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Abstract 

This pilot-scale study aimed at improving the design and operation of biofilters to 

achieve simultaneous significant odour and bioaerosol reductions from waste air 

streams emitted from enclosed waste management facilities, using a materials 

recovery facility (MRF) as the source of contaminated air. The specific objectives 

included (i) to determine the key biofilter design and operating parameters required 

for a high level of odour and bioaerosol removal and to refine operational ranges and 

firmly define boundary conditions between normal and abnormal biofilter operations; 

(ii) to  evaluate and characterise the concentrations of odour and bioaerosols that are 

being emitted as a result of waste management operations within the MRF; (iii) to 

evaluate the potential for biofilters to control bioaerosol emissions, and the potential 

for net emission of bioaerosols from biofilters both in terms of the overall 

concentration, and also the individual species; (iv) to determine the impact of gas 

residence time, media moisture content and media depth on simultaneous reduction 

of bioaerosols and odour in the process air; (v) to assess the impact of different 

biofilter media types (woodchips [old and new], peat and wheat straw) in terms of 

bioaerosol and odour emissions and removal; and (vi) to evaluate the possibility of 

improving a single biofilter for the removal of both bioaerosols and odour.  

A pilot-scale biofiltration system was constructed for this study and comprised of four 

vertical up-flow plastic reactors filled with wood chips as the initial biofilter media 

and connected to a common plenum. Each reactor had a media volume of 181.5 L 

located above an air-space (for air distribution) separated by a metal mesh which 

supported the media. A six-stage Andersen sampler was used to measure the 

concentrations of four groups of bioaerosols (Aspergillus fumigatus, total fungi, total 

mesophilic bacteria and Gram negative bacteria) in the airstream before and after 

passing through the biofilters and these were expressed as cfu m-3. Air for odour 

analysis was collected into air-tight Nalophan bags which were sent off to Concept 

Life Science odour testing laboratory for analysis within 30 hours of sampling. 

Olfactometry analysis was carried out on the odour samples in accordance with BS 

EN 13725 to determine the odour concentration of the samples in European odour 

units (OUE m-3). The performance of the pilot biofilters was evaluated on the basis of 

removal efficiency (%) for odour and bioaerosols.  
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The data showed that the concentration of bioaerosols in the process air (as indicated 

by the inlet air samples) varied from visit to visit in the range of 103 – 105 cfu m-3. 

The concentration of odour in the process air also varied between visits typically 

ranging from 94 to 489 OUE m-3. This was thought to be due to the complex 

interactions between the specific process operating conditions, the types of waste 

being processed and the configuration of the air ventilation system installed on the 

site. Overall, this study shows that biofilters designed and operated for odour 

degradation can also achieve significant bioaerosol reductions in the process air of 

waste treatment facilities, provided that the inlet concentration is high - which is the 

case for most enclosed waste treatment facilities. The biofilters achieved average 

removal efficiencies of 70% (35 to 97%) for A. fumigatus, 71% (35 to 94%) for total 

fungi, 68% (47 to 86%) for total mesophilic bacteria and 50% (-4 to 85%) for Gram 

negative bacteria, while odour reduction efficiency was in the range of 34 – 76%. 

Thus, biofilters can be effective for the control of potentially pathogenic species in 

the emissions from such treatment facilities. The performance of the biofilters was 

highly variable at low inlet concentration with some cases showing an increase in 

outlet concentrations, suggesting that biofilters had the potential to be net emitters of 

bioaerosols. Bioaerosol particle size distribution varied between the inlet and outlet 

air, with the outlet having a predominantly greater proportion of smaller size particles 

(3.3 µm) that represent a greater human health risk as they can penetrate the 

respiratory system more deeply, and even to the lung alveoli where gaseous exchange 

occurs. However, the outlet concentrations were low, and further reduction would be 

achieved by the combined effect of wind dilution and dispersal as well as exposure to 

environmental stress from temperature, desiccation and oxygen in full scale biofilter 

applications.  

It appears that variations in gas residence time may not impact on bioaersosol 

removals; thus, gas residence time may not be critical for bioaerosol control. 

However, longer empty bed residence time (EBRT) delivered significant (p < 0.05) 

reductions in odour compared to shorter EBRT, implying that the longer EBRT 

accommodates the time required for both odorous contaminants diffusion transfer 

from the gas phase into the biofilm, and their subsequent biodegradation within the 

biofilm layer on the media materials, as established in literature. There also appears 

to be no media moisture content dependent differences (p > 0.05) in the bioaerosols 

reductions reported in this study. On the other hand, although not statistically 
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significant (p > 0.05), differences did exist in odour performance between the two 

groups, with the higher moisture content (40 – 70%) consistently showing better 

removals (odour RE range of 44 – 63%) than media moisture content in the range of 

10 – 40%. 

Furthermore, the two media depths (0.50 m and 0.25 m) investigated in this study 

showed potential capacity to control bioaerosols emissions from the process air of the 

MRF, and possibly other waste treatment facilities. Both depths achieved significant 

(p < 0.05) reductions of the inlet concentrations of bioaerosols as measured at the 

outlet. Although there were no statistically significant differences between the 

performances of both media depths, the 0.5 m media depth showed improved control 

of fungi than bacteria while the 0.25 m media depth had better removals of bacteria 

than fungi. This observation with the higher media depth has been thought to be a 

function of the large surface available for particles impaction; airflow rates and larger 

particles of fungi. 

From the data, there were variations in the performance of the different media types 

assessed. Peat consistently delivered the highest simultaneous reduction of odour and 

bioaerosols; however, this was a much more expensive option. The performance of 

the wheat straw was the poorest both in terms of bioaerosols and odour reductions. 

Woodchips appeared to be the preferred choice particularly because they are relatively 

cost effective and offered satisfactory odour and bioaerosol removals (though not as 

high as peat). Nonetheless, the data indicated that the performance of woodchips may 

improve over time especially as the one year old woodchips indicated better removals 

of odour than the new woodchips which were freshly acquired for this study. 

Overall, this study suggests that the ideal biofilter to simultaneously control 

bioaerosols and odour would be a woodchips-based reactor operated with a minimum 

media depth of 0.50 m and an EBRT of 16 s maintained at a moisture content level of 

between 40 and 70%, all of which lie within operational ranges reported in literature. 
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Chapter 1 

INTRODUCTION 

1.1  Background 

With continued emphasis on meeting the landfill diversion targets in the UK as 

established in the Landfill Directive (1999/31/EC) and with the launch of the Landfill 

Allowance Trading Scheme (LATS) in 2004 (Calaf-Forn et al., 2014), there has been 

an increase in the number of waste management facilities (Stagg et al., 2010; 

Environment  Agency, 2017). Some of these facilities are enclosed, and can include 

mechanical biological treatment (MBT), in-vessel composting (IVC), anaerobic 

digestion (AD) and materials recovery facilities (MRF) or combinations of different 

waste management systems. These facilities, while achieving cutting edge recycling 

performance and value recovery from waste streams, have the potential for air 

pollution within the facility and externally via their extract ventilation especially due 

to odour and bioaerosol emissions. 

Bioaerosols, which comprise predominantly plant pollen, microorganisms (viable or 

non-viable) and/or microbial metabolites, have the potential to cause health problems 

in exposed persons with symptoms such as irritation of the respiratory tract and eyes, 

coughing, wheezing, tiredness, rashes on skin, diarrhoea, asthma, headache, allergic 

rhinitis and hypersensitivity pneumonitis (Husman, 1996; Menetrez et al., 2009). 

Studies have shown that bioaerosol exposure can cause ill-health in exposed 

population  (Douwes et al., 2003; Searl, 2008; Pearson et al., 2015). Lower forced 

vital capacity was reported in exposed compost workers (n = 190) compared to the 

controls (n = 38) (van Kampen et al., 2012). Hambach et al. (2012), while assessing 

work-related health symptoms among compost workers, reported an elevated 

proportion of the exposed group (n = 31) presenting with respiratory symptoms 

(29.0%), eye, nose and throat irritation symptoms (35.5%), gastrointestinal symptoms 

(29.0%) and skin rashes (20.0%) as against the control group (n = 31) who showed 

3.3%, 13.3%, 6.7% and 0.0%, respectively, for these symptoms. The risk of waste 

workers’ exposure to bioaersols may be dependent on the task they are undertaking 

(mostly indoors for enclosed facilities), their proximity to the source of bioaerosols 

and the abatement system being used on site (Stagg et al., 2010). 
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Odours, on the other hand, can be described as “the property of a chemical substance 

or substance mixture, (dependent on the concentration), to activate the sense of smell 

and thus [cause] an odour sensation” (The Composting Association, 2004). The odour 

sensation is usually perceived by a person to be offensive and/or unpleasant, thus, 

constituting nuisance. Blazy et al. (2014) assessed the odorous emissions for a forced 

aeration composting system treating sludge from a pig slaughterhouse and identified 

nine potential odorous compounds including Hydrogen sulphide, Trimethylamine, 

Dimethyl disulphide, Dimethyl sulphide, Ammonia, Dimethyl trisulphide, 

Acetophenone, 2-Pentanone, and 1-Propanol-2-methyl. Odour nuisance and strict 

enforcement of laws towards treatment of polluted air encourage operators to seek out 

efficient ways of treating waste gases from their facilities. Many technologies (such 

as wet scrubbers, incinerators, adsorption on activated carbon and masking agents) 

have been developed and applied to achieve this with varying degrees of success 

(Devinny et al., 1999; Fulazzaky et al., 2013). However, these technologies present 

with various pitfalls such as transfer of pollutants from the gas phase to solid 

adsorbents or scrubbing liquids, thus, resulting in solid waste and wastewater 

treatment considerations (Lin et al., 2001; Chung et al., 2007). Because the 

concentrations of the pollutants in the gas to be treated are relatively low, it becomes 

expensive to apply the aforementioned traditional air pollution control technologies 

(Wani et al., 1999). 

In the UK, the Environment Agency (EA) is responsible for regulating waste 

management facilities, usually done through the granting of Permits to Operate. Part 

of the EA’s remit is to ensure that odours and bioaerosols do not adversely impact the 

surrounding population (Frederickson et al., 2013), and so have included bioaerosol 

monitoring requirements as an environmental permit condition, and to assess the 

performance of abatement systems under operation in such facilities (Environment  

Agency, 2017).  The EA gave a precautionary guidance for composting operators 

when applying for operating permits. This guidance stipulates that concentrations of 

bioaerosols (as predicted or measured directly) need to be maintained no higher than 

acceptable levels at 250 m from the composting site or the nearest sensitive receptor 

(such as a dwelling or workplace which is not part of the composting site), whichever 

is closer (Environment  Agency, 2010). These acceptable levels have been defined as 

500 cfu m-3, 1000 cfu m-3  and 300 cfu m-3 for Aspergillus fumigatus, total bacteria 

and Gram-negative bacteria, respectively, as measured by the standardised monitoring 
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protocol (i.e. the AfOR protocol later replaced in 2017 by the M9 protocol). However, 

an updated regulatory position statement (RPS) on monitoring bioaerosols at 

regulated facilities was provided by the EA in January 2018, and excluded the 

reporting of Gram-negative bacteria (Environment  Agency, 2018b). In the UK, there 

are no regulatory occupational limits for bioaersols as the acceptable levels stated 

above are not based on dose-response relationships (Pearson et al., 2015). However, 

the Control of Substances Hazardous to Health (COSHH) Regulation issued by the 

Health and Safety Executive (HSE) provides employers with the requirements for 

assessing, monitoring and controlling the exposure of employees to hazardous 

substances in work environments (HSE, 2013), and thus, applies to workers in waste 

handling facilities. In Germany, there is a regulatory occupational limit of 50 000 cfu 

m-3 for mesophilic fungi (including A. fumigatus) in breathable air within the 

workplace (BAUA, 2013 cited in Pearson et al., 2015).  

Biofilters have been used as an abatement method in the waste management industry 

for many years with varying degrees of success. Biofilters are three phase bioreactors 

(gas, liquid, solid) composed of filter beds which have high porosity; high buffer 

capacity; high nutrient availability and high moisture retention capacity which 

altogether provide suitable internal environments that support the growth and 

attachment of a mixed-culture of pollutant-degrading microorganisms (Elias et al., 

2002; Dastous et al., 2005). Biofilters offer a cost-efficient and potentially 

environmentally friendly alternative to traditional air treatment technologies, 

particularly for odour and gas treatment because of the low energy requirement; 

relatively low construction costs; no generation of secondary pollutants that require 

subsequent disposal; and capacity to treat a broad spectrum of gaseous compounds 

(Devinny et al., 1999; Fulazzaky et al., 2014). Biofilters are a method of biological air 

treatment systems that utilise populations of microorganisms to convert certain 

organic and inorganic pollutants into compounds and/or forms that are less toxic 

and/or odourless. The microbial population, which may be dominated by a single 

species or be composed of different interacting species, employ oxidative, and 

sometimes, reductive reactions to convert the airborne pollutants into CO2, water 

vapour, and to increase their population using these pollutants as energy and carbon 

sources (Fletcher et al., 2014). The design and operation of the early biofilter systems 

were based on a very basic understanding of their method of operation. Although in 

recent years the structural materials used for biofilters have become more 
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sophisticated, and in the UK there is a move towards using emission stacks, the 

fundamental design criteria have changed very little (Fletcher et al., 2014). 

Several studies have been carried out over the past two decades, in an attempt to better 

understand the principles of biofilter design and operation to achieve significant odour 

and bioaerosol removal. Some of these have looked at the microbiology of the 

biofilters (Juteau et al., 1999), technical characteristics(Pagella and De Faveri, 2000), 

performance (Jorio et al., 2000), modelling (Alonso et al., 1999), and economic 

viability (Gao et al., 2001). It is acknowledged that biofilters offer a versatile and cost 

effective option for the management of contaminated air from waste handling and 

treatment facilities (Devinny et al., 1999; Kummer and Thiel, 2008; Frederickson et 

al., 2013). However, there is a lot of contradictory data and many gaps in the 

knowledge which need to be addressed if biofilters are to be designed to effectively 

control all emissions and to perform efficiently. In particular several authors have 

suggested that media characteristics such as porosity, moisture content, nutrient 

content, temperature and water retention capacity are the most important factors 

governing biofilter performance, although the optimum ranges quoted in the literature 

vary significantly from one author to another (Devinny et al., 1999; Nicolai and Janni, 

2001a; Quigley et al., 2004; Schlegelmilch et al., 2005a; Álvarez-Hornos et al., 2008; 

Frederickson et al., 2013). Other authors suggest that operating parameters such as 

empty bed residence time (EBRT), contaminant loading rate and upflow or downflow 

configuration are important factors but again there seems to be little consensus as to 

what the optimum ranges are (Leson and Winer, 1991; Lu et al., 2002; Chen and Hoff, 

2009; Liu et al., 2009). 

Recent studies by Frederickson et al. (2013) and Fletcher et al. (2014) have evaluated 

the performance of laboratory-scale and full-scale biofilters in terms of their capacity 

for simultaneous control of odour and bioaerosols by considering what parameters 

were vital in defining what design, conditions and maintenance schedules were 

required for optimum performance. In particular, the study by Fletcher et al. (2014), 

with an overall objective to determine the extent to which abatement methods 

incorporating either open or enclosed biofilters can reduce both bioaerosols and odour 

emissions from enclosed biowaste treatment operations, provided remarkable input 

into the current knowhow in the industry by bringing together all existing knowledge 

and research relating to the performance of biofilters and benchmarked the 
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performance of full scale biofilters operated under ideal conditions (Fletcher et al., 

2014).  The key findings of this study included:  

(i) Well designed, operated and maintained biofilters were capable of achieving 

significant and sustainable reductions in biowaste odours up to 94% (with 

outlet concentrations in the range of 200 to 5500 OUE/m3);  

(ii) Despite the fact that biofilters can achieve bioaerosols reductions, 

performance was variable with time and from site to site; and at low 

concentrations biofilters may be net emitters, particularly, of fungi;  

(iii) The impact of the design and operating parameters of biofilters varies and the 

key variables do not appear to be the same for both odour and bioaerosols; 

which may reflect the different removal mechanisms involved;  

(iv) The use of upstream scrubbers prove beneficial with regards to removal of 

bioaerosols, dust and potentially toxic pollutants (e.g. ammonia) that may 

adversely affect biofilter performance; and so biofilters either in isolation or 

in combination with scrubbers represent a candidate Best Available 

Technology (BAT) for odour control in biowaste facilities, especially if 

properly designed and operated.  

However, these studies concluded that the literature contains apparently contradictory 

information regarding the impact of biofilter design and operating parameters (such 

as empty bed residence time, moisture content, media pH and temperature) on odour 

and bioaerosol emissions and removal. This is a major issue for waste management 

operators and regulators as there is no clear guidance in terms of design and operating 

parameters that would provide a robust evidence base against which to benchmark the 

effectiveness of existing biofilters and future abatement system proposals including 

biofilters. Although bioaerosols removal mechanisms by biofilter have been thought 

to include inertial deposition, diffusional (or Brownian) deposition and flow line 

interception (Ottengraf and Konings, 1991), Frederickson et al. (2013) recommended 

that further research is required to determine the relationship between odour and 

bioaerosol emissions from biofilters to determine the extent to which biofilters may 

be used to effectively reduce both odour and bioaerosols, and to identify best practice 

techniques for optimising biofilters to maximise control of both odour and bioaerosol 

emissions. This is especially necessary because of the differences in the removal 

mechanisms of odour and bioaerosols. Literature suggests that odour removal 
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mechanisms is dependent on sorption of the odorous compounds into the biofilm layer 

on the media surface where biodegradation takes place, a function which relies on 

long residence time; whereas bioaerosol removal is achieved via particle impaction 

onto the media particles, and so an extended residence time may not impact positively 

on removal (Devinny et al., 1999; Fletcher et al., 2014). Thus, it is imperative to 

develop a better understanding of biofilter design and effective performance 

monitoring techniques especially if they are to continue to control all emissions and 

achieve their full potential. 

1.2  Research Questions 

From the review of the existing literature, it is apparent that much has been reported 

on the performance (removal efficiencies and elimination capacities) of biofilters in 

composting facilities especially regarding odour removal. Other studies have 

highlighted the potential of two-stage systems for mitigating odours from swine 

facilities especially because of their advantage of preventing media compaction (Chen 

and Hoff, 2012). This has stimulated a discussion regarding the improvement of these 

systems and how to adapt them for control of odour and bioaersols in enclosed 

biowaste treatment plants, with the following questions: 

(i) Can biofilters achieve significant simultaneous removal efficiencies for 

odours/odorous compounds and bioaerosols emitted from enclosed waste 

management facilities? 

(ii) What design parameters and operating factors can be manipulated to achieve 

these high removal efficiencies for odours and bioaerosol emissions? 

(iii) Can two-stage biofilters systems which are set up to prevent media compaction 

provide better removal efficiencies for odour and bioaerosols over single stage 

biofilters? 

(iv) Are there specific media types or combinations of different media or media 

mixes that can achieve significant simultaneous reduction of odour and 

bioaerosols emitted from enclosed waste management facilities? 

(v)  Are there any similarities or differences in the inlet and outlet species 

composition of bioaerosols for enclosed biowaste facilities? 
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1.3  Research Aim 

The overall aim of this research project was to characterise the design and operating 

parameters of biofilters with a view to improving their design and operation to achieve 

simultaneous significant reduction of odour and bioaerosol emissions from enclosed 

waste management sites. 

1.4  Research Objectives 

The study approach focused on a series of pilot-scale biofilter experiments at a 

materials recovery facility (MRF) to test design and operational parameters with a real 

source of typical contaminated air. The objectives were defined as follows:   

(i) To determine the key biofilter design parameters and operating parameters 

required for a high level of odour and bioaerosol removal and to refine operational 

ranges and firmly define boundary conditions between normal and abnormal 

biofilter operations.   

(ii) To evaluate and characterise the concentrations of odour and bioaerosols that are 

being emitted as a result of waste management operations within the MRF. 

(iii) To evaluate the potential for biofilters to control bioaerosol emissions and the 

potential for net emission of bioaerosols from biofilters both in terms of the overall 

concentration, and also the individual species. 

(iv)  To determine the impact of gas residence time, media moisture content and media 

depth on simultaneous reduction of bioaerosols and odour in the process air. 

(v)  To assess the impact of different biofilter media types (woodchips [old and new], 

peat and wheat straw) in terms of bioaerosol and odour emissions and removal.  

(vi)  To evaluate the possibility of improving a single biofilter for the removal of both 

bioaerosols and odour. 

1.5  Scope of the Research 

This study employed pilot scale studies to achieve the aim and objectives over the 

study period of 14 months (May 2015 – July 2017). The pilot study was conducted in 

a materials recovery facility owned by Associated Waste Management Ltd (AWM), 

located on Gelderd road, Leeds. A pilot scale biofilter system (consisting of four 

biofilter units) was constructed and commissioned at the AWM site, with each unit 
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evaluated for odour and bioaerosols (as removal efficiencies in %) under various 

design and operating conditions.  

1.6  Significance of the Research 

According to Fletcher et al. (2014), biofilters do represent a viable abatement system 

for odours and bioaerosols generated from biowaste treatment facilities. Their study 

reported that biofilters have the capacity to achieve an effective level of odour and 

bioaerosol removal, and are applicable to a variety of biowaste processing operations 

currently in use in the UK. However the study also raised a number of key issues that 

still need to be addressed regarding the performance of biofilters. 

This research provides a significant amount of fundamental data relating to the key 

design and operating parameters and their impact on the ability of biofilters to remove 

high concentrations of bioaerosols and odour generated at enclosed waste 

management facilities. It also provides data on the performance of poorly designed 

and operated biofilters and those that have had some kind of operational failure. This 

will enable operators and regulators to understand how biofilters cope under extreme 

operating conditions outside the established norms. 

Although single biofilter systems can provide effective bioaerosol and odour 

reduction there is a question as to whether they can ever achieve significant reductions 

in bioaerosols and odour simultaneously. This research also assessed the potential for 

improving bioaerosol and odour removal in a single system, which has not been 

looked at previously. In addition the study has assessed the performance of different 

biofilter media types for simultaneous reductions of bioaerosols and odour emissions 

from these facilities. 

The findings of this study will provide operators and regulators with a much more 

comprehensive understanding of the design, operation and performance of biofilters, 

which in turn will provide regulators with a more robust, evidence-based process to 

regulate and grant permits for biowaste treatment facilities. This will become 

increasingly important given that the number of enclosed biowaste treatment facilities 

is likely to continue to increase in response to current waste management legislation. 

The findings of this research will also add to the data pool for further analysis and 

inferences by researchers and stakeholders both in academia and industry. 
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Furthermore, even though the focus of this research is on treatment of waste gas 

emitted from enclosed biowaste treatment facilities, the knowledge gained can be 

extended to other facilities (such as anaerobic digestion facilities and wastewater 

treatment works) with huge potential for significant emissions of odour, volatile 

organic compounds and bioaerosols. 

1.7  Organisation of Chapters 

This thesis is organised in ten chapters, with Chapter 1 highlighting the study 

background with clearly defined research questions, aim and the objectives of the 

study. Chapter 1 also presents the scope of this project as well as the significance of 

the study especially to the operators and regulators within the waste management 

industry. 

Chapter 2 focuses on addressing some aspects of objective 1 through an in depth 

literature review on odour and bioaerosols emissions at waste management facilities, 

mitigation of these emissions using biofilters alone and biofilter/scrubber 

combinations with a discussion of the key aspects of design and operation of biofilters 

that are considered vital for achieving optimum performance of biofilters. This 

chapter also presents a summary of the gaps in the knowledge which must be 

addressed if biofilters are to be designed and operated to effectively control all 

emissions. In addition to the comprehensive literature review in Chapter 2, each 

results chapter (Chapters 4 – 8) also presents a more specific introductory literature 

review to set the tone for the specific objective and results discussed in those chapters. 

Chapter 3 describes the methods employed in achieving the objectives of this study, 

and covers the design and fabrication of the pilot-scale biofilters, the study site 

selection, the air sampling methods applied for bioaerosols and odour analyses, the 

biofilter performance assessment and data analysis carried out to fulfil the research 

aim. In addition to the general methodologies presented in Chapter 3, each result 

chapter (Chapters 4 – 8) also includes detailed methodologies that are specific to the 

experiments presented in those chapters. 

Chapter 4 is the first result chapter, and presents elements of this research project that 

have been published in a paper entitled ‘Pilot-scale biofiltration at a materials 

recovery facility: The impact on bioaerosol control’ in Waste Management journal 

(Ibanga et al., 2018). This chapter presents the initial biofilter performance assessment 
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for bioaerosol control, investigating the impacts of gas residence time and inlet 

bioaerosols concentration as well as the net bioaerosol emitting potential of biofilters. 

It also assesses the impacts of biofiltration on particle size distribution between inlet 

and outlet air samples. 

In Chapter 5, the focus is on assessing the impact of gas residence time on the 

simultaneous control of bioaerosols and odour. The objectives of the study included 

(i) to assess the variability of the inlet concentrations of bioaerosols and odour (ii) to 

assess the performance of three levels of empty bed residence time (EBRT) – 11 s, 16 

s and 70 s – in terms of removal efficiencies (REs), bioaerosol load removal (L) and 

bioaerosol removal rate (R) and (iii) to assess the effects of EBRT on particle size 

distribution between inlet and outlet samples of all biofilters (BFs).  

Chapter 6 presents the findings of experiments which assessed the impacts of media 

moisture contents on the simultaneous control of bioaerosols and odour. The main 

objectives were focused on (i) assessing the performance of two levels of media 

moisture content – 10 to 40% and 40 to 70% – in terms of bioaerosols and odour 

reductions, bioaerosol load removal (L) and bioaerosol removal rate (R) and (ii) 

assessing the effects of media moisture content on particle size distribution between 

inlet and outlet samples of all BFs. 

In Chapter 7, the objective was to assess the impact of biofilter media depth on the 

reduction of bioaerosols. Thus, the performance of two media depths – 0.5 m and 0.25 

m – were assessed in terms of removal efficiencies, bioaerosol load removal (L) and 

Bioaerosol Removal Rate (R) and their effects on the particle size distribution between 

inlet and outlet samples.  

Chapter 8 presents the findings of the experiments to determine the impact of media 

types on simultaneous control of bioaerosols and odour. The media assessed include 

old and new wood chips, peat and wheat straw. This chapter also presents the results 

of the assessment of the impact of media age on simultaneous bioaerosol and odour 

removal; as well as the assessment of the impact of media type on bioaerosol particle 

size distribution between biofilter inlet and outlet air samples. 

Chapter 9 presents a general discussion of the data obtained from the sampling carried 

out as part of this study, and explores how these fit relative to the existing body of 

knowledge in the literature within the context of the original research questions 

presented in Chapter 1. Chapter 9 also comments on the variability in the data and the 



- 11 - 

benefits and limitations of using pilot scale approaches. This is followed by Chapter 

10 which summarises the key conclusions of this study and the recommendations for 

future research. 
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Chapter 2 

LITERATURE REVIEW 

2.1  Introduction 

This chapter presents an in depth review of existing literature on odour and 

bioaerosols emissions at waste management facilities as well as the mitigation of these 

emissions using biofilters alone and biofilter/scrubber combinations with a discussion 

of the key aspects of design and operation of biofilters that are considered vital for 

achieving optimum performance of biofilters. This chapter also highlights the gaps in 

knowledge which must be addressed if biofilters are to be designed and operated to 

effectively control all emissions.  

2.2  Review on odours and odour emissions 

In the UK, emission of odorous compounds from biowaste treatment facilities 

continues to be of major concern especially because of the possibility of constituting 

odour nuisance to residents in the immediate vicinity of such facilities; thus, 

generating complaints which may have a bearing on planning applications, permit 

determinations and/or even prosecutions, and may also lead to a lack of acceptance of 

such facilities (Schlegelmilch et al., 2005b; Jacobs et al., 2007). Apart from the 

potential for constituting odour nuisance, emissions of odour can have health 

implications, especially psychologically-motivated impacts as suggested by several 

studies (Dalton et al., 1997; Dalton, 1999; Dalton, 2002; Smeets et al., 2002; 

Shusterman, 2002). The releases of odours into the environment have been implicated 

in health complaints with symptoms including nausea, headache, dizziness, and 

irritation of body parts such as the eyes, nose and throat (Steinheider et al., 1998; Herr 

et al., 2003). Defra (2010) reports that people with health problems show a higher 

likelihood of undergoing odour nuisance and annoyance than healthy ones for the 

same level of odour exposure, and people who feel anxious that odour has potential 

health risks show more tendencies to experience odour-triggered annoyance. 

Every biowaste has the potential for odour releases,  hence it becomes imperative for 

site operators to give some level of guarantee to local residents and regulatory bodies 

that odours can be contained and minimised to as low as reasonably practicable. This 

avoids the cascade of public nuisance and mass rejection of these facilities which may 

reflect badly on the industry (Jacobs et al., 2007). This section presents information 
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from current literature on what odours are, their key attributes, odour generation from 

biowaste treatment facilities and key odorous chemical compounds generated from 

operations of these facilities. This is important, because for there to be effective 

understanding and planning of odour abatement and management at biowaste 

treatment sites, it is vital to have a vast knowledge on all these aspects of odours.  

2.2.1  What are odours? 

Odours can be defined as the stimuli from chemical compounds that are volatilised in 

air (Defra, 2010). The Composting Association also describe odour as “the property 

of a chemical substance or substance mixture, (dependent on the concentration), to 

activate the sense of smell and thus [cause] an odour sensation” (The Composting 

Association, 2004). A key distinction is set between odour and malodour by Jacobs et 

al. (2007) who define odour as a volatile substance or mix of volatile substances which 

are perceived through the sense of smell, and malodour as odour which is considered 

unpleasant and offensive in nature by a person. This brings about the differences in 

odour perception among various people because the interpretation of an olfactory 

sensation as odour depends on the perceiving individual who may interpret it to be 

pleasant or unpleasant (Defra, 2010). Thus, the key concern for odour emissions from 

biowaste treatment facilities is the tendency to trigger sensation that is perceived to 

be offensive or objectionable. In order to fully appreciate the relative contribution of 

odour sources from biowaste facilities and their potential to cause deplorable impacts, 

it is important to have an understanding of the perception of odour as well as the key 

odour attributes. 

2.2.2  Odour Perception 

Jacobs et al. (2007) stated that for odour to be perceived, three important criteria must 

be met; these include (a) that the chemical must be released into the air, (b) that it is 

then dissolved in the olfactory mucus (composed mostly of water), and (c) that 

receptor nerve cells must be available for detection (Figure 2.1). In humans, the 

odorant molecules in air are transported over the olfactory epithelium in which are 

embedded approximately 350 different types of receptor cells, with each containing 

only one type of G-protein-coupled receptor that is capable of responding to a range 

of chemicals (Buck, 2000; Jacobs et al., 2007). Thus, when air containing molecules 

of odorous chemicals or mixtures of such chemicals arrive on the receptor surface, 

these molecules bind to a range of different receptors.  
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A single chemical is capable of activating several types of receptors, and so a mixture 

of chemicals is capable of creating a much more complex response on many receptors; 

thus, resulting in the ability to differentiate between thousands of diverse smell and 

odour combinations (Jacobs et al., 2007). Buck (2000) noted that the signal from the 

receptor has a temporal component which describes the fast or slow binding of certain 

chemicals, and the consequence of interactions at the receptor binding sites. Signals 

from each of the activated G-protein-coupled receptors are relayed to a glomerulus, 

which is a structure located within the olfactory bulb. The signals from the glomerulus 

form a spatial and temporal pattern, which is then used as the input for cortical 

processing in higher brain centres, particularly the piriform (primary olfactory) cortex 

(Stevenson and Wilson, 2007). 

 

Figure 2. 1: The pathway of odour perception (Dalvi, 2013) 
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2.2.3 Odour attributes and characteristics 

It is essential, at this point, to offer some of the descriptions of odours to aid 

understanding especially from the complainants’ point of detection. Some of the 

attributes described in this section include odour units and thresholds, odour intensity, 

the hedonic tone and quality of odours.    

2.2.3.1  Odour units and thresholds (concentration) 

The odour unit (OU) is defined by Defra (2010) as a sensory measurement of the 

concentration of a mixture of odorous compounds in a sample of air, and which is 

expressed as a European odour unit or 1 OUE by the BS EN 13725 standard. Odour 

threshold, on the other hand, describes the concentration at which odour is just 

detectable by the human nose; a concept which offers the basis for olfactometry 

(Defra, 2010). The European Standard (BS EN 13725:2003) stipulates the 

standardised methods for determining and reporting odour detectability or 

concentrations (Curtis, 2009).  

Two types of odour thresholds have been described - the absolute and the difference 

thresholds (Gemert, 2011). The absolute threshold can be categorised into two,  

(a) the detection threshold which is the concentration at which an odour just 

becomes strong enough to create a sensation within controlled conditions such 

as in an odour laboratory set ups e.g. the concentration that is just detected by 

a panel of human “sniffers” (and it is the concentration of 1 OUE m-3 ); and  

(b) the recognition threshold which is the concentration at which an odour 

becomes identifiable or recognisable as a specific odour, and  is generally 

higher than the odour detection threshold (Defra, 2010; Gemert, 2011).  

The difference threshold of odour defines the smallest change in concentration of a 

substance required to give a perceptible change.  

Table 2.1 shows a selection of regulatory limits and measurements for odour in some 

member states of the European Union (EU). No statutory limits have been defined for 

ambient odour concentrations (whether for individual or mixtures of odorous 

compounds) in the UK. Nonetheless, odour benchmark levels (Table 2.2) have been 

defined by the Environment Agency in a guidance on odour issued for use in the 

evaluation of potential emission impacts from plants which are regulated under the 

2010 Environmental Permitting Regulations for England and Wales (and the 

subsequent amendments); where the benchmark levels for odours of different 
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offensiveness are given as the 98th percentile of hourly mean concentrations in 

European odour units (OUE) over a year (Redmore, 2012). As already stated, there is 

a wide variation in perception and sensitivity for different people; thus, the threshold 

value obtained in olfactometry is based on statistics which reflects an average 

response from 50% of a panel of human “sniffers” (Defra, 2010). 

Table 2. 1: Odour limits in some EU member states (The Composting Association, 

2004) 

Country  Limit and description 

Austria MBT plants: 500 OUE m-3 with a minimum distance from 

residential property of 500m 

Denmark 500-meter distance to the nearest neighbour 

5 to 10 OUE m-3 at the nearest neighbour 

Germany Relative frequency of 10% (percentage of hours a year with 

odour hours considered to be a significant nuisance) for 

residential areas. For industrial areas the percentage rises to 

15%. An 'odour hour' is any hour in which there is a continuous 

odour perception for a period of 6 minutes (Federal Standard, 

GIRL) 

Holland 1.5 OUE m-3 as 98 percentile for green waste and household 

organic waste composting 

Ireland Based on olfactometry 

• 3 OUE m-3 at the 98th percentile for new facilities 

• 6 OUE m-3 at the 98th percentile for existing plants 

United 

Kingdom 

No set limit. Any of the following could be applied: 

• No nuisance 

• No odour at the plant boundary 

• X ppb H2S 

• 6 OUE m-3 at the 98th percentile for existing facilities. 
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Table 2. 2: The Environment Agency Odour Benchmark Levels (Redmore, 2012) 

Relative Offensiveness of Odour Benchmark Level as 98th Percentile 

of 1-hour Means (OUE m-3 )* 

Most offensive odours:  

 Processes involving decaying 

animal or fish 

 Processes involving septic 

effluent or sludge 

 Biological landfill odours 

 

 

1.5 

Moderately offensive odours:  

 Intensive livestock rearing  

 Fat frying (food processing)  

 Sugar beet processing  

 Well aerated green waste 

composting 

 

 

3.0 

Less offensive odours:  

 Brewery  

 Confectionery  

 Coffee roasting  

 Bakery 

 

 

6.0 

* Practically, this implies the 175th highest hourly average recorded within a year.  

2.2.3.2  Intensity 

Intensity of odour defines the perceived strength of an odour as described by a 

recipient of the odour (Defra, 2010). Table 2.3 shows the qualitative scoring template 

used by panellists for an odour sample compared to a scale for ranking odour intensity. 

Odour intensity increases as the concentration increases; however, it is possible for 

one odour to smell stronger than another odour even at the same level of 

concentration, and so an increase (or decrease) in odour concentration may not always 

result in a corresponding increase (or decrease) in the strength of odour that is 

perceived; this is because of the logarithmic relationship between odour intensity and 

concentration (Defra, 2006). This is a major point for consideration especially when 

addressing control because odour and odorous compounds that have strong intensities 

at low concentrations may bring about nuisance even at low residual levels.   

Table 2. 3: Odour Intensity Scale (Defra, 2010) 

Score Intensity 

0 No odour 

1 Very faint odour 

2 Faint odour 

3 Distinct odour 

4 Strong odour 

5 Very strong odour 

6 Extremely strong odour 
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2.2.3.3  Hedonic tone 

This is the degree to which a person perceives odour as pleasant or unpleasant (Defra, 

2006). Hedonic tone varies among people, and is greatly influenced by prior 

experience, and sometimes emotions (among other things), at the time the odour is 

being perceived. The hedonic tone of odour is typically rated using scales that range 

from negative numbers, which represent unpleasantness, to positive numbers, which 

represent pleasant odour (Fabian-Wheeler et al., 2012). The scales vary depending on 

research sites and typically range from -4 to +4 (e.g. coffee +2.33, cherry +2.55, 

alcohol -0.47, fishy -1.98, cadaverous -3.75) or -11 to +11, usually with neutral odours 

recorded as zero. Typical hedonic tone scales are shown in Table 2.4 and Figure 2.2. 

This has been developed to aid comparative judgements for the subjective nature of 

odour reports/complaints (Jacobs et al., 2007; Defra, 2010). 

Table 2. 4: Hedonic Tone Scale for -4 to +4 (Defra, 2010) 

Score Perceived Hedonic Tone 

+4 Very pleasant 

+3 Pleasant 

+2 Moderately pleasant 

+1 Mildly pleasant 

0 Neutral odour / no odour 

-1 Mildly unpleasant 

-2 Moderately unpleasant 

-3 Unpleasant 

-4 Very unpleasant 

 

 

 

Figure 2. 2: The Hedonic Tone Scale for -11 to +11(Fabian-Wheeler et al., 2012) 
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2.2.3.4  Odour Quality 

The quality (or character) of odour is the property that singles out or distinguishes an 

odour from another of equal intensity (Defra, 2006). It is the property of the odour 

that is described as fruity, almond, fishy, etc. Odour quality descriptors (Figure 2.3) 

are used on odour samples which are at or above the recognition threshold (Fabian-

Wheeler et al., 2012). It is important to note that simply the presence of an odour does 

not necessarily imply that it is offensive. Odour pollution depends on several factors; 

hence, no single method can reliably assess odour pollution or measure odour, and 

conclusions on these parameters are based on a collection of pieces of evidence (SEPA 

& Natural Scotland Scottish Government, 2010; Environment Agency, 2011).  

The parameters of an odour that are considered when evaluating its offensiveness are 

Frequency of detection, Intensity as perceived, Duration of exposure, Offensiveness, 

and Receptor sensitivity; factors which are at times described by the acronym FIDOR 

(Environment Agency, 2011). Redmore (2012) pointed out that complaints are likely 

to arise from frequent, intense and highly offensive odours as well as prolonged 

exposure to odours. Also, more sensitive areas (such as homes and hotels) are likely 

to have little or no tolerance for odorous emissions (Sniffer, 2013). The Environment 

Agency (2002) argues that odour nuisance results from long-term recurrent exposure 

to odours which trigger negative appraisal in the perceiving individual(s). Figure 2.4 

shows the complex mechanism that leads from odorants emission into the atmosphere 

to actual odour nuisance and complaints. It is noted that odour nuisance problems 

become aggravated once the first complaint has been made (Environment Agency, 

2002).  
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Figure 2. 3: Odour characterization - environmental odour descriptor wheel (St. Croix Sensory, 2003 cited in Fabian-Wheeler et al., 2012). 
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Figure 2. 4: Steps from odorant formation to complaint (Environment Agency, 

2002) 
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2.2.4 Odour Assessment 

One of the key elements of odour assessment planning is a prediction and/or 

observation of the likely impacts and resultant effects at sensitive receptors in the 

surrounding area of the odour source with the use of suitable assessment tools. This 

covers aspects such as determining the likely magnitude of odour emissions and the 

meteorological characteristics of the site of odour source, the dispersion and dilution 

offered along the source-pathway-receptor route, the  receptor(s) sensitivity level, and 

the potential for increased effects of emitted odours in addition to any odours of 

similar character (Bull et al., 2014). It is therefore important that any odour assessment 

approach employed measures both the impact and effects of exposure. The Institute 

of Air Quality Management (IAQM) suggests a means of gauging the degree of the 

effects which result from the impact on a receptor for different levels of sensitivity 

(Table 2.5). Worthy of mention here is that this is a binary judgment system that 

specifies whether the likely predicted effect is ‘significant’ or ‘not significant’.  

Table 2. 5: Institute of Air Quality Management (IAQM) suggested descriptors for 

magnitudes of odour effects (Bull et al., 2014) 

  Receptor Sensitivity 

O
d

o
u

r 
E

x
p

o
su

re
 

(I
m

p
a
ct

) 

 Low Medium High 

Very 

Large 

Moderate adverse Substantial adverse Substantial adverse 

Large Slight adverse Moderate adverse Substantial adverse 

Medium Negligible Slight adverse Moderate adverse 

Small Negligible Negligible Slight adverse 

Negligible Negligible Negligible Negligible 

 

Overall effects predicted as greater than ‘slight adverse’ are considered significant. 

However, in practice, this does not translate to unacceptability of the developmental 

proposal or refusal of planning applications; rather it is used in the detailed 

considerations of the consequences which would inform adequate scoping to ensure 

the incorporation of appropriate mitigation measures in order to make the proposed 

facility achieve the intended environmental, social and economic benefits (Bull et al., 

2014). There are various tools used for odour assessment (Table 2.6). Bull et al. (2014) 

state that the combination of a number of assessment tools is the distinctive feature 

that sets odour assessment apart from the conventional air quality evaluation.  
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Table 2. 6: Summary of odour assessment tools (Bull et al., 2014) 

Type Approach Tool Parameters estimated, usually as 98th percentile of 1-hour means 

Predictive Qualitative  Risk-based assessments using Source-

Pathway-Receptor concept 

A relative risk score or descriptor (e.g. negligible, low, medium or 

high-risk impact) 

Semi-

quantitative 

Screening models, look-up tables and 

nomographs 

Estimated concentration 

Modelling Atmospheric dispersion modelling 

with ADMS, AERMOD, etc. vv using 

source terms that have been measured 

by Dynamic Dilution Olfactometry 

(DDO) or using literature values 

Predicted concentrations (OUE m-3), usually as 98th percentile of 1-

hour means 

CFD tools Image representation of flow patterns 

Observational

/Empirical 

Monitoring of 

odour in 

ambient air 

Sensory Sniff Tests Odour exposure inferred from measurements of intensity, frequency, 

duration, offensiveness. Draft method pren264086 is currently going 

through CEN voting process. 

Field 

Olfactometry 

Odour exposure inferred from measured concentration (Dilutions-to-

Threshold, similar to OUE m-3), together with frequency, duration, 

offensiveness. 

Compound analysis H2S by gold-

film analyser 

Odour exposure inferred from measured concentration (µ m-3) and 

odour detection threshold, together with frequency, duration, 

offensiveness. However, it can be difficult to derive a relationship 

between concentrations of chemicals and odour thresholds 
VOCs, etc. 

analysis 

Actively using 

the community 

as the ‘sensor’ 

Odour diaries Days (%) on which odour detected above a given intensity 

Community surveys % annoyed or % experiencing nuisance 

Passively using 

the community 

as the ‘sensor’ 

Complaints analysis Frequency of complaints 



- 24 - 

This is done to eliminate the uncertainties that are associated with the impact estimates 

of these assessment tools. Two types of assessment tools have been identified to 

address the two main situations that are usually considered when evaluating odour 

sources i.e. existing odour sources or new odour sources. These are the predictive and 

observational/empirical assessment tools. It is noteworthy to mention that this 

research to employed the Empirical assessment tool, specifically olfactometry. 

2.2.5 Major odour-causing compounds formed during biowaste 

treatment 

The nature and concentration of odour-causing compounds emitted during biowaste 

treatment such as composting is dependent on factors such as the composition of the 

waste, the stage of composting, the temperature and aeration of the waste pile 

(Frederickson et al., 2013). SEPA (n.d.) identified four main sources of odour 

emissions from biowaste activities as follows: 

 The inherent content of odorous compounds in most waste types which may 

not necessarily be offensive individually, but when combined can produce a 

smell of putrefaction such as limonene from citrus fruits or pinene from woody 

materials.  

 The natural process of degradation in the presence of oxygen which can 

commence during storage of the waste. Typically, large molecules such as fats 

and proteins break down into smaller molecules, some of which are inherently 

highly odorous for example amines and fatty acids. 

 Anaerobic conditions resulting from inadequate aeration, poor compost 

structure, wet materials and/or too much compaction can cause significant 

odour emissions. In conditions of oxygen depletion within the waste pile, 

some microorganisms (facultative) adapt their metabolism, while others 

(obligate anaerobes)  become active, metabolising compounds other than 

oxygen, thus generating highly odorous and offensive compounds such as 

hydrogen sulphides.  

 Mismanagement of batch temperature, due to either overly large batches or 

tall windrows that may hinder heat removal by aeration, can result in the 

generation and eventual release of compounds such as sulphur containing 

compounds and/or ammonia; compounds which are very offensive. 
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Based on these, the main odour-causing compounds formed during biowaste 

treatment are discussed in the following sections. 

2.2.5.1  Ammonia 

Ammonia has been recognised as an important contributor to fine particulate matter 

formation (Roe et al., 2004), and as one of the key compounds responsible for the 

emission of highly offensive odour from the exhaust of composting facilities, even 

with the relatively high detection and recognition thresholds of 17 ppmv and 37 ppmv, 

respectively (Busca and Pistarino, 2003). The workplace exposure limits (WELs) for 

ammonia have been set as 25 ppm for long-term exposure (based on an 8-hr Time 

Weighted Average) and 35 ppm for short-term exposure (based on a 15 minute 

reference period) (HSE, 2013). In composting sites, temperature, pH and the initial 

ammonium content of organic waste have been identified as key parameters affecting 

ammonia emissions in composting sites; this is because high temperatures and pH 

favour the volatilisation of ammonia by displacing 𝑁𝐻4
+/𝑁𝐻3 equilibrium to 

ammonia (Pagans et al., 2006a). High temperatures within the compost pile have been 

reported to inhibit the nitrification process which promotes ammonia volatilisation 

(Grunditz and Dalhammar, 2001).  

A study by Beck-Friis et al. (2001) revealed that ammonia emissions ensued when 

thermophilic temperatures (> 45°C) and high pH (about 9) co-existed within the 

compost pile, resulting in a loss of up to 33% of the initial nitrogen content. This was 

thought to be due to the fact that breakdown of large amounts of the easily 

biodegradable organic content of the waste at the initial composting stage caused 

emission of ammonia gas which was exponentially dependent on temperature, as was 

expected for free soluble ammonia. 

Ammonia concentrations from the exhaust of a poultry manure composting facility 

has been reported to range from 123 ppm in Spring to 167 ppm in Summer (Zhao et 

al., 2008). Emission of NH3 from composting animal manure has been shown to vary 

from 41 mg/kg to 458 mg/kg for dairy manure, from 323 mg/kg to 2840 mg/kg for 

swine manure, and from 15 mg/kg to 2740 mg/kg for poultry manure for aeration rates 

ranging from 0.2 to 1.4 L/(min kg) and C/N ratios from 19 to 42 for dairy, 13 to 43 

for swine, and 19 to 56 for poultry, respectively (Matsusada et al., 2002 cited in Zhao 

et al., 2008). Indoor levels of ammonia of ≥ 25 ppm have been reported to cause 

reduced final body weights in poultry production (Reece et al., 1980), and exposure 
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to low concentrations of ammonia can induce irritation of the lungs and eyes in 

humans (Gay and Knowlton, 2009). Table 2.7 summarises the toxic effects in humans 

following acute exposure to ammonia by inhalation. 

Table 2. 7: Summary of toxic effects following acute exposure to ammonia by 

inhalation (Public Health England, 2015) 

Exposure Signs and Symptoms 

mg m-3 ppm 

35 50 Irritation to eyes, nose and throat (2 hours’ 

exposure) 

70 100 Rapid eye and respiratory tract irritation 

174 250 Tolerable by most people (30 – 60 minutes’ 

exposure) 

488 700 Immediately irritating to eyes and throat 

>1,045 >1,500 Pulmonary oedema, coughing, laryngospasm 

1,740 – 3,134 2,500 – 4,500 Fatal (30 minutes’ exposure) 

3,480 – 6,965 5,000 – 10,000 Rapidly fatal due to airway obstruction; may 

also cause skin damage 
Where mg m-3 = ppm × gram molecular weight/24.45 (molar volume of air at standard temperature and pressure) 

2.2.5.2  Hydrogen Sulphide 

Hydrogen sulphide (CAS 7783-060-4) is a colourless, toxic and corrosive gas with a 

characteristic rotten-egg malodour that has a detection threshold as low as 0.5 ppb 

(WHO, 2003; Tsang et al., 2015; ATSDR, n.d.). Estimated concentrations of the gas 

naturally found in air range from 0.11 – 0.33 ppb (0.15 – 0.46 µg m-3), and even lower 

levels (0.02 – 0.07 ppb; 0.03 – 0.1 µg m-3) have been reported for more remote areas 

(Maine Department of Health & Human Services, 2006). H2S and NH3 have been 

identified as some of the chief odourous compounds constituting nuisance from the 

operation of biowaste facilities (Delgado-Rodriguez et al., 2011; Velusami et al., 

2013). Lomans et al. (2002) stated that H2S occurs naturally in gaseous emissions 

from volcanoes, sulphur springs, swamps and as a product of the biodegradation of 

organic matter, such as is found in decomposing biowaste. H2S emissions usually 

result from anaerobic conditions, and are reduced by aeration (Derikx et al., 1991; 

Blazy et al., 2014).  

In their study, Rosenfeld and Suffet (2004) reported that composting of biosolids 

emitted sulphur and nitrogen compounds while composting green waste released 

mainly volatile fatty acid, ketones, terpenes and aldehydes. In a study to correlate the 

chemical composition and the odour concentration of emissions from storage and 

composting of pig slaughterhouse sludge, Blazy et al. (2015) reported hydrogen 
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sulphide, trimethylamine and mercaptans as the three main odour compounds out of 

the 66 samples analysed in their study. 

Inhalation has been identified as the main route of exposure to hydrogen sulphide 

(ATSDR, n.d.), and concentrations that are above the detection threshold often results 

in annoyance and uncomfortable physiological symptoms e.g. nausea and headache. 

The World Health Organisation recommends that 30-minute exposure to 5 ppb (7 

µg.m-3) should not be exceeded in order to avoid complaints and annoyance. The 

Health and Safety Executive has defined limits of 5 ppm (7 mg.m-3) and 10 ppm (14 

mg.m-3) for both long and short term workplace exposure limits, respectively (HSE, 

2013). There are various known health impacts of exposure to H2S as summarised in 

Table 2.8. At concentrations exceeding 100 ppm (140 mg.m-3) olfactory paralysis 

occurs and inhalation of air at 500 ppm (700 mg.m-3) can be fatal (WHO, 2003). 

Table 2. 8: Exposure and Effect Levels for Hydrogen Sulphide in Air (Government 

of Western Australia Department of Health, 2009) 

Level in air 

(ppm) 

Impacts and health effects 

0.008 Odour threshold (with some individual variability) 

>0.008 Increasing possibility of annoyance and headache, nausea, 

fatigue 

2 Bronchial restriction in some asthmatics 

4 Increased eye complaints 

5 - 10 Minor metabolic effects 

20 Neurological effects including memory loss and dizziness 

2.2.5.3  Odorous Volatile Organic Compounds 

Emission of odorous volatiles is also a key feature in biowaste facilities. Müller et al. 

