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Abstract

The perturbations triggered by free-stream vortical disturbances in compressible boundary

layers developing over concave walls are studied numerically and through asymptotic meth-

ods. We employ an asymptotic framework based on the limit of high Görtler number, the

scaled parameter defining the centrifugal effects, we use an eigenvalue formulation where

the free-stream forcing is neglected, and solve the receptivity problem by integrating the

compressible boundary-region equations complemented by appropriate initial and boundary

conditions which synthesize the influence of the free-stream vortical flow. In the limit of high

frequencies, the triple-deck equations are also solved and their results compared with the solu-

tion of the boundary-region equations. The boundary-layer perturbations, in the proximity of

the leading edge, develop as thermal Klebanoff modes and, when centrifugal effects become

influential, these modes turn into thermal Görtler vortices, i.e., streamwise rolls characterized

by intense velocity and temperature perturbations. The high-Görtler-number asymptotic

analysis reveals the condition for which the Görtler vortices start to grow and that the Mach

number is destabilizing when the spanwise diffusion is negligible and stabilizing when the

boundary-layer thickness is comparable with the spanwise wavelength of the vortices. The

theoretical analysis also shows that the vortices move towards the wall as the Mach number

increases when the Görtler number is large. These results are confirmed by the receptivity

analysis, which additionally clarifies that the temperature perturbations respond to this re-

versed behavior further downstream than the velocity perturbations. A matched-asymptotic

composite profile, found by combining the inviscid core solution and the near-wall viscous

solution, agrees well with the receptivity profile sufficiently downstream and at high Görtler

number. The Görtler vortices tend to move towards the boundary-layer core when the flow
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is more stable, i.e., as the frequency or the Mach number increase, or when the curvature

decreases. As a consequence, a region of unperturbed flow is generated near the wall. We

also find that the streamwise length scale of the boundary-layer perturbations is always

lower than the free-stream streamwise wavelength. During the initial development of the

vortices, only the receptivity calculations are accurate. Downstream where the free-stream

disturbances have fully decayed, the growth rate and wavelength are computed accurately by

the eigenvalue analysis, although the correct amplitude of the Görtler vortices can only be

determined by the receptivity calculations. It is further proved that the eigenvalue predictions

of the growth rate and wavenumber worsen as the Mach number increases, as these quantities

show a dependence on the wall-normal direction.

The receptivity analysis is also used to compute the neutral curves generated by free-

stream disturbances, i.e., curves that identify the region of growth and decay of the boundary-

layer perturbations, for different Görtler numbers, Mach numbers, wavelengths, and low

frequencies of the free-stream disturbance. The growth rate of the perturbation is used

to identify if the boundary-layer instability is in the form of Klebanoff modes or Görtler

vortices. A critical Görtler number can be identified below which Klebanoff modes are

the only source perturbations, even when curvature is present. From the receptivity and

eigenvalue formulation we define a streamwise-dependent receptivity coefficient and discuss

the N-factor approach for transition prediction.

Finally, the equations the triple-deck analysis reveals that the curvature effects do not

play a role in the limit of high frequencies, which is also confirmed by the boundary-region

results.
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Chapter 2

Introduction

In 1940 Görtler (1940) published a paper where a new type of boundary-layer instability was

introduced. This Görtler instability originates from an inviscid unbalance between pressure

and centrifugal forces caused by the curvature of flow streamlines. In most cases, curvature is

introuce thanks to a curved concave surface, as shown in figure 2.1. The resulting perturbation

λz

r

Fig. 2.1 Representation of Görtler vortices edveloping along concave surfaces.

evolves in the form of counter-rotating vortices which are elongated in the streamwise

direction. Their streamwise velocity dominates over the cross-flow velocities. They evolve

slowly in the streamwise direction and with a constant spanwise wavelength. They have been

referred to as Görtler vortices. Görtler’s mathematical result was confirmed experimentally

by Liepmann (1945), who first showed that transition to turbulence is anticipated with respect

to the flat-plate case. Comprehensive reviews on Görtler flow have been published by Hall

(1990), Floryan (1991), and Saric (1994).



4 Introduction

2.1 Incompressible Görtler vortices

The original work of Görtler (1940) was based on a theory simplified by the parallel mean-

flow assumption which contrasts with the growing nature of boundary layers. Tani (1962)

first performed detailed measurements of the perturbed flow proving that Görtler vortices

evolve with a nearly constant spanwise wavelength. An improvement to the original theory

was achieved in the work of Floryan and Saric (1982) by introducing non-parallel effects and

using other assumptions which led to an eigenvalue system of ordinary differential equations.

When the dimensional spanwise wavelength of Görtler vortices is of the same order as the

boundary-layer thickness, Hall (1983) demonstrated that any assumption simplifying the

governing partial differential equations to ordinary differential equations does not lead to a

precise description of the evolution of the Görtler vortices, so that for example the amplitude

of the perturbations, the dependence of the growth rate on the wall-normal direction, and the

flow behaviour near the leading edge would not be computed correctly. In the same paper

several disturbance profiles were introduced at different streamwise locations near the leading

edge as initial conditions and, for each location and initial profile, the instability developed

in a different manner. The influence of the external disturbances was not accounted for and

the perturbations were assumed to vanish outside of the boundary layer. Swearingen and

Blackwelder (1983) and Kottke (1988) proved experimentally that receptivity of the base

flow to free-stream turbulence has a strong impact on the properties of Görtler instability,

such as the spanwise wavelength, and on the breakdown of the vortices to turbulence. Hall

(1990) was the first to introduce the effect of receptivity to free-stream turbulence on the

Görtler vortices, obtaining a better agreement with experimental data than for the cases

where artificial initial conditions were imposed at a fixed streamwise location. More recently,

Borodulin et al. (2017) also claimed that free-stream turbulence is one of the most efficient

ways to excite Görtler instability.

A further pioneering step towards understanding receptivity was achieved by Leib et al.

(1999), who formulated a rigorous mathematical framework based on the unsteady boundary

region equations that, through asymptotic matching, unequivocally fixes the initial and

outer boundary conditions based on the external free-stream vortical disturbances. They
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focused on the incompressible viscous instabilities that arise in flat-plate boundary layers

in the form of streamwise elongated vortices, known as Klebanoff modes, now widely

recognized to be initiators of bypass transition to turbulence (Matsubara and Alfredsson,

2001; Ovchinnikov et al., 2008). Localized streaks have also been investigated using the

boundary region equations (Hewitt and Duck, 2018). Recently, Ricco et al. (2016) highlighted

the strengths of the framework introduced by Leib et al. (1999) by comparing it to other

theoretical approaches found in literature for the analysis of bypass transition, and proved its

validity by showing good agreement with the experimental data and with the direct numerical

simulation data of Wu and Moin (2009). When streamwise concave curvature is present,

Klebanoff modes turn into Görtler vortices as they evolve downstream. This was first proved

by Wu et al. (2011) by extending the theory of Leib et al. (1999) for flows over concave

surfaces where free-stream turbulence was modeled by three-dimensional vortical external

disturbances. Their theoretical results agree well with the experimental data in the linear

region of evolution (Boiko et al., 2010b; Finnis and Brown, 1997; Tani, 1962). In the limit

of high Görtler number, the asymptotic analysis of Wu et al. (2011) revealed the different

stages through which the Görtler instability evolves. It goes through two pre-modal stages

and then it amplifies exponentially. During their growth, the vortices become trapped in a

wall layer. This is a distinctive feature of incompressible Görtler vortices and it is markedly

different from the behavior of Klebanoff modes, which tend to move to the upper part of the

boundary layer.

The effects of nonlinearity on the unsteady Görtler vortices triggered by free-stream

vortical disturbances have been studied by Boiko et al. (2010a), Xu et al. (2017) and Marensi

and Ricco (2017), whereas the effects of nonlinearity on the mean flow was investigated

by Hewitt and Duck (2014). In addition, the excitation of Görtler vortices by local surface

nonuniformities has been recently investigated by Boiko et al. (2017).
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2.2 Compressible Görtler vortices

The initiation of the transition to turbulence caused by Görtler instability affects the perfor-

mance of several technological applications, especially in the compressible regime. A typical

important example is the high-speed flow in turbine engine intakes, where the free stream is

highly disturbed. It is thus crucial to study the influence of free-stream disturbances to predict

transition in these systems and to evince how the change of the flow regime from laminar to

turbulent affects the performance of turbomachines (Mayle, 1991; Volino and Simon, 1995).

Additional examples of Görtler flows in the compressible regime include airfoils (Mangalam

et al., 1985), hypersonic air breathing vehicles (Ciolkosz and Spina, 2006), and supersonic

nozzles (Chen et al., 1992).

Compressible Görtler vortices were originally described by the parallel theory of Hammer-

lin (1961) and were first visualized by Ginoux (1971). A parallel theory was also employed

later by Kobayashi and Kohama (1977) and was further extended to include non-parallel

effects by El-Hady and Verma (1983), Hall and Malik (1989), and Hall and Fu (1989). The

eigenvalue approach was improved by Spall and Malik (1989) by solving a system of partial

differential equations coupled with prescribed initial conditions under the assumption of

vanishing perturbations outside the boundary layer. Spall and Malik (1989) also mentioned

that physically meaningful initial conditions do require receptivity, i.e., the process by which

external disturbances interact with the perturbations inside the boundary layer. This work was

later modified by Wadey (1992) through a new set of improved initial conditions, but recep-

tivity was still not introduced. The eigenvalue approach with vanishing perturbations in the

free stream was also adopted by Dando and Seddougui (1993) to study compressible Görtler

vortices. From these early theories it was first noticed that increasing the Mach number leads

to a more stable flow and to a shift of the vortices away from the wall. More recently, two

conference papers by Whang and Zhong (2002, 2003) reported direct numerical simulation

results on the influence of free-stream disturbances on Görtler vortices in the hypersonic

regime, Li et al. (2010) investigated the nonlinear development of Görtler instability through

nonlinear parabolized stability equations and direct numerical simulations, and Ren and Fu
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(2015) showed how differences in the primary instability lead to considerable changes in the

secondary instability, thereby impacting the transition to turbulence.

Experimental works on compressible Görtler flows are more limited than incompressible

flows. De Luca et al. (1993) experimentally confirmed that in the compressible regime

Görtler vortices also evolve with a constant spanwise wavelength. Ciolkosz and Spina (2006)

ran experimental tests on transonic and supersonic Görtler vortices and showed that the

spanwise wavelength of the vortices remained approximately constant as the Mach number

and Görtler number varied and that the measured growth rates agreed reasonably well with

existing stability results. Görtler vortices were also noticed to be the unwanted cause of

transition for the design of quiet hypersonic wind tunnels (Schneider, 2008). Wang et al.

(2018) performed a flow visualization of the complete evolution of Görtler vortices from

the laminar to the turbulent regime reporting that, although the linear growth rate decreases

as the Mach number increases, the secondary instability was enhanced. They also stressed

that the theoretical works are steps ahead of the limited number of experimental works on

compressible Görtler instability. To the best of our knowledge, rigorous experiments on

compressible flows over concave surfaces describing the effect of free-stream turbulence on

the Görtler vortices are indeed not available in the literature. This has arguably been one of

the reasons why, although progresses have been made, there are no theoretical works on the

receptivity of compressible boundary layers over concave surfaces to free-stream vortical

disturbances and on the engendered unsteady Görtler vortices.

2.3 Neutral stability

Thanks to the theoretical advancements for the incompressible flows, which culminated in

the work of Wu et al. (2011), and compressible flows, here presented, the Görtler flow is

connected in a unique and precise way to the properties of free-stream disturbances. However,

the neutral curves associated to concave surfaces, i.e., curves that identify regions of stability

and instability of the boundary-layer, were not investigated by Wu et al. (2011) and it does

continue to be an unsolved issue for both incompressible and compressible flows. On the
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contrary, the problem of neutral curves for flat plates subject to TS waves instability was

solved by Tollmien (1929).

The first neutral curves were computed based on the simplified parallel flow theories, such

as the original work of Görtler (1940), which lead to inconsistent results for wavenumbers of

order one and unphysical results for small wavenumbers. Only in the limit of high spanwise

wavenumbers the parallel flow theories are acceptable (Hall, 1990). Hall (1983) showed

the influence of different initial conditions on the neutral curves and, thanks to a receptivity

analysis, improved his results in Hall (1990). However, even this last formulation was unable

to capture all the experimental unstable points of Tani (1962) which are indeed included

in the unstable regions computed by Viaro and Ricco (2018). The neutral stability curves

of Viaro and Ricco (2018) were computed with the theory of Wu et al. (2011) and are here

extended to include the effects of compressibility. In their neutral curves the complete range

of low frequencies and spanwise wavenumbers is covered, starting from the leading edge and

including the flat plate scenario. They also demonstrate the existence of a Görtler number

below which only Klebanoff modes are present, even over curved surfaces, and a Görtler

number above which Klebanoff modes shift into Görtler vortices directly.

2.4 Objectives

The objective of this research is to study the receptivity to free-stream vortical disturbances of

compressible boundary layers over streamwise-concave surfaces and the consequent growth

of unsteady Görtler vortices. We use asymptotic methods and numerical computations to

solve the equations of motion. We achieve this goal by combining the theoretical framework

of Wu et al. (2011) for incompressible flows over concave surfaces and the one of Ricco and

Wu (2007), who extended the theory by Leib et al. (1999) to study compressible Klebanoff

modes over flat surfaces. We focus on boundary layers where the free-stream Mach number

is of order one and the instability only takes the form of Görtler vortices, i.e., at sufficiently

low frequencies for which oblique Tollmien-Schlichting waves do not appear at realistic

streamwise locations. We thus exclude the range of frequencies for which the receptivity
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mechanism discovered by Ricco and Wu (2007) is operational. Our rigorous theoretical

framework allows us to compute the neutral stability curves for different flow conditions. We

finally adopt a triple-deck approach to show that there is no curvature effect in the limit of

high frequencies.

Section §3.1.1 outlines the flow scaling and decomposition, while §3.2 presents the

unsteady boundary-region equations with curvature effects. Starting from these equations,

in §3.3 we derive a compressible eigenvalue framework with and without the parallel-flow

assumption, in §3.4 we adopt an asymptotic framework valid at high Görtler numbers to study

the different evolution stages and in §3.5 we derive the triple-deck equations valid at high

frequencies. Section §4.1.1-§4.1.4 show the influence of compressibility, radius of curvature,

oncoming vortical disturbances and frequency on the development of the instability. The

growth rate is shown in §4.1.5 whereas in §4.1.6 a qualitative comparison with the direct

numerical simulation (DNS) results by Whang and Zhong (2003) is proposed. The results

for the neutral stability curves are presented in §4.1.7. Through the receptivity analysis, we

modify the receptivity coefficient introduced by Wu et al. (2011) in §4.2.3 in order to recover

the maximum amplitude of the perturbation inside the boundary layer starting from the local

eigenvalue solution. Additionally, we discuss in §4.2.4 the N-factor approach when receptivity

is introduced in the analysis of boundary layers subject to free-stream disturbances. The

numerical boundary-region solutions are compared with the eigenvalue, the asymptotic and

triple-deck solutions in §4.2, §4.3 and §4.4, respectively.





Chapter 3

Theoretical results

3.1 Scaling and equations of motion

We consider a uniform compressible air flow of velocity U∗
∞ and temperature T ∗

∞ past a

slightly concave plate with constant radius of curvature r∗. Hereinafter the asterisk ∗ iden-

tifies dimensional quantities. In the proximity of the surface, the flow is described by the

orthogonal curvilinear coordinate system x = {x,y,z} (Floryan and Saric, 1982) that defines

the streamwise, wall-normal, and spanwise directions. Therefore, x is the streamwise coordi-

nate, y is the wall-normal coordinate, and z is the spanwise coordinate, orthogonal to x and y.

The conversion from the Cartesian to the curvilinear coordinates system is achieved through

the Lamé coefficients hx = 1− y∗/r∗,hy = 1, and hz = 1 (Wu et al., 2011). The flow domain

is represented in figure 3.1.

The free-stream disturbances are assumed to be of small intensity, passively advected

by the uniform free-stream flow, and of the gust-type. These three-dimensional vortical

disturbances, far upstream and away from the wall, take the form

u− i = εû∞ ei(k·x−kxRt̂)+ c.c., (3.1)

where c.c. indicates the complex conjugate, ε is a small parameter, i is the unit vector along

the streamwise direction, and t̂ is the dimensionless time defined below. The oncoming veloc-
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Fig. 3.1 Sketch of the receptivity mechanism to free-stream vortical disturbances and the
asymptotic regions I,II,III,IV,FS of the boundary layer. λx is the streamwise wavelength
of the free-stream disturbance and λx,bl is the streamwise wavelength of the boundary-layer
perturbation q́ sufficiently downstream from the leading edge.

ity u is therefore decomposed into its dimensionless mean, −i, and a three-dimensional dis-

turbance û∞ ei(k·x−kxRt̂) that is assumed to be convected by the mean flow of non-dimensional

velocity of one. The wavenumber vector k = {kx,ky,kz} and the amplitude of the free-stream

velocity disturbance û∞ = {û∞, v̂∞, ŵ∞} satisfy the solenoidal condition k · û∞ = 0. The

characteristic length scale is Λ∗
z = λ ∗

z /2π , where λ ∗
z is the spanwise wavelength of the gust.

As the flow is periodic along the spanwise direction and the boundary-layer dynamics is linear

because the perturbation is assumed of small amplitude, λ ∗
z is also the spanwise wavelength

of the Görtler vortices. This is supported by laboratory evidence as experiments in both

incompressible and compressible boundary layers over concave plates have reported a con-

stant spanwise length scale of the vortices (Ciolkosz and Spina, 2006; De Luca et al., 1993;

Tani, 1962). The characteristic velocity, temperature and pressure are U∗
∞, T ∗

∞ , and ρ∗
∞U∗

∞
2,

respectively, where ρ∗
∞ is the mean density of air in the free stream. R = U∗

∞Λ∗
z/ν∗

∞ ≫ 1

defines the Reynolds number, where ν∗
∞ is the kinematic viscosity of air in the free stream,

G= R2Λ∗
z/r∗ = O(1) defines the Görtler number, and M=U∗

∞/a∗∞ = O(1) defines the Mach

number, where a∗∞ = (γR∗T ∗
∞)

1/2 is the speed of sound in the free stream, R∗ = 287.06 J
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kg−1 K−1 is the ideal gas constant for air, and γ = 1.4 is the ratio of specific heats. The

parameter for frequency becomes kxR= 2πΛ∗2
z U∗

∞/(λ ∗
x ν∗

∞) and the dimensionless spanwise

wavenumber is kz = 1. Time and the streamwise coordinate are scaled as t̂ =U∗
∞t∗/(RΛ∗

z )

and x̂ = x∗/(RΛ∗
z ), respectively, due to our interest in streamwise elongated perturbations.

The streamwise scaling used in Ricco and Wu (2007) could have been implemented, i.e.,

x̄ = kxx, but we would have not been able to investigate the steady perturbations kx = 0 as in

Wu et al. (2011).

Ricco and Wu (2007) proved that, for certain flow conditions defined by the param-

eter κ = kz/(kxR)
1/2, the spanwise pressure gradient of the disturbance couples with the

boundary-layer vortical disturbances to generate highly oblique TS waves at sufficiently

large streamwise locations x̂c. For M= 3, this instability appears when 0 < κ < 0.03. As M

decreases, the neutral point x̂c moves downstream and if M < 0.8 the x̂c location is too far

downstream to be physically relevant. In our study we restrict ourselves to cases for which

κ > 0.15, a value that comes from our choice of experimental parameters for the investigation

of the frequency influence in §4.1.4 , and therefore the highly-oblique TS waves investigated

by Ricco and Wu (2007) do not occur.

3.1.1 Flow decomposition

The boundary-layer velocity, pressure, and temperature q = {u,v,w, p,τ} are decomposed

into their mean Q = {U,V} and perturbation q́ as

q(x, t) = Q(x)+ ε q́(x, t). (3.2)

Under the assumption r ≫ 1, curvature effects on the mean flow can be neglected (Spall and

Malik, 1989). Consequently, at leading order the mean flow behaves as if the plate were flat.

