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Thesis 

Abstract 

Use of carbon fibre composites has been increasing in the aerospace industry. 

However, there is still a need for finishing operations by conventional machining in the 

manufacturing of composite parts. Composites have a very different machinability to 

metals and can suffer from a number of surface defects during machining. The fibres 

are also highly abrasive and can cause rapid tool wear which in turn leads to increased 

likelihood of machining defects. This project has focussed on the machined surface 

quality developed during machining using new surface inspection techniques and 

additional surface roughness parameters. It is important to be able to accurately 

measure the surface roughness in order to ensure the integrity of in service 

components and quantify surface damage from machining. The aim of this project is 

to develop new numerical modelling techniques for the edge trimming of carbon fibre 

reinforced plastic (CFRP), and develop methods for the prediction of surface 

roughness. Different experimental techniques have been used to analyse post-

machining damage, including scanning electron microscopy (SEM), computed 

tomography scanning (CT) and a focus variation system for measuring surface 

roughness. CFRP specimens have been edge trimmed using a poly crystalline diamond 

(PCD) cutting tool, and compared for different machining parameters, tool wear and 

material fibre orientations. Cutting forces were recorded and the surface quality was 

inspected using the optical focus variation method. Regression models from 

experimental data have been combined with finite element (FE) models to create a 

surface roughness prediction tool which includes the effects of tool wear. Areal surface 

roughness Sa measurements were taken using the optical system and the advantages 

of the system have been compared with conventional stylus roughness measurement 

methods. Experimental data was used to validate 3D and 2D FE milling models using 

MSC Marc. New FE models were developed using adaptive re-meshing, and user 

subroutine to control the cutting tool movement and simulation idle time. Progressive 

levels of tool wear have been implemented in the 2D model by using cutting edge 
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radius measurements from experiment. FE and experimental results show that tool 

wear and material fibre orientation have a significant effect on the cutting forces and 

surface roughness. Regression models showed that the surface roughness was most 

affected by tool wear, feed rate and cutting speed. A reasonable comparison has been 

found between FE and experiment and the FE models were capable of predicting the 

effects of tool wear due to cutting edge rounding. 3D models were found to better 

predict thrust forces than 2D FE model. The optical system was found to be useful 

technique for measuring surface roughness of machined fibrous composite surfaces 

and is more reliable than conventional roughness measurements. New strategies for 

roughness measurement have been recommended. 
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Chapter 1  
Introduction 

1.1 Engineering Context 

Carbon fibre reinforced polymers (CFRPs) have high strength-weight properties 

and a great potential for weight saving and efficiency improvements in the 

aerospace industry. As well as weight saving, FRPs also have desirable properties 

including superior corrosion resistance, fatigue resistance and a high stiffness. As 

a result there has been a growing use of fibre composites in the aerospace 

industry in recent years and drive for development of manufacturing processes. 

 Although in industry near-net shape production of composite components is 

desirable, the conventional machining of composites such as drilling, milling and 

trimming is still often necessary for joining parts and finish machining. During 

machining, carbon fibres have been shown to be highly abrasive and can cause 

rapid cutting tool wear [1],[2]. Cutting tool wear can cause an increased 

prevalence of surface defects and can potentially lead to the damage of the 

machined workpiece, or a decrease in the material mechanical properties. In 

machining CFRP it has been shown that surface damage defects during 

machining can occur, including delamination, fibre pull-out, un-cut fibres, matrix 

cracking and matrix burning [3]. There has been shown to be a correlation 

between surface profile and mechanical performance [4]. The strength and 

fatigue life of in-service components in the aerospace industry is critical to 

component performance. Therefore understanding the surface topography and 

defects caused during machining is essential for manufacturing these 

components. In the aerospace industry there are tight tolerances and a strict 

control of surface damage caused during machining is a requirement for 

component manufacture. Also, in industry it is expensive and wasteful to scrap 
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damaged material from the manufacturing process and efforts should be made 

to avoid this.  

Due to the increased usage of carbon fibre in industry there is a necessity to 

understand the fundamental aspects of FRP machining, chip mechanisms and 

the surface damage types caused during machining. It has been shown in the 

literature review that standard methods for measuring roughness using a stylus 

have a number of problems [5]. The accurate measurement of surface damage 

is important in machining and is an area which requires further research for 

composite surfaces. This project will assess defects from machining on a 

composite edge trimmed surface and assess characterisation methods and 

metrics of machined composite surfaces.  

This project is sponsored by Rolls-Royce which is currently developing new 

composite carbon fibre components for their aircraft engines. During their 

manufacturing processes an edge trimming machining process is required after 

curing to obtain the correct geometry and allow part assembly. However, due to 

the non-homogeneous structure and anisotropic material properties of fibre 

composites- (which are made up of an epoxy matrix and fibre), they have a very 

different machinability to metals. Carbon fibre machining is a complex process 

and it has been found by industry that tool wear and surface quality are a 

problematic issue during the edge trimming process. It has also been found that 

there are problems with accurately assessing surface roughness on a machined 

composite surface. Rolls-Royce is therefore interested in understanding how 

different process parameters will affect the surface damage caused during 

machining and improving roughness measurement methods. A greater 

knowledge of the machining process, and how the machining process 

parameters will affect the surface quality generated during machining, is 

therefore of interest to both industry and academia. Machining process 

parameters including feed rate and cutting speed, tool geometry and tool wear, 
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material type and material fibre orientation, can have an effect on machining 

forces and the generated surface quality. Understanding how these parameters 

affect the machining process will lead to more consistent manufacturing of 

composite comparts, ultimately making components both safer and cheaper to 

produce. Being able to accurately measure and predict surface roughness and 

understand or reduce the damage from machining is consequently the research 

topic of this project.  

The literature review has shown problems with standard stylus methods for 

characterising surface profile of machined composite surfaces.  It has also been 

found in the published literature that there is a need for more research into FE 

methods for the milling of composite materials and surface damage prediction 

during machining. Currently the large majority of research using FE has focussed 

on orthogonal and 2D machining simulations, with some recent research using 

3D models for the drilling CFRP [6]. However, it has been found there is a need 

for development of more advanced FE models for the milling process. An 

important development, which will be introduced in this research, is to use FE to 

predict the effects of tool wear and changing cutting edge radius on a CFRP 

edge trimming process. Hence, from the literature review and requirements 

from industry the main aims of this research will be to develop surface 

characterisation methods and predictive tools for quantifying surface profile and 

machining damage on a machined composite surface. Experimental methods 

including optical focus variation, CT scanning and SEM will be use to 

characterise surface damage on different fibre orientations. Developments in 

surface characterisation methods will then be applied to create a tool for 

predicting surface roughness using a combination of novel FE models and 

regression equations obtained from experiment. This research will therefore 

improve surface roughness characterisation and measurement method, 

especially of a non-homogeneous multidirectional laminate, and develop 
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predictive tools to assess the effects of machining parameters on machined 

surface quality. These developments will be useful to industrial manufacturers of 

composite components and researchers alike. 

1.2 Project Overview 

Due to the requirement from industry and associated findings from the 

literature review, this project has focussed on an edge trimming process of 

Carbon Fibre Reinforced Plastic using industrially appropriate PCD cutting tools. 

Initially, surface profile of machined composite surfaces will be assessed using 

experimental techniques on different fibre orientations. Optical focus variation 

tool will be used to implement new roughness measurement strategy and better 

surface characterisation. Then, the improved roughness measurement 

quantification strategy will be implemented with novel FE methods, for a CFRP 

edge trimming process, and consequently will be used to predict roughness and 

assess the effects of tool wear on machined surface quality.  

The first section of work stems from the findings in the literature that there are 

problems with current surface roughness measurement methods for machined 

composite surfaces. As a result, new optical surface characterisation techniques 

will be evaluated for roughness measurement in this research using an optical 

non-contact Alicona focus variation system. The implementation of improved 

techniques for surface roughness calculation in this project will be used to 

quantify machining damage and increase the accuracy of measurements, also 

allowing realisation of the effects of increased tool wear on the surface quality. 

Additionally, thorough assessment of damage mechanisms and surface damage 

will be made using additional roughness parameters, SEM imaging and CT 

scanning.  The aims of the current research project will increase the 

understanding of the complex cutting mechanisms, and surface quality, which is 

caused during CFRP machining, with the use of new surface analysis techniques 

on different fibre orientations. Consequently, an improvement in the 
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understanding of the failure mechanisms and machining damage in a composite 

edge trimming process will allow improved characterisation of surfaces and will 

be required to develop further predictive tools and FE models.  

Experimental edge trimming tests will be conducted using a 3-flute zero helix 

PCD milling tool. An edge trimming process has been chosen over an end 

milling process due to having a consistent chip thickness and therefore being 

more appropriate for comparing with FE models than an end milling, while still 

being applied for use in industry. Cutting forces will be measured from 

experiments using a dynamometer, while machining multidirectional and 

unidirectional laminates at different fibre orientations, cutting speed, feed rate 

and various degrees of tool wear. An assessment of different machining 

parameter effects on surface quality will be quantified and the experimental 

machining tests will then be compared with novel 2D and 3D FE simulations to 

validate modelling methods, to assess the effects of tool wear and predict 

surface roughness.  

In the Experimental tests surface analysis techniques will be used to assess the 

cutting mechanism and surface quality depending upon material fibre 

orientation. SEM micrographs and CT scans will be applied upon different layers 

of a machined multidirectional surface, which has different fibre orientation 

plies, to analyse cutting mechanism and surface and subsurface damage 

respectively. The suitability and advantages of the optical system for roughness 

measurements for machined composite surfaces will be evaluated along with 

applying additional roughness parameters, including Sa, skewness and kurtosis. 

Additional roughness parameters have been applied to give a more thorough 

characterisation of surface damage types on each of the different laminate 

layers of a multidirectional laminate.  
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New FE (Finite Element) modelling methods will be developed for a composite 

edge trimming process using implicit finite element software MSC Marc. 

Numerical modelling is a useful tool which can be used to reduce the need for 

costly and time consuming experimental trials and has been applied by previous 

researchers to machining problems [7],[8][9]. The object of these models is to be 

able to accurately predict the machining process, which can be used to analyse 

effects of changes in machining parameters, workpiece properties, predict 

surface damage, and changes due to tool geometry and wear. The prediction of 

roughness in a composite machining process has been found to be limited in 

the literature. Methods which make use of numerical modelling tools to predict 

roughness and the effects of tool wear on composite machining are in need of 

development. Development of new methods to predict roughness using 

numerical modelling can increase the understanding of the damage 

mechanisms in composite machining. 

In this research, measured surface roughness from experimental tests will be 

used to generate regression equations to calculate the effects of input 

machining parameters on surface quality. The regression equations and FE 

simulations will then be applied in combination to make predictions of the 

surface roughness. The aim of the developed models is to allow the assessment 

of the effects of changes in tool wear by cutting edge rounding and other 

machining process parameters on the cutting forces and hence make a 

prediction for the changes in surface roughness. These models will be useful to 

industry because they will allow a better prediction of the effects of machining 

on surface quality and damage while reducing the need for many experimental 

tests and trials.  
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1.3 Layout of Sections. 

A brief overview of the work in each of the sections is described: 

Chapter 1 Introduction 

An introduction to the CFRP machining problem is presented. The need for 

research into surface roughness measurement techniques and development of 

Finite Element modelling methods for an edge trimming process has been 

emphasised. An overview of the thesis experimental work and developments in 

FE modelling is described, and additionally the problems of cutting tool wear 

which can extend machining induce damage. 

Chapter 2 Literature Review 

The literature review firstly outlines fibre composite properties and their failure 

mechanisms. Secondly, the machining process for carbon fibre is described 

with the milling process and some current work in the literature of composite 

machining. The surface roughness measurement methods and theory is 

outlined. Then the current difficulties found in the literature with standard 

methods for measuring roughness of machined composite surfaces are 

highlighted. Finally, the current literature on FE modelling for machining of 

composites is assessed and the need for more research into the milling process 

is emphasised. The novelty of the new FE models for roughness prediction and 

the calculating the effects of tool wear on cutting forces is highlighted. 

Chapter 3 Preliminary Assessment of Surface Roughness Measurement 

Methods 

A preliminary set of experiments have been completed which focus on surface 

roughness measurement method, analysing machining damage and surface 

topography of machined composites. The optical focus variation system is 

applied for the roughness measurement of a multidirectional laminate 
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machined composite surface. New procedures for roughness measurement 

have been introduced and recommended methods are described for future 

researchers. The suitability of the optical method over conventional stylus 

measurements has been evaluated. Roughness parameters for composite 

surface damage characterisation have been assessed, including Ra, Sa, skewness 

and kurtosis. Histograms have been shown to characterise the surface profile 

distribution, defects and surface quality across the machined surface of 

different fibre orientations. 

Section 3.3 takes a detailed look at the cutting mechanisms and damage types 

on individual fibre orientations using scanning electron microscopy (SEM) 

imaging. This has been compared with experimental roughness measurements 

and has also highlighted the advantages of using areal roughness parameters 

to measure surface roughness of a multidirectional composite. Visual 

assessment of the damage and cutting mechanism is detailed for each fibre 

orientation- the 135 degree fibre orientation has been found to show the 

highest surface damage, including pitting and fibre pull-out.  

Chapter 4 Main Experiment- Edge Trimming Trials Experimental Procedure 

The methodology of the first experimental trial, which is an edge trimming 

process on a unidirectional laminate, is outlined. Novel surface roughness 

measurement methods have been applied using the optical focus variation 

system to measure machined surface damage. A poly crystalline diamond 

(PCD) edge trimming tool has been used to make cuts at different levels of tool 

wear which will be used to compare and validate novel 2D and 3D FE models. 

Cutting edge rounding, resulting from tool wear, has been measured 

experimentally using optical system. A new method has been applied using a 

zero helix PCD cutting tool, (which has a consistent chip size through the 

workpiece thickness), to allow comparison with plane strain FE models.  Cutting 
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forces have been recorded using a dynamometer over different fibre 

orientations. 

The second experimental trial is outlined which is an edge trimming trial on a 

multidirectional laminate. The test has been created using design of 

experiments and ANOVA to create a regression model which will show the 

effects of different parameters on the output surface roughness. The effects of 

tool cutting edge radius, feed rate and cutting speed have been assessed and 

the regression model will be used as a new prediction tool for surface 

roughness using 3D FE models. Assessment of additional surface roughness 

parameters including areal parameter Sa, and skewness and kurtosis, have been 

applied to characterise surface damage. CT scanning has been used to assess 

the different damage types present on the surface and look for sub-surface 

delamination. The chip removal mechanism and surface appearance has been 

assessed on different fibre orientations. 

Chapter 5 Edge Trimming Experimental Results 

The experimental results from multidirectional and unidirectional edge 

trimming tests are shown. This includes the roughness measured on different 

fibre orientations and an analysis of the effect of fibre orientation on surface 

quality. The resulting effects of different machining parameters are presented 

using main effects plots. Cutting edge rounding has been measured, using the 

optical system to calculate edge radius, which will be used as an input for FE 

models. The roughness of different fibre orientations has been assessed using 

the optical system. Surface roughness and surface topography have been 

found to be significantly affected by the fibre orientation. Areal roughness 

parameters have been applied, and it is found that measurements made using 

the optical system will give a more accurate representation of the machining 

induced surface damage. It was therefore reasoned that optical methods of 
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surface roughness characterisation is more reliable than using standard 

profilometer methods.  

Section 5.4 Results- CT Scanning of Machined Samples 

Sub-surface damage, inter-laminar delamination, and maximum damage 

depth resulting from machining were assessed using micro CT scanning. The 

potential sub-surface damage due to inter-laminar delamination and crack 

propagation of existing voids is assessed. Edge trimmed samples were 

compared with un-machined samples, to find if damage is due to existing 

manufacturing defects, or is due to propagation of cracks from forces and 

damage caused during the cutting process. The presence of some internal 

delamination and cracks has been found in unidirectional machined samples. It 

is concluded that roughness measurements are adequate as a defect 

characterisation method where there is no apparent sub-surface damage and 

defects present from manufacturing in the multidirectional laminate. 

Chapter 6 Multiple Linear Regression Modelling 

Multiple linear regression modelling has been used to create Sa roughness 

predictive equations for unidirectional and multidirectional machined 

laminates. Statistical methods have been applied to assess the contribution of 

different predictor terms, including interaction terms. Stepwise method has 

been used to add or remove predictors, and the R-Sq, R-Sq(Adj) and histogram 

of residual checks was applied to check for suitability of the fit of regression 

equations to model data. Cutting edge radius, measured experimentally, has 

been included as a parameter in surface roughness predictions to calculate the 

contribution of tool wear on machined profile. 

Chapter 7 FE Modelling of Machining 
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The FE models and modelling methods are outlined in this section. New 2D 

and 3D models, for the edge trimming process of carbon fibre machining, have 

been created. Models have been applied using orthotropic equivalent 

homogeneous material properties and a Hashin damage model for progressive 

composite material failure. Progressing levels of tool wear, due to changes in 

the surface geometry and measured cutting edge radius, have been assessed 

by looking at the corresponding output effect on machining forces. A user 

subroutine has been applied to control the cutter movement, tool-workpiece 

contact and the size of the time-step. Adaptive meshing is used on the 

workpiece and cutting tool to control element size. The elastic properties of 

PCD have been applied to cutter tip- while the main cutter body has rigid body 

constraints. Finally, output machining forces have been recorded while varying 

machining parameters and compared with experimental data to validate FE 

results.  

Chapter 8 Results- FE Modelling of Composite Machining 

First the results are presented for unidirectional edge trimming which has been 

compared with 2D and 3D FE models. 2D models have been able to show the 

changes in cutting forces as a consequence of tool wear. The cutting forces 

calculated using FE have been validated by previously obtained experimental 

values. The damage mechanisms calculated by the Hashin damage model have 

been compared on different fibre orientations. 

In this section, results from 3D FE multidirectional models are presented next. 

Predicted values of Sa surface roughness, using novel method, have been 

compared with experimental measurements.  The effect of increasing feed rate 

and cutting speed on FE calculated cutting forces has been combined with 

experimentally obtained regression models to make a prediction of surface 

roughness. The predicted change in surface roughness has been presented 



13 

 

due to changes in model parameters. Increasing feed and an increasing cutting 

edge radius have both been found to have a significant increasing effect on the 

Sa surface roughness. Feed rate and CER have shown an interacting effect on 

the roughness, whereby a combined increase of both parameters will have a 

significantly higher effect on resulting surface damage than changes in one 

parameter alone. Predicted roughness has been compared with experimentally 

measured roughness at additional feed rates and cutting speeds, which were 

outside of model limits, to find the accuracy of predictions lying outside of 

model range. Is it shown that accurate predictions of surface roughness have 

been obtained using predictor terms which are located within regression model 

training limits. 

Chapter 9 Discussion & Outputs 

An analysis of the thesis results has been presented, with a comparison of 

findings in the literature. The novelty, limitations and the importance to 

industry of current work has been discussed. 