(2004) stated that these volatile organic compounds (VOCs) result from the 

decomposing biowaste materials and from the microbes degrading the waste 

materials. Also, in their research to examine the emissions of volatiles from three 

composting facilities and the impact of process engineering on their dispersal, they 

observed that the volatile organic compounds detected belonged to ketones, furans, 

alcohols, sulphur-containing compounds and furans, with concentrations of 

representative members ranging from 102 – 106 ng/m3 depending on sampling location 

and process engineering. Rosenfeld and Suffet (2004) concluded in their research that 

aerobic composting of green wastes released aldehydes, alcohols, ketones, volatile 

fatty acids, terpenes and ammonia compounds which are responsible for compost 

odours, and turning of the pile releases odorous compounds. 
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With concerns over ground-level ozone formation, Kumar et al. (2011) carried out a 

study to characterise VOC releases from green waste compost piles of different ages, 

and detected over 100 VOCs including aliphatic alkanes, alkenes, aromatic 

hydrocarbons, biogenic organics, aldehydes, ketones, furans, acids, esters, ether, 

halogenated hydrocarbons, dimethyl disulphide (DMDS) and alcohols. They 

identified alcohols as the predominant VOC with a flux range of 2.6 – 13.0 

mg/m2/min. These compounds are similar to those identified by Fletcher et al. (2014) 

who also identified alcohol, aliphatic hydrocarbons, ketones and terpenes as the 

dominant compound groups. Delgado-Rodriguez et al. (2011) stated that terpenes are 

the dominant VOC emissions in facilities composting MSW.  

A pilot study evaluating the influence of control parameters on VOCs evolution 

during MSW trimming residues composting identified amongst others seven key 

classes of compounds that have a high odour impact including limonene, β-pinene, 2-

butanone, undecane, phenol, toluene and dimethyl disulphide (Delgado-Rodriguez et 

al., 2011); although the limonene and β-pinene may be due to woodchip and plant 

materials added to the biowaste processing operations. Also, a study involving online 

monitoring of VOCs production and emission during sewage sludge composting 

indicated a variation in the VOC production within the compost pile and VOC 

emission at the surface of the pile, with the former having a total mass of 

1.09 g C kg DM−1 being 2.3 times higher than the total mass of emission (Shen et al., 

2012). 

2.2.5.4  Odorous Emissions 

A study conducted in Montreal evaluating the impacts of odour from a landfill site 

and composting facility on the local residents revealed significant odour impacts 

within 500 metres of the yard waste composting facility (Heroux et al., 2004). Several 

factors are responsible for odour emissions from biowaste treatment facilities among 

which are the waste itself, the metabolic products of the aerobic degradation of the 

waste, some of the metabolic products of the anaerobic breakdown of the waste, all 

of which can be aggravated by the method of operation employed in these facilities 

(Bidlingmaier and Müsken, 2007).  

In a study involving the full scale monitoring of pile composting of the organic 

fraction of municipal solid waste (OFMSW) to evaluate the impact of odour 

emissions, it was revealed that the odour concentration of 5224 OUE/m3 was reached 
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early in the process (during the first 2 – 3 weeks) from an odour concentration of 430 

OUE/m3 recorded for the raw organic material before composting (Gutiérrez et al., 

2015). This peak odour concentration was observed to coincide with the peak 

microbiological hydrolysis of organic matter and ammoniacal nitrogen. This view is 

supported by the study of Orzi et al. (2010) who reported that stabilisation of 

composted material reduces the impact of odour as measured by olfactometry. An 

earlier study by Sironi et al. (2006) indicated that the main source of odour emissions 

in a mechanical biological treatment plant (MBT) is the aerobic biological treatment 

which had an odour emission factor (OEF) equal to 1.4×108 OUE t−1, which was one 

order of magnitude higher than the those recorded for other process stages.  

Blazy et al. (2015) were able to establish a linear regression between odour activity 

value (both highest and sum) and odour concentration, even though the highest odour 

activity value was a better predictor of odour concentration. Odour activity value 

(OAV), which is a dimensionless value, is defined as the ratio of the chemical 

concentration to the odour detection threshold of a single targeted compound within 

a sample. They, however, noted that odour activity values were a poor predictor of 

odour concentration at low concentrations (< 1000 OUE m-3).  

2.2.6 Bioreactors for Odour Control 

2.2.6.1  Introduction 

Two categories of air emissions control are recognised; these include source control 

and secondary control (Devinny et al., 1999). The source control approach entails 

exploring the options of substitution, reduction and/or recycling of raw products in 

order to achieve emissions reduction; however, this approach may have cost and 

quality implications. The secondary control approach involves treating the off-gases 

after they have been generated. Depending on predetermined regulatory standards, 

several technologies have been developed, to be operated either singly or in 

combination, to treat off-gases; the choice(s) (Figure 2.5) of which is dependent on 

ecological and economic constraints such as the nature and concentration of the 

compound(s) emitted, the volumetric flow rate and the mode of emission of the off-

gases (Devinny et al., 1999; Muñoz et al., 2015). Examples of these technologies 

include condensation and catalytic oxidation, incineration, regenerative and non-

regenerative adsorption, absorption, membrane systems and biological treatment. 
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Figure 2. 5: Applicability of various air pollution control technologies based on 

airflow rates and concentrations to be treated (Muñoz et al., 2015) 

The focus of this research is on biological treatment because of the advantage of 

having the capacity to treat a broad spectrum of airborne compounds (Kafle et al., 

2015) without the use of chemicals which would create potentially hazardous media 

(e.g. spent activated carbon) requiring disposal (Singh et al., 2006). This is in addition 

to their low energy input requirement which means that they do not generate CO2 

from the burning of fossil fuels (Sakuma et al., 2009). Table 2.9 presents a summary 

of the volatile organic and inorganic pollutants that are amenable to biological air 

treatment. 

Biological air treatment systems utilise populations of microorganisms to convert 

certain organic and inorganic pollutants into compounds and/or forms that are less 

toxic and odourless (Shareefdeen and Singh, 2008). These systems have been shown 

to be effective as well as economical for low concentrations of pollutants in large 

volumes of air (Devinny et al., 1999; Shareefdeen and Singh, 2008). They have been 

recommended for treating off-gases with flow rates of 100 to 500,000 m3h-1 with 

pollutant gas concentrations in the range of <0.1 g m-3 to 5 g m-3 (Delhoménie and 

Heitz, 2005; Muñoz et al., 2015). The microbial population, which may be dominated 

by a single species or be composed of different interacting species, employ oxidative, 

and sometimes, reductive reactions to convert the airborne pollutants into CO2, water 

vapour, and to increase their population using these pollutants as energy and carbon 

sources (Devinny et al., 1999).  
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Table 2. 9: Organic and inorganic gas pollutants commonly treated by means of 

biotechnologies (Muñoz et al., 2015) 

Gas pollutant Pollutant characteristics Reference 

VOCs BTEX 

(benzene, 

toluene, 

ethylbenzene, 

xylene) 

Industrial solvents commonly used in the 

production of petroleum derivatives 

Mohammad et al. 

(2007) 

Acetone Organic solvent used in cleaning products, nail 

polish removers and paint thinner 

Chang and Lu 

(2003) 

Isopropyl 

alcohol 

Solvent commonly used in the chemical, semi-

conductor and opto-electronic industries 

Chang and Lu 

(2003) 

Methanol Industrial solvent used in the production of inks, 

resins, adhesives and dyes 

Ramirez-Lopez 

et al. (2010) 

Styrene Hazardous air pollutant emitted predominantly 

from industries producing polystyrene, styrene 

copolymers and polyester 

Pérez et al. 

(2015) 

Isobutanol Organic solved used as plasticiser and building 

block for plastics, textiles and clothing 

Zhu et al. (2004) 

α-Pinene Volatile compound typically found in waste gases 

from wood-related industries. Commonly used in 

the chemical industry and perfumery 

Jin et al. (2007), 

Muñoz et al. 

(2008) 

Methane Greenhouse gas with global warming potential 21 

times higher than that of CO2. Significant amounts 

of methane are emitted from waste management 

facilities 

Rocha-Rios et al. 

(2009), López et 

al. (2014) 

Methyl tert-

butyl ether 

Gasoline additive for increasing the octane levels Dupasquier et al. 

(2002) 

Methyl ethyl 

ketone 

Industrial solvent used in the production of gums, 

resins, cellulose acetate, nitrocellulose coatings 

and vinyl films 

Hernández et al. 

(2011) 

VICs H2S Colourless, toxic and flammable gas that has a 

characteristic annoying odour of rotten eggs. It is 

emitted from industrial activities such as 

petroleum refining, pulp and paper 

manufacturing, wastewater treatment, food 

processing, livestock farming and natural gas 

processing 

Gabriel and 

Deshusses 

(2003), Ramírez 

et al. (2009) 

Methanetiol 

Dimethyl 

sulphide 

Dimethyl 

disulphide 

Main odorous compounds found in off-gases from 

pulp mills and wastewater treatment plants 

Ruokojärvi et al. 

(2001), 

Malhautier et al. 

(2015) 

Carbon 

disulphide 

Industrial solvent widely used in the manufacture 

of rayon fibres, pesticides, vulcanisers and other 

chemicals 

Hartikainen et al. 

(2001) 

NH3 Emitted from intensive livestock farming and 

rendering facilities, sewage treatment plants and 

composting plants. Ammonia emissions constitute 

a source of severe olfactory nuisance 

Malhautier et al. 

(2003) 

N2O Major GHG with a global warming potential 298 

times higher than that of CO2. It is the most 

important O3- depleting substance emitted in the 

twenty-first century. It is emitted in waste 

treatment activities, nitric and adipic acid 

production and livestock farming 

Desloover et al. 

(2011), López et 

al. (2013) 

VOCs: volatile organic compounds; VICs: volatile inorganic compounds 
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Not all gaseous pollutants are amenable to biological treatment. For compounds to be 

treatable via a biological method, they must be biodegradable (which implies that they 

must have lower molecular weights, must be more water-soluble, and be polar) and 

non-toxic (Devinny et al., 1999; Adler, 2001). Alcohols, aldehydes, ketones, and some 

simple aromatics are some examples of the organic compounds that are readily 

biodegradable. Inorganic compounds such as H2S and NH3 are also readily 

biodegradable. Compounds with more complex bond structures requiring more 

energy for degradation by the microorganisms are not amenable for treatment by 

biological processes. Some of these include phenols, polyaromatic hydrocarbons, 

chlorinated hydrocarbons, and highly halogenated hydrocarbons (Devinny et al., 

1999). Also, off-gases from some industrial activities contain chemicals that are not 

easily treated because the microorganisms lack the enzymes required for their 

metabolism. Table 2.10 shows typical industries where biological treatment of air can 

be applied. 

Table 2. 10: Industries where Biological Air Pollution Control may be applied 

(Shareefdeen and Singh, 2008) 

General Specific 

Industrial activities 

including production, 

transport and storage 

 Asphalt 

 Chemicals 

 Food, feed and 

beverage 

 Foundries 

 Fragrance 

 Leather 

 Petroleum and 

petrochemicals 

 Pharmaceuticals 

 Pulp and paper 

 Textile 

 Viscose 

processing 

Naturally generated 

odours 
 Compost 

 Farms 

 Food and feed 

 Landfill 

 Sewage 

 Slaughter and 

rendering plants 

 Wastewater 

treatment 

Other trades  Paint shops 

 Print shops 

 Soil remediation 

 

2.2.6.2  Types of bioreactors 

There are diverse configurations of biological treatment methods that can be applied 

to achieve pollutant elimination from off-gases. Devinny et al. (1999) stated that each 

configuration employs the same basic removal mechanism, but differ in the phase of 

microorganisms (i.e. either fixed or suspended) and the state of the liquid (i.e. either 

stationary or flowing) (Table 2.11). This section provides a review of four common 
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configurations of bioreactors – biofilters, biotrickling filters, membrane bioreactors 

and bioscrubbers (Figure 2.6). 

Table 2. 11: Microorganism Phase and Liquid Phase differences of some Bioreactors 

(Devinny et al., 1999; Shareefdeen and Singh, 2008) 

Reactor Type Microorganism Phase Liquid Phase 

Biofilter Fixed Stationary 

Biotrickling filter Fixed Flowing 

Bioscrubber Suspended Flowing 

Membrane bioreactor Fixed or suspended  Flowing 

 

 

Figure 2. 6: Schematic representation of (a) biofilter, (b) biotrickling filter, (c) 

bioscrubber, and (d) membrane bioreactor, with close-up view of their 

respective microbial configurations (Waweru et al., 2005) 
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Biofilters 

Biofilters are three phase bioreactors (gas, liquid, solid) composed of filter beds that 

have high porosity, high buffer capacity, high nutrient availability, and high moisture 

retention capacity in order to provide a suitable environment to support the growth 

and attachment of a mixed-culture of pollutant-degrading microorganisms (Elias et 

al., 2002; Dastous et al., 2005). Shareefdeen and Singh (2008) noted that the activity 

of the microbial population, which forms the biofilm on the surface and crevices of 

the media, is a function of the microbial density and environmental conditions e.g. 

pH, nutrient availability, moisture content, temperature and humidity.  

Moisture is a key parameter which affects biofilter performance, and according to 

Devinny et al. (1999) this must be maintained at around 60% by mass to support the 

microbial population. Also, to prevent dehydration, the waste gas is generally 

humidified before it is passed into the biofilter bed (Waweru et al., 2005). The humid 

waste gas is continuously fed into the biofilter, while a nutrient solution is 

discontinuously added to provide nourishment to microorganisms. As the air passes 

through the biofilter bed, the pollutants are transferred to the biofilm that grow on the 

filter materials where they become degraded into carbon dioxide (CO2), water (H2O), 

mineral salts, and with the release of energy which is used with the nutrients to grow 

and reproduce more microbial biomass (Janni et al., 2011).  

Several studies have demonstrated biofilters to be the most promising and cost-

effective technology for waste gas control to meet statutory standards (Prado et al., 

2009; Estrada et al., 2012). Another factor that makes this technology preferred over 

other air purification technologies is the environmental-friendliness as they require 

low energy input and do not generate secondary pollutants which would require 

appropriate disposal (Singh et al., 2006; Sakuma et al., 2009). Chen and Hoff (2009) 

and Janni et al. (2011) noted that biofilters had gained wide acceptance in animal 

agriculture, while Rattanapan and Ounsaneha (2011) stated that they can be used to 

effectively treat hydrogen sulphide (H2S) gas generated from industrial processes such 

as petroleum refining, wastewater treatment, paper and pulp manufacturing, food 

processing, drug manufacturing, and solid waste processing.  
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Biotrickling filters 

In a biotricking filter, the contaminated airstream is passed through a packed bed 

which provides surface for attachment of a contaminant-degrading microbial 

population and for gas-liquid contact. The packed bed is typically made of chemically 

inert materials e.g. plastic rings, polyurethane foam or lava rock, and because these 

lack nutrients (Cox and Deshusses, 1998; Waweru et al., 2005), an aqueous phase is 

recirculated in co- or countercurrent flow over the packed bed to provide moisture, 

nutrients, pH control by the addition of acids, bases and fresh medium to maintain 

ideal conditions for pollutant elimination, and also to allow for the elimination of 

products that may be inhibitory (Waweru et al., 2005; Shareefdeen and Singh, 2008; 

Zamir et al., 2015). Biotrickling filters are of interest because of their superiority in 

terms of mineralisation efficiency over other biological methods resulting from the 

mobile liquid phase in the reactor (Smet et al., 1998). This technology is advantageous 

because of the medium operating and capital cost, low pressure drop as well as the 

capacity to cope with acid producing compounds [Webster (1996) cited in Devinny et 

al. (1999)]. However, they are more complex to construct and operate, and are subject 

to biomass clogging. 

Membrane bioreactors 

In this configuration of biological waste gas treatment, a selectively permeable 

membrane is used as the interface between the gas and the liquid phases. The liquid 

phase, which is supplemented with nutrients and oxygen, is arranged such that it is in 

contact with one side of the membrane while the other side makes contact with the 

waste gas (Shareefdeen and Singh, 2008). Gaseous contaminants are transferred 

through the membrane to the liquid phase, where microorganisms (either suspended 

in the liquid phase or in the form of a biofilm attached to the membrane surface) 

degrade the contaminants (Reij et al., 1998; Waweru et al., 2005).  The diffusion of 

contaminants into the liquid phase is driven by the concentration gradient. The liquid 

phase is kept in a reservoir which affords operational control of oxygen supply, and 

pH and temperature.  

The basic configuration of membrane bioreactors are hollow fibres and flat sheets and 

membranes can be made of different materials including dense, microporous, porous 

or composite materials, which have diverse physical (pore size, porosity, thickness, 

mechanical strength) and chemical properties (selectivity, solubility) (Reij et al., 

1998; Shareefdeen and Singh, 2008). The dense materials offer more selective 
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properties whereas the microporous materials are more permeable, even though they 

are prone to plugging by the microbial biomass.  

Membrane bioreactors offer some advantages which include the presence of a discrete 

water phase which allows for optimal water supply to the biomass, and removal of the 

by-products of degradation; thus, preventing microbial inactivation (Kumar et al., 

2008). Also, the gas and liquid flows can be controlled independent of each other 

without the complications of flooding, loading or foaming; however, membranes have 

high construction costs.  

Bioscrubbers 

A bioscrubber is composed of two reactors, the first of which is the absorption or 

scrubbing tower where pollutants in the gas phase are removed by absorption in a 

liquid phase (Waweru et al., 2005). This pollutant-laden liquid phase is drawn off and 

transfered to the second reactor, which is an activation tank where microorganisms 

degrade the pollutants (Potivichayanon et al., 2006); thus, regenerating the liquid 

phase for a co- or countercurrent re-circulation to waste gas flow within the scrubbing 

tower (Waweru et al., 2005). In the activation tank, the microbial population is either 

immobilised on packing materials (such as ceramic, plastic, metal or glass) as seen in 

fixed-film bioscrubber, or is suspended in the aqueous phase as seen in the suspended 

growth bioscrubber (Ockeleon et al., 1996; Potivichayanon et al., 2006). This 

configuration is particularly advantageous because of the ability to treat very high 

odour concentrations under severely fluctuating conditions (thereby reducing the 

space requirement and hence cost of construction) as well as affording better

operational control over gas flow rate, pH and nutrient content.            

2.2.6.3  Mechanism of Odour Biofiltration 

As already stated, biological treatment of polluted air results when microorganisms 

within the biofilm breakdown air pollutants into carbon dioxide (CO2), water (H2O), 

mineral salts, and use the energy and nutrients to grow and reproduce more microbial 

biomass (Janni et al., 2011). The transformation of air pollutants to these substances 

with less health and environmental impacts involves a complex interplay of physical, 

chemical and biological processes, which must be adequately understood as they 

provide opportunities for improving the system, and their interruption can lead to 

system failure (Devinny et al., 1999; Shareefdeen and Singh, 2008). Kraakman et al. 

(2011) pointed out that biological gas treatment systems designed and operated based 
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on empirical experience without knowledge of the processes (especially the rate-

limiting steps) in the system often results in problems when scaled up.  

Pollutant degradation does not take place in the gaseous phase (Shareefdeen and 

Singh, 2008); as the various components of the polluted air (such as odorous gases, 

aerosols, and particulates) pass through the biofilter bed, they undergo sorption (i.e. 

become adsorbed on the surfaces of the media materials and/or absorbed into the 

biofilm on the surfaces of the media materials), from where they are degraded by 

microorganisms (Swanson and Loehr, 1997). Figure 2.7 summarises the processes 

that occur in and around the biofilm highlighting concentration gradients for oxygen 

and the pollutants. The pollutant first crosses the gas-biofilm interphase to meet a 

consortium of acclimatised microbes within the biofilm. These microorganisms derive 

energy from the oxidation of the pollutants as the primary substrates, or they can co-

metabolise the pollutants through non-specific enzymes; thus, resulting in diffusion 

and uptake of nutrients (e.g. nitrogen and phosphorus) and oxygen which maintains a 

concentration gradient that ensures pollutant diffusion into the biofilm (Swanson and 

Loehr, 1997). 

 

 

Figure 2. 7: Biofilter Pore Space Schematics (Swanson and Loehr, 1997) 
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2.2.6.4  Biofilter Design Parameters and Specifications 

The design of biofilters is based on the nominal volume of process air that they would 

be expected to treat, and their effectiveness is also dependent on active monitoring 

and management (SEPA, n.d.). Hence, site operators are expected to assess the 

potential loading rates before building biofilters since the capacity for biofilters to 

cope with fluctuations in loads is dependent on their design characteristics, filter 

media and microbial composition. 

Researchers have tried to understand the key design and operating parameters which 

enhance the performance of biofilters. One of the groups is Morgan-Sagastume and 

Noyola (2006) who, while studying the effect of mixing the filter media on H2S 

removal in a compost biofilter, suggested that three factors determine compost 

biofilter performance and include (a) filter media type (including void fraction, 

particle size, moisture content, microbial diversity and nutrient content), (b) the 

operating conditions of gas flow inside the biofiltration unit (including superficial 

velocity, gas distribution, gas inlet pressure and temperature) and (c) the substrate 

concentration, solubility and biodegradability. Devinny et al. (1999) stated that 

medium moisture content, pH and bed temperature are the three most important 

factors that influence the efficiency of biofilters, pointing out that other factors 

influence biofilters to a lesser extent.  

A study by Adler (2001) further confirmed this, noting that the design, operation, and 

control of biofilters are somewhat compounded by a number of sensitive and 

interrelated variables, including moisture content, pH, temperature, and influent air 

stream characteristics (such as pollutant concentrations and fluctuations in 

concentrations). This is because any slight change in one variable can alter the 

behaviour of others together with the heterogeneous nature of filter media which 

contributes to the complexity of modelling and controlling the behaviour of biofilters. 

For effective performance monitoring, SEPA (n.d.) noted that it is important to 

continuously monitor key performance indicators such as biofilter pressure 

differential, temperature, liquor pH, filter media moisture content and scrubber liquor 

pH/redox/flow (if used in combination with scrubbers). 

Figure 2.8 presents a summary of some of the factors considered in designing a 

biofilter which include empty bed residence time (EBRT), specific air contaminants 

and their concentrations, volumetric flow rate of air to be treated, media 
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characteristics, biofilter size (area) constraints, moisture content/control, 

maintenance, and cost (Adler, 2001; Schmidt et al., 2004). These factors all interplay 

to either deliver the required removal efficiency or make the biofilter operation more 

economically viable.  

 
Figure 2. 8: Biofilter Design Parameters (Adler, 2001) 

Microorganisms are central to the operation of biofilters and so, it is important to 

control these factors within limits that support optimal microbial growth to ensure 

biodegradation of the pollutants (Devinny et al., 1999; Fletcher et al., 2014). In 

addition to an understanding of these factors, it is also important to have a good 

characterisation of the waste air stream in order to determine the composition and to 

have knowledge of the actual process which generates the polluted airstream which, 

in turn, would inform an effective design of the biofilter (Shareefdeen and Singh, 

2008). 

The bulk of the information in the literature regarding the impacts of biofilter  design 

and operation on performance have been based on odour, volatile organic compounds 

and N- and S- containing odour compounds with few reports regarding bioaerosols 

mitigation by biofilters. Fletcher et al. (2014) suggested that since the mechanisms of 
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removal are completely different for bioaerosols (impaction) and odour (adsorption, 

oxidation and biodegradation), it may be possible that the design and operating 

parameters that are considered critical for the removal of odour/odour-causing 

compounds may not necessarily be key to the removal of bioaerosols. Table 2.12 gives 

a summary of suggested criteria for operating a biofilter treating biowaste emissions. 

Table 2. 12: Suggested operational criteria for biofilters treating biowaste emissions, 

based on Fletcher et al. (2014) 

Operating parameter Typical value 

Media type A wide variety of materials are available which are 

suitable for construction of biofilters. Media should 

be selected with reference to the following criteria: 

 Biologically active, but reasonably stable.  

 Organic matter content > 60 %.  

 Porous and friable with 75 – 90 % void volume. 

 Resistant to water logging and compaction. 

 Relatively low fines content to reduce gas head 

loss. 

 Relatively free of residual odour. 

Media height  1 to 1.5 m for peat and compost biofilters.  

 Up to 3m for woodchip.  

 >2m for inorganic and synthetic media. 

Surface loading < 500 m3/m2/hr 

Volumetric loading 5 – 500 m3/m3/hr 

Mean effective gas 

residence time 

40 – 100 seconds 

Inlet odour concentration  500 – 350,000 OUE/m3 

Inlet ammonia concentration < 5 mg/m3 

Inlet hydrogen sulphide 

concentration 

< 10 mg/m3 

Inlet air temperature 15 – 30°C 

Outlet air temperature < 50°C 

Inlet air relative humidity > 98% (Devinny et al., 1999) 

Media moisture content 60% - 75% 

Media pH 6 to 8.5 - Stability of pH is important. Variations 

should be avoided. 

Air distribution Air should be distributed uniformly through the 

media using a plenum chamber or distributed pipe 

work. Up-flow and down-flow systems can be 

considered. 
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Media Type 

Media selection is a vital factor for consideration when designing and operating 

biofilters. According to Williams and Miller (1992), Swanson and Loehr (1997), 

Schmidt et al. (2004) and Rattanapan and Ounsaneha (2011), a suitable media is 

selected to offer (i) an optimum environment with adequate nutrient, moisture, neutral 

pH and unlimited supply of carbon, for the microorganisms to thrive; (ii) large surface 

area for maximum microbial attachment, sorption capacity, and number of reaction 

sites per unit volume of the media; (iii) stable compaction properties to prevent media 

compaction and/or gas channelling; (iv) high moisture holding capacity to ensure 

microorganisms remain active and to enhance higher absorption ability; (v) high 

enough pore space to maximise empty bed residence time and minimise pressure drop 

across the media depth; (vi) low bulk density to reduce media compaction; (vii) slow 

decomposition; and (viii) a buffer capacity towards acidification and high pollutant 

loads. 

A wide variety of media materials have been used in biofilters, ranging from organic 

materials through natural inorganic materials to synthetic materials e.g. peat, compost, 

wood chips, bark mulch, soil, coconut fibre, lava rock, activated carbon and extruded 

diatomaceous earth (Devinny et al., 1999; Fulazzaky et al., 2013). It is not uncommon 

to find biofilters with combinations of these media materials e.g. the biological 

residues with inert bulking agents such as activated carbon or wood chips. A summary 

of some media materials is presented in Table 2.13.  

There have been a lot of studies on the application of natural support media for 

biofiltration; however, the key problem with these media has been material 

deterioration and biomass accumulation (Rattanapan and Ounsaneha, 2011). 

Woodchips alone have been reported to be successfully used as media material for 

treating odour and volatile organic compounds emissions from deep pit swine facility 

(Chen et al., 2008b). For agricultural biofilter media, typical recommendations of 

30:70 ratio of compost and wood chips mixture have been offered (Nicolai and Janni, 

2001b), and a mixture of 20 – 30% compost and 70 – 80% wood chips, by weight, 

has been offered as ideal (Schmidt et al., 2004 cited in Chen and Hoff, 2009). 
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Table 2. 13: Summary of important properties of common biofilter materials (Devinny et al., 1999) 

  

Compost 

 

Peat 

 

Soil 

Activated carbon, 

perlite, and other inert 

materials 

 

Synthetic material 

Indigenous 

microorganisms 

High Medium-low High None None 

Surface area Medium High Low-medium High High 

Air permeability Medium High Low Medium-high Very high 

Assimilable nutrient 

content 

High Medium-high High None None 

Pollutant sorption 

capacity 

Medium Medium Medium Low-higha None to highb, very 

higha 

Lifetime 2–4 years 2–4 years > 30 years >5 years >15 years 

Cost Low Low Very low Medium - higha Very high 

General applicability Easy, cost effective Medium, water 

control problems 

Easy, low-activity 

biofilters 

Needs nutrient, may be 

expensivea 

Prototype only or 

biotrickling filters 
aActivated carbon; bSynthetics coated with activated carbon  
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Chen et al. (2009), in their study to examine the performance of two types of wood 

chips (western cedar and hardwood) as media material for the reduction of odour, H2S 

and NH3 from swine barn, reported that both materials achieved high odour removal 

efficiencies of 48 – 93% at a moisture content of 60% (wet basis). Other research by 

Nicolai and Janni (1997) showed that a media combination of compost and kidney 

bean straw achieved removal efficiencies of 50%, 86% and 78% for NH3, H2S and 

odour, respectively. Oyarzún et al. (2003) reported that a peat-based biofilter achieved 

a maximum elimination capacity of 55 g H2S m-3 h-1 and 100% H2S removal efficiency 

when fed with gas with an inlet H2S concentration of 355 ppm at an air flow rate of 

0.03 m3 h-1.  

Media Moisture Content 

The maintenance of optimum media moisture content is another vital consideration 

for biofiltration process. Media moisture has been suggested to be the most important 

parameter for the operation of biofilters (Sun et al., 2000), and is essential for the 

survival and metabolic activities of the pollutant-degrading microbial population, and 

also contributes to the buffering capacity of biofilters (Rattanapan and Ounsaneha, 

2011). Lith et al. (1997) noted that insufficient moisture content prevents the 

development of a wet biofilm layer on the support material while excess moisture has 

the potential to reduce mass transfer of hydrophobic substances, and clog pore spaces 

which minimises the surface available for pollutant transfer on the biofilm. This also 

creates anaerobic zones, where oxygen needed for biological oxidation is exhausted 

(Rattanapan and Ounsaneha, 2011). Fletcher et al. (2014) pointed out that under these 

conditions, potentially odorous metabolic end products similar to those generated by 

decaying organic matter can be produced.  

Biofilters achieving high elimination capacities (>50g m3 h-1) heat up, leading to 

moisture evaporation, thus, making it challenging to maintain an optimum moisture 

content even when moisture control is automated (Lith et al., 1997). Chen and Hoff 

(2009) suggested that the determination of the optimal moisture content range for any 

bioflter is dependent on the media type (Table 2.14). Drying-out of biofilter material 

is one of the key challenges of biofilter operation. To address this, Sakuma et al. 

(2009) reported that the installation of a lower irrigation system in their biofilter 

increased toluene elimination by a factor of 1.2 to 1.7 times higher than the control 

setup for a gas residence time of 13.5s. They suggested this was due to the high 

moisture content of that portion which supported a high density of toluene-degraders 
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as compared to the control biofilter. In a study to evaluate moisture effects on gas-

phase biofilter ammonia removal efficiency, nitrous oxide generation and microbial 

communities, Yang et al. (2014) reported an improved ammonia removal efficiency 

when moisture level was increased from 35 to 55%, and also pointed out that a further 

increase to 63% only slightly improved ammonia removal.   

Table 2. 14: Recommended Moisture content ranges for different media types 

Media type Moisture content range Reference 

Compost-based 55 – 55% Goldstein (1999) 

Chaff of pine and perlite 60 – 80% Chang et al. (2004) 

Mixture of compost and 

wood chips 

35 – 65% Nicolai and Lefers (2006b) 

Wood chips 40 – 60% Chen et al. (2008b) 

Wood chips >63% Sheridan et al. (2002b) 

 

Empty Bed Residence Time 

An efficient transfer and subsequent degradation of gaseous pollutants requires that 

the gas be kept within the biofilter for a sufficient time period called the empty bed 

residence time (EBRT), and thus, this constitutes one of the key parameters 

considered when designing biofilters. The EBRT is directly related to the volume of 

the media bed and the flow rates of the gas to be treated as shown in Equation 2.1: 

EBRT =
V

Q
 

Eq. 2. 1 

Where V is the volume of the bed (m3,ft3, etc) and Q is the flow rate of the gas to be 

treated (m3h-1, scfm, etc) (Devinny et al., 1999); and dependent on the characteristics 

of the pollutants in the emitted gas, usually ranging from a few seconds to several 

minutes (Muñoz et al., 2015). 

Chen and Hoff (2009) advised that higher loading rates and a lower media moisture 

content requires that the gas be held within the filter bed for a longer time period, and 

recommended 4 – 10 s as sufficient time for odour and VOCs removal from 

agricultural applications provided that optimum moisture content is maintained. Kafle 

et al. (2015) on the other hand, recommended a slightly shorter EBRT of 2 - 3 s as 

optimal for the successful operation of wood bark-based biofilters (BFs). Higher 

EBRTs of 15 – 60 s were recommended as typical for waste air treatment by Devinny 

et al. (1999), while Fletcher et al. (2014) suggested 40 – 100 s as appropriate for 

treating biowaste emissions. Chen et al. (2008a), on the contrary, reported that there 
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was no significant increase in removal efficiencies (REs) of ammonia, hydrogen 

sulphide and odour when the EBRT was increased from 3.7 to 5.5 s. 

Temperature 

This is one of the key parameters affecting bioflter operation as it determines the 

species composition of the microbial community and their growth rates (Pagans et al., 

2006b). It has been suggested that the temperature of the system depends on the 

temperature of the inlet gas stream and the exothermic biological reactions within the 

bed (Chung et al., 1998). There has been variation in the recommended optimal 

temperature for an efficient biofilter system. A review by Chen and Hoff (2009) 

suggested a range of 20 – 40°C, with 35°C as optimum for biofilter operations. Clark 

et al. (2004) tested the impact of biofilter operating temperature (15°C, 22.5°C and 

30°C) and supplemental nutrients on the performance of two pilot scale bioflters for 

treating the exhaust air from a swine facility; and suggested that higher operating 

temperatures enhanced the establishment of pollutant-degrading microorganisms 

even though there was no significant difference in the overall odour removal 

associated with the tested treatment temperatures (p = 0.05).  

Mann et al. (2002), investigating open biofilters used for treating the odour from a 

swine barn during sub-zero ambient temperatures, observed that odour removal 

efficiencies were inconsistent ranging from 56 – 94%. They could not ascertain 

whether the inconsistency was due to inadequate residence time, biofilter management 

problems or bed temperature. However, they suggested that uninsulated biofilters can 

be effective even at ambient temperatures < -20°C. Others have suggested that 

biofilters can be effective at temperatures >10°C (Yang and Allen, 1994; Krishnayya 

et al., 1999). 

Media Depth 

Media depth, together with air flow rate, affects pressure drop and therefore, the 

removal efficiency (Chen and Hoff, 2009). High media depths tend to achieve higher 

potential removal efficiencies but with a maximum value. However, high media 

depths may also result in high pressure drops across the filter bed which would cost 

more in terms of fan requirements to drive the flow of air. Devinny et al. (1999) 

recommended depths of 1 – 1.5 m for treating waste gas emissions; however, much 

lower values (0.3 – 1 m) have been successfully employed for on-site applications 

(Chen and Hoff, 2009). 
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Hong and Park (2004), in a study investigating the influence of woodchip biofilter 

properties and media depth on the control of ammonia emissions during composting 

of dairy manure mixed with bulking agent, revealed that media depth impacted on 

ammonia control and stated that a 40 – 60 cm media depth was critical to maintaining 

ammonia concentrations of 50 ppm. Nicolai and Janni (1999) reported that reducing 

the media depth below 0.15 m to achieve a reduction in gas residence time led to a 

reduction in the removal efficiencies for odour and H2S below 65%, and 

recommended a media depth range of 0.15 – 0.3 m for compost/wood chip biofilters 

for livestock facilities. For agricultural biofilters, Chen and Hoff (2009) have 

recommended a slightly higher range of 0.25 – 0.50 m as optimal for the media depth. 

Fletcher et al. (2014) recommended depth depending on the type of media as 1 – 1.5 

m for peat and compost, up to 3 m for wood chips and greater than 2 m for inorganic 

and synthetic media.  

Microbial Population 

Biofiltration is a complex biological process which necessitates that the conditions 

within the biofilter be kept within narrow ranges to support the thriving of, and 

efficient bio-oxidation by the pollutant-degrading microorganisms (Mann et al., 

2002). The complexity of the process is somewhat due to the diversity of the microbial 

and chemical composition of the exhausted gas, and the interactions with the 

indigenous microorganisms within the biofilter bed (Chen and Hoff, 2009). Omri et 

al. (2011) stated that the relative abundance and diversity of the microbial population 

within the media is influenced by key factors such as availability of the off-gas (which 

provides substrate and nutrients), the prevailing environmental conditions within the 

filter bed (such as temperature and pH) oxygen availability, empty bed residence time 

and concentration of pollutants. Frederickson et al. (2013) stated that temperature, 

media pH, moisture content and nutrient supply are four parameters that can be 

managed to optimise microbial decomposition of contaminants in the waste gas. As 

part of this study, these conditions will be varied to evaluate which levels and 

combinations deliver simultaneously high removal efficiencies for odour and 

bioaerosols. 

Devinny et al. (1999) noted that bacteria and fungi are the two main microbial groups 

in biofilters, even though bacteria thrive more under certain conditions. Most studies 

have reported inoculation of the biofilter media with activated sludge to establish the 

growth of the microbial population needed for bio-oxidation (Van der Heyden et al., 
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2015). However, this is not really necessary especially for the organic media such as 

wood chips, peat and compost, which have an indigenous microbial community within 

the material that are usually allowed some stabilisation period (Chen et al., 2009; Omri 

et al., 2013; Kafle et al., 2015). Devinny et al. (1999) stated that inlet gas carries 

aerosols and dust which in turn harbours an initial inoculum which includes thousands 

of microbial species – cells, spores and cysts which may thrive or die-off depending 

on the prevailing conditions in the biofilter ecosystem. 

Assimilation, mineralisation and sulphur oxidation are three ways of H2S bio-

degradation; and any canadidate microorganism for H2S degradation must (i) have the 

capacity to convert H2S to elemental Sulphur; (ii) require minimum nutrient inputs; 

and (iii) easily separate the sulphur from the biomass (Rattanapan and Ounsaneha, 

2011). Several species have been identified as sulphur degrading bacteria, including 

Achromatium, Acidithiobacillus, Beggiatoa, Thermothrix, Thiobacillus, 

Thiomicrospira, Thioplaca, Thiosphaera and Thiothrix.  

Ammonia biofiltration involves the conversion of ammonia to nitrate by two groups 

of microorganisms – chemoautotrophs and aerobic microorganisms (Shahmansouri et 

al., 2005). Shahmansouri et al. (2005) observed that at an inlet concentration of 236 

ppm, an ammonia loading of < 9.86 g NH3.m
-3 and an empty bed residence time of 1 

minute, a removal efficiency >99.9% was achieved. Within the biofilm, NH4
+ was 

converted to NO2
−; and NO2

− was converted to NO3
− by nitrosomonas and nitrobacteria, 

respectively; both NO2
− and NO3

− being harmless by-products. 

pH  

pH is another important parameter which affects biofilter performance. This is 

because the greatest spectrum of bacterial activities thrives at near neutral pH (7 – 8), 

with exceptions such as sulphur oxidising bacteria which prefer an acidic pH of 3 

(Swanson and Loehr, 1997; Omri et al., 2013). As a result biofilters must be operated 

and carefully monitored to keep the the pH within this narrow range. Certain 

components of the off-gas alter the pH of the biofilters e.g. H2S and sulphur-

containing organics cause a build-up of H2SO4 and NH3 and nitrogen-containing 

organics cause the build-up of HNO3, both of which lowers the pH (Swanson and 

Loehr, 1997). Omri et al. (2013) observed a drop in removal efficiencies when the 

inlet H2S concentration was increased, and they suggested this was due to media 

acidification as a result of sulphate and acidic product accumulation. Thus, biofilters 
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must have adequate buffering capacity if they are to treat off-gases containing these 

compounds in order to avert accumulation of acid. Ottengraf and Van Den Oever 

(1983) stated that addition of crushed oyster shells, marl or limestone can buffer the 

pH of the biofilter media.  

Chen et al. (2008a) reported that the pH of the leachate from a wood chip-based 

biofilter treating odour emissions from a deep-pit swine finishing facility ranged 

between 7.2 – 7.9 for the 12 week study period. During this period, the average 

reduction efficiencies they recorded were 41%, 83% and 51% for NH3, H2S and 

odour, respectively, at a moisture content of 75% and EBRT of 3.7 and 5.5 s. 

Nutrient supply 

Nutrient availability in the media for microbial growth and survival is also another 

important parameter that is considered in biofiltration processes. Rattanapan and 

Ounsaneha (2011) stated that carbon and energy derived from pollutant degradation 

and nutrients such as nitrogen, phosphorus and trace elements are necessary for the 

microorganisms to thrive. The need for nutrient supply is dependent on the media 

type. Organic media such as compost and wood chips usually have sufficient mineral 

nutrients, negating the need for additional supply; whereas inorganic and synthetic 

media do not have such nutrient content and so need supplementary nutrient supply, 

usually in the form of solutions containing ammonium chloride (NH4Cl), magnesium 

chloride (MgCl2), calcium chloride (CaCl2) and dipotassium hydrogen phosphate 

(K2HPO4) (Clark et al., 2004; Chen and Hoff, 2009; Rattanapan and Ounsaneha, 

2011).  

2.2.6.5  Biofilter Performance Evaluation 

The performance of biofilters are evaluated based on their removal efficiencies (RE) 

and elimination capacities (EC) (Muñoz et al., 2015). Devinny et al. (1999) described 

removal efficiency as the proportion of the pollutant removed by the biofilter, 

expressed as a percentage of the inlet concentration (Equation 2.2). 

Removal efficiency = (
𝐶𝐺𝑖− 𝐶𝐺𝑜

𝐶𝐺𝑖
) × 100 Eq. 2. 2 

Where 𝐶𝐺𝑖 = inlet concentration (ppmv, g m-3);  𝐶𝐺𝑜= outlet concentration (ppmv, g 

m-3) 
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Removal efficiency (RE) does not fully describe the biofilter performance due to the 

fact that it only reflects the specific conditions under which it is measured, but varies 

with pollutant concentration, airflow and biofilter size. 

Elimination capacity (EC), on the other hand, is the mass of the pollutant that is 

degraded per unit volume of the filter material per unit time (Equation 2.3), and it is 

expressed in grams of pollutant per m3 of filter material per hour (Devinny et al., 

1999).  

Elimination Capacity = 
(𝐶𝐺𝑖− 𝐶𝐺𝑜) ×𝑄

𝑉𝑓
 Eq. 2. 3 

 

Where Q = air flow rate (m3 s-1); Vf = filter bed volume. 

The EC gives a more direct comparison of biofilters because the volume and flow are 

normalised; however, it is still a function of inlet concentration. 

2.3  Review on Bioaerosols emissions 

2.3.1  What are bioaerosols? 

Bioaerosols can be defined as particles of biological origin (such as bacteria, fungi, 

virus, protozoa, algae, pollen as well as biomolecules e.g. toxins) or their cell 

components suspended in air, which have the capacity/potential to affect living things 

through the mechanisms of infectivity, allergenicity, toxicity, pharmacological and/or 

other mechanisms (Cox and Wathes, 1995; Sykes et al., 2011). They are minute, and 

vary in aerodynamic diameters ranging from 0.1 microns for viruses to 100+ microns 

for fungal spores, occurring either as single, unattached particles or aggregates of 

particles (Tisch Environmental Inc., 2015). The size range makes it possible for them 

to pass through the nose down to the lower respiratory system without interception by 

hairs and specialised cells lining the airways (SEPA, n.d.).  

Human exposure to bioaerosols have been associated with some health symptoms 

including respiratory problems, coughs and fever, and bioaerosol inhalation has been 

implicated in exacerbation of respiratory conditions and gastro-intestinal symptoms, 

especially for immunocompromised persons who face an increased risk of an infection 

especially from opportunistic pathogens such as A. fumigatus (Prasad et al., 2004; 

Drew et al., 2009).  Current knowledge on bioaerosol emissions from biowaste 

facilities have focused on culturable species such as actinomycetes, Aspergillus 
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fumigatus, and Penicillium (Wéry, 2014); however, it is suggested that this greatly 

underestimates the bioaerosol composition of emissions from such facilities 

especially as Albrecht et al. (2007) showed that no more than 15.3% of bioaerosols 

from a composting facility quantified by direct count formed countable colonies 

following incubation on TSA-agar. 

2.3.2  Bioaerosols Generation at Biowaste Treatment Facilities 

Microbiological activity is central to the operation of biowaste plants such as 

composting facilities (Stagg et al., 2010); thus, handling of waste materials causes the 

release of significant quantities of microorganisms in the air. Operations such as waste 

delivery, shredding, turning of compost piles and compost screening generate high 

levels of bioaerosols (Sanchez-Monedero et al., 2005; Taha et al., 2006; Schlosser et 

al., 2009), and where these operations are not confined within a building, there could 

be potential risk of bioaerosol dispersal to locations downwind of the site of 

generation, a situation that can result in complaints from people living in the vicinity 

of such sites. In the UK, the Environment Agency (EA) is responsible for regulating 

waste management facilities, usually done through the granting of Permits to Operate. 

Part of the EA’s remit is to ensure that odours and bioaerosols do not adversely impact 

the surrounding population (Frederickson et al., 2013), and so have included 

bioaerosol monitoring requirements as an environmental permit condition, and to 

assess the performance of abatement systems at operation in such facilities 

(Environment  Agency, 2017).  The EA gave a precautionary guidance for composting 

operators when applying for operating permits. This guidance stipulates that 

concentrations of bioaerosols (as predicted or measured directly) need to be 

maintained no higher than acceptable levels at 250 m from the composting site or the 

nearest sensitive receptor (such as a dwelling or workplace which is not part of the 

composting site), whichever is closer (Environment  Agency, 2010). These acceptable 

levels have been defined as 500 cfu m-3, 1000 cfu m-3  and 300 cfu m-3 for Aspergillus 

fumigatus, total bacteria and Gram-negative bacteria, respectively, as measured by the 

standardised monitoring protocol (i.e. the AfOR protocol later replaced in 2017 by the 

M9 protocol). However, an updated regulatory position statement (RPS) on 

monitoring bioaerosols at regulated facilities was provided by the EA in January 2018, 

and excluded the reporting of Gram-negative bacteria (Environment  Agency, 2018b). 

In the UK, there are no regulatory occupational limits for bioaersols as the acceptable 

levels stated above are not based on dose-response relationships (Pearson et al., 2015). 
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However, the Control of Substances Hazardous to Health (COSHH) Regulation issued 

by the Health and Safety Executive (HSE) provides employers with the requirements 

for assessing, monitoring and controlling the exposure of employees to hazardous 

substances in work environments (HSE, 2013), and thus, applies to workers in waste 

handling facilities. In Germany, there is a regulatory occupational limit of 50 000 cfu 

m-3 for mesophilic fungi (including A. fumigatus) in breathable air within the 

workplace (BAUA, 2013 cited in Pearson et al., 2015).  

Williams et al. (2013), in a study to provide evidence on bioaerosol production, 

dispersion and potential exposures from four different composting facilities within 

England, reported peak total bacteria concentrations of >106 cfu m-3 immediately 

downwind of the sites in comparisons to the < 1000 cfu m-3 recorded upwind. 

However, the concentrations were noticed to decline at locations further downwind of 

the sites which is in agreement with the view that bioaerosol concentrations tend to 

reach background levels within 250m of their point of origin (Pankhurst et al., 2011b). 

In another study aimed at validating the use of three microbial groups (the bacteria 

genera Saccharopolyspora and Thermoactinomycetaceae, and the fungus 

Thermomyces) as indicators of composting bioaerosols, it was observed that compost-

turning operations led to an increase of at least  two orders of magnitude in the 

concentration of these three groups in comparison to the concentration measured 

upwind of site and of at least one order of magnitude in comparison to the 

concentration measured in natural environments that are not impacted by industrial 

activity (Le Goff et al., 2011).  In research investigating critical working tasks and 

determinants of exposure to bioaerosols and microbial VOCs in composting facilities, 

Persoons et al. (2010) recorded concentrations of gram-negative bacteria up to 4 × 104 

cfu m-3 with Pseudomonas as the predominant genus. The total bacteria count for this 

study ranged from 102 – 105 cfu m-3 with Bacillus as the predominant genus. 

Park et al. (2011) , in their study to simultaneously remove bioaerosols, odours and 

airborne particles from a municipal composting facility using a dielectric barrier 

discharge, observed average concentrations of  1.1 × 104 cfu m-3, 2.1 × 108 

particles/m3, 400 ppm and 450 ppm for bioaerosols, airborne particles, amines and 

ammonia, respectively.  Isolation and identification of the bioaerosol samples showed 

11 bacteria, 4 fungi, and 2 actinomycetes as follows: 
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 Bacteria: Bacillus licheniformis, Bacillus subtilis, Brevibacterium spp., 

Burkholderia cepacia, Corynebacterium glucuronolyticum, Pasteurella 

pneumotropica, Ralstonia pickettii, Rhodococcus spp., Staphylococcus lentus, 

Virgibacillus pantothenticus, and Weeksella virosa. 

 Fungi: Aspergillus fumigatus, Aspergillus niger, Pithomyces spp., and 

Pseudallescheria boydii. 

 Actinomycetes: Nocardiopsis dassonvillei, and Streptomyces rochei. 

Total bacteria and Aspergillus fumigatus concentraions of up to 25 × 104 cfu m-3 and 

29 × 103 cfu m-3, respectively, were reported on-site and at the nearest potential 

receptor of a small-scale composting facility in central London (Pankhurst et al., 

2011a). 

With regards to fungal emissions, airborne fungal concentrations of 106 – 107 cfu m-3 

were reported in the air of an indoor composting plant and around the loading area 

with varying species composition over the year (Fischer et al., 1998). In this study, 

Aspergillus fumigatus (~ 106 cfu m-3) was predominant in the winter and spring, while 

Paecilomyces variotii predominated (~ 106 cfu m-3) in the summer samples (when A. 

fumigatus concentration ranged from 104 – 105 cfu m-3); thus, suggesting that 

Aspergillus fumigatus may not be the appropriate indicator microorganism for 

biowaste-related fungal exposure.  

Another study conducted by Fischer et al. (2000) to compare fungal species 

composition to a spectrum of microbial metabolites in the air within a compost facility 

revealed that the highest concentrations (104 – 107 cfu m-3) were observed in the 

loading area in comparison with the compost hall and storage area with 105 – 106 cfu 

m-3 and 103 – 104 cfu m-3, respectively. Some species showed preference for either the 

compost pile hall (P. variabile and P. verruculosum) or the loading area (P. 

crustosum, P. cyclopium, P. glabrum and P. roqueforti) (Table 2.15), whereas others 

showed seasonal variations as was observed with A. candidus, A. fumigatus, A. 

nidulans, A. niger, E. nidulans and Rhizopus oligosporus which had highest spore 

counts during spring. Persoons et al. (2010) reported concentrations ranging from 102 

– 105 cfu m-3 for microscopic fungi in a green waste composting unit, with Aspergillus 

fumigatus being the predominant species (with 70 – 95% of colonies) in all 

composting phases except shredding which also had a predominance of Aspergillus 

flavus and Aspergillus niger.  
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Aspergillus fumigatus and actinomycetes concentrations of 9.8 – 36.8 × 106 cfu m-3 

and 18.9 – 36.0 × 106 cfu m-3, respectively, were reported in a commercial composting 

facility in South East England (Taha et al., 2006). A mean fungal concentration of 6.8  

× 104  cfu m-3 was reported at a composting plant (Sigsgaard et al., 1994), and 

concentrations ranging from 5 × 103 – 5 × 107 cfu m-3 was reported for another 

composting plant (Gottlich et al., 1994). 

Endotoxins and β-(1-3) glucan are other components of compost-generated 

bioaerosols that are of concern to human health. In a study investigating endotoxin 

emissions and dispersal from a commercial composting plant, it was reported that 

peak concentrations were recorded close to the composting activities, with a 

secondary peak of lesser magnitude measured at 100 – 150 metres downwind of site 

(Deacon et al., 2009a). The concentrations measured on-site were generally below the 

50 EU m-3, which is the Netherland’s suggested limit for occupational exposure 

(Liebers et al., 2006).  Endotoxin concentrations above this value are known to elicit 

inflammatory responses in the body, while concentrations less than 50 EU m-3 induce 

minimal cytokine release resulting in slight inflammatory response; thus, supporting 

50 EU m-3 as the cut-off concentration for potential health effects (Liebers et al., 

2008). Schappler-Scheele et al. (1998) reported concentrations of endotoxin  and fungi 

as 0.02–304 ng m-3 and 104 –106 cfu m-3, respectively, at German compost facilities. 