The Dorodnitsyn-Howarth transformation, which is the equivalent of the Blasius formulation

but for compressible flows, can then be applied to obtain the mean-flow momentum equation
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M and energy equation E in similarity form (Stewartson, 1964)

M ⌉
(

µF ′′

T

)′
+FF ′′ = 0, (3.3)

E ⌋
(

µT ′

PrT

)′
+M2(γ −1)

µF ′′2

T
+FT ′ = 0, (3.4)

where we have introduced the compressible Blasius function F = F(η), the temperature

T = T (η), and the dynamic viscosity µ(T ) = T ω , where ω = 0.76 (Stewartson, 1964).

The prime ′ indicates the derivative with respect to the independent similarity variable

η = Ȳ/(2x̂)1/2, where Ȳ (x̂,y) =
∫ y

0 1/T (x̂, ȳ)dȳ. The Prandtl number, assumed to be constant,

is Pr= 0.707. The boundary conditions for (3.3) and (3.4) are

η = 0⌉ F = F ′ = 0, T ′ = 0, (3.5)

η → ∞⌋ F ′ → 1, T → 1. (3.6)

The streamwise velocity U and the wall-normal velocity V of the mean flow are

U = F ′, V =
T (ηcF ′−F)

R(2x̂)1/2 , (3.7)

where ηc(η) = T−1 ∫ η
0 T (η̂)dη̂ (Stewartson, 1964).

3.2 The compressible boundary-region equations

The theoretical framework used herein is a combination of the work of Wu et al. (2011) on

incompressible Görtler flows over concave surfaces with the work of Ricco and Wu (2007) on

compressible Klebanoff modes over flat surfaces. Both papers are extensions of the original

theory proposed by Leib et al. (1999) for the incompressible flat-plate case.

Before introducing the boundary-region equations with curvature effects it is instructive

to discuss the different asymptotic flow regions, represented in figure 3.1. The flow domain

is divided in five main regions: region FS (free stream) for which x2 + y2 ≫ 1, and regions I,
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II, III, and IV. Goldstein (1978) developed an analytic framework for the description of the

free-stream vortical disturbances in region I. Here, the external disturbances are described

as a superposition of inviscid harmonic vortical disturbances which, in the limit ε ≪ 1,

can be analyzed separately due to the linearity of the problem. As the free-stream vortical

disturbances evolve further downstream, the outer flow enters region IV where the mean

flow is also inviscid. Here, the displacement effect caused by the boundary-layer growth and

the energy decay due to viscous dissipation are analytically treated (Leib et al., 1999). The

dynamics of the flow disturbance in these outer regions causes the origin and growth of the

perturbation in the viscous regions II and III inside the boundary layer. The method of

matched asymptotic expansion is used to link the outer regions I and IV with the boundary-

layer regions II and III. Region II is governed by the linearized unsteady boundary-layer

equations, i.e., the linearized unsteady boundary-region (LUBR) equations with the spanwise

diffusion and normal pressure gradient terms neglected. Originally introduced by Kemp

(1951), the LUBR equations are the full Navier-Stokes and continuity equations with the

terms pertaining to the streamwise viscous diffusion and the streamwise pressure gradient

neglected. This is a rigorous simplification that follows directly from the assumptions R→ ∞

and kx → 0. Gulyaev et al. (1989), Choudhari (1996), and Leib et al. (1999) recognized that

the linearized unsteady boundary-layer equations are appropriate only in a small region near

the leading edge where the spanwise wavelength λ ∗
z is much larger than the boundary-layer

thickness δ ∗ = O((x∗ν∗
∞/U∗

∞)
1/2). As the boundary layer grows to a thickness comparable

with the spanwise wavelength, i.e., δ ∗ = O(λ ∗
z ), the spanwise diffusion terms become of

the same order of the wall-normal diffusion terms. This occurs in region III, where the

Klebanoff modes in the flat-plate case and the Görtler vortices for flows over concave surfaces

are fully developed. The LUBR equations, complemented by rigorous initial and free-stream

boundary conditions, must therefore be used to study the flow in region III. The boundary-

layer perturbations are assumed to be periodic in time t and along the spanwise direction z.

They are expressed as in Gulyaev et al. (1989),

q́(x, t) = ikzw̌
{
Rū, (2x̂)1/2v̄,

1
ikz

w̄,
1
R

p̄, Rτ̄
}

ei(kzz−kxRt̂)+ c.c., (3.8)
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where w̌ ≡ ŵ∞ + ikzv̂∞(k2
x + k2

z )
−1/2 and q̄(x̂,η) = {ū, v̄, w̄, p̄, τ̄}(x̂,η). Equation (3.25) rep-

resent the three-dimensional part of the disturbance in which the periodicity of the spanwise

direction and time is included in the exponential term, and the term w̌ comes from the

matching with the oncoming flow field. Starting from the full compressible continuity and

Navier-Stokes equations in curvilinear coordinates, using the Lamé coefficients and the

scaling previously introduced, we find the perturbation equations. The mean flow (3.7) and

perturbations (3.8) are then introduced into the equations of motion. Finally, taking the limits

R→ ∞ and kx → 0 with kxR= O(1), the LUBR equations are obtained:

C ⌉ ηc

2x̂
T ′

T
ū+

∂ ū
∂ x̂

− ηc

2x̂
∂ ū
∂η

− T ′

T 2 v̄+
1
T

∂ v̄
∂η

+ w̄+

(
ikxR

1
T
− 1

2x̂
FT ′

T 2

)
τ̄ − F ′

T
∂ τ̄
∂ x̂

+

1
2x̂

F
T

∂ τ̄
∂η

= 0, (3.9)

X |
(
−ikxR−

ηc

2x̂
F ′′+ k2

z µT
)

ū+F ′∂ ū
∂ x̂

− 1
2x̂

(
F +

µ ′T ′

T
− µT ′

T 2

)
∂ ū
∂η

− 1
2x̂

µ
T

∂ 2ū
∂η2+

F ′′

T
v̄+

1
2x̂T

(
FF ′′−µ ′′F ′′T ′+

µ ′F ′′T ′

T
−µ ′F ′′′

)
τ̄ − 1

2x̂
µ ′F ′′

T
∂ τ̄
∂η

= 0, (3.10)

Y | 1
4x̂2

[
ηc
(
FT ′−F ′T

)
−η2

c F ′′T +FT
]

ū+
µ ′T ′

3x̂
∂ ū
∂ x̂

− µ
6x̂

∂ 2ū
∂ x̂∂η

+
ηcµ
12x̂2

∂ 2ū
∂η2+

1
12x̂2

(
ηcµ ′T ′+µ − ηcµT ′

T

)
∂ ū
∂η

+

[
1
2x̂

(
F ′+ηcF ′′− FT ′

T

)
− ikxR+ k2

z µT
]

v̄+

F ′∂ v̄
∂ x̂

+
1
x̂

[
2

3T

(
µT ′

T
−µ ′T ′

)
− F

2

]
∂ v̄
∂η

− 2
3x̂

µ
T

∂ 2v̄
∂η2 +

µ ′T ′

3x̂
w̄− µ

6x̂
∂ w̄
∂η

+
1
2x̂

∂ p̄
∂η

+

[
1

3x̂2T

(
µ ′′FT ′2 − µ ′FT ′2

T
+µ ′FT ′′+µ ′F ′T ′

)
− 1

4x̂2

(
F ′F −ηcF ′2 −ηcFF ′′+

F2T ′

T
+µ ′F ′′+ηcµ ′′F ′′T ′− ηcµ ′F ′′T ′

T
+ηcF ′′′µ ′

)]
τ̄ +

µ ′

x̂2

(
FT ′

3T
− ηcF ′′

4

)
∂ τ̄
∂η

−

µ ′F ′′

2x̂
∂ τ̄
∂ x̂

+
G

(2x̂)1/2

(
2F ′ū− F ′2

T
τ̄

)
= 0, (3.11)
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Z | − k2
z ηcµ ′T T ′

2x̂
ū+

k2
z µT
3

∂ ū
∂ x̂

− k2
z ηcµT

6x̂
∂ ū
∂η

+ k2
z µ ′T ′v̄+

k2
z µ
3

∂ v̄
∂η

+

(
4
3

k2
z µT − ikxR

)
w̄+F ′∂ w̄

∂ x̂
+

1
2x̂

(
µT ′

T 2 −F − µ ′T ′

T

)
∂ w̄
∂η

− 1
2x̂

µ
T

∂ 2w̄
∂η2−

k2
z T p̄+

k2
z

3x̂
µ ′FT ′τ̄ = 0, (3.12)

E ⌋ − ηc

2x̂
T ′ū+

T ′

T
v̄+
[

FT ′

2x̂T
− ikxR+

k2
z µT
Pr

− 1
2x̂Pr

∂
∂η

(
µ ′T ′

T

)]
τ̄ +F ′∂ τ̄

∂ x̂
+

1
2x̂

(
µT ′

PrT 2 −F − 2µ ′T ′

PrT

)
∂ τ̄
∂η

− 1
2x̂Pr

µ
T

∂ 2τ̄
∂η2 −M2 γ −1

x̂T

(
µF ′′ ∂ ū

∂η
+

µ ′F ′′2

2
τ̄

)
= 0,

(3.13)

where C , X , Y , Z , E indicate the continuity, x-momentum, y-momentum, z-momentum,

and energy equations. In these equations the prime ′ represents differentiation with respect

to the independent variable (η or T ). The equations of Ricco and Wu (2007) for the

compressible flow over a flat surface and of Wu et al. (2011) for the incompressible flow

over a concave surface are recovered by setting G = 0 and M = 0, respectively. Curvature

effects derive from the centrifugal force and only appear in the convective terms of the Y

equation (3.11). These terms, boxed in (3.11), are proportional to the Görtler number G and,

in the compressible case, also include the temperature perturbation (El-Hady and Verma,

1983; Hall and Malik, 1989). The LUBR equations are parabolic along the streamwise

direction and are influenced by G, ky, kxR, and M, which account for the effects of curvature,

ratio of the free-stream spanwise wavelength to the wall-normal wavelength, frequency, and

compressibility, respectively.

The streamwise velocity ū and the temperature perturbation τ̄ inside the boundary layer

tend to zero as the free stream is approached because they amplify inside the boundary layer

to an order of magnitude larger than the corresponding free-stream disturbances (Ricco and

Wu, 2007). Therefore, the boxed curvature terms in (3.11) can be neglected as η → ∞ and
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we recover the free-stream boundary conditions used by Ricco and Wu (2007):

η = 0⌉ ū = v̄ = w̄ =
∂ τ̄
∂η

= 0, (3.14)

η → ∞⌋ ū → 0, (3.15)

∂ v̄
∂η

+ |kz|(2x̂)1/2v̄ →−ei[kxRx̂+ky(2x̂)1/2(η−βc)]−(k2
y+k2

z )x̂, (3.16)

∂ w̄
∂η

+ |kz|(2x̂)1/2w̄ → iky(2x̂)1/2ei[kxRx̂+ky(2x̂)1/2(η−βc)]−(k2
y+k2

z )x̂, (3.17)

∂ p̄
∂η

+ |kz|(2x̂)1/2 p̄ → 0, (3.18)

τ̄ → 0, (3.19)

where compressibility effects are taken into account by the parameter βc(M)≡ limη→∞(η −
F), which is computed numerically (Ricco et al., 2009). These boundary conditions are

derived based on the matching between the inner boundary layer flow and the outer flow.

Since curvature effects are also negligible in the limit x̂ → 0, the initial conditions of Ricco

and Wu (2007) apply:

x̂ → 0] ū → 2x̂U0 +(2x̂)3/2U1, (3.20)

v̄ →V0 +(2x̂)1/2V1 −
[
Vc −

1
2

g1|kz|(2x̂)1/2
]

e−|kz|(2x̂)1/2η̄+

i
(ky − i|kz|)(2x̂)1/2

[
eiky(2x̂)1/2η̄−(k2

y+k2
z )x̂ − e−|kz|(2x̂)1/2η̄

]
− v̄c, (3.21)

w̄ →W0 +(2x̂)1/2W1 −Vc|kz|(2x̂)1/2e−|kz|(2x̂)1/2η̄+

1
ky − i|kz|

[
kyeiky(2x̂)1/2η̄−(k2

y+k2
z )x̂ − i|kz|e−|kz|(2x̂)1/2η̄

]
− w̄c, (3.22)

p̄ → P0

(2x̂)1/2 +P1 +

[
g1 −

Vc

|kz|(2x̂)1/2

]
e−|kz|(2x̂)1/2η̄ − p̄c, (3.23)

τ̄ → 2x̂T0 +(2x̂)3/2T1, (3.24)
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where η̄ ≡ η − βc. The common parts v̄c, w̄c, and p̄c, the constants g1 and Vc, and the

solutions U0, V0, W0, P0, T0, U1, V1, W1, P1, T1 are derived in Appendix B. The numerical

procedure for solving the LUBR equations is described in Appendix A. The significance

of receptivity can be emphasized by noting that ky only influences the solution through the

initial and boundary conditions. This is because the LUBR equations (3.9)-(3.13) do not

include ky as a parameter.

3.2.1 Neutral curve parameters

In early studies (Hall, 1990), the abscissa and ordinate of neutral curves associated to the

Görtler instability were represented with a scaled spanwise wavenumber and a scaled Görtler

number, using the boundary-layer thickness as the characteristic length. Translated into

our scaling, the neutral curves would be plotted in a X -G plane, with the abscissa being

X = (2x̂)1/2 and the ordinate G = GX 3/
√

2. However, the neutral curves would collapse

on a X 3 curve and the behavior of the flow would not be revealed, particularly in the vicinity

of the leading edge. We found that our neutral curves are better represented in an x̂-G plane in

order to demonstrate the connection between Klebanoff modes, Görtler vortices and stability

of the flow as the values of kxR, ky and M are changed.

Two parameters are introduced to represent the neutral curves:

ς(x̂)≡ dE(x̂)
dx̂

, β (x̂)≡ d2|ū(x̂)|max

dx̂2 , (3.25)

where E(x̂) ≡ ∫
∞

0 |ū(x̂,η)|2dη is the perturbation energy scaled by (2x̂)1/2 (Hall, 1990)

and |ū(x̂)|max ≡ max
η

|ū(x̂,η)| is the maximum value of the streamwise velocity perturbation

amplitude along η = y/(2x̂)1/2. The parameter β is here introduced to identify the streamwise

location where the perturbation shift from Klebanoff modes to Görtler vortices. By defining

ς(x̂) in this manner the information from the amplitude of the perturbation is retained, which

is of particular importance for a receptivity analysis. If we had normalized the parameter ς(x̂)

by the energy E(x̂), as in Hall (1990), we would have lost the information of the perturbation

amplitude. The scaled perturbation energy in (3.25) is computed with the |ū| velocity alone
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as, when Görtler vortices are present, the physical transverse velocities are much smaller

than the physical streamwise velocity (Wu et al., 2011).

scenario

scenario

2

2
ς > 0
β < 0

x̂K
ς > 0
β > 0

x̂G
ς > 0
β < 0

x̂ς0 ς < 0

K

GS

GW S

1

1
ς > 0
β < 0

x̂ς0 ς < 0

K S

mean flow

+

disturbance
3D gust

U∗∞
x̂

y

Fig. 3.2 Sketch of the boundary layer representing K-vortices K , Görtler vortices with
strong growth GS , Görtler vortices with weak growth GW , and stable flows S through the
two parameters ς and β defined in (3.25). A typical scenario for G < GB = 10.9 and for
G> GC = 17 are represented by 1 and 2 , respectively, for a steady flow.

The instabilities can be classified based on (3.25) as shown in figure 3.2. When ς < 0

the flow is stable whereas it is unstable when ς > 0. The neutral points, located at x̂ = x̂ς0 ,

are associated to ς = 0. In the proximity of the leading edge, curvature effects do not play

any role. As a consequence, the boundary layer perturbations start growing as Klebanoff

modes, herein labelled K-vortices K , associated to ς > 0 and β < 0. As G, ky, M and kxR

change, the K-vortices can stabilize downstream of x̂ = x̂ς0 or shift into Görtler vortices for

x̂ = x̂K. This last location is associated with β ′(x̂)> 0 and β = 0, where the prime indicates

the derivative with respect to x̂. Initially, the growth of the Görtler vortices is characterized

by β > 0, classified as strong growth and identified by GS (GS-vortices). Downstream of

x̂ = x̂G, the location with the maximum local growth rate, the growth of Görtler vortices,

characterized by β < 0, weakens (GW-vortices, GW ) with β = 0 and β ′ < 0. Finally, stability

is reached for x̂ > x̂ς0 .
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3.3 The eigenvalue equations

Because of the inviscid unbalance between the centrifugal force and the wall-normal pressure,

the Görtler instability exhibits an exponential streamwise amplification. Following the

work of Wu et al. (2011), we can take advantage of this property by adopting a simplified

mathematical framework based on an additional decomposition of the quantities defined in

(3.8),

q̄(x̂,η) = {ū, v̄, w̄, p̄, τ̄} ≡ q̃(η) e
∫ x̂ σEV(x)dx, (3.26)

where q̃ = {ũ, ṽ, w̃, p̃, τ̃} and σEV = σEV, Re + iσEV, Im is a complex function whose real part

σEV, Re(x̂) is the local growth rate and the imaginary part σEV, Im(x̂) is proportional to the stream-

wise wavenumber of the boundary-layer perturbation, i.e.,

kx, EV(x̂) =
1
x̂

∫ x̂
σEV(x)dx. (3.27)

Expression (3.26) is a local eigenvalue (EV) decomposition, i.e., valid at a specified stream-

wise location, which implies that the streamwise dependence of the perturbation is absorbed

in σ(x̂), while the wall-normal variation is distilled in q̃(η). The EV perturbation (3.26)

is only defined to within an undetermined amplitude which can only be found through the

receptivity analysis, i.e., by accounting for the influence of the free-stream disturbance.

Nevertheless, the EV approach has the advantage of identifying the streamwise locations

where the perturbation exhibits exponential growth and where its growth rate and streamwise

length scale are not influenced by the initial and free-stream boundary conditions.

By substituting (3.26) into (3.9)-(3.13) we obtain the non-parallel EV system of equations,

which preserves the growing nature of the boundary-layer mean flow. The equations can be

further simplified by invoking the η-based parallel mean-flow assumption, which implies

V = 0, and by taking the limit x̂ ≫ 1 (Wu et al., 2011). This work is intended to show the

results of both the parallel and non-parallel assumptions. For numerical reasons, the system

of ordinary differential equations (ODE) is written as a system of first order equations by
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introducing three new variables,

f̃ (η)≡ ∂ ũ
∂η

, g̃(η)≡ ∂ w̃
∂η

, h̃(η)≡ ∂ τ̃
∂η

. (3.28)

The non-parallel compressible EV equations are given in the following, where the terms

between ⟨ ⟩ can be neglected under the parallel flow assumption because they arise from the

wall-normal velocity V given in (3.7).