Chapter 10.0 Conclusions 

A bullet summary of the findings with quantification of the results is shown. In 

Section 10.1 the future work is presented: improvements upon on the current 

work is discussed, along with proposals for new research projects into carbon 

fibre machining processes.  
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Chapter 2  
Literature Review 

2.1 Carbon Fibre Introduction 

To understand the machining of composites, the different failure mechanisms 

and material properties of carbon fibre composites must be understood. Fibre 

reinforced polymers (FRPs) are made up of a reinforcing fibre like glass or 

carbon and a binding polymeric matrix material. A typical fibre volume fraction 

can be around 60 %. The matrix material acts as a binder for the reinforcing 

fibres, distributes loads and protects the fibres from external damage. The 

carbon fibres are generally made from a PAN (polyacrynitryl) pre-cursor by 

oxidizing and carbonizing at high temperatures. The fibres have a small 

diameter of around 5-10 µm which are then grouped together to make a tow. 

These tows can then be pre-impregnated with the epoxy matrix material in 

order to make pre-preg sheets or used in filament winding processes. Carbon 

fibres have a superior stiffness and strength compared to glass fibres, which 

makes them the preferred choice for demanding mechanical applications. For 

the matrix constituent, thermoset and thermoplastic are the two main categories 

of polymeric plastic used. Usually in high grade aerospace application epoxy 

resins are generally preferred.  

To make the composite material, pre-preg sheets can be manufactured by 

wetting the sheet carbon fibre in a resin bath, and they must then be stored in 

refrigeration until use. In standard manufacturing methods, the pre-preg sheets 

can then be layered up and cut to shape on a mould surface before being 

vacuum bagged and autoclave cured at high temperature and pressure. The 

pre-preg vacuum bagging process is shown in Figure 2-1(a). Firstly, the pre-preg 

sheets are cut to shape layered up on a mould surface which is coated with a 

release agent. The pre-preg sheets are then covered with a release film and 
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breather layer before being covered by the vacuum bagging which is sealed 

around the edge with sealant tape. Finally the air is removed by vacuum pump 

and then the whole pre-preg layup is autoclave cured. The vacuum bagging 

process ensures minimal voids and consistent curing of the resin in the finished 

composite material. A graphical representation of a laminate is shown in Figure 

2-1(b) which has four unidirectional plys layered up in different fibre orientations. 

The fibre orientations are 0,45,-45(135) and 90 which will be the fibre 

orientations used in this project. These different fibre orientations are used to 

give the composite stable mechanical properties in all directions and inhibit 

crack propagation. Generally the laminate will be layered up in a balanced or 

symmetric lay-up where the plys will be symmetric through the centre line. This 

ensures balanced mechanical properties and prevents warping of the laminate 

during cooling and curing due to different thermal expansion coefficients. 

 

Figure 2-1- (a) Pre-preg layup and vacuum bagging. 

(b) Graphic representation of a laminate with different layers and fibre 

orientations. 

2.2 Carbon Fibre Mechanical Behaviour 

This project is focusing on long chain fibrous composites, as opposed to short 

chain or woven composite materials. Long chain unidirectional carbon fibre 

composites are non-homogeneous and exhibit anisotropic material properties, 

this means they have directional mechanical properties. They have a different 
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modulus and strength in the fibre principle direction compared to the transverse 

fibre direction. There is a different failure mechanism compared to metals and in 

FRPs there is the possible accumulation of several damage modes until failure. In 

Figure 2-2 a number of the different modes of failure are shown. The fibres can 

fail in tension and in compression due to brittle fracture, the matrix can crack 

and be crushed and fibre pull-out and fibre-matrix de-bonding will occur at the 

weak interface. The damage in composites can be a sudden or progressive 

failure and there can be a number of different possible damage types in both 

the fibres and matrix. The magnitudes and types of damage will be dependent 

upon loading conditions and material properties. Cracks can form along the 

laminate boundaries in the form of inter-laminar delamination which is in the 

plane between the layers by de-bonding, as shown in Figure 2-3. These defects 

can occur quite readily due to voids between the layers during manufacture or 

excess resin which can lead to stress concentrations due to load transfer 

between different layers. Translaminar cracks, shown in Figure 2-3, are less 

common because the cracks do not tend to propagate through adjacent 

laminae due to a preferred direction for crack growth. There are different 

fracture characteristics of the energy for crack propagation, between the 

adjacent laminate boundaries, shown in Figure 2-3, and the energy is dissipated 

or tends to propagate along the weaker laminae boundaries [10].  
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Figure 2-2 - Different failure mechanisms of laminate fibre composites. Adapted 

from REF [10] 

 

Figure 2-3 - Failure definition types [11]. 

In most homogeneous engineering materials cracks are generally formed due 

to the material, loads, geometry and boundary conditions. However in 

composites the interface between the fibres and matrix material can also 

separate by de-bonding or de-cohesion. Therefore due to the material fibre 

direction and the weak fibre-matrix interface there is a preferred direction for 

crack growth [12]. Unidirectional carbon fibre material is described as 

orthotropic because the elastic modulus and strength are different in fibre 
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tensile direction and transverse direction. This is due to the higher fibre strength 

and stiffness than that of the matrix and interface. Laminate theory is generally 

used to predict the elastic modulus of a combination of stacked layers on the 

macro level, by taking into account the stiffness of individual layers based on the 

modulus in each of the principle directions.  

The tensile strength of a composite is mainly determined by the fibre strength, 

volume fraction, and amount and size of flaws which make up the fibre. This is 

because in reality the brittle fibre strength is dependent on thickness, and 

length. A longer or thicker fibre will have a higher probability of flaws and 

therefore a lower strength. In tension during a fibre dominated failure mode the 

material will have the greatest strength, which is why it is also important to have 

a high fibre volume fraction. The carbon fibres behave approximately elastically 

in tension up to their fracture strength [12].  

CFRP is made up of an epoxy resin matrix, of which the properties can generally 

be assumed to be isotropic and of having a higher modulus and strength than 

thermosetting resins [3]. When a unidirectional composite is loaded in tension in 

the transverse fibre direction, there is a matrix dominated failure mode. The 

orthotropic properties of the composite mean that, in this instance it will fail at a 

much lower strength than in fibre dominated failure mode. During transverse 

loading the fibres will remain intact or unbroken and the matrix will fail due to 

void nucleation and crack propagation [12]. There will also be fibre-matrix de-

bonding at the interface. The matrix failure will begin at weak defect points in 

the interface such as voids in the matrix or small fibres-resin gaps [13]. Then, 

from these defects, cracks will propagate along the weaker fibre-matrix 

interface. During matrix dominated failure such as in transverse loading, the 

interface fails nearly immediately after any crack begins. The transverse strength 

is determined mostly by the resin, but in a fibre composite transverse strength is 

generally slightly lower than the resin only strength. 
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In machining of carbon fibres there are factors which can affect the material 

machinability. These include the mechanical properties of the fibre and resin, the 

fibre volume fraction and the ply orientation. Also, other factors include the 

matrix glass transition temperature and the thermal conductivity of the matrix 

and fibres. The material failure and stiffness will be determined by the strength, 

stiffness of the matrix and fibre phases and also the bonding strength at the 

interface of the fibre-matrix. The manufacturing process and any manufacturing 

defects can affect the composite mechanical properties due to residual stresses, 

resin voids, fibre waviness and variation in fibre and matrix distribution. 

Therefore the lay-up, pressure and curing process is important to maintain 

consistent material properties. 

The polymer matrix has less strength and stiffness than the reinforcement but it 

still plays a part in the cutting process. It has a low thermal conductivity which 

can affect heat build-up in the cutting zone. It also holds the fibres together and 

the elastic recovery or bounce back of the material can cause friction and 

heating in the cutting area. Heating of the polymer during machining can take it 

above its glass transition temperature which will affect the machining forces and 

surface quality. Burning of the matrix should definitely be avoided in the cutting 

zone. The matrix will soften or burn at temperatures during machining if the 

localised temperature at the tool workpiece interface becomes too high. 

However, carbon fibres have mechanical properties which are fairly stable up to 

high temperatures. The stress strain relationship of the fibres is essentially linear 

or stable up to 1000 °C [14],[15]. The fibres only exhibit a temperature dependant 

young’s modulus above 1200°C where it becomes visco elastic and visco plastic 

above around 1600°C. This is below the temperatures which will occur during 

machining. So the temperature dependant properties of the matrix, which will 

cause softening, only need be taken into account at or above the glass transition 

temperature. 
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2.3 Composite Machining Introduction 

Carbon fibre composites bring new challenges to machining and 

manufacturing. CFRP material, especially with a high fibre content and tough 

resin system, is highly abrasive and can cause intensive wear on cutting tools.  

Additionally, researchers have shown that there are a number of problems 

which can be found during composite machining [3]:  

 Surface quality issues: 

 Delamination. 

 Fibre pull-out. 

 Matrix Burning. 

 Matrix Cracking 

 Edge Burring 

 Un-cut Fibres 

 Tool wear: 

 Edge Chipping. 

 Abrasive Wear.  

 Edge Rounding. 

 Coating Delamination. 

Early researchers investigated the machining of composites and found that 

unlike during metal machining a continuous chip is not produced. While 

machining thermoset FRPs there are dust-like or small fragmented chips 

produced [16]. The carbon fibres are brittle and abrasive and will have a low 

strain to breakage. The matrix or thermosetting plastic (usually epoxy resin), also 

exhibits very small plastic deformation before failure. This means that in 

machining carbon fibre the material is generally crushed and fractures sharply 

[17]. The cutting mechanism is dictated mainly by fibre fracture, de-bonding of 

fibre-matrix interface, and fibre cutting angle. There is very little plastic 

deformation [18]. Standard metal cutting tools and coatings have been shown to 
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produce a surface with poor quality and have a low resistance to wear when 

machining composites. They also have a different wear mechanism. Therefore 

there must be new practises and research into machining of fibre composites in 

order to understand the cutting mechanisms and improve surface quality as the 

machining differs extremely from metal cutting.  

In the machining of fibre composites delamination has been found to be a 

problem. There are three main different types of delamination which have been 

characterised and are shown in Figure 2-4 and Figure 2-5. Type I and type II 

delamination which is shown in Figure 2-4. Type  I delamination is where the 

fibres on the top surface have been broken and removed inwards from the 

machined edge [3]. Whereas in Type II delamination, the fibres protrude over 

the machined edge and there are fibres which have sprung back after the tool 

has passed without being cut. Type I/II are a combination of I and II where there 

is some damage inwards of the machined edge and fibres which protrude 

outwards [3]. Type III delaminations occur when there are cracks or debonded 

fibres which are partially attached lying parallel to the machined edge, as shown 

in Figure 2-5. The fibre orientation and machining parameters will affect the 

magnitude and type of delamination which occur during machining.  
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Figure 2-4- Type I and Type II delamination. Adapted from REF [3],[19] 

 

Figure 2-5- Type I/II and Type III delamination. Adapted from REF [3],[19] 

It has also been found in the research that the fibre orientation in relation to the 

cutting direction will play a critical factor in the chip removal mechanism and 

surface damage [3],[20],[21]. The definition for the fibre orientations direction 

which will be used in this document is shown in Figure 2-6. As it can be seen the 

cutting mechanism varies according to the different fibre orientations. Likewise 
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the machining damage, surface quality and cutting forces have also been shown 

to vary due to the fibre orientation. 

 

Figure 2-6 - Cutting mechanisms at different fibre orientations. Adapted from 

REF [3],[21]. 

In the 0 degree orientation the fibres are pushed upwards and then fracture 

on their cross section due to bending and micro buckling- Figure 2-6(a). First 

the fibre is debonded by de-cohesion from the fibres-matrix interface, and 

then the fibres are bent up like a cantilever beam [2]. A crack will propagate 

along the interface until eventually the small rectangular chip is removed when 

the fibres finally fracture. D.H. Wang et al. [21], found that the machining forces 

fluctuate as the fibres go through a cycle of bending in a peel fracture effect, 
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and this will repeat after a small rectangular fragment is removed. The de-

bonding or de-cohesion will occur when the stress is greater than the physical 

bonding strength between the fibres and matrix interface. M. Ramulu et al. [5], 

found that the machined surface was left covered in clean fibres lying parallel 

to the surface, and the fibre orientation could be seen on SEM images.  

In the 90 degree fibre orientation, the fibres are first compressed by the tool 

which causes them to fracture perpendicular to the fibre length. Then in order 

for a small particle to release, there is a secondary fracture by inter-laminar 

shear along the fibre matrix boundary [21]. Small fractured particles are 

produced and some out of plane displacement may be seen on the surface in 

the cutting direction. Early research by Koplev et al. [16], found that irregular 

sized chips were produced as opposed to small rectangular chips in the 0 

degree fibre orientation. A larger overall cutting force was found while 

machining the 90° degree fibre orientation compared to the 0°. This is due to 

the fact that all the fibres must be sheared and compressed rather than in 

bending in the 0 degree fibre orientation. 

In the 45 degree orientation the fibres are predominantly sheared by the tip of 

the cutting tool and then a small dust-like chip is removed when the fibres de-

bond from the matrix [3]. It is also possible for individual fibres to pull out from 

below the machined surface [2]. The fluctuation in cutting forces was found to 

be less in the 45° degree orientation than the 0 degree fibre orientation.  

The 135 orientation, where the fibres are facing into the path of the cutting 

tool has a different cutting mechanism. Here there is a combination of 

bending, crushing and fibre shearing. The fibres are bent and then a crack 

begins to propagate below the surface along the fibre-matrix boundary where 

there is de-bonding [20]. The fibre matrix interface is fairly weak due to the 

interfacial bonding strength between them. The crack will propagate and finally 
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the fibres will be crushed and break, leaving a damaged surface. Generally the 

surface roughness of the 135 degree orientation has been found to be worse 

than of those below 90 [16],[20]. 

Figure 2-7 shows cutting for a small and larger depth of cut in fibre 

orientations greater than 90°. Wang & Zhang [20] found that at the smaller 

depth of cut which is less than the fibre diameter, the end of the fibre is 

compressed and the surrounding matrix is fractured- Figure 2-7a. However the 

fibres will not always break and small protruding or un-cut fibres can be left on 

the material surface. In a greater depth of cut, the fibre is pushed by F1 in a 

direction outwards from the workpiece and the tool tries to bend the fibres. 

This can cause fibre matrix de-bonding and micro cracks below the machined 

surface, parallel to F2. 

 

Figure 2-7 - Cutting mechanism at positive fibres orientation at small and large 

depth of cut. Adapted from REF [18]. 

2.3-1 Milling of Composite Materials 

Milling is a machining process which is used heavily in industry and is used in 

composite manufacturing. It can be used for creating many different flat or 

shaped surfaces, including slots, pockets and contours [22]. In milling the 
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spindle rotates the tool about an axis and is fed into the workpiece. The milling 

tool usually has multiple cutting edges and the spindle axis of rotation can 

either be horizontal or vertical [23]. The tool has a rotational speed and a feed 

speed which combine to make up the feed- which is the distance the tool 

advances in one revolution. The cutting tool will have an axial depth of cut (ap) 

and radial depth of cut (ae). The three main types of milling are plain, face and 

end milling. In plain milling the cutting edge is parallel to the spindle axis and 

can be either parallel or inclined to the workpiece feed direction. The sides of 

the cutting tool are used to make the cut on the periphery of the tool. In face 

milling the face and sides at the bottom of the tool are used for cutting and in 

end milling the sides the base of the tool are used for cutting [22]. 

In milling the cutting mechanism will differ to that shown previously in turning. 

Due to the rotation of the cutting edge, a variable depth of cut is taken from 

the workpiece. The change in chip thickness in conventional milling is shown in 

Figure 2-8(a). In conventional milling the tool rotation is against, or opposite, 

the feed direction and the machining forces will cause the tool and workpiece 

to push away from each other. Whereas, in down or climb milling the tool 

rotation will be with the feed direction.  In conventional face milling for each 

rotation of a single cutting edge, the un-deformed chip thickness increases to a 

maximum before a chip is removed, whereupon a new cutting edge will cut 

into the material [24],[25]. When machining fibre composites the cutting tool 

edge in relation to the fibre orientation will change as the tool rotates through 

the material shown in Figure 2-8(b). Unlike with orthogonal turning, the fibre 

orientation in relation to the cutting edge is not constant- Figure 2-8(b)-, and 

also, the chip thickness is not constant, so the machining forces will be 

fluctuating within each cycle of a tool cutting edge rotation. Cutting forces will 

increase as the chip thickness increases and then drop once the chip is 

removed. The depth of cut will determine the area and number of fibres being 
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cut, while the feed rate, cutting speed and tool geometry will determine the 

chip thickness [26].  

 

Figure 2-8 – (a) Change in chip dimensions during conventional milling [3], 

(b) Rotation of the cutting edge will vary against fibre orientation [26]. 

Karpat et al [18], created a mechanistic model using cutting force coefficients 

obtained from milling tests for slot milling of a CFRP laminate. The authors 

showed that in slot milling the tool cutting edge will vary against the material 

fibre orientation as the tool rotates which is adapted and shown in Figure 

2-8(b) and Figure 2-9. Cutting force coefficients represent a materials 

resistance to machining in the radial and tangential directions. The authors 

found that the radial cutting forces were higher when cutting laminates at a 0 

and 90 degree fibre orientation, compared to machining laminates with a 45 

and 135 degree fibre orientation. However the highest tangential cutting forces 

were found when machining at the 135 degree fibre orientation. It was 

explained that the cutting forces are “due to the combined effect of the 

instantaneous fibre cutting angle and the instantaneous chip thickness” [18]. 

Delamination or un-cut fibres was found to be a product of both cutting tool 

wear and material fibre orientation and the delamination was found to occur 

most where there were maximum tangential forces. 
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Figure 2-9- Slot milling, cutting tool edge to fibre orientation. Adapted from 

REF [18]. 

A number of researchers have performed experiments on milling of 

composites. Azmi et al. [26], used Taguchi analysis to find the machinability of 

GFRP with respect to surface roughness, tool life and machining forces. A 

unidirectional glass-epoxy fibre with 16 layers was end milled and 3 

measurements were taken to get an average surface roughness. Flank wear 

was the most dominant wear mechanism by mechanical abrasion. The feed 

rate was found to be more dominant on roughness than cutting speed. The 

resultant cutting force was most significantly influenced by feed and depth of 

cut. Tool wear, fibre orientation, cutting forces and machining parameters will 

all therefore have an effect on surface quality. 

Davim et al. [27], looked at the machining forces, surface roughness and 

delamination during end milling. The machining force was found to increase 

with feed rate and decrease with cutting velocity. The feed rate had the most 

statistical influence on the delamination factor to the workpiece and surface 

roughness was found to increase with feed rate and decrease with cutting 

speed. Mathivanan et al. [28], have also analysed the machining forces in end 

milling of CFRP and GFRP using ANOVA factorial design. Machining forces 

were found to increase approximately linearly with feed and also increased with 

cutting speed. The machining forces were found to be higher when machining 

CFRP than GFRP due to its higher stiffness and strength. 