In a study to characterise workers’ exposure to dust, endotoxin and β-(1-3) glucan 

during the activities in four compost facilities, Sykes et al. (2011) observed that 

concentrations of inhalable dust, endotoxin and β-(1-3) glucan had a geometric mean 

of 0.99 mg m-3, 35.10 EU m-3 and 0.98 ng m-3, respectively; and they suggested that 

levels of personal inhalable dust may be a valuable predictor for personal endotoxin 

concentrations, particularly because of the positive correlation (r = 0.783, p<0.05) 

between the concentrations of both components. Concentrations of β-(1-3) glucan of 

≥ 10ng/m3 have been reported to cause health problems such as headache, 

inflammation of the airways and fatigue, symptoms which are similar to those 

experienced with endotoxin exposure (Rylander, 1999; Sykes et al., 2011). A study 

assessing worker and community exposure to bioaerosol generated from a yard waste 

composting plant in northern Illinois, USA revealed that on-site concentrations of all 

the bioaerosols measured were higher than off-site concentrations, and concentrations 

of endotoxin and β-(1-3) glucan reached up to 60 EU m-3 (6.06 ng m-3) and 14.45 ng 

m-3, respectively (Hryhorczuk et al., 2001). 
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Table 2. 15: Species with the highest spore counts found either in the loading area or in the compost pile hall at different incubation 

temperatures (Fischer et al., 2000). 

Loading area, incubation at 

22°C 

Loading area, incubation 

at 37°C 

Compost pile hall, incubation 

at 22°C 

Compost pile hall, incubation 

at 37°C 

Absidia corymbifera, 

Aspergillus fumigatus* 

Cladosporium cladosporioides 

Cladosporium herbarum 

Doratomyces oligosporus 

Eurotium herbariorum 

Mycelia sterilia 

Penicillium brevicompactum 

P. clavigerum 

P. polonicum 

P. glabrum 

P. italicum 

P. janczewskii 

P. Roqueforti 

P. spinulosum 

Rhizopus oligosporus* 

Trichoderma citrinoviride 

Aspergillus flavus 

A.  fumigatus 

A. nidulans (sterile) 

Rhizopus oligosporus 

Aspergillus candidus 

A. eburneo cremeus 

Paecilomyces variotii* 

Penicillium fellutanum 

P. variabile 

P. verruculosum 

Aspergillus versicolor 

Paecilomyces variotii 

P. islandicum 

Species listed here were significantly more frequent (p≤0.01) in the respective part of the facility compared to other locations when averaged 

over the whole period of the investigation. 

*Species marked with an asterisk are thermotolerant, but have also been scored at 22°C.  



- 55 - 

2.4  Odour and Bioaerosol Removal from Biofilters or 

Biofilters and Scrubber Combinations 

As noted earlier, biofilters were designed primarily to achieve odour control from a 

range of industries that generate odours, and hence, studies on its optimisation have 

been conducted resulting in an abundance of literature regarding performance for 

odour control. Few studies have been carried out regarding bioaerosol removal 

especially because bioaerosol removal is a recent requirement by regulators. This 

section provides a background to bioaerosol and odour emissions from biofilters 

operated as stand-alone systems or in combination with scrubbers at biowaste 

treatment facilities; and these are drawn from a combination of laboratory, pilot and 

full scale studies. Even though laboratory and pilot studies may be considered 

unsuitable for establishing design and sizing criteria for full scale biowaste plants, 

especially because of their small filter bed volume (sometimes <1 m3) (VDI3477, 

2004), these studies still prove vital for investigating the basic mechanism of 

biofiltration and for comparative performance analysis.  

2.4.1  Hydrogen Sulphide Removal 

A study conducted by Roshani et al. (2005) on performance evaluation of biofiltration 

in the removal of hydrogen sulphide from a gas flue confirmed that biofiltration is a 

highly effective, low-cost and an environmentally friendly air pollution control 

technology. The study which involved evaluation of the technology by assessing 

elimination capacity, removal efficiency, effects of sulphate accumulation, gas 

retention time, pressure drop across the media depth, moisture content and pH, 

showed that biofilters achieved a mean H2S removal of 98% with a retention time of 

60 s. However, there was a decline in the removal efficiency following accumulation 

of sulphates in the filter bed, which also resulted in increased pressure drop across the 

filter bed. Fletcher et al. (2014) suggested that H2S tends not to be a significant 

constituent of biofilter emissions. 

Chung et al. (1996) who worked on lab-scale operation optimisation of a Thiobacillus 

thioparus CH11 biofilter for hydrogen sulphide removal showed that removal 

efficiencies of >98% were achieved for the lab scale study with an optimal retention 

time of 28 s. A subsequent study carried out to access the removal characteristics of 

H2S by a Thiobacillus novellus CH3 biofilter in autotrophic and mixotrophic 

environments showed that 99.5% of the inlet concentration of H2S was eliminated in 
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mixotrophic conditions in contrast to autotrophic environments which showed a 

97.5% elimination (Chung et al., 1997).   

Kim et al. (2002) investigated the long-term operation of biofilters to examine the 

simultaneous removal of H2S and NH3. Two biofilters were used, one packed with 

wood chips and the other packed with granular activated carbon (GAC), and sprayed 

with a mixture of Thiobacillus thioparus (to aid oxidation of sulphur) and activated 

sludge (to provide nitrifying bacteria). They reported that before deactivation, the 

biofilters achieved removal efficiencies of 99.9% and 92% for H2S and NH3, 

respectively. However, these efficiencies declined following deactivation as 

elemental sulphur and ammonium sulphate accumulated on the packing materials 

resulting in removal efficiencies of 75% and 30 – 50% for H2S and NH3, respectively.  

Elias et al. (2002), working on evaluating the performance of biofilter packing 

material for biodegradation of H2S, used pig manure and sawdust as the packing 

material and reported that a H2S removal efficiency of >90% was achieved with a 

loading rate of 45 g m-1 h-1. They also noted that superficial gas velocity was a 

determining factor especially as removal efficiency decreased below 90% when the 

velocity of the gas was increased from 100 to 200 m h-1.  

Morgan-Sagastume and Noyola (2006) recommended bed mixing operation to ensure 

homogeneity of compost media. In their study which examined the effect of mixing 

the filter media on hydrogen removal, they reported that H2S removal declined over 

time from 100% to 90%, but mixing the media marinated the removal capacity close 

to 100%.  

A pilot study conducted by Omri et al. (2013) to evaluate biofilter performance for 

the control of H2S from wastewater odour reported a 99% removal efficiency at an 

empty bed residence time of 60 s for inlet concentrations between 200 and 1300 mg 

H2S/m3. Kafle et al. (2015) evaluated the capacity of wood bark-based down-flow 

biofilters for mitigation of odour, ammonia and hydrogen sulphide emissions from 

confined swine nursery barns. They reported removal efficiencies of 95.8 – 100%, 

95.2 – 97.9% and 73.5 – 76.9% for H2S, NH3 and odour with empty bed residence 

time of 1.6 – 3.1 s and a media moisture content range of 64 – 65%. 
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2.4.2  Ammonia Removal 

Van der Heyden et al. (2015), in a review on mitigating emissions from pig and 

poultry housing facilities using air scrubbers and biofilters, observed that biofilters 

may not be suitable for direct treatment of exhaust air particularly because of their 

low removal efficiency for ammonia (15 – 72%), and sometimes may be net emitters 

of ammonia due to waste gas leakages through the filter bed or ammonia stripping.  

Melse and Hol (2012) stated that the low removal efficiencies are caused by such 

factors as poor functioning of the humidification system which allows air to pass 

untreated into the biofiltration system and further increasing microbial inhibition in 

the filter material through nitrite and ammonium accumulation.  

Pagans et al. (2005) conducted a laboratory scale study to evaluate the biofiltration of 

ammonia  from the exhaust gas of a composting plant treating the source-separated 

organic fraction of municipal solid wastes, animal by-products and digested 

wastewater sludge. They reported high ammonia removal efficiencies (up to 95.9% 

for a loading rate of 67,100 mg NH3 m
-3 h-1) from the beginning of the experiment 

which was attributed to the high ammonia sorption (adsorption and absorption) 

capacity of the mature compost-based filter media. However, they observed that high 

NH3 concentrations >2000 mg NH3 m
-3 led to a reduction in the removal efficiency. 

Some studies have reported that at an average loading rate of 10,180 mg NH3.m
-3 h-1 

and an empty bed residence time of 16 s, removal efficiency of 98% have been 

achieved in the biofiltration of exhaust gases from composting facilities (Park et al., 

2002; Chung et al., 2003). Fletcher et al. (2014) suggested that because of the 

relatively high odour threshold of ammonia, it was unlikely that ammonia had a 

significant contribution to odour emissions from biofilters. 

2.4.3  Volatile Organic Compounds (VOCs) Removal 

Fletcher et al. (2014) pointed out that VOC removal efficiencies and emission 

concentrations were limited by such factors as concentration of air flowing through 

the biofilter and concentration of the VOC generated within the filter bed, and that 

varied from site to site which is evident in the wide range of removal efficiencies 

observed for many studies involving VOCs detected above their detection threshold 

(Table 2.16). 
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Table 2. 16: Indicative performance of biofilters by compound group (Fletcher et al., 

2014) 

Target parameter Inlet concentration 

(ug/m3) 

Min – Max (Mean) 

Outlet 

concentration 

(ug/m3) 

Min – Max 

(Mean) 

Removal  

(%) 

Min – Max 

(Mean) 

Aromatic 

hydrocarbons 

91 – 10275 (3433) 57 – 5066 (1776) 34 - 96 (57) 

Cyclic hydrocarbons 74 – 7415 (2306) 0 – 4292 (1395) 14 - 100 (53) 

Aliphatic 

hydrocarbons 

28 – 24776 (6754) 19 – 9587 (3011) -136 – 97 (48) 

Alcohols 141 – 164242 

(30565) 

0 – 13957 (2130) 62 - 100 (95) 

Esters 0 – 10063 (2983) 0 – 2235 (233) 61 - 100 (96) 

Ketones 412 – 34473 (13853) 0 – 11387 (1514) 39 - 100 (90) 

Aldehydes 129 – 3672 (1476) 0 – 647 (186) -6 – 100 (74) 

Chlorinated 

compounds 

23-3284 (910) 0 – 2988 (565) -1481 – 100 (-93) 

Organic S-compounds 220-2986 (1591) 0 – 2721 (800) 8 – 85 (50) 

Furans 40-2104 (809) 0 – 1471 (337) 13 - 100 (70) 

Ethers 0-356 (138) 0 – 494 (77) -859 - 100 (-23) 

Terpenes 524-50178 (12852) 79 – 8960 (3174) 25 - 99 (70) 

Organic N-

compounds 

72-921 (291) 0 – 56 (9) -100 – 100 (29) 

Organic acids 26-16882 (2164) 0 – 700 (71) -100 – 100 (77) 

Pagans et al. (2006b) studied the emission of volatile organic compounds produced 

during the laboratory scale composting of different organic wastes, including the 

source-separated organic fraction of municipal solid wastes (OFMSW), raw sludge, 

anaerobically digested wastewater sludge and animal by-products, and reported 

removal efficiencies up to 97% depending on waste type (Table 2.17). Also worth 

mentioning is the fact that the biofilters emitted an estimated 50 mg C/m3 of VOCs.  

Colón et al. (2009), during full scale monitoring of a composting facility treating 

14500 tons per year of organic solid wastes in Barcelona, reported that biofilters using 

wood chips as filter material achieved removal efficiencies of 70% for VOCs and 

almost 90% for ammonia, immediately after media replacement. Surprisingly, some 

biofilters have been shown to emit a number of VOCs that were not components of 

the inlet gas (Fletcher et al., 2014). This is thought to be due to factors such as 

incomplete oxidation of the pollutants, the presence of anaerobic zones in the filter 

media and/or emissions from the biofilter media. 
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Table 2. 17: VOC removal before and after biofiltration of exhaust gases of a lab 

scale composting plant (Pagans et al., 2006b) 

Organic Waste Type VOC concentration 

before biofiltration 

(mg C m-3) 

VOC concentration 

after biofiltration 

(mg C m-3) 

OFMSW (5:1 mix with bulking 

agent) 

50 - 695 55 - 295 

OFMSW (1:1 mix with bulking 

agent) 

13 - 190 12 - 145 

Raw sludge 200 - 965 55 - 270 

Anaerobically digested 

wastewater sludge 

43 - 2900 42 - 855 

Animal by-product 50 - 465 55 - 315 

A comparative assessment of a biofilter, a biotrickling filter and a hollow fiber 

membrane bioreactor for the treatment of odour emissions from wastewater treatment 

plants by Lebrero et al. (2014) evaluated the performance of these units to control 

trace level concentrations (0.75 – 4.9 mg/m3) of methyl-mercaptans, toluene, alpha-

pinene and hexane at EBRT of between 4 and 84 s. They reported that the biofilter 

was capable of achieving high removal efficiencies (> 90%) at empty bed residence 

time ≥ 8 s for all the compounds. The biotrickling filter achieved complete removal 

of methyl-mercaptan, toluene and alpha-pinene at empty bed residence time of ≥ 4 s, 

and 88% removal for hexane; whereas at all the tested empty bed residence time, the 

hollow fiber membrane bioreactor had complete removal of methyl-mercaptan and 

toluene, low hexane removal (38.3%) and unstable removal performance for alpha-

pinene (attributed to biomass accumulation). 

2.4.4  Odour Removal 

Schlegelmilch et al. (2005b) carried out a bench-scale study to assess odour control at 

biowaste composting facilities over a 7-week period using a bioscubber/biofilter 

combination (Figure 2.9). They reported that maximum odour concentrations were 

reached in the first 2 – 3 weeks of the composting process, after which concentrations 

slowly declined to <1000 OUE m-3. They also showed a progressive decrease in odour 

concentration from the inlet of the bioscrubber to the inlet of the biofilter and outlet 

of the biofilter as evident within the first 20 days of the study. Also, in a study 

conducted by Yuwono et al. (2003) to assess the implementation of a quartz 

microbalance (QMB) sensor array-based instrument and olfactometer for monitoring 

the performance of an industrial-scale biofilter (19.0m × 6.8m × 1.5m), it was reported 
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that a 92% reduction in odour intensity was achieved with a loading rate of 9.5 m3 m-

2 h-1. 

 
Figure 2. 9: Odour concentration at selected sampling points during a composting 

cycle over a period of 7 weeks (Schlegelmilch et al., 2005b) 

Fletcher et al. (2014) reported an indicative performance (removal efficiencies) of 64 

– 98% for biofilters with inlet odour concentrations in the range of 4856 – 145311 

OUE m-3 achieving outlet concentrations in the range of 212 – 5516 OUE m-3. This 

wide range of outlet concentrations is thought to be due to factors such as variations 

in the treatment capacity of biofilters for certain odorous volatiles in the waste gas, 

in-situ biogenic generation of odorous volatiles, and contributions from odorous 

volatile organics indigenous to the filter material. They also suggested 5000 OUE m-3 

as the upper limit that can be achieved by biofilters, and which can be used for design 

and regulatory purposes to guide system selection for odour abatement.    

2.4.5  Bioaerosols Removal 

Ottengraf and Konings (1991), in their mathematical model, suggested that biofilters 

may serve as systems that both capture and emit bioaerosols. The capture 

mechanisms, which include inertial deposition, diffusional or Brownian deposition 

and flow line interception, effect particle impingement on the solid bed packing 

material as the bioaerosol-laden gas sweeps through the filter. They also observed that 

at low gas velocity, the concentration of bioaerosols discharged at the outlet was more 

than the inlet concentrations, suggesting that biofilters are net emitters. This is thought 

to be due to shear stress at the gas-liquid interface which causes microorganisms to 
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be released from the biofilm, transported in the gas phase and eventually discharged 

at the outlet. However, it was observed that increasing the gas velocity resulted in a 

decreased outlet concentration (Ottengraf and Konings, 1991). Martens et al. (2001) 

suggested that the total bioaerosol emissions of biofilters is a summation of the 

microbial particles not deposited from the waste air and those blown off from the 

biofilm by the through-flowing airstream. It becomes necessary to investigate the 

possibility of enhancing/improving the design and operation of the system (i.e. single 

stage or two-stage) to achieve the capture of either the resident microorganisms that 

may be blown off and/or the ones that do not get impinged in the filter material. 

In a study to determine the potential for the reduction of specific microbial bioaerosol, 

odour and ammonia from a pig facility by biofilters, Martens et al. (2001) suggested 

that bioflters which were excellent odour abatement systems emitted slightly more 

bioaerosols particles. However, they could not establish any relationships between the 

removal efficiencies of the odour/ammonia and bioaerosols for the five filter materials 

(i.e. biochips, coconut-peat, wood-bark, pellets & bark, and compost) tested. On the 

contrary, Tymczyna et al. (2011) observed high removal efficiencies with certain 

media types compared to others in their study. They noted that the use of straw as a 

filter media prevented the blowing out of the bacteria in the discharged air. This makes 

it imperative to investigate whether this is also obtainable for biowaste treatment 

facilities such as in-vessel composting systems employing biofilters for odour and 

bioaerosol control. 

There is also some discrepancy in the information regarding the species composition 

of both the inlet and outlet air of biofilters. For instance, Martens et al. (2001) noted 

that biofilters emitted their own populations of microorganisms, whereas Ho et al. 

(2008)  reported a high similarity (approximately 95%) between the inlet and outlet 

distribution of bioaerosol species, suggesting that the biofilter showed no selectivity 

in the removal of bioaerosols. In a study to assess the effect of a bioscrubber on 

bioaerosol emissions from a duck house, it was reported that species composition in 

the air within the duck house and in the purified exhaust air were different with the 

Enterobacteriaceae and Pseudomonadaceae being the dominant families, respectively 

(Scharf et al., 2004).  

Sanchez-Monedero et al. (2003), in their study involving the monitoring of full scale 

biofilters at seven composting plants, reported that the average removal efficiencies 
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achieved for Aspergillus fumigatus and mesophilic bacteria were 90% and 39%, 

respectively, and suggested that this wide variation could be attributed to the size 

differences between fungal spores (which are larger) and bacteria resulting in the 

observed capture rates for these two groups. Fletcher et al. (2014) suggested that based 

on their full scale monitoring data the configuration of biofilters (open or enclosed) 

can favour the removal of one species over others, even though the odour abatement 

levels were comparable. They stated that open biofilters achieved higher removal 

efficiencies for Aspergillus fumigatus than enclosed systems. However, enclosed 

configurations achieved higher removal efficiencies for total bacteria than open 

configurations. However, these observations need further investigations. 

2.5  Odour and Bioaerosol Reductions by Biofilters: 

Knowledge Gaps 

The main summary of the literature regarding the performance of biofilters in 

controlling/reducing emissions from waste management facilities is that biofilters 

offer great potential as an abatement system for these facilities. However, there are 

still many gaps in the knowledge that need to be investigated if biofilters are to be 

designed and operated to achieve the highest levels of efficiency. These gaps have 

been summarised as follows: 

 There is little quality information available on the bioaerosols concentration 

in the process air of waste management facilities. As Fletcher et al. (2014) 

suggested, there needs to be more sampling to establish these concentrations 

for a range of waste management facilities using robust, standardised sampling 

protocols to enhance data comparison across studies. 

 Several studies have put forward a range of design and operating parameters 

which are critical for odour and VOCs control. In particular several authors 

have suggested that media characteristics such as porosity, moisture content, 

nutrient content, gas residence time, temperature and water retention capacity 

are the most important factors governing biofilter performance, although the 

optimum ranges quoted in the literature vary significantly from one author to 

another. However, there is little information available on whether these 

parameters are also vital for bioaerosol reduction by biofilters especially as the 

mechanisms of removal are different for these two contaminants. Thus, more 

research is required to investigate the criticality of these parameters in the 
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simultaneous biofiltration of odour/VOCs and bioaerosols in order to firmly 

define boundary conditions between normal and abnormal biofilter operations 

(Fletcher et al., 2014). 

 Fletcher et al. (2014) noted that in order to define the operational limits for 

application of biofilter technology it was necessary to assess the performance 

of biofilters operated under ‘abnormal’ conditions since the biofilters covered 

in their study were actually well designed, operated and maintained.  

 Frederickson et al. (2013) stated that studies were required to determine how 

effective different media types performed in the treatment of odour and/or 

bioaerosols, and to establish what maximum odour 

removal/particulate/bioaerosols removal rates were possible. 

 Some studies have suggested that biofilters may be achieving negative 

removals of bioaerosols (Frederickson et al., 2013; Fletcher et al., 2014). 

Ottengraf and Konings (1991) suggested that this may due to extra 

contamination of emitted air from biofilter with microorganisms originating 

from the media bed. Thus, further studies is required to assess the potential for 

net emission of bioaerosols from biofilters both in terms of the overall 

concentration and also the individual species. 

 Also, to date there is limited information on the bioaerosol particle size 

differences between biofilter inlet and outlet air samples. Deacon et al. (2009b) 

argued that information on particle size distribution of bioaerosols emitted 

from waste management operations is vital when assessing potential helath 

impacts of exposed persons, and it is also an important requirement for 

improved air dispersion modelling. 
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Chapter 3 

MATERIALS AND METHODS 

3.1  Introduction  

This chapter describes the methods employed in achieving the objectives of this pilot 

study, including the design and fabrication of the pilot-scale biofilters. The study site 

was selected to simulate air contamination levels typical of waste treatment facilities. 

The methods employed have been chosen to reflect industry standards for evaluation 

and monitoring of bioaerosols and odours. In addition to the general methodologies 

presented in this chapter, each results chapter (Chapters 4 – 8) also includes detailed 

methodologies that are specific to the experiments presented in those chapters. 

3.2  Pilot Study Site 

3.2.1  Site selection and description 

The pilot study was conducted at an enclosed MRF operated by Associated Waste 

Management (AWM) Ltd located in Leeds. The broad intention of this study was to 

generate original data on operational characteristics, levels of odour and bioaerosol 

emissions from the facility, and the performance of pilot woodchip-based biofilters 

fabricated to assess achievable emission control. This site was chosen because of the 

potential for significant odour and bioaerosol emissions. Stagg et al. (2013), in their 

study, stated that exposure to microorganisms (bacteria and fungi) in MRFs were 

considered to be of a medium level (between 104 – 105 cfu m-3) and occasionally 

showed higher levels similar to those of animal houses at >105 cfu m-3, and with 

identified species including A. fumigatus which is a known allergen. Hence, this site 

met the requirement of providing air contaminated with significant levels of 

bioaerosols required to test the control of bioaerosol emissions in this study. 

AWM is a UK-based independent integrated waste management and recycling 

company. The Leeds main site (where this study was conducted) is a £12.5 million 

facility established in 2011 to offer services to people, businesses and companies all 

over West and North Yorkshire (Holland, 2011). The company is a material recovery 

facility (MRF) which adopts an integrated approach to waste management, combining 

processes such as waste collection, treatment and disposal methods with the objective 

of achieving environmental benefits, economic optimisation and societal acceptability 
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(Hester and Harrison, 2002). The facility handles approximately 200,000 tonnes of 

household waste per year from around 250,000 houses across Leeds, Bradford and 

Calderdale (Holland, 2011). Located on a 6 acre site approximately 4 miles south of 

Leeds city centre on the A62 (Plate 3.1), the facility accommodates the plant for 

processing waste and an office complex with a car park for staff and visitors (AWM, 

2011). 

 
Plate 3. 1: Satellite image of Associated Waste Management Ltd, Gelderd Road, 

Leeds showing the material recovery plant (top) and the office block (bottom) 

within the site (Google Maps, 2017). 

3.2.2  Facility operation 

The plant runs between 07:30 and 18:30 daily from Monday to Friday, and on 

Saturdays from 08:00 to 13:00 (AWM, 2011). On a daily basis, municipal and private 

trucks or vehicles carrying approximately 500 tonnes of waste enter the site through 

the A62 Gelderd Road entrance, and once on site, they are reversed into position for 

entry into the waste hall via Door 1 or Door 2 with the guidance of a banksman (Plate 

3.2 i). With the doors shut to prevent escape of noise, odour and dust emissions, the 

vehicles tip the waste in the waste reception area (Plate 3.2 ii).  
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(i) 

 
(ii) 

Plate 3. 2: The waste facility showing (i) vehicle reversing through Door 1 (AWM, 

2011) and (ii) the waste reception area. 

After waste ejection, the vehicles exit the plant when the doors open with air curtains 

around the aperture blowing air inside the reception area to keep the dust and odour 

emissions indoors. Loaders continuously pile the incoming waste against the back 

push wall in the reception area, while grab loaders feed the waste into the dinosaurus 

shredders that break down larger sized waste materials into smaller sized fragments 

in order to enhance material separation (Plate 3.3 i). The small sized fragments fall 

onto an inclined belt which conveys waste to the over-band magnet (Plate 3.3 ii) for 

exclusion of ferrous elements, which are then carried to a sorting area where they are 

manually sorted to remove unwanted materials such as plastics. The rest of the waste 

is shaken in a tumble dryer to differentiate the materials into two size ranges, those 

greater than 70 mm and those ≤ 70 mm (called fines), which are subsequently carried 

to air belt separators. The fines are conveyed via another over-band magnet to the 

eddy current separator (Plate 3.3 iii) where non-ferrous materials (e.g. copper and 

brass) are removed to a bay just underneath it (Plate 3.3 iv), while the rest of the fines 

move to a stretch deck screen that shakes the materials to remove the biodegradable 

content which is collected within the building to prevent external odour problems 

(these were initially conveyed to external by-product bays). The non-biodegradable 

portion is conveyed to the air belt separator for separation into heavy and light parts. 

A fraction of the heavy part is taken to the 1st picking station, and the rest get moved 

to the wind sifter for further separation into heavy and light items by the actions of 

gravity feed and air blowers, respectively. Heavy items get conveyed to the 2nd picking 

station while light items are conveyed to the 3rd picking station. The wind sifter also 

blows films through duct systems down to the films bay, from where they are loaded 

into vehicles going to recycling centres. 
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(i)  

 
 (ii)  

 

 
(iii) 

 
(iv) 

Plate 3. 3: The waste facility showing (i) the grab loader feeding the shredder, (ii) the 

over-band magnet, (iii) waste in the eddy current separator, and (iv) the non-

ferrous bay(AWM, 2011). 

The three picking stations process different materials. In the first picking station (Plate 

3.4 i), larger biodegradable materials (such as carrots, potatoes, and other fruits) are 

picked and dropped into composting bins and to a bay directly beneath the station.  In 

the second picking station (Plate 3.4 ii), materials such as metals, aluminium cans, 

electrical wires and wood are sorted out and dropped into bins. The remaining wastes 

are conveyed to a bay located within the building for further processing. Materials 

such as plastics and films, aluminium cans, hard plastics, paper and cards are selected 

in the 3rd picking station (Plate 3.4 iii); and these materials are dropped directly into 

bays underneath the station and are later collected by vehicles for transport to their 

processing centres (AWM, 2011). The collecting vehicles access the building by 

reversing through Door 3 (operated by the same sensor mechanism as Doors 1 and 2) 

with the guidance of the banksman. Shovel machines load the materials into the 

vehicles after which they are directed to the weighbridge by the banksman. 
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(i) 

 
(ii) 

 
(iii) 

 
(iv)  

Plate 3. 4: The waste facility showing (i) Picking station 1 (ii) Picking station 2 (iii) 

Picking station 3 and (iv) shovel machine feeding the hopper (AWM, 2011). 

Shovel machines are also used to gather materials scattered around the floor of the 

waste hall into their respective bays. They are also used to load residual wastes and 

light fraction items into the hopper (Plate 3.4 iv) that compresses the waste into bale 

cubes (each of approximately 1.2 tons) which are conveyed over a short distance to 

the baler wrapper (Plate 3.5 i) which wraps the bales in 4 layers of 30 micron plastic 

material. The hopper is continuously loaded with materials such that the baler 

continually produces Refuse Derived Fuel (RDF) bales (Plate 3.5 ii). These are 

distributed to power generation plants in Denmark, Holland, Norway and Sweden 

where they are used to derive energy in the form of heat and power. A bale generates 

approximately 850kWh of heat and power (AWM, 2011). The plant also has an annex, 

which is a separate hall that houses the finished bales before they are transported out. 
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(i) 

 
(ii) 

Plate 3. 5: The waste facility showing (i) RDF conveyed to the bale wrapper and (ii) 

RDF bales for export (AWM, 2011). 

3.2.3  Existing odour abatement system evaluation and odour 

monitoring on site 

The existing odour abatement technology on the Gelderd Road facility are 11 

MetalCraft Modular units containing pre-filters and impregnated activated carbon 

cartridges for dust and odour removal, respectively. Together, the units deliver an 

extract ventilation rate of 2.64 air changes per hour (surpassing the recommended 

industry average of 1.5 air changes per hour), treating a total air volume of 158,400 

m3 per hour (Varley, 2013). This number of units were installed following expert 

recommendation to allow for an increased factor of safety and increased negative 

pressure to contain any fugitive emissions. To assess the performance of the 

abatement system, odour monitoring was carried out on this facility by Gair 

Consulting on behalf of TerraConsult in October 2013 (Gair, 2013). Results obtained 

indicated that outlet concentrations (4878 – 5562 OUE m-3) at both filter outlets 

monitored were substantially higher than would be  expected (approximately 500 OUE 

m-3) for an activated carbon system. Also, inlet concentrations measured (19340 OUE 

m-3) were not particularly high for an activated carbon system. The odour removal 

efficiency of 71% achieved by the filter was substantially lower than would be 

expected for an activated carbon system which usually have efficiencies in the range 

of 95 – 99%. This lower removal efficiency was thought to be due to a number of 

reasons including:  

 high particle loading, although upstream filters are included to minimise 

particle loading; 

 very large volume of air requiring treatment resulting in a large number of 

systems; and 
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 frequent high humidity and temperature conditions. 

3.2.4  Previous bioaerosol and airborne chemical contaminants 

monitoring study on site 

A study conducted by Ibanga (2013) to assess bioaerosol exposure and occupational 

health risks in the Gelderd Road facility in the summer of 2013 revealed that all 

operations evaluated generated significant concentrations of bioaerosols (up to 105 cfu 

m-3), and these concentrations varied from operation to operation depending on the 

degree of agitation involved. It was further concluded that there was a high risk to the 

health of workers within the facility because the observed concentrations exceeded 

the 5000 – 10000 cfu m-3 limit for an 8 hour working period recommended in the 

literature; and this was further aggravated by the high proportion (>50%) of the 

respirable fraction of inhalable particles of the indicator microorganisms (Aspergillus 

fumigatus and mesophilic bacteria) measured indoors.  

Nahawi (2015) conducted an assessment of occupational health risks related to 

airborne chemical contaminants within the facility in the summer of 2015, and 

concluded that site operations generated significant amounts of inhalable chemical 

contaminants. However, measured concentrations did not exceed the Work Exposure 

Limits (WELs) set out by the HSE (Appendix). The study further suggested that 

ethanol and limonene were the main constituents of the VOCs measured within the 

facility (consistently ranking 1 and 2, respectively, out of the top 10 VOCs); and 

argued that these resulted from emissions of waste decomposition while emissions 

from vehicles particularly diesel contributed to the levels of other VOCs detected 

within the facility.  

3.3  Pilot-scale Biofilter Construction 

3.3.1  Introduction, aim and objectives of construction 

Pilot-scale investigation of biofilter performance allows for more controlled 

experimental conditions with real time polluted air, and prevents much of the 

uncertainties and practical difficulties associated with site operations and sampling 

methods in full-scale studies. Delhoménie and Heitz (2005) noted that both laboratory 

and pilot scale studies allow for the generation of experimental data which contribute 

to the understanding of the complex biofiltration mechanisms, and which allow for 

the development of process models that are useful for biofilter performance 
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extrapolation and prediction studies. Fletcher et al. (2014) also pointed out that valid 

results can only be obtained from pilot plants testing the actual waste gas stream to be 

treated. Thus, it became imperative to construct a pilot-scale biofilter test rig to assess 

a range of parameters identified as critical to removal of odour and bioaerosols from 

waste air streams. The specific objectives were: 

 to design, fabricate, commission and operate a pilot-scale biofiltration test rig 

with the capacity for multi-level temperature monitoring, media moisture 

content measurement, airflow rate monitoring and leachate collection and 

assessment; and 

 to determine the nature and characteristics of the indoor air quality in terms of 

bioaerosols and odour composition in order to establish the baseline 

concentration of inlet air to be fed to the pilot-scale biofilters. 

3.3.2  Description of Pilot-scale Biofilter System 

The biofilter system (Figure 3.1 and Plate 3.6) for this study was designed to meet 

odour treatment specifications as recommended by Fletcher et al. (2014). It was 

modelled after the one-stage pilot-scale biofilters in the study by Chen and Hoff 

(2012), and shows some of the key features of a full-scale system as described by 

Janni et al. (2011) and Fletcher et al. (2014). The system comprised of four vertical 

up-flow plastic reactors filled initially with wood chips as media. Fletcher et al. (2014) 

noted that both open and enclosed biofilters can achieve comparable odour abatement 

levels provided that the key operating parameters are ensured. For this study, the 

biofilters were covered between sampling days to prevent surface contamination, 

during which treated air was released through a 20 mm diameter exhaust provided at 

the top of each biofilter cover. Other authors have opined that vertical down-flow 

configuration is advantageous because it allows water application to the air entrance 

surface - the section of the biofilter reported as being prone to media drying (Kafle et 

al., 2015). However, the biofilters covered in the study by Fletcher et al. (2014) had 

the up-flow configuration and were all reported to deliver good performance. Hence, 

the up-flow configuration was adopted for this study as it allowed for ease of 

fabrication to suit the experimental site. 
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Figure 3. 1: Layout of the pilot-scale biofiltration system 

 

Each reactor (length: 66 cm, breadth: 55 cm, depth: 99 cm) was designed with a 20 

cm air space at the bottom, with an initial 50 cm biofilter media depth (giving a total 

biofilter media volume of 181.5 L) located above the airspace separated by a metal 

mesh which supports the media (Figure 3.2). All four reactors were connected to a 

central plenum by means of 50 mm flexible polyvinyl chloride (PVC) pipes. A 

centrifugal fan (Secomak 575/1 High Velocity fan) was used to pump contaminated 

air from the waste hall into the plenum, from where each biofilter was air-fed. Lee 

and Lin (2007) noted that this type of fan had the capacity to handle dirtier air streams 

with higher system resistance. Airflow into each biofilter was measured using an 

Alnor Balometer capture hood EBT731 (Plate 3.7), and regulated by means of 50 mm 

ball valves to obtain the range of empty bed residence times tested (9 – 109 s 

corresponding to airflow rates of 1210 L min-1 – 100 L min-1, respectively). Water 

was supplied to the top of each biofilter by a combination of manual watering and an 

automatic irrigation system (Hozelock Ltd, Midpoint Park, Birmingham, Model 2756: 

36419-001) connected to a peristaltic pump (Watson Marlow, model 624S) and socket 

timer. Irrigation was controlled by the look and feel method suggested by Janni et al. 

(2011) whereby moisture levels were monitored to ensure dampness across ½ to ¾ 
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way through the media depth. Leachate from each biofilter was collected once a week 

throughout the study period; leachate pH was measured using a digital calibrated pH-

meter. 

 

Plate 3. 6: Fabricated pilot-scale biofilter system in the laboratory. 

 

 

Figure 3. 2: Schematic of the pilot biofilter used in this study. 
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Plate 3. 7: Airflow rate measurement using an Alnor Balometer (blue cone) through 

the pilot-scale biofilter. 

 

3.3.3  Media selection and characterisation 

Based on the study by Fletcher et al. (2014), it was decided that woodchips be used as 

biofilter media for this study (except for experiments in chapter 8 which assessed the 

performance of various media types) because it is easily available and can be sourced 

locally; is relatively cost effective; and has inherent content of nutrients (Devinny et 

al., 1999) and  naturally harbours microbial population (Hellenbrand and Reade, 1992; 

Tymczyna et al., 2011); thus, eliminating the need for supplementary nutrient supply 

and microbial inoculation, respectively. Woodchips were also selected because of 

their wide usage as media material in most biofilters in the UK. Devinny et al. (1999) 

argued that they (i) prevent bed compaction; (ii) allow for homogenous air flow 

through the bed and; (iii) can act as a reservoir for water which can compensate for 

media moisture content fluctuations resulting from poor reactor control or excess heat 

generated within the biofilter. Woodchips have been reported to achieve significant 

odour removal efficiencies (in excess of 90%), although there have been variable 

performance in terms of bioaerosol control (Fletcher et al., 2014).  

The woodchips for this study were purchased from a local supplier (Garforth Log 

Supplies, Peckfield House Farm, Garforth, Leeds, UK). Preliminary laboratory tests 

were conducted to determine the woodchip characteristics including appropriate 

sizing, moisture content (MC), water holding capacity (WHC), porosity and bulk 

density (Table 3.1).  
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Table 3. 1: Characteristics of wood chips used for this study 

Characteristics Units Values for 

this study 

Values for Kafle et al. 

(2015) 

MWB SWB 

Density kg/m3 225 244.3 200.8 

Porosity % 61.4 59.9 68.4 

Water holding 

capacity 

g/g dry 

weight 

1.16 0.84 1.58 

Moisture content % (w.b.) 30 11 14 

3.3.3.1  Woodchips sizing 

Biofilter media size is an important factor vital for performance especially as it affects 

parameters such as total biofilm surface area and resistance to air flow; woodchips 

typically in the size range of 1 to 5 cm have been found to be ideal (Devinny et al., 

1999). For this study, the woodchips (as-received) were sized by sieving using the 

Retsch AS200 Analytical Sieve Shaker (Plate 3.8) operated at an amplitude of 60 and 

a vibration height of 1.8 mm for three minutes. Sieve mesh size of 4.75 mm was used 

to separate out the oversize fractions (used for this study) from the undersize fractions 

(Plate 3.9). 

 

Plate 3. 8: The Retsch AS200 (basic) Analytical Sieve Shaker. 
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Plate 3. 9: Undersize and oversize fractions of woodchips obtained with the 4.75 mm 

mesh size sieve.  

3.3.3.2  Woodchips bulk density 

Woodchips bulk density was determined according to the method of Valter 

Francescato et al. (2008). The procedure is as follows:  

 A bucket of known volume and pair of scales were obtained. 

 A representative sample of the wood chips was used to fill the bucket without 

compressing the woodchips. 

 The sample of wood chip was weighed and their mean value was divided by 

the known volume (Equation 3.1). 

Bulk density =
Mean weight of woodchips (kg)

Volume of bucket (m3)
 Eq. 3. 1 

The mean weight of woodchips was 2.7 kg and the volume of bucket used was 12 

litres. 

3.3.3.3  Woodchips porosity (voids) measurement 

Woodchips porosity (voids) was determined by the Bucket Method (Nicolai and 

Janni, 2001c) as follows: 

 Two identical 12-litre buckets were obtained. 
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 One of the buckets was filled one-third full with media and dropped ten times 

from a height of six inches (15 cm) onto a concrete floor.  

 To the same bucket, more media was added to two-thirds full and the bucket 

was dropped ten times from a height of six inches (15 cm) onto the concrete 

floor. 

 More media was added to fill the same bucket to the top, and again the bucket 

was dropped onto the concrete floor from a height of six inches (15 cm). 

 The bucket was filled with media to the top edge of the bucket. 

 The second bucket was filled to the top with clean water. The water was slowly 

poured from the second bucket into the first bucket containing the media until 

the water reached the top of the media-filled bucket. 

 The volume of water added to the media-filled bucket was recorded, and the 

procedure repeated three times.     

 The Percent Void (Wood chip porosity) was determined using Equation 3.2. 

Percent voids =  
Volume of water added (litres)

12 litres
  × 100 

Eq. 3. 2 

 

The average volume left in the bucket after pouring into the media-filled bucket was 

4.63 litres. 

3.3.3.4  Woodchips water holding capacity measurement 

Water holding capacity (WHC) of the woodchips was determined by soaking the 

woodchips in water for 24 hours followed with analysis by gravimetric method which 

entails oven-drying the three woodchip samples for 48 hours at a temperature of 

105°C (Kafle et al., 2015). The initial (before oven-drying) and final (after oven-

drying) weights of the woodchip samples were measured and the water holding 

capacity of the woodchip (g/g dry weight) was computed using Equation 3.3. 

WHC =  
initial (wet)weight −final (dry)weight

final (dry)weight
 

Eq. 3. 3 

Average initial (wet) weight = 114.23 g, and average final (dry) weight = 52.78 g. 
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3.3.3.5  Woodchips moisture content measurement 

Woodchips moisture content was determined using the oven drying method which 

entails computing the weight loss following oven drying overnight at 105°C (Kafle et 

al., 2015). 

Procedure: 

 The oven was preheated to the point marked during calibration for an 

internal temperature of 105°C. The thermometer used during calibration was 

used to double check this temperature. 

 An air-tight heatproof container was weighed to obtained initial weight, W1 

 Woodchip samples were weighed into the air-tight heatproof container 

before opening to obtain W2. This ensured accurate weight of the samples 

before any material or water was lost from the samples. 

 The heatproof container with the woodchip samples was put in the oven. 

Sample weight was logged every two hours and when the weight of the 

sample remained unchanged (to within 10g) for two consecutive 

measurements it was considered to be oven-dry, and the weight of container 

and oven dry woodchips, W3, was obtained. 

Woodchips moisture content (%) (wet basis) was computed using Equation 3.4. 

Woodchips Moisture Content =  
𝐖𝟐−𝐖𝟑

 𝐖𝟐− 𝐖𝟏
 × 100  

 

Eq. 3. 4 

W1, Average weight of heatproof container = 137.41 g;  

W2, Average weight of heatproof container with wet woodchips = 213.31 g; 

W3, Average weight of heatproof container with oven-dry woodchips = 190.19 g. 

This procedure was done with three samples and the average moisture content 

computed from the results.  

3.3.4  Water supply and moisture content calibration 

The maintenance of adequate media moisture content is vital to the odour control 

function of biofilters. For this study, water was supplied to the top of each biofilter by 

a combination of manual watering and an automatic irrigation system (Hozelock Ltd, 

Midpoint Park, Birmingham, Model 2756: 36419-001). The irrigation system was 

connected to a peristaltic pump (Watson Marlow, model 624S) and socket timer to 

control the supply volume and duration of watering to the biofilter system. Before 
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deployment on site, the peristaltic pump was calibrated in the laboratory to establish 

the water supply setting achievable for the reactors (Table 3.2). Pump calibrations 

showed that at 5% pump setting, no flow was observed; and at settings ≥ 40%, there 

was so much agitation of the pump to the extent of disconnecting the biofilter supply 

pipes attached to the pump. Hence, pump settings 10 – 35% were used to evaluate the 

target moisture content levels of 20%, 40%, 60% and 70%. The peristaltic pump was 

connected to a 250L water tank to accommodate the maximum daily requirement of 

240L at 35% pump setting every 3 hours. Schnelle and Brown (2002) noted that water 

can be supplied to biofilters in two ways, including humidification of the inlet air and 

direct application of water to the surface of the biofilters provided that water droplet 

diameter is relatively small (typically maintained at less than 1 mm during winter). 

However, for this study manual application was also done with a 9-L garden watering 

can. During the experiments, irrigation was controlled by the look and feel method 

suggested by Janni et al. (2011) whereby moisture levels were monitored to ensure 

dampness across ½ to ¾ way through the media depth; this was followed by the 

gravimetric method as described in section 3.3.3.5. An operator was required two days 

a week for approximately one to three hours per day to manually supply water and for 

routine adjustments of the operating parameters and mechanical maintenance. The 

moisture content was measured weekly and the rate of water addition was adjusted by 

the operator until the water content was maintained at the chosen value as 

recommended by Devinny et al. (1999).  

Table 3. 2: Water Supply setting achievable with the peristaltic pump 

Peristaltic 

pump 

setting 

(%) 

For all four reactors For each reactor 

Flow rate  

(L min-1) 

V15  

(L) 

V15 every 3 

hours per 

day (L) 

V15  every 6 

hours per 

day (L) 

Flow rate 

(L min-1) 

V15  

(L) 

       5* - - - - - - 

       10 0.63 9.50 76.00 38.00 0.16 2.36 

       15 0.87 13.10 104.80 52.40 0.22 3.26 

       20 1.20 18.00 144.00 72.00 0.30 4.50 

       25 1.40 21.00 168.00 84.00 0.35 5.25 

       30 1.70 25.50 204.00 102.00 0.43 6.38 

       35 2.00 30.00 240.00 120.00 0.50 7.50 

       40* 2.30 34.50 276.00 138.00 0.58 8.63 

       50* 2.40 36.00 288.00 144.00 0.60 9.00 

* excluded from the calibrations 

V15 = volume supplied for 15 minutes duration 
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3.3.5  Media pH and Conductivity Measurement 

Monitoring of the level of acidity /alkalinity of the biofilter media is essential 

especially since pH fluctuations have the potential to stress the resident microbial 

population required for pollutant degradation (Devinny et al., 1999). For this study, 

media pH and conductivity was measured weekly by taking a 30-g sample of the 

media (approximately 0.25 m from the top) from each biofilter and adding to 300 ml 

of distilled water. These were mixed by shaking with a Stuart Flask Shaker. After 

settling, the media pH and conductivity were determined by measuring the 

supernatant using a digital calibrated pH-meter (HI98100 Checker® Plus pH Tester 

supplied by HANNA Instruments) (Plate 3.10) which also had capability for 

conductivity measurement. This method is in agreement with the recommendation of 

Devinny et al. (1999) who noted the precise determination of media pH can be 

achieved by mixing a sample of the media with distilled water. Wani et al. (1997) 

argued that monitoring of biofilter media alkalinity is necessary in order to prevent 

any biofiltration process upsets. 

 

Plate 3. 10: HI98100 Checker® Plus pH Tester used for pH and Conductivity testing. 
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3.3.6  Media temperature and relative humidity measurement 

Biofilters are dependent on the action of the rich culture of microorganisms resident 

in the media bed to achieve their odour control functions. These microorganisms have 

been reported to be most active at mesophilic temperatures of 10 – 40ºC (Schnelle and 

Brown, 2002; Janni et al., 2011). However, for this study the temperature was not 

adjusted to reflect the range suitable for microbial action. Instead, the pilot-scale 

biofilters were operated at the existing ambient temperatures within the facility to 

simulate typical indoor temperature levels obtained at waste management facilities.  

 

Plate 3. 11: Pilot-scale biofilter showing the thermocouples, irrigation system and 

woodchips. 

As shown in Figure 3.2, media temperature was measured at two levels (17 cm and 

34 cm from the metal mesh bases that support the media beds) within the biofilter 

beds using thermocouples which penetrate the media materials to the set depths. The 

thermocouples were calibrated in the laboratory (Plate 3.11). Temperatures were read 

off by connecting the thermocouples to the RS Digital Thermometer (2 Input 

Handheld, K Type Input No 615-8212) (Plate 3.12). Ambient temperature was also 

measured using the portable thermo-hygrometer (HANNA Instruments Model HI 

8564) (Plate 3.13). This instrument was also used to measure relative humidity (RH) 
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of the inlet and outlet air at the plenum and the outlet of each of the reactors, 

respectively. Monitoring was done in accordance with the user’s manual with the 

probe held in such a way to expose the head of the humidity detector directly to the 

air at each sampling point. For accurate reading, it is expected that the probe must be 

in contact with air stream of minimum velocity of 0.5 m s-1. In cases where this was 

not possible, the probe was moved around to achieve accurate reading. 

 

Plate 3. 12: RS Digital Thermometer. 

 

 

 

Plate 3. 13: Hanna Instruments HI 8564 
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3.3.7  Airflow rate and residence time measurement and 

calibration 

The gas EBRT is a function of the biofilter media volume and the contaminated air 

flow rate through the filter bed (Equation 2.1). However, this parameter tends to 

overestimate the actual time required for air treatment because it assumes that the 

whole bed volume is available to the incoming polluted air in contrast to the true 

residence time (𝜏) which is also a function of media porosity, and given by the 

relationship shown in Equation 3.5: 

𝜏 =
𝑉𝑓  ×  𝜃

𝑄
 Eq. 3. 5 

 

where θ = media porosity (which is volume of void space/volume of filter material) 

(Devinny et al., 1999). For this research, the EBRT was adopted due to the simplicity 

of measurement and because it is widely used as one of the design criteria for sizing 

biofilters by engineers in the field of odour control technologies (James, 2015). Even 

though the difference (being the porosity factor) between both forms of residence time 

can be substantial, the effects on biofilter performance are parallel (Devinny et al., 

1999). 

A Secomak 575/1 High Velocity centrifugal fan was used to move contaminated air 

from the waste hall into the biofilter system through the common plenum. The 

manufacturer claims that their high velocity fans are designed to provide low volume, 

high pressure air flow up to at 900m³/hr (Secomak, 2017). Air flow measurement 

through each pilot-scale biofilter was achieved using the Alnor Balometer EBT731. 

The balometer has a capture hood (hood size: 610 mm  610 mm) as the pressure tool 

for measuring flow from grilles and diffusers and displays the results either as l/s, 

m3/hr, m3/s or CFM depending on setting. The balometer was placed over the top of 

each biofilter outlet (Plate 3.7) and operated in accordance with the direction in the 

user’s manual to take readings. 50 mm ball valves were installed on the flexible pipe 

on the inlet to each pilot-scale biofilter unit; these, were used to regulate the flow rates 

(Tables 3.3 and 3.4) to each biofilter in order to obtain the range of EBRT (9 – 109 s 

corresponding to airflow rates of 1210 L min-1 – 100 L min-1, respectively) assessed 

in the study.  
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Table 3. 3: Achievable average EBRTs with the different valve settings using 

Secomak 575/1 Fan 

Valve setting  Achievable average EBRT (s) 

All 4 fully open 11.4 

All 4 half open 16.4 

All 4 quarter open 30.6 

2 half open, 2 fully open 19.3 (half), 8.9 (full) 

2 quarter open, 2 fully open 44.4 (quarter), 7.4 (full) 

2 half open, 2 quarter open 9.4 (half), 46.7 (quarter) 

 

Table 3. 4: Comparison of some test EBRTs for this study and those from Chen et 

al. (2008b) 

Present study Study by Chen et al. (2008b) 

EBRT 

(s) 

Volume 

(L) 

Flow 

rate  

(L s-1) 

Flow 

rate  

(L min-1) 

EBRT 

(s) 

Volume 

(L) 

Flow 

rate  

(L s-1) 

Flow 

rate  

(L min-1) 

9.3 181.5 19.52 1170.97 3.3 125.6 38.06 2265 

10.9 181.5 16.65 999.08 5.3 125.6 23.70 1410 

12.3 181.5 14.76 885.37 7.3 125.6 17.21 1025 

13.3 181.5 13.65 818.80         

13.4 181.5 13.54 812.69         

22.1 181.5 8.21 492.76         

26.4 181.5 6.88 412.50         

46.8 181.5 3.88 232.69         

59.9 181.5 3.03 181.80         

3.4  Pilot-scale Biofilter Operation 

After calibration in the laboratory, the biofilter system was taken on site and operated 

for a total of 15 months from May 2016 to July 2017. Before sampling commenced, 

the media in each reactor was allowed to stabilise for four weeks following the 

recommendations in the literature (Cabrol et al., 2012; Ralebitso-Senior et al., 2012). 