C ⌉ ∂ ṽ
∂η

=
(
σF ′− ikxR

)
τ̃ −σT ũ+ ṽ

T ′

T
−T w̃+

〈
FT ′

2x̂T
τ̃ − ηc

2x̂
T ′ũ− F

2x̂
h̃+

ηcT
2x̂

f̃
〉
,

(3.29)

X | ∂ f̃
∂η

=

(
−ikxR

2x̂T
µ

+2x̂σ
F ′T
µ

+2x̂k2
z T 2
)

ũ− F ′′µ ′

µ
h̃+

2x̂F ′′

µ
ṽ−
(

µ ′T ′

µ
− T ′

T

)
f̃+

(
µ ′F ′′T ′

µT
− µ ′′F ′′T ′

µ
− µ ′F ′′′

µ

)
τ̃ +
〈

FF ′′

µ
τ̃ − ηcF ′′T

µ
ũ− FT

µ
f̃
〉
, (3.30)

Y | ∂ p̃
∂η

=−σ µ f̃ −2σT ′
(

µ ′+
2
3

µ
T

)
ũ+2x̂

(
ikxR− k2

z µT −σF ′) ṽ−µ g̃+

(
F ′′µ ′σ +

4
3

µ ′T ′F ′σ
T

− 4
3

µF ′′σ
T

− 4
3

ikxR
µ ′T ′

T

)
τ̃ +

4
3

µ
T

(
σF ′− ikxR

)
h̃−

2T ′
(

µ ′+
2
3

µ
T

)
w̃+(2x̂)1/2GF ′

(
F ′

T
τ̃ −2ũ

)
+

〈
µ
2x̂

f̃ +

(
− ikxRηcT+

σηcF ′T + k2
z ηcµT 2 − 2ηc

3x̂
µ ′T ′2

T
+

2ηc

3x̂
µT ′2

T 2 − 2
3x̂

µT ′

T
− 2ηc

3x̂
µT ′′

T
+

ηc

2x̂
F ′T−

FT
2x̂

− ηcFT ′

x̂
−σFT

)
ũ+

(
4
3

µ ′T ′2

T 2 − 4
3

µT ′2

T 3 +
4
3

µT ′′

T 2 −F ′+2
FT ′

T

)
ṽ+

(
µ ′F ′′

2x̂
− 2

3x̂
µ ′′FT ′2

T
+

4
3x̂

µ ′FT ′2

T 2 − 2
3x̂

µ ′FT ′′

T
− 2

3x̂
µ ′F ′T ′

T
− 2

3x̂
µFT ′2

T 3 +
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2
3x̂

µF ′T ′

T 2 +
2
3x̂

µFT ′′

T 2 − ikxRF +σFF ′+
FF ′

2x̂
+

1
2x̂

2F2T ′

T
− ηcF ′2

2x̂

)
τ̃+

(
2
3x̂

µFT ′

T 2 − 4
3x̂

µ ′FT ′

T
− 2

3x̂
µF ′

T
− F2

2x̂

)
h̃−FT w̃− 2

3x̂
µF
T

∂ h̃
∂η

〉
, (3.31)

Z | ∂ g̃
∂η

= 2x̂
(
− ikxRT

µ
+

σF ′T
µ

+ k2
z T 2
)

w̃+

(
−µ ′T ′

µ
+

T ′

T

)
g̃−

2x̂k2
z T 2

µ
p̃+2x̂k2

z

(
µ ′T ′T

µ
+

T ′

3

)
ṽ+

2x̂k2
z

3
T
(
−ikxR+F ′σ

)
τ̃+

〈
FT ′

3

(
1+

2µ ′T
µ

)
τ̃ − FT

µ
g̃− k2

z ηcT ′T
(

µ ′T
µ

+
1
3

)
ũ− k2

z FT
3

h̃
〉
, (3.32)

E ⌋ ∂ h̃
∂η

= T ′
(
−2µ ′

µ
+

1
T

)
h̃+

2x̂PrT ′

µ
ṽ−2(γ −1)M2PrF ′′ f̃+

2x̂T
(
− ikxRPr

µ
+

σPrF ′

µ
+ k2

z T
)

τ̃ +
〈

1
µ

[
PrFT ′− (γ −1)M2Prµ ′F ′′2−

T
∂

∂η

(
µ ′T ′

T

)]
τ̃ − ηcPrT ′T

µ
ũ− PrFT

µ
h̃
〉
. (3.33)

The EV system (3.29)-(3.33) is solved with homogeneous boundary conditions: ũ = ṽ =

w̃ = τ̃ = 0 at η = 0 and ũ, ṽ, w̃, τ̃ → 0 as η → ∞. For M= 0, the equations of Wu et al. (2011)

for the incompressible case are recovered. The numerical procedure for solving the EV

equations is described in Appendix A. This procedure is based on an iterative method that

requires an accurate initial guess, and does not compute all the possible eigenvalue that could

be computed using a global procedure.

3.4 Asymptotic equations

In most experiments where flows over concave surfaces have been investigated in incom-

pressible and compressible conditions, the Görtler number has been larger than 102. This
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motivated Wu et al. (2011) to study the asymptotic limit G→ ∞, which revealed the neces-

sary conditions for the inviscid instability and the different stages of the evolution of the

incompressible Görtler vortices. We herein extend the analysis of Wu et al. (2011) to the

compressible case with M= O(1). A summary of the physical results extracted through the

asymptotic analysis of this section is given in §3.4.5 on page 44. Even though this theoretical

analysis unveils crucial physical characteristics which are not revealed by a purely numerical

approach, it will become evident that the numerical solution of the LUBR equations is never-

theless needed for a thorough understanding of the flow and for its accurate computation,

especially for G= O(1), where the asymptotic analysis is invalid.

Figure 3.3 shows the different streamwise stages through which the perturbation evolves

in the limit G≫ 1. In this limit we can identify four main layers, namely the main layer ML,

3D gust disturbances

U∗∞

mean

+

M < 3

M ≥ 3

x̂
y

x̂

stage I stage II stage III stage IV

K

O
(
G−2/3

)
O
(
G−2/5

)

Görtler
ON

O(1)

δ
∗ = O (λ

∗
z
)

O(G)

OL ηOL

ML

VS

ηVS

WL
ON

Fig. 3.3 Sketch of the boundary-layer asymptotic stages for G→ ∞: Klebanoff modes K, main
layer ML, viscous sublayer VS, outer layer OL and wall layer WL.

the outer layer OL, the viscous sublayer VS, and the wall layer WL.
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3.4.1 Stage I. Pre-modal regime: x̂ ≤ G−2/5

We first consider the region in the proximity of the leading edge, i.e., x̂ ≪ 1, where the

power-series expansion (B.7) is valid. By assuming that w̄ = O(1), η = O(1), ηc = O(1),

and T,T ′,F,F ′ = O(1), an order of magnitude analysis of the terms in the C equation (3.9)

leads to

ū = O(x̂), τ̄ = O(x̂), v̄ = O(1). (3.34)

The terms of the Y equation (3.11) become of order

O(1)
︸ ︷︷ ︸

unsteadiness

+O

(
1
x̂

)

︸ ︷︷ ︸
inertia

+O
(

x̂1/2G
)

︸ ︷︷ ︸
curvature

=
P′

0(η)

(2x̂)3/2
︸ ︷︷ ︸

η pressure gradient

+O

(
1
x̂

)

︸ ︷︷ ︸
diffusion

, (3.35)

by using the power-series expansion (B.7) for the pressure. When x̂ ≪ G−2/3, the equations

are steady and the curvature effects are negligible compared to the other terms. Therefore,

the perturbation evolves as flat-plate Klebanoff modes, denoted by the letter K in figure

3.3, and the wall-normal gradient of the pressure perturbation is negligible because the

term dominates as x̂ ≪ 1. Further downstream where x̂ = O
(
G−2/3

)
, curvature effects start

to influence the other terms, including the pressure field, rendering the asymptotic series

expansion (B.7) invalid. The gradient of the pressure p along η grows to an order-one

magnitude as it balances the centrifugal term. Substituting the scaled variables

x† = x̂ G2/3, u† = ū G2/3, τ† = τ̄ G2/3, (3.36)

into (3.9)-(3.13) and neglecting terms ≪ 1, the perturbation field is described by

C ⌉ ηc

2x†
T ′

T
u† +

∂u†

∂x† − ηc

2x†
∂u†

∂η
− T ′

T 2 v̄+
1
T

∂ v̄
∂η

− FT ′

2x†T 2 τ† − F ′

T
∂τ†

∂x† +

F
2x†T

∂τ†

∂η
+ w̄ = 0, (3.37)
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X | − ηc

2x† F ′′u† +F ′∂u†

∂x† +
1

2x†

(
µT ′

T 2 −F − µ ′T ′

T

)
∂u†

∂η
− µ

2x†T
∂ 2u†

∂η2 +
F ′′

T
v̄+

1
2x†T

(
FF ′′−µ ′′F ′′T ′+

µ ′F ′′T ′

T
−µ ′F ′′′

)
τ† − µ ′F ′′

2x†T
∂τ†

∂η
= 0, (3.38)

Z | F ′ ∂ w̄
∂x† +

1
2x†

(
µT ′

T 2 −F − µ ′T ′

T

)
∂ w̄
∂η

− µ
2x†T

∂ 2w̄
∂η2 = 0, (3.39)

E | − ηcT ′

2x† u† −M2 (γ −1)
x†

µF ′′

T
∂u†

∂η
+

T ′

T
v̄+

1
2x†

[
FT ′

T
−M2(γ −1)

µ ′F ′′2

T
−

1
Pr

∂
∂η

(
µ ′T ′

T

)]
τ† +F ′∂τ†

∂x† +
1

2x†

(
µT ′

PrT 2 −F − 2µ ′T ′

PrT

)
∂τ†

∂η
−

1
2x†Pr

µ
T

∂ 2τ†

∂η2 = 0. (3.40)

It is sufficient to solve C , X , Z , and E to find the velocity and temperature perturbations.

The pressure p̄ is solved a posteriori from Y , which reads

Y ⌋ 1

(2x†)
2

[
FT −ηcF ′T −η2

c F ′′T +ηcFT ′+
2F ′

(2x†)
1/2

]
u† +

µ ′T ′

3x†
∂u†

∂x†−

µ
6x†

∂ 2u†

∂η∂x† +
ηcµ

12x†2
∂ 2u†

∂η2 +
1

12x†2

(
ηcµ ′T ′+µ − ηcµT ′

T

)
∂u†

∂η
+

1
2x†

(
F ′+ηcF ′′− FT ′

T

)
v̄+F ′ ∂ v̄

∂x† +
1
x†

(
2
3

µT ′

T 2 − 2
3

µ ′T ′

T
− F

2

)
∂ v̄
∂η

− 2
3x†

µ
T

∂ 2v̄
∂η2

+
µ ′T ′

3x† w̄− µ
6x†

∂ w̄
∂η

+
1

2x†
∂ p̄
∂η

+

[
1

(2x†)
2

(
ηcF ′2 −FF ′+ηcFF ′′− F2T ′

T
−µ ′F ′′−

ηcµ ′′F ′′T ′+
ηcµ ′F ′′T ′

T
−ηcµ ′F ′′′

)
+

1

3x†2T

(
µ ′′T ′2F − µ ′T ′2F

T
+µ ′T ′′F+

µ ′T ′F ′
)
− F ′2

(2x†)
1/2 T

]
τ† − µ ′F ′′

2x†
∂τ†

∂x† +µ ′
[

T ′F

3x†2T
− ηcF ′′

(2x†)
2

]
∂τ†

∂η
= 0. (3.41)
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Equation (3.41) is decoupled from the other equations since, in the new scaling (3.36), the

pressure term in Z is negligible, so the flow is governed by the boundary-layer equations,

i.e., the effects of the spanwise viscous diffusion and of the spanwise pressure gradient

are negligible (although the boundary-layer equations may also apply if a mean spanwise

pressure gradient is imposed).

As the flow evolves further downstream we seek the location where the curvature effects

begin to influence the perturbation velocity also through the pressure gradient along the

z direction in the Z equation (3.12). The pressure has now grown to an unknown order

of magnitude. This is found by balancing the curvature and the pressure terms of the Y

equation (3.11) to obtain Gx̂1/2 ∼ p̄/x̂, hence p̄ = O
(
G x̂3/2

)
. The terms of the Z equation

(3.12) become of order

O(1)
︸ ︷︷ ︸

unsteadiness

+O

(
1
x̂

)

︸ ︷︷ ︸
inertia

= O
(
G x̂3/2

)

︸ ︷︷ ︸
pressure

+O

(
1
x̂

)

︸ ︷︷ ︸
diffusion

, (3.42)

from which it is inferred that the pressure comes into play in the Z equation when x̂ =

O
(
G−2/5

)
. A new scaling can be introduced for η = O(1), as follows

x̆ = x̂ G2/5, ŭ = ū G2/5, τ̆ = τ̄ G2/5, p̆ = p̄ G−2/5. (3.43)

After substitution into the LUBR equations (3.9)-(3.13), the equations of motion become

C ⌉ ηc

2x̆
T ′

T
ŭ+

∂ ŭ
∂ x̆

− ηc

2x̆
∂ ŭ
∂η

− T ′

T 2 v̄+
1
T

∂ v̄
∂η

+ w̄− FT ′

2x̆T 2 τ̆ − F ′

T
∂ τ̆
∂ x̆

+
F

2x̆T
∂ τ̆
∂η

= 0, (3.44)

X | − ηcF ′′

2x̆
ŭ+F ′∂ ŭ

∂ x̆
+

1
2x̆

(
µT ′

T 2 − µ ′T ′

T
−F

)
∂ ŭ
∂η

− µ
2x̆T

∂ 2ŭ
∂η2 +

F ′′

T
v̄+

1
2x̆T

(
FF ′′−µ ′′F ′′T ′+

µ ′F ′′T ′

T
−µ ′F ′′′

)
τ̆ − F ′′µ ′

2x̆T
∂ τ̆
∂η

= 0 (3.45)
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Y | 2F ′

(2x̆)1/2 ŭ+
1
2x̆

∂ p̄
∂η

− F ′2

(2x̆)1/2 T
τ̆ = 0, (3.46)

Z | F ′∂ w̄
∂ x̆

+
1
2x̆

(
µT ′

T 2 −F − µ ′T ′

T

)
∂ w̄
∂η

− µ
2x̆T

∂ 2w̄
∂η2 − k2

z T p̆ = 0, (3.47)

E ⌋ − ηcT ′

2x̆
ŭ−M2 (γ −1)

x̆
µF ′′

T
∂ ŭ
∂η

+
T ′

T
v̄+F ′∂ τ̆

∂ x̆
+

1
2x̆

(
1
Pr

µT ′

T 2 −F − 2
Pr

µ ′T ′

T

)
∂ τ̆
∂η

+

1
2x̆

[
T ′F
T

−M2 (γ −1)
µ ′

T
F ′′2 − 1

Pr

∂
∂η

(
µ ′T ′

T

)]
τ̆ − µ

2x̆PrT
∂ 2τ̆
∂η2 = 0. (3.48)

In (3.44)-(3.48), the unsteady effects are still negligible and the perturbation is thus steady.

Since we know that the Görtler vortices eventually acquire a modal form it can be inferred

that, if (3.44)-(3.48) admit an asymptotic eigensolution, x̂ = O
(
G−2/5

)
is the location where

the Görtler instability ensues (Wu et al., 2011).

3.4.2 Stage II. Asymptotic eigensolution regime: G−2/5 ≪ x̂ ≪ 1

Following the incompressible case of Wu et al. (2011), we assume that the leading order

asymptotic eigensolution for x̆ ≫ 1 and η = O(1) for the middle layer ML is of the form

q̆ = x̆ϕ
[(

x̆−α+1UE,VE,WE, x̆−α+3/2PE, x̆−α+1TE

)
+ ...

]
eσ̆(x̆), (3.49)

where the eigenvalue σ̆(x̆) is expanded at leading order as

σ̆(x̆) = σ̆0 x̆α + ..., (3.50)

q̆(x̂,η) = {ŭ, v̄, w̄, p̆, τ̆}(x̂,η), QE(η) = {UE,VE,WE,PE,TE}(η), and σ̆ , α , ϕ are unknown

constants. Substituting (3.49) and (3.50) into (3.47) yields

σ̆0αF ′x̆αWE − k2
z x̆−α+5/2T PE = O(1), (3.51)
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from which, equating the exponentials, α = 5/4. A system of ODE for the eigenfunctions

QE(η) is then derived by substituting (3.49) and (3.50) into (3.44)-(3.48) and taking the limit

x̆ ≫ 1, i.e., x̂ ≫ G−2/5. The resulting inviscid equations are

C ⌉ ασ̆0UE −
T ′

T 2VE +
1
T

V ′
E +WE −ασ̆0

F ′

T
TE = 0, (3.52)

X | ασ̆0F ′UE +
F ′′

T
VE = 0, (3.53)

Y | 2
√

2F ′UE +P′
E −

√
2F ′2

T
TE = 0, (3.54)

Z | ασ̆0F ′WE − k2
z T PE = 0, (3.55)

E ⌋ ασ̆0F ′TE +
T ′

T
VE = 0. (3.56)

These equations can be rearranged to obtain an equation for VE,

d2VE

dη2 − 2T ′

T
dVE

dη
+

[
2F ′′T ′

F ′T
− F ′′′

F ′ +

√
2k2

z

(σ̆0α)2

(
2F ′′T

F ′ −T ′
)]

VE = 0, (3.57)

subject to the boundary conditions

η = 0⌉ VE = 0, (3.58)

η → ∞⌋ dVE

dη
→ 0, (3.59)

which correspond to the no-penetration and bounded conditions, respectively. Equation

(3.57) is solved with the same numerical method used to solve the EV system (3.29)-(3.33).

For M = 0 the results agree with those of Wu et al. (2011). The first three eigenvalues σ̆0
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M 0 0.5 0.9 1.5 3 4

σ̆ (1)
0 0.811 0.828 0.864 0.949 1.259 1.501

σ̆ (2)
0 0.505 0.516 0.538 0.591 0.785 0.937

σ̆ (3)
0 0.370 0.377 0.394 0.433 0.575 0.685

σ̆ (1)
1 -1.567 -1.580 -1.608 -1.676 -1.927 -2.122

σ̆ (2)
1 -1.656 -1.670 -1.700 -1.773 -2.042 -2.248

σ̆ (3)
1 -1.709 -1.723 -1.754 -1.829 -2.105 -2.316
B̆ 1.016 1.004 0.978 0.925 0.779 0.701

Table 3.1 The first three eigenvalues σ̆0 from (3.50) and σ̆1 from (3.75), and the wall-normal
scaling coefficient B̆ used in (3.61) for different Mach numbers.

are shown in table 3.1 for different values of the Mach number M. There is a very mild

influence of M in subsonic flow conditions while in supersonic flow conditions σ̆0 increases as

M increases, so the Görtler vortices are more unstable as the compressibility effects intensify.

To study the flow in the vicinity of the wall, we take the mean-flow values at η = 0,

i.e., F = F ′ = F ′′′ = T ′ = 0, while F ′′, T , T ′′ = O(1). Locally, since η = 0 is a regular

singular point, the solution VE can be written as a Fröbenius series (Wu et al., 2011) which

gives V ′
E(0) = 1 when normalized. Additionally, the no-penetration condition requires

VE(0) = 0. Taking the derivative of (3.55) and substituting P′
E from (3.54) shows that the

spanwise velocity component satisfies the no-slip condition, i.e., WE(0) = 0. However, the

streamwise velocity component does not satisfy the no-slip condition since, from (3.52) we

find UE(0) → −(σ̆0αT0)
−1, where T0 ≡ T (0). This is consistent with the inviscid nature

of the governing equations (3.52)-(3.56) for x̂ = O
(
G−2/5

)
from which (3.57) is derived.

In order for the streamwise velocity to satisfy the no-slip condition at the wall, a viscous

sublayer VS is introduced in the near-wall region. Substituting (3.49) into (3.45) and balancing

convection and diffusion in the limits η → 0 and x̆ ≫ 1 yields

ασ̆0F ′UE ∼ x̆−α µ
2T

U ′′
E , (3.60)

from which

η ∼ B̆ x̆−5/12, (3.61)
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where B̆≡ [µ0/(2λασ̆0T0)]
1/3 and T0, µ0 ≡ µ(0), λ ≡ F ′′(0) arise from Taylor-expanding

the mean flow at η = 0. The thickness of the VS is ηVS = O
(

x̆−5/12
)

where the constant

of proportionality B̆ decreases as the Mach number increases, as shown in table 3.1. The

wall-normal scaled variable for the VS becomes

ζII = B̆−1x̆5/12η . (3.62)

An order of magnitude balance of the equations for η → 0 reveals that PE = O(η) from

(3.55), VE = O(η) from (3.52), and consequently TE = O(η) from (3.56). Therefore, the

solution in the VS expands as

q̆ = x̆ϕ
[(

x̆−1/4us, ηvs, ws, x̆1/4η ps, x̆−1/4ητs

)
+ ...