Hintze et al. [29], looked at delamination on a woven plain weave CFRP fabric 

with 0 and 90 degree fibres direction. They found that the woven yarn which 
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causes crimp or undulation in the fabric causes variation in delamination on 

different areas of the woven composite surface when machined. The 

undulation of the woven yarn was found to be more critical to the extent of 

delamination than changes in the different tool geometry which the authors 

applied. Figure 2-10 shows the different delamination found on the woven yarn 

with different possible delamination types. Type I/II was found to be the most 

dominant type of delamination. 

 

Figure 2-10- Different delamination on a machined edge of woven composite 

[29].  

Research by Haddad et al. [4] have used three different machining processes, 

water jet, abrasive diamond cutter and standard burr tool. The machined 

surfaces were compared by using contact and non-contact roughness 

measurement methods. The fatigue life and mechanical properties were 

investigated in response to surface quality. Importantly, it was found that the 

type of machining process and the surface roughness after machining had an 

effect on mechanical performance. The inter-laminar shear strength and 

compressive strength decreased with an average increase in surface roughness. 

Therefore; minimising surface roughness and damage is of importance in the 

machining processes because it can affect the strength and integrity of 

components. 
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Ahmad et al. [19], looked at the machining damage in edge trimming of CFRP. 

They investigated surface roughness and edge delamination while machining 

with a burr style router. Surface roughness measurements were made by 

Mitutoyo profilometer. Delamination frequency and depth were found to 

increase with an increase in chip effective thickness. The equation for chip 

effective thickness is shown in Equation 1, where ae is the radial depth of cut Vf 

the feed rate and Vc is the cutting speed. An increase in feed and a decrease in 

cutting speed will increase the chip effective thickness.  

 

𝑪𝒉𝒊𝒑 𝒆𝒇𝒇𝒆𝒄𝒊𝒕𝒗𝒆 𝒕𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 = 𝒂𝒆𝒇𝒇 = 𝒂𝒆
𝑽𝒇

𝑽𝒄
    

 

The surface roughness measured in the longitudinal direction was found to 

increase with chip effective thickness. Delaminations were recorded along the 

machined edge and it was found that type I/II were the most dominant type. 

Figure 2-11 shows some high levels of delamination in surface plies seen by the 

authors when machining with a large chip effective thickness. Ahmad et al. [30], 

has again reported similar findings of the effects of chip effective thickness on 

surface roughness. 

Equation 1 
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Figure 2-11- SEM image of type I/II delamination on edge machined at extreme 

cutting conditions [19].  

2.3-2 Other Machining Processes 

Drilling is a process which is widely used in composite industry to allow 

assembly or joining of components. However, there are strict requirements for 

holes in order to meet surface integrity and geometry requirements. In order to 

allow easy assembly, the position and diameter of the holes must be within 

tolerance, and also the holes must be mechanically safe. One alternative to 

drilled holes in composites is to adhesively bond joints. This can be 

advantageous because the cost and weight associated with fasteners is 

reduced. Bonded joints can also act as a stress distributer, as the load will be 

applied over a larger area and the stiffness of an epoxy adhesive could be 

tailored to be closer to that of the bonded materials. However bonded joints 

are permanent and can’t be disassembled. If components need to be later 

inspected or replaced this would be problematic. Additionally, the lifetime of 

the adhesively bonded joints may be uncertain. Another potential is creating of 
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holes during the lay-up and curing. However, due to the distortion when 

cooling, the accuracy of these holes is poor [31]. For these reasons drilling of 

composite materials is still widely used in the aerospace industry. It has been 

found that there is a significant amount of research in the literature into 

composite drilling, and delamination at the top and bottom ply has been found 

to be a significant problem. This will lead to large costs in production if material 

must be scrapped. The thrust force has been shown to be one of the main 

factors contributing to delamination [3]. There can be two types of 

delamination: 

 Peel-up which occurs on the when the top laminate plies are pulled up by the 

flutes and causes them to bend and separate- Figure 2-12b.  

 Push-down delamination occurs as the tool approaches the exit- Figure 

2-12a. The bottom layers are pushed by the vertical thrust force which causes 

them to bend. The inter-laminar interface is relatively weak and this bending 

can cause a crack to propagate along the interface and de-cohesion [3].  

 

 

 

The thrust force is correlated with the feed rate: if the feed rate rises there is 

increase in the uncut chip thickness and a corresponding increase in the thrust 

Figure 2-12- Two types of delamination while drilling composites.  

(a) Push-out, (b) Peel-up. Adapted from REF [3]. 
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force [3]. Therefore the increase in feed rate has shown to be critical cause of 

delamination. This effect is mainly contributing to the push-out delamination 

on the bottom ply. Tool wear and chisel edge size has also been shown to 

contribute to the thrust force which will in turn contribute to delamination [32]. 

One method to reduce the delamination from the thrust force is to reduce the 

feed rate near to the hole exit.    

Wen-chou Chen [33] drilled composite holes and used X-ray to find the size of 

the damage by delamination. The holes were coated with tetrabiomethane 

before x-ray was applied. Torque and thrust force were investigated with a 

dynamometer to see how the onset of delamination is affected. Tool geometry, 

tool wear and drilling parameters effects on the delamination were also 

investigated. Important findings from this study were: 

Delamination is most prominent when there is a high thrust force, and 

lowering the feed rate will reduce the torque and thrust force. “In order to 

improve the hole quality at the exit, the feed rate at the exit needs to be 

decreased during the drilling process” [33]. 

 “The delamination becomes serious as the wear rate of the drill rises during 

the drilling process” [33]. Delamination increases with increasing tool flank wear 

as does the thrust force. The drill wear also causes delamination to be more 

serious at high spindle speeds. 

Shyha et al. [31] used a stepped drill and twist drill with different coatings, 

point and helix angle. The effects of tools on delamination were discussed. The 

step drill was found to reduce the thrust force in the 2nd stage of drilling 

significantly by creating a pilot hole effect. This is because there is less chisel 

edge contact with the workpiece during the 2nd stage. They found that stepped 

drill had a longer tool life than the conventional, and that the uncoated twist 

drill had a longer tool life than the TiN coated. The dominant wearing 
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mechanism was found on the flank and chisel edge of the tools by chipping. 

Increasing the feed rate increased the thrust force, but it also lengthened the 

tool life.  

Other problems that may occur during drilling are burning of the matrix and 

fibre pull out. Temperature build-up can be high while drilling due to the low 

thermal conductivity of the matrix. This can cause shrinkage of the hole once 

the tool is removed which means dimensional accuracy would not be achieved 

[3]. It has been found that there is a significant amount of research into drilling 

of FRPs materials, most of which has not been presented here. There has been 

significant experimental research into causes of, and strategies for, reduction in 

delamination, and the effects of machining parameters on tool life and 

delamination. It has been found that there is less research conducted into the 

milling process and into the surface generated during edge trimming and 

therefore this has been chosen as focus area. 

2.4 Surface Roughness Measurement for Composite Machining 

In order to assess the quality of the machined surface of components, surface 

roughness parameters are often calculated [5]. It is important, too, for the 

composite manufacturing industry be able to accurately quantify surface 

roughness and assess the surface damage induced by machining. This will 

ensure the integrity of components and reduce costs in the machining process. 

It is also important from an academic research point of view to be able to 

characterise chip formation and understand how surface damage may be 

affected by changing machining parameters, i.e. tool condition, tool geometry 

or feed rate and cutting speed.  

Typically in industry, a stylus profilometer is often used to measure surface 

roughness. However there have been problems found in the literature with 

using this method for machined fibrous composites. Difficulties have been 
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found by Ramulu et al. [5], it was found that when measuring roughness 

parallel to the fibre direction, the stylus passes over multiple plies or span over 

multiple fibre orientations. Azmi et al. [34], have also reported that the Ra may 

not always reflect the machining damage or surface quality of machined 

fibrous composites. They pointed out two specific problems with roughness 

measurement carried out by profilometer: i) protruding fibres on the machined 

surface can affect the movement of the stylus or stick to the stylus tip, and ii) 

that the deviations in the roughness reading is very dependent upon 

measurement direction and position due to material non-homogeneity. Ahmad 

et al. [19] found that the surface roughness increased with chip effective 

thickness when measured in the longitudinal direction, however no clear trend 

was found when measuring in the transverse direction, which may have been 

due to the problems of using a profilometer roughness measurement method 

on non-homogenous composite surfaces.  

The profilometer works by trailing a small radius diamond tipped stylus in a 

straight line along the specimen, as shown in Figure 2-13. A transducer then 

detects small deviations in profile height which can be used to calculate 

roughness parameters. The sample is measured with an overall evaluation 

length, which is split into a number of sampling lengths, which is to be 

performed according to British standard ISO 4288:1998. The Ra parameter is the 

most commonly used surface roughness parameter and is defined as the 

arithmetic mean roughness of the profile. First the profile must be filtered to 

remove the long wavelength or low frequency component, so that the high 

frequency roughness component is maintained. This low frequency profile 

waviness is removed from the profile deviation according to the British 

standard ISO 11562:1997 and is shown in Figure 2-14. In Figure 2-14(a) three 

profiles are shown, one which is the un-filtered profile measured by stylus, the 

second shows the profile waviness, and has the high frequency component 
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removed, the third is the profile roughness and has only the high frequency 

component. Figure 2-14(b) shows how the profile waviness is removed 

according to the standard, where a higher percentage of the profile with a low 

frequency component is removed from the measurement. 

The Ra roughness parameter is then calculated as the centre line average 

which is the deviation of the surface profile from the centre line. The centre line 

is calculated to lie where the sum of the area contained (by the profile), above 

and below the centre line is equal. The absolute value of the peak or valley is 

used in the Ra parameter, so it does not distinguish between peaks or troughs 

but only the deviation from the centre line. Similarly, the Sa parameter is 

described as the arithmetic mean of the absolute of the ordinary values over a 

definition area, rather than along a profile line.  

In measurements made using a stylus the lateral and vertical resolution of the 

profile measurement is determined upon the stylus edge radius. The stylus tip 

will never be able to get fully to the bottom of surface valleys and therefore the 

profile measurement will be different depending upon the size of the stylus 

edge radius, as shown in Figure 2-13. The lateral resolution is measured in the 

horizontal stylus traversing direction, and the vertical resolution is in the profile 

height direction. 
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Figure 2-13- Profile evaluation length and sampling length. The stylus radius will 

dictate the profile vertical and lateral resolution as shown. 

 

Figure 2-14- Removal of low frequency component in roughness measurement, 

(a) Measured profile with waviness and roughness shown, 

(b) Removal of profile waviness. 

Ghidossi et al. [35], researched the effect of machining parameters on failure 

stresses and roughness. It was found that increasing the cutting speed reduced 

the surface roughness during edge trimming of GFRP and CFRP. A surprising 

result was found, that the surfaces with the highest Ra did not necessarily have 

the lowest failure stresses, and therefore the Ra parameter did not give a full 
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indication of damage. Slamani et al. [36], has found problems using Ra to show 

the extent of machining surface damage due to increasing tool wear, which 

they found was because of matrix burning and sticking when using a worn 

cutting tool. 

Some recent research by Gara and Tsoumarev, [37] has created a roughness 

prediction equation for transverse and longitudinal roughness measurements 

using a theoretical equation and regression equation from experimental test. 

They have found that feed rate was the strongest contributing parameter to 

the roughness and that up milling gave a better surface finish than down 

milling. However, their longitudinal roughness measurements were taken using 

a stylus profilometer and there was little detail given of the method used to 

take measurements, effect of fibre orientation on roughness, or of the standard 

deviation in these measurements. Their regression equation took into account 

the effects of cutting speed and feed rate but does not include any effects of 

tool wear. Their tests were performed using an uncoated knurled cutting tool, 

which will have a very high tool wear rate when machining a composite 

surface, and is probable to be a contributing factor to the roughness. 

Wern et al. [38], studied the surface roughness of composite drilled holes 

using two PCD drills and with varying feed rates. SEM was used to look at the 

surface and varying roughness parameters were investigated. They saw a 

variation in surface roughness at different points on the drilled hole due to 

fibre orientation shown in Figure 2-15. In the negative fibres orientation to 

cutting direction they observed fibres pull out which caused pitting and a 

rough surface. In the other directions the surface was smooth with smeared 

matrix and sheared fibres. They found Rt and Rz more effective than Ra at 

quantifying the depth of the valleys and machining damage for composite 

materials. The feed rate also increased the surface roughness once it went 

beyond 0.1778 mm/rev.  
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Figure 2-15 - Variation in roughness at different points on hole surface due to 

fibres orientation [38]. 

Colak and Sunar [39], have performed milling experiments on a unidirectional 

CFRP  laminate with a PCD cutting tool to create a mechanistic model using 

cutting force coefficients. They have measured surface roughness using a 

Nanovea optical profilometer. The surface roughness was found to be highest 

when machining with high feed rate and low cutting speed. They, however, did 

not investigate the use of different roughness parameters or discuss the 

difficulties of measuring surface roughness of a multidirectional machined 

composite surface because the measurements were made on a unidirectional 

laminate. It has been shown by other researchers that the feed rate followed by 

cutting speed has the strongest dependence on surface roughness, and that 

increasing feed and decreasing cutting speed will generally increase roughness 

[40]–[42].  

Nurhaniza et al. [41]  have also used statistical methods and design of 

experiments to show the contribution of feed rate, cutting speed and depth of 

cut on the surface roughness but not the effects of tool wear. They have used a 

profilometer to measure Ra surface roughness and yet have not fully discussed 

the effect of fibre orientation on the surface roughness or described the 



41 

 

uncertainty in measuring surface roughness of a multidirectional laminate with 

this method. Other researchers have made useful contributions to the literature 

using design of experiments to analyse the effects of the feed rate and cutting 

speed on surface roughness, yet the effect of tool wear and fibre orientation 

has not been included [40],[42]. 

Kumaran et al. [43] have predicted surface roughness of water jet machined 

CFRP material using regression analysis. Linear surface roughness 

measurements (Ra) have been taken using a profilometer and visual surface 

profile measurement was made using a non-contact 3D surface measurement 

NV-2000. An assessment of the contribution of each of the test variables on 

surface roughness was made and regression analysis was able to show the 

effect of water jet parameters on surface roughness within a 95 % confidence 

level. 

Ismail et al. [44] have drilled hemp fibre reinforced composite (HFRP) 

composite and used design of experiments to analyse the effects of drilling 

parameters, fibre aspect ratio, and drill diameter. Delamination and surface 

roughness were found to increase with greater fibre aspect ratio which 

correlated to longer length fibres. The delamination damage was lower in the 

HFRP than CFRP sample and surface roughness measurements were taken 

using mitoyoto profilometer along the drilling direction, through ply thickness.  

Ismail et al. [45] have assessed surface roughness, delamination factor and 

chip morphology when drilling CFRP and HFRP. They have sectioned the holes 

and used SEM images to analyse surface quality. The SEM images showed 

some internal propagation of cracks, delamination and burnt epoxy resin in the 

CFRP material. Delamination was found to be higher in the 10mm diameter tool 

compared to the 5mm tool and at higher feed rates. Chip morphology showed 

that the CFRP chips were discontinuous but not fully dust-like, whereas the 
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HFRP chips were more continuous with brown ribbon like chips. This was 

because the CFRP has a brittle thermoset epoxy resin while there was a ductile 

thermoplastic polycaprolactone (PCL) resin for the HFRP. 

2.4-1 Roughness Parameters 

Due to the non-homogeneous structure of fibre composites, the use of Sa 

areal roughness parameters may be useful when applied to a machined 

surface. In a study by U.C Nwaogu et al. [46], the use of a commercial optical 

system manufactured by Alicona was applied for surface roughness 

measurement. They compared tactile profilometer and Alicona optical device 

for the roughness measurement of casting surfaces. Areal and profile surface 

roughness parameters were used and it was found that the areal (Sa) 

comparators had less variation in measurement than the profile parameters 

(Ra). They compared conventional Ra from profilometer measurement with the 

Sa parameter from Alicona focus variation system and found an agreement. It 

was recommended that the areal parameters (Sa) were more useful in 

measuring the surface of castings due to giving a better representation of a 

non-homogeneous surface and were also found to have a better repeatability. 

The use of the Sa parameter has good potential for application in composite 

surface roughness measurement due to the non-homogeneous structure and 

described unreliability of stylus measurements. The non-homogeneous 

structure of a fibrous composite machined surface is variable due to the 

different fibre orientations and cutting mechanisms on each layer. Therefore 

roughness measurement must be able to accurately represent this.  

A relevant issue to machined surface damage detection is whether the Ra 

parameter (arithmetic mean roughness) can give enough information to 

quantify the surface quality alone. Herring et al. [47] studied different 

roughness parameters to assess surface finish of a CFRP mould surface 

manufactured by different methods. The maximum peak to valley height (Rt), 
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skewness (Rsk) and kurtosis (Rku) were studied. The authors stated that a 

minimum of Ra, Rsk and Rku should be calculated to give a thorough 

understanding of a composite surface. All of the parameters used were capable 

of distinguishing between the surfaces manufactured by different methods, but 

the Rt parameter was shown to be most sensitive to individual scratches or 

particles on the surface.  

Recent research, by Rimpault et al. [48], has used fractal analysis of cutting 

force signals when CFRP trimming by end milling using a diamond coated tool. 

They have performed machining experiments at increasing levels of tool wear 

using 3 different levels of feed rate and cutting speed. Tool flank wear was 

measured by optical microscope according to ISO 8688-2. It was observed that 

there was some burning of the matrix at tool flank wear above 0.3mm, 

although they stated that cutting edge rounding may be a better indicator. 

They found that with the cutting force signal fluctuated more at lower levels of 

tool wear when there was a sharper milling tool due to cutting small groups of 

fibres, as shown in Figure 2-16. 
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Figure 2-16- The total cutting force at different levels of tool wear, with 3 tool 

rotations shown [48]. 

Importantly they stated that- “Ra was found to be inadequate to evaluate the 

surface finish of fibre reinforced plastic composites.” They therefore decided to 

use tool wear as their comparative factor vs the signal forces, and did not 

include roughness measurements in their analysis. Although, little detail was 

given as their reason for Ra being inadequate to evaluate surface quality, it may 

have been because of the problems of using standard stylus method. In any 

case, this paper again highlights the need for further research into surface 

analysis using different measurement techniques and possible use of additional 

roughness parameters to better represent surface quality of FRPs machined 

surface. 

The skewness and kurtosis roughness parameters are explained in Figure 2-17. 

The skewness indicates whether a surface is characterised by peaks or valleys 

and is a statistical measure of the profile symmetry or height distribution. The 
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kurtosis, shown in Figure 2-17, highlights whether the surface profile has peaks 

and valleys which are either sharp or rounded. A profile which has a negative 

or low skewness will have more valleys than peaks, while a positive skewness 

will describe one which has more peaks. A profile which has a high kurtosis will 

have sharp peaks, while one with a low kurtosis will have rounded peaks. The 

kurtosis and skewness are not represented in the Ra parameter, and it has been 

shown that two unequal surfaces can have the same Ra [49]. Therefore these 

parameters will be investigated to see if they can give more information about 

a machined composite surface quality. 