Stabilisation was achieved by passing the waste gas through each biofilter unit 

maintained at a moisture content of approximately 60% (wet basis), media depth of 

0.5 m and empty bed residence time of 11.4 s in all four biofilters. The stabilisation 

or acclimatisation period is defined as the time necessary for pollutant-degrading 

microorganisms to reach high and stable biodegradation capacity for higher 

performance, usually ranging from 10 days to more than 10 weeks (Cabrol et al., 2012; 

Ralebitso-Senior et al., 2012). Muñoz et al. (2015) stated that this is a period that 

ensures microbial community specialisation and competition exclusion, and allows 

for microorganisms to be better adapted for the potential toxic effects of the pollutants. 
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All research objectives (except experiments evaluating net bioaerosol emitting 

potential of biofilters) required that the pilot-scale biofilter system be set up inside the 

facility just behind the back-push wall (Plate 3.14) in the waste reception area so that 

it was as close to the waste materials as possible (without exposing the researcher to 

the hazards and risks associated with waste tipping and loading operations), therefore 

ensuring a constant supply of odorous air contaminated with bioaerosols which was 

essential for this study. Another reason for selecting an indoor point for setting up the 

biofilter was so that any potential biofilter emissions be contained especially as the 

building was maintained at negative air pressure to prevent fugitive emissions. To 

assess the net bioaerosol emitting potential of biofilters, the pilot-scale biofilter 

system was relocated outside the waste hall to an external bay that was temporarily 

out of use (Plate 3.15). This was done to ensure that the biofilters were fed with air 

which has a relatively lower concentration of bioaerosols.  

The biofilters were randomly selected to operate at the various levels of identified 

operating parameters of interest. In order to avoid media compaction and clogging 

(which could lead to the formation of preferential flow paths for air) during the 

experiments, the media was mixed with a shovel once every three weeks (Sanchez-

Monedero et al., 2003). It should be noted at this point that this section presents a 

general operation of the pilot scale biofilters; a more detailed and specific discussion 

on the operation of the system to achieve the specific objectives are presented in each 

of the result chapter.  

 



- 86 - 

 

Plate 3. 14: Pilot-scale biofiltration system with four pilot-scale bioreactors located in 

the waste hall (i) just behind the back-push wall (ii). 
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Plate 3. 15: External bay (i) used to house the pilot-scale biofiltration system (ii) 

during the experiments to test net bioaerosol emitting potential of biofilters.  
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3.5  Odour and Waste Gas Composition Analysis 

At the outset, the scope of this research included waste gas characterisation in terms 

of levels of ammonia, hydrogen sulphide, volatile organic compounds (VOCs) as well 

as the perceivable odour levels. These parameters were selected to enable biofilter 

performance assessment for simultaneous capacity to control bioaerosols as well as 

odours and odorous volatiles. The sampling and analysis for each group is presented 

in the subsequent sections. 

3.5.1  Ammonia and Hydrogen Sulphide Analysis 

Ammonia (NH3) and hydrogen sulphide (H2S) have been identified in the literature as 

some of the main constituents of waste gases from waste management facilities. 

Preliminary investigation to establish the presence and concentration of both gases on 

site was done using the Gastec Detector Tube System (Plate 3.16). The choice of this 

sampling method was based on a review of previous studies by Tsai et al. (2008) and 

Omri et al. (2011). This system consists of the Gastec pump (GV-110S) and Gastec 

Standard Detector Tubes (Elite Measurement Solutions Limited, n.d.; Gastec 

Corporation, 2013).  

The waste reception area was selected for testing the concentrations of both gases 

potentially emitted from the decomposing waste heaps and/or other sources. The 

pump was used with two different tubes (for each type of gas), each tube selected on 

the basis of anticipated concentrations of contaminants to be found within the facility 

based on the literature. The detector tubes selected and their detection limits are shown 

in plate 3.17.  

No humidity correction factor was required for both types of tubes. However, both 

required correction factors for pressure given by Equation 3.6: 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝑇𝑢𝑏𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 (𝑝𝑝𝑚) × 1013 (ℎ𝑃𝑎)

𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (ℎ𝑃𝑎)
 

Eq. 3. 6 

Only NH3 required a correction factor for temperature as shown in table 3.5 based on 

the manufacturer’s guide. 
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Plate 3. 16: The Gastec Detector Tube System. 

 

(i) NH3 

detector 

tube 

# 3L 

 

 

 
Detection limit: 0.5 – 78 ppm 

(ii) H2S 

detector 

tube 

# 4LT 

 
Detection limit: 0.05 – 4.0 ppm 

Plate 3. 17: Gastec detector tubes for ammonia (i) and hydrogen sulphide (ii) 

 

The tubes are usually sealed at both ends, and before sampling, the tips are broken off 

using a specially designed tube tip breaker fitted in the pump body. The pump 

connects to one end of the gas detector tube, and depending on the volume of air to 

be sampled; the system can be used to draw in 100 mL (at full stroke) or 50 mL (at 

half stroke) of gas into the tube. The full stroke and the half stroke positions are 

marked exactly by a red line on the pump shaft, and also at these positions the handle 

becomes precisely locked. Following a stroke, the drawn gas sample moves in the 

detector tube towards the pump, and as it moves it reacts with the chemical reagent 

within the tube, thus producing a colour change that is proportional in length to the 

concentration. With reference to a calibration scale printed on the tubes, the sample 
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gas concentration are easily read off as soon as sampling is completed (Plate 3.17), 

eliminating the need for laboratory analysis. The required correction factor can then 

be applied to the reading to get the actual concentration of the target gases (Table 3.5). 

Table 3. 5: Ammonia temperature correction factor 

Temperature ºC 

(ºF) 

0 

(32) 

5 

(41) 

10 

(50) 

15 

(59) 

20 

(68) 

25 

(77) 

30 

(86) 

35 

(95) 

40 

(104) 

Correction 

Factor 

1.25 1.25 1.15 1.07 1.0 0.95 0.9 0.86 0.83 

NH3 and H2S monitoring was done for two consecutive days (6 & 7 August, 2015) 

with results shown in table 3.6. Despite high indoor odour levels (19340 OUE/m3) 

recorded for this facility through monitoring conducted by a private consultant, the 

levels of NH3 and H2S measured within the waste hall did not exceed the Work 

Exposure Limits (WELs) set out by the Health and Safety Executive (HSE, 2013). 

The observation for H2S was thought to be due to the fact that waste piles were not 

allowed enough time for anaerobic decomposition to set in which triggers the release 

of hydrogen sulphide as is the case with the composting processes (Smet et al., 1999). 

Also, the low emission rates for NH3 were due to the fact that the piles containing 

biological waste were not subjected to high amounts of heat and were transferred or 

moved on a regular basis. For these reasons, the scope of the pilot study was redefined 

to exclude assessment of biofilter performance in terms of ammonia and hydrogen 

sulphide removal. 

Table 3. 6: Two-day monitoring results of Ammonia and Hydrogen Sulphide 

 Day 1 Day 2 

Parameter NH3 

(ppm) 

H2S 

(ppm) 

NH3 

(ppm) 

H2S 

(ppm) 

Preliminary results for this study 0.86 LOD 0.90 LOD 

 

HSE 

WELs 

Long term exposure limit (8-hr TWA 

reference period) 

25 5 25 5 

Short term exposure limit (15 minute 

reference period) 

35 10 35 10 

LOD: Below Limit of Detection 
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3.5.2  VOC sampling and analysis 

Volatile organic compounds (VOCs) were monitored in accordance with the methods 

for the determination of hazardous substances – volatile organic compounds in air 

(MDHS 96) as recommended by HSE (2000). Tenax tubes (supplied by Gradko 

International Limited) were used as the method of sampling VOCs within the facility. 

The tubes were designed for both passive and active monitoring of semi-volatile and 

volatile compounds ranging from C7 – C28 contained in the air. For the purposes of 

the preliminary assessment of the levels within the facility, active sampling was 

conducted with the use of a diffusion pump (Plate 3.18) which was calibrated to a 

flow rate of 50 ml/m and operated for a total of 10 minutes at the sampling location 

in accordance with guidance received from the tubes supplier (Table 3.7). Discussion 

with the operators revealed that high levels of elemental carbon were detected within 

the facility; however, access to the report was not possible. Pumped sampling has been 

recommended especially when the purpose is to compare results against workplace 

exposure limits (WELs) and a sampling time of 10 mins was selected because of the 

suspected high levels within this facility. 

 
Plate 3. 18: VOC sampler setup in use on site. 
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Table 3. 7: Recommended monitoring durations for active samples (Gradko 

International, 2012) 

Pollution level Recommended pumping time 

High (if you can smell it) 5 minutes 

If you suspect it is high 5 - 10 minutes 

No idea 50 minutes 

Low 60 – 100 minutes 

Expected clean air 100 minutes 

Each tube (Figure 3.3) was made of stainless steel (which contain the tenax) 9 cm tall 

and 0.5 cm wide (excluding the cap). A total of two tubes were exposed each day for 

two days of preliminary assessment of VOC levels. Once sampling was completed, 

the exposed tubes and a travel blank (which was not exposed) were sealed and sent 

back to Gradko laboratory for analysis. Analysis involved sample extraction from 

tubes by thermal desorption followed by Gas Chromatography – Mass Spectroscopy 

(GC-MS) analysis for VOCs identification and concentration determination. 

The tubes were analysed for BTEX and top 10 VOCs with results reported in 

micrograms per metre cubed (µg m-3) (Tables 3.8 & 3.9). Ethanol ranked highest 

followed by limonene for VOCs. The identified levels were suitable for the purpose 

of this study; however, due to the high cost of analysis it was impossible to continue 

with Gradko International for identification and quantification of inlet and outlet 

VOCs for this study – especially as funds had to be redirected to other aspects of the 

project that would not compromise the achievement of the research objectives. 

Another reason for suspending evaluation of biofilter performance for VOC control 

was that during the experimental period, the laboratory within the school had not 

developed full capability for VOCs analysis with TD-GCMS which is the 

recommended VOC analysis protocol. 

 

Figure 3. 3: Components of a sorbent (tenax) tube (Gradko International, 2012) 
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Table 3. 8: VOC Monitoring Results for Day 1 

Parameter Results 

(µg m-3) 

Results 

(mg m-3) 

WEL 

8-Hour TWA (mg m-3) 

BTEX    

Benzene  40.84 0.04 3.25 

Toluene 1412.60 1.41 191.00 

Ethylbenzene 1017.50 1.02 441.00 

m/p-Xylene 2137.50 2.14 220.00 

o-Xylene 601.05 0.60 220.00 

Top 10 VOCs    

Ethanol 12701.00 12.70 1920.00 

Limonene 10629.00 10.63 300.00 

Decane  7347.50 7.35 - 

Butane 5106.70 5.11 1450.00 

Ethyl Acetate 2598.70 2.60 200.00 

Undecane 2228.40 2.23 - 

Hexane 2107.20 2.11 72.00 

Nonane 2034.10 2.03 1050.00 

Acetic acid, butyl ester 1704.00 1.70 710.00 

Decane, 4-methyl- 1361.03 1.36 208.00 

 

 

Table 3. 9: VOC Monitoring Results for Day 2 

Parameter Results 

(µg m-3) 

Results 

(mg m-3) 

WEL 

8-Hour TWA (mg m-3) 

BTEX    

Benzene  143.16 0.14 3.25 

Toluene 1692.20 1.69 191.00 

Ethylbenzene 620.05 0.62 441.00 

m/p-Xylene 2050.10 2.05 220.00 

o-Xylene 664.96 0.66 220.00 

Top 10 VOCs    

Ethanol 11819.00 11.82 1920.00 

Limonene 11059.00 11.06 300.00 

Decane  7373.40 7.37 - 

Butane 6340.60 6.34 1450.00 

Benzene, 1,4-dichloro- 3453.00 3.45 153.00 

Ethyl Acetate 2669.60 2.67 200.00 

Cyclohexane, propyl  2270.20 2.27 350.00 

Nonane 2255.10 2.26 1050.00 

Undecane 2207.20 2.21 - 

Hexane 2056.30 2.06 72.00 
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3.5.3  Odour measurement by Olfactometry 

The procedure for sampling odour from the pilot biofilters was developed to optimise 

the collection of data which would be considered representative especially as the 

entire biofilter outlet could be sealed off with a lid and provided with a sampling port. 

The protocol drew upon guidance provided by Concept Life Science’s existing UKAS 

accredited odour sampling procedures. Gas from each biofilter outlet headspace (and 

from the common plenum) was collected into bespoke 10-Litre Nalophan sampling 

bags (Plate 3.19) supplied by Concept Life Sciences who also carried out the analysis. 

Each pilot biofilter and the plenum was provided with a sampling port and during gas 

sampling, the top of the biofilters and plenum were completely sealed off to prevent 

any leakage. Gas was collected by placing the open end of the air-tight Nalophan bags 

over the provided sampling port and allowing the bag to be inflated by air inflow from 

the biofilter or common plenum, respectively (Figure 3.4). The average sampling time 

was 10 minutes (against the VDI 3880 recommendation of 30 minutes) and no 

background odour samples were taken due to cost limitations. 

 

 

Plate 3. 19: Inflated Nalophan sampling bags 
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Figure 3. 4: Schematic of the gas sampling from each biofilter 

The samples were sent off to Concept Life Science odour testing laboratory for 

analysis within 30 hours of sampling. Olfactometry analysis was carried out on the 

samples in accordance with BS EN 13725 to determine the odour concentration of the 

samples in European odour units (OUE m-3). To establish the concentration, an 

olfactometer test was used and this employed a panel of human noses as sensors 

(Concept Life Sciences, 2017). In the olfactometry testing procedure, a diluted 

odorous mixture and an odour-free gas (as a reference) are presented separately from 

sniffing ports to a group of panel members within an odour-neutral room. The panel 

then get asked to compare the gases emitted from each sniffing port and to report the 

presence of odour. The gas-diluting ratio is then decreased by a factor of two 

(implying that the chemical concentration is increased by a factor of two) after which 

the panel is asked to repeat their judgement. This procedure is repeated several times 

over different dilution levels. The panel’s responses over a range of dilution levels are 

then used to calculate the concentration of the odour in terms of European odour units 

(OUE m-3).   
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This method is based on dilution of an odour sample down to the odour threshold (the 

point at which the odour is only just detectable to 50 % of the test panel) (Concept 

Life Sciences, 2017).  Olfactometry was selected as the only method to assess biofilter 

performance in terms of simultaneous control of odour and bioaerosols. Page (2010) 

noted that odour measuring strategy should be directly related to the defined 

objectives of any study. With olfactometry, the key advantage is the direct correlation 

of odour and the sensitivity of the detector used (i.e. the human nose); thus affording 

a practical approach to measure odours directly, in order to objectively quantify the 

perception of odours. 

3.6  Bioaerosol Measurement and analysis 

Another component essential to the objectives of this study was the determination of 

the concentrations of various groups of viable airborne microorganisms. During each 

sampling visit, a six-stage Andersen sampler was used to collect air samples at the 

inlet (central plenum) and from the headspace of each biofilter outlet (Plate 3.20). The 

choice of this sampler was informed by the need to obtain both concentration and 

particle size data as with the study by Stagg et al. (2010). Two replicate samples were 

collected at each point for each of the bioaerosol groups studied. Air was pumped 

through the sampler at a rate of 28.3 L min-1 with a sampling time of 1 min to avoid 

overloading the Petri dishes containing the selective media for the bioaerosols. The 

Environment  Agency (2017) recommended that sampling time should reflect the 

likelihood of overloading plates (>300 colonies). Preliminary sampling on this site 

indicated plate overload even with sampling times of 3 to 5 mins; hence, the decision 

for further reduction to 1 min.  

Four groups of bioaerosols were measured including Aspergillus fumigatus, total 

fungi, total mesophilic bacteria and Gram negative bacteria. The choice of these 

microorganisms was informed by the need to reflect the range covered in the Sniffer 

report (ER36) on understanding biofilter performance and determining emission 

concentrations under operational conditions (Fletcher et al., 2014) as well as those 

specified in the Technical Guidance Note (M9) for monitoring of bioaerosols at 

regulated facilities (Environment  Agency, 2017). Bioaerosols detection and 

quantification were achieved by selective agar and visual identification. The specific 

agar type, supplements added, incubation temperatures and times for the bioaerosols 

are shown in Table 3.10. The growth media (agar) was prepared using a combination 
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of a Masterclave 09 (supplied by Don Whitley Scientific) and an automated pourer 

stacker, APS One (supplied by AES Blue LineTM) (Plate 3.21).  

Bioaerosol concentrations are known to fluctuate dramatically within a short time 

(Searl, 2008), and also depending on the activities within the waste hall (Stagg et al., 

2013). Thus, the results of this study should be interpreted with caution as there may 

be uncertainties in the representativeness of the measured concentrations relative to 

actual exposure conditions due to periodic differences in activities. Moreover, it is 

estimated that < 10% of bioaerosols are viable and can grow on media (Blomquist, 

1994; Swan et al., 2003) the remainder being composed of non-viable components; 

thus, there may be an underestimation of actual bioaerosol components which may 

have potential health implications.  

For each sampling visit, inlet concentrations corresponded to bioaerosol samples 

taken from the common plenum; this was considered representative of the 

concentrations delivered directly to each biofilter. The outlet concentrations from each 

biofilter was taken from the top of each biofilter (Figure 3.5). In order to ensure the 

integrity of samples taken, all outlet measurements were conducted using methods 

which isolated treated air exiting the biofilters from the effects of ambient 

contamination within the waste hall. This was done by completely covering the outlet 

(open) end of the biofilters using plastic sheets (Fletcher et al., 2014).  The biofilters 

were covered between sampling days to prevent surface contamination, during which 

treated air was released through 20 mm exhaust provided at the top of each biofilter 

cover. On sampling days, it was assumed that the headspace air was the treated air, 

isolated from ambient contamination and so sampling was done immediately after 

sheeting the biofilters.  

To assess whether outlet bioaerosol concentrations were comparable to the 

background levels surrounding the site, bioaerosol concentrations were measured 

upwind (i.e. outdoors just at the boundary of the site) at a height of 1.8 m above the 

ground (Environment  Agency, 2017). Stagg et al. (2013) reported that the 

concentration of bacteria and fungi within MRFs were ten times the upper levels 

measured in ambient air. Thus, upwind (background) sampling was necessary to give 

information on the concentration of bioaerosols in the air blowing onto the site 

(Environment  Agency, 2017) which would then form the basis to assess biofilter 

performance in terms of achieving background (ambient) concentrations. After the 
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incubation period, the number of colonies were counted and a positive-hole correction 

was done to adjust colony counts in accordance with the recommendations of Macher 

(1989). The results were expressed as means of replicate samples taken in colony 

forming units per cubic metre of air (cfu m-3). The limit of detection of the sampler 

was less than 102 cfu m-3. 

 

Plate 3. 20: Bioaerosol sampling from (i) the outlet and (ii) the inlet (central plenum) 

of biofilter 
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Table 3. 10: Incubating conditions for specific bioaerosols tested 

Bioaerosol 

Group 

Agar Supplements Incubation 

Temperature 

Incubation 

Time 

Aspergillus 

fumigatus 

20 g L-1 each of malt 

extract agar and 

bacteriological agar 

Streptomycin, 50 mg 

L-1; 

Novobiocin, 10 mg L-1 

40°C 48 hours 

Total fungi 20 g L-1 each of malt 

extract agar and 

bacteriological agar 

Streptomycin, 50 mg 

L-1; 

Novobiocin, 10 mg L-1 

40°C 48 hours 

Total 

mesophilic 

bacteria 

14 g L-1 nutrient agar 

and 10 g L-1 

bacteriological agar 

Cycloheximide, 100 

mg L-1 

37°C 48 hours 

Gram 

negative 

bacteria 

52 g L-1 MacConkey 

agar  

Cycloheximide, 200 

mg L-1 

37°C in the 

dark 

3 – 7 days 

 

 

 

 

 

Plate 3. 21: Media preparation system consisting of the automated pourer stacker 

(APS One) on the left and the Masterclave 09 on the right. 
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Figure 3. 5: Pilot-scale biofiltration system - schematic of each reactor showing 

bioaerosol sampling with the six-stage Andersen sampler 

3.7  Biofilter Performance Evaluation and Data Analysis 

The performance of the pilot biofilters was evaluated on the basis of removal 

efficiency (%) for odour and bioaerosols (Devinny et al., 1999). Removal efficiency 

(RE) was calculated using Equation 2.2 (section 2.2.6.5). For bioaoerosols, the air 

sampler design also allowed for size distribution of the collected bioaerosols 

according to their aerodynamic behaviour. This was obtained by summing up the 

corrected colony counts on each stage of the sampler and grouping according to the 

manufacturer’s aerodynamic information for stages 1 (sampler inlet) to 6 (sampler 

outlet) as 7.0, 4.7, 3.3, 2.1, 1.1 and 0.65 µm, respectively. 

All statistical analysis were carried out in the IBM SPSS Statistics for Windows 

(Released 2015. Version 23.0. Armonk, NY: IBM Corp., USA) and graphs generated 

using Origin (OriginLab, Northampton, MA, USA). The specific statistical analyses 

conducted for each objective are presented in the respective result chapters. 
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3.8  Leachate collection and analysis 

It is good practice to measure leachate pH as this reflects the media conditions near 

the bottom of the media especially for up-flow biofilter configurations (Devinny et 

al., 1999). Leachate from each pilot biofilter collected within the airspace below the 

media bed and was drained twice a week through the leachate collection port (Figure 

3.2). The collected leachate volumes were measured and analysed for pH, 

conductivity and microbial composition. The pH and conductivity of the leachate 

were taken to be indicative of the media health at the air inlet and were measured 

weekly using a digital calibrated pH-meter (HI98100 Checker® Plus pH Tester 

supplied by HANNA Instruments) which also had capability for conductivity 

measurement.  

Leachate microbial composition analysis was based on identification of the same four 

groups of bioaerosols targeted for control with the biofilter. The specific agar type, 

supplements used, incubation temperatures and duration for the microorganisms were 

as outlined in Table 3.10. For each leachate sample, a four-fold serial dilution of the 

raw sample was done and 0.1 mL was transferred onto the prepared agar plate using 

a sterile pipette. The plates were then incubated according to the specific incubation 

conditions for each group of microorganisms after which colonies were counted 

(Garrido-Cardenas et al., 2017).  

3.9  Meteorological Measurements 

During each sampling visit, the environmental conditions around the waste hall and 

close to the pilot biofilter system were assessed by measuring the relative humidity, 

temperature and wind speed. Temperature and relative humidity values were 

measured using the portable thermo-hygrometer (HANNA Instruments Model HI 

8564) (Plate 3.13). Monitoring was carried out according to the user’s manual with 

the probe held out at head height with the head of the humidity detector exposed 

directly to ambient air around the biofilter system. Wind speed was measured using 

the Kestrel ® 1000 Pocket Wind ™ meter (Plate 3.22), which was operated according 

the user’s manual by holding the device out in the air and reading off the values 

displayed on the screen.  
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Plate 3. 22: The Kestrel ® 1000 Pocket Wind ™ meter. 
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Chapter 4 

PILOT-SCALE BIOFILTRATION AT A MATERIALS 

RECOVERY FACILITY: THE IMPACT ON BIOAEROSOL 

CONTROL 

4.1  Introduction  

The objective of this study was to investigate the performance of pilot-scale biofilters 

for removal of bioaerosols from waste airstreams from a materials recovery facility 

(MRF) which acted as a source of bioaerosols. The sub-objectives were: (i) to assess 

the impact of empty bed residence time (EBRT) on the performance of pilot-scale 

biofilters in terms of bioaerosol reductions; (ii) to evaluate the net bioaerosol emitting 

potentials of biofilters and to assess the effect of inlet concentration on bioaerosol 

control; and (iii) to assess size distribution of bioaerosol particles in biofilter 

exhausted air and to relate these to the tidal volume inhaled by humans.  

4.2  Biofilter operation to evaluate performance  

Section 3.4 presents a general discussion of the operation of the biofilters throughout 

the study. However, this section presents more detailed information on how the 

biofilters were operated and maintained and the data analyses that were carried out to 

fulfill the specific objectives of this particular section of the study.  

4.2.1  Biofilter Operation 

The biofilter system was operated continuously for 11 months from May 2016 to 

March 2017. A total of 16 sampling visits were completed; visits 1-6 (summer 2016) 

and 13-16 (winter 2017) were conducted inside the building while visits 7-12 (winter 

2016) were conducted outside the building. Before sampling commenced, the media 

in each reactor was allowed to stabilise for four weeks following recommendations in 

literature (Cabrol et al., 2012; Ralebitso-Senior et al., 2012). To assess the impact of 

EBRT on bioaerosol removal, the system was set up inside the facility just behind the 

back-push wall in the waste reception area as discussed in section 3.4.  

One major concern with biofilters, especially for regulators and operators, is their 

potential to act as net emitters of bioaerosols at low inlet concentrations due to extra 

contamination by the filtration process (Ottengraf and Konings, 1991; Fletcher et al., 

2014). To investigate this, the biofilters were relocated outside the waste hall to an 
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external bay (previously used to collect fines – soils, glass, small wood, small stones, 

ferrous and non-ferrous materials – 0 < 10mm) during visits 7 – 12. This location 

simulated ambient conditions as the biofilters were fed with air that had relatively 

lower concentrations of bioaerosols. The understanding was that biofilters would be 

considered net emitters if outlet concentrations were higher than inlet concentrations.  

The biofilters were randomly selected to operate at the tested EBRT during which 

average moisture content of  64.7% (40.2 to 70.3%), 62.4 (38.8 to 70.3%), 55.2% 

(43.3 to 68.9%) and 59.2% (41.2 to 70.5%) were maintained in BF1, BF2, BF3 and 

BF4, respectively, all within the range recommended by Janni et al. (2011). In order 

to avoid media compaction and clogging, which could lead to the formation of 

preferential flow paths for air, the media was mixed with a shovel once every three 

weeks on days other than the sampling days (Sanchez-Monedero et al., 2003).  

4.2.2  Data Analysis 

Table 4.1 presents a summary of mean counts and standard deviations of measured 

concentrations of bioaerosols. Normality of bioaerosol concentrations was assessed 

using the Shapiro-Wilk test. All statistics were carried out on original bioaerosol 

concentrations (Appendix A) rather than the calculated RE. Differences in mean 

bioaerosol concentration for the background, BF inlet and all BF outlets were assessed 

using the one-ANOVA/Welch ANOVA, regardless of whether or not the assumption 

of normality was met. In all cases, the assumption of homogeneity of variances was 

violated, as assessed by Levene’s test for equality of variances (p < 0.05) for all groups 

of bioaerosols. 

For visits 1-6, Welch ANOVA followed by Games-Howell post hoc analysis indicated 

statistically significant differences (p < 0.05) between the inlet samples and all outlet 

samples as well as background concentration of A. fumigatus, total fungi and total 

mesophilic bacteria. There was no statistically significant difference between the inlet 

and outlet concentration of Gram negative bacteria (p = .178). For visits 7-12, there 

was no statistically significant difference between the mean concentrations of 

background, inlet and all outlets samples of A. fumigatus (p = 0.054) and Gram 

negative bacteria (p = 0.776) as assessed by Welch ANOVA.  
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Table 4. 1: Mean bioaerosols counts and standard deviations (SD) in cfu m-3 
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However, Games-Howell post hoc analysis showed statistically significant 

differences between the inlet concentration and outlet concentrations of BF2 (p = 

0.05) and BF4 (p = 0.047) for total fungi as well as between inlet and outlet samples 

of BF1 (p = 0.01) and BF3 (p = 0.021) for total mesophilic bacteria. For visits 13-16, 

there were significant differences only between inlet and background concentrations 

of total fungi (p = 0.048) and total mesophilic bacteria (p = 0.028). 

4.3  Results and Discussion 

4.3.1  Operating Conditions 

The operating conditions of each biofilter for the period have been summarised in 

table 4.2. The impact of EBRT was assessed during the first six sampling visits by 

comparing the outlet bioaoerosol concentration for the four biofilters. During the first 

three sampling visits the biofilters were all adjusted to run at an average EBRT of 16 

s. An assessment of the outlet bioaerosol concentrations showed that there were no 

outliers and the data was normally distributed for each group as assessed by Shapiro-

Wilk test (p < .05). However, there was heterogeneity of variances for A. fumigatus 

(p = .003) and total fungi (p = .004) as assessed by Levene’s test of homogeneity of 

variance; there was no statistically significant differences in the outlet concentrations 

of A. fumigatus (p = .433) and total fungi (p = .482) from all four biofilters as assessed 

with Welch ANOVA. One way ANOVA also indicated that there was no statistically 

significant difference in the outlet concentrations for total bacteria (p = .670) and 

Gram negative bacteria (p = .594).  

For visits 4-6, BF1 and BF4 were randomly selected to operate at an average EBRT 

of 70 s while BF2 and BF3 had an average EBRT of 11 s. This was done to assess 

whether there were contact time dependent significant differences in the measured 

outlet bioaerosol concentrations between the two groups of biofilters. Welch ANOVA 

indicated that there was no statistically significant difference between all outlet 

concentrations for A. fumigatus (p = .407), total fungi (p = .425) and total bacteria (p 

= .243). For Gram negative bacteria, one way ANOVA also showed no statistically 

significant difference (p = .148) in the outlets from the four biofilters. In summary, 

there was no significant difference in the performance of the biofilters when operated 

under varying conditions of EBRT. Limited statistical power due to the modest sample 

size in this study (n = 64) may have played a role in limiting the significance of some 

of the statistical comparisons carried out (Cornish, 2006). Post hoc power analysis, 
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with power (1 – β) set at 0.90 and α = 0.05, indicated that sample size would have to 

increase up to 95 samples for group differences to reach statistical significance at the 

0.05 level. 

Table 4. 2: Operating conditions of the biofilters (BF) when operated within (visits 

1-6, 13-16) and outside (visits 7-12) the building 

Parameter Visits 

1-6 7-12 13-16 

     Mean inlet air temperature (ºC) 23.8 15.8 15.2 

BF1 Leachate pH range 5.19 - 6.52 6.52 - 7.0 6.83 - 7.04 

Mean EBRT (s) 16, 70 16 16 

Mean Airflow rate (L min-1) 681, 156 681 681 

Mean media temperature 

(ºC) 

19.5 15.1 13.8 

Mean outlet air temperature 

(ºC) 

21.8 13.1 14.5 

BF2 Leachate pH range 5.12 - 6.64 6.62 - 7.52 6.56 - 7.38 

Mean EBRT (s) 16, 11 16 16 

Mean Airflow rate (L min-1) 681, 990 681 681 

Mean media temperature 

(ºC) 

20.3 13.9 13.6 

Mean outlet air temperature 

(ºC) 

21.4 13.8 14.5 

BF3 Leachate pH range 6.17 - 7.04 6.98 - 7.34 6.77 - 7.37 

Mean EBRT (s) 16, 11 16 16 

Mean Airflow rate (L min-1) 681, 990 681 681 

Mean media temperature 

(ºC) 

21.2 14.5 15.3 

Mean outlet air temperature 

(ºC) 

21.4 13.0 14.6 

BF4 Leachate pH range 5.55 - 6.53 6.43 - 7.44 6.95 - 7.21 

Mean EBRT (s) 16, 70 16 16 

Mean Airflow rate (L min-1) 681, 156 681 681 

Mean media temperature 

(ºC) 

21.2 14.6 16.1 

Mean outlet air temperature 

(ºC) 

21.1 13.5 14.3 

 

Odour control function of biofilters is dependent on the activity of microbial 

population within the media. These microorganisms thrive at a pH range of 6.5-8 

which must be maintained within the internal environment of the biofilter (Wani et 

al., 1997; Schnelle and Brown, 2002). However, to evaluate the performance for 

bioaerosol control, the biofilters were operated without any supplementary attempts 

to alter the pH which was in the range of 5.12 – 7.52 for all four biofilters. Also, no 

adjustments were made to alter the media temperature especially as these were within 
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the optimal levels (10 – 40 ºC) recommended for biological treatment systems 

(Schnelle and Brown, 2002).  

4.3.2  Removal Efficiency 

The first set of results considers the removal efficiency of the biofilters under 

conditions of high inlet bioaerosol concentrations under summer (visits 1-6) and 

winter (visits 13-16) conditions. Figure 4.1 shows the RE and concentrations of each 

group of bioaerosols sampled at the different sampling points (background, biofilter 

inlet and outlets) plotted against the site visits conducted for this study. There was no 

significant difference between the performances of the four pilot-scale biofilters 

(Section 3.1), hence the REs were computed using the mean outlet concentrations 

from the four reactors for each visit.  

During visits 1 – 6, inlet A. fumigatus concentration ranged from 3.8 × 103 to 1.2 × 

104 cfu m-3 for which the biofilters achieved RE of 60 – 88%, giving outlet 

concentrations between 1.0 × 103 to 4.2× 103 cfu m-3. Similarly, the biofilters achieved 

RE of 65 – 85% for total fungi with inlet concentration in the range of 4.8 × 103 to 1.5 

× 104 cfu m-3 and delivering outlet concentrations between 1.3 × 103 to 4.8 × 104 cfu 

m-3. A. fumigatus particles constituted approximately 80% of the total fungi particles, 

comparable to the study of Millner et al. (1977) who reported that A. fumigatus made 

up 75% of the total viable mycoflora captured on the compost site studied. For this 

same period, slightly lower RE of 52 – 86% was recorded for the total mesophilic 

bacteria with outlet concentration of 1.9 × 103 to 8.2 × 103 cfu m-3 from inlet 

concentration 5.9 × 103 to 5.3 × 104 cfu m-3 while the biofilter achieved a much lower 

RE of -4.1 to 86% for Gram negative bacteria, treating inlet concentration between 

2.4 × 103 to 2.5 × 104 cfu m-3. The data suggest that variation of EBRT (between 11 

s, 16 s and 70 s for this study) did not influence RE for the four groups of bioaerosols 

measured. This observation is supported by data presented by Sanchez-Monedero et 

al. (2003) which showed that RE for A. fumigatus did not appear to be related to the 

gas phase residence times of biofilters which operated in the range of 29 - 97s, and 

achieved RE > 90%. Similarly, no relationship was found between gas phase 

residence time and the RE for mesophilic bacteria (highest: 89.6% at 36s, and lowest: 

39.1% at 37s), suggesting that gas phase residence time may not play a significant 

role in the capture of aerosolised bacteria and fungi. 
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Figure 4. 1: Removal efficiency and corresponding background, inlet and outlet concentrations of (a) A. fumigatus, (b) total fungi, (c) total mesophilic 

bacteria and (d) Gram negative bacteria in cfu m-3 when biofilters were operated within the building. (Error bars = standard deviation; n = 2)
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Leson and Winer (1991) recommended typical residence times of 25 - 60s for 

commercial or industrial biofilter applications for odour and low volatile organic 

compound (VOC) abatement, and gas phase residence times less than 23s have been 

shown to cause resistance of the transfer of hydrogen sulphide from the gas phase into 

the biofilm layer of the media (Yang and Allen, 1994). It therefore suggests that 

significant bioaerosol RE is achievable across a range of EBRTs that can deliver both 

poor and optimum odour control. Martens et al. (2001) in their research suggested that 

bioflters which were excellent odour abatement systems emitted slightly more 

bioaerosols particles. However, they could not establish any relationships between the 

removal efficiencies of the odour/ammonia and bioaerosols for the five filter materials 

(i.e. biochips, coconut-peat, wood-bark, pellets & bark, and compost) tested. 

Bioaerosol capture mechanisms include inertial deposition, diffusional or Brownian 

deposition and flow line interception (Ottengraf and Konings, 1991); and these 

combine to effect bioaerosol impingement on the solid media material such that as 

bioaerosol-laden air sweeps through the media bed, the particles get deposited within 

the media, a function which may not be dependent on gas contact time. This further 

suggests that a low EBRT biofilter which may not favour odour control may actually 

achieve significant bioaerosol control. However, this observation may have been 

influenced by the small sample size and the variability in the dataset, and so valid 

conclusions would require an extensive study with a larger sample size. Nonetheless, 

Fletcher et al. (2014) argued that it may not be possible to achieve simultaneous 

significant control of odour and bioaerosols within a single biofilter as the 

mechanisms involved in the removal of these two pollutants are different. They also 

noted that bioaerosol removal may be enhanced by increasing airflow which decreases 

the EBRT. 

In winter conditions (visits 13 – 16), the sampling yielded REs of 60% (35 – 97%), 

61% (35 – 96%), 58% (47 – 83%) and 51% (18 – 71%) for A. fumigatus, total fungi, 

total mesophilic bacteria and Gram negative bacteria, respectively. It was observed 

that the inlet concentrations during visits 13 – 16 (winter) were significantly higher (p 

< .05) than during visits 1 – 6 (summer), up to 5.3× 104 cfu m-3, 6.3 × 104 cfu m-3, 9.6 

× 104 cfu m-3 and 1.0 × 105 cfu m-3 for A. fumigatus, total fungi, total mesophilic 

bacteria and Gram negative bacteria, respectively. It is unclear why this was so, 

especially as bioaerosols concentrations tend to be higher in summer for most waste 

management facilities (Stagg et al., 2010). However, it was observed that the volume 
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of waste heap in the waste reception area were greater in the winter than in summer, 

thus, there were increased activity of the front loaders and dinosaurus machine to feed 

the conveyors while clearing the area for incoming loads. Searl (2008) noted that 

bioaerosol concentrations can fluctuate over short periods, and increased activity 

levels within the waste facility may be associated with higher bioaerosol exposure. 

Thus, the higher winter concentrations in this study could be a function of the 

increased activities due to huge volume of waste being processed. Furthermore, Nasir 

and Tyrrel (2017) concluded that bioaerosol emissions from waste treatment facilities 

can be highly variable and characterisation based on snapshot and infrequent sampling 

may not give a true reflection of the magnitude of emissions. Most waste management 

facilities have as part of their permit condition the need to demonstrate that they can 

meet required emissions limit values. In this study, in spite of the high REs achieved 

during summer and winter (> 80%), the measured outlet concentrations still exceed 

background (upward) concentration, and are often in excess of the guideline provided 

in the EA position statement and so might be of concern to site workers and members 

of public living in the vicinity of site if these were operated at full scale.  

4.3.3  Potential for emissions from biofilters 

As noted in 4.2.1, one of the key concerns with biofilters has been their potential to 

act as net emitters of bioaerosols – this being one of the major concerns for regulators 

and operators (Fletcher et al., 2014). During sampling visits 7 - 12, the biofiltration 

system treated less polluted air with inlet concentrations in the range of 53 to 1.4 × 

103 cfu m-3, 1.6 × 102 to 1.8 × 103 cfu m-3, 6.5 × 102 to 9.3 × 103 cfu m-3 and 5.0 × 102 

to 3.6 × 103 cfu m-3 for A. fumigatus, total fungi, total mesophilic bacteria and Gram 

negative bacteria, respectively. The results in Figure 4.2 show that REs drop 

significantly and in some cases become negative with values as low as -83% (A. 

fumigatus), -122% (total mesophilic bacteria) and -128% (Gram negative bacteria). 

The negative removal efficiencies are indicative of a greater concentration leaving the 

biofilter than entering and are thought to result from microorganisms (a) passing 

through the media, and/or (b) growing within the media and being released from it 

(Sanchez-Monedero et al., 2003). Fletcher et al. (2014) stated that approximately 107 

microorganisms/g colonise media surfaces; and some of these could become 

mobilised as air passes through the biofilter and so may result in higher concentration 

of bioaersols in the treated air compared to the untreated air (Rabe and Becker, 2000). 



- 112 - 

 
Figure 4. 2: Removal efficiency and corresponding background, inlet and outlet concentrations of (a) A. fumigatus, (b) total fungi, (c) total mesophilic 

bacteria and (d) Gram negative bacteria in cfu m-3 when biofilters were operated outside the building. (Error bars = standard deviation; n = 2). 
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Martens et al. (2001) also added that this may still occur even if the packing material 

can somewhat contain the bioaerosol in contaminated; thus, suggesting some 

contribution to the emitted bioaerosol concentration from the media microorganisms. 

Laboratory scale studies by Frederickson et al. (2013) also suggested that woodchips 

and peat based biofilters  could be net emitters of total mesophilic bacteria and gram-

negative bacteria. 

4.3.4  Relationship between RE and inlet concentration 

The relationship between the log10 of inlet bioaerosol concentration and the removal 

efficiency was investigated through a linear regression analysis using data from all 

visits (Figure 4.3). A statistically significant relationship was found for total 

mesophilic bacteria and Gram negative bacteria where, p <.0005 was found for both 

intercept and slope coefficient; log10 of inlet concentration accounted for 35.5% and 

37.0% of the explained variability in the RE for total mesophilic bacteria and Gram 

negative bacteria, respectively. On the other hand, a statistical relationship could not 

be obtained for A. fumigatus (intercept [p = .213]; slope coefficient [p <.0005]) and 

total fungi (intercept [p <.0005]; slope coefficient [p = .290]) where log 10 of inlet 

concentration accounted for only 15.6% and 1.8% of the explained variability for A. 

fumigatus and total fungi, respectively. This indicates a much better reliability of the 

regression model for total mesophilic bacteria and Gram negative bacteria removal 

when compared to A. fumigatus and total fungi. This also suggests that differences 

exist between the ability of the biofiltration system to deal with fungi and bacteria, 

and these may be related to particle size (Sanchez-Monedero et al., 2003; 

Frederickson et al., 2013). Figure 4.3 also shows a higher variability in performance 

at low inlet concentration than at high inlet concentration especially for A. fumigatus, 

total mesophilic and Gram negative bacteria. It may be that biofilters receiving low 

inlet concentrations perform more poorly compared to when they receive waste gas 

with high inlet concentrations. However, it may also be the case that there is always 

a small emission rate from a biofilter, but this only becomes apparent when the inlet 

concentration is low; when inlet concentrations are high the removal may be the 

dominant process, with any emissions masked by this high removal rate. Martens et 

al. (2001), in their study on biofiltration of a pig facility, explained that microbial 

loads emitted from biofilters are a summation of non-impacted microorganisms 

retained in the treated process air and those blown off from the surface of the media 

particles by the passing airstream, thus, suggesting the possibility that the species 
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composition of the outlet air may be different from those of the inlet even for this 

study. Nonetheless, this is a promising result since the reality for most facilities would 

be high inlet concentrations, unless they have an upstream scrubber which reduces the 

concentration in the air before entering the biofilter bed (Fletcher et al., 2014). 

 

Figure 4. 3: Linear regression between log of inlet bioaerosol concentration and 

removal efficiency. In each case n = 64 and R2 = 0.16 (A. fumigatus); 0.02 

(Total fungi); 0.36 (Total mesophilic bacteria); 0.37 (Gram negative bacteria). 

 

4.3.5  Size distribution of bioaerosols 

To further evaluate the potential impact of the outlet air in a real life scenario, it was 

imperative to assess the size distribution of bioaerosols in biofilter exhaust air and to 

relate these to the tidal volume inhaled by humans. Particles collected on the various 

stages of the Andersen sampler represent a profile of their lung penetration potential, 
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alveolar deposition. These correspond to the inhalable, thoracic and respirable 

fractions, respectively, described in TSI Incorporated (2013).  
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Figure 4.4 shows the variation in size distribution of bioaerosol particles collected at 

the different stages of the six-stage Andersen sampler (Table A.4). The size 

distribution was computed by taking into account all the samples taken during 

sampling visits 1 - 6 and 13 - 16 (when the biofilters were located indoors) from the 

background, inlet and all four biofilters’ outlets. More than 60% of background A. 

fumigatus and total fungi particles were sized > 2.1 µm in aerodynamic diameter. On 

the other hand, background Gram negative bacteria had ~ 50% of particles in this 

range, but when considering total mesophilic bacteria, the proportion of particles in 

this range was slightly < 50% of a concentration of 6.2 × 102 to 1.8 × 104 cfu m-3. All 

four biofilter outlets had ~ 40% of A. fumigatus (outlet concentration: 3.8 × 102 to 3.4 

× 104 cfu m-3) and total fungi (outlet concentration: 6.5 × 102 to 4.0 × 104 cfu m-3) 

particles with an aerodynamic diameter < 2.1 µm, similar to their background 

composition. This is in contrast to the inlet samples that had ~ 20% of A. fumigatus 

particles (inlet concentration range: 3.8 × 103 to 5.3 × 104 cfu m-3) and total fungi 

(inlet concentration range: 4.8 × 103 to 6.3 × 104 cfu m-3) particles < 2.1 µm, 

respectively. For total mesophilic bacteria (with inlet concentration range of 5.9 × 103 

to 9.6 × 104 cfu m-3), the inlet samples had ~ 50% particles < 2.1 µm while the outlet 

samples were composed of ~ 70% of particles in this range (outlet concentration 1.9 

× 103 to 5.1 × 104 cfu m-3). Inlet and outlets particle size distributions for Gram 

negative bacteria were comparable with ~ 60% of particles < 2.1 µm, except for 

biofilter 4 that was slightly less than 60%. 

Overall, the exhaust (outlet) air appears to have smaller particles than the air entering 

the system even with significantly high REs recorded when the biofiltration system 

was operated indoors. This could possibly result from the filter bed preferentially 

trapping the larger sized particles from the gas flow, and/or these may just be the size 

range emitted from the biofilters (Sanchez-Monedero et al., 2003). However, as these 

pilot-scale biofilters achieved outlet concentrations predominantly in the range of 102 

– 103 cfu m-3, these concentrations would further be reduced (by wind dilution) 

downwind in full-scale applications. Williams et al. (2013), in a study to provide 

evidence on bioaerosol production, dispersion and potential exposures from four 

different composting facilities within England, reported peak total bacteria 

concentrations of > 106 cfu m-3 immediately downwind of the sites in comparisons to 

the < 103 cfu m-3 recorded upwind. However, the concentrations were observed to 

decline at locations further downwind of the sites which is in agreement with the view 
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that bioaerosol concentrations levels tend to reach background levels within 250m of 

their point of origin (Pankhurst et al., 2011b). Nonetheless, it may also not be possible 

to make this generalisation especially as these concentrations were measured at pilot 

scale within the waste hall, and so impact of fugitive emissions and other outdoor 

sources (Taha et al., 2004; Parry, 2018) were not assessed downwind of site and/or 

close to sensitive receptors.  

For all sampling points, both A. fumigatus and total fungi showed a maximum particle 

size distribution at stage 4 corresponding to an average aerodynamic diameter of 

between 2.1 and 3.3µm, according the specification of the sampler. Total mesophilic 

bacteria and Gram negative bacteria size distribution both showed a maximum at stage 

5 corresponding to an average aerodynamic diameter between 1.1 and 2.1 µm. These 

observations are in comparison to those of Sanchez-Monedero et al. (2003) who stated 

that this would imply a much better RE for the fungal spores; however, that size 

difference alone would not be sufficient to explain the observed difference in REs of 

fungi and bacteria measured in their study as well as in this study. Particle shape has 

also been suggested as having a key influence on particle retention (Willeke et al., 

1996); and for particles with aerodynamic diameter < 1 µm, Sanchez-Monedero et al. 

(2003) suggested that electrostatic charge on the particles may also influence particle 

deposition on the biofilter media.  

Bioaerosol particle size plays a key role in their dispersion in air and subsequent 

potential risk upon exposure via inhalation (Ferguson et al., 2017). Kell et al. (1998) 

argued that the potential for harmful effects by bioaerosols, upon deposition, is 

dependent on the number of culturable organisms, and not the culturable particles. 

Ferguson et al. (2017) reported that bacterial community structure and abundance 

were size related. They argued that since viable bacterial bioaerosols could exist either 

as single cells, small aggregates of cells or conglomerates of cells, then bacterial 

bioaerosols in stages < 3.3 µm were single cells while those in stages > 3.3 µm were 

either conglomerates of bacterial cells or cells attached to larger particles e.g. water 

droplets or dust. This latter group also showed more abundance and diversity with the 

highest levels found in the largest (>7 µm) size class. Thus, with predominantly lower 

size class in the outlet air, the potential to cause ill health from exposure would be 

determined by a knowledge of the species composition of the samples which was 

beyond the scope of this study. 
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Figure 4. 4: Background, inlet and outlet percentage particle size distribution for (a) A. fumigatus, (b) total fungi, (c) total mesophilic bacteria and 

(d) Gram negative bacteria. Data based on the ten indoor sampling visits 1-6, 13-16. Outlet composition represented by BF1, BF2, BF3, BF4. 
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Comparison of maximum outlet to inlet respirable fractions of bioaerosols shows a 

ratio of 1:0.8 for both A. fumigatus and total fungi. This implies that more fungi 

particles in this size class were released from the biofilters than received with outlet 

concentrations of 1.4 × 104 cfu m-3 and 1.6 × 104 cfu m-3 for A. fumigatus and total 

fungi, respectively. On the contrary, total mesophilic bacteria showed a 1:1.3 ratio of 

outlet to inlet respirable particles while Gram negative bacteria had a 1:3.4 outlet to 

inlet respirable faction ratio. This indicates that the biofilters were better at controlling 

this fraction of bacterial particles which represent a greater human health risk as they 

can penetrate the respiratory system more deeply and even to the lung alveoli where 

gaseous exchange occurs.  

Currently, there are no occupational exposure limits for bioaerosols in the UK; 

comparisons are usually made with other studies and publications on typical 

concentrations for similar facilities (Stagg et al., 2013). Malmros et al. (1992) 

suggested that waste workers should not be exposed to concentrations of total bacteria 

exceeding 5000 to 10000 cfu m-3 for an 8 hour working period; thus, the 

concentrations reported for this facility (103 – 105 cfu m-3) present potential health 

risks to the workers on this site. The study by Stagg et al. (2013) on seven materials 

recycling facility within the UK indicated similar concentrations (102 – 105 cfu m-3) 

to those observed in this study, and at those concentrations several health problems 

were triggered including skin symptoms, respiratory symptoms, and gastrointestinal 

symptoms. However, workers’ health impact assessment was outside the scope of this 

study. Nonetheless, the respiratory-related symptoms observed in the study by Stagg 

et al. (2013) can be a function of the lung penetrability of the bioaerosol particles 

generated at the various operational activities within the waste hall. In this current 

study, approximately 20%, 20%, 50% and 60% of indoor concentrations of A. 

fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria, 

respectively, were respirable fractions (with aerodynamic diameter < 2.1µm), and so 

could penetrate deep into the lungs. 

Tidal volume, which is the volume of air inspired or expired during a respiratory cycle 

(Quanjer et al., 1993), is  approximately 500ml and at rest a normal human being has 

12 breaths per minute (Meka and Van Oostrom, 2004). For an 8-hour working period 

a normal person working continuously in the vicinity of the biofilters may beinhaling 

2.88 m3 of air containing approximately 3.9 × 104 cfu of A. fumigatus, 4.6× 104 cfu of 

total fungi, 1.0 × 105 cfu of total mesophilic bacteria and 5.0 × 104 cfu of Gram 
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negative bacteria respirable fractions. However, these values represent the maximum 

concentrations recorded during this study, and do not typify the outlet concentration 

ranges. Nonetheless, it is estimated that < 10% of all bioaerosols may be culturable 

(Blomquist, 1994; Swan et al., 2003), the remainder possibly being composed of 

either viable non-culturable cells or dead but intact cells which may still pose health 

concerns (Pearson et al., 2015). Thus, the reality might be that the actual bioaerosol 

concentration emitted by the biofilters may be higher than measured, and may contain 

species or cell components that are not detected, which still require consideration in 

health impact assessment (Eduard et al., 2012). Even with the measured outlet 

concentrations, it is expected that further reduction by microbial inactivation due to 

environmental stresses (such as desiccation, temperature and oxygen) (Hurst et al., 

2007), and wind dilution and dispersion (as they are blown off the site) would be 

achieved in full-scale applications. 

4.4  Section Summary 

 This study shows that biofilters designed and operated for odour degradation 

can also achieve significant bioaerosols reduction in waste gas - 70% (35 to 

97%) for A. fumigatus, 71% (35 to 94%) for total fungi, 68% (47 to 86%) for 

total mesophilic bacteria and 50 (-4 to 85%) for Gram negative bacteria - 

provided that the inlet concentration is high which is the case for most waste 

treatment facilities. Thus, they can be effective for the control of potentially 

pathogenic species in the emissions from these treatment facilities.  

 Despite the high REs achieved, the emitted concentrations from the pilot 

biofilters exceeded background concentrations and the EA guideline. 

However, from the analysis differences may exist between the ability of the 

biofiltration system to deal with fungi and bacteria, as there is much more 

confidence with the performance for bacteria than fungi; these may be related 

to size differences.  