]
eσ̆(x̆), (3.63)

where q̆(x̂,ζII) = {ŭ, v̆, w̆, p̆, τ̆}(x̂,ζII). Starting from the system of equations (3.44)-(3.48) for

η = O(1) and x̆ = O(1), introducing the change of variable (3.62) and the expansion (3.63),

the system of equations for ζII = O(1) and x̆ ≫ 1 becomes

C ⌉ ασ̆0us +
1
T

v′s +ws = 0, (3.64)

X | ασ̆0
(
ζIIus −u′′s

)
+

1
T

vs = 0, (3.65)

Y | p′s = 0, (3.66)

Z | λασ̆0
(
ζIIws −w′′

s
)
− k2

z T ps = 0, (3.67)

E ⌋ τ ′′s = 0, (3.68)
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where the prime ′ indicates the derivative with respect to ζII. The energy equation E in the

VS does not contain the pressure and the velocity components. Equations (3.64)-(3.68) are

rearranged to obtain an equation for vs(ζII),

(
d2

dζ 2
II

−ζII

)
v′′s = 0, (3.69)

subject to the boundary conditions

ζII = 0⌉ vs = 0, v′s = 0, (3.70)

ζII → ∞⌋ v′s → 1. (3.71)

The first boundary condition, i.e., vs = 0, represents the no-penetration condition, while

the derivatives of the wall-normal velocity come from the continuity equation. Only three

boundary conditions are needed since two constants of integration can be obtained from

(3.71). The solution of (3.69) has the same form as in the incompressible case of Wu et al.

(2011),

vs = Cs

∫ ζII

0

(
ζII − ζ̄II

)
Ai
(
ζ̄II

)
dζ̄II, (3.72)

where Cs = 1/
∫

∞

0 Ai(ζII)dζII = 3 and Ai is the Airy function of the first kind. For ζII → ∞

the solution becomes vs → ζII + v∞, where the transpiration velocity v∞ is

v∞ ≡−Cs

∫
∞

0
ζIIAi(ζII)dζII. (3.73)

For ζII → ∞ the VS solution must match the ML solution for η = O(1).

The transpiration velocity (3.73) thus induces a correction term of order O
(

x̆−5/12
)

in

the ML. We can then further expand (3.49) and (3.50) to take this viscous correction into

account. We obtain

q̆ =x̆ϕ
[(

x̆−1/4UE,VE,WE, x̆−1/4PE, x̆−1/4TE

)
+

x̆−5/12
(

x̆−1/4U (1)
E ,V (1)

E ,W (1)
E , x̆−1/4P(1)

E , x̆−1/4T (1)
E

)
+ ...

]
eσ̆(x̆), (3.74)
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where the eigenvalue σ̆(x̆) expands as

σ̆(x̆) = σ̆0 x̆5/4 + x̆−5/12
(

σ̆1 x̆5/4
)
+ ... . (3.75)

Substituting (3.74) and (3.75) into (3.44)-(3.48) for x̂ = O
(
G−2/5

)
and η = O(1), and

collecting the O
(

x̆−5/12
)

terms gives

C ⌉ 5σ̆0

4
U (1)

E − T ′

T 2V (1)
E +

1
T

V ′
E

(1)
+W (1)

E − 5σ̆0

4
F ′

T
T (1)

E =
2σ̆1

3σ̆0T

(
F ′′

F ′ −
T ′

T

)
VE, (3.76)

X | 5σ̆0

4
F ′U (1)

E +
F ′′

T
V (1)

E =
2σ̆1

3σ̆0

F ′′

T
VE, (3.77)

Y | 2
√

2F ′U (1)
E +P′

E

(1)−
√

2F ′2

T
T (1)

E = 0, (3.78)

Z | 5σ̆0

4
F ′W (1)

E − k2
z T P(1)

E − 5σ̆1

6
F ′

T
V ′

E =−5σ̆1

6
F ′′

T
VE, (3.79)

E ⌋ T ′

T
V (1)

E +
5σ̆0

4
F ′T (1)

E =
2σ̆1

3σ̆0

T ′

T
VE. (3.80)

An equation for V (1)
E can be derived from (3.76)-(3.80)

d2V (1)
E

dη2 −2
T ′

T
dV (1)

E

dη
+

[
2

F ′′T ′

F ′T
− F ′′′

F ′ +
2
√

2k2
z

(ασ̆0)
2

F ′′T
F ′ −

√
2k2

z

(ασ̆0)
2 T ′
]

V (1)
E =

10
√

2k2
z σ̆1

3(σ̆0α)3

(
F ′′T
F ′ − 1

2
T ′
)

VE, (3.81)

subject to the boundary conditions

η = 0⌉ V (1)
E (0) = B̆v∞, (3.82)
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η → ∞⌋ dV (1)
E

dη
→ 0, (3.83)

where (3.82) comes from the matching at O
(

x̆−5/12
)

of the wall-normal velocity in the

ML for η → 0 with the wall-normal velocity in the VS for ζII → ∞. Condition (3.83) comes

from requiring that the solution be bounded. The eigenvalue σ̆1 can either be computed

numerically from the solution of (3.81) with its boundary conditions (3.82) and (3.83) or

from the solvability condition

10
√

2k2
z σ̆1

3(ασ̆0)
3

(∫
∞

0

F ′′T
F ′ VE

2dη − 1
2

∫
∞

0
T ′VE

2dη
)
=

2λσ̆0αT
µ

v∞

(
1+2

∫
∞

0

T ′

T
dVE

dη
dη
)
,

(3.84)

derived by multiplying (3.81) by VE, integrating from zero to infinity, and matching the

O
(

x̂−5/12
)

terms of (3.74) with (3.63), using (3.57) and (3.62). The numerical values of σ̆1

are shown in table 3.1. They are all negative, thus indicating decaying perturbations. Similar

to the eigenvalues σ̆0, the effect of Mach number is very small for subsonic conditions, while

in the supersonic regime σ̆1 grows in absolute value as compressible effects intensify as the

Mach number increases.

The no-slip condition is now satisfied, but we still need to require that the ML solution

respects the condition VE → 0 for η → ∞. By requiring the solution to be bounded as the

free stream is approached, condition (3.59) gives VE = C2, where C2 is an undefined constant

determined by numerical solution. Therefore an outer layer OL must be introduced to allow

VE to vanish as η → ∞. Introducing the mean-flow simplification for η → ∞, i.e., F → η −β

and T = 1, into (3.52), (3.53), (3.55), and (3.56) we find UE = 0, TE = 0, WE = 0, and PE = 0,

respectively. We then expand (3.43) as

ū = ŭG−2/5 +O
(
G−3/5

)
, τ̄ = τ̆G−2/5 +O

(
G−3/5

)
, p̄ = p̆G2/5 +O

(
G1/5

)
. (3.85)

Substituting these expansions into the Y equation (3.11) and neglecting terms ≪ G−2/5,

the equation is balanced if ηOL ∼ G1/5/(2x̆)1/2. It follows that the new O(1) wall-normal
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coordinate for the OL is

y0 = G−1/5 (2x̆)1/2 η . (3.86)

From (3.9) and (3.85), the scaling in the OL for y0 = O(1) is

q̄ =
{
G−3/5ū0, v̄0, G

−1/5w̄0, G
1/5 p̄0, G

−3/5τ̄0

}
, (3.87)

where q̄(x̆,y0) = {ū, v̄, w̄, p̄, τ̄}(x̆,y0). Substituting (3.87) into the LUBR equations (3.9)-

(3.13) and taking the limit η → ∞ gives the OL system

C ⌉ (2x̆)1/2 ∂ v̄0

∂y0
+ w̄0 = 0, (3.88)

X | ∂ ū0

∂y0
= 0, (3.89)

Y | v̄0

2x̆
+

∂ v̄0

∂ x̆
+

1

(2x̆)1/2
∂ p̄0

∂y0
= 0, (3.90)

Z | ∂ w̄0

∂y0
− k2

z p̄0 = 0, (3.91)

E ⌋ ∂ τ̄0

∂y0
= 0, (3.92)

where, in order to satisfy the boundary condition VE → 0 as η → ∞, ū0 and τ̄0 must be set to

zero. The solution to (3.88)-(3.92) is

{p̄0, w̄0, v̄0}=
{

g′0,k
2
z g0, |kz|g0/(2x̆)

}
e−|kz|y0, (3.93)

where

g0(x̆) = x̆γ+1/2
[
VE,∞ +O

(
x̆−5/12

)]
eσ̆(x̆) (3.94)
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and VE,∞ =VE(η → ∞) is determined by solving (3.57) numerically.

3.4.3 Stage III. Fully developed regime: x̂ = O(1)

As the instability develops further downstream the local boundary-layer thickness δ ∗ becomes

of the same order as the spanwise wavelength λ ∗
z , i.e., δ ∗ =O(λ ∗

z ), and the spanwise viscous

diffusion and the spanwise pressure gradient are at work. At this location the Görtler vortices

are fully developed (Wu et al., 2011) with x̆ = O
(
G2/5

)
, i.e., x̂ = O(1), ηOL = O(1) and the

OL merging with the ML. Stage III is therefore only composed of the ML and the VS. Equations

(3.74), (3.75), and (3.85) suggest that the solution in the fully developed regime can be

expanded in the WKBJ form (Wu et al., 2011)

q̄ =
{[

G−1/2u0,v0,w0,G
1/2 p0,G

−1/2τ0

]
+

G−1/6
[
G−1/2u1,v1,w1,G

1/2 p1,G
−1/2τ1

]
+ ...

}
eG

1/2 ∫ x̂ σ̂(x)dx, (3.95)

where

σ̂(x̂) = σ̂0 +G−1/6σ̂1 + ..., (3.96)

and the second term of order O(G−1/6) takes into account the effect of the VS. Substituting

(3.95) into the LUBR equations (3.9)-(3.13) gives the system at leading order for x̂ = O(1)

and η = O(1),

C ⌉ σ̂0u0 −
T ′

T 2 v0 +
1
T

∂v0

∂η
+w0 − σ̂0

F ′

T
τ0 = 0, (3.97)

X | σ̂0F ′u0 +
F ′′

T
v0 = 0, (3.98)

Y | 2F ′

(2x̂)1/2 u0 + σ̂0F ′v0 −
F ′2

(2x̂)1/2 T
τ0 +

1
2x̂

∂ p0

∂η
= 0, (3.99)
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Z | σ̂0F ′w0 − k2
z T p0 = 0, (3.100)

E ⌋ σ̂0F ′τ0 +
T ′

T
v0 = 0. (3.101)

We can rearrange (3.97)-(3.101) to find

∂ 2v0

∂η2 − 2T ′

T
∂v0

∂η
+

[
2F ′′T ′

F ′T
− F ′′′

F ′ −2x̂k2
z T 2 +(2x̂)1/2 k2

z

σ̂2
0

(
2F ′′T

F ′ −T ′
)]

v0 = 0, (3.102)

subject to the boundary conditions

η = 0⌉ v0 = 0, (3.103)

η → ∞⌋ v0 → 0. (3.104)

Note that v0 vanishes as η → ∞ since no outer layer is needed to bring the wall-normal

velocity to zero like in stage II. Equation (3.102), also derived by Dando and Seddougui

(1993), is solved with the same method used to solve (3.57) and the EV system (3.29)-(3.33).

In the limit x̂ → 0 the solution in the fully developed regime of stage III must be consistent

with the solution of the asymptotic stage II. The dominant balance in (3.102) shows that, in

order for all the terms except the third term in the brackets to remain O(1), σ̂0 = O
(

x̂1/4
)

and, from the exponential in (3.95),

∫ x̂
σ̂0(x)dx ∼ 4

5
x̂5/4, (3.105)

which is consistent, at leading order, with the exponential in (3.74).

Changing the Mach number affects the boundary-layer thickness δ ∗
99, i.e., the wall-normal

location where U∗ = 0.99U∗
∞, and η through the mean temperature T . We therefore use the

dimensionless wall-normal coordinate y99 ≡ y∗/δ ∗
99 when comparing results at different Mach

numbers. Figure 3.4 (left) shows the growth rate of the perturbation along the streamwise

direction for the first eigenvalue σ̂ (1)
0 . As M increases, the stabilizing effect of M begins
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closer to the leading edge. Up to M = 2, the growth rate at x̂ ≈ 15 converges to a weakly

varying function of the Mach number. The wall-normal location of the vortices, shown in

the inset of figure 3.4 (left), decreases as the Mach number increases. However, for M> 3

and high enough x̂ the vortices location tends to a nearly constant value. Figure 3.4 (right)

demonstrates that for x̂ ≪ 1 the growth rate (3.96) from stage III matches asymptotically the

growth rate (3.50) from stage II.
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Fig. 3.4 The effect of the Mach number on σ̂ (1)
0 (left) and detail of the graph on the left in

the region x̂ ≪ 1 for comparison with stage II (right). Inset: the wall-normal location of
GV-vortices (right) for stage III.

In stage III, as for the asymptotic eigensolution regime of stage II, a VS has to be

introduced in order to guarantee the no-slip condition at the wall will be satisfied because

it is found that u0 →−(σ̂0T0)
−1 as η → 0. Substituting (3.95) into the X equation (3.10)

and balancing the convection and the diffusion terms in the limit η → 0, the new O(1)

wall-normal scaling variable, proportional to the VS thickness, becomes

ζIII = G1/6 B̂−1 x̂1/3η , (3.106)

where B̂(x̂)≡ [µ0/(2λσ̂0T0)]
1/3. A comparison with (3.62) shows that, by fixing G and B̂, if

x̂ increases the VS becomes thinner more rapidly in stage II
(
O
(

x̂−5/12
))

than in stage III(
O
(

x̂−1/3
))

since ζII and ζIII are of order one. The value of B̂(x̂) approaches a constant for

x̂ > 5. From (3.106) it can be noticed that, in order to maintain ζIII = O(1), η must increase
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when G increases, i.e., the VS thickness is larger for flows over strong curvature. Substituting

(3.95) into the LUBR equations (3.9)-(3.13), and balancing the convection and diffusion

terms gives the expansion of the flow in the VS,

q̄ =

{
G−1/2ub,G

−1/6B̂x̂−1/3vb,wb,G
−2/3B̂x̂−1/3 pb,G

−1/2τb

}
eG

1/2 ∫ x̂ σ̂(x)dx, (3.107)

where q̄(x̂,ζIII) = {ū, v̄, w̄, p̄, τ̄}(x̂,ζIII). By substituting (3.107) into the LUBR equations

(3.9)-(3.13), we recover the system of equations for x̂ = O(1) and η → 0,

C ⌉ σ̂0ub +
1
T

v′b +wb = 0, (3.108)

X | σ̂0
(
ζIIIub −u′′b

)
+

1
T

vb = 0, (3.109)

Y | p′b = 0, (3.110)

Z | λσ̂0
(
ζIIIwb −w′′

b
)
− k2

z T pb = 0, (3.111)

E ⌋ τ ′b = 0, (3.112)

where the prime ′ indicates the derivative with respect to ζIII. The equations are similar to the

asymptotic eigensolution regime (3.64)-(3.68) and therefore vb satisfies the Airy equation

(3.69) along with the boundary conditions (3.70) and (3.71). A composite solution for the

streamwise velocity uc can be constructed from the solution in the ML and VS, i.e., u0 and ub,

respectively, as

uc = u0 +ub −ucom, (3.113)
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where

ucom = lim
η→0

u0 = lim
ζIII→∞

ub =− 1
σ̂0T0

(3.114)

is the common solution.

The streamwise velocity ub is computed by integrating (3.109) through the method of

variation of parameters with the known velocity vb as the forcing term. The solution is:

ub(ζIII) = C1Ai+C2Bi−Ai

∫ ζIII

0

f Bi

W
dζ̄III +Bi

∫ ζIII

0

f Ai

W
dζ̄III, (3.115)

where Ai= Ai(ζIII) and Bi= Bi(ζIII) are the two linearly independent solutions of the Airy

equation, f(ζIII) = vb(ζIII)/(σ̂0T0) and W(ζIII) = AiBi′−BiAi′ is the Wronskian. The constant

C2 =−0.2061 is found first by numerically imposing the outer boundary condition (3.114) as

the term proportional to C1 vanishes as ζIII → ∞. Once C2 is known, the constant C1 = 0.3571

is found by imposing the first of (3.59).

The resulting solutions ūb, ū0, and ūc for M= 0.5 and M= 3 are displayed in figure 3.5.

These results confirm that as the Mach number increases, but still remaining an order-one

quantity, the vortices tend to move towards the wall when G ≫ 1. The requirement of a

very high G value in figure 3.5 arises from the inner coordinate being proportional to G1/6

in (3.106) and is necessary to guarantee that the VS is thinner than the ML. The composite

solution follows the inner VS solution near the wall and the outer ML solution away from the

wall.

The viscous correction for x̂ = O(1) and η = O(1) is found by substituting the expan-

sion (3.95) into the LUBR equations (3.9)-(3.13) and collecting the O
(
G−1/6

)
terms for

u1,v1,w1, p1,τ1 in (3.95),

C ⌉ σ̂0u1 −
T ′

T 2 v1 +
1
T

∂v1

∂η
+w1 − σ̂0

F ′

T
τ1 − σ̂1

F ′

T
τ0 + σ̂1u0 = 0, (3.116)

X | σ̂0F ′u1 +
F ′′

T
v1 + σ̂1F ′u0 = 0, (3.117)
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ū0 N
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Fig. 3.5 Normalized profiles of the streamwise velocity perturbation for M= 0.5 (left) and
M= 3 (right) from the eigensolution of stage III at G= 1015 and x̂ = 1. Insets: details of the
solutions near the wall.

Y | 2F ′

(2x̂)1/2 u1 + σ̂0F ′v1 +
1
2x̂

∂ p1

∂η
− F ′2

(2x̂)1/2 T
τ1 + σ̂1F ′v0 = 0, (3.118)

Z | σ̂0F ′w1 − k2
z T p1 + σ̂1F ′w0 = 0, (3.119)

E ⌋ T ′

T
v1 + σ̂0F ′τ1 + σ̂1F ′τ0 = 0, (3.120)

from which the equation for v1 is derived

∂ 2v1

∂η2 −2
T ′

T
∂v1

∂η
+

[
2

F ′′T ′

F ′T
− F ′′′

F ′ −2x̂k2
z T 2 +

2(2x̂)1/2 k2
z

σ̂2
0

F ′′T
F ′ − (2x̂)1/2 k2

z

σ̂2
0

T ′
]

v1 =

2(2x̂)1/2 k2
z σ̂1

σ̂3
0

(
2

F ′′T
F ′ −T ′

)
v0, (3.121)

along with its boundary conditions

η = 0⌉ v1 = B̂ x̂−1/3v∞, (3.122)
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η → ∞⌋ ∂v1

∂η
→ 0. (3.123)

As for the asymptotic eigensolution regime, the boundary condition for η → 0 stems from

the matching with the ML solution. Applying the solvability condition to (3.121) gives

(
1+2

∫
∞

0

T ′

T
∂v0

∂η
dη

)(
2λσ̂0T

µ

)−1/3

x̂−1/3v∞ =

− 2(2x̂)1/2 k2
z σ̂1

σ̂3
0

(∫
∞

0
T ′v2

0dη −2
∫

∞

0

F ′′T
F ′ v2

0dη −2
∫

∞

0

F ′′T
F ′ v2

0dη
)
. (3.124)

The eigenvalue σ̂1 can either be calculated from the solvability condition or from the numeri-

cal integration of (3.121).