It has been found that the large majority of research in the literature on 

roughness measurement has focussed on Ra measurements made by stylus 

measurements. It has been shown that there are issues with this method and 

that additional parameters may further improve measurement accuracy and 

information on surface structure. A number of researchers have used design of 

experiments and linear regression in order to analyse the composite machining 

process and effects of parameters on surface roughness [37],[40],[42],[50]. It 

has been found that the majority of research into parameters affecting the 

surface roughness have focussed on the effects of feed rate, cutting speed and 

depth of cut. The effects of tool wear have generally not been included as a 

statistical contribution in regression equations for the surface roughness.  
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Figure 2-17- Profile skewness and kurtosis. 

2.4-2 Surface Roughness Measurement Methods 

A brief look at some of the different methods which can be used to measure 

surface roughness are described. A detailed explanation of surface texture 

measurements methods is described by R. Leach [51],[52]. The standard 

methods being contact profilometers which work by trailing a stylus tip and 

measuring the profile deviations. The stylus tip is usually diamond tipped and 

carefully manufactured with a small radius often in the region of 2-10 µm [51]. 

To measure surface roughness, a transducer is used to detect profile deviations 

on the surface and then subsequent amplification of the signal is introduced, 

this is followed by filtering of long wave profile spatial frequency components 

[51].  There are a number of errors which can be associated with stylus tip 

measurements, including deformation of the material by the stylus tip and 

skidding of the stylus tip. Additionally, the dimensions of the stylus will 

introduce filtering and levelling errors, and the calculation method which is 

applied to sample and filter the profile information will affect the obtained 

results. A number of these issues are detailed by R. Leach [51]. In roughness 

measurement, stylus devices are often used to make profile line measurements 

of the sample, however, it has become increasingly important in to be able to 
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take areal form and roughness measurements. As a result of being able to take 

areal measurements there is more capability to fully characterise surface 

structure and to make informed decisions about how profile form may affect 

in-service performance and the function of components and materials. 

Although it is possible to take areal roughness measurements with specialised 

profilometer devices, scanning times can take several hours because they must 

take multiple line measurements. Therefore, optical devices can become 

advantageous when taking areal topography and roughness measurements 

because the scanning time can be significantly reduced. 

 Other methods exist: for example non-contact methods like coherence 

scanning interferometry (CSI) and focus variation devices which can be used to 

take areal texture measurements and create surface images. CSI devices work 

by using white light and the localisation of interference fringes, the devices can 

determine topography and optical properties of the surface. This method can 

also be called vertical scanning white light interferometry. CSI uses two beams 

of light, which can interfere constructively or out of phase to give destructive 

interference. A low coherence light source is used which has a short coherence 

length and determines the ease at which a light source can interfere with itself 

[52]. A beam splitter is used at the objective lens to split the light, where one is 

directed at a reference mirror and the other light beam at the measured 

sample. The reflected beams from mirror and sample are recombined, and the 

optical path length of the two beams must be very nearly identical for 

interference to be seen at the detector. The detector measures the light 

intensity at different vertical distances to the sample and the light intensity will 

vary due to the interference. The light intensity can be used to find the 

interference maximum and therefore the sample profile heights at each pixel 

can be determined [52]. Surface heights are determined by finding where 

interference effects are most strong and the intensity data for each pixel point 
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is determined over successive camera frames. Commercial coherence scanning 

interferometers are available from a number of different manufacturers.  This 

method has a high vertical resolution and can be used for roughness 

measurements of very smooth surfaces and steep flanked or rough surfaces. It 

is also a non-contact method which means that it will not scratch the surface 

and is not dictated by the edge radius of the profilometer to get into sharp 

grooves like with a stylus.  

Chromatic confocal microscopy is another optical method which can be used 

to find sample profile information. The principle works by using two pinhole 

apertures in front of the detector and light source. The optical path length from 

the detector to the specimen is the same as that from the emitted light source. 

Then, the vertical height to the specimen can be varied, and when the profile 

height is not in focus then the reflected light does not pass through the 

detector pin hole and there is zero intensity. On the other hand, when the 

height of the profile is in focus, then the light does pass through the detector 

pin hole. The system is on a vertical scanning system and therefore image 

intensity can be compared with profile height at different points on the surface. 

The disadvantage of this system is that it requires longer scanning times than 

other optical methods because the co-ordinate values of each point must be 

obtained with the moving of the instrument mechanism. The accuracy of the 

instrument will depend upon the spot size of the light source. 

Another method is focus variation devices which work by using the small 

depth of focus of an optic to take multiple images at different vertical distances 

from the sample. A full high resolution 3D image can be constructed which can 

be used to make high accuracy form and roughness measurements and can 

also capture colour information. The method works by searching for the best 

focus position of an optical element which then has a certain distance value 

from the sample, this process is carried out a number of times and a depth 
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map of the sample is created. By moving the distance of the sample to the 

objective lens, then the image will be in varying degrees of focus from low, to 

high and then to low again.  Lenses with a narrow depth of field are used 

because they have a limited focus range [51]. A CCD sensor is used to detect 

image focus by using contrast information at isolated points on the image. The 

standard deviation of the contrast between pixels can be used to detect image 

focus. The contrast between grey values of pixels in an isolated region will have 

a low standard deviation when the focus is very low. In reverse, when there is 

focussed image then there will be a high standard deviation of the contrast 

between neighbouring pixels [51].  The position of maximum focus must then 

be calculated by finding the peak point in the focus curve. 

Focus variation can capture information from very rough surfaces and steep 

flanks with a high vertical resolution. However, it does have difficulty measuring 

on very smooth or highly reflective surfaces. Some of its main applications are 

topographical measurements and form and roughness measurements of 

machined surfaces and cutting tools. A focus variation method has been 

applied in the current study using commercial system manufactured by 

Alicona. This method has been used because of its ability to perform high 

accuracy areal roughness measurements and give colour information. It can be 

used to take areal scans of relatively large dimensions, which will be tested to 

see if it proves advantageous when applied on a non-homogeneous composite 

surface. It has also been applied to perform cutting edge radius measurements 

to quantify tool wear. 

2.5 Cutting Tools for Composite Machining 

The challenges of machining composites have also lead to the development of 

new cutting tools. During machining the cutting tools are under intense 

localised pressure, high temperatures and friction. Due to the strong abrasive 

wear of carbon fibres early researchers of machining found insufficient wear 
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resistance of standard cutting tools such as, high speed steel, cemented 

carbide and existing nitrogen and carbon based coatings [2],[53]. These tools 

were also shown to leave a surface with a poor surface quality [54],[55]. It has 

been shown that the initial tool geometry and tool wear will play a critical role 

in surface roughness, edge delamination and burring [3]. It is necessary to have 

a sharp cutting edge to be able to cleanly shear and cut fibres and reduce 

delamination or un-cut fibres.  Tool wear will lead to a decrease in the surface 

quality, therefore tools with a good wear resistance are required. The superior 

qualities of PCD and diamond coated tools, plus an improvement in their 

manufacturing methods has led to these becoming increasingly used in 

composite machining. These tools have very high hardness and have an 

increased tool life over more standard tooling.  

Initial tool geometry and tool wear have been shown in the literature to play a 

critical role in surface roughness, edge delamination and burring. J. Zhang et al. 

[54], looked at the performance of CVD coated tools compared to standard 

WC-CO tools, (tungsten-carbide with cobalt binder), and they found that the 

CVD tools had a superior wear resistance and produced more holes with a 

higher hole quality. The first diamond coated tools were researched yet these 

had insufficient layer adhesion and suffered from coating delamination [53]. 

However an improvement in the adhesion of the diamond coating by new 

manufacturing methods has led to these tools becoming increasingly viable for 

high quality carbon fibre machining. The benefits include tool life in excess of 

10 times that of uncoated tools [56].  Diamond coating is deposited onto the 

base tool geometry in a thin layer by chemical vapour deposition (CVD) or 

physical vapour deposition (PVD). This is done in a vacuum chamber at high 

temperature and pressure, where carbon gas is introduced to form a pure 

crystalline diamond structure on the tool surface. High concentrations of 

hydrogen gas are used in the chamber in order to stabilise the bonding of 
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diamond and prevent the generation of unwanted graphite films [57]. Typically 

diamond coating of thickness of around 5 microns is formed on the surface 

[55]. The diamond coating has the advantage that it can be deposited onto 

complex base tool geometry, but the coating will still increase the cutting edge 

radius on the tool. The cutting edge radius and the roughness of the diamond 

coating will generally be higher than that of PCD tools which have been 

ground to a smooth finish [58].  

 PCD tools are another alternative to diamond coated tools for composite 

machining and they utilise the superior material properties of diamond. PCD 

tools have a measurable increased tool life to that of standard grain size 

diamond coated tools [58]. These tools can also be manufactured with a sharp 

cutting edge by grinding or laser cutting, and the PCD edge is resistant to 

abrasive wear. The PCD is manufactured by sintering together diamond 

powder at high temperature and pressure to create a disordered diamond 

crystal. Usually it manufactured by sintering the powder with cobalt binder 

onto a backing disk or stud with a cobalt binder to create a thin layer [59]. The 

disks can be around 60mm diameter and 1.7-4.6mm thickness [60]. The 

diamond crystal can then be cut by electro discharge machining into segments, 

and then must be ground or laser cut in order to create the required geometry 

which can be used for a cutting tool edge. The segments are generally 

soldered or brazed onto the cutting tool base in order to create a cutting edge. 

Figure 2-18 shows a PCD disk on a tungsten carbide backing which is then cut 

into segments and can form part of the tool [61]. 
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Figure 2-18 – PCD disk which is then cut into segments before brazing onto tool 

[61]. 

P.S Sreejith et al. [62] evaluated PCD tool performance while machining of 

carbon composites. They looked at machining temperatures and cutting 

pressure. It was found that during machining the tool will experience thermal 

and mechanical stresses, and that the matrix and fibre exhibit quite different 

mechanical and thermal properties. During composite machining there is a 

non-continuous chip produced, and because the material has non-

homogeneous directional properties, there will be a variation in dynamic 

loading during the machining process. They found that the PCD edge will wear 

due to abrasion but also there is low cycle fatigue due to dynamic load 

fluctuation and edge chipping. As well as abrasion some of the wear was 

attributed to spalling by the mechanical load fluctuation and fatigue. In 

spalling, small flakes or chunks of material will be broken off by crack 

propagation. 

Faraz et al. [63], have assessed the cutting edge rounding (CER) as a wear 

indicator in machining of CFRPs using drilling. They stated that the tool wear is 

due to an evenly distributed abrasive wear along the length of the cutting edge 

in the machining of CFRPs. Fibre abrasion was given as the dominant wear 

mechanism and the cutting edge rounding is a useful indication of tool 

bluntness or sharpness due to wear. Hole delamination was quantitatively 
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assessed along with drilling forces. A strong correlation was seen between 

thrust forces and hole exit/entry delamination with measured cutting edge 

rounding. Linear regression equations were used to show the effect of CER and 

thrust force on delamination. CER is also explained to be a useful analysis 

parameter to use for tool wear analysis because at new tool condition with 

zero wear there will be a non-zero edge radius. Therefore cutting edge 

rounding is a purely quantitative parameter intrinsic of current tool geometry 

unlike with flank wear (VB) measurement, which measures loss of material.  

Diamond coated and PCD tools have a low coefficient of friction, and in 

addition they also have good chemical and thermal stability at high 

temperatures. PCD tools  have a relatively stable hardness at high cutting 

pressure and temperature, which is due to the superior properties of the 

diamond [62]. Generally PCD tools have an increased tool life compared to that 

of standard grain size diamond coated tools [58]. However PCD can cost as 

much as 3-5 times that of diamond coated tools and 6-10 times that of 

uncoated carbide [56]. In this research the use of PCD and diamond coated 

tools has therefore been applied and the effects of tool wear have been 

realised as having an important effect on surface quality.  

2.6 CT Scanning for Sub-Surface Damage Inspection 

As well as surface damage in the form of delamination and surface roughness, 

it is also possible that there is damage below the machined subsurface. 

Therefore experimental methods and non-destructive techniques are required 

which can show the machining damage or manufacturing defects which may lie 

below the surface of fibre composites. For example, many damage types like 

delamination, micro-cracks and fibre breaks could be present, or 

manufacturing defects like excessive voids, fibre waviness and inclusions. Sub-

surface damage caused by machining could adversely affect the material 

strength and integrity of components or give rise to unexpected failures. 



54 

 

Therefore there is a need for techniques which can show the machining 

damage or manufacturing defects below the surface of fibre composites which 

will not be seen by optical microscope or SEM images.  

X-Ray micro tomography or (micro- CT) is a technique which has been used in 

order to assess fibre composites using specialist equipment. The specimen is 

radiographed many times around a rotated axis which allows a 3 dimensional 

internal image of the component to be generated [64]. The variation in the 

intensity of unabsorbed radiation is seen as shades of grey on the radiograph. 

The rotation of the axis must be used because cracks which do not have a 

significant depth in the beam direction will not be seen in the image. High 

resolution images of the specimen sub-surface damage can be seen, giving full 

through thickness damage indication. The matrix and carbon fibre have low 

absorption of the X-ray therefore good contrast could be difficult to obtain. In 

some instances penetrant liquids with high absorption have been used to 

increase contrast and crack definition, but the cracks must pass through the 

surface. The penetrant liquid is applied onto the surface to look for cracks 

which propagate into the material. 

P. Shilling et Al. [65] used a SkyScan 1072 desktop X-ray micro scanner to 

analyse damage in graphite and glass fibre composites with and without 

penetration dye. It was found that the size of voids could be determined in the 

glass fibre without dye. However in the carbon fibre the micro cracks could not 

be resolved well without the use of dye penetrant which increased the visibility. 

The use of the dye was found to give good resolution to the cracks but it was 

reliant on the connectivity of the cracks. Figure 2-19 shows the comparison 

between images from CT with and without dye penetrant and an optical 

microscope image taken of a cross-section. 
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Figure 2-19- Comparison of images taken of a carbon fibre specimen by Micro-

CT scan (with and without dye penetrant) and optical microscope. 

 (a) CT image section without dye penetrant,  

(b) CT image section with dye penetrant, (c) Optical microscope. Adapted from 

REF [65]. 

P. Wright et al. [66] used the synchrotron radiation computed tomography 

(SRCT) which can achieve very high resolution down to 0.3 µm to analyse 

damage in CFRP material. A multidirectional notched laminate was loaded in 

tension and the inter-laminar cracks and delamination and also fibre breakage 

can be analysed. The intensity spectrum of the absorption of the different 

phases of the material including cracks can be used to create a greyscale 

image. Figure 2-20 and Figure 2-21 show two different image cross-sections 

taken from the SRCT images. A high resolution image is shown which shows 

inter-laminar cracks and fibre breakage present in the material. The authors 

reported that this was the first study to look in such detail at a fibre composite 

using SRCT image but it was not applied to machined specimens. 

 

(a) (b) (c) 
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Figure 2-20- Two cross section images taken by SRCT ahead of crack notch. 

Showing Inter-laminar delamination and intra-laminar cracks [66]. 

 

Figure 2-21 - Cross sections taken by SRCT through 45 and 0 degree ply. 

Showing crack paths through the material [66]. 

V.A Phadnis et AL. [6] used a CT scan to find drill entry and exit delamination 

to validate a 3D drilling FE model. The 3D Micro-CT scan had the advantage of 

being able to see the delamination area at the entry and exit. A code was 

developed in Matlab in order to quantify the delamination size from the 3D 

scans, using the delamination factor which is based on the delamination area. 
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The 3D CT scan is shown in Figure 2-22 which shows the different grey scale 

for the hole delaminated areas, however the damage must be correctly 

distinguished from the hole delamination and undamaged areas. 

 

Figure 2-22 - CT scan of drill entry and exit delamination [6]. 

Some other researchers have used CT scan to analyse drilling delamination, 

including Tsao & Hocheng. [67], who used C-Scan and CT scan to analyse the 

delamination due to drilling from various drill bits. They found the C-Scan and 

CT scan both performed similarly for this application and were able to image 

the delamination area. There is however a need for application and research of 

CT scanning technique to the milling process, which will be useful to 

understand how the milling process may affect the subsurface which cannot be 

seen by standard technique. The milling process differs significantly from 

drilling and the damage may be more difficult to observe if it is not contained 

mainly to the top and bottom laminate layers as delamination. CT scanning can 

be applied to look for subsurface damage, including inter-laminar delamination 

and matrix cracking. CT scanning may also be able to expose manufacturing 

defects, or damage which is caused by machining, that would not be revealed 

by using surface imaging methods. 
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2.7 Finite Element Modelling for Composite Machining 

The use of finite element or numerical modelling to analyse the machining 

process has growing interest because it can reduce costs during expensive 

machining trials. There has therefore been progression of FE methods from 

initial machining of metallic materials and then developing of models to be 

applied for the machining of fibre composites. Early researchers into FE 

modelling for composite machining have developed 2D methods for 

orthogonal turning. A number of models currently contained in the literature 

have used orthogonal machining, and two different methods have generally 

been used in this approach. The first is the Equivalent Homogeneous Material 

(EHM) approach: the composite material is modelled as an orthotropic material 

in a single phase [9],[8],[68]. Here the material will have modulus and failure 

properties in the two principle directions depending upon the matrix and fibre 

properties, and plane stress or plane strain conditions. The second approach is 

a micro-mechanics approach where the fibres are modelled in separate phases, 

with an interface or cohesive elements between them to replicate the fibre-

matrix bonding and de-cohesion [69],[70],[71]. Here, the elastic properties and 

separate failure modes of the two parts must be modelled with a separation 

criterion at the fibre-matrix interface, cohesive elements have often been used 

to allow separation. It can then be possible to see stress, strain and damage 

variation throughout the two phases of the material- matrix and fibre. Figure 

2-23 shows a multiphase approach looking at the effects of using different rake 

angle tools. 
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Figure 2-23 - Finite element model of composite machining to simulate use of a 

new high rake angle tool [71]. 

Some authors have also looked at 3D approaches to modelling: Santiuste et al. 

[72] compared a 2D and 3D orthogonal cutting model for machining of carbon 

long fibre composite with an EHM model – Figure 2-24. The 3D model can be 

used to model both unidirectional and quasi-isotropic laminates with variations 

in stacking sequence, or fibre orientation, and look at out of plane effects on 

machining. In contrast, 2D models can only be used to model unidirectional 

laminates and use plain strain or plane stress assumptions. 

 

Figure 2-24 – 3D EHM model of orthogonal turning [72]. 
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Some recent orthogonal machining research by Xu and Mansori [73],[74] has 

looked into machining of CFRP/Titanium stack. Cutting Speed, feed rate, 

friction coefficient, and material fibre orientations have been selected as input 

parameters for the model. They achieved a good comparison between FE 

model and experiment and they found different chip morphologies between 

titanium and the CFRP. In the CFRP there was small dust-like chips, while in the 

titanium there were continuous and serrated chips. They also looked into a 

simulated Ra by selecting 100 sampling nodes along the cutting length of 1mm. 