 Furthermore, RE may deteriorate at low inlet concentration resulting in a net 

bioaerosol emitting potential of biofilters, and a proportion of the emitted 

bioaerosols may be originating from the microbial population colonising the 

media surfaces, resulting in differences in species composition between 

contaminated process (inlet) and treated (outlet) air samples.  
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 The results also suggest that gas contact time may not play a significant role 

in bioaerosol removal as there was no established statistical relationship over 

the range of EBRTs tested; however, this requires a more extensive 

investigation. 

 Particle size distribution vary between the inlet and outlet air, with the outlet 

having predominantly greater proportion of smaller size particles that 

represent greater human health risk as they can penetrate the respiratory 

system more deeply and even to the lung alveoli where gaseous exchange 

occurs. However, the outlet concentrations were low, and further reduction 

would be achieved by the combined effect of wind dilution and dispersal as 

well as exposure to environmental stress from temperature, desiccation and 

oxygen in full scale applications.  

 Further research with quantitative polymerase chain reaction (qPCR) and 

next-generation sequencing (NGS) is required to compare the species 

composition of both inlet and outlet air to determine whether or not new 

microbial populations were being emitted. Research is also required to assess 

the simultaneous control of odour and bioaerosols by biofilters. 
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Chapter 5 

IMPACT OF GAS RESIDENCE TIME ON  SIMULTANEOUS 

CONTROL OF BIOAEROSOLS AND ODOUR 

5.1  Introduction  

One of the design and operating parameters considered as critical for odour 

biofiltration is gas residence time. This is the length of time the contaminated process 

air is in contact with the biofilm layer on the media material necessary to allow for 

microbial degradation of the odorous compounds (Janni et al., 2011). This parameter 

is frequently assessed by the indicator empty bed residence time (EBRT) which is a 

function of the media cross sectional area, media depth and airflow rate across the BF, 

and is calculated by dividing the empty bed filter volume by the airflow rate (Devinny 

et al., 1999). In a review of air biofiltration, Delhoménie and Heitz (2005) stated that 

contaminants diffusion transfer from the gas into the biofilm, and the biodegradation 

reaction are the two physicochemical mechanisms that determine the efficiency of 

biofiltration; and that the former is slower than the latter. This implies that for there 

to be efficient biofiltration, EBRT must be greater than the time required for the 

diffusion transfer. Evidence in the literature suggest that longer EBRT results in better 

odour and VOCs removals (Jorio et al., 2000; Christen et al., 2002; Delhoménie et al., 

2002; Martin et al., 2002; Yoon and Park, 2002), while shorter EBRTs (which imply 

high airflows) results in poor removals due to incomplete degradation of contaminants 

by the microbial population within the biofilm layer, and media desiccation by the 

high flow rates which strip water from the media surface, thus affecting the resident 

microorganisms (Delhoménie and Heitz, 2005).  

From the review of literature, it is obvious that a lot of studies have focused on the 

criticality of EBRT on the biodegradation of odour and odorous volatiles by BFs. 

However, only a few studies have provided some insights into the criticality of EBRT 

on bioaerosol control. Although no direct comments were made, data presented by 

Sanchez-Monedero et al. (2003) included gas phase residence time for the BFs they 

studied. A. fumigatus REs (90 – 99%) and mesophilic bacteria REs (39 – 94%) did 

not appear to be related to the range of EBRTs (29 – 97s) they reported. Fletcher et 

al. (2014), while recommending an EBRT range of 40 s to 100s for biofiltration, 

argued that data from their study indicated that there was no relationship between 
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EBRT and bioaerosol removals especially with variabilities showing net increases up 

to 315% and REs close to 100% over the range of EBRTs (41 s – 84 s) in the study.  

Thus, there is uncertainty in the literature especially regarding the impact of EBRT on 

simultaneous biofiltration of air microbial and odorous chemical contaminants from 

the process air of waste management facilities. Frederickson et al. (2013) agreed that 

there is not enough research to comment in detail on the impact of operating 

parameters, such EBRT, on the removal of bioaerosols. Thus, this objective 

investigated the impact of biofilter EBRT on the simultaneous mitigation of 

bioaerosol and odour emissions using a materials recovery facility (MRF) as the 

source of the contaminated process air. The sub-objectives were as follows: (i) to 

assess the variability of the inlet concentrations of bioaerosols and odour (ii) to assess 

the performance of three levels of EBRT – 11 s, 16 s and 70 s – in terms of REs, 

bioaerosol load removal (L) and bioaerosol removal rate (R) and (iii) to assess the 

effects of EBRT on particle size distribution between inlet and outlet samples of all 

BFs.  

5.2  Biofilter operation to evaluate performance 

Section 3.4 presents a general discussion of the operation of the biofilters throughout 

the study. However, this section presents more detailed information on how the 

biofilters were operated, maintained and assessed, and the data analyses that were 

carried out to fulfill the specific objectives of this particular section of the study.  

 

5.2.1  Biofilter Operation 

A total of four sampling visits were completed for this study – 13 February, 20 

February, 27 February and 6 March, 2017 (Appendix B). Prior to the current study, 

the BF system had been in operation for nine months (3 May 2016 to 3 February 2017) 

during which biofiltration of bioaerosols as well as impact of inlet bioaerosols 

concentrations on biofiltration were assessed. Before sampling commenced, the 

media (Plate 5.1) in each reactor was allowed to stabilise for 10 days after the end of 

the previous experiments as recommended in the literature (Cabrol et al., 2012; 

Ralebitso-Senior et al., 2012). For this study, the woodchips used as the media were 

derived from previous experiments testing BF performance at the same location on 

the site, operated for nine months prior to the current study. Laboratory tests were 
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conducted to determine media characteristics (as described in section 3.3.3). Table 5.1 

presents a comparison of the media characteristics in February 2017 (before 

commencing this study) and values obtained in May 2016.  

 

Plate 5. 1: Woodchips used as media for this study (derived from previous 

experiment). 

Table 5. 1: Characteristics of wood chips used for this study 

Characteristics  May 2016 February 2017 

Average Bulk Density (kg/m3) 225 239.17 

Average Porosity (%) 61.4 60.3 

Average Water Holding Capacity (g/g dry 

weight) 

1.16 1.12 

Moisture Content (as received) (%) 30 30 

 

For the first two visits all the pilot-scale BFs were operated with an average EBRT of 

16 s (corresponding to an average airflow rate of 681 L min-1). For visits 3 and 4, BF1 

and BF2 were randomly allocated to the experimental groups (Coolican, 2017), such 

that BF1 and BF2 operated with an EBRT of  70 s (corresponding to an average 

airflow rate of 156 L min-1) while BF3 and BF4 operated with an EBRT of 11 s 

(corresponding to an average airflow rate of 990 L min-1). During these tests, the 

media moisture levels were maintained within the range 40 to 70% (wet basis). In 
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order to avoid media compaction and clogging, which could lead to the formation of 

preferential flow paths for air, the media in each BF was mixed with a shovel once 

every two weeks on days other than the sampling days (Sanchez-Monedero et al., 

2003).  

5.2.2  Biofilter Performance Assessment 

Air was simultaneously sampled for odour analysis while bioaerosol sampling was 

being carried out. Biofilter performance was evaluated on the basis of removal 

efficiency as as discussed in section 3.7. In addtion, biofilter performance was also 

evaluated on the basis of bioaerosol load removal, L (Equation 5.1), and bioaerosol 

removal rate, R (Equation 5.2) (Sanchez-Monedero et al., 2003). L represents the 

number of bioaerosols removed, according to a single measurement taken at a biofilter 

or the maximum load of bioaerosols that could be eliminated by the biofilter, 

expressed in cfu m-3, while R represents the number of bioaerosols removed per cubic 

metre of bed medium per unit time (hour), expressed as cfu m-3 h-1 (McNevin and 

Barford, 2000; Sanchez-Monedero et al., 2003). 

𝐿 = 𝐶𝑖𝑛 − 𝐶𝑜𝑢𝑡 Eq. 5. 1 

  𝑅 = 𝑄𝐿/𝑉  Eq. 5. 2 

where, Cin = inlet concentration; Cout = outlet concentration.; Q = flow rate (m3 h-1) 

and V = volume (m3) of the biofilter.  

5.2.3  Data Analysis 

All statistics were carried out on original bioaerosol and odour concentrations rather 

than the calculated RE. The normality of the bioaerosol concentrations was assessed 

using the Shapiro-Wilk test. Data for analysis was considered as mean and standard 

deviation. Differences in mean bioaerosol concentration for the background, BF inlet 

and all BF outlets were assessed using the Welch ANOVA, regardless of whether or 

not the assumption of normality was met. In all cases, the assumption of homogeneity 

of variances was violated, as assessed by Levene’s test for equality of variances (p < 

0.05) for all groups of bioaerosols assessed. For odour, there were no outliers in the 

data set and normality of odour concentrations was assessed using the Shapiro-Wilk 

test. Differences in mean odour concentration for the BF inlet and all BF outlets were 

assessed using ANOVA. There was homogeneity of variance as assessed by Levene’s 

test for equality of variances (p > 0.05). 
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5.3  Results and discussion 

5.3.1  Operating Conditions 

Table 5.2 shows the operating conditions of the pilot scale BFs for the study period. 

The inlet (central plenum) temperature varied from visit to visit, and ranged from 

13.0°C to 17.1°C. The BF media temperatures were left unaltered as these were within 

the range recommended for biofilter effectiveness (Schnelle and Brown, 2002; Chen 

and Hoff, 2009). Media moisture content is another key factor responsible for 

effective biofiltration; 75% of BF malfunctioning cases have been attributed to 

moisture levels (Heslinga, 1994; Morales et al., 1997), and in this study moisture 

levels in all BFs were carefully monitored and maintained between 50 and 70%.  

Table 5. 2: Operating conditions of the biofilters (BF) during the study period 

Parameter BF1 BF2 BF3 BF4 
Inlet air temperature (ºC) 13.0 – 17.1 13.0 – 17.1 13.0 – 17.1 13.0 – 17.1 
Outlet air temperature (ºC) 11.8 - 16.4 11.5 – 17.1 11.7 – 16.9 11.3 – 16.5 

Media temperature (ºC) 11.1 – 16.8 11.6 – 17.3 11.7 – 17.1 11.3 – 17.9 

Mean EBRT (s) 16*; 70** 16*; 70** 16*; 11** 16*; 11** 

Mean Airflow rate (L min-1) 681*; 156** 681*; 156** 681*; 990** 681*; 990** 

Leachate pH range 6.83 – 7.04 6.56 – 7.38 6.77 – 7.37 6.95 – 7.21 

Media moisture content (%) 58 - 68 61 - 69 54 - 64 52 - 60 

* All BF operated at 16 s; ** BF1, BF2 at 70 s and BF3, BF4 at 11 s. 

 

5.3.2  Inlet concentrations of bioaerosols and odour 

Figure 5.1 shows the mean inlet concentrations of the four bioaerosol groups (error 

bars = standard deviations) and odour during the four sampling visits. Bioaerosol inlet 

concentrations varied for all four sampling visits, ranging from 1.0 × 104 to 5.3 × 104 

cfu m-3 for A. fumigatus, 1.2 × 104 to 6.3 × 104 cfu m-3 for total fungi, 1.4 × 104 to 9.6 

× 104 cfu m-3 for total mesophilic bacteria, 5.9 × 103 to 1.0 × 105 cfu m-3 for Gram 

negative bacteria. These concentrations are similar to those (103 – 104 cfu m-3) of 

Fletcher et al. (2014) who reported that concentrations of bioaerosols in the process 

air of the full-scale facilities in their study varied from site to site and between 

sampling visits. They attributed these variations to the complex interactions between 

the specific process operating conditions, the types of waste being processed and the 

configuration of the air ventilation system installed on the sites.  
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Figure 5. 1: Inlet concentrations of (a) A. fumigatus, (b) total fungi, (c) total mesophilic bacteria, (d) Gram negative bacteria, and (e) odour 

measured during the four sampling visits (n = 2 for bioaerosols; n = 1 for odour). 1 – Visit 1 (13/02/17); 2 – Visit 2 (20/02/17); 3 – Visit 3 

(27/02/17); 4 – Visit 4 (06/03/17). 
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On the other hand, inlet odour concentrations measured for the four sampling visits 

were relatively low and fairly constant at 152 OUE m-3, except on visit 1 when it was 

94 OUE m-3. It does appear as though variations in the process operating conditions 

and types of waste being processed had no obvious impact on odour concentrations. 

Odour control has been identified as one of the challenges of MRF managers 

especially when the waste materials have high amounts of organics and/or may have 

been left in a hot or damp environment for an extended period allowing time for 

decomposition and release of foul smells (Duffy, 2017). However, the odour 

measurements of this study are low in comparison to previous odour measurement on 

the exact same site by an independent consultant who reported concentrations up to 

19 340 OUE m-3 within the waste reception area (Gair, 2013). This variance may be 

attributed to the location of the pilot-biofiltration system (behind the back push wall 

away from the waste materials) and/or the sampling method employed. NalophanTM 

bags have been reported to have non-negligible diffusion coefficients with respect to 

specific odorous components in air, and thus can lead to a decrease in measured odour 

concentration over time (Capelli et al., 2013). Capelli et al. (2013) also argued that 

there may be some experimental bias related with this method of sampling possibly 

due to the release over time of odorous substances from the polymeric film used in 

making the sampling bag, thus affecting the samples to be analysed. 

A paired t-test was used to assess the differences in the inlet concentrations of both 

bioaerosols and odour when the BFs were all operated with EBRT of 16 s and when 

they were adjusted to run at 11 s and 70 s. Except for total bacteria (p = 0.014), there 

were no statistically significant differences (p > 0.05) between the inlet concentrations 

of all groups of bioaerosols measured between the period when the biofilters were 

operated at 16s (13 and 20 Feb) and when they were split to run at 11s and 70s (27 

Feb and 6 March). Also, there was no statistically significant difference (p = 0.825) 

in the inlet concentrations of odour measured between both periods. 
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5.3.3  Effect of gas residence time on bioaerosol and odour 

concentration reduction 

Figure 5.2 shows the boxplots (left) of the background (bioaerosols only), inlet and 

outlet concentrations of bioaerosols and odour from the four BFs when operated at 

EBRT of 16 s. It also presents the corresponding REs (right) achieved by the BFs; 

computed using the mean values of the inlet and outlet concentrations for the same 

period. The results indicate that bioaerosols were detected in the outlet of all pilot-

scale BFs assessed. At this EBRT, the outlet concentration of A. fumigatus ranged 

from 1.1 × 102 to 8.5 × 103 cfu m-3 for BF1, 3.2 × 102 to 2.8 × 104 cfu m-3 for BF2, 1.1 

× 102 to 1.2 × 104 cfu m-3 for BF3, and 1.4 × 102 to 1.9 × 103 cfu m-3 for BF4; 

translating to mean A. fumigatus REs of 75%, 25%, 69% and 93%, respectively, for 

BF1, BF2, BF3 and BF4 from a mean inlet concentration of 1.6 × 104 cfu m-3. 

Total fungi showed a similar trend with outlet concentrations ranging from 1.4 × 102 

to 1.2 × 104 cfu m-3 for BF1, 3.9 × 102 to 4.5 × 104 cfu m-3 for BF2, 1.1 × 102 to 1.6 × 

104 cfu m-3 for BF3, and 2.5 × 102 to 3.9 × 103 cfu m-3 for BF4 giving mean REs of 

79%, 32%, 76% and 93%, respectively. This indicates that the BFs were capable of 

achieving one to two log unit reductions of fungi. On the other hand, the outlet 

concentrations of bacteria were much higher (103 – 104 cfu m-3) with total mesophilic 

bacteria achieving REs of 61% (outlet range: 1.6 × 103 to 3.7 × 104 cfu m-3) for BF1, 

35% (outlet range: 1.3 × 103 to 5.6 × 104 cfu m-3) for BF2, 56% (outlet range: 1.3 × 

103 to 3.4× 104 cfu m-3) for BF3, and 70% (outlet range: 2.3 × 103 to 2.6 × 104 cfu m-

3) for BF4 from a mean inlet concentration of 3.7 × 104 cfu m-3. Mean REs achieved 

for Gram negative bacteria were 73% for BF1, 58% for BF2, 63% for BF3, and 89% 

for BF4 from amean inlet concentration of 5.3 × 104 cfu m-3. Welch ANOVA followed 

by Games-Howell post hoc analysis indicated that there were no statistically 

significant differences (p > 0.05) between the outlet concentrations of bioaerosols 

from the BFs operated at 16 s. Although the inlet concentrations were higher than the 

outlet, this was not statistically significant (p > 0.05). Odour concentrations measured 

at each BF outlet varied from visit to visit. REs achieved by the BFs were comparable 

and were as follows: BF1 – 51%, BF2 – 50%, BF3 – 55%, BF4 – 48%. One way 

ANOVA followed by Tukey post hoc analysis showed that the inlet odour 

concentration was significantly (p < 0.05) higher than the outlet of all BFs when the 

BFs were operated at 16 s. However, the differences in outlet odour concentrations 

between the four BFs were not statistically significant (p > 0.05).  
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Figure 5. 2: Inlet and outlet bioaerosols and odour concentrations, n = 8 (left); and 

removal efficiencies (right) achieved by the biofilters when operated at 16 s. 

Removals computed from mean concentrations. BG = Background; BF1 = 

Biofilter 1, BF2 = Biofilter 2; BF3 = Biofilter 3; BF4 = Biofilter 4. 

Figure 5.3 shows similar plots as Figure 5.2 but for the second part of this study when 

BF1 and BF2 were operated with an EBRT of 70 s while BF3 and BF4 were operated 

at 11 s. Generally, the achieved REs by all BFs were relatively lower compared to 

when they were all operated at 16 s. BF1, BF2, BF3 and BF4 achieved 34% (outlet 

range: 3.5 × 103 to 4.0 × 104 cfu m-3), 34% (outlet range: 5.9 × 103 to 3.7 × 104 cfu m-

3), 46% (outlet range: 3.3 × 103 to 3.4 × 104 cfu m-3), and 42% (outlet range: 3.2 × 103 
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to 3.9 × 104 cfu m-3) mean reductions of A. fumigatus, respectively. Similarly, mean 

reductions of total fungi were  31% (outlet range: 4.6 × 103 to 4.7 × 104 cfu m-3) for 

BF1, 32% (outlet range: 7.8 × 103 to 4.4 × 104 cfu m-3) for BF2, 48% (outlet range: 

4.7 × 103 to 3.7 × 104 cfu m-3) for BF3, and 43% (outlet range: 4.2 × 103 to 4.2 × 104 

cfu m-3) for BF4 from a mean inlet concentration of 7.2 × 104 cfu m-3. Similar outlet 

concentrations (103 – 104 cfu m-3) were achieved by the BFs for the bacteria: BF1, 

BF2, BF3 and BF4 achieved mean total mesophilic bacteria removals of 46% (outlet 

range: 1.3 × 104 to 7.1 × 104 cfu m-3), 51% (outlet range: 1.2 × 104 to 6.2 × 104 cfu m-

3), 70% (outlet range: 9.9 × 103 to 2.7 × 104 cfu m-3), and 28% (outlet range: 2.1 × 104 

to 9.6 × 104 cfu m-3), while REs of 40%, 18%, 17% and 67% were respectively 

achieved by BF1, BF2, BF3 and BF4 for Gram negative bacteria. It does appear as 

though BF1 and BF2 operated with a longer EBRT (70 s) delivered slightly poorer 

removals of both fungi and bacteria. Fletcher et al. (2014) suggested that the BF, 

coded UOL07 in their study, which had pine woodchips as media and operated with 

the highest EBRT of 84 s performed poorest among all BFs studied, and indicated net 

removals of bacteria. This is in contrast to the findings of Miaskiewicz-Peska and 

Lebkowska (2012) that suggested that the capacity of filters to collect bacterial 

particles tends to decrease with increases in airflow rate (which implies decreasing 

EBRT). However, for this period, assumption of homogeneity of variances in 

bioaerosol concentrations was violated in all cases, as assessed by Levene’s test for 

equality of variances (p < 0.05) for all groups of bioaerosols. Welch ANOVA 

indicated that there were no statistically significant differences (p > 0.05) between the 

inlet and outlet concentrations, and between the outlet concentrations for all groups 

of bioaerosols assessed. However, inlet concentration differed significantly (p < 0.05) 

from the background concentrations for all bioaerosols. 

For the same period, mean outlet odour concentrations achieved by the BFs were 55 

OUE m-3 (mean RE: 64%) for BF1, 36 OUE m-3 (mean RE: 76%) for BF2, 81 OUE m-

3 (mean RE: 47%) for BF3, and 76 OUE m-3 (mean RE: 50%) for BF4. One way 

ANOVA followed by Tukey post hoc analysis indicated that mean inlet concentration 

(152 OUE m-3) differed significantly from all BF outlets (p < 0.05). Comparing the 

performance of the BFs in terms of mean outlet concentrations, BF1 showed no 

significant difference with BF2 (p = 0.466), and BF3 was not significantly different 

from BF4 (p = 0.996). However, BF2 differed significantly from BF3 (p = 0.004) and 

BF4 (p = 0.12); thus, suggesting that the longer EBRT of BF2 (which achieved mean 
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outlet concentration of 36 OUE m-3) favours odour biodegradation as established in 

the literature (Devinny et al., 1999; Delhoménie and Heitz, 2005; Chen and Hoff, 

2009; Fletcher et al., 2014), in contrast to the short EBRT of BF3 and BF4 which 

showed mean outlet concentrations of 81 OUE m-3 and 76 OUE m-3, respectively. 

However, BF1 did not differ significantly (p > 0.05) from BF3 and BF4.  

 
Figure 5. 3: Inlet and outlet bioaerosols and odour concentrations, n = 8 (left); and 

removal efficiencies (right) achieved by the biofilters – BF1 & BF2 at 70 s; 

BF3 & BF4 at 11 s. Removals computed from mean concentrations. BG = 

Background; BF1 = Biofilter 1, BF2 = Biofilter 2; BF3 = Biofilter 3; BF4 = 

Biofilter 4. 
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Table 5.3 shows the the mean bioaerosols load removal, L and mean removal rate, R, 

for all BFs for the two EBRT periods studied. For the period when all BFs were 

operated at 16 s and with the exception of BF2 which reduced by a log unit, fungal 

bioaerosols L was similar among the BFs typically in the range of 104 cfu m-3. Similar 

range (104 cfu m-3) of L was achieved for both groups of bacteria assessed for the 

same period. L was also very similar among all BFs evaluated for the second period 

with EBRTs of 70 s (BF1, BF2) and 11s (BF3, BF4), and was in the range of 104 cfu 

m-3 for all groups of bioaerosol assessed, except Gram negative bacteria which was 

one log unit lower for BF2 and BF3. The removal rate (R) was also similar among the 

four BFs, mostly in the range of 106 cfu m-3 h-1 with the bacteria showing the 

maximum values (107 cfu m-3 h-1) for this parameter.  

Table 5. 3: Biofilter performance in terms of mean bioaerosol load removal, L (cfu 

m-3)* and removal rate, R (cfu m-3 h-1)** 

EBRT 16 s (All BFs) 70 s (BF1 & BF2),  

11 s (BF3 & BF4) 

 L R L R 

A. fumigatus 

BF1 1.20E+04 2.75E+06 1.08E+04 5.50E+05 

BF2 3.80E+03 9.35E+05 1.06E+04 5.55E+05 

BF3 1.10E+04 2.55E+06 1.47E+04 4.75E+06 

BF4 1.55E+04 3.45E+06 1.30E+04 4.30E+06 

Total fungi 

BF1 2.20E+04 4.95E+06 1.14E+04 5.85E+05 

BF2 8.85E+03 2.00E+06 1.16E+04 6.05E+05 

BF3 2.10E+04 4.75E+06 1.81E+04 5.80E+06 

BF4 2.55E+04 5.80E+06 1.63E+04 5.30E+06 

Total mesophilic bacteria 

BF1 2.30E+04 5.10E+06 3.25E+04 1.70E+06 

BF2 1.30E+04 2.95E+06 3.70E+04 1.90E+06 

BF3 2.10E+04 4.70E+06 5.05E+04 1.62E+07 

BF4 2.60E+04 5.80E+06 2.00E+04 6.65E+06 

Gram negative bacteria 

BF1 3.85E+04 8.44E+06 1.08E+04 5.50E+05 

BF2 3.07E+04 6.89E+06 4.95E+03 2.55E+05 

BF3 3.34E+04 7.42E+06 4.70E+03 1.50E+06 

BF4 4.72E+04 1.05E+07 1.80E+04 5.85E+06 

* m3 of inlet air; ** m3 of media bed volume 

Sanchez-Monedero et al. (2003) investigated biofiltration as a method to control 

airborne microorganisms released at composting facilities, and although they did not 

comment directly, the data they provided indicated that all the BFs in their study, with 

gas-phase residence times ranging from 29 s to 97 s, achieved similar L of  4.7 × 103 
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to 2.2 × 105 cfu m-3 for A. fumigatus and 9.0 × 102 to 2.4 × 105 cfu m-3 for mesophilic 

bacteria (from an inlet concentration in the range of 104 – 106 cfu m-3). Thus, it may 

be that the variations in EBRT may not impact on bioaerosols particle reductions in 

BFs especially as the range is similar between both study periods, and that the 

observed reductions may be the combined result of inertial deposition, diffusional 

(Brownian) deposition and/or flow line interception as suggested by Ottengraf and 

Konings (1991).  

5.3.4  Effect of gas residence time on bioaerosol particle size 

distribution 

Impact of EBRT on particle size distribution was also of interest in the current study 

because of the lung penetrability of certain size ranges and the potential to cause ill 

health in humans (Fröhlich-Nowoisky et al., 2016). In this study, each stage of the 

Andersen sampler used for sampling represent the part of the respiratory system where 

inhaled bioaerosol particles will be deposited once they penetrate the human 

respiratory tract (Tisch Environmental Inc., 2015).  Stages 1 and 2 simulate 

nasopharyngeal deposition and collect particles with aerodynamic diameter > 4.7 µm 

(inhalable fraction); stages 3 and 4 simulate tracheobronchial deposition and collect 

bioaerosol particles with aerodynamic diameter 2.1 to 4.7 µm (thoracic fraction); 

while stages 5 and 6 simulate pulmonary or alveolar deposition, collecting < 2.1 µm 

(respirable fraction) (TSI Incorporated, 2013; Thomas, 2013).  

A comparison of bioaerosol particle size distribution for the background, inlet and 

outlets of the four pilot-scale BFs assessed in this study is shown in figure 5.4. The 

size distributions were computed by considering all samples taken at the various 

points (a) when all BFs were operated with an EBRT of 16 s and (b) when the BFs 

were operated at 70 s and 11 s (Tables B.2 and B.3). In this study, the reference size 

was 3.3 µm because this is the size which differentiates particles that exist as single 

cells from those which exist as conglomerates of cells (Ferguson et al., 2017). 

Generally, the distribution of the fungal particles appear to be similar between both 

periods for all BFs. A. fumigatus and total fungi had approximately 68 – 75% and 66 

– 75%, respectively, of particles in the range less than 3.3 µm when all BFs where 

operated at 16 s. The composition of this size range was slightly higher in the second 

period (EBRT 70 s and 11 s) with a range of 74 – 76% and 71 – 74%, for A. fumigatus 

and total fungi, respectively, for all BFs. Maximum proportion of particles (28 – 42%) 
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collected at stage 4 (corresponding to an aerodynamic diameter 2.1 to 3.3 µm). This 

distribution was similar to those obtained for samples taken at the inlet and at the 

background for both sampling periods under consideration. A Pearson's product-

moment correlation was run to assess correlations of bioaerosol size distribution for 

the background, inlet and outlet of all BFs for the two EBRT regimes investigated 

(Tables 5.4 and 5.5). The strong positive correlations recorded further confirms the 

similarities of the distributions of bioaerosol particles at the various points sampled. 

Bacterial particle size distribution was also similar for all sampling points considered 

between both sampling periods, although background samples indicated a slightly 

lower proportion of particles in the range <. 3.3 µm.  Total mesophilic bacteria and 

Gram negative bacteria showed higher proportions of particles in the range < 3.3 µm 

than fungi, with 78 – 86% and 78 – 91% composition, respectively, for both periods. 

Contrary to the observations with fungal particle distributions, the maximum 

proportion of total mesophilic bacteria particles collected at stages 5 (18 – 51%) and 

6 (26 – 50%). Gram negative bacteria also had maximum particles collected at stages 

5 (28 – 51%) and 6 (18 – 44%) of the sampler.  

The particle size distribution in this study agrees with those of Sanchez-Monedero et 

al. (2003) who reported maximum A. fumigatus and mesophilic bacteria collection on 

stages 4 and 5 of the six stage Andersen used in their study. This is indicative of the 

potential risks to exposed persons especially with the high proportions of single cell 

fungal and bacterial particles in the high outlet air samples which can penetrate the 

respiratory system more deeply and even to the lung alveoli where gaseous exchange 

occurs. It does appear as though variation of EBRT has no obvious impacts on both 

bioaerosols particle size distribution between inlet and outlet air samples collected. 

However, apart from A. fumigatus and Gram negative bacteria, it was not possible to 

establish whether or not the emitted particles were composed of the same species as 

those entering the BFs; thus, this requires a more extensive investigation with 

quantitative polymerase chain reaction (qPCR) and next-generation sequencing 

(NGS) to compare the species composition of both inlet and outlet air to determine 

whether or not new microbial particles are being emitted in the BF outlet samples. 
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Figure 5. 4: Comparison of bioaerosol particle size distribution (a) when all biofilters were operated with an EBRT of 16 s (Data based on visits 1 & 

2), and (b) when BF1 and BF2 were operated at EBRT of 70 s; BF3 and BF4 operated at EBRT of 11 s (Data based on visits 3 & 4). (Visit 1 = 

13/02/17; Visit 2 = 20/02/17; Visit 3 = 27/02/17; Visit 4 = 06/03/17). BG = Background; BF – Biofilter. 
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Table 5. 4: Pearson correlations of the particle size distribution of the four groups of bioaerosols with all BFs operated at 16 s. 

 BF1 BF2 BF3 BF4 Inlet 

A. fumigatus 

BF2 .982**     

BF3 .984** .969**    

BF4 .877* .911* .840*   

Inlet .958** .939** .977** .759  

Background .982** .961** .993** .792 .989** 

Total fungi 

BF2 .947**     

BF3 .996** .932**    

BF4 .946** .932** .956**   

Inlet .981** .925** .986** .920**  

Background .971** .902* .966** .880* .975** 

Total mesophilic bacteria 

BF2 .968**     

BF3 .804 .750    

BF4 .899* .909* .510   

Inlet .973** .921* .910* .780  

Background .600 .646 .554 .654 .586 

Gram negative bacteria 

BF2 .975**     

BF3 .992** .962**    

BF4 .860* .834* .913*   

Inlet .988** .953** .963** .779  

Background .068 .161 .147 .329 -.013 

*.Correlation is significant at the 0.05 level (2-tailed); **.Correlation is significant at the 0.01 level (2-tailed). 
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Table 5. 5: Pearson correlations of the particle size distribution of the four groups of bioaerosols with BF1 & BF2 at 70 s and BF3 & BF4 at 11 s. 

 BF1 BF2 BF3 BF4 Inlet 

A. fumigatus 

BF2 .994**     

BF3 .993** .988**    

BF4 .984** .993** .985**   

Inlet .974** .959** .987** .947**  

Background .627 .688 .634 .661 .630 

Total fungi 

BF2 .991**     

BF3 .991** .983**    

BF4 .983** .993** .986**   

Inlet .970** .956** .990** .956**  

Background .734 .791 .729 .746 .731 

Total mesophilic bacteria 

BF2 .888*     

BF3 .926** .979**    

BF4 .995** .911* .949**   

Inlet .985** .950** .971** .994**  

Background .656 .501 .540 .686 .643 

Gram negative bacteria 

BF2 .691     

BF3 .982** .563    

BF4 .777 .962** .650   

Inlet .886* .886* .798 .905*  

Background .333 .829* .232 .698 .510 

*.Correlation is significant at the 0.05 level (2-tailed); **.Correlation is significant at the 0.01 level (2-tailed). 
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5.4  Section Summary 

 The inlet concentrations of the four bioaerosol groups studied varied from visit 

to visit (in the range of 103 – 104 cfu m-3) possibly due to the complex 

interactions between the specific process operating conditions, the types and 

amounts of waste being processed and the configuration of the air ventilation 

system installed on the sites. However, such variation was not apparent with 

odour with concentrations remaining fairly stable (152 OUE m-3) for a greater 

part of the sampling period. 

 The pilot scale BFs studied all achieved removals of bioaerosols in the two 

EBRT regimes assessed. REs of 25 – 94%, 31 – 93%, 28 – 70% and 17 – 89% 

were achieved for A. fumigatus, total fungi, total mesophilic bacteria and Gram 

negative bacteria, respectively, for both EBRT regimes under consideration. 

Although the inlet concentrations were higher than the outlet, these were not 

statistically significant (p > 0.05) especially as outlet concentrations were also 

in the range of 103 – 104 cfu m-3. 

 There were no statistically significant differences (p > 0.05) between the outlet 

concentrations of bioaerosols from the BFs for the three levels of EBRT 

investigated. This suggests that variations in gas residence time may not 

impact on bioaersosol removals by biofiltration in this study, and thus, may 

not be critical for bioaerosol control. 

 All the BFs achieved significant reductions in odour concentrations (which 

were rather low in this current study), delivering REs in the range of 48 – 55% 

and 47 – 76 % in the first (16 s) and second (70 s, 11 s) EBRT regimes. The 

results demonstrated that longer EBRT (70 s) delivered significantly higher (p 

< 0.05) reductions of odour than the shorter (11 s) EBRT, implying that the 

longer EBRT accommodates the time required for both odorous contaminants 

diffusion transfer from the gas phase into the biofilm, and their subsequent 

biodegradation within the biofilm layer on the media materials, as established 

in the literature. 

 Variation in EBRT does not seem to have any obvious effect on bioaerosol 

particle size distribution for the two EBRT regimes studied. Not only are the 

distributions similar for all outlet concentrations, but also for the inlet samples 

for all groups of bioaerosols investigated. In all cases, the outlet fungal and 
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bacterial particles had 66 – 76% and 78 - 91% of particles in the size range (< 

3.3 µm) which represent significant risks to human health because they can 

penetrate the respiratory system more deeply and even to the lung alveoli 

where gaseous exchange occurs, and so have the potential to trigger infection.  
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Chapter 6 

IMPACT OF BIOFILTER MEDIA MOISTURE CONTENT ON  

SIMULTANEOUS CONTROL OF BIOAEROSOLS AND ODOUR 

6.1  Introduction  

Biofiltration is a microorganism-driven degradation of odorous pollutants in process 

air when passed through a filter bed which harbour microorganisms in a biofilm layer 

(Devinny et al., 1999; Xue et al., 2018). The biofilm layer, which is supported on the 

filter bed material, is a critical element of biofilters as it contains the mass of 

microorganisms required for the degradation of odorous volatile organic compounds 

(VOCs) (Mudliar et al., 2010). Morales et al. (2003) stated that 90 – 95% of the 

biofilm layer is water which is readily available to the inherent microbial population 

growing on the BF media surface. Thus, the successful application of BFs for air 

pollution control is dependent, among other factors, on the maintenance of an 

optimum moisture level within the filter bed, necessary for media microorganisms to 

carry out normal microbial activities within the biofilm layer (Mudliar et al., 2010).  

Malfunctioning of BFs have been attributed to inadequate management of media 

moisture content (MC) (Lith et al., 1997), and some authors have argued that up to 

75% of problems encountered in biofiltration were due to poor humidity control 

(Heslinga, 1994; Morales et al., 1997). Excess MC have been reported to cause a 

reduction of media porosity which inhibits transfer of O2 and pollutants to the biofilm, 

thereby development of anaerobic zones within the media and increasing pressure 

drop across the media bed, ultimately limiting odour biodegradation rate (Delhoménie 

and Heitz, 2005; Mudliar et al., 2010; Rattanapan and Ounsaneha, 2011). Fletcher et 

al. (2014) pointed out that under these conditions, potentially odorous metabolic end 

products similar to those generated by decaying organic matter can be produced. Low 

MC, on the contrary, causes media drying and development of paths which lead to gas 

flow channelling with negative impact on the microflora. After long periods of 

dryness, some media have been reported to become increasingly hydrophobic, and 

hard to re-moisten (Thompson et al., 1996). In an attempt to address the challenge of 

media drying, Sakuma et al. (2009) reported that the installation of a lower irrigation 

system in their biofilter increased toluene elimination by a factor of 1.2 to 1.7 times 

higher than the control setup for a gas residence time of 13.5s. They suggested this 

was due to the high moisture content of that portion which supported a high density 
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of toluene-degraders as compared to the control biofilter. In a study to evaluate 

moisture effects on gas-phase biofilter ammonia removal efficiency, nitrous oxide 

generation and microbial communities, Yang et al. (2014) reported an improved 

ammonia removal efficiency when moisture level was increased from 35 to 55%, and 

also pointed out that further increase to 63% only slightly improved ammonia 

removal.  Several optimum ranges have been suggested in the literature depending on 

media type as follows; 50 – 55% for compost-based media (Goldstein, 1999), 60 – 

80% for chaff of pine and perlite (Chang et al., 2004), 35 – 65% for mixture of 

compost and woodchips (Nicolai and Lefers, 2006b), 40 – 60% for woodchips (Chen 

et al., 2008b) and > 63% for woodchips (Sheridan et al., 2002b).   

However, the process air from these waste management facilities also contain 

bioaerosols (airborne microorganisms and/or their cell components, fragments and 

metabolites) for which there is a growing public concern due to potential health risks 

(Searl, 2008; Menetrez et al., 2009; Hambach et al., 2012; Pearson et al., 2015). 

Unfortunately, the majority of the studies reported in the literature have focussed on 

the impact of media MC on odour and VOC removal and only a few on possible 

reduction of bioaerosols by BFs. The mechanism of odour removal (adsorption, 

oxidation and biodegradation) is entirely different from that of bioaerosols removal 

(impaction), thus it may be that the design and operating parameters vital for odour 

removal may not be as important for bioaerosols removal (Fletcher et al., 2014). 

Ottengraf and Konings (1991) argued that two mechanisms were at play in 

determining bioaerosol emissions from BFs – capture of bioaerosols particles due to 

impingement on media materials and emission of microorganisms from the biofilm 

layer on the media materials. They suggested that these mechanisms were impacted 

by the air velocity, size of biofilter media particle and bioaerosol particle size. Other 

studies focusing of bioaerosols (Sanchez-Monedero et al., 2003), or bioaerosols and 

odour removals (Martens et al., 2001) have mentioned media MC as part of the 

operating parameters of the BFs studied without necessarily investigating the impact 

of media MC on the simultaneous control of both types of air pollutants. Data 

provided by Fletcher et al. (2014) did not provide a clear picture on the impact of 

parameters (such as media MC, BF temperature, absorptivity, process air temperature 

and media porosity) on control of both bioaerosols and odour emissions by BFs; thus, 

they recommended further research to investigate the criticality of  these parameters, 
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in order to refine operational ranges, and firmly define boundary conditions between 

normal and abnormal BF operation. 

Thus, it is obvious that data is scarce on the effect of media MC on simultaneous 

biofiltration of airborne microbial and odorous chemical contaminants emitted from 

these facilities. This objective investigated the impact of BF media MC on the 

mitigation of bioaerosol and odour emissions using the MRF as the source of 

contaminated process air. The sub-objectives of this section of the study included (i) 

to assess the variability of the inlet concentrations of bioaerosols and odour within the 

period (ii) to assess the performance of two levels of media MC – 10 to 40% and 40 

to 70% – in terms of bioaerosols and odour REs, bioaerosol load removal (L) and 

bioaerosol removal rate (R) and (iii) to assess the effects of media MC on particle size 

distribution between inlet and outlet samples of all BFs.  

6.2  Biofilter operation to evaluate performance 

A general discussion of the operation of the biofilters has been provided in section 

3.4. However, this section presents a more detailed information on how the biofilters 

were operated, maintained and assessed, and the data analyses that were carried out 

to achieve the specific objectives of this particular section of the study. 

 

6.2.1  Biofilter Operation 

A total of four sampling visits were completed for this study - 20 March, 27 March, 3 

April and 10 April, 2017 (Appendix C). Prior to the current study, the BF system had 

been in operation for 10 months (May 2016 to February 2017) during which the 

impact of EBRT and inlet concentrations on biofiltration were tested. Before sampling 

commenced, the media in each reactor was allowed to stabilise for two weeks after 

the end of the previous experiments as recommended in literature (Cabrol et al., 2012; 

Ralebitso-Senior et al., 2012). For this study, the woodchips used as the median were 

derived from previous experiments testing BF performance at the same location on 

the site, operated for 10 months prior to the current study. Laboratory tests to 

determine media characteristics (as described in section 3.3.3) indicated that the 

characteristics remained fairly constant as shown in table 5.1.  

The BFs were randomly allocated to the media MC experimental groups (Coolican, 

2017), such that BF1 and BF2 operated with a media MC range of 40 – 70% while 
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BF3 and BF4 operated with a media MC range of  10 – 40%. Irrigation was controlled 

by the look and feel method suggested by Janni et al. (2011) whereby moisture levels 

were monitored to ensure dampness across ½ to ¾ way through the media depth. 

Water supply was varied among the BFs such that less was supplied to BF3 and BF4 

to achieve the desired range (10 – 40%).  Throughout the study period, the airflow 

rates into each biofilter were regulated by means of 50 mm ball valves to ensure that 

all the biofilters were maintained at an average empty bed residence time (EBRT) of 

16 s (p > 0.05) corresponding to an average airflow rate of 681 L min-1. In order to 

avoid media compaction and clogging, which could lead to the formation of 

preferential flow paths for air, the media in each BF was mixed with a shovel once 

every two weeks on days other than the sampling days (Sanchez-Monedero et al., 

2003).  

6.2.2  Data Analysis 

For this study, biofilter performance assessments were done according to section 

5.2.2. All statistics were carried out on original bioaerosol and odour concentrations 

rather than the calculated RE. For bioaerosols, the data set contained outliers and these 

were included in the analysis because attempts in transforming or using alternative 

tests (e.g. Kruskal-Wallis H test) still showed these outliers. The normality of the 

bioaerosol concentrations was assessed using the Shapiro-Wilk test. Data for analysis 

was considered as mean and standard deviation. Differences in mean bioaerosol 

concentration for the background, BF inlet and all BF outlets were assessed using the 

Welch ANOVA, regardless of whether or not the assumption of normality was met. 

In all cases, the assumption of homogeneity of variances was violated, as assessed by 

Levene’s test for equality of variances (p < 0.05) for all groups of bioaerosols 

assessed. For odour, there were no outliers in the data set and normality of odour 

concentrations was assessed using the Shapiro-Wilk test. Differences in mean odour 

concentration for the BF inlet and all BF outlets were assessed using ANOVA. There 

was homogeneity of variance as assessed by Levene’s test for equality of variances (p 

> 0.05). 
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6.3  Results and Discussion  

6.3.1  Operating Conditions 

A summary of the operating conditions during the sampling visit is presented in table 

6.1. Average media MCs of 60%, 60%, 23% and 19% were measured in BF1, BF2, 

BF3 and BF4, respectively, in order to fulfil the objective of this study. The 

temperature at the central plenum was taken as the inlet temperature, and varied from 

visit to visit within 14.7ºC to 18.5ºC; well within the range recommended by Fletcher 

et al. (2014) for inlet air temperature. The media temperature also varied between the 

BFs and from visit to visit with a mean of 15.4ºC, 15.8ºC, 16.4ºC and 16.7ºC for BF1, 

BF2, BF3 and BF4, respectively. No adjustments were made to alter the media 

temperature especially as these were within the optimal levels (10 to 40ºC) 

recommended for biological treatment systems (Schnelle and Brown, 2002). Clark et 

al. (2004), in a study to assess the impact of media temperature and supplemental 

nutrients in the performance of a pilot-scale BF, reported that differences  in  treatment  

temperature (range of 15ºC to 30ºC)   had  no  apparent  influence on odour removal 

(p = 0.05). The impact of waste hall temperature was not considered as Liu et al. 

(2017) observed that there was no obvious influence of indoor temperature on the 

performance of biofilters in their study. The EBRT was adjusted to 16 s in all BFs, 

giving an average flow rate of 681 L min-1 in each BF. Devinny et al. (1999) 

recommended EBRT range of 15 – 60 s for BFs used for waste air treatment. These 

pilot-scale BFs were operated without any supplementary attempts to alter the pH 

which were well within the recommended range (6.5 – 8) for most of the operation 

(Wani et al., 1997; Schnelle and Brown, 2002) 

Table 6. 1: Operating conditions of the biofilters (BF) during the study period 

Parameter BF1* BF2* BF3** BF4** 

Inlet air 

temperature (ºC) 

14.7 – 18.5 14.7 – 18.5 14.7 – 18.5 14.7 – 18.5 

Outlet air 

temperature (ºC) 

13.8 – 16.6 13.3 – 17.7 13.7 – 17.5 13.0 – 17.4 

Media temperature 

(ºC) 

12.9 – 17.5 12.2 – 17.2 15.5 – 17.9 15.0 – 18.0 

Mean EBRT (s) 16 16 16 16 

Mean Airflow rate 

(L min-1) 

681 681 681 681 

Leachate pH range 6.18 – 7.01 6.29 – 7.00 6.41 – 7.12 6.64 – 7.15 

Media moisture 

content (%) 

46 - 69 52 - 70 12 - 38 13 - 31 

* with media MC range of 40 – 70%; ** with media MC range of 10 – 40% 
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6.3.2  Inlet concentrations of bioaerosols and odour 

Figure 6.1 shows the inlet concentrations of the four bioaerosol groups and odour 

concentrations (mean and standard deviation) during the four sampling visits. Inlet 

concentrations varied from visit to visit, ranging from 9.2 × 103 to 1.9 × 104 cfu m-3 

for A. fumigatus, 1.3 × 104 to 2.5 × 104 cfu m-3 for total fungi, 1.1 × 104 to 4.3 × 104 

cfu m-3 for total mesophilic bacteria, 1.4 × 104 to 2.2 × 104 cfu m-3 for Gram negative 

bacteria and 179 to 489 OUE m-3 for odour. This observation is consistent with the 

observation of Fletcher et al. (2014) who reported that concentrations of bioaerosols 

and odour in the process air of the full-scale facilities in their study varied from site 

to site and between sampling visits. They attributed these variations to the complex 

interactions between the specific process operating conditions, the types of waste 

being processed and the configuration of the air ventilation system installed on the 

sites. The volume of waste processed at the tipping area was greatest on visit 4, 

requiring two front-end loaders (usually one in operation at the tipping area) and one 

dinosaurus shredder to move and clear out the waste materials. This may have had a 

bearing on the highest concentrations measured for A. fumigatus (1.9 × 104 ± 17198 

cfu m-3), total fungi (2.5 × 104 ± 21206 cfu m-3) and total mesophilic bacteria (4.3 × 

104 ± 14005 cfu m-3) for the same visit. Searl (2008) opined that there was increased 

waste handling activities were associated with increased bioaerosol exposures. 

However, this trend was not observed with Gram negative bacteria and odour (which 

was least) on visit 4. Overall, the concentration of bacteria (especially total mesophilic 

bacteria) in the inlet air were higher than the concentrations of the fungi. Fletcher et 

al. (2014) also made this observation, noting that the concentrations of bacteria (total 

and Gram negative) in the process air were significantly higher than those of A. 

fumigatus. As with the previous study (Chapter 5), the inlet odour concentrations were 

considered relatively low especially for this particular MRF when compared to 

concentrations reported by an independent consultant (Gair, 2013). This difference is 

thought to be due to the same reasons as outlined in section 5.3.2.  

A Pearson's product-moment correlation was run to assess the relationship between 

the four groups of bioaerosols and odour (Table 6.2). All correlations were not 

statistically significant (p < 0.05). Inlet odour concentrations showed negative 

correlations with all groups of bioaerosols – A. fumigatus (-0.690), total fungi (-

0.390), total mesophilic bacteria (-0.836) and Gram negative bacteria (-0.129). 
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Figure 6. 1: Inlet concentrations of (a) A. fumigatus, (b) total fungi, (c) total mesophilic bacteria, (d) Gram negative bacteria, and (e) odour 

measured during the four sampling visits (n = 2). 1 – Visit 1 (20/03/17); 2 – Visit 2 (27/03/17); 3 – Visit 3 (03/04/17); 4 – Visit 4 (10/04/17). 
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Comparing the bioaerosol groups, A. fumigatus showed a strong positive correlation 

with total fungi and with mesophilic bacteria, and a weak negative correlation with 

Gram negative. Gram negative bacteria also indicated a moderate positive correlation 

with total mesophilic bacteria. However, due to the limited samples collected, it 

cannot be concluded whether or not these correlations are substantial. These findings 

are contrary to data reported by Fletcher et al. (2014) who found no relationship 

(positive or negative) between the concentrations of A. fumigatus, total bacteria or 

Gram negative bacteria in the process air of the full-scale biowaste treatment facilities 

investigated in their study. 

Table 6. 2: Pearson correlations for the concentrations of the four groups of 

bioaerosols and odour 

 A. fumigatus Total 

fungi 

Total 

mesophilic 

bacteria 

Gram 

negative 

bacteria 

Total fungi .934    

Total mesophilic bacteria .686 .496   

Gram negative bacteria -.155 -.203 .550  

Odour -.690 -.390 -.836 -.129 

 

6.3.3 Effect of media moisture content on bioaerosol and odour 
concentration reduction 

Figure 6.2 shows the boxplots (left) of the background (bioaerosols only), inlet and 

outlet concentrations of bioaerosols and odour from the four BFs. It also presents the 

corresponding REs (right) achieved by the BFs; computed using the mean values of 

the inlet and outlet concentrations. Contrary to the study by Tymczyna et al. (2007) 

who reported no detection of bioaerosols for two of the three media materials 

investigated, bioaerosols were detected in the outlet air of all BF assessed in this study. 

The results of this study showed that all pilot-scale BFs in this study achieved some 

odour reduction, and that odour concentrations emitted by each pilot-scale BF varied 

between sampling visits.  BF1 and BF2, operated with a media MC of 40 – 70%, 

delivered higher mean odour removals of 63% and 44%, respectively. The odour REs 

of BF3 and BF4 (both operated at media MC 10 – 40%) were 34% and 42%, 

respectively. One way ANOVA followed by Tukey post hoc analysis indicated 

significant differences (p < 0.05) between the inlet concentration (315 OUE m-3) and 

the outlet concentration of BF1 (116 OUE m-3), BF2 (175 OUE m-3)  and BF4 (181 

OUE m-3). There was no significant difference (p = 0.098) between the inlet and outlet 
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concentrations of BF3 (208 OUE m-3). Even though the outlet concentrations of BF1 

and BF2 showed lower outlet concentrations, these were not significantly different (p 

> 0.05) from the outlet concentrations of BF3 and BF4. Also, there were no significant 

differences (p > 0.05) between BF1 and BF2 as well as between BF3 and BF4. As 

with the upper media MC range in this study, Leson and Winer (1991) recommended 

that the media MC of BFs should be maintained at 40 – 60% using inlet air humidifiers 

or spray irrigation at the BF surface, and that non-optimum levels may cause the media 

to dry out and may result in breakthroughs of incompletely treated process air. These 

agree with the study by Pinnette et al. (1994) who reported loss of biological 

degradation of odorous compounds when MC was below 40%. Also, Hong and Park 

(2004) suggested that BFs operated most effectively when media MC was within a 

slightly higher range of 50 to 70%. Ottengraf and Van den Oever (1983) cited in 

Fletcher et al. (2014) maintained their BFs at MC range of 50 to 70% and reported 

that the packing media lost its microbial activity at lower water levels, while higher 

levels promoted the development of anaerobic zones within the bed. 