3.4.4 Stage IV. Wall layer regime: x̂ ≫ 1

It has been shown by Hall (1983) and Wu et al. (2011) for the incompressible case that,

contrary to the Klebanoff modes generated over flat plates, Görtler vortices move towards

the surface as they develop downstream in the limit x̂ ≫ 1 (δ ∗ ≫ λ ∗
z ). It will be shown in §4

that this is true only up to M≃ 3. For M≥ 3, the perturbation initially tends to concentrate

near the wall, but then, as x̂ increases, it moves to the core of the boundary layer. Following

the work of Wu et al. (2011), the eigenvalue problem for the inviscid regime (3.102) can

be simplified in the limit x̂ ≫ 1 and η → 0. From the simplifications of the mean flow near

the wall and introducing a new WL variable ζ̂III = (2x̂)1/2 ηT0 to cancel the dependence on x̂,

(3.102) simplifies to
∂ 2v0

∂ ζ̂ 2
III

−
(

1− 2

ζ̂IIIσ̂2
0

)
k2

z v0 = 0. (3.125)

This equation is the same as for the incompressible case and has a set of eigenvalues

σ̂0 = (kz/n)1/2, with n = 1,2,3, ... (Denier et al., 1991). Applying the same procedure to

(3.121), we find that σ̂1 = O
(

x̂1/6
)

for x̂ ≫ 1 and η → 0, which implies that, referring to

(3.96), the viscous correction terms for the growth rate at η = O(1) become of leading order

as the flow evolves to x̂ = O(G).
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For x̂ ≫ 1, we investigate the flow at x̂ = O (G), where the viscous correction term

becomes of leading order. The streamwise and wall-normal variables rescale as

x̃ =
x̂
G
, ζIV = (2x̃)1/2 ηG1/2T0, (3.126)

respectively. From an order of magnitude analysis of the LUBR equations (3.9)-(3.13) the

flow expands as

q̄ =
{

ũ0, ṽ0,G
1/2w̃0,G

1/2 p̃0,G
1/2τ̃0

}
eG

3/2 ∫ x̃ σ̂(x)dx, (3.127)

where q̄(x̃,ζIV) = {ū, v̄, w̄, p̄, τ̄}(x̃,ζIV). Substituting (3.127) into the LUBR equations (3.9)-

(3.13) and using the near-wall approximations for the mean flow, the system of equations for

x̂ = O(G) becomes

C ⌉ σ̂ ũ0 +(2x̃)1/2 ∂ ṽ0

∂ζIV

+ w̃0 +

[
ikxR

T
− λζIVσ̂

(2x̃)1/2 T 2

]
τ̃0 = 0, (3.128)

X |
[
−ikxR+

ζIVσ̂
(2x̃)1/2

λ
T
+ k2

z µT

]
ũ0 −µT

∂ 2ũ0

∂ζ 2
IV

+
λ
T

ṽ0 −
λ µ ′

(2x̃)1/2
∂ τ̃0

∂ζIV

= 0, (3.129)

Y | ζIV

x̃
λ
T

ũ0 +

[
ζIVσ̂

(2x̃)1/2
λ
T
− ikxR+ k2

z µT

]
ṽ0 −µT

∂ 2ṽ0

∂ζ 2
IV

+
T

(2x̃)1/2
∂ p̃0

∂ζIV

−

[
(ζIVλ )2

(2x̃)3/2 T
+

σ̂ µ ′λ
2x̃

+
ζIVσ̂ µ ′λ
(2x̃)2 +

σ̂ µλ
6x̃T

]
τ̃0 +

[
ikxRµ

3(2x̃)1/2 +
ζIVσ̂ µλ

6x̃T

]
∂ τ̃0

∂ζIV

= 0,

(3.130)

Z |
[

ζIVσ̂λ
(2x̃)1/2 T

− ikxR+ k2
z µT

]
w̃0 −µT

∂ 2w̃0

∂ζ 2
IV

− k2
z T p̃0 = 0, (3.131)
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E ⌋
[

k2
z

Pr
µT − ikxR+

ζIVσ̂λ
(2x̃)1/2 T

]
τ̃0 −

µT 2

Pr

∂ 2τ̃0

∂ζ 2
IV

= 0. (3.132)

These equations could be rearranged to eliminate w̃0 and ṽ0. The boundary conditions are

ũ0 = ṽ0 = τ̃0 = 0 for ζIV = 0 and ũ0, ṽ0, τ̃0 → 0 for ζIV → ∞. Finally, for x̃ = O(1) and from

the boundary-layer thickness δ ∗ = O
(
(ν∞x∗/U∗

∞)
1/2
)

, we find that δ ∗/λ ∗
z = O

(
G1/2

)
,

identified by Denier et al. (1991) as the most unstable regime for incompressible Görtler

flow.

3.4.5 Physical summary

From the asymptotic analysis in the limit of large Görtler number, we can infer the following

physical properties:

• as in the incompressible case, the unbalance between pressure and centrifugal forces

triggers the Görtler instability at a streamwise location x̂ = O
(
G−2/5

)
, i.e., when both

the wall-normal and the spanwise pressure gradients are active in the wall-normal and

spanwise momentum equations, respectively;

• in stage II, i.e., where the boundary-layer equations describe the flow as the spanwise

viscous diffusion effects are negligible, increasing the Mach number causes:

– the boundary-layer perturbation to intensify (table 3.1);

– the perturbation to shift away from the wall;

• in stage III, i.e., further downstream where the flow is described by the boundary-region

equations because the spanwise viscous diffusion and the spanwise pressure gradient

are at work:

– the growth rate decreases slightly downstream (figure 3.4);

– increasing the Mach number has a stabilizing effect on the growth rate, which is

more intense in supersonic flow conditions (figure 3.4);
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– for M= O(1), the vortices move towards the wall as the Mach number increases

(figure 3.4 and figure 3.5);

– we have obtained a composite asymptotic solution, whose near-wall part is fully

viscous and adiabatic, while the part in the boundary-layer core is inviscid.

3.5 Triple-deck equations

The previous paragraph focused on the cases for which κ > 0.15. As a consequence, also

mentioned in §3.1, the highly-oblique TS waves investigated by Ricco and Wu (2007) did

not occur. In this section only we evaluate the influence of curvature when κ ≪ 1.

Due to the need to extend the investigation to steady flows we have scaled the streamwise

coordinate as x̂. However, since TS-waves are unsteady, we can scale our equations using

x̄ instead which allows for a straightforward comparison with Ricco and Wu (2007). The

following transformation

ū(x̄,η) = ū(x̂,η) kxR

v̄(x̄,η) = v̄(x̂,η)

w̄(x̄,η) = w̄(x̂,η)

p̄(x̄,η) = p̄(x̂,η)

τ̄(x̄,η) = τ̄(x̂,η) kxR

x̄ = x̂ kxR (3.133)

applied to (3.9)-(3.13) allows to recover the LUBR equations of Ricco and Wu (2007),

hereafter referred to as x̄-LUBR equations, derived in a (x̄,η) coordinate system with the

curvature effect
G

(2x̄)1/2

[
2F ′ū(x̄,η)− F ′2

T
τ̄(x̄,η)

]
κ
kz

(3.134)
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added to the Y equation. Ricco and Wu (2007) demonstrated that the highly oblique TS-

waves originate from a decaying Lam-Rott solution (Lam and Rott (1993); Saric et al. (2002)).

In the double limits κ ≪ 1 and x̄ ≫ 1 the curvature term (3.134) becomes negligible, hence

the Lam-Rott solution is not influenced by curvature effects, and the solution of Ricco and

Wu (2007) is recovered. We now also demonstrate analytically that the dispersion relation

derived from the triple-deck interactive regime is not influenced by curvature effects.

Starting from the main deck for which η = O(1), the variable x1 = κ x̄ = O(1) is intro-

duced and the solution expands as

q̄(x̄,η) =
(

u1, κ−1/2v1, w1, κ−5/2 p1,τ1

)
E + ..., (3.135)

where E(x̄) = eiκ−1/2 ∫ x̄
0 α1(x1)dx̆, q̄ = {ū, v̄, w̄, p̄, τ̄}, q1(x1,η) = {u1,v1,w1, p1,τ1}(x1,η), and

α1(x̄) is a complex wavenumber that can be found through a dispersion relation as follows.

Substituting (3.135) into the x̄-LUBR equations, the additional curvature effect is neg-

ligible in the limit κ ≪ 1, therefore the solution remains the same as in Ricco and Wu

(2007)

{u1,v1,w1,τ1}=
{(

A(x1)F ′′/T,−iα1A(x1)F ′, p1(x1)T/(iα1F ′),−A(x1)T ′/T
)}

.

(3.136)

Moving to the lower deck, the wall-normal variable is rescaled as

η̄ = κ−1/2η = O(1) (3.137)

and the solution expands as

q̄(x1, η̄) =
(

ū1, v̄1, κ−1/2w̄1, κ−5/2 p̄1, κ1/2τ̄1

)
E + ... . (3.138)
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Substituting (3.138) into the x̄-LUBR equations and using the near wall approximations we

find the system of equations

C ⌉ iα1ū1 +
1
T0

∂ v̄1

∂ η̄
+ w̄1 = 0, (3.139)

X | i(−1+λα1η̄) ū1 +
λ
T0

v̄1 =
µ0

2x̄1T0

∂ 2ū1

∂ η̄2 , (3.140)

Y | ∂ p̄1

∂ η̄
= 0, (3.141)

Z | i(−1+λα1η̄) w̄1 = T0 p̄1
µ0

2x̄1T0

∂ 2w̄1

∂ η̄2 , (3.142)

which are independent on curvature effects. Equations (3.139)-(3.142) can be rearranged to

obtain an equation for v̄1(x1, η̄)

[
∂ 2

∂ η̄2 + i(1−λα1η̄)
2x1T0

µ0

]
∂ 2v̄1

∂ η̄2 = 0, (3.143)

with solution (Ricco and Wu, 2007)

∂ v̄1

∂ η̄
=
∫ η̂

η0

Ai(η̆)dη̆ , (3.144)

where η̂ = Cη̄ +η0, η0 =−C(α1λ )−1, and C= (2iλα1x1T0/µ0)
1/3.

Matching the solution of the main deck v̄MD = κ−1/2v1 with the solution of the lower

deck v̄LD = v̄1 as

lim
η→0

∂ v̄MD

∂η
= lim

η→∞

∂ v̄LD

∂η
, (3.145)

gives ∫ η̂

η0

Ai(η̆)dη̆ =−iλα1A(x1) (3.146)
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We now seek a balance equation at the wall. Rearranging (3.139)-(3.142) for η̄ = 0 and

using the no-penetration condition v̄1 = 0,

∂ 3v̄1

∂ η̄3

∣∣∣∣
η̄=0

=
2x1T 3

0
µ0

p̄1. (3.147)

Then, from (3.144) and using the chain rule

∂ 3v̄1

∂ η̄3 = C2Ai′(η0). (3.148)

Therefore, the balance at the wall becomes

C2Ai′(η0) =
2x1T 3

0
µ0

p̄1, (3.149)

which it will later be used to find the dispersion relation.

In the upper deck the wall-normal coordinate scales as η̃ = κ1/2η and the solution

becomes

q̄(x1, η̃) =
(

κ1/2ũ1, κ−1/2ṽ1, w̃1, κ−5/2 p̃1, 0
)

E + ... . (3.150)

Substituting (3.150) into the x̄-LUBR equations we find the system of equations for the upper

deck

C ⌉ iα1ũ1 +
∂ ṽ1

∂ η̃
+ w̃1 = 0, (3.151)

X | ũ1 = 0, (3.152)

Y | iα1ṽ1 +
1

2x1

∂ p̃1

∂ η̃
= 0, (3.153)

Z | iα1w̃1 − p̃1 = 0, (3.154)
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which, isolating p̃1, gives a Laplace equation

1
2x1

∂ 2 p̃1

∂ η̃2 − p̃1 = 0, (3.155)

and its relative solution p̃1 = p1(x1)e−(2x1)
1/2η̃ . Using (3.153), the wall-normal velocity is

ṽ1 =− ip1

α1(2x1)1/2 e−(2x1)
1/2η̃ , (3.156)

in which the curvature effects are also negligible in the limit κ ≪ 1.

Matching the solution of the main deck v̄MD = κ−1/2v1 with the solution of the upper

deck v̄UP = κ−1/2ṽ1 as

lim
η→0

v̄UD = lim
η→∞

v̄MD, (3.157)

gives

p1 = A(x1)α2
1 (2x1)

1/2. (3.158)

Finally, knowing the solutions of the three decks, the dispersion relation is found by first

substituting (3.158) into (3.149), which gives

α1A = C2Ai′
µ0

T 3
0

1
α1(2x1)3/2 , (3.159)

and then substituting (3.159) into (3.146) resulting in

∫
∞

η0

Ai(η̆)dη̆ − (iα1)
−1/3

[
λ

(2x1)1/2

]5/3(µ0

T 7
0

)1/3

Ai′ = 0. (3.160)

Since the curvature effects are negligible for κ ≪ 1, the dispersion relation (3.160) is the

same as for the flat plate case of Ricco and Wu (2007). Numerically integrating (3.160)

gives the local growth rate, proportional to Im(α1). The neutral curve is then identify by the

streamwise location x̄c where

Im(α1) = 0. (3.161)
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This section was introduced to prove that the solution is independent on curvature for the

high-frequency limit. Numerical results will be introduced in §4.4.



Chapter 4

Numerical results

In §4.1, we first present the results based on the LUBR equations valid for the entire evolution

of the boundary-layer perturbation. We then discuss the comparison between the LUBR

results with the results obtained through the EV framework valid for x̂ ≫ 1 in §4.2 and the

asymptotic results (ASY) valid for G≫ 1 and x̂ = O(1) in §4.3. In §4.1.6, the LUBR results

are compared qualitatively with the DNS results by Whang and Zhong (2003).

4.1 Unsteady boundary-region results

Using the LUBR equations, we investigate the dependence of the evolution of compressible

Görtler vortices on four main parameters, i.e., the Mach number, the Görtler number, the

ratio of the disturbance wavelengths in the free stream, and the frequency. In order to obtain

realistic results, this parametric analysis is based on wind tunnel data of compressible flows.

4.1.1 Effect of Mach number

The effect of the Mach number is investigated while keeping the parameter R∗u = U∗
∞/ν∗

∞

constant, which, in compressible flows experiments is referred to as the unit Reynolds number.

As the free-stream mean velocity U∗
∞ is changed, it directly affects both M and R∗u, p∗∞ affects

R∗u through a change of ν∗
∞, whereas T ∗

∞ changes M through the speed of sound a∗∞ = a∗∞(T
∗

∞)

and R∗u through ν∗
∞. The Reynolds number R∗u is thus kept constant by selecting the correct
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combination of U∗
∞, T ∗

∞ , and p∗∞ as the desired M is achieved. Figure 4.1 shows the influence

of the free-stream temperature and pressure on the subsonic Mach number (left) and the

free-stream kinematic viscosity (right).

100 150 200 250 300
0

0.2

0.4

0.6

0.8

T ∗∞ [K]

M

p∗ = 1 bar
p∗ = 10 bar
p∗ = 100 bar

U∗∞ = 186.82 m/s

U∗∞ = 121.78 m/s

U∗∞ = 66.57 m/s

100 150 200 250 300
0

0.5

1

1.5

2

T ∗∞ [K]

ν
∗ ∞

·1
0
−
5
[m

2
/s
]

Fig. 4.1 Influence of pressure p∗∞ and temperature T ∗
∞ on the subsonic Mach number (left)

and on the kinematic viscosity ν∗
∞ of air (right) for R∗u = 13 ·106 m−1. The points in the two

graphs correspond to the same flow conditions.

This approach has been used in several wind tunnel studies. Laufer (1954) conducted

experiments in the supersonic wind tunnel of the Jet Propulsion Laboratory in the range

1.4 < M< 4, R∗u = 13.3 ·106 m−1, and a free stream dominated by vortical disturbances. No

information on the pressure and temperature conditions was given in their article. Flechner

et al. (1976) studied transitional boundary layers in the transonic tunnel at NASA Langley

Research Center and maintained the stagnation temperature at 322 K. Three different Mach

numbers M= 0.7,0.8,0.83 were investigated through a change in the free-stream dynamic

pressure while keeping R∗u = 13.1 · 106 m−1. This wind tunnel was equipped with a con-

trol system that allowed independent variation of Mach number, stagnation pressure, and

temperature. We consider the cases of steady vortices ( f ∗ = 0) in conditions similar to

the experimental configuration of De Luca et al. (1993), i.e., with spanwise wavelength

λ ∗
z = 8 ·10−3m, corresponding to R= 1273.2, and radius of curvature r∗ = 10m, correspond-

ing to G= 206.4. The Mach number is limited to M≤ 4 to maintain valid the assumptions of
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ideal gas and constant Prandtl number. The dimensionless wall-normal coordinate ȳ ≡ y∗/δ ∗
99

is used when comparing results at different Mach numbers.

The maximum along ȳ of the amplitude of the streamwise velocity perturbation |ū(x̂)|max ≡
max

ȳ
|ū(x̂, ȳ)| as a function of x̂ is shown in figure 4.2 (left) for different M. We recall that the

velocities are normalized by the oncoming free-stream velocity U∗
∞. For x̂ =O(1), increasing

M decreases the growth rate, i.e., the kinematic Görtler vortices (GV-vortices) become more

stable, especially for supersonic flows. This confirms the asymptotic results for stage III.

This is true only sufficiently downstream from the leading edge where the Görtler instability

is fully developed and δ ∗ is comparable with λ ∗
z . In the early stages of the streamwise-

velocity perturbation where instead the spanwise viscous diffusion is negligible, the effect

of the Mach number is reversed as shown in the inset of figure 4.2 (left). This confirms the

theoretical results for stage II. The stabilizing effect of the Mach number when δ ∗ = O(λ ∗
z )

is in accordance with early studies utilizing linearized theories for the primary instability

(El-Hady and Verma, 1983; Hall and Malik, 1989; Hammerlin, 1961; Kobayashi and Kohama,

1977; Spall and Malik, 1989; Wadey, 1992). The most unstable Görtler vortices are therefore

incompressible. However, this is true only during the initial stages of the evolution as the

recent experimental study by Wang et al. (2018) showed that transition to turbulence is

achieved more rapidly for compressible Görtler vortices compared to the slower transition of

incompressible Görtler vortices because the secondary instability of nonlinearly evolving

vortices is more intense in the compressible case.

In addition to GV-vortices, compressibility effects generate thermal Görtler vortices,

hereinafter labeled GT-vortices. They originate due to the velocity-temperature coupling

within the boundary layer even in the absence of free-stream temperature disturbances,

similar to the thermal Klebanoff modes over a flat plate (Ricco and Wu, 2007). Figure 4.2

(right) reveals that the temperature perturbations also grow exponentially and are more stable

sufficiently downstream, i.e., their growth rate decreases, as the Mach number increases.

However, thanks to our receptivity framework we notice that in the proximity of the leading

edge, where δ ∗ is smaller than λ ∗
z , the temperature perturbations increase much more

significantly with the Mach number than the velocity perturbations. We further note that
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Fig. 4.2 The effect of the Mach number on the maximum streamwise velocity perturbation
(left) and the maximum temperature perturbation (right) for a steady flow at R = 1273.2,
G= 206.4 and ky = 1.

the stabilizing effect of the Mach number occurs much further upstream for the GV-vortices

than for the GT-vortices. Since further downstream the growth rate decreases with increasing

M, temperature perturbations for lower M become dominant when x̂ is sufficiently high.

This reversed influence of compressibility caused by the growing presence of spanwise

viscous diffusion along the streamwise direction was also detected on thermal Klebanoff

in the presence of wall heat transfer (Ricco et al., 2009). None of the previous theoretical

frameworks could trace the evolution of both the velocity and the temperature perturbations

from the leading edge and observe this effect of spanwise diffusion because local EV

approaches were utilized without considering the influence of the base-flow receptivity to

external disturbances on the evolution of the Görtler vortices.

The location of the maximum value of the perturbation amplitudes is monitored to identify

the wall-normal position of the Görtler vortices. Early studies by Kobayashi and Kohama

(1977), El-Hady and Verma (1983), and Ren and Fu (2015) show that the vortices lift away

from the wall as the Mach number increases, although through EV approaches they could

not trace the evolution of the vortices from the leading edge because the external forcing due

to the free-stream disturbances plays a crucial role there. This effect of compressibility on

Görtler vortices was also noticed by Spall and Malik (1989), Hall and Fu (1989), and Wadey

(1992). Previous studies have shown that in the limit of large Mach number the vortices move
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into a log-layer near the free stream. However, as we focus on M= O(1), this lifting effect of

the Mach number is not intense enough and the vortices are only confined in the core of the

boundary layer. Thanks to our receptivity framework, we can follow the wall-normal location

of GV-vortices and GT-vortices as they evolve from the leading edge. Figure 4.3 confirms

that by increasing the Mach number the GV-vortices (left) and the GT-vortices (right) occur

at larger wall-normal locations. The effect of M is stronger for the GV-vortices than on the

GT-vortices and the GT-vortices are positioned closer to the free stream than the GV-vortices.