The machined surface Ra of the titanium was found to be lower than that of the 

CFRP. The CFRP surface was found to be more influenced by friction factor 

than titanium. However, the Ra value was dictated by the mesh size and 

therefore it is an estimated value. They also analysed the interface damage 

between the composite titanium bond interface using cohesive elements. 

Gao et al. [75] have performed experimental milling test and orthogonal FE 

simulation of multidirectional CFRP laminates at four different fibre 

orientations. Diamond coated and cemented carbide tool were used for 

machining, with SEM and stylus measurements to assess surface quality and 

roughness respectively. They used a 3-D micro mechanical model with 

ABAQUS/Explicit where the matrix and fibre have been modelled as separate 

phases. They introduced a thermomechanical model based on heat production 

produced by coulomb frictional law, where a different friction coefficient has 

been applied at different fibre orientations. In this model they have compared 

orthogonal FE model with experimental milling model where there is not 

orthogonal cutting in machining by milling. They have analysed cutting forces 

versus fibre orientation angle and surface roughness versus fibre orientations. 

The different cutting mechanism found in their simulations according to fibre 

orientation is shown in Figure 2-25. They have also analysed the contribution of 

different machining parameters on the surface roughness using ANOVA and 
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found that fibre orientation, cutting speed and depth of cut had the most 

significant effects on roughness. A slight decrease in roughness was found with 

increasing cutting speed, while an increased depth of cut lead to a higher 

roughness.  

 

Figure 2-25- Cutting mechanism on different fibre orientations in micro-

mechanical orthogonal cutting model. Adapted from REF [75]. 

These methods have developed FE methods for the composite machining 

process although they are limited to orthogonal machining process which 

cannot be applied to the milling or drilling process. As milling and drilling are 

extensively used in industry both in composites and metallic manufacturing, it 

is therefore of high importance to improve finite element capabilities in this 

area. 
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 Some more recent research into the drilling of composites has been 

performed by V.A Phadnis et al. [6]. The authors analysed drilling of CFRP using 

a 3D finite element model, and the Hashin’s criteria is used to model fibre 

failure in compression or tension, while Puck’s criterion is used for the matrix 

failure. The model is shown in Figure 2-26. The model used to predict the 

torque and thrust forces as a method to optimize drilling parameters in order 

to reduce delamination. A recommendation of low feed rates and high cutting 

speed was recommended to reduce drilling delamination. They used Abaqus 

Explicit with user subroutine in order to create material failure models. 

 

Figure 2-26- Drilling CFRP laminate 3D model [6]. 

 From the literature review it has been found that there is a lack of research 

contained in the literature to date for the simulation of milling fibre composite 

materials. A 2015 review by Kahwash et al. [76], focussed on different processes 

for modelling of fibrous composite machining did not show any current 

literature for the milling of FRP composites. As milling is a commonly used 

process in industry it is therefore of importance to further research into FE 

methods for predicting the milling of composite materials.  
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2.8 Discussion- Literature Review 

From the findings in the literature review and the proposed direction 

supported by Rolls-Royce, it was decided to focus on the experimental milling 

process. Although drilling has been found to be a commonly used process in 

industry, Rolls-Royce uses an edge trimming process during their 

manufacturing and was therefore interested in furthering research into the 

surface damage caused during machining. It has also been found that the 

experimental research contained in the literature into drilling is more 

comprehensive than milling and therefore research into the complex milling 

process of fibrous composites is a requirement.  Consequently, this project has 

focussed machining surface damage, roughness measurements methods and 

improving the capabilities of modelling for edge trimming using novel 3D and 

2D FE simulations.  

From the literature review, it has been found that it is important to be able to 

predict and accurately measure surface roughness during a machining process. 

It is a requirement to be able to accurately measure roughness to ensure the 

in-service integrity of components, understand and quantify machining 

induced surface defects, and ensure an efficient and cost effective machining 

process for industrial applications. Therefore in this project new methods to 

improve surface damage characterisation will be developed. The use of the 

Alicona focus variation optical system will be investigated to improve the 

accuracy of machined composite surface roughness measurements. New 

roughness measurement strategies will be applied to expansively quantify 

damage and cutting mechanism of a machined surface at different fibre 

orientations. Additional roughness parameters including areal roughness 

parameter Sa, will be studied to give a more thorough and accurate description 

of machining damage of a multidirectional laminate. Skewness (Rsk), and 

kurtosis (Rku) roughness parameters will be also be applied to a machined 
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composite surface to assess surface defects and characterise surface 

topography across different fibre orientations. 

It has been found in the literature that methods for the prediction of surface 

roughness in composite machining are few. Also that predicting the effects of 

tool wear using finite element simulation in an edge trimming process has not 

been thoroughly researched for a carbon fibre composite. The literature has 

shown that tool wear will have a critical effect on surface quality and 

delamination, and that there is a requirement for development of new cutting 

tools for composite machining. The effects of tool wear on machined surface 

quality will be assessed in this work using cutting edge rounding to quantify 

edge condition from experiment.  

A flow diagram of the issues which have been found from the literature are 

shown in Figure 2-27. The diagram also shows the proposed project outline. 

The project has started with the initial question of assessing damage from a 

composite machining process. From this, the diagram outlines the initial 

generation of improved characterisation methods for surface roughness 

measurement with additional roughness parameter assessment. The research 

flow diagram requires an improved characterisation method for roughness 

evaluation which will then be applied in experiments to develop a new 

roughness prediction strategy. The strategy will combine FE and regression 

equations which will be validated by machining experiment. The regression 

equations will be trained and developed using experimental data including the 

effects of tool wear, feed rate, cutting speed and cutting forces and further 

show how they will affect the generated surface roughness. 
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Figure 2-27- Flow diagram of project requirements. 
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The project will be split initially into a development section where a baseline 

set of initial experimental tests will be performed to assess machining damage 

and improve upon experimental methods for roughness measurement. The 

findings from this test will be used in the following experimental tests, and 

following this, roughness measurement methods will be applied to generate 

new roughness prediction tools. Experimental milling tests using a PCD tool will 

be performed to generate different roughness samples, these will then be 

measured using a new optical measurement strategy, and the samples used to 

generate regression equations for the surface roughness. Consequently, a 

combination of regression equations and FE methods will be used to generate 

new prediction tools and allow assessment of how the surface roughness will 

be affected by changes in machining parameters and tool wear. Novel finite 

element models will be developed using a user subroutine to control the 

cutting tool movement and adaptive meshing of the CFRP workpiece is 

applied. The experimentally obtained regression equations for the surface 

roughness and the developed FE models, will be used to generate a new 

method for predicting surface roughness in a CFRP edge trimming process. 

The projects aim is to generate a method for predicting surface roughness and 

this method will be able to assess the effects of increasing tool wear and 

different machining parameters on the surface quality. Combined with the 

developed new roughness measurement strategies this project will improve the 

understanding of damage and defects in a composite machining process and 

can be applied to improve the efficiency of machining and the integrity of 

machined components. 

Finally, the literature has also shown that CT scanning can be successfully used 

for damage detection in fibre composites, including carbon fibre. However, 

most CT scanning in the composite machining literature has been applied to 
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look at the exit delamination of drilled holes. CT scans will hence be applied to 

look at defects in a machined subsurface from milling and to see if there is 

internal damage which is not apparent from optical images, surface roughness 

measurements and SEM scans. The occurrence of subsurface delamination and 

matrix cracking will be assessed using a CT scanner. It will also be a useful 

assessment because it will indicate if roughness measurement alone can make 

an evaluation of machining damage or if other measurement strategies need 

to be applied to ensure safe in-service components. SEM images and CT 

scanning will be applied to multidirectional and unidirectional laminates to 

assess the effects of fibre orientation on the machined surface quality, the 

cutting mechanism and the damage depth. Therefore this research project 

aims to take a comprehensive look at the machined surface and surface 

roughness generated in an edge trimming process with the use of new 

predictive methods and optical surface assessment. 
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Chapter 3  
Preliminary Assessment of Surface Roughness Measurement 

Methods 

3.1 Evaluation of Optical Based Alicona Technique 

From the literature review it has been highlighted that there are problems with 

the current stylus methods for characterising surface roughness. Therefore it 

was decided that the first part of this project would make a thorough 

assessment of surface quality, surface damage and surface roughness 

measurement methodology. The following section will assess roughness 

measurement methods and make a detailed characterisation of surface 

damage on unidirectional and multidirectional composites at different fibre 

orientations and machining parameters, using the optical focus variation 

system and SEM imaging. 

An initial set of experiments have been performed to focus on machined 

surface characterisation, and techniques for the surface roughness 

measurement of a machined multidirectional laminate. This is used as a 

benchmarking study to assess roughness measurement methodology and 

characterise machined surface quality using different roughness parameters. It 

has been shown in the literature review that there are reliability issues with 

current standard roughness measurement technique using the stylus method. 

Therefore the Alicona focus-variation optical system has been evaluated in 

order to measure surface roughness and the potential advantages of this 

system have been discussed. The use of areal roughness parameters (Sa) and 

other roughness parameters including skewness and kurtosis have been 

assessed to give a more thorough description of the surface damage and 

machining defects. The skewness and kurtosis has been analysed on the 

machined surface of different fibre orientations to give a thorough analysis of 
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cutting mechanism and surface quality on each fibre orientation and therefore 

quantify surface damage across a non-homogeneous surface structure. SEM 

micrographs of machined surface have been applied to investigate cutting 

mechanism and damage types across each different fibre orientations. The 

effects of cutting parameters feed rate and cutting speed have been assessed 

on surface quality. The suitability of using the Alicona focus variation system for 

roughness measurement over conventional stylus measurement has then been 

discussed. 

3.1-1 Experimental Set Up 

Machining was performed on CMS Ares 5-axis Machine Tool. The CFRP 

machined laminate has a 0/-45/90/45 stacking sequence, with a full thickness 

of 4.1 mm and 22 plies, shown in Figure 3-1b. The fibre orientation definition is 

shown previously in Figure 2-6. The composite is a commercially available CFRP 

with epoxy resin as matrix binder, and is manufactured by pre-preg lay-up and 

autoclave curing. The cuts were performed with full tool holder diameter width 

of cut, i.e. ae= 25 mm, and an axial depth of cut of ap= 4.1 mm, shown in Table 

3-1. A 52 mm length of cut was applied. A poly crystalline diamond (PCD) 

tipped insert manufactured by Sandvik was used and it was held using a 25 

mm diameter tool holder which is described in  

Table 3-2. The cutting tool is shown in Figure 3-1a. A single insert was used 

with one cutting edge on the tool. Four levels of feed per tooth and cutting 

speed were applied as shown in Table 3-1.  
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Table 3-1- Cutting test parameters. 

 

Table 3-2- Insert and tool holder properties 

 

Feed per 
Tooth (mm) 

Feed 
(mm/min) 

Cutting 
Speed  

(mm/min) 
ap (mm) ae (mm) 

0.025 17.75 85 4.1 25 

0.04 28.41 175 - - 

0.06 42.61 225 - - 

0.075 53.26 285 - - 

Insert 

Holder 

Make Sandvik Coromant 

Serial no. SC6320156 

Helix Angle 0° 

No. of Flutes 4 

Tool Diameter  25 mm 

Material Solid Carbide 

Cutting Direction Right Hand 

Insert 

 

Make Sandvik Coromant 

Serial no. R390-11T304E-P4-NL 

CD10 

Clearance Angle – AN  21° 

Rake Angle  21° 

Insert Width – W1  6.8 mm 

Cutting Edge Effective Length – 

LE  

11 mm 

Major Cutting Edge Angle  90° 

No. of Inserts 1 

Cutting Material PCD brazed to WC 

Corner Radius – RE 0.4 mm 
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Figure 3-1- (a) PCD insert and 25 mm diameter tool holder, 

(b) CFRP material fibre orientation lay-up and stacking sequence. 

The workpiece and fixture used in the setup is shown in Figure 3-2. The 

workpiece is clamped by holes onto the fixture and there is a full-slot machined 

through the workpiece. 

 

Figure 3-2-Experimental setup of machined slot, workpiece and fixture. 

3.1-2 Roughness Measurements 

Surface profile measurements have been taken in this study using optical scans 

with a commercial optical system which is manufactured by Alicona. The 

system can be used to create three dimensional surface images which capture 
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colour and topographical information. The system works by focus-variation, 

using the limited depth of field of an optic and optical sharpness to take 

multiple images at progressing vertical distances from the sample. A full high 

resolution 3D image is created and the profile height information can be used 

to calculate form or roughness parameters. An image of the Alicona 

“InfiniteFocusSL” system is shown in Figure 3-3(a), with a schematic diagram in 

Figure 3-3(b). The optical system allows the analysis of different roughness 

parameters including areal surface roughness parameters like Sa. The system 

operation is detailed by R. Danzl et al. [77] and [78]. The capability of the 

system to attain comparable roughness measurements with a calibrated stylus 

device is described. Roughness measurements are made using a standard 

roughness specimen.  

As shown previously in the literature there are reliability issues with using 

conventional stylus measurements for the measurement of machined 

composite surfaces. It has been found that the use of surface areal parameters 

can be useful for composite surfaces due to the non-homogeneous structure 

and variation in damage across the surface. This will be discussed. The author 

has published journal paper on the application of this system for the machining 

of composite materials and detailed the advantages of this system over 

standard profilometer measurements. The use of alternative roughness 

parameters like Sa, skewness (Rsk) and kurtosis (Rku) are also described [79]. The 

results of this paper are summarised in this experimental section. 
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Figure 3-3- (a) Alicona system and composite sample, 

(b) Schematic diagram of system. 

3.1-3 Measurement Method 

Surface texture measurements were taken using the optical system from the 

side of the slot in conventional or climb milling. It is known that conventional or 

climb milling on either side of the slot result in a different cutting mechanism 

and therefore surface qualities. All of the texture measurements were taken 

from the side of the slot which is in conventional milling and is the intended 

machined surface to be left on the part. Also, to be consistent, all of the 

measurements were taken from the same side and in the same position. The 

focus variation surface scans for roughness measurements were taken in the 

centre of the machined sample surface in the through thickness and machined 

length directions. A scan size of 2mm by 2mm was applied as shown in Figure 

3-4. Subsequent roughness measurements of the individual layers of the 

laminate and of different fibre orientations have been calculated. The suitability 

of using transverse or longitudinal roughness measurements will be assessed- 

where transverse measurements lie perpendicular to the machining feed 

direction and through the laminate thickness. Ra, skewness and kurtosis 
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roughness parameters have been calculated for individual fibre orientations to 

assess variability in surface structure and cutting mechanism on each layer. 

 

Figure 3-4- Position of optical scans for roughness measurements on sample. 

 

3.2 Surface Damage Characterisation 

An optical scan taken using the focus variation system is shown in Figure 3-5 

of the multidirectional laminate. The surface texture can be visualised from the 

optical image. In Figure 3-5  is shown a close up of the profile where some pitts 

and smooth layers can be seen. The image shows that there is a variation in 

profile texture on different layers of the laminate. The surface scans are a three 

dimensional high resolution surface image which contains profile height 

information and can subsequently be used to calculate surface roughness 

parameters. The surface roughness parameters Ra, skewness and kurtosis are 

calculated.  



76 

 

 

 

Figure 3-5- Optical focus variation surface scan of machined surface.  

(a) 2D planar view of machined surface (2mm by 2mm). (Position shown in 

Figure 3-4). 

(b) 3D Profile Texture Image. 

The optical system allows the measurement of roughness along a defined path 

on the material, and therefore individual fibre orientations or ply layers can be 

measured- which is shown in Figure 3-6. The system was used to take 

roughness measurements across each of the 4 different fibre orientations- 0, 

45, 90 and 135 degrees. As can be seen in Figure 3-6 there is a large difference 

in maximum profile height when the 0 degree- Figure 3-6b is compared with 

the transverse measurement- Figure 3-6c. This means that the position and 

direction of travel when taking roughness measurements must be consistent 

and accurate in order to achieve reliable measurements. 
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Figure 3-6- 

(a) 3D surface structure images of multidirectional laminate measured by optical 

system. Red line shows the user selected roughness measurement path in 

transverse direction and a 0 degree laminate. 

(b) Profile path for 0 degree fibre orientation, 

(c) Profile path for transverse direction. 

The optical system has been applied to take surface roughness measurements 

parallel to the fibre orientation. This is because of the significant difficulty in 

measuring by the stylus when measuring parallel to the fibre depending upon 

the position or angle of the stylus, as reported in the literature [5], [34]. 

Consequently, it very difficult to know which individual laminate layer or fibre 

orientation is being measured because they cannot be seen by naked eye and 

importantly they each have a slightly varying ply thickness, due to variation in 

material consolidation and thermoplastic matrix dense regions. The literature 

has shown, that the stylus path may not lie in parallel with the fibres or pass 

over multiple orientations, and therefore gives a variable and unreliable result 

[34]. Ramulu et Al. [5] has reported that stylus measurements made in the 
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longitudinal direction of a multidirectional laminate “appeared to be random.” 

Importantly, their work has presented that it was possible to achieve accurate 

roughness measurements parallel to the fibre direction in a unidirectional 

laminate but not for a multidirectional laminate. Their roughness measurement 

results, of the multidirectional laminate, in the longitudinal direction were not 

deemed acceptable to present for this reason. Subsequently, it has been 

decided that the optical device is more suitable for measuring individual ply 

layers of a multidirectional laminate, and therefore the results for the surface 

roughness were obtained using the optical method to select individual plys. In 

addition it was rationalised that the stylus is not fully dependable to make 

roughness measurements of a multidirectional laminate in the longitudinal 

direction due to material non-homogeneity and fibre orientation effects. 

Figure 3-7 shows an optical focus variation image of multidirectional machined 

surface which highlights the different surface damage on each of the fibre 

orientations. The position of the scan is a 2 by 2 mm image, which is 

perpendicular to the machined surface in the centre of the sample, as shown in 

Figure 3-7. The optical profile scan shows that on the machined surface the 

fibres lie parallel to the surface in the 0 degree fibre orientation. The surface is 

quite reflective and appears light in colour, and the 0 degree orientation 

surface is dominated by predominantly fibres. The chips are removed by fibre 

bending and de-cohesion between the matrix and fibre boundary. The fibres 

which lie on the surface appear to show little matrix material adhering to their 

exterior. In the 45 and 90 degree fibre orientation sheared fibre ends and 

epoxy matrix can be seen- the surface is relatively smooth. On the other hand, 

the profile of the 135 degree fibre orientation is significantly more damaged 

then the other three and is characterised by torn fibres and removed chunks of 

material. Fibres have been crushed and fractured and lie out of plane from 

their original orientation. The bending and crushing cutting mechanism causes 
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a significantly worse surface damage on this fibre orientation compared to the 

others. Furthering from the assessments made in these images, roughness 

measurements will be compared across each of the fibre orientations and a 

detailed analysis of cutting mechanism on each fibre orientation will be 

assessed using optical SEM images.  