Generally, all BFs were able to achieve one log unit reduction in the concentration of 

fungi (except BF3 which showed one log unit higher for total fungi). Outlet 

concentration of A. fumigatus ranged from 1.2 × 103 to 3.8 × 103 cfu m-3 for BF1, 1.3 

× 103 to 2.8 × 103 cfu m-3 for BF2, 2.7 × 103 to 8.7 × 103 cfu m-3 for BF3, and 1.8 × 

103 to 4.7 × 103 cfu m-3 for BF4. These translated to mean A. fumigatus REs of 79%, 

85%, 65% and 78% for BF1, BF2, BF3 and BF4, respectively, from a mean inlet 

concentration of 1.2 × 104 cfu m-3. For total fungi, the outlet concentrations ranged 

from 1.7 × 103 to 5.9 × 103 cfu m-3 for BF1, 2.0 × 103 to 4.5 × 103 cfu m-3 for BF2, 4.0 

× 103 to 1.1 × 104 cfu m-3 for BF3, and 2.6 × 103 to 7.8 × 103 cfu m-3 for BF4 giving 

mean REs of 76%, 83%, 67% and 76%, respectively. 

The outlet concentrations of bacteria were slighter higher than fungi, and were in the 

range of 103 to 104 cfu m-3. For total mesophilic bacteria, the achieved mean REs were 

71% (outlet concentration range: 2.3 × 103 to 1.7 × 104 cfu m-3) for BF1, 76% (outlet 

concentration range: 1.6 × 103 to 1.2 × 104 cfu m-3) for BF2, 74% (outlet concentration 

range: 2.2 × 103 to 1.9 × 104 cfu m-3) for BF3, and 76% (outlet concentration range: 

1.6 × 103 to 1.4 × 104 cfu m-3) for BF4. Mean REs achieved for Gram negative bacteria 

were 68% (outlet concentration range: 1.8 × 103 to 1.3 × 104 cfu m-3) for BF1, 67% 

(outlet concentration range: 1.8 × 103 to 1.6 × 104 cfu m-3) for BF2, 66% (outlet 

concentration range: 3.9 × 103 to 8.2 × 103 cfu m-3) for BF3, and 77% (outlet 
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concentration range: 1.7 × 103 to 9.7 × 103 cfu m-3) for BF4. Welch ANOVA followed 

by Games Howell post hoc test indicated that the inlet bioaerosols concentrations were 

significantly (p < 0.05) higher than the outlet concentrations for all groups of 

bioaerosols assessed. 

 

Figure 6. 2: Inlet and outlet bioaerosols and odour concentrations n = 8 (left); and 

removal efficiencies (right) achieved by the biofilters – BF1 & BF2 at MC of 

40 – 70%; BF3 & BF4 at MC of 10 – 40%. Removals computed from mean 

concentrations. BG = Background; BF1 = Biofilter 1, BF2 = Biofilter 2; BF3 = 

Biofilter 3; BF4 = Biofilter 4. 
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However, there were no significant differences (p > 0.05) among the outlet 

concentrations of all groups of bioaerosols. Nevertheless, the mean A. fumigatus outlet 

concentrations of BF3 (4.1 × 103 cfu m-3) and BF4 (2.7 × 103 cfu m-3) were higher 

than those of BF1 (2.6 × 103 cfu m-3) and BF2 (1.9 × 103 cfu m-3). This trend was also 

observed for total fungi with 4.0 × 103 cfu m-3, 2.9 × 103 cfu m-3, 5.6 × 103 cfu m-3 

and 4.1 × 103 cfu m-3 for BF1, BF2, BF3 and BF4, respectively. This trend did not 

appear to be the case for the bacteria (both total mesophilic and Gram negative 

bacteria). With the exception of BF4 which indicated mean RE of 77% for Gram 

negative, all other BFs achieved 71 – 76% for total mesophilic bacteria and 66 – 68% 

for Gram negative bacteria.  

Table 6.3 summarises the mean bioaerosol load removal, L and mean removal rate, R, 

for all BFs. Load removal was very similar among all BFs evaluated, and was in the 

range of 104 cfu m-3 for all groups of bioaerosol assessed, except A. fumigatus which 

as one log unit lower. The removal rate (R) was also similar among the four BFs, 

typically in the range of 106 cfu m-3 h-1 with total mesophilic bacteria showing the 

maximum values for this parameter. Although no direct comments were made, data 

provided by Sanchez-Monedero et al. (2003) showed that all BFs in their study, with 

media MC not less than 50%, achieved similar L of  4.7 × 103 to 2.2 × 105 cfu m-3 for 

A. fumigatus and 9.0 × 102 to 2.4 × 105 cfu m-3 for mesophilic bacteria (from an inlet 

concentration in the range of 104 – 106 cfu m-3).  R was also similar for both groups 

of bioaerosols in their study. Thus, it may be that the degree of dampness of a media 

may not confer any obvious advantage in terms of the media capacity to trap 

bioaerosol particles (especially as both low and high media MC in this study achieved 

similar L and R), and that the observation may just be the interplay of forces which 

effect particle capture (i.e. inertial deposition, diffusional (Brownian) deposition 

and/or flow line interception) as suggested by Ottengraf and Konings (1991). 

Sanchez-Monedero et al. (2003) further pointed to this fact by arguing that R 

depended more on L rather than on biofilter design (and in this case media MC) which 

could be more important with high inlet bioaerosol concentration. 

Hong and Park (2004) argued that woodchips have a porous structure which allows 

for air movement, however that this also makes it a poor material for odour 

biofiltration. This suggests that the poor odour performance of BF3 and BF4 may be 

the combined effect of this poor biofiltration capability of woodchips and the low 

media MC which inhibits microbial degradation of odorous pollutants in the process; 
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while at the same time providing surfaces for bioaerosols particles impaction within 

the bed. 

Table 6. 3: Biofilter performance in terms of mean bioaerosol load removal and 

removal rate 

 Load removal, L  

(cfu m-3)* 

Removal rate, R  

(cfu m-3 h-1)** 

A. fumigatus 

BF1 9.55E+03 2.13E+06 

BF2 1.03E+04 2.25E+06 

BF3 7.78E+03 1.75E+06 

BF4 9.45E+03 2.08E+06 

Total fungi 

BF1 1.28E+04 2.88E+06 

BF2 1.39E+04 3.15E+06 

BF3 1.13E+04 2.50E+06 

BF4 1.28E+04 2.88E+06 

Total mesophilic bacteria 

BF1 1.99E+04 4.50E+06 

BF2 2.15E+04 4.85E+06 

BF3 2.10E+04 4.75E+06 

BF4 2.15E+04 4.85E+06 

Gram negative bacteria 

BF1 1.25E+04 2.83E+06 

BF2 1.25E+04 2.80E+06 

BF3 1.21E+04 2.78E+06 

BF4 1.43E+04 3.20E+06 

* m3 of inlet air; ** m3 of media bed volume 

 

6.3.4 Effect of media moisture content on bioaerosol particle size 
distribution 

Apart from the interest on achieving simultaneous reduction of odour and bioaerosols 

concentration, it was also important to assess the impact of media MC on particle size 

distribution between inlet and outlet air samples. This interest is because of the 

relationship of between particle size and lung penetration. Fröhlich-Nowoisky et al. 

(2016) argued that the inhalation and deposition of bioaerosols in various regions of 

the human respiratory tract may cause allergic or toxic responses in humans, and that 

particle deposition is a function of particle properties, airway morphology and 

breathing characteristics. The six stages of the Andersen sampler used for this study 

indicate the location where inhaled bioaerosol particles will be deposited once they 

penetrate the human respiratory tract (Tisch Environmental Inc., 2015).  Stages 1 and 

2 simulate nasopharyngeal deposition and collect particles with aerodynamic diameter 
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> 4.7 µm (inhalable fraction); stages 3 and 4 simulate tracheobronchial deposition and 

collect bioaerosol particles with aerodynamic diameter 2.1 to 4.7 µm (thoracic 

fraction); while stages 5 and 6 simulate pulmonary or alveolar deposition, collecting 

< 2.1 µm (respirable fraction) (TSI Incorporated, 2013; Thomas, 2013).  

Figure 6.3 shows a comparison of bioaerosol particle size distribution for the 

background, inlet and outlets of the four pilot-scale BFs assessed in this study. The 

size distributions were computed by considering all samples taken at the various 

points indicated throughout the four sampling visits (Table C.2). The focal size was 

3.3 µm because this differentiates particles which exist as single cells from those 

which exist as conglomerates of cells (Ferguson et al., 2017). Generally, the inlet 

samples of A. fumigatus and total fungi had approximately 39% of the particles less 

than 3.3 µm while total mesophilic bacteria and Gram negative bacteria had 

approximately 56% and 51% of particles, respectively, in this size range. The size 

distribution of A. fumigatus and total fungi particles in the outlet samples of all BFs 

was similar; with 64% (BF1), 64% (BF2), 68% (BF3), 68% (BF4) of A. fumigatus 

particles, and 60% (BF1), 63% (BF2), 65% (BF3), 64% (BF4) of total fungi particles 

in the range < 3.3 µm. For both fungal groups assessed, the maximum proportion of 

particles (43 – 50%) collected at stage 4 (corresponding to aerodynamic diameter 2.1 

to 3.3 µm); thus, agreeing with the findings of Sanchez-Monedero et al. (2003) who 

also reported maximum collection of A. fumigatus particles at stage 4 of the six stage 

Andersen sampler used in their study. 

With regards to the bacteria, outlet air samples from all BFs were also similar and 

indicated a much higher proportion of particles in the range less than 3.3 µm. BF1, 

BF2, BF3 and BF4 had approximately 75%, 79%, 75% and 75%, respectively, of total 

mesophilic bacteria particles in this reference range. Outlet samples of BF1, BF2, BF3 

and BF4 also indicated approximately 78%, 80%, 73% and 85%, respectively, of 

Gram negative bacteria particles <3.3 µm. As with the study of Sanchez-Monedero et 

al. (2003), maximum bacteria collection was on stage 5 (corresponding to an 

aerodynamic diameter 1.1 to 2.1 µm) containing 31 – 40% of total mesophilic bacteria 

particles and 35 – 51% of Gram negative bacteria particles.    
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Figure 6. 3: Comparison of bioaerosol particle size distribution for samples obtained at the background, inlet and outlet of all four biofilters (Data 

based on all four visits). BF1 and BF2 operated with media moisture range of 40 – 70% while BF3 and BF4 operated with media moisture 

range of 10 – 40%. BG = Background; BF – Biofilter. 
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Despite the high REs measured in this study, the outlet concentrations for all groups 

of bioaerosols were still in the range of 103 to 104 cfu m-3 which is higher than the 

EA’s precautionary guidance of 500 cfu m-3, 1000 cfu m-3  and 300 cfu m-3 for 

Aspergillus fumigatus, total bacteria and Gram negative bacteria, respectively 

(Environment  Agency, 2010).  This implies that these levels may still be of health 

concern and especially because they are composed of high proportions of particles 

that can penetrate deep into the lower respiratory tract where they can cause infectivity 

(Andersen, 1958; Fröhlich-Nowoisky et al., 2016; Ferguson et al., 2017). 

Overall, there are differences in the particle size composition between the inlet and 

outlet air samples in this study. However, not only are the outlet bioaerosols 

concentrations similar among the pilot-scale BFs studied, their compositions are also 

similar, suggesting that media dampness may only be vital for odour removal and not 

so much for bioaerosols removal. The high composition of small particles in the outlet 

air could possibly result from the filter bed preferentially trapping the larger sized 

particles from the gas flow, and/or these may just be the size range emitted from the 

biofilters (Ottengraf and Konings, 1991; Sanchez-Monedero et al., 2003). It may also 

be that the larger particles, which are conglomerates, become disintegrated upon 

impaction on the media particles resulting in smaller sized particles which remain in 

the airstream and become detected at the outlet (Jankowska et al., 2000; Miaskiewicz-

Peska and Lebkowska, 2012). 

6.4  Section Summary  

 Inlet concentrations of the four bioaerosol groups and odour concentrations 

varied from visit to visit possibly due to the complex interactions between the 

specific process operating conditions, the types and amount of waste being 

processed and the configuration of the air ventilation system installed on the 

sites. 

 The two groups of BFs studied achieved removals of both odour and 

bioaerosols. Although not statistically significant (p > 0.05), differences did 

exist in odour removal performance between the two groups, with BF1 and 

BF2 operated with media MC of 40 – 70% consistently showing better 

removals (odour RE range of 44 – 63%) than BF3 and BF4 operating with 

media MC of 10 – 40%  (with odour RE range of 34 – 42%). 
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 There appears to be no media MC dependent differences (p > 0.05) in 

bioaerosol reductions especially as the outlet concentrations from all BFs were 

in the range of 103 – 104 cfu m-3, with REs of 65 – 85%, 67 – 83%, 71 – 76% 

and 66 – 77% achieved for A. fumigatus, total fungi, total mesophilic bacteria 

and Gram negative bacteria, respectively. 

 Media MC also does not appear to have any obvious effect on bioaerosol 

particle size distribution between the two groups of BFs studied. Outlet 

samples had similar composition; all BF outlet air samples had 64 – 68% of 

A. fumigatus, 60 – 65% of total fungi, 75 – 79% of total mesophilic bacteria 

and 73 – 85% of Gram negative bacteria particles in the range less than 3.3 

µm. These further suggest that the media MC may only be vital for odour 

reduction, and not so much for bioaerosols reduction. 
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Chapter 7 

IMPACT OF BIOFILTER MEDIA DEPTH ON BIOAEROSOL 

CONTROL IN A MATERIALS RECOVERY FACILITY 

7.1  Introduction  

The successful application of biofilters as an air pollution control system for waste 

management and animal housing facilities is dependent on certain key operating 

parameters. Parameters such as media types (Tymczyna et al., 2007), empty bed 

residence time(EBRT) (Nicolai and Janni, 1999), moisture content (Nicolai and Janni, 

2001a; Chen et al., 2009; Liu et al., 2017), media porosity (Nicolai and Janni, 2001a), 

pH (Barzgar et al., 2017), inlet concentration, temperature (Yoon and Park, 2002) and 

media depth (MD) (Liu et al., 2017) have all been shown to play keys roles in biofilter 

performance in these facilities.  

The role of MD in the control of odour and odorous volatile organic compounds 

emissions has been well studied. In a study to investigate bioifltration in a pig unit, 

Sheridan et al. (2002a) showed that a 0.5 m depth biofilter containing >20 mm 

woodchips as a filter material could deliver odour removal efficiencies (REs) of 85%, 

92.5% and 91.3% when the moisture content (wet basis) was maintained at 64 ± 4%, 

69 ± 4%, and 69 ± 4%, respectively. The same biofilter also achieved ammonia REs 

of 73%, 85% and 87% at the same moisture contents, respectively. Lim et al. (2012) 

argued that higher MD achieved higher REs for H2S and NH3; however, they also 

noted that doubling the media depth from 0.127 m to 0.254 m did not necessarily 

double the REs for these gases. Furthermore, Kafle et al. (2015) investigated the 

effectiveness of two down-flow wood bark-based biofilters in mitigating odour, NH3 

and H2S from a confined swine nursery barn, and concluded that for successful 

mitigation of these gases a minimum MD of 0.254 m and EBRT of 2 to 3 s are 

required. They further suggested that for a MD of 0.127 m, a high moisture content 

and EBRT greater than 3 s are required to achieve high REs.  

There is a general lack of data on the impact of biofilter MD in controlling bioaerosol 

emissions. A study by Tymczyna et al. (2007) evaluated the impact of three biofilter 

media types on the removal of bioaerosols from the ventilation system exhaust from 

a chicken hatchery. The biofilters had depths ranging from 1.2 to 1.4 m. The study 

concluded that all biofilter media were highly effective in removing Gram negative 

bacteria (RE >99%), moderately effective in removing dust (RE = 81.6 – 87.4%), and 
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only slightly effective in removing endotoxins (RE = 11.1 – 51.5%). It is still unclear 

how MD impacts on biofiltration of airborne microbial contaminants emitted from 

waste management facilities.  

One of the objectives of this study was to investigate the impact of biofilter MD on 

the mitigation of bioaerosol emissions using a materials recovery facility (MRF) as 

the source of the contaminated process air. The sub-objectives included (i) to assess 

the variability of the inlet concentrations (ii) to assess the performance of two media 

depths – 0.5 m and 0.25 m – in terms of REs, bioaerosol load removal (L) and 

Bioaerosol Removal Rate (R) and their effects on the particle size distribution between 

inlet and outlet samples. The two media depths were selected to reflect levels 

frequently reported in literature and because these were technically feasible for this 

pilot study.  

7.2  Biofilter operation to evaluate performance 

Section 3.4 presents a general discussion of the operation of the biofilters throughout 

the study. This section presents a more detailed information on how the biofilters were 

operated and maintained, and the data analyses that were conducted to fulfil the 

specific objectives of this particular study.  

7.2.1  Biofilter Operation 

A total of four sampling visits were completed - May 2, May 8, May 15 and May 22 

(Appendix D). Prior to the current study, the BF system had been in operation for a 

year (May 2016 to April 2017) during which the impacts of EBRT, media moisture 

content and inlet concentrations on biofiltration were tested. Before sampling 

commenced, the media in each reactor was allowed to stabilise for three weeks after 

the end of the previous experiments as recommended in literature (Cabrol et al., 2012; 

Ralebitso-Senior et al., 2012). For this study, the woodchips used as the media were 

derived from previous experiments testing BF performance at the same location on 

the site, operated for a year prior to the current study. Laboratory tests to determine 

media characteristics (as described in section 3.3.3) indicated that they remained fairly 

constant as shown in table 5.1.  

The biofilters (Figure 7.1) were randomly allocated to the media depth experimental 

groups (Coolican, 2017), such that BF1 and BF2 operated with a media depth of 0.5 
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m (total media volume of 0.1815 m3 per reactor) while BF3 and BF4 operated with a 

media depth of 0.25 m (total media volume of 0.09075 m3 per reactor). The air flow 

rates into each biofilter were adjusted using 50 mm ball valves to ensure that all the 

biofilters were maintained at a mean EBRT of approximately 16 s (p > 0.05) 

corresponding to air flow rates in the range of 668.1 to 684.9 L min-1 for BF1 and 

BF2, and 336.1 to 342.5 L min-1 for BF3 and BF4. Throughout the study period, the 

moisture contents were maintained within the range of 40 – 60%. 

 

Figure 7. 1: Schematic of the pilot-scale biofiltration system (a) with 0.5 m media 

depth, and (b) with 0.25 m media depth (not drawn to scale). 

 
The stabilisation (acclimation) period was 3 weeks (10 April to 2 May) at the end of 

the previous experiments. During this period the biofilters were adequately monitored 

and maintained to ensure the media moisture contents were restored to the range of 

40 – 60% and the centrifugal fan was not clogged, thus ensuring continuous feed of 

air into the pilot-biofilters which were in continuous operation from 10 April to 2 

May, 2017. The biofilters were monitored twice a week during which visual 

inspections were done to ensure the filter beds were uniform within the two groups 

for optimal performance. 
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7.2.2  Data Analysis 

Comparison of inlet versus outlet concentrations of both 0.5 m and 0.25 m media 

depths BFs as well as outlet concentrations of 0.5 m depth BFs versus outlet 

concentrations of 0.25 m depth BFs were conducted using paired t-test and a 

probability of 0.05 or less was considered significant. 

7.3  Results and Discussion 

7.3.1  Operating Conditions 

Table 7.1 provides a summary of the operating conditions during each sampling visit. 

The measured temperature within the waste hall varied between days with the highest 

of 20.7ºC measured on the fourth sampling visit. The temperature at the central 

plenum was taken as the inlet. The impact of waste hall temperature was not 

considered as Liu et al. (2017) observed that there was no obvious influence of indoor 

temperature on the performance of biofilters in their study. Although, some authors 

have acknowledged the difficulty with achieving homogenous moisture distribution 

in biofilter media (Akdeniz et al., 2011; Lim et al., 2012; Liu et al., 2017), media 

moisture content in this study was maintained within the 40 – 60% range (wet basis) 

as recommended for optimum biofilter performance (Lim et al., 2012). 

Biofilters are a method of biological air treatment systems that utilise populations of 

microorganisms to convert certain organic and inorganic pollutants into compounds 

and/or forms that are less toxic and/or odourless. These microorganisms thrive at a 

pH range of 6.5-8 which must be maintained within the internal environment of the 

biofilter (Wani et al., 1997; Schnelle and Brown, 2002). However, to evaluate their 

performance for bioaerosol control, in this study the biofilters were operated without 

any supplementary attempts to alter the pH which was well within the recommended 

range. Also, no adjustments were made to the media temperature especially as these 

were within the optimal levels (10 – 40 ºC) recommended for biological treatment 

systems (Schnelle and Brown, 2002).  
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Table 7. 1: Operating conditions of the biofilters (BF) during the study period 

 

Parameter 

Visit 1 Visit 2 Visit 3 Visit 4 

0.5 m  0.25 m  0.5 m  0.25 m  0.5 m  0.25 m  0.5 m  0.25 m  

Mean temperature in waste hall (ºC) 16.9 16.9 14.8 14.8 15.7 15.7 20.7 20.7 

Mean inlet air temperature (ºC) 18.4 18.4 16.6 16.6 18.5 18.5 22.0 22.0 

Mean outlet air temperature (ºC) 16.9 17.0 14.0 14.5 16.8 16.8 21.0 21.1 

Mean media temperature (ºC) 16.8 16.1 14.9 13.6 18.1 17.7 20.3 21.0 

Mean EBRT (s) 16.2 16.0 15.9 16.2 16.0 16.1 16.3 15.9 

Mean Airflow rate (L min-1) 672.2 340.3 684.9 336.1 680.6 338.2 668.1 342.5 

Leachate pH range 6.60 – 6.64 6.84 – 6.85 7.02 – 7.14 7.14 – 7.28 7.24 – 7.39 7.16 – 7.28 7.27 – 7.29 7.19 -7.28 

Media moisture content (%) 41 - 52 41 - 46 41 -55 42 -51 43 - 57 44 - 48 41 - 59 45 - 48 
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7.3.2  Inlet concentrations of bioaerosols 

There were variabilities in the inlet concentrations measured on site from visit to visit, 

and this is consistent with the findings of Fletcher et al. (2014) for full scale biofilters. 

Generally, bacteria concentrations were higher than fungi concentration. The mean 

inlet concentrations ± standard errors (calculated using the all values for the four 

sampling visits) were 3.6 × 104 ± 8069 cfu m-3 for A. fumigatus, 4.8 × 104 ± 11729 cfu 

m-3 for total fungi, 7.8 × 104 ± 18475 cfu m-3 for total mesophilic bacteria, and 3.3 × 

104 ± 5720 cfu m-3 for Gram negative bacteria as shown in Figure 7.2. Searl (2008) 

argued that bioaerosol emissions from waste processes vary over time in composition 

and in release rate even at the exact same location, and that even parallel comparisons 

of sampling devices may demonstrate considerable variability in performance, 

particularly in respect to viable microorganisms which may be destroyed to greater or 

lesser degrees by different sampling devices and protocols.  

For enclosed composting facilities where waste reception is handled within a hall 

where material is accepted, processed and composted within vessels, bioaerosol 

concentrations sometimes exceed 107-8 cfu m-3 (Schlegelmilch et al., 2005a). 

However, MRFs such as this are known to be fairly clean relative to other type of 

waste management facilities, and do not have the levels of organic dust and odour 

found in facilities such as in-vessel composting (IVC) (Surrey County Council, 2017). 

Stagg et al. (2013) confirmed that concentrations of bacteria and fungi within MRFs 

may be between 104 – 105 cfu m-3, and occasionally may measure as high as >105 cfu 

m-3 similar to levels reported for animal housing facilities, with identified species 

including A. fumigatus, certain bacteria and endotoxins, agents which are known to 

have harmful effects on human health. The inlet concentration range reported by Stagg 

et al. (2013) is in agreement with the findings of this study. Provided there is adequate 

supply of nutrients and water, microorganisms are known to grow on any materials 

where they aid to breakdown organic materials (Frederickson et al., 2013). This 

facility receives large volumes of household and municipal waste most of which are 

delivered as black bags containing items such as plastic bags, plastic films, fruit nets, 

animal waste and food wastes. Some of these waste may have been stored for longer 

periods allowing time for growth of microorganisms which become airborne during 

waste handling (Gladding and Gwyther, 2017). 
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Figure 7. 2: Comparison of mean bioaerosol concentrations at the inlet and outlet of 0.5 m and 0.25 m media depth biofilters; (a) A. fumigatus, (b) Total 

fungi, (c) Total mesophilic bacteria, and (d) Gram negative bacteria. (Mean values indicated in figures; n = 8). 
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Fletcher et al. (2014) suggested that there may be no relationship between waste type 

or treatment system and the levels of bioaerosols emitted, and that the concentration 

emitted may be due to a complex mix of specific activities being carried out and the 

waste characteristics at the time of sampling. Thus, the combination of advanced 

mechanical separation techniques and manual sorting in this MRF agitate these waste 

leading to aerosolisation of these microorganisms.  

7.3.3  Media depth effects on bioaerosol removals and particle 
size distribution 

An assessment of the outlet concentrations from the two groups of biofilters showed 

that there were no statistically significant differences between the outlet 

concentrations of BF1 and BF2, and between BF3 and BF4 for all the groups of 

bioaerosols. There were also no statistically significant differences (p > 0.05) when 

comparing BF1 to BF3 and BF4 as well as when comparing BF2 to BF3 and BF4. 

Thus, the mean of the two BFs in each group were used for further analysis. Figure 

7.2 also shows the mean outlet bioaerosol concentrations achieved by the 0.5 m and 

0.25 m depth BFs for the study. For the 0.5 m BFs, the mean concentrations emitted 

were 6.6 × 103 ± 790 cfu m-3 for A. fumigatus, 8.8 × 103 ± 998 cfu m-3 for total fungi, 

1.8 × 104 ± 2669 cfu m-3 for total mesophilic bacteria, and 1.1 × 104 ± 1049 cfu m-3 

for Gram negative bacteria. On the other hand, the 0.25 m depth BFs showed mean 

outlet concentrations of 1.0 × 104 ± 1752 cfu m-3 for A. fumigatus, 1.3 × 104 ± 2124 

cfu m-3 for total fungi, 1.5 × 104 ± 2026 cfu m-3 for total mesophilic bacteria, and 9.4 

× 104 ± 968 cfu m-3 for Gram negative bacteria.  

A paired t-test to compare the inlet and outlet concentrations indicated that inlet 

concentrations were statistically significantly higher (p < 0.05) than the outlet 

concentrations of all bioaerosol groups for both media depths 0.5 m and 0.25 m, 

indicating that all four biofilters had an effect on the concentration of bioaerosols. 

Differences in the outlet concentrations of the 0.5m and 0.25 media depth BFs were 

also assessed using the paired t-test. The mean outlet concentration from BF1 and BF2 

with media depth 0.5 m were lower than those from BF3 and BF4 with media depth 

of 0.25 m for A. fumigatus (p = 0.067) and total fungi (p = 0.096). There were no 

statistically significant difference between the outlet concentrations of both 0.5 m and 

0.25 m media depth BFs for both total mesophilic bacteria (p = 0.434) and Gram 

negative bacteria (p = 0.428), although the 0.5 m outlet concentrations were higher. 
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These suggest that the different biofilter media depths appear to only have an impact 

on the concentration of fungi which are bigger than bacteria. 

Figure 7.3 shows the mean REs achieved by 0.5 m and 0.25 m media depth BFs for 

all four sampling visits. Generally, 0.5 m depth BFs showed higher removal of both 

A. fumigatus (58 – 89%) and total fungi than (56 – 89%) in comparison to the 30 - 

83% and 34 - 83%, respectively, achieved by the 0.25 m depth BFs. This is contrary 

to the REs achieved with the bacteria. For total mesophilic bacteria, the 0.25 m depth 

BFs indicated removals of 71%, 87%, 87% and 33% for visits 1, 2, 3 and 4, 

respectively in comparison to the 0.5 m depth which achieved REs of 68%, 76%, 90% 

and 22%, respectively, for the same visits. For Gram negative bacteria, 0.25 m media 

depth BFs also indicated REs in the range of 59 – 80% while the 0.5 m media depth 

BFs recorded a range of 39 – 82%.  

Sanchez-Monedero et al. (2003) conducted a study to assess A. fumigatus and 

mesophilic bacteria REs achieved by biofilters installed at seven commercial 

composting plants. Although they did not comment directly, the data provided 

includes the media depths of the biofilters studied. Even though the REs reported seem 

to be overestimated due to the sampling method employed, it can be seen that there 

appears to be no clear relationship between MD and the achieved REs for both groups 

of microorganisms. Similarly, there appears to be no clear relationship between MD 

and the REs for A. fumigatus, total bacteria and Gram negative bacteria in the study 

by Fletcher et al. (2014). This was even further compounded by the presence of 

upstream scrubbers (which helped in bioaerosol concentration reduction) in some sites 

and none in others, making this assessment somewhat difficult. While there may not 

be appropriate literature on bioaerosols to compare the findings of the present study 

to, Liu et al. (2017) investigated the combined impact of MD and media moisture on 

the removal of NH3. They reported that increased MD and moisture resulted in 

improved removals; however, that there were no significant difference in NH3 REs 

between the three levels (0.17 m, 0.33 m and 0.50 m) of media studied, as observed 

for bioaerosols in this study. Thus, it may be that increasing MD may improve odour 

and fungal biofiltration, and not bacterial biofiltration. 

 

 



- 165 - 

 

 

 

Figure 7. 3: Removal efficiencies measured for each bioaerosol group for the four sampling visits. REs computed using mean values of replicates 

BFs. (Visit 1 = 02/05/17; Visit 2 = 08/05/17; Visit 3 = 15/05/17; Visit 4 = 22/05/17) 
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Fletcher et al. (2014) stated that the biofilters in their study were particularly effective 

in controlling A. fumigatus and less effective in controlling total bacteria. A similar 

trend was observed with this study where the pilot biofilters achieved one log 

reduction of both A. fumigatus and total fungi. And although there were no statistically 

significant differences between the outlet concentrations from both 0.5 m and 0.25 m 

MD BFs, there appears to be an improved removal of fungi with the 0.5 m depth. 

Tables 7.2 and 7.3 summarise bioaerosol load removals and removal rates achieved 

by both groups of BFs for the four sampling visits.  Again, it is evident that 0.5 m, 

being the thicker bed, traps more A. fumigatus (1.0 × 104 – 6.0 × 104 cfu m-3) and total 

fungi (1.2 × 104 – 8.5 × 104 cfu m-3) compared to 5.5 × 103 – 5.6 × 104 cfu m-3  and 

7.0 × 103 – 7.9 × 104 cfu m-3, respectively, trapped by 0.25 m MD BFs. This leads to 

higher fungi removal per hour for the 0.5 m depth BFs than the 0.25 m depth BFs 

(Table 5). On the other hand, the reverse was observed for bacteria with 0.25 m depth 

BFs trapping more total mesophilic bacteria (9.2 × 103 – 9.3 × 104) and Gram negative 

bacteria (1.2 × 104 – 4.7 × 104) than 6.1 × 103 – 8.2 × 104 cfu m-3  and 7.4 × 103 – 4.8 

× 104 cfu m-3, respectively, trapped by 0.5 m MD BFs. 

Table 7. 2: Biofilter performance in terms of Bioaerosol Load Removal, L (cfu m-3)* 

 Visit 1 Visit 2 Visit 3 Visit 4 

A. fumigatus 

0.5 m BF 1.1E+04 6.0E+04 3.7E+04 1.0E+04 

0.25 m BF 1.2E+04 5.6E+04 3.2E+04 5.5E+03 

Total fungi 

0.5 m BF 1.4E+04 8.5E+04 4.7E+04 1.2E+04 

0.25 m BF 1.5E+04 7.9E+04 4.1E+04 7.0E+03 

Total mesophilic bacteria 

0.5 m BF 2.2E+04 8.2E+04 1.3E+05 6.1E+03 

0.25 m BF 2.3E+04 9.3E+04 1.2E+05 9.2E+03 

Gram negative bacteria 

0.5 m BF 1.5E+04 7.4E+03 4.8E+04 1.8E+04 

0.25 m BF 1.9E+04 1.2E+04 4.7E+04 1.7E+04 

* m3 of inlet air 

From these results, it is obvious that there are MD-dependent differences in the 

performance of the BFs for fungal and bacterial aerosol reduction. These differences 

may be due to a number of factors including airflow rate, media thickness, particle 

size and shape/morphology. Miaskiewicz-Peska and Lebkowska (2012) compared the 

collection efficiencies of air filters for non-biological aerosols and bioaerosols. They 

argued that increasing air flow rates had a tendency to decrease filter capacity to 
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collect bacterial cells. In this study, the airflow rates in the 0.5 m MD BFs 

(approximately 680 L min-1) were approximately twice those in the 0.25 m MD BFs 

(approximately 340 L min-1) in order to obtain an average EBRT of 16 s in all BFs. 

Thus, the increased airflow rates tend to work against bacteria biofiltration in contrast 

to the decreased airflow rates in the 0.25 m MD BF. Conversely, the high airflow rates 

in the 0.5 m MD BFs tend to favour fungi biofiltration. This is unclear why this is but 

is thought to be a function of the combined effect of bioaerosol particle size and media 

thickness.  

Table 7. 3: Biofilter performance in terms of Bioaerosol Removal Rate, R (cfu m-3 h-

1)** 

 Visit 1 Visit 2 Visit 3 Visit 4 

A. fumigatus 

0.5 m BF 2.6E+06 1.3E+07 8.4E+06 2.3E+06 

0.25 m BF 2.7E+06 1.3E+07 7.2E+06 1.2E+06 

Total fungi 

0.5 m BF 3.1E+06 1.9E+07 1.0E+07 2.6E+06 

0.25 m BF 3.3E+06 1.8E+07 9.1E+06 1.6E+06 

Total mesophilic bacteria 

0.5 m BF 5.1E+06 1.8E+07 2.9E+07 1.4E+06 

0.25 m BF 5.2E+06 2.1E+07 2.8E+07 2.1E+06 

Gram negative bacteria 

0.5 m BF 3.5E+06 1.7E+06 1.1E+07 4.2E+06 

0.25 m BF 4.4E+06 2.7E+06 1.1E+07 3.7E+06 

** m3 of media bed volume 

Figure 7.4 shows the particle size distributions of the inlet and outlet of both 0.5 m 

and 0.25 m MD BFs for the four sampling visits (Tables D.2, D.3, D.4, D.5). It can 

be seen that with the exception of visit 4, the inlet concentrations of both A. fumigatus 

and total fungi were composed of high percentages of particles greater than 3.3 µm – 

range of 56 – 73% and 56 – 75%, respectively. Ferguson et al. (2017) investigated the 

structure of bioaerosol communities derived from compost with the aim of 

quantifying and identifying the presence of specific pathogens in different size 

fractions with culture independent methods. They found that bioaerosol community 

structure and abundance are size dependent, and that bacterial bioaerosols in the range 

> 3.3µm were either conglomerates of bacteria or attached to larger particles such as 

dust while those in the range < 3.3µm were single cells. Thus, it may be that the thicker 

0.5 m MD BFs preferentially filtered more of this larger size particles than the 0.25 m 

MD BFs because they have larger surface presented for particle impaction and 

interception, resulting in the lowered outlet concentration of fungi. Sanchez-
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Monedero et al. (2003) argued that the large size of A. fumigatus (in comparison to 

mesophilic bacteria) in their study would favour their impaction on the BF media. 

Trunov et al. (2001) also suggested that fungal spores are often aerosolised in 

agglomerates which have a higher inertia than single spores and therefore are more 

likely to be impacted onto surfaces. This further indicates that the high proportion of 

large fungal (> 3.3µm) may actually be composed of agglomerates of spores which 

have easily impacted on the filter media. 

On the other hand, the 0.25 m MD BFs tend to favour bacteria removal compared to 

the 0.5 m MD BFs. This may be a function of the difference in media bacteria content 

between 0.5 m and 0.25 MD BFs. The literature suggests that high MD may contain 

more microorganisms which aid in gas biodegradation (Kafle et al., 2015; Liu et al., 

2017). Fletcher et al. (2014) argued that BF media harbour approximately 107 

microorganisms/g, and these may become blown off into the flowing airstream, 

contributing to the concentrations measured at the BF outlet (Rabe and Becker, 2000). 

Ottengraf and Konings (1991) also confirmed this extra contamination of the outlet 

air due to the filtration process at low inlet gas concentration of bioaerosols. Data 

presented by Sanchez-Monedero et al. (2003) showed that bacteria particles are 

smaller than fungal particles, and because of their fine size may tend to remain in the 

flowing airstream without interception (Tisch Environmental Inc., 2015; Wang et al., 

2018). Furthermore, Miaskiewicz-Peska and Lebkowska (2012) explained that some 

bacterial species possess spiny surfaces which make it hard for them to attach to the 

filtering media. Unfortunately, the scope of this study did not include species 

identification which would have provided information on the microbial cell 

morphology. Nonetheless, it can be argued that the high outlet concentration of 

bacteria recorded for 0.5 m MD BFs may be the result of the summation of particles 

not intercepted (due to size- and shape-dependent tendencies to remain in the 

airstream), and the proportion originating from within the high concentration of 

bacteria colonising the thicker media. However, a confirmation of this argument 

would require molecular analysis (which was outside the scope of this study) to 

determine if the population of bacteria entering the biofilters were the same as those 

coming out and would help establish whether they originated from within the biofilter 

media. 
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Figure 7. 4: Comparison of bioaerosol particle size distribution for the biofilter inlet and outlets of the 0.5 m and 0.25 m media depth biofilters for the 

four sampling visits. Data for the outlet based on summation of outlet concentration of the replicate biofilters. (Visit 1 = 02/05/17; Visit 2 = 

08/05/17; Visit 3 = 15/05/17; Visit 4 = 22/05/17). 
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It is worth commenting on the particle distribution of the outlet samples. Table 7.4 

summarises the proportion of outlet bioaerosols in the range < 3.3 µm for both MDs. 

The outlet concentrations from both MDs show high proportions of particles < 3.3 

µm, with a slightly higher proportion for 0.5 m MD BFs especially for A. fumigatus 

and total fungi. These high counts of smaller particles sizes may be explained by the 

phenomenon of spore cluster break-up. Studies have shown that biological particles 

may be present in the air as aggregates such as pairs, chains or clusters (Wake et al., 

1995; Gόrny et al., 1999). Miaskiewicz-Peska and Lebkowska (2012) stated that one 

of the challenges with bioaerosols studies is their susceptibility to change in size. This 

can be seen with spore cluster break up reported by Jankowska et al. (2000). They 

compared the collection efficiencies of fungal spores and Potassium chloride (KCl) 

particles (used as standard test particles) by ventilation filters. They observed that 

collection efficiency increased with increased aerodynamic size, but only for the KCl 

particles. They attributed this observation to fungal spore cluster break up in contrast 

to the KCl particles which had no clusters. Miaskiewicz-Peska and Lebkowska (2012) 

also suggested in their study that Micrococcus luteus cells’ aggregates disintegrated 

upon impact on the air filter, resulting in higher counts of colony forming units in the 

solid media used for impaction. It is possible that the spore clusters and aggregates of 

bacterial and fungal particles disintegrated further to smaller particles upon impaction 

on media bed, thus increasing their tendency to be carried in the flowing airstream to 

the outlet of the BFs. 

Table 7. 4: Proportion of outlet bioaerosol concentrations in the range < 3.3 µm for 

all four visits 

 0.5 m MD BF 0.25 MD BF 

A. fumigatus 52 – 80% 47 – 81% 

Total fungi 50 – 77% 46 – 78% 

Total mesophilic bacteria 61 – 70% 56 – 86% 

Gram negative bacteria 56 – 68% 53 – 67% 

It is important to point out that many variables may impact on the results of 

biofiltration studies, and a knowledge of these is required to interpret the results of 

any biofiltration studies. Biofilter testing often occurs within a few minutes or hours 

and in controlled environments; however, these are systems that are designed to run 

for years and so may be exposed to dozens or hundreds of environmental changes and 

variations (including temperatures, humidity, airflow rates and bioaerosol particle 

concentrations). Adding to this complexity is the technical variations in design as well 
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as the fluctuations in the maintenance regimes put in place by the operators. Thus, the 

results are useful in providing insights into the basic operation of BFs. 

7.4  Section Summary 

 The MDs investigated showed potential capacity to control bioaerosol 

emissions from the process air of MRFs, and possibly other waste treatment 

facilities. This is indicated by the significant (p < 0.05) reductions of the inlet 

concentrations of bioaerosols as measured at the outlet of the 0.5 m and 0.25 

m MD BFs.  

 The 0.5 m MD achieved higher removals in the range of 58 – 89%, 56 – 89%, 

22 – 90% and 39 – 82% for A. fumigatus, total fungi, total mesophilic bacteria 

and Gram negative bacteria, respectively. In comparison, the 0.25 m MD also 

delivered REs almost in the same range including 30 – 83%, 34 – 83%, 33 – 

87% and 59 – 80% for A. fumigatus, total fungi, total mesophilic bacteria and 

Gram negative bacteria, respectively.  

 Although there were no statistically significant differences between the 

performances of both MDs, the 0.5 m MD shows improved control of fungi 

compared to bacteria while the 0.25 m MD had better removals of bacteria 

than fungi.  

 The improved performance of 0.5 m MD for fungi is thought to be a function 

of the high airflow rate, bioaerosols particle size and media thickness. This 

MD presents high surface area for fungal particle impaction; and in addition, 

the fungal particles, being the larger in terms of aerodynamic size, tend to 

impact more on the media surface, thus effecting higher removals.  

 The lower removal of bacteria by 0.5 m MD may be the result of the combined 

effect of particles not intercepted (due to size- and shape-dependent tendencies 

to remain in the airstream), and particle release from the rich abundance of 

bacteria colonising this thicker media. 

 Nonetheless, a more extensive research is required (i) to provide insights into 

the various parameters that may confound the measured inlet and outlet 

concentrations (ii) to identify the specific species with view to understanding 

the interplay of cell morphology in bioaerosols removals by biofilters. 
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Chapter 8 

IMPACT OF BIOFILTER MEDIA TYPE ON BIOAEROSOL 

CONTROL IN A MATERIALS RECOVERY FACILITY 

8.1  Introduction  

The selection of an appropriate biofilter media material is critical, especially when 

assessing biofilter performance. Section 2.2.6.4 presents a review of some of the 

media characteristics considered as vital for biofilter effectiveness; a summary of 

some of these media materials (Table 2.13); and a review of previous studies on the 

impact of different media materials on biofilter perfromance. Nonetheless, Chen et al. 

(2009), in their study to examine the performance of two types of wood chips (western 

cedar and hardwood) as media material for the reduction of odour, H2S and NH3 from 

a swine barn, reported that both materials achieved high odour removal efficiencies 

of 48 – 93% at a moisture content of 60% (wet basis). 

It is also not uncommon to find biofilters with combinations of these media materials 

e.g. the biological residues (compost, soil, peat) with inert bulking agents such as 

activated carbon or wood chips (Devinny et al., 1999). For agricultural biofilter media, 

a 30:70 ratio of compost and wood chips mixture has been offered as a suitable option 

(Nicolai and Janni, 2001b), and a mixture of 20 – 30% compost and 70 – 80% wood 

chips (by weight) has also been recommended as ideal (Schmidt et al., 2004 cited in 

Chen and Hoff, 2009). Research by Nicolai and Janni (1997) showed that a media 

combination of compost and kidney bean straw achieved removal efficiencies of 50%, 

86% and 78% for NH3, H2S and odour, respectively.  

Only a few studies have assessed the use of biotreatment to control airborne 

microbiological contaminants, and there seems to be no clear results on the influence 

of various filter media on the control of bioaerosols. Some authors argue that filter 

material types do not have significant impact on the performance of full scale 

biofilters; rather the tendency is for materials with larger and more structured surfaces 

to deliver higher efficiency (Schlegelmilch et al., 2005a). Differences have also been 

reported in filter media performance in laboratory and technical scale studies. 

Schlegelmilch et al. (2005a) argued that while biofilter media proved to have a major 

influence on bioaerosol emissions in laboratory-scale studies, they seemed to have a 

minimal influence at technical scale. Tymczyna et al. (2007) investigated the 

performance of three media mixes - organic-organic medium (with 50% compost and 
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50% peat); organic-mineral medium (with 20% bentonite, 40% compost, and 40% 

peat); and organic-mineral medium (with 20% halloysite, 40% compost, and 40% 

peat) – and reported that all the media were highly effective in the removal of gram-

negative bacteria (99.6%, 100% and 100%, respectively), moderately effective in 

controlling dust and only slightly effective in the removal of endotoxin. In addition, , 

coconut fibre has also been reported to perform well for bioaerosols control 

(Schlegelmilch et al., 2005a), but not so well for odour control (Dammann et al., 

1996).  

From an emissions mitigation viewpoint, the argument is not to have the best media 

to control either chemical contaminants (including odours) or bioaerosols, but a 

suitable media both in terms of simultaneous significant control of all emissions as 

well as financial sustainability. Thus, this objective assessed the impact of different 

biofilter media types in terms of bioaerosol and odour emissions and removal. The 

following sub-objectives were defined to include (i) evaluation of the comparative 

performance of four media types – old and new wood chips, peat and wheat straw – 

for simultaneous bioaerosol and odour control; (ii) assessment of the impact of media 

age on simultaneous bioaerosol and odour removal; (iii) assessment of the impact of 

media type on bioaerosol particle size distribution between biofilter inlet and outlet 

air samples.; and (iv) assessment of media cost analysis.     

8.2  Biofilter operation to evaluate performance 

Section 3.4 presents a general discussion of the operation of the biofilters throughout 

the study. However, this section presents a more detailed information on how the 

biofilters were operated and maintained, media selection and characterisation as well 

as on the data analyses that were carried out to achieve the specific objectives of this 

particular study.  

8.2.1  Biofilter Operation 

This study was conducted in the summer of 2017 (June and July) during which a total 

of four sampling visits (June 19, June 26, July 3 and July 10) were conducted 

(Appendix E). The biofilter system was set up inside the facility just behind the back-

push wall in the waste reception area so that it was as close to the incoming waste 

materials as possible, therefore ensuring a constant supply of odorous air 

contaminated with bioaerosols which was vital for this study.  
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8.2.2  Biofilter Media Selection and characterisation 

The range of media (Plate 8.1) selected for this study covered some of those reported 

in literature as a result of the advantages (Table 2.13) they offer including ease of 

application, cost effectiveness, low water control problems, and inherent content of 

nutrients and microbial population which eliminates the need for nutrient supply and 

microbial inoculation, respectively. Peat, wheat straw and new woodchips were 

freshly acquired for this study while the old woodchips were derived from a previous 

experiment testing biofilter performance at the same location on the site, operated for 

a year prior to the current study.  

 

Plate 8. 1: Media materials used in the biofilters on site: (a) old woodchips in BF1, 

(b) peat in BF2, (c) wheat straw in BF3, and (d) new woodchips in BF4. 
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The media materials were sourced from local markets within the UK – woodchips 

(from Garforth Log Supplies, Leeds at £80 per m-3), Irish Moss peat (from Erin 

Horticulture Ltd at £100 per m-3), and wheat straw (from Amlico Animal Store, 

Wakefield at £23 per m-3). Preliminary laboratory tests were conducted to determine 

the media characteristics including appropriate, bulk density, porosity, water holding 

capacity (WHC) and moisture content (MC) (Table 8.1).  

Table 8. 1: Characteristics of media used for this study 

Characteristics Old woodchips* Peat Wheat 

straw 

New 

woodchips Before After 

Bulk Density (kg m-3) 225.0 239.2 368.4 40.9 202.8 

Porosity (%) 61.4 60.3 61.7 82.2 64.2 

Water Holding Capacity 

(g/g dry weight) 

1.2 1.1 8.5 5.4 1.2 

Moisture Content (%), as 

received  

30.0 30.0 75.3 1.2 15.9 

*the woodchips were used continuously for one year before the current study. ‘After’ 

indicates woodchips characteristics used for this study. 

 

Peat and wheat straw were used as received while the woodchips (as-received) were 

sized by sieving using the Retsch AS200 Analytical Sieve Shaker operated at an 

amplitude of 60 and a vibration height of 1.8 mm for three minutes. A sieve mesh size 

of 4.75 mm was used to obtain woodchips oversize fractions (Plate 8.2) used for this 

study. Media MC were determined using the oven drying method which entails 

computing the weight loss following oven drying overnight at 105°C while WHC 

were determined by soaking the media materials in water for 24 hours followed by 

oven-drying the media samples for 48 hours at a temperature of 105°C (Kafle et al., 

2015). Media porosity (voids) was determined by the Bucket Method (Nicolai and 

Janni, 2001c) and bulk density was determined following the method of Valter 

Francescato et al. (2008). 
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Plate 8. 2: Size fraction of media materials used for this study: (a) old wood chips, (b) peat, (c) wheat straw, and (d) new wood chips. 
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8.2.3  Data Analysis 

There were statistically significant differences in the mean bioaerosol concentrations 

at the background, inlet and outlets of all media types tested as follows, A. fumigatus: 

Welch’s F(5, 17.707) = 51.065, p < 0.0005; total fungi: Welch’s F(5, 17.939) = 

60.399, p < 0.0005; total mesophilic bacteria: Welch’s F(5, 16.771) = 33.428, p < 

0.0005; Gram negative bacteria: Welch’s F(5, 18.868) = 5.875, p = 0.002. For odour, 

there were no outliers in the data set and normality of odour concentrations was 

assessed using the Shapiro-Wilk test. Differences in mean odour concentration for the 

BF inlet and all BF outlets were assessed using ANOVA. There was homogeneity of 

variance as assessed by Levene’s test for equality of variances (p = 0.687). There were 

statistically significant differences in the mean odour concentrations of the inlet and 

outlets of all media types tested, F(4, 35) = 9.902, p < 0.0005. Spearman’s rank-order 

correlation was run to assess the association between odour and bioaerosol REs of 

each of the media types in this study. 

8.3  Results and discussion 

8.3.1  Operating conditions, bioaerosol and odour concentrations 

Table 8.2 presents the operating conditions of the various media types during the 

sampling period. The mean inlet temperature for all BFs taken at the central plenum 

was 26.3ºC and apart from the peat with a media temperature of 18.4ºC, all other 

media had temperatures above 21ºC.  

Table 8. 2: Operating conditions of the biofilters (BF) during the study period 

Parameter Old 

woodchips 

Peat Wheat 

straw 

New 

woodchips 

Mean inlet air 

temperature (ºC) 

26.3 26.3 26.3 26.3 

Mean outlet air 

temperature (ºC) 

24.3 23.8 24.9 23.1 

Mean media temperature 

(ºC) 

21.3 18.4 22.9 23.0 

Mean EBRT (s) 17.9 16.4 16.9 16.1 

Mean Airflow rate (L 

min-1) 

610 665 645 680 

Leachate pH range 6.84 – 7.55 4.21 – 4.81 6.60 – 8.24 6.92 – 7.99 

Media moisture content 

(%) 

41 - 66 76 - 79 45 - 75 40 - 59 



- 178 - 

No attempts were made to alter the media temperature as they were within the range 

(10 - 40ºC) reported as optimum for effective biofilter operation (Schnelle and Brown, 

2002). Figure 8.1 compares the background, inlet and outlet concentrations of the four 

bioaerosol groups and odour assessed under these conditions. The results show that 

the emitted air from biofilters containing each of the four media tested had less 

bioaerosols and was less odorous than the air fed into each biofilter. 