The increase of boundary-layer thickness δ ∗
99 with M is also shown in the inset of Figure 4.3

(right).
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Fig. 4.3 The effect of the Mach number on the wall-normal location of GV-vortices (left) and
GT-vortices (right) for a steady flow at R= 1273.2, G= 206.4 and ky = 1. Inset: Boundary-
layer thickness based on λ ∗

z = 8 ·10−3m, expressed in meters.

As shown by Hall (1983) and Wu et al. (2011), incompressible Görtler vortices move

closer to the surface as they evolve downstream and they become confined in the wall layer

region. This behavior persists even for compressible flows as long as M< 3. For M≥ 3 the

vortices are not confined near the wall but they evolve in the core of the boundary layer. The

asymptotic results of stage III, which are based on the assumption G≫ 1, cannot capture this

behavior because vortices tend to shift towards the wall as G increases for any Mach number

when M= O(1).

Figure 4.4 shows the streamwise velocity perturbation profiles (left) and the spanwise

velocity perturbation profiles (right) for M = 2 and M = 4. Both the streamwise and the
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Fig. 4.4 The effect of the Mach number M, M= 2 ( ) and M= 4 ( ), on the normalized
profiles of the streamwise velocity perturbation (left) and the spanwise velocity perturbation
(right) for a steady flow at R = 1273.2, G = 206.4 and ky = 1. Numbers in the parenthesis
correspond to the streamwise location x̂.

spanwise velocity profiles show that the perturbations move towards the wall for M= 2 and

remain confined in the core of the boundary layer for M= 4. For this higher Mach number,

the velocity gradient at the wall tends to zero as x̂ increases, generating a near-wall region

where the flow is largely unperturbed. Consequently, for M> 3 approximately the wall-shear

stress of the perturbation is not a sound indicator for the growth of thermal Görtler vortices,

while it is effective in the incompressible regime (Hall, 1983, 1990). Temperature profiles

behave similarly to the streamwise velocity profiles and their peak shifts slightly towards the

free stream.

4.1.2 Effect of Görtler number

In the context of steady vortices, we now analyze the effect of the Görtler number on the

evolution of perturbations for M = 2 and M = 4. Keeping R = 1273.2, radii of curvature

r∗ = 5m and r∗ = 10m gives G= 412.8 and G= 206.4, respectively.

In §3.2.1 we introduced the parameter β (x̂) (Viaro and Ricco, 2018) and the streamwise

location x̂K where the perturbation shifts to Görtler vortices. The effect of G and M on x̂K

is shown in table 4.1. The location x̂K decreases as G increases for all M and for subsonic
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M= 0 M= 0.5 M= 2 M= 3 M= 4
G= 206.4 0.083 0.083 0.08 0.095 0.099
G= 412.8 0.052 0.052 0.048 0.049 0.053
G= 825.6 0.033 0.033 0.031 0.031 0.032

Table 4.1 Streamwise locations x̂K for different values of the Görtler number G and the Mach
number M for a steady flow with R= 1273.2 and ky = 1.

conditions there is no Mach number influence to the level of accuracy chosen. For supersonic

conditions and low enough G, x̂K increases with M, but x̂K becomes independent on M in

supersonic conditions if G is sufficiently large.

Klebanoff modes contribute to the initial growth of the perturbation and, for sufficiently

small Görtler numbers, i.e., G< 50 for M= 4, they stabilize after a certain streamwise location,

as shown in figure 4.5. Only when G is large enough the instability is characterized by the

more energetic Görtler vortices. This is confirmed by the recent experimental study of Wang

et al. (2018) where for low G values only weak streaky structures are present but when G

increases the Görtler instability generates stronger vortices. Figure 4.5 also shows that, as

the Görtler number increases, GT-vortices (right) are more unstable than GV-vortices (left) at

M= 4.
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Fig. 4.5 The effect of the Görtler number G on the maximum streamwise velocity perturbation
(left) and temperature perturbation (right) for a steady flow with M = 4, R = 1273.2 and
ky = 1.
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Fig. 4.6 The effect of the Görtler number G on the wall-normal location of GV-vortices at
M= 2 (left) and M= 4 (right) for a steady flow with R= 1273.2 and ky = 1.

The location of GV-vortices is shown in figure 4.6 for M= 2 (left) and M= 4 (right). When

G increases the vortices move closer to the wall whereas when M increases they move away

from the wall. High Mach number flows tend to behave more similarly to the flat-plate

scenario.

The influence of the Mach number changes as the Görtler number increases. The

asymptotic analysis reveals that for G≫ 1 an increase of the Mach number makes the vortices

move towards the wall. This was also noticed by Dando and Seddougui (1993) and it is

confirmed by the LUBR results for high Görtler numbers. Table 4.2 schematically shows that,

when x̂ is held fixed and the Mach number is subsonic or mildly supersonic and increases, the

vortices shift towards the boundary-layer core only when G= O(1). In addition, the position

of the vortices as x̂ increases is affected by the Mach number being smaller or larger than 3

for G= O(1), as shown in figure 4.3.

Figure 4.7 (top) shows the streamwise velocity and temperature perturbation profiles at

different streamwise locations. These profiles highlight the unperturbed near-wall regions for

M= 4 caused by GV-vortices and GT-vortices moving towards the free stream. The peaks in the

profiles experience only a minor shift towards the wall as G increases due to the high Mach

number. Like for the Mach number effects, the influence of G increases as the solution evolves

downstream. The wall-normal velocity perturbation and the spanwise velocity perturbation



4.1 Unsteady boundary-region results 59

M G x̂ Vortex dynamics
≈ 1 ↑ O(1) O(1) → boundary-layer core
≈ 1 ↑ ≫ 1 O(1) → wall
≈ 1 ↑ O(1) → wall
< 3 O(1) O(1) ↑ → wall
≥ 3 O(1) O(1) ↑ → boundary-layer core

Table 4.2 Influence of G, M, and x̂ on the location of the Görtler vortices. Upward arrows (↑)
indicate increasing values and horizontal arrows (→) denote the vortices moving towards the
wall or the boundary-layer core.

represent the weak crossflow of the Görtler instability. These profiles, shown in figure 4.7

(bottom) for different values of G, demonstrate that even though the free-stream vortical

disturbance decreases exponentially in the streamwise direction, as described by (3.16)

and (3.17), the perturbations inside the boundary layer soon become self-sustained when

curvature effects become relevant. The wall-normal velocity profiles present a single peak

at η ≈ 2 whereas the spanwise velocity profiles, which are more affected by G, show the

double-peak characteristic of the longitudinal counter-rotating GV-vortices. As in the case

of the streamwise perturbation velocity, the solution for x̂ = 0.06 differs only slightly from

the flat plate one, proving that the influence of curvature is still weak. The confinement of

GV-vortices for into the core of the boundary layer is also visible from the crossflow velocity

profiles of figure 4.7 (bottom).

Previous studies have investigated how changes of G affect the solution as M increases.

The EV approach of El-Hady and Verma (1983) demonstrates that Görtler vortices are more

sensitive to changes in G as M increases. On the contrary, we show that Görtler vortices are

less sensitive to changes in G as M increases (e.g., refer to figure 4.6), which is in agreement

with the results of Spall and Malik (1989).

4.1.3 Effect of the free-stream wavelength ratio

The effect of the free-stream wavelength ratio ky = λ ∗
z /λ ∗

y can only be studied through

the receptivity formalism because ky only appears in the initial and free-stream boundary
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Fig. 4.7 The effect of the Görtler number G, G= 0 ( ), G= 206.4 ( ) and G= 412.8 ( ),
on the normalized profiles of the streamwise velocity perturbation (top left), the temperature
perturbation (top right), the wall-normal velocity perturbation (bottom left) and the spanwise
velocity perturbation (bottom right) for a steady flow at R = 1273.2, M = 4 and ky = 1.
Numbers in the parenthesis correspond to the streamwise location x̂.

conditions, equations (3.20)-(3.24) and (3.14)-(3.19), respectively. Figure 4.8 shows the

effect of ky on the streamwise perturbation velocity (left) and the wall-normal location

of GV-vortices (right) for M = 4 and G = 206.4. The weak effect of ky increases at higher

Mach numbers (not shown). The flow becomes slightly more stable as ky increases, with

the most unstable configuration achieved for ky = 0. The growth rate of the streamwise

velocity becomes nearly constant for sufficiently high x̂. When the flow is more stable
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Fig. 4.8 The effect of ky on the maximum streamwise velocity perturbation (left) and wall-
normal location of GV-vortices (right) for a steady flow at R= 1273.2, G= 206.4 and M= 4.

as ky increases, the vortices initially tend to shift towards the wall but their wall-normal

position becomes independent on ky at sufficiently high values of x̂, as shown in figure 4.8

(right). Contrary to the effect of Mach number and Görtler number, the influence of ky on the

wall-normal position of the vortices decreases as the streamwise location increases. Spall and

Malik (1989) also noted that, for different initial conditions, the growth rates converged at

sufficiently high scaled wavenumbers, i.e., sufficiently downstream, and that this convergence

occurs closer to the leading edge as G increased. The normalized streamwise velocity and the

temperature profiles experience no significant variations as ky changes whereas the profiles

of the crossflow velocities vary with ky but only at small streamwise locations (not shown).

4.1.4 Effect of frequency

The effect of frequency at two different Mach numbers, M= 0.5 and M= 3, is investigated by

keeping a constant dimensionless wavenumber κ = kz/(kxR)
1/2 =O(1) which, for x̂ =O(1),

is representative of the ratio δ ∗/λ ∗
z = O(1), i.e., the spanwise and the wall-normal diffusion

effects are of the same order. Flows at different Görtler numbers are also compared for

r∗ = 5m and r∗ = 10m. For the subsonic case the Görtler numbers are G = 2494.7 and

G= 1247.3, whereas, for the supersonic case, G= 479.4 and G= 239.7, respectively. The
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M G f ∗ [Hz] F ·10−7 λ ∗
z [m] R kx ·10−5 κ δ ∗

c [m]

0.5 1247.3 | 2494.7
125 0.66 215 0.3000
250 1.32 0.0029 5157.51 430 0.2125 0.002
500 2.64 860 0.1503

3 239.7 | 479.4
500 3.75 640 0.3000

1000 7.49 0.005 1735.66 1280 0.2125 0.009
2000 14.98 2560 0.1503

Table 4.3 Flow parameters from wind tunnel data used for the analysis of the unsteady Görtler
instability at r∗ = 5m and r∗ = 10m. Reference cases are in bold.

frequency is scaled as

F≡ f ∗

R∗u U∗
∞

, (4.1)

where the unit Reynolds numbers are R∗u = 11 · 106 m−1 and R∗u = 2.18 · 106 m−1 for a

subsonic case (Flechner et al., 1976) and a supersonic case (Graziosi and Brown, 2002),

respectively. For each Mach number, the effect of frequency is studied by doubling and

halving a reference frequency from wind tunnel experiments for supersonic and subsonic

flows. At M= 3, the reference frequency f ∗ = 1000Hz (F= 7.5 ·10−7) comes from the work

of Graziosi and Brown (2002), which corresponds to the maximum perturbation energy.

Given that no experiments were found for M = 0.5, the reference frequency f ∗ = 250Hz

(F= 1.32 ·10−7) was inferred from the knowledge of frequencies at very low Mach numbers

(Boiko et al., 2010b), f ∗max ≈ 20Hz, and at high Mach numbers (Graziosi and Brown, 2002),

f ∗max ≈ 10kHz. This value additionally allows us to compare the same frequency, f ∗ = 500Hz,

in the two Mach numbers considered. The parameters used to investigate the effect of

frequency are summarized in table 4.3, along with the estimation of the boundary-layer

displacement thickness δ ∗
c = δ ∗

i +1.192(γ −1)M2x∗max/R
0.5 (Stewartson, 1964), where δ ∗

i is

the displacement thickness for incompressible flows and x∗max = 2m.

Figure 4.9 shows the stabilizing effect of increasing the frequency on the temperature

perturbation while keeping a constant radius of curvature r∗ = 5m. The stabilizing effect of

doubling the reference frequencies is stronger compared to the destabilizing effect of halving

them, for both Mach numbers and for r∗ = 10m (not shown). The same conclusions can be
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drawn for the maximum velocity perturbation |ū(x̂)|max, which also agree with the findings of

Hall (1990) and Ren and Fu (2015).
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Fig. 4.9 The effect of the frequency F on the maximum temperature perturbation for a plate
with r∗ = 5m and ky = 1, at M= 0.5, G= 2494.7 (left) and M= 3, G= 479.4 (right).

Frequency plays an important role on the location of Görtler vortices. As the main effect

of increasing the frequency is to move the vortices away from the wall, figure 4.10 (left)

shows that, even for low Mach numbers, GT-vortices are not confined near the wall if the

frequency is high enough. At high Mach numbers, the effect of frequency on the location

of GT-vortices is more intense and starts closer to the leading edge, as shown in figure 4.10

(right). GV-vortices are located closer to the wall with a weaker dependence on the frequency

than GT-vortices (not shown).

To summarize, Görtler vortices tend to move towards the boundary-layer core when the

perturbation is more stable, i.e., as F, M increase, or G decreases. However, as ky increases,

the perturbation is slightly more stable and Görtler vortices tend to move closer to the wall.

4.1.5 Growth rate and streamwise length scale of the perturbation

From the solution of the LUBR equations, the streamwise velocity of the perturbation

ū = ū(x̂,η) can be used to compute the complex parameter σ = σRe + i σIm as

σ(x̂,η) =
1
ū

∂ ū
∂ x̂

∣∣∣∣
η
, (4.2)
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Fig. 4.10 The effect of the frequency F on the wall-normal location of GT-vortices for a plate
with r∗ = 5m and ky = 1, at M= 0.5, G= 2494.7 (left) and M= 3, G= 479.4 (right).

where σRe is the growth rate and σIm is proportional to the inverse of the streamwise length

scale. In the EV framework, applying the decomposition (3.26) to (4.2) gives σ = σEV(x̂).

However, figure 4.11 shows that the perturbation inside the boundary layer grows at different

rates at different wall-normal locations η , with the maximum growth rate located at η ≈ 2.

The dependence on η is more intense closer to the leading edge and decreases at large x̂.
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Fig. 4.11 Influence of η on σRe(x̂,η) for M= 0.5, G= 1247.3, ky = 1, F= 1.32 ·10−7 (left)
and M= 3, G= 239.7, ky = 1, F= 7.5 ·10−7 (right).

However, even at values of x̂ = 10 the influence of η is still not negligible, especially in

supersonic conditions. The relative difference ∆σRe between the maximum and minimum
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value of σRe(x̂,η) at x̂ = 10, i.e., ∆σRe = (σRe,max −σRe,min)/σRe,max, is ∆σRe = 7.2% and ∆σRe =

29.9% for M= 0.5 and M= 3, respectively. This is confirmed by figure 4.11 (right) where the

lowest growth rate is for the perturbation closest to the wall.

The imaginary part of (4.2), σIm(x̂,η), can be used to define the streamwise length scale

of the boundary-layer perturbation as

λx,bl(x,η)≡ 2π
σIm(x̂,η)

R, (4.3)

which, as shown schematically in figure 3.1, is linked to λx through receptivity, the constant

streamwise wavelength of the free-stream disturbance. The parameter

Lx(x,η)≡ λx,bl

λx
=

kx R

σIm(x̂,η)
(4.4)

can therefore be defined in order to show the influence of the oncoming disturbance to the

perturbation inside the boundary layer. For all cases considered Lx < 1, which means that

the streamwise boundary-layer length scale is always smaller than the streamwise free-stream

wavelength. Figure 4.12 also shows that the streamwise length scale ratio Lx depends on η

for M= 0.5 (left) and for M= 3 (right). For both configurations, Lx decreases with x̂ near the

leading edge, but then increases as the perturbation evolves, i.e., λx,bl approaches λx further

downstream. As the Mach number increases Lx becomes closer to unity, as shown in figure

4.12 (right). Increasing the frequency also has the same effect (not shown). Therefore, the

more unstable the perturbation is, the more λx,bl differs from λx.

4.1.6 Qualitative comparison with DNS data

The lack of experimental data for compressible Görtler flows makes it difficult to validate

our results. We here carry out a qualitative comparison with the DNS data by Whang and

Zhong (2003), who first studied the response of a hypersonic boundary layer (M= 15) over

a concave surface to free-stream vortical and acoustic disturbances. As the Mach number

in their simulations is much higher than ours due to the limitations of our code to relatively
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Fig. 4.12 Influence of η on Lx(x,η) for M= 0.5, G= 1247.3, ky = 1, F= 1.32 ·10−7 (left)
and M= 3, G= 239.7, ky = 1, F= 7.5 ·10−7 (right).

small Mach numbers, quantitative agreement with our moderate supersonic data would not

be possible. Nevertheless, our receptivity results are useful because they explain the physics

of the instability observed by Whang and Zhong (2003) and we expect that a DNS simulation

at M= 4 would recover the results found with our LUBR simulations. In their work, the DNS

data are compared with data from linear eigenvalue stability theory. As we have shown, this

latter approach cannot fully capture the physics of the vortices, especially near the leading

edge, where the effect of the free-stream perturbation is crucial.

Figure 4.13 presents the evolution of the amplitude of the steady streamwise and tempera-

ture perturbations obtained by Whang and Zhong (2003) (left) and by our LUBR simulations

(right). Values are normalized by the first peak value of the streamwise velocity. The

streamwise velocity perturbation and the temperature perturbation evolve in similar fashion,

showing the initial algebraic growth due to the streaks, followed by viscous decay and by the

Görtler instability downstream. These three phases have been reported by Viaro and Ricco

(2018) to occur at sufficiently low Görtler number to detect a competing effect between the

damping action of the viscous effects and the centrifugal instability. Consistently with our

results on the effect of Mach number, the temperature perturbations become larger and larger

than the velocity perturbations as the Mach number grows.
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Whang and Zhong (2003) refer to the first growing phase as an early transient growth

due to leading-edge effects and correctly identify the Görtler vortices as responsible for the

subsequent instability following the intermediate decay. They also point out that, according

to the linear stability theory, the region near the leading edge should be stable and the growth

of disturbances should be absent. All these observations match our theoretical predictions.

Our eigenvalue analysis indeed predicts decay near the leading edge where instead the direct

forcing from the free stream creates a transient growth. We can then describe the initial

growth reported by Whang and Zhong (2003) as the thermal and kinematic Klebanoff modes,

which are always present from the leading edge at every Görtler number (Viaro and Ricco,

2018) and are caused by the free-stream receptivity, i.e., the continuous action of the free-

stream vortical disturbances, and not only by a leading-edge effect as stated by Whang and

Zhong (2003).
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Fig. 4.13 Comparison of velocity and temperature perturbations relative to the DNS data of
Whang and Zhong (2003) at M= 15 (left) and the LUBR results at M= 4 (right). Data are
normalized by the peak of the perturbation velocity.

As we have shown, increasing the frequency has a stabilizing effect on the boundary-layer

flow. This is consistent with the DNS results by Whang and Zhong (2003), shown in figure

4.14 (left) and compared with our LUBR results in figure 4.14 (right). For sufficiently high

frequency, the Klebanoff modes do not turn into Görtler vortices downstream. For the cases

presented in figure 4.14 only steady perturbations are subject to centrifugal instability.
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4.1.7 Neutral stability curve

We now show the effect of the flow parameters on the neutral stability curves computed with

the LUBR equations. This section focuses on incompressible flows and results can be found

in (Viaro and Ricco, 2018).