 

Figure 3-7- Optical surface measurement highlighting different surface damage 

on each fibre orientation. The image shows the edge machined surface profile. 

Average Ra roughness was measured using the optical system and selected for 

each individual fibre orientation which is shown in Figure 3-8. A large variation 

in calculated roughness of the machined surface on each fibre orientation 

across one laminate was found, and the 135 degree fibre orientation had the 

significantly highest roughness. The 135 degree fibre orientation was critically 

found to have a roughness which is near to a factor of 10 times higher than the 

45 degree. This effect can only be explained by the different cutting 

mechanism which is a product of the fibre orientation in relation to machining 

direction, as the laminate layers have the same material make-up, and because 
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the whole surface is machined with the same parameters. A detailed close up 

of the different surface structure is shown next to the graph in Figure 3-8 for 

each of the fibre orientations taken by SEM image. It is therefore realised that 

all of the fibre orientations should be included in order to take reliable 

roughness measurements, and that the 135 degree orientation will be critical in 

determining the highest surface roughness and machining defects. The 

standard deviation in the measurements was also highest on the 135 degree 

fibre orientation, as shown in Figure 3-8, due to the larger variation in surface 

structure and damage. The difference in profile across different fibre 

orientations means that changing the stacking sequences or laminate lay-up 

will cause a completely different machined surface profile. Therefore roughness 

measurements must be representative of the whole laminate layers in order to 

achieve an accurate measurement. Consequently, it was found that when using 

the stylus there is a high likelihood of the surface roughness being under-

represented if the 135 orientation is not proportionally included in the overall 

roughness measurements. Therefore a potential uncertainty in using stylus 

method for measurement of a multidirectional surface is a consequence of this 

result. 
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Figure 3-8- Average roughness vs fibre orientation on multidirectional laminate, 

with error bars shown as standard deviation using optical technique. SEM 

images of fibre orientation machined surface are shown for reference. 

 

3.2-1 Parameter Effects of Feed rate and Cutting Speed on Surface Roughness 

The cutting tests were performed at different cutting speeds and feed rates, 

and the significance of these effects of these parameters was assessed. Graphs 

and statistical methods have been applied to find the effect on the surface 

roughness.  

In Figure 3-9-Figure 3-12 the roughness across the 0, 45, 90 and 135 degree 

fibre orientation is shown versus increasing feed rate for each of the 4 different 

applied cutting speeds. A fairly similar trend was seen across the data for the 0, 

45 and 90 degree orientations in each of the applied feed rates and cutting 

speeds. However, the 135 degree fibre orientation showed some slightly 

different trends with cutting speed, there was also a higher scatter or standard 

deviation in the measured values along with a higher magnitude in roughness. 

The higher standard deviation can be explained by the different cutting 
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mechanism and a surface profile which has more variation in structure due to 

pits and torn fibre chunks. The 0, 45 and 90 all showed a highest roughness 

with a cutting speed of 225 m/s and a generally increasing roughness with feed 

per tooth.  

It can be confirmed that increasing the feed rate caused an increase in surface 

roughness across all of the cutting speeds applied. The main effects plot for 

feed rate and cutting speed across all fibre orientations is shown in Figure 3-13.  

Minitab software was used to calculate and display the main effects plot [80]. A 

main effects shows the mean response from the input factors on the output 

response. In this case the two factors were cutting speed and feed rate and 

their corresponding output effect on Ra. Figure 3-13shows that there was a 

mean increase in the surface roughness due to a higher feed rate.  In 

machining, there is an increase in effective chip thickness when the feed rate is 

increased with larger chips and torn fibres being removed. This effect can 

explain the increase in roughness. Ahmad and Shahid. [30] have shown that 

decreasing the equivalent chip thickness is strongly correlated with lowering 

surface roughness. The chip effective thickness is a geometric function of the 

feed speed and cutting speed, and therefore in order to get the best surface 

quality, the feed rate and cutting speed parameters will both have a jointly 

contributing effect. Also, a component of the increase in roughness with 

increasing feed can always be attributed due to the ideal roughness which is a 

function of the square of the feed and tool nose radius. 

Statistics was applied to test data using regression modelling and showed that 

feed rate had a stronger contribution on increasing the roughness than the 

cutting speed did. A P value of 0.03 was found for the feed rate which 

indicated that the parameter has a statistically significant effect on the 

roughness. An interesting result was found, which was that the feed rate had a 

most significant effect on the 135 degree fibre orientation. This result tells us 
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that increased levels of machining damage from an increased feed rate will be 

most likely have the strongest effect of increasing machining damage on the 

135 fibre orientation compared to the others. 

In Figure 3-13 it is illustrated that increasing the cutting speed from 85 to 225 

(m/s) caused a mean increase in Ra surface roughness, but at the highest 

cutting speed of 285 (m/s), there was a mean decrease. Increasing the cutting 

speed will cause a decrease in un-cut chip thickness and it has been reported 

that the cutting mechanism may change to a “mechanical wrenching” [81]. An 

increase in cutting speed can also affect the temperature at the tool workpiece 

interface. There will be less time for energy dissipation for each rotation of the 

cutting tool and therefore an increase in tool workpiece temperature as it heats 

due to friction. This will cause a thermal softening of the matrix and a reduction 

in its stiffness. The matrix would then hold the fibres together less strongly and 

there can be a corresponding change in cutting forces. There can also be 

smearing of the matrix on the surface which can affect the subsequent surface 

roughness measurements. 
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Figure 3-9- Mean Ra Surface roughness for 0 degree fibre orientation, against 

feed rate grouped at each cutting speed. 

 

Figure 3-10- Mean Ra surface roughness for 45 degree fibre orientation, against 

feed rate grouped by cutting speed. 



85 

 

 

Figure 3-11- Mean Ra surface roughness for 90 degree fibre orientation, against 

feed rate grouped at each cutting speed. 

 

Figure 3-12- Mean Ra surface roughness for 135 degree fibre orientation, against 

feed rate grouped at each cutting speed. 
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Figure 3-13- Main Effects for mean roughness for 90 degree fibre orientation, 

against feed rate and each cutting speed. Shown for multidirectional laminate 

and optical technique. 

3.2-2 Profile Histograms, Skewness & Kurtosis Measurements 

Skewness and kurtosis parameters have been calculated to assess the surface 

damage and see if they can give more thorough information of surface 

structure and machining defects than only using the Ra or Sa parameters. The 

outputs of these parameters are not represented in the Ra mean roughness 

parameter, and it is also possible for two different surfaces profiles to have the 

same Ra value [49]. The parameters were calculated from the same positions as 

the Ra measurements. Histograms of each of the different fibre orientations 

have also been represented graphically. The histograms are used to show the 

percentage of height values of the surface profile above or below the mean 

profile line. They are useful to give information about the height distribution of 

a profile and thus can give more information about the surface texture. The 

aim was to see if the additional parameters and histograms can give more 

quantitative information about surface defects and surface profile of a 
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machined composite surface. The surface structure was also assessed on each 

different fibre orientation. 

The average skewness and kurtosis for the 0, 45, 90 and 135 degree fibre 

orientations are shown in Table 3-3. It was found that the skewness was 

positive in all fibre orientations except the 135, which had a negative skewness. 

In the histogram shown in Figure 3-14, there is a large tail in the negative 

direction. This negative skewness characterises a surface with more valleys than 

hills and tells us that the surface is full of deep cracks and voids of removed 

material. The cutting mechanism causes fibre pull-out and chunks of torn or 

bent fibres to be removed from the surface. The 45 and 90 degree fibre 

orientations had a positive skewness and therefore have more hills than valleys. 

This can be explained by the smoother surface which has less cracks protruding 

below the machined layer, there are sheared fibres protruding from the 

surface. The zero degree fibre orientation also has a positive skewness due a 

lack of deep cracks or voids. The surface is characterised by fibres which lie 

parallel to the surface and some which have been bent and fractured. The 

histogram in Figure 3-16 for the 45 degree fibre orientation shows a lack of 

tails in the negative direction, which indicates that there are minimal cracks 

propagating into the surface, or sub-surface damage. The skewness was 

therefore found to be a useful indicator in giving information about the 

machining damage on a surface. It can indicate whether the surface is made up 

of protruding fibres (positive skewness), which was found to be typical of the 

90 and 45 degree fibre orientations, or made of torn fibres, pits and fibre-pull 

out (negative skewness), which was found to be typical of the 135 degree fibre 

orientation. The 135 degree orientation was therefore found to have a higher 

degree of machining damage and sub-surface machining damage which 

correlates with the higher roughness seen and negative skewness.  
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Table 3-3- Skewness and kurtosis at each fibre orientation within multidirectional 

laminate. 

 

 

Figure 3-14- The 135 degree fibre orientation histogram on multidirectional 

laminate using optical system. 

The kurtosis was also analysed to further indicate surface damage. The kurtosis 

is a measure of the peak sharpness. It was found that the 90 degree fibre 

orientation had the highest kurtosis. This tells us that the 90 degree fibre 

orientation had the sharpest peaks and it is hypothesised that this is due to 

sharp protruding fibre ends and un-cut fibres which have been sheared at 

different lengths. The histogram for the 90 degree fibre orientation has a lack 

of tails in the negative or positive direction- Figure 3-15. This indicates that the 

Fibre orientation (0) 

Average 

skewness 

(Rsk) 

Average 

kurtosis 

(Rku) 

Multidirectional 

laminate. Mean 

Ra (µm) 

Multidirectional 

Laminate. 

Mean Rt (µm) 

0 1.55 13.73 0.4 4.7 

45 1.68 13.01 0.3 2.9 

90 1.48 15 0.5 4.9 

135 (-)1.25 9.25 2.7 38.4 
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surface is fairly regular, however there are a small number of points in the 

positive direction lying away from the mean which were caused by protruding 

un-cut fibres. Some of the fibres will be sheared at different lengths and 

therefore protrude from the surface. All of the fibre orientations have a 

relatively high kurtosis, suggesting that there is a profile made up of quite 

sharp peaks and valleys of either deep cracks or protruding fibres. The surface 

which has the lowest kurtosis is the 135 degree fibre orientation, as shown in 

Table 3-3.This is explained due to this profile having more surface machining 

damage with large rounded pits and valleys caused by chunks of torn material, 

whereas, the other fibre orientations have sharper protruding fibres- (above 

the machined surface). 

 

Figure 3-15- The 90 degree fibre orientation histogram on multidirectional 

laminate using optical system. 

The skewness was found to be a useful parameter, due to its ability to 

distinguish between surfaces with mostly cracks and voids or having protruding 

and un-cut fibres. The optical system was used to analyse these parameters 

due to its ability to measure one layer of the mutli-directional laminate and 
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therefore accurately quantify roughness parameters of different fibre 

orientations. This would not have been possible to accurately measure using a 

standard stylus measurement. 

 

Figure 3-16- The 45 degree fibre orientation histogram on multidirectional 

laminate using optical system. 

3.2-3 Summary of Surface Roughness Measurements 

The stylus system has been compared against measurements made using 

Alicona focus variation based optical system. The focus variation system was 

found to give more reliable measurements and was capable of accurately 

extracting surface profile information of an individual ply layer. The stylus 

method has been shown in literature to find a wide variation in calculated 

surface roughness value of a “random” nature when applied to measurement 

path lying parallel to the fibre orientation in a multidirectional laminate [5]. 

Therefore the optical based system was applied and was shown to be a useful 

technology for measuring different individual surface plys. The surface 

roughness was found to be highest on the 135 degree fibre orientation which 

was characterised by pits and torn fibres and it is concluded that this will have a 
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consequence for applying accurate and representative measurements of the 

whole surface profile of a multidirectional laminate. It has been shown by other 

researchers that the Ra parameter alone may not sufficient to characterise 

machining damage of non-homogeneous surface [46]. Therefore, skewness 

and kurtosis parameters were used effectively to characterise additional 

information of surface machining damage on different fibre orientations. The 

skewness parameter was able to indicate the presence of larger torn chunks, 

pits and a surface characterised by large valleys. The kurtosis parameter was 

able to indicate the presence of un-cut fibres protruding from the surface, 

especially on the 90 degree fibre orientation. The aim of this section was to 

assess and develop methods for surface roughness of a composite surface. The 

new methods for measuring roughness of a machined composite surface have 

been applied using the optical system and shown improvements upon 

standard stylus methods. This method has been applied using additional 

parameters and on individual fibre orientations. The optical based system will 

consequently be applied to the next section of work to further characterise 

machined composite surfaces and in conjunction with developing a new 

method for accurately predicting surface roughness. In the next section Sa areal 

roughness parameters will be applied on a multidirectional surface due to the 

inherently found fluctuation variation in surface structure and machining 

defects on different fibre orientations.  



92 

 

3.3 Surface Analysis using SEM Micrographs  

3.3-1 Analysis of Cutting Mechanism and Surface Damage on Fibre 

Orientations 

Micrographs of the surface of the machined samples were taken using 

scanning electron microscope (SEM) images from the previous test. The SEM 

micrographs have been taken of a machined multidirectional composite in 

order to understand the cutting mechanism and characterise the surface 

damage types due to machining. Thorough characterisation of surface 

topography and damage mechanisms have been identified in relation to the 

different material fibre orientations. SEM micrographs are shown from Figure 

3-17 to Figure 3-23 of different machined surfaces and fibre orientations. The 

aim of these SEM micrographs is to assess how machining damage is related to 

material fibre orientation and to find if these images correlate with the 

previously measured surface roughness. 

Figure 3-17 shows the variation in surface structure and machining damage of 

different laminate layers on a multidirectional laminate. The 0, 90 and 135 

degree fibre orientations are shown and it can be seen that there is a 

significant variation in the quality and appearance of the surface structure 

across each of the different layers, (even though they have been machined with 

the same machining conditions and have the same material properties). The 

fibre orientation therefore has a significantly strong effect on surface and sub-

surface quality, machining damage and cutting mechanism, as confirmed 

previously by roughness measurements and literature. 
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Figure 3-17- SEM image of 90 and 135 degree ply.  

(These tests were performed at a cutting speed of 175 mm/min and feed of 

0.075 mm/rev on multidirectional laminate.) 

In Figure 3-19 and Figure 3-21, the 0 and 45 degree fibre orientations have 

been found to be relatively smooth, unlike the 135 degree which has large 

chunks of material removed and torn fibres. The visual appearance of the 

surfaces and damage which can be seen on each of the fibre orientations 

correlates with the magnitude of the roughness measurements made 

previously in Figure 3-8. That is the 135 degree fibre orientation has the highest 

roughness measured roughness and most visual damage. 

The cutting mechanism in the 135 degree fibre orientation is caused by 

bending of the fibres leading to a primary fracture and this will propagate 

below the machined surface along the interface of matrix and fibre. The tool 

will push through the material causing the fibres to break in a combination of 

bending fibre shearing and fracture [9]. The matrix material is crushed and 

cracked causing de-cohesion from the fibres and cracks in the material. There 

are torn fibres below the machined surface, and the surface profile shows a 

greater damage depth than seen in the other fibre orientations. The deep 
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valleys and torn-fibres were described by the negative skewness which was 

measured on the 135 degree fibre orientation. The SEM micrographs of the 135 

degree fibre orientation show fibres which have been bent out of plane and 

fractured left lying on the surface- Figure 3-17, Figure 3-18 and Figure 3-20. A 

bouncing back effect, (where the fibres spring back after the tool has passed), 

was suggested in the literature for composite machining by Wang and Zang 

[20]. It would be expected that this effect would be exaggerated in the 

machining of the 135 degree fibre orientation due to the large amount of 

bending and buckling of fibres which can be seen. The un-cut and bent fibres 

will spring back after the cutting tool has pushed past leaving a damaged and 

uneven surface.  

 

Figure 3-18- SEM image of 135 and 0 degree ply.  

(These tests were performed at a cutting speed of 175 mm/min and feed of 

0.075 mm/rev on multidirectional laminate.) 

Looking at Figure 3-18 and Figure 3-19 for machining of the 0 degree fibre 

orientation there is a bending and fracture cutting mechanism causing chip 

removal. Depicted in the SEM micrographs there is little visible damage which 

propagates below the surface. The fibres are bent and crushed causing them to 
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de-bond along the interface, followed by fibre fracture. This finding is in 

agreement with work by Wang and Zang. [20], and Wang et al. [21]. Fibres can 

be seen lying on the surface in their original orientation, with little damage, and 

some fractured fibre ends can be seen. Most of the matrix appears to have 

been removed from the fibre surface by de-cohesion. In Figure 3-23, the 

beginnings of a fibre being bent and one being fractured can be clearly seen, 

depicting the fibre bending and fracture cutting mechanism. Some dust, and 

cut fragments of matrix and fibre can also be seen lying on the surface. The 

surface appeared shinier than in the other fibre orientations, especially in the 

optical focus variation images, due to reflection of the light from the fibre side 

surface. 

 

Figure 3-19- The 0 Degree fibre orientation SEM image.   

(These tests were performed at a cutting speed of 175 mm/min and feed of 

0.075 mm/rev on multidirectional laminate.) 

The 90 degree fibre orientation is presented in Figure 3-17. On this fibre 

orientation the surface is visually smoother than the 135 degree fibre 

orientation. The roughness of the 90 degree fibre orientation was found to be 

slightly higher than measured on the 0 and 45 fibre orientations. The surface 
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appears smoother than the 135 degree fibre orientation and a fibre shearing 

and cutting mechanism is proposed in accordance with findings in the 

literature [3]. Cut fibre ends can be seen lying perpendicular to the surface and 

some of the surface appears to be covered in smeared matrix. The variation in 

profile height is caused by fibres sheared at different lengths, causing 

protruding fibre ends. These protruding fibre ends explain why the 90 degree 

fibre orientation had the highest kurtosis and sharp peaks.  

 

Figure 3-20- The 135 Degree fibre orientation SEM image.   

(These tests were performed at a cutting speed of 175 mm/min and feed of 

0.075 mm/rev on multidirectional laminate.) 

The 45 degree fibre orientation surface is, in appearance, most similar to the 

90 degree fibre orientation. It is covered in sheared fibre ends and smeared 

matrix as shown in Figure 3-21. The surface looks very smooth and it is hard to 

distinguish any individual fibres, unlike on the other fibre orientations. This 

surface was found to have the lowest roughness and no cracks can be seen 

propagating below the machined surface. It is suggested that most of the 

fibres are being sheared and cut cleanly on their cross section without being 

bent. A strong fibre tension dominated failure mode has been found along 

with a high resultant cutting force [82]. The authors contrasted this to a weaker 
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matrix dominated failure mode in the 135 degree fibre orientation and lower 

cutting forces. 

In Figure 3-22 it can be seen that the different fibre orientations have a 

different profile height across the machined surface. These micrographs are 

taken from experimental test on the multidirectional laminate machined with 

the tool manufactured by SGS. The material is a The 90 degree fibre orientation 

had a profile which sits higher than the 0 degree and 135 degree. This suggests 

that where there is a bending type cutting mechanism, (found in the 135 and 0 

degree fibre orientation), then the profile height will be lower than when there 

is a shearing cutting mechanism, as in the 90 and 45 degree fibre orientations. 