 

 

Figure 8. 1: Comparison of mean background, inlet and outlet concentrations of (a) 

Aspergillus fumigatus, (b) total fungi, (c) total mesophilic bacteria, (d) Gram 

negative bacteria and (e) odour for the study period (BG – Background; IN – 

Inlet; BF1 – Old Woodchips; BF2 – Peat; BF3 – Wheat Straw; BF4 – New 

Woodchips). 
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One-way Welch ANOVA followed by Games-Howell post hoc analysis showed that 

there were statistically significant differences (p < 0.05) between mean inlet 

concentrations and mean outlet concentrations from all media types assessed for the 

four groups of bioaerosols investigated, except the outlet concentrations of biofilters 

containing old woodchips (p = 0.420) and wheat straw (p = 0.174) when assessed for 

Gram negative bacteria removal (Figure 8.1). However, there were no statistically 

significant differences (p > 0.05) between the performance of the media types in terms 

of their control of both total mesophilic and Gram negative bacteria. With regards to 

A. fumigatus and total fungi removal, peat showed statistically significant differences 

(p < 0.05) in outlet concentrations in comparison to other media types, except old 

woodchips (p = 0.408 for A. fumigatus; and p = 0.519 for total fungi). Both old and 

new woodchips and wheat straw did not show any statistically significant differences 

(p > 0.05) in their outlet concentrations. There were no statistically significant 

differences (p > 0.05) between the outlet concentrations of all media types and 

background concentrations for both total mesophilic and Gram negative bacteria. 

Statistically significant differences were only established between background and 

outlet concentrations of wheat straw (p < 0.0005) and new woodchips (p = 0.002) 

when considering A. fumigatus and total fungi. These findings are consistent with 

those of Tymczyna et al. (2007) who reported that there was no statistically significant 

differences in the levels of aerosols emitted among the various media in their study. 

They attributed this to the high variation among sample values within the different 

media groups, also typical of this study. 

A one-way ANOVA followed by Tukey post hoc analysis revealed that there were 

statistically significant differences (p < 0.05) in the mean odour concentrations of the 

inlet samples and outlet samples of old woodchips and peat media biofilters only. New 

woodchips and wheat straw did not show any statistically significant differences with 

the inlet odour concentrations. Comparing the outlet concentrations of the four media 

types, statistically significant differences were only shown between the concentrations 

from the peat biofilter and from those containing wheat straw (p = 0.019) and new 

woodchips (p = 0.001). There were no statistically significant differences (p > 0.05) 

established between the outlet concentrations of other media types. 
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8.3.2  Comparative performance of the different media materials 

The performance of the pilot biofilters was assessed by the removal efficiencies they 

achieved throughout the study period (Figure 8.2). The REs for bioaerosols were 

computed using the mean values of the inlet and outlet concentrations. Figures 8.3 – 

8.6 show comparisons of actual mean odour and bioaerosol concentrations at the inlet 

and outlets of the four biofilters investigated for each sampling day of this study. The 

concentration of bioaerosols and odour measured in the process air varied from visit 

to visit, as acknowledged by Fletcher et al. (2014) when monitoring full scale 

facilities.  In contrast to the study of Tymczyna et al. (2007) which reported no 

detection of bioaerosols for two of the three media materials investigated, bioaerosols 

were detected in the outlet air of the all media types assessed in this study.  

Generally, inlet concentrations of all bioaerosols measured were in the range of 104 

cfu m-3 as follows: 2.0 × 104 to 3.6 × 104 cfu m-3 (A. fumigatus); 2.5 × 104 to 4.1 × 104 

cfu m-3 (total fungi); 3.6 × 104 to 4.5 × 104 cfu m-3 (total mesophilic bacteria); and 1.5 

× 104 to 3.9 × 104 cfu m-3 (Gram negative bacteria). The inlet odour concentrations 

were 250 OUE m-3, 181 OUE m-3, 294 OUE m-3 and 194 OUE m-3 for the 19 June, 26 

June, 3 July and 10 July, respectively. These concentrations were considered low 

when compared to concentrations (up to 19 340 OUE m-3) reported by an independent 

consultant (Gair, 2013). The difference is thought to be due to the same reasons as 

outlined in section 5.3.2.  

The old woodchips achieved REs of 57 – 86 % for both groups of fungi for all 

sampling days except on 3 July 2017 when the REs were reduced to -118% (outlet 

concentration: 6.1 × 104 cfu m-3) and -150% (outlet concentration: 9.7 × 104 cfu m-3)  

for A. fumigatus and total fungi, respectively. The old woodchips also achieved REs 

of 29 to 85% and 44 to 83% for total bacteria and Gram negative bacteria, 

respectively, except on 3 July 2017 when the REs dropped to 7% (outlet 

concentration: 3.7 × 104 cfu m-3) and -14% (outlet concentration: 2.7 × 104 cfu m-3), 

respectively, as with the fungi. This drop in performance is thought to be due to the 

breakthrough of biomass accumulated within the old woodchips which have been in 

operation for a year prior to this study. Devinny et al. (1999) argued that media 

clogging can lead to air channelling which has the potential to limit the amount of 

contaminants being treated, thus resulting in negative performance. The performance 

in terms of odour control was moderate, delivering REs up to 65% (on 3 July) from 

an inlet concentration of 294 OUE m-3.  



- 181 - 

 

Figure 8. 2: Comparison of odour and bioaerosols removal efficiencies achieved in all four pilot-scale biofilters for the study period (BF1 – Old 

Woodchips; BF2 – Peat; BF3 – Wheat Straw; BF4 – New Woodchips). 
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The data set showed a statistically significant perfect negative correlation (rS = - 1.0) 

between odour RE and REs of A. fumigatus, total fungi as well as Gram negative 

bacteria, at the 0.01 level. There was also a strong negative correlation (rS = - 0.8) 

between odour RE and total mesophilic bacteria RE, but this was not statistically 

significant. This suggests that differences may exist in the capacity for used 

woodchips to achieve simultaneous removal of odour and bioaerosols. 

 

 

Figure 8. 3: Comparison of inlet and outlet concentrations of odour (n = 1) and 

bioaerosol (n = 2) on 19 June 2017 (BF1 – Old Woodchips; BF2 – Peat; BF3 – 

Wheat Straw; BF4 – New Woodchips).  

The peat biofilter consistently showed the highest REs for both bioaerosols and odour 

of all the media types. REs of 88 to 99%, 86 to 99%, 65 to 96% and 56 to 92% were 

achieved for A. fumigatus, total fungi, total mesophilic bacteria and Gram negative 

bacteria, respectively. This brought the outlet concentrations to a range of 102 to 103 

cfu m-3 for fungi and 103 cfu m-3 for bacteria. These high bioaerosol REs for peat could 

possibly result from a combination of Brownian diffusion, flow-line interception, 

inertial impaction of bioaerosol particles by the media as well as the low media pH 

(4.21 – 4.81) recorded in this study which can lead to the destruction of trapped 
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microbial particles especially as most aerobic bacterial activities thrive at near neutral 

pH (7 – 8) (Swanson and Loehr, 1997; Omri et al., 2013). Tymczyna et al. (2007), in 

their study, pointed out that filter effectiveness in reducing airborne contaminants was 

dependent on which filter media was used, as observed in this study. 

 

Figure 8. 4: Comparison of inlet and outlet concentrations of odour (n = 1) and 

bioaerosol (n = 2) on 26 June 2017 (BF1 – Old Woodchips; BF2 – Peat; BF3 – 

Wheat Straw; BF4 – New Woodchips). 

Peat also delivered odour REs in the range of 22 to 87%.  One reason for the high 

odour removal recorded with peat is the high water content of peat. Devinny et al. 

(1999) stated that fungi dominate in biofilters which are acidic and with high water 

content, and often have the capacity to degrade even more complex compounds. There 

were statistically significant perfect positive correlation between odour removal and 

REs of A. fumigatus and total fungi at the 0.01 level. A strong positive correlation of 

rS = 0.8 was also established between odour RE and the REs of the bacteria. These 

imply that peat was capable of achieving simultaneous significant removal of 

bioaerosols and odour from waste airstreams emitted from waste management 

facilities. Devinny et al. (1999) stated the peat does not naturally harbour 

microorganisms and so would require microbial inoculation to be used for 

250 200 150 100 50 0

Odour concentration (OUE m-3)

 Odour

1E+01 1E+02 1E+03 1E+04 1E+05

26 June 2017

 Aspergillus fumigatus concentration (cfu m-3)

 Aspergillus fumigatus

250 200 150 100 50 0

Odour concentration (OUE m-3)

1E+01 1E+02 1E+03 1E+04 1E+05

 Total Fungi concentration (cfu m-3)

 Total fungi 

250 200 150 100 50 0

Odour concentration (OUE m-3)

1E+01 1E+02 1E+03 1E+04 1E+05

 Total mesophilic bacteria concentration (cfu m -3)

 Total mesophilic bacteria 

250 200 150 100 50 0

Odour concentration (OUE m-3)

Inlet

BF1

BF3

BF4

BF2

Inlet

BF1

BF3

BF4

BF2

Inlet

BF1

BF3

BF4

BF2

Inlet

BF1

BF3

BF4

BF2

1E+01 1E+02 1E+03 1E+04 1E+05

 Gram negative bacteria concentration (cfu m -3)

 Gram negative bacteria 



- 184 - 

biofiltration.  This might mean that the reduction capacity should have been reduced 

especially in the early stage of biofiltration when there were supposedly few or no 

microorganisms within the media. Schmidt et al. (2004) supported this position by 

stating that biofilter efficiency is limited during the conditioning or stabilisation 

period. However, the results of this study contradicted this view as the peat media was 

not inoculated beforehand, but it consistently showed considerable odour reduction 

compared to other media. This shows that the acclimation period was sufficient in 

allowing a rich population of odour-degrading microorganisms to be developed within 

the media, evident in the high REs recorded for peat. 

 

Figure 8. 5: Comparison of inlet and outlet concentrations of odour (n = 1) and 

bioaerosol (n = 2) on 3 July 2017 (BF1 – Old Woodchips; BF2 – Peat; BF3 – 

Wheat Straw; BF4 – New Woodchips). 

Sheridan et al. (2002c), in comparing the performance of two media particle sizes 
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biofilm attachment for effective odour degradation; thus the consistent high odour 

performance of the peat. Hoag and Price (1997) noted that peat had a ‘dual-porosity’ 

matrix, where closed and disconnected pores may trap solutes, and particles by 

extension, in dead-end pore spaces, hence retarding diffusive transport. This may 

contribute to trapping of odour compounds and straining of bioaerosol particles from 

the contaminated airstream (Edelman, 2008). These immobilised bioaerosol particles 

can add to the resident microbial population within the media, increasing the 

degradation rate of odorous organic volatiles trapped within the biofilm layer on the 

media particles (Brincat et al., 2016), further reducing the outlet odour concentrations 

measured in this study.  

 

Figure 8. 6: Comparison of inlet and outlet concentrations of odour (n = 1) and 

bioaerosol (n = 2) on 10 July 2017 (BF1 – Old Woodchips; BF2 – Peat; BF3 – 

Wheat Straw; BF4 – New Woodchips). 
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outlet odour concentration (249 OUE m-3) was higher than the inlet concentration (181 

OUE m-3) leading to a drop in RE to – 38%. The performance of new woodchips was 

somewhat comparable to that of wheat straw. New woodchips showed the poorest 

odour performance of 0.4 to 56% removal, and acted as a net odour emitter on 26 June 

with a RE of -17% as with wheat straw. Bioaerosol REs achieved were 3 to 73%, 10 

to 76%, 48 to 91% and 52 to 81% for A. fumigatus, total fungi, total mesophilic 

bacteria and Gram negative bacteria, respectively. With wheat straw, there was no 

correlation (rS = 0.0) between odour and fungi REs, while the bacteria only showed a 

moderate negative correlation (rS = -0.4) with odour (p > 0.01). For the new 

woodchips, odour RE showed a moderate positive correlation (rS = 0.4) with the REs 

of both fungi groups; a strong negative correlation (rS = -0.6) with the RE of total 

mesophilic bacteria; and moderate negative correlation (rS = -0.4) with Gram negative 

bacteria RE. However, these associations were not statistically significant at the 0.01 

level.  

The low odour removal performance seen with wheat straw and new woodchips may 

be due to the fact that the time allowed for the acclimation of the resident microbial 

population was not long enough, even though the acclimation period adopted in this 

study was informed by recommendations in literature. A report by USEPA (2003) 

stated that the natural method of allowing a wide variety of resident microbes to 

acclimatise to a particular mix of pollutants in the contaminated air may be a little 

longer, but the resultant microbial strains will be more adaptable in the long run. The 

poor odour performance of new woodchips could also be associated with the low 

moisture content when compared with other media types. Media moisture has a major 

influence on odour performance, and dry media has a potential to cause channelling 

which can lead to an increase in local drying along the preferential paths of airflow, 

allowing contaminated air to exit the biofilters untreated (Nicolai and Lefers, 2006a). 

This has the potential to reduce odour removal without necessarily affecting 

bioaerosol removal especially as bioaerosol particles can still impact on and be 

intercepted by the media particles. 
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8.3.3  Impact of media age on bioaerosols and odour removal 
performance 

The performance of the old and new woodchips were compared in order to investigate 

the impact of media age on simultaneous control of odour and bioaerosols. This was 

possible because the woodchips were originally sourced from the same supplier who 

obtain their woodchips from the same stock of Larch and Spruce, thus the same 

properties are maintained except the age of woodchips used in the biofiltration. In this 

study, the concentration of bioaerosols in the outlet air from both media types varied 

between 103 to 104 cfu m-3 (up to a maximum of 105 cfu m-3 for total mesophilic 

bacteria emitted from the old woodchips), and these were slightly higher than the 

concentration encountered in open air as measured by the background concentration 

(102 to 103 cfu m-3) for this study. Overall, comparison of the average outlet bioaerosol 

concentrations of both media (Table 8.3 and Figures 8.3 – 8.6) showed that the new 

woodchips tended to perform better than the old woodchips which were 

approximately 12 months old before use. This trend was reversed in terms of odour 

control with the old woodchips showing higher removals with outlet concentration of 

102 to 230 OUE m-3 compared to outlet levels of up to 249 OUE m-3 for the new 

woodchips (Figure 8.5).  

Table 8. 3: Outlet concentration of bioaerosols for old and new woodchips 

  A. fumigatus Total 

fungi 

Total 

mesophilic 

bacteria 

Gram 

negative 

bacteria 

Old 

woodchips 

(cfu m-3) 

Minimum 4.6 × 103 5.7 × 103 3.8 × 103 4.8 × 103 

Mean 2.1 × 104 3.1 × 104 2.1 × 104 1.5 × 104 

Maximum 7.9 × 104 1.3 × 105 4.9 × 104 4.0 × 104 

New 

woodchips 

(cfu m-3) 

Minimum 7.1 × 103 3.1 × 104 3.2 × 103 3.7 × 103 

Mean 1.3 × 104 1.6 × 104 1.3 × 104 7.9 × 103 

Maximum 2.3 × 104 1.6 × 104 2.4 × 104 1.3 × 104 

The bioaerosol performance of the old woodchips is thought to be due to bioaerosol 

accumulation within the media over time, and eventual emission of these bioaerosols. 

For woodchips and other organic media, the estimated lifespan is 3 – 5 years or more 

(Schmidt et al., 2004). However, with time the media degrades due to microbial 

action; and combined with dust build-up and media settling, this can lead to pressure 

drop increase across the biofilter media bed (Fletcher et al., 2014). Also, as the media 

compacts with age, there may be an increase in particle and bioaerosols ‘straining 

effect’ from the airstream (similar to those observed for peat), thus resulting in more 
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microorganisms per unit mass of media available for odour biodegradation. And 

because there is tendency for the formation of preferential air paths when media 

compacts, it is possible to have some contaminated air flow through without 

bioaerosol impaction and interception as explained by Ottengraf and Konings (1991). 

Hence, the higher outlet bioaerosol concentrations measured with the old woodchips. 

This might also suggest that with the older woodchips the bioaerosols species going 

in may not necessarily be the ones that are coming out. However, this will require 

confirmation using molecular biology methods which is beyond the scope of this 

study. 

Sanchez-Monedero et al. (2003) in their study assessing A. fumigatus and mesophilic 

bacteria removals by seven full-scale biofilters presented data which showed media 

age and the corresponding bioaerosol REs achieved. There appeared to be no clear 

association between A. fumigatus REs and media age especially as there was little 

variation in removal (97.9 to 99.4%) when media was between 1 and 12 months, 

although there was a drop to 90.4% at 18 months. Mesophilic bacteria removal 

showed a wider variation from biofilter to biofilter even for those with the same media 

age. One month old media had the lowest removal of 39.1% while other biofilters had 

mesophilic bacteria REs > 68%, with the oldest media (36 months) showing the 

highest RE of 36 month. 

8.3.4  Impact of media type on bioaerosol particle size distribution 

Apart from assessing bioaerosol concentration reduction by the various media 

biofilter types, it is also important to examine the size distribution of emitted 

bioaerosols especially as this ultimately plays a role in human exposure. The six stages 

of the Andersen sampler used for this study indicate the location where inhaled 

bioaerosol particles will be deposited once they penetrate the human respiratory tract 

(Tisch Environmental Inc., 2015).   

Figure 8.7 shows a comparison of bioaerosol particle size distribution for the 

background, biofilter inlet and outlets of the four types of media types assessed in this 

study. The size distributions were computed by considering all samples taken at the 

various points indicated (Table E.2). Overall, considering all points sampled the 

distribution for A. fumigatus and total fungi were comparable while those of total 

mesophilic bacteria and Gram negative bacteria were also comparable.  
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Figure 8. 7: Comparison of bioaerosol particle size distribution for the background, biofilter inlet and outlets of the four types of media. Data based 

on the four sampling visits. 
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The inlet air had approximately 20% of A. fumigatus particles in the range < 2.1 µm, 

slightly higher than the total fungi distribution with 18%. But the outlet had ~ 30% of 

particles in this size range for these two groups of bioaerosols. Peat delivered outlet 

concentrations that showed similar proportions as those of the background for both A. 

fumigatus and total fungi. This implies that peat outranks other media types in terms 

of its capacity to deliver outlet air that can be approximated to the background air both 

in terms of fungal particle concentration and size distribution. Table 8.4 shows that 

the outlets of old woodchips, wheat straw and new woodchips all had maximum 

fungal particles collected at stage 4 (aerodynamic diameter 2.1 to 3.3 µm), while peat 

showed maximum collection on stages 2 for A. fumigatus (20%) and 4 for total fungi 

(21%). 

Table 8. 4: Stage and proportion of maximum deposition of bioaerosol particles 

 A. fumigatus Total fungi Total 

mesophilic 

bacteria 

Gram 

negative 

bacteria 

Old woodchips 4 (48%) 4 (52%) 6 (38%) 6 (37%) 

Peat 2 (20%) 4 (21%) 2 (23%) 5 (28%) 

Wheat straw 4 (43%) 4 (42%) 6 (39%) 6 (44%) 

New woodchips 4 (37%) 4 (36%) 5 (34%) 5 (24%) 

With the exception of the peat whose outlet was composed of ~ 33% total mesophilic 

bacteria particles < 2.1 µm, all outlet air had ~ 46 to 71% of bacterial particles in the 

range < 2.1 µm. This implies that these media emitted air composed more of particles 

that can penetrate deep to the alveolar region, and thus present potential health 

concerns. Maximum bacterial particles deposited on stage 6 (for both old woodchips 

and wheat straw) and stage 5 for new woodchips. There was a variation with peat 

which showed a maximum collection on stage 2 for total mesophilic bacteria and stage 

5 for Gram negative bacteria.  Sanchez-Monedero et al. (2003) measured maximum 

deposition on stages 4 and 5 for A. fumigatus and mesophilic bacteria, respectively. 

Given that a typical fungal cell is in the size range 2 – 10 µm and a typical size of a 

bacterium is 0.2 – 2 µm (Raisi et al., 2010; Miaskiewicz-Peska and Lebkowska, 2012; 

Qian et al., 2012), a key deduction from these results is that a large proportion of 

fungal particles in the outlet of the biofilters will highly likely be deposited in the 

upper respiratory tract while most bacterial particles are of the size range that would 

be deposited further down in the lower respiratory tract. Thomas (2013) argued that 

the size of pathogenic bioaerosol particles dictates where they are deposited within 
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the respiratory system; thereafter the potential to cause infection is dependent on the 

tissue tropism, clearance kinetics and the host immune system response.  

The pulmonary or alveolar region is non-ciliated and particle clearance in this region 

is carried out by resident alveolar macrophages, specialised cells which carry out 

phagocytosis, a function which is hindered in immunocompromised persons. And 

because the expelled air from all the biofilters had more of the respirable particles of 

bacteria (< 2.1 µm), these may present health risks as they can get deep into the non-

ciliated pulmonary or alveolar region. Larger particles deposited in the upper 

respiratory tract are cleared by the nasal and tracheobronchial escalators which is a 

combined mucociliary function of trapping deposited bioaerosol particles by mucus 

and removal by the action of cilia to the gastrointestinal tract (Thomas, 2013). 

Comparative studies on animal models show that greater numbers of larger particles 

are required to trigger infection in the upper respiratory tract in comparison the lower 

respiratory (Day and Berendt, 1972; Thomas et al., 2010; Thomas et al., 2012). This 

is possibly due to particle size dependent differences in pathogenesis between 

infections initiating in these two regions.  

8.3.5  Media Cost 

One of the advantages of adopting biofiltration is the relative low cost of treating high 

volumes of air containing low concentrations of a broad spectrum of chemical 

pollutants, in addition to low energy requirement and no generation of secondary 

pollutants which would require disposal (Devinny et al., 1999; Fulazzaky et al., 2014; 

Muñoz et al., 2015). Thus, the goal of designing a biofilter would be to control all 

emissions while keeping both capital and operating costs relatively low. The cost 

focus of this paper is on media which relates both to the capital cost (as part of the 

installation cost) and operating cost (due to media replacement). Assuming a typical 

full-scale biofilter installation with surface area 12.5 m2 and media depth of 2.5 m, 

giving a total media volume of 31.25 m3, the cost estimates of filling this volume by 

the various media is summarised in table 8.5.  

Table 8. 5: Media cost estimates for full scale application 

Media type Cost per m3 (£) Total volume 

(m3) 

Total cost (£) 

Woodchips 80 31.25 2500 

Peat 100 31.25 3125 

Wheat straw 23 31.25 719 
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Wheat straw has the lowest cost of all, showing a cost ratio of 1:3.5 and 1:4.3 with 

woodchips and peat, respectively. In selecting media, there needs to a balanced 

consideration of all factors because though wheat straw may appear cheap, peat has 

consistently delivered the highest reduction of odour and bioaerosol emissions. In this 

study, there was no need for microbial inoculation and nutrient addition to peat. 

However, Devinny et al. (1999) recommended microbial inoculation of peat media 

with activated sludge and nutrient addition since peat usually lacks these. These may 

add to media cost which must also be considered. 

Media usage longevity is also another factor to consider. Media requiring frequent 

replacement may imply more cost spent on media as against media which last longer. 

However, most media including compost and woodchips have been estimated to have 

a lifespan of 3 – 10 years or more, but would have to be monitored for pressure drop 

differences (Nicolai and Lefers, 2006a). Schmidt et al. (2004) in qualifying useful 

lifespan of biofilter media noted that peat, heavy loamy soil and compost (yard waste) 

had good useful life while woodchips and straw were ranked as average and poor, 

respectively. Thus, wheat straw might not be a cheap choice in the long run. 

8.4  Section Summary 

 The four media types assessed in this study have demonstrated their potential 

to achieve appreciable levels of simultaneous control of bioaerosols and odour 

emitted from waste management facilities. The results indicated one to two 

log reduction for fungi and one log reduction for bacteria from inlet 

concentrations in the range of 104 cfu m-3 for both groups of microorganisms, 

while the odour removal also varied between the media, typically between -38 

– 87 percent from a process air odour concentration up to 294 OUE m-3.  

 Some media showed better removal of both while others show better removal 

either for odour or bioaerosols. Peat had the highest removal for both types of 

pollutants which is thought to be due to the moisture content and large surface 

area which favour the thriving of microbial population (particularly fungi) 

responsible for degrading the complex mix of chemical pollutants, thus 

reducing the outlet concentrations of odour recorded. The similar performance 

of peat for bioaerosols is thought to be due to the existence of disconnected 

dead-end pore spaces within the media which may act to filter bioaerosol 

particles from the influent air. Other media considered may not support 
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simultaneous control of the considered pollutants possibly because of 

differences in the removal mechanisms as some would favour bioaerosols 

removal by impaction while still having enough space for some chemical 

pollutants to exit the biofilters untreated, thus indicating preferentially 

controlling one type of pollutants against the other. 

 The age of the media may actually impact on its capacity to control pollutants, 

and performance differences may exist with media age depending on what 

kinds of pollutants are considered. Old woodchips in this study may have, over 

time, had a build-up more microorganisms filtered from influent polluted 

airstream. Ultimately, these may breakthrough, adding to outlet concentrations 

measured and thus, presenting as reduced bioaerosol removal efficiency. 

However, the accumulated microbial population may contribute to the odour 

and chemical degrading potential of the older media. 

 There seems to be no difference in the size of fungal particles emitted by the 

media as all showed highest deposition of fungal particles on stage 4 which is 

the range composed of particles (2.1 – 3.3 µm) that can be expelled by the 

mucocilliary clearance mechanism of the upper respiratory tract. On the other 

hand, the bulk of bacterial particles were of the size range (> 2.1 µm) that can 

penetrate deep into the alveoli which do not have this clearance mechanism. 

However, there are alveolar macrophages which fight off pathogenic species 

deposited in this region, except in immunocompromised persons in which case 

might result in serious health problems. 

 Overall, the choice of any media has to be based on a balanced consideration 

of performance versus cost by operators. This is especially so as some media 

which offer high emission control may have huge cost implications, while the 

more affordable ones may not offer desired performance, and may at times 

prove to be more expensive to operate in the long run. 
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Chapter 9 

GENERAL DISCUSSION 

9.1  Introduction  

This chapter presents a discussion of the data obtained from the sampling carried out 

throughout this study, and explores how these fit relative to the existing body of 

knowledge in the literature within the context of the original research questions 

presented in the introductory chapter. 

9.2 Review of odour and bioaerosol emissions from waste 

management facilities 

Biowaste treatment and management is and will continue to be a key component of 

the expanding waste management industry in the UK (Stagg et al., 2010; Environment  

Agency, 2018a). Essential to the biowaste treatment process is the role of microbial 

degradation of organic materials within the waste with the potential for negative 

consequence in the form of odour and bioaerosol emissions. Several factors  have 

been suggested as being responsible for odour emissions from biowaste treatment 

facilities including the characteristics of the waste, the metabolic products of the 

aerobic degradation of the waste, some of the metabolic products of the anaerobic 

breakdown of the waste; all of which are impacted by the level of agitation of the 

waste by the site operations resulting in elevated ambient and point source emissions 

(Bidlingmaier and Müsken, 2007; Environment  Agency, 2018a).  

Emissions of odour and volatile organic compounds in the process air from waste 

management facilities have been widely studied. The choice of a MRF as the test 

facility in this study may not be considered ideal because they are known to be 

relatively clean compared to other types of facilities which have microbial 

decomposition as a fundamental part of their operation. However, this facility still 

provided process emissions with significant bioaerosols and comparatively lower 

concentrations of odour required to fulfil the relevant objectives of this study.  

Emitted odour concentrations reported for full scale facilities in the literature vary; 

recent studies report figures of >2 million OUE m-3 by Frederickson et al. (2013) to 5 

000 - 145 000 OUE m-3 by Fletcher et al. (2014). Gutiérrez et al. (2015) also reported 

peak odour concentration of 5224 OUE m-3 for a pile composting process treating the 
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organic fraction of municipal solid waste. They argued that this peak odour 

concentration was reached in parallel with peak microbiological activity. The odour 

concentration recorded for the inlet (used as a proxy for the indoor concentration) at 

this site was much lower (range: 94 – 489 OUE m-3) than those reported in the 

literature and were also low in comparison to concentrations reported by an 

independent odour consultant (mean of 19 340 OUE m-3) for the same site in a previous 

odour assessment (Gair, 2013). This difference has been thought to be due to factors 

such as sampling location, the odour sampling method employed, and the type of 

odour sampling bags used in this study (Capelli et al., 2013). Also, at the time of 

sampling all 11 modular air filtration units where in operation, and the data contained 

in the report of the independent odour consultant indicated that they achieved mean 

odour RE of 71% which was considered low for this type of filters (Gair, 2013). The 

reduced performance was attributed to factors including reduced residence time across 

the filter possibly resulting from uneven airflow; high temperatures which results in 

desorption of previously adsorbed compounds; high humidity which implies 

preference for water adsorption over adsorption of odorous compounds; clogging of 

filters by airborne particles; and saturation of the activated carbon. Nevertheless, data 

from this study agrees with the literature which observes that odour concentrations 

vary at the same site on different days. Cremiato et al. (2018) suggested that in MRFs 

odour resulted from diffused emissions of odour molecules from packaging waste 

such as liquids, detergents, food residues, etc. Thus, the variations in odour 

concentrations for different sampling days may be the result of the variation in the 

types and quantities of wastes processed in these facilities on a daily basis.    

With regards to bioaerosols emissions from full scale waste management facilities, 

the information has been rather sparse, and available data reported in the literature are 

indicative of variability in sampling techniques. A summary of these is provided in 

Table 9.1 and shows that the inlet bioaerosols concentrations obtained in this study 

compare to the concentrations reported in the literature. The EA produced a Technical 

Guidance note (M9) which provides a standardised approach for bioaerosol 

monitoring at regulated facilities (Environment  Agency, 2018a); it has been argued 

that as of February 2017, 106 bio-waste treatment facilities were affected by the 

revised monitoring requirements because they had houses, people or businesses 

within 250 m of their site boundaries (Regulatory Policy Committee, 2017).  
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The results of this study indicate that the concentration of A. fumigatus was one order 

of magnitude lower than concentrations previously quoted in the literature for these 

facilities, with a maximum value of 104 cfu m-3 compared to 105 cfu m-3. The bacteria 

concentrations in this study were similar to the concentrations quoted in literature with 

a maximum value of 105 cfu m-3, there are very few cases quoted in literature in which 

concentrations were higher at 106 cfu m-3. Overall, it was observed that regardless of 

the types and volume of waste being processed, the concentrations of total mesophilic 

bacteria and Gram negative bacteria were higher than those of A. fumigatus and total 

fungi. This observation is consistent with the findings of Frederickson et al. (2013) 

and Fletcher et al. (2014) who suggested that exhaust air from the facilities they 

monitored contained more bacteria than fungi. MRFs are not expected to emit high 

concentrations of bioaersosols because they do not have organic decomposition as 

part of their process (Surrey County Council, 2017). Nonetheless, Stagg et al. (2013) 

stated that exposure to microorganisms (bacteria and fungi) in MRFs were considered 

to be of a medium level typically between 104 – 105 cfu m-3, and occasionally showed 

higher concentrations similar to those of animal houses at >105 cfu m-3, and with 

identified species including A. fumigatus which is a known allergen – similar to 

concentrations reported in this study.  

Table 9. 1: Concentration of bioaerosols in the process air reported in literature 

(updated from Fletcher et al. 2014) 

System Waste Bioaerosols Concentration 

(cfu m-3) 

Authors 

Various Various A. fumigatus  

Mesophilic bacteria 

102 – 105 

103 – 105 

Sanchez-

Monedero et 

al. (2003) 

- - Mesophilic bacteria 105 - 106 Fischer et al. 

(2008) 

- - A. fumigatus  102 – 105 Kummer and 

Thiel (2008) 

Various GW/FW Bacteria 

Gram negative bacteria 

Fungi 

103 – 105 

104 – 105 

0 – 104 

Frederickson 

et al. (2013) 

Various Various A. fumigatus 

Total bacteria 

Gram negative bacteria 

9 – 103 

103 – 104 

102 – 103 

Fletcher et al. 

(2014) 

MRF MSW A. fumigatus 

Total fungi 

Total mesophilic bacteria 

Gram negative bacteria 

103 – 104 

103 – 104 

103 – 105 

103 – 105 

This study 

FW – Food waste, GW – Green waste, MSW – Municipal Solid Waste 



- 197 - 

9.3  Review of achievable odour and bioaerosol removals 

and the criticality of design and operating parameters 

As previously established, the EA is responsible for regulating commercial waste 

management facilities and this is done through the granting of Permits to Operate. 

Part of the EA’s remit is to ensure that odours and bioaerosols emitted from waste 

facilities do not adversely impact the workers and the surrounding population. When 

making decisions as to whether a permit should be granted the EA has to consider 

whether the proposed abatement system can effectively control emissions. The 

adoption of the Industrial Emissions Directive (IED) which was transposed into UK 

legislation by The Environmental Permitting (England and Wales) (Amendment) 

Regulations in 2013 has meant that regulators such as the EA need to fully understand 

the performance of such systems and the impact of design and operating parameters. 

Table 9. 2: Achievable bioaerosols and odour removals with the range of parameters 

assessed 

 

Parameters 

Removal Efficiencies achieved (%) 

Aspergillus 

fumigatus 

Total 

fungi 

Total 

mesophilic 

bacteria 

Gram 

negative 

bacteria 

Odour 

EBRT 

11s 

16s 

70s 

 

42 – 46 

25 – 94 

34 

 

43 – 48 

32 – 93 

30 – 32  

 

28 – 70 

35 – 70 

46 – 51  

 

17 – 67 

58 – 89 

18 – 40  

 

48 – 50 

48 – 55 

64 – 76  

Moisture content 

40 – 70% 

10 – 40% 

 

79 – 85 

65 - 78 

 

76 – 83 

67 – 76  

 

71 – 76  

74 – 76  

 

67 – 68 

66 – 77  

 

44 – 63 

34 - 42 

Media depth 

0.50 m 

0.25 m 

 

58 – 89 

30 – 83  

 

56 – 89 

34 – 83  

 

22 – 90  

33 – 87  

 

39 – 82 

59 – 80   

 

- 

-  

Media type 

Old woodchips 

Peat 

Wheat straw 

New woodchips 

 

57 – 86 

88 – 99 

54 – 81 

3 – 73  

 

57 – 86 

86 – 99 

58 – 78 

10 – 76  

 

29 – 85 

65 – 96 

9 – 84 

48 – 91  

 

44 – 83 

56 – 92 

11 – 74 

52 – 81  

 

8 – 65  

22 – 87 

-38 – 48  

-17 – 56  

There is evidence in the literature supporting the potential to apply biofilters as 

abatement systems to reduce odour and VOCs emissions, and more recently 

bioaerosols emissions from commercial waste management facilities. However, to 

date only a few literature have assessed the criticality of the design and operating 

parameters of biofilters in delivering simultaneous control of odour and bioaerosols 

in the emissions from these facilities. Overall, this pilot study shows that biofilters 
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can achieve simultaneous reductions in the concentrations of odour and bioaerosols 

over the range of media design and operating parameters assessed (Table 9.2). Thus, 

the best combinations of these parameters will depend on a critical assessment of all 

parameters together since they are not mutually exclusive. 

Empty bed residence time is one of the key parameters reported as being crucial for 

the design of biofilters targeted at odour control. From table 9.2 it can be seen that in 

this study a longer EBRT (70 s) delivers the best odour REs confirming the 

information presented in the literature. This is because there is sufficient time for the 

odorous contaminants to diffuse from the gas phase into the biofilm where the resident 

microorganisms can carry out biodegradation. However, at this EBRT the biofilters 

in this study were found to achieve the lowest bioaerosols REs and the shorter EBRT 

appears to favour bioaerosols removals over odour removals, leaving an EBRT of 16 

s as ideal for both groups of contaminants based on this study. This is contrary to 

Fletcher et al. (2014) who recommended a much higher EBRT range of 40 – 100 s as 

appropriate for biofiltration of process air from biowaste treatment facilities. It has 

been suggested that different odorous pollutants have different characteristics which 

affect the time required for their absorption, adsorption and degradation (Chen and 

Hoff, 2009), thus it is imperative to have knowledge of the odour contaminants present 

in the process air against which to base selection of an adequate EBRT if simultaneous 

control of odours and bioaerosols is the goal. 

Central to the operation of biofilters is the role of the microorganisms which must be 

maintained within the biofilm layers on the surface of the media bed particles. Morales 

et al. (2003) have argued that a layer of biofilm is made of 90 – 95% water; this 

indicates the criticality of water to the biodegradation function of biofilters. Although 

the two levels of moisture content assessed in this study achieved similar levels of 

bioaerosols reduction, clearly the higher moisture range (40 – 70%) delivered the best 

reduction for odour. Thus, it is recommended from this study that the maintenance of 

moisture levels critical for odour control will simultaneously achieve significant 

removals of bioaerosols which may not necessarily be moisture content related. It 

would seem that irrespective of the moisture levels, there will always be the interplay 

of the inertial deposition, diffusional (or Brownian) deposition and flow line 

interception – forces which are responsible for bioaerosol particles impaction within 

biofilter media (Ottengraf and Konings, 1991).  
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Media depth is another key design parameter which determines the odour biofiltration 

efficiency of a biofilter. Chen and Hoff (2009) recommended a media depth of 0.25 – 

0.5 m as optimal for biofilter applied in agriculture, and argued that though higher 

media depth would deliver higher odour REs they may result in higher pressure drop 

across the biofilter media. In this study, these two (0.25 m and 0.50 m) levels of media 

depth were assessed for bioaerosols removals only. Although there were no 

statistically significant differences between the performances of these two depths, the 

0.50 m media depth showed improved control of fungi compared to bacteria while the 

0.25 m MD had better removals of bacteria than fungi.  This observation regarding 

the higher media depth has been thought to be a function of the large surface area 

available for particle impaction; airflow rates and larger particles of fungi. Although 

Fletcher et al. (2014) recommended media depths up to 3 m for woodchips-based 

biofilters, the depths in this study which also employed woodchips as media have 

demonstrated significant reduction of bioaerosol particles in the process air from the 

MRF. This study agrees with the submissions by Fletcher et al. (2014) that media 

surface should be kept level devoid of undulations and weed growth which has the 

capacity to influence biofilter functionality be manually removed during routine 

maintenance. These conditions were maintained all through the study and have proven 

to be vital to the health of biofilters.  

The last part of this study assessed the impact of media types on odour and bioaerosols 

biofiltration. It was observed that the peat media was consistent in delivering the 

highest simultaneous reduction of odour and bioaerosols possibly because of high 

content of moisture and large surface area which favour the support and growth of the 

odour degrading microbial population and the existence of disconnected dead-end 

pore spaces which may help in filtering bioaerosol particles from the process air. 

Nevertheless, peat may not be an economical option for operators because of the 

relative high cost per m3 of biofilter bed in comparison to other media types assessed 

in this study. The performance of the wheat straw was the poorest both in terms of 

bioaerosols and odour concentration reductions. Data from this study indicate that the 

performance of woodchips may improve over time especially as the one year old 

woodchips indicated better removals than the new woodchips which were freshly 

acquired for this study. Data presented by Sanchez-Monedero et al. (2003) tend to 

support this view as one month old media showed the lowest removal of 39.1% for 
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mesophilic bacteria while other biofilters had mesophilic bacteria REs > 68%, with 

the oldest media (36 months) showing the highest RE of 94.2%.  

Another vital aspect of this study that has not been extensively reported in literature 

is the impact of biofilter design and operating parameters on the size distribution of 

bioaerosol particles between the untreated process air (biofilter inlet) and treated air 

(outlet). The reference size used in this study was 3.3 µm because this is the cut off 

size which distinguishes between the larger conglomerates of cells and the smaller 

single cells which can penetrate deep into lower respiratory tract where they can pose 

health concerns (Fröhlich-Nowoisky et al., 2016). Variations of both ERBT and media 

moisture content do not appear to have obvious impacts on size distribution especially 

as the outlet samples tended to mirror the inlet samples in size distribution. With the 

media depth, the data shows that the higher media depth preferentially filtered more 

of the fungal particles; an observation which is attributed to the larger surface 

presented for particle impaction and interception, resulting in the lowered outlet 

concentration of fungi. In addition, Trunov et al. (2001) also suggested that fungal 

spores are often aerosolised in agglomerates which have a higher inertia than single 

spores and therefore are more likely to be impact on surfaces. This trend seems to be 

reversed for bacteria as the high media depth tends to release more bacterial particles. 

This is thought to be size-related as the smaller, lighter and spiny bacterial cells tend 

to remain in the flowing airstream without interception (Andersen Instruments, 1984; 

Wang et al., 2018). In addition to this is the contribution from the proportion of 

bacteria blown off from the media materials as the air flows through the filter bed 

which has high composition of microorganisms – up to 107 microorganisms/g of 

media material (Fletcher et al., 2014). Also, the particle size distribution of the outlet 

air samples from the four types of media assessed were comparable with maximum 

deposition of fungal particles on stage 4 and maximum deposition of bacterial 

particles on stages 5 and 6 of the six stage Andersen sampler. Overall, all outlet 

samples assessed against the various parameters assessed in the study had at least 50% 

of particles size in the range less than 3.3 µm. In spite of the high REs achieved in this 

study (up to 94% for A. fumigatus, up to 93% for total fungi, up to 90% for total 

mesophilic bacteria and up to 89% for Gram negative bacteria), the measured outlet 

concentrations still exceed background (upwind) concentration, and are often in 

excess of the concentration guideline provided in the EA position statement. They 

tend to be mainly composed of a size range that can penetrate deep into the lungs and 
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therefore, might be of concern to site workers and members of public living in the 

vicinity of site if these biofilters were operated at full scale.  

9.4  Review of suggested candidate biofilter for bioaerosol 

and odour abatement at enclosed waste management 

facilities 

The literature review has identified a range of design and operating parameters 

considered as critical to biofilter performance, including media pH and alkalinity, 

operating temperature, waste air flow, bed void volume, moisture content, nutrients, 

gas residence time, media moisture content. Table 9.3 shows a summary of some of 

these parameters considered to represent indicative best available technologies (BAT) 

and the operational ranges as defined by two key studies (Devinny et al., 1999 and 

Fletcher et al., 2014), and how they compare to the range reported in the current study.  

Fletcher et al. (2014), however, did point out that these parameters have been mainly 

defined on the basis of research on odour and VOC removal and so may not be critical 

for bioaerosol removal since the mechanisms of removal of both types of pollutants 

are different. 

Nevertheless, data from this study has provided more insights into aspects of biofilters 

that have not been well studied. Although some parameters in table 9.3 were outside 

the scope of this study, values reported agree with some of the operational ranges 

reported by Devinny et al. (1999) and Fletcher et al. (2014) especially for surface 

loading rates, volumetric loading rates, media pH and operational temperature. It 

would seem, therefore, that based on the data from this study the ideal biofilter to 

simultaneous control bioaerosols and odour would be a woodchips-based reactor 

operated with a minimum media depth of 0.50 m and an EBRT of 16 s maintained at 

a moisture content of between 40 and 70%, all of which lie within operational ranges 

reported in literature. This further affirms the view that some parameters critical for 

odour reduction may not be as critical to bioaerosols reduction. 

It is important to note that many parameters may impact on the results of biofiltration 

studies, and in some cases direct correlations have been established. However, a 

knowledge of all of these is required to interpret the results of any biofiltration studies. 

The ranges presented in table 9.3 reflect recommended values based on this study; 

however, it is not impossible to achieve biofilter effectiveness for both bioaerosols 

and odour reductions outside the ranges reported in this study. 
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Table 9. 3: Suggested design and operational criteria for biofilters  

Design and Operating 

Parameters 

Devinny et al. (1999) Fletcher et al. (2014) This study 

Media type  Biologically active; organic 

matter content >60% 

Woodchips 

Media porosity 50% 75 – 90%  Minimum of 60% 

Media bulk density - - 225 Kg m-3 

Media moisture content 60% 60 – 75% 40 – 70% 

Media depth (height) 1 – 1.5 m Up to 3 m for woodchips > 0.50 m 

Surface loading 5 - 500 m3 m-2 hr-1 <500 m3 m-2 hr-1 26 - 164 m3 m-2 hr-1 

Volumetric loading 5 - 500 m3 m-3 hr-1 5 - 500 m3 m-3 hr-1 52 - 327 m3 m-3 hr-1 

Inlet air temperature 15 - 30ºC 15 - 30ºC 13 - 27ºC 

Outlet air temperature 15 - 30ºC <50ºC 11 - 22ºC 

Media temperature 15 - 30ºC - 11 – 23ºC 

Media pH 6 - 8 6 – 8.5 5.5 – 8.0 

Mean effective gas 

residence time 

15 – 60 seconds 40 – 100 seconds 10 – 70 seconds 

Air distribution  Top or bottom loaded using 

plenum 

Using plenum chamber or 

distributed pipe work; up-flow 

or down-flow configuration 

Through a plenum, up-flow 

configuration 
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Also, biofilter testing often occurs within a few minutes or hours and in controlled 

environments; however, these are systems that are designed to run for several months 

(and even years), and so may be exposed to a range of environmental changes and 

variations (including temperatures, humidity, airflow rates, odour/VOCs 

concentrations and bioaerosol particle concentrations). Adding to this complexity is 

the technical variations in design as well as the fluctuations in the maintenance 

regimes put in place by operators. Thus, the results are useful in providing insights 

into the basic operation of biofilter systems. 

As already stated, before the EA grants Permits to Operate to new facilities, it 

considers the kind of abatement system to be installed and whether these have the 

capacity to effectively control all emissions. However, many bio-waste treatment 

facilities across the UK are already using biofilters with varying degrees of success. 

Thus, there was the notion as to whether existing biofilters needed to be modified to 

reflect parameters which allow for the highest levels of performance or whether 

entirely new systems were required to effectively deal with odour and bioaerosols 

emissions. This study has demonstrated that the existing range of parameters 

recommended in the literature, particularly those of Devinny et al. (1999) and Fletcher 

et al. (2014) have proven to achieve significant reductions of both bioaerosols and 

odour. Thus, there is no need to alter or modify the design and operating parameters 

of existing biofilters if these conform to the recommendations. This is because 

biofiltration of bioaerosols seems to be a passive function of biofilters during active 

biofiltration of odours. Hence, even though design and operating parameters critical 

for odour biofiltration may not be as critical for bioaerosols, there will always be 

simultaneous reduction of bioaerosols. However, the caveat with this is that there may 

be extra contamination of the outlet air with microbial populations resident within the 

biofilter which may be completely different from the species entering it. Nonetheless, 

this is a significant contribution to the existing literature and insight especially for 

waste management regulators and operators who have been looking forward to clear 

guidance on the key design and operating parameters together with maintenance 

requirements for effectively removing odour and bioaerosols from process air.  
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9.5  Applicability of results 

The application of a pilot scale biofilter in this study has provided new insights into 

bioaerosols removal including relationships between operating parameters, removal 

efficiency, size distribution of microorganism in air and potential for emissions. The 

application of the pilot scale biofilter within an MRF facility provided an opportunity 

to collect data that is closer to real-world biofilter operation than a highly controlled 

laboratory study. However it should be noted that this brings with it some 

uncertainties and limitations and hence the results of this study may not allow for 

generalisation of conclusions for various reasons.  

Although biofilters have been applied to MBT plants (Stagg et al., 2013), they are less 

common in MRF plants. As stated in section 9.2, these facilities are generally fairly 

clean and do not have the levels of organic dust and odour found in facilities such as 

in-vessel composting (IVC) (Surrey County Council, 2017) where biofilters are likely 

to be better suited. The location of the pilot system (away from the waste heap behind 

the back-push wall) is another factor which could have impacted on the results 

especially as this area was relatively cleaner compared to other areas within the waste 

hall. For these reasons, the measured bioaerosol concentrations have to be considered 

relative to those levels typical in facilities that generate much higher concentrations, 

and it is not clear whether the same findings would be apparent under much higher 

bioaerosols loads. Nonetheless, this study was based in this MRF to enable the 

evaluation of the system with the real source of bioaerosols associated with this type 

of waste being processed, and hence the findings are likely to be applicable to other 

comparable MRF facilities.  

Secondly, the bioaerosol sampling methods employed in this study were targeted at 

assessing total bioaerosol loads removal by biofilters, and bioaerosols size 

distributions, rather than specifically identified pathogenic species which would have 

been more relevant for occupational exposure risk assessment. Literature suggests that 

some of the species released at the outlet may in fact have originated from within the 

biofilter (Martens et al., 2001; Frederickson et al., 2013) and so techniques such as 

this that focus more on the general microbial concentrations may miss out important 

trends that should be studied complementarily. It was also technically infeasible to 

collect inlet and outlet samples concurrently; this would have given a better prediction 

of bioaerosol removal. Although the time difference between inlet and outlet sample 
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collection was minimised as far as practical, some of the bioaerosol concentration 

variations may be due to fluctuating levels of activities within the waste hall on a short 

timescale. 

Also, it is recommended that air samples for odour analysis be collected using the 

Sampling Lung Technique which entails direct air collection through Teflon lined 

tubing into a gas bag placed within a rigid, leak proof container using a leak-free pump 

(Bokowa, 2008; Bokowa, 2009). This technique allows the gas bag to be filled up at 

a rate that equals the rate at which the vacuum in the container is evacuated, and in 

the process only the Teflon tube and the gas bag are in contact with the air sample (da 

Rocha Carmo Junior et al., 2010). However, it was not economically feasible to adopt 

this sampling method because of the cost associated with acquiring the sampling lung 

kit. Hence, the improvisation by direct sampling into the gas bags at the top of each 

biofilter/plenum. A minimum of duplicate samples is expected for odour analysis 

(Hove et al., 2016), however, this study was limited to single samples due to cost. 

This research takes into consideration that smaller sample sizes have been reported to 

result in a much wider confidence interval and more variability (McGinley and 

McGinley, 2006). 

All pilot-scale biofilters in this study were carefully and regularly monitored to ensure 

they were operating optimally during the investigations, especially regarding water 

content and prevention of media compaction. As such the results may not allow 

conclusions to be drawn regarding poorly maintained systems. Although the biofilters 

were fed with air containing significantly high concentrations of bioaerosols, there 

were occasional operational interruptions (e.g. waste hall cleaning, conveyor shut 

down, decreased machine/vehicle activities) during sampling which could have varied 

the measured inlet concentrations (Stagg et al., 2013). Thus, the data presented in this 

thesis especially for bioaerosols are indicative of a high degree of variability between 

the replicate samples taken for each bioaerosol group at each point as shown by the 

error bars. This suggests that there is a high degree of measurement uncertainty, which 

may have led to the variable results recorded in this study. As such, the data presented 

here gives an insight into the likely influence of operating parameters, however further 

research is required to make more specific conclusions on the performance of 

biofilters, and particularly the mechanisms for bioaerosols removal. 



- 206 - 

Chapter 10 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

10.1  Conclusions  

This study was conducted to provide answers to some key questions and to address 

the gaps in knowledge required to define a robust set of design and operating criteria 

for biofilters to optimise the simultaneous removal of odour and bioaerosols from the 

process air of waste management facilities as presented in chapter one. In this study, 

a pilot biofiltration system consisting of four plastic reactors was constructed and 

tested at a live MRF which acted as a source of polluted process air with detectable 

levels of odour and bioaerosols concentrations.   

The biofiltration systems were sampled over a period of approximately 14 months 

(May 2016 to July 2017) during which the impacts of the parameters of interest were 

tested. Analysis was undertaken either for bioaerosols alone or bioaerosols and odour 

(in OUE m-3). Four groups of bioaerosols were selected to cover the range specified 

in literature; this include Aspergillus fumigatus, total fungi, total mesophilic bacteria 

and Gram negative bacteria. This site was chosen because of the potential for 

significant odour and bioaerosols emissions based on previous unpublished study and 

a report of independent odour consultant on a study conducted on site. The key 

parameters that were considered were the impact of gas residence time, media 

moisture content and media types on simultaneous reduction of bioaerosols and odour. 

The impact of media depth on the reduction of bioaerosols was also assessed.  It is 

important to state that apart from the parameters which were investigated, all of the 

pilot scale biofilters sampled as part of this study were maintained within operational 

ranges reported in literature, especially with regards to media condition and particle 

size, surface loading rates, volumetric loading rates, media pH and operational 

temperature.  

Although a number of specific observations and conclusions have been made in each 

of the result chapters, the key conclusions of this study are arranged under three 

themes and presented below. 
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Emissions of bioaerosols and odour from waste management facilities 

 The concentration of bioaerosols in the process air (as indicated by the inlet 

air samples) varied from visit to visit in the range of 103 – 105 cfu m-3. This 

was thought to be due to the complex interactions between the specific process 

operating conditions, the types of waste being processed and the configuration 

of the air ventilation system installed on the site.  