Streamwise evolution of the perturbation energy

Figure 4.15 shows the streamwise evolution of the perturbation energy E(x̂) for both K-

vortices and G-vortices in the case of a steady flow (kxR = 0) with ky = 2. The maximum

value of the energy Emax,G0
≡ max

x̂
|E(x̂)|G=0 for a flat plate scenario, G= 0, is used to normalize

the perturbation energy. The conditions for which the energy is maximum, M1 and M2, or

minimum, m, are associated with a stable flow for which ς = 0. We can also identify three

critical Görtler numbers, namely GA, GB, and GC. For first one, G = GA = 0, the instability

grows from the leading edge in the form of K-vortices as in figure 3.2, scenario 1 , until

viscosity enters the play to dissipate it. The perturbation in the boundary layer is energized

due to the centrifugal forces introduced by the curvature but Görtler vortices start to appear as

boundary layer perturbations, after K-vortices have decayed, only at the second critical point

G > GB = 10.9. The reference case of G = 12, shown in figure 4.15, demonstrates that the
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perturbation initially grows as K-vortices until the stable point M1 is reached. Then, viscosity

causes the instability to decay up to the location m where Görtler vortices appear as a second

perturbation. Before reaching the second stability point identified by M2, Görtler vortices

undergo their shift from strong growth GS to weak growth GW at the location x̂ = x̂G. As

curvature further increases, the third critical Görtler number G= GC = 17 marks the condition

above which there is no viscous decay anymore, and the G-vortices grow directly from the

K-vortices, as shown in figure 4.15 for G > GC. This last case is also represented in figure

3.2, scenario 2 . In summary, whenever the Görtler number is within the two critical values

GB < G< GC the boundary layer experiences two separate kinds of instability.

Regions of the neutral curves

An example of a typical neutral curve for kxR= 0 and ky = 2 is shown in figure 4.16 in which

the neutral curve is represented by the continuous black line. K-vortices turn directly into

Görtler vortices at the streamwise location x̂K identified by the black dotted line whereas the
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strong growth of the Görtler vortices weakens at the streamwise location x̂G identified by

the black dashed line. Figure 4.16 also shows that the critical Görtler numbers previously

introduced are related to the critical points A, B, and C, in the neutral curve. For a flat

plate, K-vortices become stable after the streamwise location associated with point A. The

neutral curve experiences a local minimum at a certain streamwise location x̂ for GB = 10.9,

point B, representative of the Görtler number below which K-vortices are the only source of

instability. Finally, point C represents the streamwise location where the neutral curve has a

local maximum which corresponds to the Görtler number GC above which Görtler vortices

grow directly from K-vortices.

As the Görtler number increases the unstable region of the neutral curve expands rapidly

due to the inviscid instability gaining strength from the curvature effects. Increasing the

Görtler number also causes the minimum and maximum of the perturbation energy, m and M1

respectively, to eventually combine for G= GC, also represented in figure 4.15. By further
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increasing the Görtler number, the boundary layer experiences a direct shift of instability

from the K-vortices, always present near the leading edge, to the Görtler vortices at the

location x̂ = x̂K. It is important to point out that for the definition of ς the perturbation energy

could have been computed with the integral of |ū| defined over y. This would have caused

a moderate shift of the neutral curves towards lower values of G but maintaining a similar

shape.

The asymptotic analysis performed in §3.4 valid for G≫ 1 demonstrates that the expo-

nential growth of the perturbation is preceded by the existence of two pre-modal stages. In

the first stage, x̂I = O
(
G−2/3

)
, pressure is influenced by the effects of curvature but it is still

not coupled to the velocity field. The second stage, x̂II = O
(
G−2/5

)
, is characterized by the

convection terms becoming comparable with the pressure perturbation gradient along the

wall-normal direction. Here, the Görtler instability begins. These two stages are identified

through the red lines in figure 4.17 which represents figure 4.16 for high values of the Görtler

number near the leading edge. The validity of the parameter β to establish the shift between

the two types of instabilities is confirmed by the fact that, as the Görtler number increases,

x̂I < x̂K < x̂II. Therefore, the approach we used agrees well with the asymptotic analysis at

large Görtler numbers and we find that x̂K = O
(
G−0.52) for 104 < G< 106.

We conclude the analysis of the neutral curve regions by demonstrating that there is

the possibility to experimentally verify the existence of the three critical points previously

mentioned using the parameters of Boiko et al. (2010b) as a reference. In their experiments,

Görtler instability was triggered by free-stream disturbances in the case of a unit Reynolds

number R∗U = U∗
∞/ν∗ = 6 · 105 m−1, radius of curvature r∗ = 8.37 m, and spanwise wave-

lengths λ ∗
z = 0.008,0.012,0.024. All of their unstable points are within the region where the

Görtler instability experiences a strong growth, as shown in figure 4.17. Table 4.4 proves

that if the radius of curvature is properly adjusted, the location of the critical points would be

acceptable to be measured experimentally.
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( )

and x̂II = O
(
G−2/5

)
( ).

Effect of frequency

The effect of frequency, introduced by the parameter kxR= Rλ ∗
z /λ ∗

x , on the neutral stability

curves is shown in figure 4.18 for incompressible flows. The lines of x̂K have been omitted as

they overlap for the majority of Görtler numbers. Sufficiently downstream from the leading

edge, the neutral curves are independent on the parameter ky, representative of the influence

of the initial conditions directly associated to the oncoming disturbances of the free stream,

and therefore only the case ky = 1 is shown.

Since a significant increase of stability is caused by the increase of frequency, as demon-

strated by figure 4.18, steady disturbances of the free stream are representative of the most

unstable conditions. For the frequency parameter of kxR = 6, and following the evolution

of the instability for G = 55, it can be noticed that, after the decay of Görtler vortices, the

boundary layer goes through a second region of instability followed by the final region of
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λ ∗
z x∗A r∗A x∗B r∗B x∗C r∗C

0.002 0.02 ∞ 0.04 0.68 0.19 1.06
0.004 0.08 ∞ 0.15 5.46 0.78 8.51
0.008 0.31 ∞ 0.61 43.68 3.01 68.06

Table 4.4 Estimation of the physical location (in meters) of three critical points in the case of
ky = 2 and kxR= 0 from the values found in Boiko et al. (2010b).
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Fig. 4.18 The effect of the frequency parameter kxR on the neutral stability curves ς = 0 in
the case of M= 0 and ky = 1. Inset: effect of kxR on the critical Görtler number GB in the case
of M= 0 and ky = 1.

stability. This phenomenon, represented in figure 4.18, is characteristic of a range of Görtler

numbers whenever kxR> 2 and becomes more prominent as frequency increases. However,

as the LUBR equations are valid for kx ≪ 1, our focus is limited to disturbances with low

frequencies, which are also the most critical cases.

The increase of the frequency parameter kxR also causes the critical Görtler number GB to

increase, as shown in the inset of figure 4.18. Due to the fact that GB is close to the streamwise

location where the neutral curves become independent on the parameter ky, the results in the
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inset for different ky would lie on the same curve and, therefore, only the case of ky = 1 is

shown.

When the flow is not steady, Goldstein (1983) demonstrated for a flat plate geometry that

the leading-edge receptivity could cause the excitation of TS waves, which was also shown

by Ricco and Wu (2007). As the streamwise location of the TS-waves neutral point increases

with a decrease of frequency, we here analyze only the worst case scenario of kxR= 10, our

highest frequency. An in-house code for spatial stability analysis (Ricco, 2009) was here

used to investigate the streamwise location x̂ where TS waves would start to grow over a

flat plate with parameters taken from the experiments of Boiko et al. (2010b). Since we are

interested in spatial stability cases, the Squire transformation (Squire, 1933) can be employed

for the neutral conditions. We demonstrate that the three-dimensional TS waves remain stable

unless 2πδ ∗/λ ∗
z < 0.08 approximately, with δ ∗ being displacement thickness. This value

is associated to spanwise wavelengths larger than 0.4m, which are not physically relevant.

The spanwise wavenumber typical of our conditions gives a value of 2πδ ∗/λ ∗
z ≈ 2.5, and

therefore we are in the range of stable TS waves. The possibility of TS waves appearing

at smaller streamwise locations of the neutral curves could arise if we were to increase

the frequency parameter kxR. However, this would cause the low-frequency assumption

of our theoretical framework to become invalid. This limitation can be overcome through

the use of a different asymptotic theory, e.g. the triple-deck. Alternatively, the complete

linearized Navier-Stokes and continuity equations, which include the streamwise viscous

effects and streamwise pressure gradient needed to capture the TS waves instability, should be

adopted. This was done by Boiko et al. (2010b) but the receptivity to oncoming free-stream

disturbances was not taken into account and this limits the accuracy of the analysis as shown

by Wu et al. (2011) for incompressible flows and confirmed here by compressible flows.

Effect of the free-stream wavelength ratio

The influence of the parameter ky, the wall-normal wavenumber directly linked to the initial

conditions and, hence, the oncoming free stream, is shown in figure 4.19 for the steady,

incompressible cases of kxR= 0, M= 0. Based on our scaling, ky also represents the ratio of
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the spanwise wavelength λ ∗
z over the wall-normal wavelength λ ∗

y . From the most unstable

case of ky = 0, the stability region increases in a limited region sufficiently close to the

leading edge as ky increases, for different values of kxR = 0. The initial condition ky do

not affect the neutral curve after x̂ = x̂s. This streamwise location is here defined by the

neutral points being confined within ∆x̂ < 0.0005 as ky changes. Hall (1990) also shows the

independence of the neutral curves from the initial conditions for x̂ high enough.
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Fig. 4.19 The effect of the wall-normal wavenumber ky on the neutral stability curves ς = 0
for M = 0 and kxR = 0. Inset: the effect of the frequency parameter kxR on the streamwise
location x̂s and the corresponding Görtler number Gs .

The inset of figure 4.19 shows that when kxR increases the streamwise location x̂s also

increases, with the dependence on frequency becoming negligible for kxR> 10. In addition,

the increase of kxR also causes a monotonical increase of the Görtler number Gs related to x̂s.

In terms of dimensional values, if we consider the parameters of the experiments performed

by Boiko et al. (2010b), the location x̂s = 10 would be equivalent to x∗ ≈ 22m. As a result,
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the neutral curves become independent on the initial conditions ky at streamwise locations

from the leading edge that are not relevant for real case scenarios.

This analysis on the influence of the initial conditions additionally confirms that the

dynamics of the Görtler flow can only be correctly described by a receptivity framework that

includes the influence of the free-stream characteristics.

Effect of Mach number

Figure 4.20 (left) shows the stabilizing effect of the Mach number on the neutral stability

curves for the steady case of kxR= 0. The region of stability becomes bigger as the Mach

increases. This is in agreement with previous studies on compressible neutral stability curves

(El-Hady and Verma, 1983). Even in the case of a flat plate, the region of stability increases,

but in all scenarios the Klebanoff modes remain the initial instability of the boundary layer.

Figure 4.20 (left) also shows how the effect of the Mach number is stronger in supersonic

conditions. Both critical Görtler numbers increase with the Mach number, as shown in figure

4.20, with GC being the one most affected.

0 1 2 3 4 5 6 7 80

20

40

60

80

x̂

G

M = 4.0
M = 3.0
M = 0.9
M = 0

Stable flow

G-vortices

0 1 2 3 40

20

40

60

80

M

G

GB

GC

Fig. 4.20 Neutral stability curves, x̂ = x̂ς0 at different values of the Mach number for kxR= 0,
ky = 2 (left) and the influence of the Mach number on the critical Görtler numbers (right).
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Comparison with previous theories and experiments

The neutral curves computed with the LUBR solution here presented are compared with

experiments and previous theories at kxR= 0 and ky = 1 for M= 0 in figure 4.21 and M= 3

in figure 4.22. Results are compared with previous theoretical frameworks plotted in dotted

lines, and experimental results potted with marks. It is important to note that this comparison

is qualitative, as the neutral curves were computed with different parameters. The dotted

lines represent the location x̂ = x̂K where K-vortices shift into G-vortices.
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Fig. 4.21 Comparison of the LUBR neutral curve ( ) at kxR = 0, ky = 1 with previous
theories (dashed) and experiments (marks) for M= 0 (left) and its detail near the leading edge
(right). Theories of Hall (1990) ( ) and El-Hady and Verma (1983) ( ), experiments Tani
(1962) ( ). Curves at which the K-vortices turn into G-vortices, x̂ = x̂K ( ).

Early attempts to compute neutral curves for Görtler flows for incompressible and

compressible flows involved the use of an eigenvalue framework such as the one introduced

by El-Hady and Verma (1983), in which the boundary-layer growth effect are included.

Hall and Malik (1989) later derived similar equations, and, therefore, similar neutral curves,

commenting that the limit of small wavenumbers, i.e., x̂ ≪ 1 in our scaling, might be outside

of the region where the equations were valid. This is confirmed by figure 4.21 and figure 4.22

in which the neutral curves computed from the EV framework of El-Hady and Verma (1983)

are not capturing the unstable region near the leading edge where Klebanoff modes exist.

The receptivity framework for incompressible flows proposed by Hall (1990) omits one of
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( ). Curves at which the K-vortices turn into G-vortices, x̂ = x̂K ( ).

the experimental points found in Tani (1962), as shown in figure 4.21 (right). This receptivity

framework is an improvement of the work of Hall (1983) in which the initial conditions of

the system of partial differential equation were imposed inside the boundary layer instead

of taking into consideration the oncoming flow as in a receptivity study. However, it can be

seen that not even the neutral curves of Hall (1990) can solve for the region of the Klebanoff

modes. The neutral curves proposed with our LUBR solution demonstrate that the last point

of the experiment of Tani (1962) is in the region of Klebanoff instabilities, very close to the

leading edge.

For the supersonic case at M= 3, the EV framework of El-Hady and Verma (1983) also

fails to correctly reproduce the neutral curves for x̂ ≪ 1. However, the agreement with the

LUBR solution is stronger as x̂ increases, as shown in figure 4.22. In this limit of high

wavenumbers (x̂ ≫ 1), the neutral curves also match the asymptotic results of Hall and Malik



4.2 Eigenvalue results 79

(1989) (not shown). Our LUBR results also confirm the experiments at supersonic conditions

of Ciolkosz and Spina (2006) in which they state that these points are representative of

Görtler vortices. In the same paper, they also performed experiments at the same locations

but in a flat plate scenario where no vortices were found. This is also in agreement with our

neutral curve as the experimental points would lie in the sable region for G= 0.

4.2 Eigenvalue results

We now compare the LUBR solution with the solutions of the parallel and non-parallel EV

equations.

4.2.1 Growth rate and streamwise length scale of the boundary-layer

perturbation

Figure 4.23 shows the comparison between the growth rate (left) and the streamwise length

scale ratio (right) of the LUBR solution and EV solution. The most important point is that the

receptivity process selects the most unstable modes, which, in the limit G≫ 1, correspond

to the first eigenvalues of table 3.1. The non-parallel EV solution (solid circles) is a better

approximation for the growth rate and the streamwise length scale than the parallel EV

solution (empty circles) at η = 2, where the growth rate is at its maximum. The non-parallel

and parallel EV formulations show the strongest disagreement with the receptivity LUBR

solution closer to the leading edge, where the solution has not yet acquired a modal form.

In this region, the non-parallel effects, and the initial and free-stream boundary conditions

thus play a key role in the dynamics of the perturbation. In the limit x̂ → 0 the EV solution is

invalid, with the growth rate becoming negative. Results show a tendency of the EV approach

to overestimate the growth rate, which is in agreement with the results of Spall and Malik

(1989). The agreement between the LUBR solution and the parallel EV solution is worse

in the supersonic case than in the subsonic case. The use of the rigorous receptivity LUBR

framework becomes therefore essential for supersonic flows.
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Fig. 4.23 Comparison between the LUBR σRe(x̂,η) ( ) at η = 2, the non-parallel EV
σEV, Re(x̂) ( ), and the parallel EV σEV, Re(x̂) ( ) (left) and comparison between the LUBR
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( ) (right), for M = 3, G = 1247.3, ky = 1, F = 1.32 · 10−7 and M = 3, G = 239.7, ky = 1,
F= 7.5 ·10−7.

4.2.2 Velocity and temperature profiles

The velocity and temperature EV profiles are compared with the LUBR profiles in figure 4.24

for M= 3. Since the eigenfunctions are obtained to within an arbitrary undefined constant,

the solutions are normalized by the maximum values at each streamwise location to be

compared with the LUBR solutions. The non-parallel EV solution approximates the profiles

well, especially as x̂ increases. Under the parallel flow approximation, the maximum of the

perturbations is slightly shifted upwards and the solution is overestimated in the region above

the maximum, especially near the leading edge, where the non-parallel effects are most

significant. As the wall is approached both the parallel and the non-parallel EV solutions

agree well with the LUBR solution.

The crossflow profiles shown in figure 4.25 highlight the limit of the EV solution. Close

to the leading edge there is a strong influence of the free-stream vortical disturbances which

cannot be captured by the simplified EV framework. Therefore, a correct analysis of the flow

in this region is only possible when the receptivity of the base flow to the external vortical

disturbances is considered. The disagreement in the free stream is expected, but the solutions

do not even match near the wall. The non-parallel EV solution begins to approximate the
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Fig. 4.24 Comparison between the LUBR solution ( ), the non-parallel EV solution ( ),
and the parallel EV solution ( ) for the streamwise velocity profiles (left) and temperature
profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers in the parenthesis
correspond to the streamwise location x̂.

crossflow perturbations well only for sufficiently high x̂. We previously demonstrated how

the growth rate is not only a function of x̂, as shown by the decomposition (3.26), but it

does also change with η even for large streamwise locations. Similarly, figures 4.24 and

4.25 demonstrate that the eigensolutions are not a simple function of η but do depend on the

streamwise location x̂.

4.2.3 Receptivity coefficient

Since we employ a receptivity framework, we here define a receptivity coefficient A that links

the perturbation in the boundary layer with the oncoming free-stream disturbances. We start

by introducing the eigenvalue solution (EV) in a form similar to (3.26)

ūe(x̂,η) = ũe(η) e
∫ x̂

x̂M
σEV, Re(x)dx, (4.5)

where σEV(x̂) is a complex number with its real part σEV, Re(x̂)≡ ℜ{σEV(x̂)} representative of

the local growth rate. The streamwise location x̂M represents the point where the solution is

in the modal form. The eigenfunction ũe is then normalized by its maximum value along η ,
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Fig. 4.25 Comparison between the LUBR solution ( ), the non-parallel EV solution ( ), and
the parallel EV solution ( ) for the wall-normal velocity profiles (left) and spanwise velocity
profiles (right) at M = 3, F = 7.5 · 10−7, G = 239.73, ky = 1. Numbers in the parenthesis
correspond to the streamwise location x̂.

and applying the absolute value we find that

|ūe(x̂,η)|= A
|ũe(η)|
|ũe(η)|max

e
∫ x̂

x̂M
σEV, Re(x)dx, (4.6)

where A remains undetermined due to the fact that the eigenfunction is computed to within

an undefined constant. We can further simplify (4.6) by considering only the maximum value

along η , which gives

|ūe(x̂)|max = A e
∫ x̂

x̂M
σEV, Re(x)dx. (4.7)

Next, the amplitude of the streamwise velocity ū(x̂,η) from the LUBR solution can be

similarly expressed as

|ū(x̂)|max = A(x̂) e
∫ x̂

x̂M
σEV, Re(x)dx, (4.8)

from which A(x̂), the streamwise-dependent receptivity coefficient, is implicitly defined.

The maximum amplitude of the streamwise velocity perturbation of the LUBR solution

can then be obtained given the EV solution and A(x̂), as shown by (4.8). This allows us to

investigate how the perturbation inside the boundary layer is influenced by the oncoming

free-stream disturbances as the parameters kxR, ky and G are modified. It is important to
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stress that the receptivity coefficient A= A(x̂) would be constant only if the growth rate of

the EV solution could entirely predict the changes in the streamwise direction associated

to the LUBR solution. In other terms, σEV, Re(x̂) should be equal to |ū′(x̂)|max/|ū(x̂)|max, i.e.,

the growth rate computed from the LUBR solution. However, this condition cannot become

true as the influence of the oncoming free-stream flow are not taken into account by the EV

solution.
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Fig. 4.26 Values of the normalized coefficient A(x̂) for different frequencies kxR and ky in the
case of G= 300 (left). Influence of the starting locations on the amplification factor N for the
LUBR and EV approaches at ky = 1, kxR= 0 and G= 300 (right).