In Figure 3-17, it can clearly be seen that there is more subsurface damage in 

the 135 degree fibre orientation, and there are large chunks of fibres removed. 

 

Figure 3-21- The 45 Degree fibre orientation SEM image.   

(These tests were performed at a cutting speed of 175 mm/min and feed of 0.075 

mm/rev on multidirectional laminate.) 
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Figure 3-22- Multidirectional laminate, experimental test 2, worn cutting tool. 

(These tests are on multidirectional laminate, SGS tool, Feed 1200 mm/min, 

7000RPM) 

 

Figure 3-23- A 0 Degree fibre orientation, multidirectional laminate, experimental 

test 2. (These tests are on multidirectional laminate, SGS tool, Feed 1200 mm/min, 

7000RPM)  
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3.3-2 Summary of Surface Characterisation Using SEM 

Thorough assessment of surface profile using SEM micrographs have been 

applied to analyse surface damage and cutting mechanism of the machined 

multidirectional surfaces. The cutting mechanism on each of the different fibre 

orientations has been described in detail and also agrees with previous work 

shown in the literature [20],[21]. The visually described magnitude of damage 

also correlated with reported roughness measurements in this research. Firstly, 

the surface profile of the 0 degree fibre orientation appeared reasonably 

smooth with bent fibres which had been fractured in a bending and crushing 

mechanism. Secondly, the 45 degree fibre orientation appeared the smoothest, 

which agreed with calculated roughness measurements, and it was hard to 

distinguish any individual fibres. There was smeared matrix and cut fibre ends 

which represented most of the surface profile. Thirdly, on the 90 degree fibre 

orientation the surface profile was characterised with sheared fibre ends and 

some un-cut fibres which protruded above the majority of the machined 

surface. Finally, the 135 degree fibre orientation was characterised by bent and 

torn fibres and large pits in the surface. Importantly, it was this fibre orientation 

which was characterised by the greatest magnitude of machining damage and 

damage depth. The machining process appears to have the most detrimental 

effect on this surface orientation ply and cause the highest levels of surface 

damage. This finding was confirmed by roughness measurements and in the 

literature [3]. These results are useful because they present the extreme 

variation in surface structure and profile variation on machined which is purely 

due to the effect of fibre orientation. They show that the most extreme damage 

and greatest pitts will be located on the 135 degree fibre orientation. Also, that 

this will have consequence on reliably characterising surface profiles of 

machined composite surfaces and making accurate and representative surface 

roughness measurements. Surface roughness measurements must either make 

an assessment based upon the relative ratio of different fibre orientations 
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comprising an overall surface profile or take into account the different 

damages on each layer.  
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Chapter 4  
Main Experiments- Edge Trimming Trials Experimental 

Procedure 

4.1 Experimental Introduction- Carbon Fibre Edge Trimming. 

Following from the previous experiments two different edge trimming trials 

have been performed on CFRP laminates using a three flute PCD milling tool. 

The PCD tool has been used in these tests because it is closer to the industrial 

highest standard tooling used for this application. As was stated in the 

literature review PCD cutting tools have an excellent resistance to wear and can 

hold a sharp cutting edge, and will therefore cut with superior surface quality 

for fibrous composite machining. These tests will be further used to compare 

and validate FE numerical models and create a roughness prediction method 

which will include the effects of tool wear. The experimental test results will be 

used to generate regression equations for the effects of machining parameters 

on surface roughness. 

The first test was performed on a unidirectional laminate at two different levels 

of tool wear, in a worn and un-worn tool condition. The second test is 

conducted on a multidirectional CFRP laminate with increasingly progressive 

levels of tool wear. Firstly, the unidirectional tests are performed with two 

different tool wear conditions, and additionally the machining parameters feed 

rate and cutting speed have been varied at two levels. Surface roughness 

measurements have been applied using optical measurement system. The 

experimental results will be used to create roughness equations using multiple 

linear regression. Further, measured cutting forced will be used to validate 

numerical FE models. The FE models will include the effects of tool wear, 

(cutting edge radius), on the cutting forces using a new 2D and 3D numerical 

model.  
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The second multidirectional tests have been performed to assess the surface 

roughness and machining forces during machining at progressive levels of tool 

wear. Design of experiments has been employed so that two different feed and 

cutting speeds have been applied with increasing levels of tool cutting edge 

radius which will be tracked through the test. Therefore the contribution of 

feed rate and cutting speed has been assessed independently with sufficient 

number of repeats, while also not allowing the effects of tool wear to 

compromise the results. The design of experiments has been applied using 

statistical software Mini Tab in order to be able to accurately and 

independently assess the effects of each parameter. P values have been 

assessed for each parameter used in the test in order to find their statistical 

contribution to the surface roughness. The R-Sq and histogram of residuals 

have also been applied in the results section to find the quality of the model fit 

and suitability of parameters inclusion in the regression model. The 

multidirectional tests were then used to create regression equations and show 

the level of statistical contribution for each experimental parameter on the 

surface roughness, including- Sa, skewness and kurtosis. The optical surface 

roughness methodology for machined composite surfaces has been applied 

along with areal surface roughness parameters. Additionally, SEM images have 

been used to assess surface quality and cutting mechanisms across the 

different fibre orientations. CT scans have been used to look for sub-surface 

damage, including delamination which cannot be seen by surface 

measurement methods.  

4.1-1 Edge Trimming Experiments- Unidirectional Test 

An edge trimming trial has been undertaken on unidirectional CFRP material at 

two different fibre orientations- 90 and 45 degrees fibre orientation. The fibre 

and matrix properties are shown in Table 4-1. 
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The composite samples were manufactured by lay-up, vacuum bagging and 

autoclave cured. Machining tests were performed on a 5-axis CNC machine 

tool manufactured by Cincinnati FTV, as shown in Figure 4-1(a) and Figure 

4-1(b). The composite multidirectional samples were 65 mm width by 160 mm 

in length and 6 mm thick. A SGS 3 flute PCD tool was used shown in Figure 4-2 

and with dimensions shown in Table 4-2. A PCD tool was chosen due to its 

high hardness and resistance to wear and is thus suitable for machining of 

abrasive carbon fibres. The cutting edge was manufactured by laser cutting 

and is very sharp, it can therefore shear fibres very cleanly and produce a high 

surface quality. The average edge radius was measured of the cutting tools 

using optical focus variation Alicona device. The chosen PCD tool has three 

flutes which have a zero helix angle. This tool was specially selected because it 

has a zero-helix angle. This means there will be a constant chip size through-

thickness in the material going in the z-direction and simplifies the geometry of 

the cutting tool mesh. It also means that the experimental comparison with 

finite element model will be suitable for the unidirectional laminate in both a 

3D and 2D machining model using plane stress elements. However, this cutter 

is still very suitable to composite machining because it has a sharp laser-cut 

PCD cutting edge and it is able to produce high quality machined surfaces. The 

aim of these experiments was to capture cutting forces and surface roughness 

at different levels of tool wear. The cutting forces will then be used to validate 

FE models. Cutting edge rounding measurements have been applied to 

quantify tool wear, as identified to be a useful parameter to assess tool wear in 

machining of FRPs [63]. The cutting edge rounding has then been used an 

input for FE models and therefore gives a quantitative indication of the current 

tool condition. This is because it quantifies the initial experimental edge radius 

at zero tool wear unlike with flank wear measurements. Further predictions of 

roughness at different magnitudes of tool wear will then be made using FE 

models. 
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Table 4-1- Fibre and matrix properties [83].  

Reinforcement Fibre Properties Matrix Properties 

Fibre Type Carbon Matrix Type Epoxy 

No of Filaments 1200 Glass Transition Temp (0C) 185 

Tensile Strength (Mpa) 4900 Density  (g/cm3) 1.28 

Tensile Modulus (Gpa) 240 Elongation at yield 5 % 

Elongation at yield 2.10 % Flexural Yield Strength (Mpa) 147 

Density  (g/cm3) 1.8 Flexural Yield Modulus (Mpa) 3.5 

 

 

Figure 4-1- (a) Cincinnati 5-axis machine tool body, 

(b) Cincinnati 5-axis spindle head. 
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4.1-2 Cutting Parameters- Unidirectional test 

Edge trimming trials were performed using the parameters shown in Table 

4-3. Two levels of feed rate and cutting speed were used, a feed of 800 and 

1200 mm/min and a cutting speed of 6000 and 8000 RPM. Two material fibre 

orientations of 45 and 90 degrees were applied. The axial depth of cut (ap) was 

kept constant at 6 mm and the radial depth of cut (ae) at 2 mm. The length of 

cut was 160 mm for each test, which was the full sample length. A fixture was 

used to clamp the workpiece and is shown in Figure 4-3. It was bolted to the 

dynamometer and machine tool bed.  Each test was repeated once and the 

mean Fx and Fy cutting force were recorded using a dynamometer. There were 

Tool Feature Value 

No. of Flutes 3 

Diameter 10 mm 

Helix Angle 0º 

Average Edge 

Radius (Unworn) 
3.7 µm 

Average Edge 

Radius (Worn) 
10 µm 

Cutting Edge 

Material 
PCD 

Figure 4-2- SGS cutting tool- Poly 

Crystalline Diamond (PCD). 

Table 4-2- Tool properties. 



107 

 

16 tests separate with each of the experimental parameters applied shown in 

Table 4-3. Consequently with one repeat of each test, this gave a total of 32 

tests.   

Table 4-3- Unidirectional test parameters. 

 

The effects of tool wear were assessed by performing tests with worn and un-

worn tool conditions. The cutting edge was measured using the optical system 

and the un-worn (new) tool had an average cutting edge radius measured at 

3.7 µm, and the worn tool had an average edge radius measured at 10 µm. A 

Kistler Dynamometer was used in order to measure the cutting forces. The 

Kistler dynamometer works by using piezoelectric material which generates an 

electrical charge when it is deformed. A voltage signal is generated using a 

charge amplifier which can be used to accurately measure a change in forces. 

A DAQ box and charge amplifier are shown in Figure 4-4(b) which are 

connected to a laptop to digitally record cutting forces from an analogue 

signal. The X,Y and Z machining forces were recorded and the directions are 

shown in Figure 4-5. The Fx cutting force is in the direction parallel to the tool 

feed or travel. The Fy force is into the workpiece and is perpendicular to feed 

direction. A sample time of 20 Seconds was taken and using a sampling 

frequency of 20,000 Hz. This gives a sampling rate of 133 data points per 

rotation of the cutting tool, at the maximum cutting speed of 9000 RPM and 

was considered suitable for high speed machining. Cutting forces were 

recorded using Dynoware software and the software was used to find the 

Feed Rate 
(mm/min) 

Cutting 
Speed 
(RPM) 

Axial depth of 
cut- ap 

Radial depth 
of cut -ae 

Fibre 
Orientation 

800 6000 6 mm 2 mm 45 

1200 8000 - - 90 
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minimum, maximum and mean cutting forces in the x, y and z directions over 

the sampling time. 

 

Figure 4-3- Experimental set up  

(a) CAD model of fixture, workpiece and dynamometer, 

(b) Clamp, fixture, dyno and machine tool.  
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Figure 4-4- Experimental set up, 

(a) Composite sample and clamp fixture, 

(b) Kistler charge amplifier and A/D converter for dyno. 

 

 

Figure 4-5- Machining forces orientation: Fx and Fy. 
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4.2 Edge Trimming Experiments- Multidirectional Test 

The second edge trimming test has been undertaken on a multidirectional 

CFRP laminate which will then be compared with numerical models. Regression 

models will be calculated to find the statistical effect of the different machining 

parameters and tool condition, and how they will affect the machining forces 

and surface roughness. The composite is a typically commercially available 

CFRP material with epoxy resin matrix. It is a high performance aerospace 

grade composite with high toughness epoxy resin matrix system. The 

composite fibre and matrix properties are shown in Table 4-4 and Table 4-5. 

The stacking sequence of the 10 mm thick multidirectional laminate is shown in 

Table 4-6. The composite was manufactured by pre-preg layup, vacuum 

bagging and then auto clave cured. 

Table 4-4- Multidirectional laminate properties. 

Reinforcement Fibre Properties 

No of Filaments 1200 

Tensile Strength (Mpa) 4900 

Tensile Modulus (Gpa) 240 

Elongation at yield 2.10 % 

Density  (g/cm3) 1.8 

 

Table 4-5- Epoxy resin properties. 

 

 

Matrix Properties 

Glass Transition Temp 

(0C) 

185-

190 

Density  (g/cm3) 1.28 
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Table 4-6- Multidirectional laminate stacking sequence. 

Material 

Type 
Lay-up stacking sequence Ply Thickness 

Unidirectional 

 (0/+45/0/-45/0/-45/90/+45/0/-

45/90/+45/0/0/+45/0/-45/0/-45/90/+45/0/-

45/90/+45/0//0/+45/90/-45/0/+45/90/-45/0/-

45/0/+45/0/0/+45/90/-45/0/+45/90/-45/0/-

45/0/+45/0) 

0.185 mm 

 

The cutting parameters used in the multidirectional test are shown in Table 

4-7. A varying feed rate was applied at 2 levels of 1000 mm/min and 1200 

mm/min and a cutting speed of 7000 and 9000 RPM. A full workpiece thickness 

axial depth of cut (ap), of 10 mm was applied, and a constant width of cut (ae), 

of 2 mm. The length of cut was 80mm for the multidirectional laminate test. In 

this test the cutting began with two new tools which were then progressively 

worn. Then, in order to analyse the effects of increasing cutting edge radius on 

the machining process the tests were repeated with increasing levels of tool 

wear. Two new tools were used so that the effects of cutting speed and feed 

rate could be independently analysed without introducing the effects of tool 

wear for each of the set of cutting parameters. A total of 40 tests were 

performed with the two tools, and this gave a total of 10 repeats of each of the 

4 independent test conditions but included the effect of increasing tool wear 

which was measured throughout the test. A test matrix was created as shown in 

Table 4-8 and the same test matrix was repeated again for a second set of 20 

tests, using the same two tools but with increased levels of tool wear. The tests 

were performed in this order so that effects of the tool wear would not bias the 

results, and so that the effects of cutting speed and feed rate would be fairly 

and independently compared between the two tools. Statistical software 

Minitab was used to create the test matrix, and then the test results will be 
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used for the basis to create regression equations, realising the effects of cutting 

parameters on the Sa surface roughness. The tool wear was tracked throughout 

the test by quantifying cutting edge radius using the Alicona optical system. 

The same fixture and dynamometer setup was used as applied in the previous 

test as shown in Figure 4-3-Figure 4-5. 

Table 4-7- Cutting parameters used in tests. 

Feed 

(mm/min) 

Cutting 

Speed 

(RPM) 

Tool 

Number 

Length 

of Cut 

Axial 

Depth of 

cut (ap) 

Width of 

cut (ae) 

1000 7000 New 

Tool 1 
80 mm 10 mm 2 mm 

1000 9000 

1200 7000 New 

Tool 2 1200 9000 
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Table 4-8- Test matrix (repeated for tests 21-40) 

 

Cutting fluid, which was an oil-water based emulsion, was used in these 

experiments. In machining it is typical to use a coolant with lubricant 

properties, because this will decrease friction, remove heat and reduce the chip 

thickness. Flood coolant was introduced into the cutting area from the spindle 

head during machining. During composite machining the coolant will also have 

the role of removing the abrasive chips from the cutting region, and this is 

desirable because otherwise repeated cutting of chips or fibre fragments could 

accelerate tool wear, and reduce surface quality. Another advantage of using 

the coolant is that there will be more heat dissipation and therefore less 

temperature build-up in the cutting area. This means that matrix burning or 

softening will be prevented or reduced. Cutting fluid was also used because of 

Test Feed (mm/min) 
Cutting Speed 

(RPM) 
Milling Tool 

Number 
Milling Tool 

Number 

1 1000 7000 1   

2 1000 9000 1   

3 1200 7000   2 

4 1200 9000   2 

5 1000 7000   2 

6 1000 9000   2 

7 1200 7000 1   

8 1200 9000 1   

9 1000 7000 1   

10 1000 9000 1   

11 1200 7000   2 

12 1200 9000   2 

13 1000 7000 1   

14 1000 9000 1   

15 1200 7000   2 

16 1200 9000   2 

17 1000 7000   2 

18 1000 9000   2 

19 1200 7000 1   

20 1200 9000 1   
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the health concerns due to the inhalation of dust and particles from the 

machining of fibre composites. The use of coolant will prevent these particles 

from becoming airborne.  

4.2-1 Cutting Tool Edge Radius Measurements 

Cutting edge scans were taken of the cutting tool using the edge master 

software of the Alicona optical system. An optical scan of the cutting edge is 

used to create a 3D image and then the built-in software takes a number of 

cross sections over the scan length in order to calculate a mean result. The 

system can be used to calculate different cutting edge parameters. Figure 4-7 

shows how the scan is taken perpendicular to the cutting edge and edge 

parameters are calculated through the edge cross-section. Figure 4-7(a) and 

Figure 4-7(b) show an optical focus variation scan for a new tool condition. A 

scan length of 2 mm is used across the cutting edge, over which, the mean 

edge radius is calculated over 150 cross sections. Each of the three cutting 

edges was measured and the mean cutting edge radius (CER) was calculated 

for each edge. To locate the cutting tool edge under the optical scanning 

system, a tool holder fixture was used shown in Figure 4-6. The tool holder sits 

inside the fixture and the tool can be rotated about its axis within the tool 

holder. A reference mark was used to locate the tool holder on the tool fixture 

so that each measurement can be repeated in same position for each cutting 

edge. 
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Figure 4-6- Tool holder fixture for CER measurements. 

The optical scans were taken throughout the test to track the tool wear and to 

quantify the cutting edge radius. Some optical microscope images were also 

used as a qualitative assessment of the tool wear. This was to ensure that the 

cutting edge was not damaged or has any extreme tool wear, and to look for 

any edge damage or chips on the cutting edge.   
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Figure 4-7- Cross section tool cutting edge mean parameters calculation- 

optical device (new tool). 

4.2-2 Surface Roughness Measurement Method 

The length of cut was 180mm in the unidirectional test. To take the 

measurements scans were taken in three different positions through thickness 

of the sample- Figure 4-8 and Figure 4-9. Scans were taken in three positions 

at the beginning, middle and end of the cut. Roughness parameters were 

calculated and mean roughness and standard deviation can be calculated for 

each sample. Areal roughness parameters (Sa) were calculated and applied 

over the whole scan area. Areal roughness parameters (Sa) was applied due to 

the previously shown variation in surface profile on different fibre orientations 

and necessary requirement to characterise the whole surface profile in a 

representative manner. The Sa parameter will include surface profile 

information including all of the fibre orientations across the full laminate stack 

thickness and this will minimise any effects of sampling position. The scans 

were taken in different positions towards the beginning and end of cut to 

minimise any effects of machining on the sampling position, which may include 
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dynamic effects at the beginning and end of the tool entering and leaving the 

workpiece respectively. Also the size of the scan of 2mm wide along the 

sample length in the machining direction, and full workpiece thickness, 

corresponds to capturing a very large data point cloud of profile information. A 

2 mm wide scan corresponds to around 200 individual profilometer path 

profiles with a stylus head diameter of 10 µm. Therefore a large sampling area 

is included in each scan of which an average is then taken from the total 

number of scans. 

