
q(xm) = (w, kP w1 pm ) E4 (3.135)

where E() = ' * i @009 g = {7,5,, 5,7}, qu(x1,1) = {u1,v1,w1, p1, 71 Hx1,0), and
o (X) is a complex wavenumber that can be found through a dispersion relation as follows.

Substituting (3.135) into the Xx-LUBR equations, the additional curvature effect is neg-
ligible in the limit k¥ < 1, therefore the solution remains the same as in Ricco and Wu

(2007)
{ur,vi,wi, 71} = {(A(x))F" /T, —iowA(x1)F', p1(x1)T /(iouF'), —A(x1)T'/T) } .
(3.136)
Moving to the lower deck, the wall-normal variable is rescaled as
A=x"1"’n=0(1) (3.137)

and the solution expands as

G(x1,7) = (al, k2w k2, K1/2f1> Et... (3.138)
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Substituting (3.138) into the X-LUBR equations and using the near wall approximations we

find the system of equations

1 dv
i+ ——=—+w; = 1
¢’ la1u1+TO L +w; =0, (3.139)

. o A Mo (92121
2| l(_1+10‘17’1)u1+?0v1 —ma—ﬁz, (3.140)
dp
il 141
Y| 7 0, (3.141)
Z| i(—1+ Aouii)w = Topr 22 o (3.142)
! 1m)wi = 0p12f1To on2’ .

which are independent on curvature effects. Equations (3.139)-(3.142) can be rearranged to

obtain an equation for v (x;, )

02 . _. 2x1Ty 82\71
{a—ﬁz—l—l(l—/’taln) o } 8_1']2_0’ (3.143)
with solution (Ricco and Wu, 2007)
v fl
o _ / AL (77)d, (3.144)
n Mo

where fj = Cfj + 1o, o = —C (ay A) L, and € = (2id oyx; T/ o) />

1/2

Matching the solution of the main deck v, = K~ '/“v; with the solution of the lower

deck v,, = v as

, (3.145)

gives

/ " M(7)di = —idouA(x) (3.146)
n
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We now seek a balance equation at the wall. Rearranging (3.139)-(3.142) for 1 = 0 and

using the no-penetration condition v; = 0,

83\71 _ 2xlTO3

=== P1- (3.147)
on’ =0 Ho !

Then, from (3.144) and using the chain rule

= C“Ai . 3.148
Therefore, the balance at the wall becomes
2./ 2)61 TO3 _
C-Ai'(mo) = m P1, (3.149)

which it will later be used to find the dispersion relation.
In the upper deck the wall-normal coordinate scales as 1) = xl/ 21 and the solution
becomes

d(x1, 1) = (;cl/zal, k25, 0y, k2B, 0) E+... (3.150)

Substituting (3.150) into the X-LUBR equations we find the system of equations for the upper
deck

€| i+ o +w; =0, (3.151)
2| i =0, (3.152)
1 dp
v+ ——=— = .1
Y| 1061V1+2x1 o7 0, (3.153)

g‘ o wi —ﬁl = 0, (3.154)
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which, isolating p, gives a Laplace equation

1 9°p;
—————p1 =0 3.155
2X1 aﬁz P1 ) ( )

2x1)

and its relative solution p; = p;(x;)e( 1, Using (3.153), the wall-normal velocity is

5o WL ew)' 3.156
T T a2 ! (3.136)

in which the curvature effects are also negligible in the limit k¥ < 1.

Matching the solution of the main deck vy, = x~1/2y; with the solution of the upper
deck vy, = K’1/2\71 as
11115%)‘7@ = %igio‘jMD’ (3.157)
gives
p1 =A(x)od (2x1)" /2 (3.158)

Finally, knowing the solutions of the three decks, the dispersion relation is found by first

substituting (3.158) into (3.149), which gives

1
wA=ciaito 1 (3.159)

T03 061(2)61)3/2’

and then substituting (3.159) into (3.146) resulting in

_ A 53 £ 1\ 13
(A 1/3{ } <_0) AL’ =0, 3.160
| wnan — e | S5 ) M (160

Since the curvature effects are negligible for k < 1, the dispersion relation (3.160) is the
same as for the flat plate case of Ricco and Wu (2007). Numerically integrating (3.160)
gives the local growth rate, proportional to Im(¢;). The neutral curve is then identify by the
streamwise location X, where

In(a;) = 0. (3.161)
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This section was introduced to prove that the solution is independent on curvature for the

high-frequency limit. Numerical results will be introduced in §4.4.



Chapter 4

Numerical results

In §4.1, we first present the results based on the LUBR equations valid for the entire evolution
of the boundary-layer perturbation. We then discuss the comparison between the LUBR
results with the results obtained through the EV framework valid for £ > 1 in §4.2 and the
asymptotic results (ASY) valid for G > 1 and £ = &(1) in §4.3. In §4.1.6, the LUBR results

are compared qualitatively with the DNS results by Whang and Zhong (2003).

4.1 Unsteady boundary-region results

Using the LUBR equations, we investigate the dependence of the evolution of compressible
Gortler vortices on four main parameters, i.e., the Mach number, the Gortler number, the
ratio of the disturbance wavelengths in the free stream, and the frequency. In order to obtain

realistic results, this parametric analysis is based on wind tunnel data of compressible flows.

4.1.1 Effect of Mach number

The effect of the Mach number is investigated while keeping the parameter R}, = U /v

constant, which, in compressible flows experiments is referred to as the unit Reynolds number.

*

As the free-stream mean velocity U, is changed, it directly affects both M and R},

, ps, affects
R} through a change of vZ, whereas 7, changes M through the speed of sound a, = aX,(T.})

and R}, through vZ. The Reynolds number R}, is thus kept constant by selecting the correct
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combination of U, T.;, and pZ as the desired M is achieved. Figure 4.1 shows the influence
of the free-stream temperature and pressure on the subsonic Mach number (left) and the

free-stream kinematic viscosity (right).

0.8 \ 2
op* =1 bar
op* = 10 bar U =186.82 m/s
0.6 ©p* =100 bar DN _15) o
o A
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Fig. 4.1 Influence of pressure pZ and temperature 7,; on the subsonic Mach number (left)
and on the kinematic viscosity v, of air (right) for R, = 13- 10% m~!. The points in the two
graphs correspond to the same flow conditions.

This approach has been used in several wind tunnel studies. Laufer (1954) conducted
experiments in the supersonic wind tunnel of the Jet Propulsion Laboratory in the range
14<M<4,R;, =133 10° m~!, and a free stream dominated by vortical disturbances. No
information on the pressure and temperature conditions was given in their article. Flechner
et al. (1976) studied transitional boundary layers in the transonic tunnel at NASA Langley
Research Center and maintained the stagnation temperature at 322 K. Three different Mach
numbers M = 0.7,0.8,0.83 were investigated through a change in the free-stream dynamic
pressure while keeping R}, = 13.1- 10 m~!. This wind tunnel was equipped with a con-
trol system that allowed independent variation of Mach number, stagnation pressure, and
temperature. We consider the cases of steady vortices (f* = 0) in conditions similar to
the experimental configuration of De Luca et al. (1993), i.e., with spanwise wavelength
AF=8- 10~3m, corresponding to R = 1273.2, and radius of curvature r* = 10m, correspond-

ing to G = 206.4. The Mac