The influence of ky and the frequency parameter kxR on the normalized A(x̂) are shown in

figure 4.26 (left) whereas table 4.5 defines the values A(x̂M) used to normalize the receptivity

coefficient. The increase of frequency causes the perturbations inside the boundary layer

to be more influenced by the oncoming free-stream flow. Only for x̂ sufficiently large and

kxR= 0 the receptivity coefficient becomes nearly constant. Boiko et al. (2017) also noted the

strong influence of frequency on their receptivity coefficient based on optimal disturbances.

Furthermore, we notice that the effect of the initial conditions ky increases with the increase

of frequency. In addition, the increase of G causes both the influence of ky to decrease

and the dependence of A(x̂) on x̂ to be less strong. This means that |ū(x̂)|max approaches a

pure exponential evolution for a larger range of x̂, which is in agreement to the exponential

solution (4.5) being valid for G≫ 1.
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kxR ky = 0 ky = 1 ky = 2
0 66.60 60.56 47.48

10 13.51 15.40 14.06
20 0.31 0.44 0.54

Table 4.5 Receptivity coefficient A(x̂M) for G= 300.

This analysis, performed for incompressible flows, can also be easily extended to include

compressibility effects.

4.2.4 N-factor

The amplification factor, alternatively labeled N-factor, has been thoroughly used in engineer-

ing applications for the prediction of transition (Jaffe et al., 1970; Van Ingen, 1956). From

our receptivity analysis, we here comment the effect of the disturbances in the free stream on

this parameter, defined as

N(x̂)≡
∫ x̂

x̂0

σ(x)dx, (4.9)

where σ indicates the growth rate calculated from the LUBR solution or the EV solution and is

associated to NLUBR or NEV, respectively. Engineers are used to associate the streamwise location

of transition to the value of N= 9, but this is an ambiguous estimation as demonstrated by

figure 4.26 (right) since the receptivity coefficient strongly depends on the initial location

where it is computed. In addition, when x̂ is held fixed, the N-factor computed from the LUBR

solution is much larger than the N-factor computed with the EV solution. This disagreement

accentuates if we start the computation of the N-factor from x̂ = x̂0 = 0, which is caused by

the EV approach being unable to solve the strong initial growth of the K-vortices near the

leading edge. On the other hand, when the computation of the N-factor begins at x̂ = x̂0 = x̂K,

i.e., where the amplification of Görtler vortices starts, the agreement between the LUBR and

EV solutions improves. An improvement is also noticed when x̂0 lies in the modal-growth

region. Nonetheless, we point out that x̂0 is still defined arbitrarily and, therefore, whenever

the N-factor is used to predict transition a careful verification on the conditions related to its

calculation must be performed. Even with the rigorous theoretical framework here introduced
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for Görtler flows the N-factor approach remains unreliable for the prediction of transition,

even though transition is not a direct consequence of Görtler vortices. Problems related with

the amplification factor approach have also been noted in the past by Smith (1955), Malik

et al. (1999) and Boiko et al. (2017).

4.3 Asymptotic results

The asymptotic exponents σ̆(x̆) in (3.75) denote the earliest growth of the Görtler vortices

triggered by the external free-stream disturbances. As the instability evolves, they turn into

the fully developed local eigenmodes σEV(x̂) of (3.26). From (3.95) the streamwise velocity

of the stage III solution multiplied by G−1/2 can be compared with the LUBR streamwise

velocity ū. Figure 4.27 shows that the growth rate and the streamwise velocity profiles

computed from the LUBR equations, the latter normalized by their peak values, tend to

the asymptotic solution as G increase. This is in accordance with the G ≫ 1 limit of the

asymptotic analysis, although it occurs at very high Görtler and at high x̂.
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4.4 Triple-deck results

Following the theoretical analysis introduced in §3.5, the highly oblique TS-waves found

in Ricco and Wu (2007) for the flat plate case, i.e. G = 0, are here also reproduced and

compared with cases for which G> 0. Numerical results of the critical streamwise location

x̄c where the TS-waves start to grow are summarized in Table 4.6. These values are computed

from the solution of the LUBR equations (3.9)-(3.13) and following the procedure of Ricco

and Wu (2007). It can be noted that the effect of curvature on the solution only appears for

κ ≥ 0.02 and G≥ 2397.3 approximately. This is consistent with the analytical results in §3.5

derived for κ ≪ 1 and G = O(1). Figure 4.28, graphically shows the results of Table 4.6

along with the triple-deck solution of (3.161).

G 0 47.95 95.9 239.73 2397.3 23973
κ

0.0025 41.07 41.07 41.07 41.07 41.07 41.07
0.01 15.02 15.02 15.02 15.02 15.02 15.02
0.02 7.11 7.11 7.11 7.11 7.13 7.15
0.03 9.74 9.74 9.74 9.74 9.77 10.08

Table 4.6 Numerical values of the streamwise location x̄c for different values of the Görtler
number G and κ , for M= 3.
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Chapter 5

Conclusions

For the first time, we have investigated the complete evolution of compressible Görtler

vortices over slightly streamwise-concave surfaces triggered by small-amplitude free-stream

disturbances of the gust type. Although only kinematic perturbations exist in the free stream,

the boundary layer is reigned by both velocity and temperature Görtler vortices that grow

significantly downstream through the inviscid unbalance between centrifugal and pressure

effects.

We have solved the boundary-region equations to investigate the receptivity of the

base flow to free-stream vortical disturbances and we have also adopted two eigenvalue

frameworks, based on the parallel and non-parallel flow assumptions, and a high-Görtler-

number asymptotic formalism, which has been revelatory of the different stages of evolution

of the Görtler instability from the leading edge. We have carried out a complete parametric

study on the effects of frequency, ratio of free-stream wavelengths, Mach number, and Görtler

number on the evolution of the Görtler vortices, focusing particularly on the growth rates,

streamwise length scale, and position of the velocity and temperature perturbations. We have

used the LUBR solution to solve the problem related to the neutral stability curves.

The crucial point is that both the initial conditions from the proximity of the leading edge

and the outer free-stream boundary conditions are determined by the oncoming free-stream

flow. This link is clearly elucidated in mathematical form in the milestone essay by Leib et al.

(1999), from which the work by Ricco and Wu (2007) and Wu et al. (2011) take inspiration.
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It is evident from the analysis that both conditions play a cardinal role in the development

and growth of the Görtler vortices. Despite the fact that the eigenvalue approach accounts

neither for the initial conditions, because it is a local approximation, nor for the free-stream

forcing, because it is based on an homogeneous system, it does correctly determine the

growth rate and streamwise length scale of the vortices sufficiently downstream from the

leading edge. The receptivity boundary-region solutions thus match the eigenvalue solutions

once the free-stream disturbance has decayed. However, it is only through the rigorous

receptivity framework that the amplitude of the Görtler vortices can be uniquely computed

and linked to the amplitude of the free-stream perturbation at each streamwise location.

Furthermore and arguably most importantly, the eigenvalue formulation leads to completely

incorrect results not only in the very proximity of the leading edge, but also at locations

comparable with the streamwise wavelength of the free-stream flow. These streamwise

stations may not be close to the leading edge and only the receptivity can inform us on where

the agreement between the two solutions is of good quality. This proves that the inclusion of

the correct initial and free-stream forcing is essential to compute the flow from the leading

edge, especially in supersonic conditions. It also means that, even if an amplitude were

assigned to the eigenvalue solution in order to use it for downstream computations and thus

somehow bypass the modeling of the receptivity process from the leading edge, the shape

of the velocity, temperature, and pressure profiles would be incorrect. It is unknown at this

stage how this mismatch may affect the subsequent computation of the nonlinear stages and

of the flow breakdown to turbulence. All these considerations are of course also true for the

incompressible case studied by Wu et al. (2011) and for the hypersonic cases at very high

Mach numbers, which falls outside the scope of the present work.

The asymptotic analysis based on the limit of high Görtler number is also recipient of

the same comments devoted to the eigenvalue approach, but it is an extremely powerful

tool for elucidating the physics of the Görtler instability, for example for distinguishing

between the inviscid core and the wall-attached thin viscous region, which together lead

to the construction of an accurate semi-analytical velocity profile. This and other physical

properties could only be revealed through the asymptotic approach and not through the full
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receptivity boundary-region approach. As we are driven towards both a thorough physical

understanding of the flow and accurate flow computations, this trident approach has proved

to be an invaluable, and arguably indispensable, tool for our receptivity study.

We of course look forward to high-quality experimental studies on compressible Görtler

flows forced by free-stream vortical disturbances, for the primary intent to attain quantitative

comparisons. We recognize that these laboratory endeavors are tasks of remarkable difficulty

for the achievement of a specified and fully measurable free-stream flow and for accurate

measurements of the velocity and temperature profiles within the boundary layer. The

nonlinear extension of the present work and the intimately linked secondary instability are

certainly research avenues of utmost interest that we are going to pursue.
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Appendix A

Numerical methodology

We here describe the numerical procedures used for the two theoretical frameworks, i.e.,

the LUBR framework and the eigenvalue framework. Through a careful grid convergence

analysis, the numerical results have been compared successfully with the results of Ricco

and Wu (2007) for the compressible flow over a flat plate and of Wu et al. (2011) for the

incompressible flow over concave surfaces.

LUBR framework

The code used to solve the LUBR equations for the optimal curvilinear coordinate system

is a modification of the code used by Ricco and Wu (2007) for a Cartesian coordinate

system. The code was also modified to introduce the independent variable x̂ instead of x̄. The

parabolic nature of the equations allows using a marching scheme. The equations (3.9)-(3.13),

complemented by the boundary conditions (3.14)-(3.19) and the initial conditions (3.20)-

(3.24), are solved with a second-order finite-difference scheme, central in η and backward in

x̂. In reference to figure A.1, the derivatives of a fluid property q(x̂,η) = {u,v,w,τ} are

∂q
∂η

≈ q j+1 −q j−1

2∆η
,

∂ 2q
∂η2 ≈ q j+1 −2q j −q j−1

(∆η)2 ,
∂q
∂ x̂

≈
3
2qi, j −2qi−1, j +

1
2qi−2, j

∆x̂
.

(A.1)
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Fig. A.1 Sketch of the regular grid (black) and staggered grid (gray) used for the numerical
scheme.

If the pressure is computed on the same grid as the velocity components, pressure decoupling

phenomenon occurs. Therefore, the pressure is computed on a grid staggered in η as

p ≈ p j+1 + p j

2
,

∂ p
∂η

≈ p j+1 − p j

∆η
, (A.2)

where the pressure at the wall does not have to be specified and it is calculated a posteriori

by solving the z-momentum equation at η = 0. Due to the linearity of the equations, the

system is in the form Ax = b. In a grid with N points along η , A is a (N − 2)× (N − 2)

block-tridiagonal matrix where each block is a 5×5 matrix associated to the 5 unknowns

(ū, v̄, w̄, p̄, τ̄). Therefore, the wall-normal index j of the vectors and matrix runs from 1

through N −2. The numerical procedure used to solve the linear system can be found in the

book of Cebeci (2002) on pages 260-264.

Eigenvalue framework

The eight first-order equations of the EV framework are discretized using a second-order

implicit finite-difference scheme. The original homogeneous system is solved by enforcing

the normalized boundary condition f̃ = 1, instead of ũ = 0, at η = 0. The initial guess for the

eigenvalue σ(x̂) is taken from the LUBR solution and iterated using the Newton’s method

until the original homogeneous boundary condition ũ = 0 is recovered. For this reason it is
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more computationally expensive than solving for the LUBR equations, which only require a

small streamwise discretization (Spall and Malik, 1989). The typical value for the number of

grid points N in the wall-normal direction and the streamwise discretization ∆x̂ is N ≈ 3000

with ηmax ≈ 30 and ∆x̂ ≈ 0.1.





Appendix B

Upstream behaviour of the LUBR

equations

In the limit of x̂ → 0 the LUBR solution can be obtained analytically for η = O(1) and

η → ∞. Summing these two solutions and subtracting their common parts, i.e., the values

in the region along η where both solutions are valid, we obtain the upstream perturbation

profiles that are uniformly valid for all η (3.20)-(3.24). These profiles provide the initial

conditions for the LUBR equations (3.9)-(3.13). Details on this analysis are found in Leib

et al. (1999), in which the initial conditions are equivalent, after rescaling in the (x̂,η)

coordinates, to the ones here summarized in the following steps:

1. The first step consists in writing the LUBR equations in terms of the variable

y(0) = (2x̂)1/2(kxR)
1/2η . (B.1)

in the limit η → ∞. Their solution that matches with the flow in the region IV of figure

3.1 outside the boundary layer is (Leib et al., 1999)

ū = 0, (B.2)

v̄ =
ieikxRx̂

(2x̂)1/2 (ky − i|kz|)
[
eiky(2x̂)1/2η̄−(k2

y+k2
z )x̂ − e−|kz|(2x̂)1/2η̄

]
+
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|kz|
(2x̂)1/2 eikxRx̂−|kz|(2x̂)1/2η̄

∫ x̂

0
g(x̆)e−ikxRx̆dx̆, (B.3)

w̄ =
eikxRx̂

ky − i|kz|
[
kyeiky(2x̂)1/2η̄−(k2

y+k2
z )x̂ − i|kz|e−|kz|(2x̂)1/2η̄

]
+

k2
z eikxRx̂−|kz|(2x̂)1/2η̄

∫ x̂

0
g(x̆)e−ikxRx̆dx̆, (B.4)

p̄ = g(x̂)e−|kz|(2x̂)1/2η̄ , (B.5)

τ̄ = 0. (B.6)

The limit of (B.2)-(B.6) for x̂ → 0 represent the first part of the upstream perturbation

profiles.

2. The second step consists in substituting the power series solution

q̄(x̂,η) =
∞

∑
n=0

(2x̂)n/2
[
2x̂ Un(η),Vn(η),Wn(η),(2x̂)−1/2Pn(η),2x̂ Tn(η)

]
(B.7)

for η = O(1) and x̂ → 0 into the LUBR equations (3.9)-(3.13) and equating the terms

of like powers of x̂. We obtain the system of ordinary differential equations for the

leading terms in the power series, n = 0,

C ⌉
(

ηcT ′

T
+2
)

U0 −ηcU ′
0 −

T ′

T 2V0 +
1
T

V ′
0 +W0 −

(
FT ′

T 2 +
2F ′

T

)
T0 +

F
T

T ′
0 = 0,

(B.8)

X |
(
2F ′−ηcF ′′)U0 −

[
F +

(µ
T

)′]
U ′

0 −
µ
T

U ′′
0 +

F ′′

T
V0 +

[
FF ′′

T
−
(

µ ′F ′′

T

)′]
T0

− µ ′F ′′

T
T ′

0 = 0, (B.9)

Y | P′
0 = 0, (B.10)
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Z |
(

F +
µ ′T ′

T
− µT ′

T 2

)
W ′

0 +
µ
T

W ′′
0 = 0, (B.11)

E ⌋ −ηcT ′U0 −
2M2(γ −1)µF ′′

T
U ′

0 +
T ′

T
V0 +

[
FT ′+2T F ′

T
− 1
Pr

(
µ ′T ′

T

)′

− M2(γ −1)F ′′2µ ′

T

]
T0 −

(
F +

2µ ′T ′

PrT
− µT ′

PrT 2

)
T ′

0 −
µ

PrT
T ′′

0 = 0, (B.12)

and the system of ordinary differential equations for the second-order terms in the

power series, n = 1,

C ⌉
(

ηcT ′

T
+3
)

U1 −ηcU ′
1 −

T ′

T 2V1 +
1
T

V ′
1 +W1 −

(
FT ′

T 2 +
3F ′

T

)
T1 +

F
T

T ′
1 = 0,

(B.13)

X | (3F ′−ηcF ′′)U1 −
[

F +
(µ

T

)′]
U ′

1 −
µ
T

U ′′
1 +

F ′′

T
V1 +

[
FF ′′

T
−
(

µ ′F ′′

T

)′]
T1

− µ ′F ′′

T
T ′

1 = 0, (B.14)

Y | P′
1 =

[
ηc(T F ′−FT −FT ′)+η2

c F ′′T − 4µ ′T ′

3

]
U0 +

1
3

[
µ −ηcT

(µ
T

)′]
U ′

0

− ηcµ
3

U ′′
0 +

(
−F ′−ηcF ′′+

FT ′

T

)
V0 +

[
F +

4
3

(µ
T

)′]
V ′

0 +
4µ
3T

V ′′
0 − 2µ ′T ′

3
W0

+
µ
3

W ′
0 +

[
FF ′+

F2T ′

T
+3µ ′F ′′−ηc(FF ′)′+ηcT

(
µ ′F ′′

T

)′
− 4

3

(
µ ′T ′F

T

)′]
T0

+

(
ηcµ ′F ′′− 4µ ′T ′F

3T

)
T ′

0, (B.15)

Z | −F ′W1 +

(
F +

µ ′T ′

T
− µT ′

T 2

)
W ′

1 +
µ
T

W ′′
1 + k2

z T P0 = 0, (B.16)
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E ⌋ −ηcT ′U1 −
2M2(γ −1)µF ′′

T
U ′

1 +
T ′

T
V1 +

[
FT ′+3T F ′

T
− 1
Pr

(
µ ′T ′

T

)′

−M2(γ −1)F ′′2µ ′

T

]
T1 −

(
F +

2µ ′T ′

PrT
− µT ′

PrT 2

)
T ′

1 −
µ

PrT
T ′′

1 = 0. (B.17)

These two systems must be solved by imposing the wall no-slip conditions on the

velocity and a null temperature gradient at the wall. The boundary conditions for

η → ∞ are found by expanding (B.2)-(B.6) for x̂ → 0 and η = O(1). It follows that

v̄ →−η − i
2
(2x̂)1/2(ky + i|kz|)

(
η2 +1

)

+
|kz|

(2x̂)1/2

[
1−|kz|(2x̂)1/2η

]∫ x̂

0
g(x̆)e−ikxRx̆dx̆+ ... , (B.18)

w̄ → 1+(2x̂)1/2i(ky + i|kz|)η + k2
z

∫ x̂

0
g(x̆)e−ikxRx̆dx̆+ ... . (B.19)

The small-x̂ asymptote of the unknown function g(x̂) must now be found. We do this by

matching (B.18) with the large-η limit of V0 in (B.7). Introducing the viscosity-induced

transpiration velocity Vc as

Vc =− lim
η→∞

(V0 −η), (B.20)

we find that for x̂ → 0

g(x̂)→− Vc

|kz|(2x̂)1/2 +g1 + ..., (B.21)

where the constant g1 is unknown at this point. Matching with the solution for pressure

(5.31) of Leib et al. (1999) shows that P0 →−Vc/|κ| and P1 → g1 +Vcη for η → 0.

After substitution of (B.21) into (B.19) and comparing with the form of the power

series, one finds that the boundary conditions for η → ∞ of W0 and W1 are W0 → 1

and W1 → i(ky + i|kz|)η −Vc|kz|, respectively. The boundary conditions on U0 and U1

are also easily found by comparing (5.20) of Leib et al. (1999) and τ̄ = 0 with the

power series solution. Therefore, U0 and U1 → 0 for η → ∞. No boundary condition

needs to be specified on the vertical velocity component, but the large-η asymptote of

V1 is useful for determining the constant g1. Indeed, setting U1 = 0 in the continuity
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equation (B.13) and using the large-η limit of W1, one finds that for η → ∞

V1 =−i(ky + i|kz|)
(

η2

2
−βcη

)
+Vc|kz|η + c1, (B.22)

where c1 is a constant depending on ky and kz. Matching the above expression with the

O((2x̂)1/2) term of (B.18) yields

g1 =
2c1

|kz|
+2Vcβc +

i
|kz|
(
β 2

c +1
)
(ky + i|kz|). (B.23)

3. Finally, comparing (B.7) with the small-x expansion (B.2)-(B.6), we find their common

parts, denoted by vc, wc and pc, as follows:

vc =−η −Vc +(2x̂)1/2
[
− i

2
(ky + i|k|)

(
η2 +1

)
+Vc|kz|η +

1
2
|kz|g1

]
, (B.24)

wc = 1+(2x̂)1/2
[
i(ky + i|kz|)η −Vc|kz|

]
, (B.25)

pc =
P0

(2x̂)1/2 +g1 +Vcη . (B.26)
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