 The concentration of odour in the process air also varied between visits 

typically ranging from 94 to 489 OUE m-3, although it remained fairly stable 

during the EBRT impact assessment study at 152 OUE m-3. It would appear 

that the low inlet odour concentration is a function of factors such as sampling 

location, the odour sampling method employed, and the type of odour 

sampling bags used. It could also be due to the fact that the ventilation systems 

were fully operational throughout the sampling period. 

 Overall, the data shows that regardless of the types and volume of waste being 

processed, the concentrations of total mesophilic bacteria and Gram negative 

bacteria were higher than those of A. fumigatus and total fungi. The results of 

this study indicate that inlet A. fumigatus concentration was one order of 

magnitude lower than the concentrations quoted in the literature for these 

facilities, with a maximum value of 104 cfu m-3 compared to 105 cfu m-3. The 

inlet bacteria concentrations in this study was similar to concentrations quoted 

in literature with a maximum value of 105 cfu m-3, only in few cases were 

figures quoted in literature higher at 106 cfu m-3.  

 Inlet odour concentrations showed negative correlations with the four groups 

of bioaerosols assessed. Comparing the bioaerosol groups, A. fumigatus 

showed a strong positive correlation with total fungi and with mesophilic 

bacteria, and a weak negative correlation with Gram negative bacteria. 

However, due to the limited samples collected in the study, it cannot be 

concluded whether or not these correlations are substantial.  

Biofilter emissions and reduction efficiencies of bioaerosols and odour 

 The concentration of bioaerosols and odour emitted from the pilot scale 

biofilters varied from visit to visit, and between the biofilters. For most cases, 

the inlet bioaerosol concentrations were statistically significantly higher than 

the outlet concentrations. 
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 Overall, this study shows that biofilters designed and operated for odour 

degradation can also achieve significant bioaerosol reductions in the process 

air of waste treatment facilities, provided that the inlet concentration is high - 

which is the case for most waste treatment facilities. Thus, biofilters can be 

effective for the control of potentially pathogenic species in the emissions 

from such treatment facilities. 

 Based on data from this study, the performance of these pilot scale biofilters 

in terms of bioaerosols reduction efficiency was variable from visit to visit and 

between the biofilters. Overall, the data suggests that bioaerosol removal 

efficiency may not always be a good indicator of biofilter performance and 

should be evaluated in combination with other biofilter performance 

indicators, such as bioaerosol emission concentration. This is because even 

though the biofilters achieved high bioaerosol removals, the emitted 

concentrations still exceeded background concentrations and the EA guideline 

limits. 

 The data showed that differences may exist between the ability of biofiltration 

systems to deal with fungi and bacteria, as there is much more confidence with 

the performance for bacteria than fungi.  

 Bioaerosols removals may deteriorate at low inlet concentration resulting in a 

net bioaerosol emitting potential of biofilters, and a proportion of the emitted 

bioaerosols may be originating from the microbial population colonising the 

media surfaces, resulting in possible potential differences in species 

composition between contaminated process (inlet) and treated (outlet) air 

samples.  

 Overall, particle size distribution varied between the inlet and outlet air, with 

the outlet having predominantly greater proportion of smaller size particles 

(3.3 µm) that represent greater human health risk as they can penetrate the 

respiratory system more deeply, and even to the lung alveoli where gaseous 

exchange occurs. However, the outlet concentrations were low, and further 

reduction would be achieved by the combined effect of wind dilution and 

dispersal as well as exposure to environmental stress from temperature, 

desiccation and oxygen in full scale applications.  
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Impact of biofilter design and operating parameters on bioaerosols and odour 

reductions 

 Based on the data from this study, it appears that variations in gas residence 

time may not impact on the bioaersosols removals; thus, gas residence time 

may not be critical for bioaerosol control. However, longer EBRT delivered 

significant (p < 0.05) reductions of odour than the shorter EBRT, implying 

that the longer EBRT accommodates the time required for both odorous 

contaminants diffusion transfer from the gas phase into the biofilm, and their 

subsequent biodegradation within the biofilm layer on the media materials, as 

established in literature. 

 There appears to be no media moisture content dependent differences (p > 

0.05) in the bioaerosols reductions reported in this study. On the other hand, 

although not statistically significant (p > 0.05), differences did exist in odour 

performance between the two groups, with the higher moisture content (40 – 

70%) consistently showing better removals (odour RE range of 44 – 63%) than 

media moisture content in the range of 10 – 40%. 

 The two media depths (0.50 m and 0.25 m) investigated showed potential 

capacity to control bioaerosols emissions from the process air of the MRF in 

this study, and possibly other waste treatment facilities. Both depths achieved 

significant (p < 0.05) reductions of the inlet concentrations of bioaerosols as 

measured at the outlet. Although there were no statistically significant 

differences between the performances of both MDs, the 0.5 m media depth 

showed improved control of fungi than bacteria while the 0.25 m MD had 

better removals of bacteria than fungi. The observation with the high media 

depth has been thought to be a function of the large surface available for 

particles impaction; airflow rates and larger particles of fungi. 

 From the data, there was variation in the performance of the different media 

types assessed. Peat consistently delivered the highest simultaneous reduction 

of odour and bioaerosols; however, this was a much more expensive option. 

The performance of the wheat straw was the poorest both in terms of 

bioaerosols and odour concentration reductions. Woodchips appeared to be 

the preferred choice particularly because it is relatively cost effective and 

offered satisfactory odour and bioaerosol removals (though not as high as 

peat). 
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 Data from this study also indicate that the performance of woodchips may 

improve over time especially as the one year old woodchips indicated better 

removals of odour and bioaerosols than the new woodchips which were 

freshly acquired for this study. 

 Overall, data from this study suggest that the ideal biofilter to simultaneously 

control bioaerosols and odour would be a woodchips-based reactor operated 

with a minimum media depth of 0.50 m and an EBRT of 16 s maintained at a 

moisture content level of between 40 and 70%, all of which lie within 

operational ranges reported in literature. 

10.2  Knowledge gaps and future research 

This research has produced some important contributions to the current knowledge on 

gaseous emissions from enclosed waste management facilities, particularly MRFs, 

and has also generated valuable insights regarding the criticality of key parameters on 

the performance of biofilters in terms of emissions control potential. Nonetheless, 

some knowledge gaps have been identified which require further research to provide 

a more comprehensive understanding of the workings of biofilters to effectively 

deliver simultaneous control of all emissions. These are presented in this section. 

 Information from this study indicated that biofilters demonstrated the potential 

to simultaneous control odour and bioaerosols. However, it is still unclear 

whether the species of bioaerosols at the inlet are the same species leaving the 

biofilters at the outlet. Thus, it becomes imperative to conduct research 

employing quantitative polymerase chain reaction (qPCR) and next-

generation sequencing (NGS) to compare the species composition of both inlet 

and outlet air to determine whether or not resident microbial populations are 

being emitted from biofilters. 

 A key challenge in this study was the limited sample size which played a role 

in limiting the significance of some of the statistical comparisons conducted. 

Also, this study was conducted at pilot scale which has the bias of the 

controlled environment. Thus, a more extensive study is required with full 

scale biofilters in a live enclosed biowaste treatment facility to assess whether 

or not the results obtained in this study can be reproduced. 
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 This study compared the performance of three media types – peat, wheat straw 

and woodchips (one month old and one year old). However, further research 

is required to evaluate the performance of media mixes and combinations of 

different media on the simultaneous reduction of bioaerosols, odour and 

VOCs. 

 This study also provided significant information regarding the performance of 

some design and operating parameters – gas residence time, media moisture 

content, media depth, media types as well as inlet bioaerosols concentration. 

However, the data did not provide clear insights into the performance of 

parameters such as biofilter temperature, media pH, absorptivity and oxygen 

limitation, contaminant load and surface load. Thus, further research is 

required to assess how critical these parameters are to biofiltration of 

bioaerosols, odour and VOCs. This will ensure that boundary conditions 

between optimally operated and poorly operated biofilters are clearly 

established. 

 As identified in the study by Fletcher et al. (2014), there seems to be a 

contradiction in information on ammonia toxicity within biofilters. 

Unfortunately, it was not possible to investigate this aspect of biofilter 

operation which is of concern especially at composting sites. Thus, further 

research is required to establish how robust biofilters are with respect to 

dealing with elevated ammonia concentrations and to determine how critical 

ammonia toxicity is to biofilter performance. 

 Data obtained in this study suggest that biofilters can be net emitters of 

biofilters at low inlet concentration, and even with the high removals achieved 

at high inlet concentrations the emitted concentration still exceed the guideline 

provided by the UK Environment Agency. Further research is required to 

evaluate the potential of using post biofiltration scrubbers to remove 

bioaerosols. 
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Appendix A 

DATA SET FOR CHAPTER 4 

Table A. 1: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 1 – 6 (June to August 2016 [summer] – indoors; n = 2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

 BF1 9692.6 111.6 853.4 310.6 11888.2 538 1096 349 11342.8 1815.6 4014.2 2780.1 6894 1484.2 912.3 225.6 

BF2 9692.6 111.6 1488.2 95.7 11888.2 538 1967 13.3 11342.8 1815.6 3692 1853.2 6894 1484.2 1113.7 79.1 

BF3 9692.6 111.6 1074.2 351.4 11888.2 538 1732 617.2 11342.8 1815.6 2897.5 299.8 6894 1484.2 1004.2 125.8 

BF4 9692.6 111.6 2170.2 147.4 11888.2 538 2544.2 263.2 11342.8 1815.6 4461.1 114.1 6894 1484.2 2366.9 167.4 

 

V
is

it
 2

 BF1 12312.8 1478.3 3510.0 682.9 14977.7 2073.9 4084.8 752.9 53434.1 5782.6 11238.5 1624.9 2432.9 265.7 2393.4 388.1 

BF2 12312.8 1478.3 2694.9 164.9 14977.7 2073.9 3177.3 247.3 53434.1 5782.6 4121.9 1928.1 2432.9 265.7 2554.2 938.6 

BF3 12312.8 1478.3 1629.0 1076.1 14977.7 2073.9 2053.6 1235.2 53434.1 5782.6 6217.9 896.2 2432.9 265.7 2039.5 878.7 

BF4 12312.8 1478.3 2811.0 1801.5 14977.7 2073.9 3667.3 2397.9 53434.1 5782.6 11026.0 1522.5 2432.9 265.7 3142.0 49.1 

 

V
is

it
 3

 

 

BF1 10427.6 1996.4 729.7 197.4 13412.6 938.3 847.2 263.6 5901.1 107.4 1041.6 281.1 24666.1 619.6 5275.7 1621.6 

BF2 10427.6 1996.4 1579.5 264.9 13412.6 938.3 1956.7 536.0 5901.1 107.4 4248.2 2684.7 24666.1 619.6 3720.9 1769.0 

BF3 10427.6 1996.4 564.5 41.2 13412.6 938.3 645.8 3.7 5901.1 107.4 1400.2 278.6 24666.1 619.6 1761.5 194.9 

BF4 10427.6 1996.4 13941.7 10039.4 13412.6 938.3 15580.4 11442.4 5901.1 107.4 4721.8 990.7 24666.1 619.6 3595.4 921.9 

 

V
is

it
 4

 BF1 7376.4 2800.9 565.4 50.0 9303.9 3053.3 977.1 77.4 22913.5 1266.8 9031.8 4412.5 6420.5 184.8 2311.0 1089.4 

BF2 7376.4 2800.9 353.4 99.9 9303.9 3053.3 761.5 277.3 22913.5 1266.8 798.6 25.0 6420.5 184.8 3477.0 624.7 

BF3 7376.4 2800.9 1372.8 487.2 9303.9 3053.3 1948.8 642.1 22913.5 1266.8 2940.0 259.9 6420.5 184.8 4620.2 432.3 

BF4 7376.4 2800.9 4508.9 65.0 9303.9 3053.3 5127.2 124.9 22913.5 1266.8 5759.7 489.7 6420.5 184.8 3379.9 187.5 

 

V
is

it
 5

 BF1 8125.4 542.2 851.6 104.9 10493.0 1321.8 1572.5 99.9 13164.3 9372.3 1671.4 1009.5 19136.1 13714.8 4812.8 2003.9 

BF2 8125.4 542.2 867.5 72.4 10493.0 1321.8 1404.6 177.3 13164.3 9372.3 2021.2 1349.3 19136.1 13714.8 5130.8 2478.6 

BF3 8125.4 542.2 1296.8 329.8 10493.0 1321.8 1750.9 357.3 13164.3 9372.3 1245.6 152.5 19136.1 13714.8 8074.2 2383.7 

BF4 8125.4 542.2 996.5 259.9 10493.0 1321.8 1772.1 232.4 13164.3 9372.3 2618.4 1479.2 19136.1 13714.8 6349.8 554.7 

 

V
is

it
 6

 BF1 3800.4 1546.7 909.9 127.4 4763.3 2183.8 1233.2 224.9 12733.3 1176.8 1584.8 277.3 5549.5 1081.9 4478.8 1836.5 

BF2 3800.4 1546.7 1084.8 124.9 4763.3 2183.8 1174.9 202.4 12733.3 1176.8 2028.3 489.7 5549.5 1081.9 2282.7 494.7 

BF3 3800.4 1546.7 765.0 227.4 4763.3 2183.8 1121.9 482.2 12733.3 1176.8 4819.8 924.5 5549.5 1081.9 7537.1 4132.8 

BF4 3800.4 1546.7 1558.3 75.0 4763.3 2183.8 1756.2 100.0 12733.3 1176.8 4531.8 2166.3 5549.5 1081.9 3222.6 689.6 

SD – Standard Deviation 
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Table A. 2: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 7 – 12 (September 2016 to February 2017 - outdoors; n = 

2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 7

 BF1 1070.7 404.7 141.4 50.0 1480.6 584.7 650.2 619.6 4996.5 3393.1 1477.0 639.6 3641.4 1161.8 1929.3 864.5 

BF2 1070.7 404.7 123.7 174.9 1480.6 584.7 282.7 349.8 4996.5 3393.1 1731.5 384.7 3641.4 1161.8 1291.6 312.3 

BF3 1070.7 404.7 300.4 174.9 1480.6 584.7 494.7 100.0 4996.5 3393.1 1001.8 862.0 3641.4 1161.8 1235.0 427.2 

BF4 1070.7 404.7 194.3 75.0 1480.6 584.7 229.7 75.0 4996.5 3393.1 2962.9 1106.9 3641.4 1161.8 2258.0 180.0 

 

V
is

it
 8

 BF1 1358.7 407.2 88.3 75.0 1816.3 539.7 88.3 75.0 9323.3 1017.0 1733.2 227.4 2247.4 799.5 1954.1 539.7 

BF2 1358.7 407.2 123.7 75.0 1816.3 539.7 123.7 75.0 9323.3 1017.0 1067.2 404.8 2247.4 799.5 853.4 207.4 

BF3 1358.7 407.2 88.3 75.0 1816.3 539.7 106.0 49.9 9323.3 1017.0 1390.5 307.4 2247.4 799.5 2358.7 532.2 

BF4 1358.7 407.2 70.7 50.0 1816.3 539.7 123.7 124.9 9323.3 1017.0 2242.1 27.5 2247.4 799.5 1634.3 1106.9 

 

V
is

it
 9

 

 

BF1 961.1 149.9 88.4 25.0 1194.4 279.8 88.4 25.0 2623.7 467.3 927.6 47.4 500.0 507.3 568.9 49.9 

BF2 961.1 149.9 53.0 25.0 1194.4 279.8 70.7 50.0 2623.7 467.3 2129.0 1396.7 500.0 507.3 1215.5 714.6 

BF3 961.1 149.9 17.7 25.0 1194.4 279.8 35.4 50.0 2623.7 467.3 1102.5 50.0 500.0 507.3 1837.5 629.7 

BF4 961.1 149.9 70.7 50.0 1194.4 279.8 70.7 50.0 2623.7 467.3 2136.1 932.0 500.0 507.3 944.2 485.8 

 

V
is

it
 1

0
 BF1 675.0 304.8 583.1 124.9 908.1 284.8 583.1 124.9 653.7 224.9 1070.7 459.8 1703.2 899.5 1180.2 55.0 

BF2 675.0 304.8 800.4 232.4 908.1 284.8 818.1 207.4 653.7 224.9 1535.4 102.5 1703.2 899.5 1484.1 169.8 

BF3 675.0 304.8 636.1 50.0 908.1 284.8 671.4 50.0 653.7 224.9 1597.2 179.9 1703.2 899.5 945.3 687.1 

BF4 675.0 304.8 690.9 177.4 908.1 284.8 779.2 152.4 653.7 224.9 1600.7 1209.3 1703.2 899.5 1639.6 194.9 

 

V
is

it
 1

1
 BF1 106.0 149.9 17.7 25.0 159.0 174.9 17.7 25.0 1574.2 42.4 925.8 459.8 1033.6 457.3 2917.0 2805.9 

BF2 106.0 149.9 17.7 25.0 159.0 174.9 70.7 50.0 1574.2 42.4 1823.4 1019.4 1033.6 457.3 2730.6 236.1 

BF3 106.0 149.9 123.7 124.9 159.0 174.9 176.7 149.9 1574.2 42.4 1952.3 22.5 1033.6 457.3 2061.8 452.3 

BF4 106.0 149.9 17.7 25.0 159.0 174.9 53.0 25.0 1574.2 42.4 1726.2 1336.8 1033.6 457.3 1590.1 534.7 

 

V
is

it
 1

2
 BF1 53.0 25.0 53.0 75.0 176.7 99.9 53.0 75.0 1591.9 667.2 906.4 72.5 1155.5 279.9 925.8 199.8 

BF2 53.0 25.0 35.4 50.0 176.7 99.9 35.4 50.0 1591.9 667.2 1171.4 702.1 1155.5 279.9 855.1 759.6 

BF3 53.0 25.0 141.4 50.0 176.7 99.9 141.4 50.0 1591.9 667.2 1051.3 427.3 1155.5 279.9 461.1 202.4 

BF4 53.0 25.0 159.0 25.0 176.7 99.9 159.0 25.0 1591.9 667.2 802.1 684.6 1155.5 279.9 856.9 562.1 

SD – Standard Deviation 
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Table A. 3: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 13 – 16 (February to March 2017 [winter] – indoors; n = 

2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

3
 BF1 11441.7 6346.4 123.7 25.0 14878.1 8647.6 176.7 50.0 13630.8 4170.2 2841.0 1694.1 5915.2 2483.6 2060.1 489.7 

BF2 11441.7 6346.4 964.7 914.5 14878.1 8647.6 1805.7 2003.9 13630.8 4170.2 1268.6 25.0 5915.2 2483.6 2507.1 1266.8 

BF3 11441.7 6346.4 123.7 25.0 14878.1 8647.6 194.4 124.9 13630.8 4170.2 2669.7 1906.4 5915.2 2483.6 2197.9 664.6 

BF4 11441.7 6346.4 300.4 224.9 14878.1 8647.6 424.0 249.9 13630.8 4170.2 2680.2 542.2 5915.2 2483.6 1574.2 47.5 

 

V
is

it
 1

4
 BF1 21404.6 677.1 8063.6 634.7 40706.8 5412.0 11379.9 517.2 60282.7 5327.1 25712.1 16033.6 99940.0 11233.7 26971.7 13547.5 

BF2 21404.6 677.1 23766.8 6611.3 40706.8 5412.0 36012.4 12825.4 60282.7 5327.1 46448.8 13122.7 99940.0 11233.7 41523.0 30423.1 

BF3 21404.6 677.1 9973.5 3485.6 40706.8 5412.0 13259.7 3650.5 60282.7 5327.1 29556.6 6723.8 99940.0 11233.7 36708.5 4869.8 

BF4 21404.6 677.1 1773.9 129.9 40706.8 5412.0 3524.8 517.2 60282.7 5327.1 19655.5 8927.5 99940.0 11233.7 9570.7 1316.8 

 

V
is

it
 1

5
 

 

BF1 10178.5 2811.0 3692.6 329.8 12083.1 2930.9 5289.8 1009.4 47473.5 1804.0 19122.0 8292.9 25722.6 20995.8 13814.5 3265.7 

BF2 10178.5 2811.0 5975.3 50.0 12083.1 2930.9 7952.3 257.4 47473.5 1804.0 18780.9 9634.6 25722.6 20995.8 31812.7 13632.5 

BF3 10178.5 2811.0 3768.6 612.1 12083.1 2930.9 5008.9 442.3 47473.5 1804.0 18616.6 12275.7 25722.6 20995.8 34302.2 7058.6 

BF4 10178.5 2811.0 3243.9 124.9 12083.1 2930.9 4466.5 334.8 47473.5 1804.0 32141.4 15516.4 25722.6 20995.8 4717.3 3987.8 

 

V
is

it
 1

6
 BF1 53044.2 12945.3 37973.5 2191.3 62655.5 16748.2 46558.3 754.6 95627.2 35377.8 58199.7 18087.4 27913.5 6533.9 18390.5 9862.0 

BF2 53044.2 12945.3 35683.8 1736.6 62655.5 16748.2 43210.3 1651.6 95627.2 35377.8 50742.1 16590.8 27913.5 6533.9 11917.0 1506.6 

BF3 53044.2 12945.3 30533.6 4612.5 62655.5 16748.2 34137.8 4327.6 95627.2 35377.8 23980.6 937.0 27913.5 6533.9 10063.6 1714.0 

BF4 53044.2 12945.3 33738.5 6876.2 62655.5 16748.2 37892.3 5729.3 95627.2 35377.8 70263.3 36247.4 27913.5 6533.9 13111.3 4664.9 

SD – Standard Deviation 
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Results of Linear Regression  between log10 of bioaerosol inlet concentrations 

and removal efficiencies 

(a) Aspergillus fumigatus 
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(b) Total fungi 
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(c) Total mesophilic bacteria 
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(d) Gram negative bacteria 
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Table A. 4: Bioaerosol particles (cfu) collected in each stage of the six-stage 

Andersen sampler (number derived from total cfu per stage for visits 1 – 6 

and 13 – 16). 

 Stage BG IN BF1 BF2 BF3 BF4 

Aspergillus fumigatus 

 1 47.0 2631.3 268.1 193.4 234.2 261.8 

2 71.2 1464.2 296.7 220.6 247.4 492.1 

3 88.8 1780 412.8 358.9 342.1 610.6 

4 29.6 3595 1605.4 1258 1366.6 1734.5 

5 33.1 1889.3 916.5 642.7 849.5 1543.4 

6 43.3 331.9 277.4 228 190.5 392 

Total 313 11691.7 3776.9 2901.6 3230.3 5034.4 

Total fungi 

 1 68.7 3384.2 363.2 250.1 330.8 351.6 

2 81.3 1856 413.6 312.5 338.3 611.4 

3 114.7 2215.3 570 487 454.6 782.4 

4 47.1 4902.3 1965.1 1493.2 1632.4 2000 

5 50.5 2388.5 1074.2 727.2 951.3 1697.9 

6 61.6 424.5 392.3 317.3 258.6 486 

Total 423.9 15170.8 4778.4 3587.3 3966 5929.3 

Total mesophilic bacteria 

 1 214.7 4818 486.3 541.5 406.3 477.7 

2 95.2 2621.9 709 487.1 507.5 619.5 

3 94.3 2632 642.6 389 624.2 791.7 

4 105.4 3441.5 1022.3 702.2 602.8 971.9 

5 137.0 6877.9 3431.3 1905.8 2155.2 3896.2 

6 455.1 6345.9 3104.3 1093.1 2155 4198.2 

Total 1101.7 26737.2 9395.8 5118.7 6451 10955.2 

Gram negative bacteria 

 1 237.7 1405.3 317.1 245.8 506.9 338.3 

2 653.7 1057.1 357 341.8 388.8 480.4 

3 131.2 2260.9 458.7 377.9 371.8 329 

4 208.8 2248.3 670.2 619.6 616.6 579.9 

5 228.7 5853.2 2258 811.2 3023 919.9 

6 357.6 3107.9 1220.2 981.3 1667.4 1067.9 

 Total 1817.7 15932.7 5281.2 3377.6 6574.5 3715.4 

BG – Background; IN - Inlet 
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Appendix B 

DATA SET FOR CHAPTER 5 

Table B. 1: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 1 – 4 (February and March 2017; n = 2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

 BF1 11441.7 6346.4 123.7 25.0 14878.1 8647.6 176.7 50.0 13630.8 4170.2 2841.0 1694.1 5915.2 2483.6 2060.1 489.7 

BF2 11441.7 6346.4 964.7 914.5 14878.1 8647.6 1805.7 2003.9 13630.8 4170.2 1268.6 25.0 5915.2 2483.6 2507.1 1266.8 

BF3 11441.7 6346.4 123.7 25.0 14878.1 8647.6 194.4 124.9 13630.8 4170.2 2669.7 1906.4 5915.2 2483.6 2197.9 664.6 

BF4 11441.7 6346.4 300.4 224.9 14878.1 8647.6 424.0 249.9 13630.8 4170.2 2680.2 542.2 5915.2 2483.6 1574.2 47.5 

 

V
is

it
 2

 BF1 21404.6 677.1 8063.6 634.7 40706.8 5412.0 11379.9 517.2 60282.7 5327.1 25712.1 16033.6 99940.0 11233.7 26971.7 13547.5 

BF2 21404.6 677.1 23766.8 6611.3 40706.8 5412.0 36012.4 12825.4 60282.7 5327.1 46448.8 13122.7 99940.0 11233.7 41523.0 30423.1 

BF3 21404.6 677.1 9973.5 3485.6 40706.8 5412.0 13259.7 3650.5 60282.7 5327.1 29556.6 6723.8 99940.0 11233.7 36708.5 4869.8 

BF4 21404.6 677.1 1773.9 129.9 40706.8 5412.0 3524.8 517.2 60282.7 5327.1 19655.5 8927.5 99940.0 11233.7 9570.7 1316.8 

 

V
is

it
 3

 

 

BF1 10178.5 2811.0 3692.6 329.8 12083.1 2930.9 5289.8 1009.4 47473.5 1804.0 19122.0 8292.9 25722.6 20995.8 13814.5 3265.7 

BF2 10178.5 2811.0 5975.3 50.0 12083.1 2930.9 7952.3 257.4 47473.5 1804.0 18780.9 9634.6 25722.6 20995.8 31812.7 13632.5 

BF3 10178.5 2811.0 3768.6 612.1 12083.1 2930.9 5008.9 442.3 47473.5 1804.0 18616.6 12275.7 25722.6 20995.8 34302.2 7058.6 

BF4 10178.5 2811.0 3243.9 124.9 12083.1 2930.9 4466.5 334.8 47473.5 1804.0 32141.4 15516.4 25722.6 20995.8 4717.3 3987.8 

 

V
is

it
 4

 BF1 53044.2 12945.3 37973.5 2191.3 62655.5 16748.2 46558.3 754.6 95627.2 35377.8 58199.7 18087.4 27913.5 6533.9 18390.5 9862.0 

BF2 53044.2 12945.3 35683.8 1736.6 62655.5 16748.2 43210.3 1651.6 95627.2 35377.8 50742.1 16590.8 27913.5 6533.9 11917.0 1506.6 

BF3 53044.2 12945.3 30533.6 4612.5 62655.5 16748.2 34137.8 4327.6 95627.2 35377.8 23980.6 937.0 27913.5 6533.9 10063.6 1714.0 

BF4 53044.2 12945.3 33738.5 6876.2 62655.5 16748.2 37892.3 5729.3 95627.2 35377.8 70263.3 36247.4 27913.5 6533.9 13111.3 4664.9 

SD – Standard Deviation 
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Table B. 2: Bioaerosol particles (cfu) collected in each stage of the six-stage 

Andersen sampler (number derived from total cfu per stage for visits 1 - 2 

[all BFs operated at 16 s]). 

 Stage BG IN BF1 BF2 BF3 BF4 

Aspergillus fumigatus 

 1 5.0 219.7 43.1 103.1 36.7 8.0 

2 6.0 135.1 54.9 111.5 46.3 8.0 

3 6.0 168.7 47.3 170.3 54.8 13.1 

4 27.4 801.6 153.4 489.2 244.5 32.5 

5 16.1 442.4 119.4 413.4 143.0 36.7 

6 3.0 91.6 45.3 112.3 46.2 19.1 

Total 63.5 1859.1 463.4 1399.8 571.5 117.4 

Total fungi 

 1 11.0 310.8 65.6 168.5 54.8 18.1 

2 16.1 205.4 77.6 200.2 57.8 18.1 

3 14.1 292.0 74.3 293.2 66.8 33.6 

4 43.8 1451.3 218.1 674.2 335.2 71.8 

5 24.3 746.2 146.3 618.9 180.3 49.4 

6 7.0 140.4 72.2 185.5 66.6 32.5 

Total 116.3 3146.1 654.1 2140.5 761.5 223.5 

Total mesophilic bacteria 

 1 55.0 197.9 188.1 125 79.6 46.9 

2 22.2 436.6 41.9 90.1 119.8 50.7 

3 32.5 242.2 136.7 192.7 165.8 57.2 

4 28.2 515.7 97.1 418.0 164.2 89.0 

5 58.3 1136.1 211.4 978.7 318.2 676.4 

6 59.1 1655.0 563.7 896.3 976.4 344.0 

Total 255.3 4183.5 1238.9 2700.8 1824.0 1264.2 

Gram negative bacteria 

 1 37.5 162.1 55.3 74.0 121.7 27.3 

2 22.2 119.6 53.0 104.0 80.7 50.9 

3 48.8 140.1 66.9 297.4 88.2 19.0 

4 21.1 176.3 103.3 252.1 143 36.5 

5 28.2 4086.4 906.7 1117.6 1073.8 219.6 

6 53.3 1306.9 458.0 647.0 694.7 277.5 

 Total 211.1 5991.4 1643.2 2492.1 2202.1 630.8 

BG – Background; IN - Inlet 
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Table B. 3: Bioaerosol particles (cfu) collected in each stage of the six-stage 

Andersen sampler (number derived from total cfu per stage for visits 3 - 4 

[with BF1 and BF2 at 70 s, BF3 and BF4 at 11 s]). 

 Stage BG IN BF1 BF2 BF3 BF4 

Aspergillus fumigatus 

 1 32.0 769.3 233.2 303.5 257.1 300.9 

2 24.0 547.3 287.2 329.2 213.4 288.4 

3 16.0 789.1 500.6 449.6 337.1 376.8 

4 48.3 2098.4 1691.0 1650.2 1424.0 1352.8 

5 22.0 1557.6 1093.8 1029.3 1006.0 956.8 

6 26.0 341.7 260.5 397.1 179.9 437.5 

Total 168.3 6103.4 4066.3 4158.9 3417.5 3713.2 

Total fungi 

 1 38.1 891.1 304.0 363.0 331.5 371.0 

2 30.1 656.5 375.6 415.4 261.6 358.8 

3 28.0 812.8 668.2 583.7 433.0 482.6 

4 64.4 2510.4 2022.5 1958.8 1568.8 1477.6 

5 30.1 1756.2 1249.7 1166.7 1059.6 1041.0 

6 36.1 398.2 333.6 524.2 232.2 502.5 

Total 226.8 7025.2 4953.6 5011.8 3886.7 4233.5 

Total mesophilic bacteria 

 1 101.3 468.8 282.9 568.8 142.4 222.3 

2 122.0 624.1 261.6 347.9 246.6 414.3 

3 74.7 853.7 647.8 454.6 441.2 696.1 

4 74.6 1164.3 789.6 584.4 270.8 754.8 

5 120.0 4731.9 2455.1 2878.5 1875.5 3434.7 

6 161.8 4104.7 2627.4 1655.8 1216.5 3438.9 

Total 654.4 11947.5 7064.4 6490.0 4193.0 8961.1 

Gram negative bacteria 

 1 78.5 320.4 102.9 241.0 156.6 101.0 

2 44.2 327.0 158.1 199.2 143.6 179.3 

3 22.0 745.3 131.5 269.5 86.6 107.3 

4 20.0 815.8 438.6 462.2 402.6 325.2 

5 70.4 1644.0 1669.4 1208.5 2568.4 533.1 

6 157.5 1497.3 772.3 1882.7 726.3 667.2 

 Total 392.6 5349.8 3272.8 4263.1 4084.1 1913.1 

BG – Background; IN - Inlet 
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Appendix C 

DATA SET FOR CHAPTER 6 

Table C. 1: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 1 – 4 (March and April 2017; n = 2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

 BF1 9217.3 1881.5 2176.7 334.8 16099.0 2883.4 3901.1 449.8 20678.5 644.7 8206.7 467.3 20401.1 14694.3 10371.1 4082.8 

BF2 9217.3 1881.5 2374.6 554.7 16099.0 2883.4 3862.2 869.5 20678.5 644.7 11964.7 110.0 20401.1 14694.3 14450.6 1841.5 

BF3 9217.3 1881.5 2823.3 149.9 16099.0 2883.4 4561.9 65.0 20678.5 644.7 3318.1 1524.2 20401.1 14694.3 7222.6 699.6 

BF4 9217.3 1881.5 2404.6 397.3 16099.0 2883.4 3932.9 1449.2 20678.5 644.7 10620.2 4410.0 20401.1 14694.3 8341.0 1866.5 

 

V
is

it
 2

 BF1 9616.6 2096.3 1551.3 524.7 13984.1 2756.0 2084.8 559.7 10837.5 554.7 2409.9 100.0 13885.2 1826.5 1989.4 324.8 

BF2 9616.6 2096.3 1450.5 187.4 13984.1 2756.0 2466.5 479.8 10837.5 554.7 1625.5 25.0 13885.2 1826.5 2061.9 387.3 

BF3 9616.6 2096.3 3270.3 332.3 13984.1 2756.0 4477.1 379.8 10837.5 554.7 2814.5 652.1 13885.2 1826.5 4567.1 902.0 

BF4 9616.6 2096.3 2300.4 339.8 13984.1 2756.0 3316.3 17.5 10837.5 554.7 1961.2 539.7 13885.2 1826.5 1909.9 257.4 

 

V
is

it
 3

 

 

BF1 10261.5 1049.4 3203.2 847.0 12551.3 539.7 4517.7 907.0 39113.1 13442.5 11669.6 827.0 22157.3 197.4 4809.2 49.9 

BF2 10261.5 1049.4 2190.8 299.8 12551.3 539.7 2954.1 389.8 39113.1 13442.5 9157.3 2006.4 22157.3 197.4 3572.5 69.9 

BF3 10261.5 1049.4 3842.8 877.0 12551.3 539.7 4865.8 1244.3 39113.1 13442.5 8051.3 17.5 22157.3 197.4 6277.4 57.5 

BF4 10261.5 1049.4 2549.5 1076.9 12551.3 539.7 3401.1 1191.8 39113.1 13442.5 10106.0 3912.8 22157.3 197.4 2839.3 17.5 

 

V
is

it
 4

 BF1 18938.2 17197.9 3302.1 262.3 24591.9 21205.7 5330.4 802.0 42828.6 14004.7 11130.8 8280.4 17468.2 14739.4 6841.0 2353.7 

BF2 18938.2 17197.9 1411.7 132.4 24591.9 21205.7 2261.5 344.8 42828.6 14004.7 4443.5 112.4 17468.2 14739.4 4236.8 1529.1 

BF3 18938.2 17197.9 6641.3 2955.8 24591.9 21205.7 8521.2 3495.5 42828.6 14004.7 14973.5 6044.1 17468.2 14739.4 6977.1 1671.5 

BF4 18938.2 17197.9 3424.1 1779.0 24591.9 21205.7 5641.4 3030.9 42828.6 14004.7 4515.9 104.9 17468.2 14739.4 3874.6 137.4 

SD – Standard Deviation 
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Table C. 2: Bioaerosol particles (cfu) collected in each stage of the six-stage 

Andersen sampler (number derived from total cfu per stage for visits 1 - 4 

[with BF1 and BF2 operated at 40 – 70% MC, BF3 and BF4 at 10 – 40% 

MC]). 

  Stage BG IN BF1 BF2 BF3 BF4 

Aspergillus fumigatus 

 1 56.0 1012.7 74.1 64.2 88.2 70.2 

2 50.0 915.5 116.6 78.1 161.4 92.3 

3 74.7 1208.3 220.2 160.9 340.9 217.7 

4 197.8 1420.2 574.7 386.6 813.4 514.2 

5 60.5 535.0 132.6 124.6 382.4 254.9 

6 22.0 36.0 24.0 18.0 44.0 42.1 

Total 461.0 5127.7 1142.2 832.4 1830.3 1191.4 

Total fungi 

 1 80.3 1368.9 126.8 86.3 146.7 122.7 

2 68.2 1252.3 175.3 116.5 234.9 151.2 

3 89.0 1706.2 411.9 273.0 481.6 372.2 

4 219.2 2052.5 836.6 610.5 1069.9 775.9 

5 64.5 617 199.6 163.0 460.0 327.0 

6 30.0 54.1 34.0 36.1 68.2 54.1 

Total 551.2 7051.0 1784.2 1285.4 2461.3 1803.1 

Total mesophilic bacteria 

 1 269.3 1644.8 314.9 168.0 181.7 229.0 

2 165.3 1697.5 269.2 188.0 183.7 218.4 

3 185.8 1682.0 319.8 246.8 416.7 297.5 

4 145.6 1834.1 562.8 574.6 639.1 315.6 

5 371.9 3119.3 1430.0 915.2 1036.5 977.8 

6 200.7 1491.0 689.7 843.4 665.6 900.4 

Total 1338.6 11468.7 3586.4 2936.0 3123.3 2938.7 

Gram negative bacteria 

 1 131.0 1024.8 228.2 187.7 242.7 62.2 

2 74.4 1159.6 157.0 116.7 270.6 124.5 

3 108.8 1589.4 177.7 217.8 209.9 94.4 

4 141.8 1246.4 255.3 224.1 504.5 202.0 

5 161.9 1558.6 1145.6 1274.2 937.2 947.3 

6 143.2 1173.6 629.2 530.1 551.6 419.8 

 Total 761.1 7752.4 2593.0 2550.6 2716.5 1850.2 

BG – Background; IN - Inlet 
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Appendix D 

DATA SET FOR CHAPTER 7 

Table D. 1: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 1 – 4 (May 2017; n = 2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

 BF1 15303.9 2693.5 2132.5 437.3 19515.9 3518.0 3303.9 589.7 32613.1 12355.6 6818.0 222.4 27448.8 5342.0 8485.9 1336.8 

BF2 15303.9 2693.5 5560.1 147.4 19515.9 3518.0 8047.7 1051.9 32613.1 12355.6 13459.4 919.5 27448.8 5342.0 15531.8 9487.2 

BF3 15303.9 2693.5 5125.4 277.3 19515.9 3518.0 7166.1 594.7 32613.1 12355.6 10386.9 602.2 27448.8 5342.0 9314.5 3588.0 

BF4 15303.9 2693.5 1554.8 75.0 19515.9 3518.0 2268.6 109.9 32613.1 12355.6 8432.9 752.1 27448.8 5342.0 6683.7 5494.4 

 

V
is

it
 2

 BF1 67296.8 1464.2 5604.2 479.7 95318.0 21433.1 7885.2 417.3 107261.5 63649.6 28125.4 4684.9 18798.6 5966.7 11902.8 102.4 

BF2 67296.8 1464.2 9549.5 2341.2 95318.0 21433.1 13289.8 2628.5 107261.5 63649.6 23005.3 9147.4 18798.6 5966.7 10966.4 427.3 

BF3 67296.8 1464.2 13818.0 4824.8 95318.0 21433.1 20413.4 5162.1 107261.5 63649.6 16699.6 3298.2 18798.6 5966.7 8448.8 519.7 

BF4 67296.8 1464.2 8738.5 749.6 95318.0 21433.1 12116.6 1494.2 107261.5 63649.6 11010.6 5696.8 18798.6 5966.7 5056.5 604.7 

 

V
is

it
 3

 

 

BF1 44924.0 40045.2 8185.5 4724.9 56289.8 50461.9 10238.5 6064.1 142455.8 58792.3 19235.0 2820.9 58696.1 3133.3 13180.2 8185.4 

BF2 44924.0 40045.2 6925.8 1759.0 56289.8 50461.9 9151.9 2268.7 142455.8 58792.3 8441.7 249.9 58696.1 3133.3 7646.6 2163.8 

BF3 44924.0 40045.2 13507.1 4624.9 56289.8 50461.9 16280.9 4460.0 142455.8 58792.3 14470.0 7370.9 58696.1 3133.3 9777.4 839.5 

BF4 44924.0 40045.2 12411.7 4859.8 56289.8 50461.9 15245.6 4135.2 142455.8 58792.3 23312.7 16123.5 58696.1 3133.3 13249.1 1926.4 

 

V
is

it
 4

 BF1 17673.1 4195.2 7812.7 1372.2 20922.3 4312.6 10098.7 1573.6 28130.7 834.5 22664.3 2640.5 28146.6 2281.2 12342.5 2261.3 

BF2 17673.1 4195.2 6989.4 2513.6 20922.3 4312.6 8508.8 2473.6 28130.7 834.5 21333.6 9426.5 28146.6 2281.2 6970.0 2980.8 

BF3 17673.1 4195.2 16263.3 4460.0 20922.3 4312.6 17851.6 4387.6 28130.7 834.5 23781.4 4859.5 28146.6 2281.2 12417.0 9588.8 

BF4 17673.1 4195.2 8162.5 2703.5 20922.3 4312.6 9936.4 2833.4 28130.7 834.5 14107.8 12.5 28146.6 2281.2 10531.8 1066.9 

SD – Standard Deviation 
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Table D. 2: Bioaerosol particles (cfu) collected in each stage of the six-stage Andersen sampler (number derived from total cfu per stage for 

visit 1. 

Stage Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m 

1 318.8 86.6 86.6 407.5 131.6 127.4 1042.6 336.6 153.8 632.2 329.0 323.3 

2 336.9 78.5 115.7 405.4 150.1 163.3 618.4 247.1 490.8 675.9 440.7 318.7 

3 361.2 140.0 129.8 435.1 229.4 196.2 592.4 278.7 266.0 562.4 336.8 178.8 

4 354.3 351.8 276.1 439.8 452.8 378.5 363.7 261.6 315.2 315.1 333.3 256.8 

5 177.4 121.1 80.6 248.6 172.4 96.8 380.8 561.5 436.3 347.1 622.8 304.7 

6 99.6 74.4 54.3 141.2 115.2 80.8 273.0 525.2 401.1 302.9 512.8 371.2 

Total 1648.2 852.4 743.1 2077.6 1251.5 1043.0 3270.9 2210.7 2063.2 2835.6 2575.4 1753.5 

IN - Inlet 

 

Table D. 3: Bioaerosol particles (cfu) collected in each stage of the six-stage Andersen sampler (number derived from total cfu per stage for 

visit 2. 

Stage Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m 

1 1636.4 135.7 240.7 2153.2 201.5 369.2 2727.6 424.3 365.2 565.6 242.6 214.4 

2 1173.2 160.5 378.0 1491.2 268.1 550.4 1229.0 427.1 373.4 292.3 353.3 229.0 

3 1616.1 379.6 550.5 2358.0 608.5 801.8 1889.2 750.5 473.7 306.2 215.9 226.4 

4 1381.1 607.1 950.0 1681.4 736.8 1306.7 1029.1 1025.2 400.1 352.6 282.8 164.3 

5 234.8 306.4 201.4 278.4 367.8 259.4 1278.1 1534.9 710.8 179.4 726.8 281.4 

6 50.4 66.4 93.1 68.8 108.8 117.7 938.0 1169.0 660.2 302.9 657.0 377.9 

Total 6092.0 1655.7 2413.7 8031.0 2291.5 3405.2 9091.0 5331.0 2983.4 1999.0 2478.4 1493.4 

IN - Inlet 
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Table D. 4: Bioaerosol particles (cfu) collected in each stage of the six-stage Andersen sampler (number derived from total cfu per stage for 

visit 3. 

Stage Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m 

1 711.9 161.1 361.3 785.8 219.1 459.4 1909.6 424.6 514.3 882.6 254.3 240.7 

2 557.1 272.3 469.0 694.1 352.3 578.4 3007.6 268.2 477.6 897.3 313.6 316.6 

3 1076.6 350.1 634.3 1345.2 479.7 774.1 1407.1 238.8 586.9 1000.5 432.8 377.2 

4 1158.6 675.9 943.2 1556.8 806.3 1111.2 1288.6 409.6 761.8 1048.6 425.4 423.0 

5 553.4 147.8 297.7 625.0 184.9 331.2 1991.9 1038.4 1040.1 1055.0 318.4 545.0 

6 111.1 38.1 74.5 34.1 52.2 99.1 2009.2 560.9 564.8 798.2 517.3 604.8 

Total 4168.7 1645.3 2780.0 5041.0 2094.5 3353.4 11614.0 2940.5 3945.5 5682.2 2261.8 2507.3 

IN - Inlet 

 

Table D. 5: Bioaerosol particles (cfu) collected in each stage of the six-stage Andersen sampler (number derived from total cfu per stage for 

visit 4. 

Stage Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m IN 0.50m 0.25m 

1 143.2 134.5 62.3 204.8 188.2 96.8 465.9 439.8 458.5 642.6 336.8 586.3 

2 110.0 133.9 123.3 164.6 181.7 155.9 329.8 451.9 342.5 363.8 375.9 399.4 

3 239.3 232.0 298.0 292.1 320.2 382.6 437.6 544.8 466.5 418.9 319.8 567.8 

4 523.8 583.5 693.0 603.3 706.6 810.0 501.2 574.3 1222.5 373.1 422.7 741.1 

5 782.8 1296.2 1332.9 838.9 1381.5 1398.5 586.2 1078.8 2720.4 520.5 754.1 1169.5 

6 32.2 180.1 26.0 52.5 224.0 36.0 611.5 1301.7 3731.7 616.2 1052.8 1268.1 

Total 1831.3 2560.2 2535.5 2156.2 3002.2 2879.8 2932.2 4391.3 8942.1 2935.1 3262.1 4732.2 

IN - Inlet 
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Appendix E 

DATA SET FOR CHAPTER 8 

Table E. 1: Mean inlet and outlet bioaerosol concentration (in cfu m-3) for visits 1 – 4 (June and July 2017; n = 2). 

 Aspergillus fumigatus Total fungi Total mesophilic bacteria Gram negative bacteria 

Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD Inlet SD Outlet SD 

 

V
is

it
 1

 BF1 36459.4 1264.3 5183.7 839.5 40879.9 1794.0 6586.6 1254.3 35763.3 979.5 5204.9 1998.9 32295.1 6963.6 5455.8 974.5 

BF2 36459.4 1264.3 888.7 2.5 40879.9 1794.0 1247.3 199.9 35763.3 979.5 1577.7 522.2 32295.1 6963.6 2468.2 502.2 

BF3 36459.4 1264.3 6823.3 564.7 40879.9 1794.0 8966.4 612.2 35763.3 979.5 5614.8 634.6 32295.1 6963.6 8505.3 2643.5 

BF4 36459.4 1264.3 13386.9 482.2 40879.9 1794.0 16607.8 80.0 35763.3 979.5 3187.3 0.0 32295.1 6963.6 6261.5 1903.9 

 

V
is

it
 2

 BF1 26314.5 4027.8 10712.0 87.5 30620.1 4265.1 13176.7 319.8 45049.5 349.8 13279.2 10124.4 14839.2 3170.7 8333.9 3675.5 

BF2 26314.5 4027.8 3153.7 967.0 30620.1 4265.1 4212.0 859.5 45049.5 349.8 15613.1 7628.3 14839.2 3170.7 6500.0 3850.4 

BF3 26314.5 4027.8 5745.6 1069.4 30620.1 4265.1 6818.0 1176.8 45049.5 349.8 7482.3 907.0 14839.2 3170.7 5450.5 1691.6 

BF4 26314.5 4027.8 13081.3 2673.5 30620.1 4265.1 15261.5 3073.3 45049.5 349.8 12044.2 4395.1 14839.2 3170.7 3980.6 362.3 

 

V
is

it
 3

 

 

BF1 28091.9 739.6 61351.6 25003.6 38669.6 87.5 96743.8 53242.9 39924.0 15169.1 37063.6 16870.6 23821.6 3395.6 27134.3 18899.5 

BF2 28091.9 739.6 335.7 124.9 38669.6 87.5 477.0 25.0 39924.0 15169.1 3001.8 52.5 23821.6 3395.6 3250.9 1764.0 

BF3 28091.9 739.6 7987.6 22.5 38669.6 87.5 9708.5 122.4 39924.0 15169.1 36351.6 6558.9 23821.6 3395.6 21219.1 8590.2 

BF4 28091.9 739.6 7492.9 532.2 38669.6 87.5 9319.8 922.0 39924.0 15169.1 18982.3 784.6 23821.6 3395.6 11489.4 467.2 

 

V
is

it
 4

 BF1 20330.4 1786.5 6318.0 924.5 25455.8 1654.1 7507.1 737.1 37713.8 8400.3 26590.1 8050.5 39367.5 26660.2 18113.1 5217.1 

BF2 20330.4 1786.5 1964.7 104.9 25455.8 1654.1 2489.4 332.3 37713.8 8400.3 3980.6 2356.2 39367.5 26660.2 7265.0 6186.6 

BF3 20330.4 1786.5 9404.6 1196.8 25455.8 1654.1 10706.7 1164.4 37713.8 8400.3 24438.2 11393.7 39367.5 26660.2 15040.6 1151.9 

BF4 20330.4 1786.5 19747.3 4350.1 25455.8 1654.1 22934.6 6239.0 37713.8 8400.3 19669.6 6369.0 39367.5 26660.2 9848.1 4162.7 

SD – Standard Deviation  

BG – Background; IN – Inlet; BF1 – old woodchips; BF2 – peat; BF3 – wheat straw; BF4 – new woodchips 
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Table E. 2: Bioaerosol particles (cfu) collected in each stage of the six-stage 

Andersen sampler (number derived from total cfu per stage for visits 1 – 

4). 

  Stage BG IN BF1 BF2 BF3 BF4 

Aspergillus fumigatus 

 1 63.8 714.4 240.8 69.3 143.3 291.4 

2 42.3 782.9 304.5 70.5 133.8 282.2 

3 32.0 1244.2 466.1 43.4 230.8 457.0 

4 35.3 2286.7 2268.8 66.8 728.3 1120.4 

5 34.2 1153.7 1263.7 49.3 340.6 804.9 

6 47.4 111.8 185.9 59.7 119.0 84.0 

Total 255.0 6293.7 4729.8 359.0 1695.8 3039.9 

Total fungi 

 1 88.4 843.0 309.1 89.0 171.6 348.0 

2 60.6 928.6 383.1 85.1 162.3 352.1 

3 52.5 1597.6 686.7 56.7 317.9 623.1 

4 46.5 2901.2 3667.4 98.0 862.3 1322.1 

5 44.4 1257.7 1743.2 68.8 379.2 874.5 

6 65.0 148.3 229.7 79.3 155.6 109.6 

Total 357.4 7676.4 7019.2 476.9 2048.9 3629.4 

Total mesophilic bacteria 

 1 124.8 1082.8 146.8 231.7 306.8 322.6 

2 111.6 809.8 295.7 318.4 311.7 253.0 

3 104.8 1623.5 370.5 163.5 256.8 171.5 

4 148.0 1333.3 496.0 189.1 337.2 270.0 

5 190.4 2443.4 1550.4 170.9 1324.7 1042.6 

6 339.7 1675.5 1789.6 294.6 1644.8 990.1 

Total 1019.3 8968.3 4649.0 1368.2 4182.0 3049.8 

Gram negative bacteria 

 1 204.4 1388.6 185.0 164.4 313.2 224.5 

2 162.3 790.7 237.0 161.9 188.9 186.1 

3 114.7 889.5 293.6 113.3 218.9 255.6 

4 114.5 912.1 372.7 129.5 212.6 263.7 

5 142.9 1311.2 1017.4 306.8 644.9 437.1 

6 327.7 952.2 1235.8 226.9 1263.7 420.4 

 Total 1066.5 6244.3 3341.5 1102.8 2842.2 1787.4 

BG – Background; IN – Inlet  

BF1 – old woodchips; BF2 – peat; BF3 – wheat straw; BF4 – new woodchips 

 