To take the optical scans a vertical resolution of 100 nm was used along with a 

lateral resolution of 2 µm. The cut off wavelength to calculate roughness 

parameters was Lc =800 µm and was used across all samples in accordance 

with ISO 4288. The cut off wavelength determines the amount of filtering of the 

profile waviness which is removed.  

 

Figure 4-8 – Optical scan positions, (unidirectional sample). 
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Figure 4-9- Three optical scan positions on sample for roughness calculation, 

(unidirectional sample). 

In the multidirectional laminate the length of cut was 80 mm and the sample 

length is 160 mm. Optical scans were applied in two positions shown in Figure 

4-10. Each 160 mm long sample was used for two tests. There were scans at 20 

mm and 60 mm from the edge which was also repeated on the second sample 

as shown in Figure 4-10. Sa, skewness and kurtosis parameters were calculated 

for each of the scan positions and a mean roughness is calculated for each 

sample from the two scan positions. 
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Figure 4-10- Roughness measurement positions, (multidirectional laminate). 

Figure 4-11(a) and Figure 4-11(b) show an example of an Alicona optical focus 

variation scan which is taken of two machined surfaces of a multidirectional 

carbon fibre laminate with PCD cutting tool. The scans represent the machined 

surface, where the CFRP multidirectional laminate is cut going from left to right 

across the page. These samples show the machined surface profile through the 

whole thickness of the laminate from top to bottom and each of the laminate 

layers are shown progressing down through the laminate. These scans will then 

be used to calculate Sa roughness parameters which are characterised over the 

whole scan area. The variation in surface structure and damage can be seen on 

the different fibre orientations. It can also be seen that the surface structure in 

Figure 4-11(b) appears rougher in comparison to Figure 4-11(a) due to use of a 

worn cutting tool. The suitability of the Alicona optical system will later be 

assessed for roughness measurements of a machined composite surface.  
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Figure 4-11- Example Alicona optical scans from a CFRP multidirectional 

laminate: 

(a) Multidirectional CFRP laminate- new tool condition, 

(b) Multidirectional CFRP laminate- worn tool condition. 

4.2-3 CT Scanning Method 

As was highlighted in the literature review, CT scans can be used successfully 

to look for subsurface damage in fibrous composite materials. CT scans have 

been performed using Nikon Metrology XTH machine, shown in Figure 4-12. 

This machine uses a micro-focus X-Ray source which allows accurate inspection 

at high resolution and 225 or 320 kV source. Machined samples were prepared 

by cutting into 10 mm wide strips using a band saw, where one edge was 

already previously machined by edge trimming. Ten millimetre wide samples 

were required so that a 3 dimensional resolution of 8 µm could be achieved. If 

the samples are too thick then the resolution which can be achieved is reduced 

because the section which the x-rays must pass through is wider. A high 
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resolution is required in order to be able to see down to the fibre level and 

look for subsurface micro-cracking, voids, de-cohesion or delamination from 

machining damage. Unidirectional and multidirectional samples from both tests 

were assessed using the CT scanner. CT scans were performed on machined 

samples and also on samples which had not been machined. The non-

machined samples were taken from the centre of test the material specimens 

away from the cutting edge. Un-machined samples were used to compare if 

damage in the material was actually present due to machining, or if there was 

already defects present in the material from the manufacturing process.  

 

Figure 4-12- Nikon Metrology XTH Micro-CT scanner. 
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Chapter 5  
Edge Trimming Experimental Results  

5.1 Experimental Results- Unidirectional Laminate  

5.1-1 Machining Force Results 

The first set of results from the unidirectional edge trimming test are 

presented. Cutting forces were recorded from the unidirectional edge trimming 

test. The mean cutting forces in the Fx and Fy directions are shown in Table 5-1 

and Table 5-2 for the 90 degree fibre orientation laminate in unworn and worn 

tool condition respectively. Table Table 5-3 and Table 5-4 show the mean 

cutting forces from unidirectional test in the 45 degree fibre orientation 

laminate. The mean cutting force is calculated from the raw data extracted by 

the dynamometer as shown in Figure 5-1. The three colours in Figure 5-1 show 

the Fx, Fy and Fz machining forces in blue, red and green respectively. The 

mean cutting force is calculated between the two dotted line sections, as 

shown, and is selected where the cutting reaches steady state conditions.  

Figure 5-2 shows the cutting force variation for the Fx and Fy cutting forces 

over a 0.5 second time period. There is a cyclic pattern to the cutting forces as 

each tooth of the cutting tool engages the workpiece. Each tool will engage 

the workpiece and cause a removal of small and dust-like CFRP chips in a 

fracture type cutting mechanism. Then the rotating cutting edge will pass the 

workpiece before the next tooth becomes engaged. Thus, there is a cyclic 

fluctuation of cutting forces, due to intermittent cutting tool engagement, and 

the fracture of CFRP chips. Shown in Figure 5-2, over a 0.5 second time period, 

the Fx and Fy cutting forces fluctuate between an upper and lower bound. As a 

steady state fluctuation of the cutting forces is reached, and it was therefore 

deemed acceptable to take the mean cutting forces. 
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Cutting forces were recorded for the tool in worn and new tool conditions and 

will be later compared with 2D and 3D finite element models. The full test data 

and calculated average cutting forces from the experimental tests, are shown in 

the Appendix Part A, and the standard deviation is also calculated for each test 

repeat.  

 

Figure 5-1- Dynamometer output for machining forces at 800 mm/min, 6000 

RPM with new tool. Calculation of mean cutting forces. 
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Figure 5-2- Machining force fluctuation over 0.5 seconds of cutting. 

(a) Fx cutting force, 

(b) Fy thrust force. 

Table 5-1- Fx and Fy cutting forces- 90 degree fibre orientation (new tool). 

Fibre Orientation Feed Rate (mm/min) RPM Mean Fx (N)  Mean Fy (N)  

90 800 6000 80.0 54.9 

90 1200 6000 99.5 63.4 

90 800 8000 82.1 58.7 

90 1200 8000 82.3 60.3 
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Table 5-2- Fx and Fy cutting forces- 90 degree fibre orientation (worn tool). 

Fibre Orientation Feed Rate (mm/min) RPM Mean Fx (N)  Mean Fy (N)  

90 800 6000 107.1 131.2 

90 1200 6000 120.2 151.5 

90 800 8000 92.75 109.9 

90 1200 8000 109.1 154.4 

 

Table 5-3- Fx and Fy cutting forces- 45 degree fibre orientation (new tool). 

Fibre Orientation Feed Rate (mm/min) RPM Mean Fx (N) Mean Fy (N) 

45 800 6000 74.0 58.3 

45 1200 6000 79.4  76.2  

45 800 8000 75.0 66.6 

45 1200 8000 82.3 85.4 

 

Table 5-4- Fx and Fy cutting forces- 45 degree fibre orientation (worn tool). 

Fibre Orientation Feed Rate (mm/min) RPM Mean Fx (N) Mean Fy (N) 

45 800 6000 112.9 112.1 

45 1200 6000 128.2 129.2 

45 800 8000 101.3 104 

45 1200 8000 124.7 129 
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Shown in Figure 5-3 to Figure 5-6 are graphs of the machining forces against 

increasing feed- from experiment on the unidirectional laminate. The columns 

are grouped by the two applied cutting speeds (6000 and 8000RPM), and by 

tool wear- in new and worn condition. The graphs are shown for the 45 degree 

fibre orientation laminate in Figure 5-3 and Figure 5-4 for Fx and Fy 

respectively. Whereas in Figure 5-5 and Figure 5-6 graphs are shown for the 90 

degree fibre orientation laminate. The green and red columns show the 

machining forces in the un-worn tool condition at 6000 and 8000 RPM 

respectively. The blue and purple show the same cutting speeds for the worn 

tool conditions. The error bars show the standard deviation between the 

experiment repeats. One repeat of each test was taken in order to assess the 

repeatability of the experiment which was a total of 32 tests. It was found that a 

maximum standard deviation of 12 N between a set of repeats which was equal 

to a force difference of 17.7 N or a maximum percentage difference of 12.2 %. 

The repeatability of the tests was therefore found to be reasonable and the 

main discrepancy between two sets of tests results could be attributed to a 

slight increase in tool wear in the repeat test.  

The experimental cutting forces were found to be significantly higher with the 

worn than the unworn tool, and the tool wear was found to have a more 

significant effect on cutting forces than either fibre orientation or cutting 

parameters. Shown in Figure 5-3-Figure 5-6 there is a significant increase in 

machining forces with worn tool in comparison to unworn tool. The Fx cutting 

forces were on average 32 % higher with the worn than unworn tool, while Fy 

forces were 64 % higher. Cutting forces will increase with tool wear due to 

blunting of the sharp cutting edge, leading to higher friction and more tool 

contact area with the workpiece during machining. There will be change in the 

cutting mechanism to ploughing and tearing rather than fibre cutting, and this 
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will also negatively affect the surface quality generated. The effects of increased 

tool wear on the surface quality generated will be further analysed. 

It can also be seen across the majority of the graphs in Figure 5-3-Figure 5-6 

that there is an increase in both Fx and Fy machining forces with feed. 

Increasing feed means there will be a larger chip thickness and therefore more 

material removed for each pass of the cutting tool. The statistical contribution 

of each of the parameters; tool wear, feed rate, cutting speed and fibre 

orientations, and their effects on the measured cutting forces, and surface 

roughness,- will be evaluated using main effects plots and regression equations 

in the following sections. 

 

Figure 5-3- Fx cutting force vs feed rate, with worn and un-worn tool. (45 

degree fibre orientation). 
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Figure 5-4- Fy thrust force vs feed rate, with worn and un-worn tool. (45 degree 

fibre orientation). 

 

 

Figure 5-5- Fx cutting force vs feed rate, with worn and un-worn tool. (90 

degree fibre orientation). 
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Figure 5-6- Fy thrust force vs feed rate, with worn and un-worn tool. (90 degree 

fibre orientation). 

5.1-2 Cutting Tool Images 

Optical microscope images were taken of the tool cutting edge before 

machining in worn and un-worn conditions. Optical microscope images were 

taken to qualitatively assess tool condition and wear. The microscope scans 

were taken of all three cutting edges in the same position for each scan. A 

fixture was used in order to hold and locate the tool under the microscope. 

Figure 5-7 shows the SGS PCD tool in new condition, while shows the same 

tool in worn conditions after experimental wear. It can be seen that there is 

wear on the cutting edge, which is shown by higher reflectivity and worn spots 

in Figure 5-8 compared to Figure 5-7. In Figure 5-8 the tool edge appears to 

show some small chipping and abrasive wear causing cutting edge rounding. 

Whereas, in Figure 5-7 the cutting edge still appears sharp and there isn’t any 

noticeable worn patches or chips. In composite machining the chips are 

removed by “compression shearing and fracture” and small dust-like chips are 

removed, the predominant tool wear mechanism is by edge chipping and 

abrasion of the cutting edge [3]. In standard metal machining where there is a 



131 

 

continuous chip formation, and the predominant removal of material is by 

plastic deformation, there is commonly flank wear on the cutting tool, which is 

caused by adhesion and abrasion. In metal machining, the friction on the 

cutting tool and heat generation can cause a built up edge at the tool-chip 

interface. These conditions lead to adhesion and crater wear. However, in 

composite machining crater wear is not as prevalent due to the discontinuous 

chips and brittle fracture during chip formation which causes less adhesion. As 

seen in Figure 5-7 the predominant wear of the tool is by chipping and 

abrasion of the sharp cutting edge causing the edge to become blunted.  

Figure 5-7 shows the tool in an unworn state, whereas in Figure 5-8 it can be 

seen that there has been chipping and edge rounding of the worn cutting tool 

due to abrasive carbon fibres. It can be seen that the cutting edge is more 

reflective than the unworn tool in Figure 5-7 because the cutting edge has 

been chipped to give a larger radius. The pre-worn tool was used in the 

experiment to see the effects of the degree of wear on the cutting forces 

compared to the unworn tool.  

 

Figure 5-7- Optical microscope images of new unworn PCD tool. 
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Figure 5-8- Optical microscope images of worn PCD tool. 

5.1-3 Cutting Edge Radius- Focus Variation Measurements 

The optical system was used to take scans of the tool in worn and un-worn 

conditions- Figure 5-9(a) and Figure 5-9(b). The cutting edge radius was 

analysed to track the increase in wear. The PCD tool has a sharp cutting edge 

which is gradually chipped due to abrasive wear by the fibres. Figure 5-9 shows 

the unworn tool with a sharp 3.7 µm average cutting edge radius and Figure 

5-9b shows the worn tool with 10 µm cutting edge used in the experiments. 

This PCD tool was manufactured by laser cutting and therefore the new tool 

has a very sharp edge. The change in geometry can be seen due to wear by 

chipping and abrasion of the cutting edge. It was therefore found that the 

cutting edge radius will increase quite significantly with tool wear, and this will 

therefore have an effect on the cutting forces and surface quality. 
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Figure 5-9- Tool cutting edge rounding Alicona scans, 

 (a) Unworn PCD tool, 

       (b) Worn PCD tool. 

Table 5-5 shows the Alicona edge radius measurements of the worn and un-

worn tool from each of the three flutes to find the average edge radius. The 

standard deviation of the three measurements is also shown, which represents 

the error in the difference between the three cutting edges. The cutting edge 

radius (CER) was then used as an input for finite element models.  

Table 5-5- Cutting edge radius (CER) from Alicona scans. 

Tool Condition 
CER Edge 

1 (µm) 

CER Edge 

2 (µm) 

CER Edge 

3 (µm) 
Average (µm) 

Standard 

Deviation 

Unworn Tool 4.45 3.56 3.15 3.7 0.66 

Worn Tool 10.34 10.41 9.30 10.0 0.62 

 

5.1-4 Surface Roughness Scans by Optical System 

Optical scans were taken of the machined surface using the Alicona focus 

variation system. Images can be used to qualitatively assess surface damage 

and then roughness parameters were calculated over the scan area in order to 

quantify the profile deviations due to machining.  
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Figure 5-10 shows an example of the surface scans taken with the optical 

system of the unidirectional composite machined surface. Figure 5-10 shows a 

2 mm by 2 mm image taken from the centre of the sample, with feed rate of 

800 mm/min and 6000 RPM at a 90 degree orientation. The surface is relatively 

smooth without any large pitts or voids, and the direction of feed can be seen 

as feed marks moving from left to right- Figure 5-10. To take roughness 

measurements a full workpiece thickness scan area of 6 mm by 2 mm was 

taken for the Sa surface roughness measurements- Figure 5-11. 

 

Figure 5-10- 2 x 2mm optical focus variation scan taken from middle of sample. 

(90 degree fibre orientation, 800 mm/min, 6000 RPM, Worn-tool). 
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Figure 5-11- Optical surface scan unidirectional laminate. (45 degree fibre 

orientation, worn tool, 800 mm/min, 6000 RPM). 

The average Sa surface roughness measured by the optical system is shown in 

Table 5-6 and Table 5-7  for each of the cutting speeds, feed rate and fibre 

orientations. The results for 90 degree fibre orientation and 45 degree fibre 

orientation are shown in Table 5-6 and Table 5-7 respectively. Un-cut fibres 

were also recorded and measured on the top and bottom edges of the 

laminate. It was found that it was more likely to find uncut fibres, (Type II 

delamination) when machining on the 45 degree orientation- Table 5-7. A 

machined sample is shown in Figure 5-12, where Type II delamination is shown 

on the top and bottom of the laminate. The maximum delamination length of 2 

mm, shown in Table 5-9, correlated with the worn tool and 45 degree fibre 

orientation. Whereas, a maximum delamination length of 0.4 mm was found in 

the 90 degree fibre orientation machined samples, as shown in Table 5-8. The 

maximum delamination also correlated with the samples with the highest 

surface roughness. The results showed that the un-cut fibres increased 
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significantly when using the worn tool and for the 45 degree fibre orientation. 

This result is confirmed by Voss et al. [84], who found that that top-layer 

delamination and un-cut fibres was most prevalent on fibre orientations 

between 0 and 90 degrees. It has also been confirmed by Hintz et al. [85], that 

increasing tool wear and the fibre orientation are significant factors in 

delamination frequency on top layers of the laminate. 

In contrast, during this study a sharp cutting edge of the new tool was able to 

cleanly shear the fibres of the 45 and 90 degree fibre orientation and leave a 

smooth surface quality. The presence of top-layer delamination was 

significantly reduced. In contrast, the worn tool left fibres un-cut, which then 

spring back elastically and protrude over the machined edge as fibre 

delamination. This may be because it is harder to shear the fibres on the top 

and bottom plies where there is less support from surrounding material. In the 

45 degree fibre orientation the fibres are facing away from the cutting tool, 

and have not been cut cleanly as shown in Figure 5-12.  
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Figure 5-12- Machined unidirectional sample 45 degree orientation showing 

some un-cut fibres on top and bottom of laminate (worn cutting tool). 

 

Table 5-6- Surface roughness measurements- 90 degree fibre orientation. 

 

 

Test 
Fibre 

Orientation 
Feed Rate 
(mm/min) 

Cutting 
Speed 
(RPM) 

Sa 
Scan 

1 

Sa 
Scan 

2 

Sa 
Scan 

3 

Average 

Sa (µm) 
Standard 
Deviation 

Unworn 90 800 6000 1.53 1.59 1.41 1.51 0.09 

Unworn 90 1200 6000 1.53 1.65 1.63 1.6 0.06 

Unworn 90 800 8000 1.59 1.51 1.54 1.55 0.04 

Unworn 90 1200 8000 1.51 1.53 1.47 1.5 0.03 

Worn 90 800 6000 1.63 1.7 1.72 1.68 0.05 

Worn 90 1200 6000 1.98 1.7 1.78 1.82 0.14 

Worn 90 800 8000 1.73 1.63 1.72 1.69 0.06 

Worn 90 1200 8000 1.66 1.54 1.67 1.62 0.07 
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Table 5-7-Surface roughness measurements- 45 degree fibre orientation. 

Test 
Fibre 

Orientation 

Feed 
Rate 

(mm/min) 

Cutting 
Speed 
(RPM) 

Sa Scan 
1 

Sa Scan 
2 

Sa Scan 
3 

Average 

Sa (µm) 
Standard 
Deviation 

Unworn 45 800 6000 1.62 1.68 1.62 1.64 0.033 

Unworn 45 1200 6000 1.94 2.08 2 2.01 0.071 

Unworn 45 800 8000 2.48 2.3 2.23 2.33 0.128 

Unworn 45 1200 8000 1.98 2.53 2.32 2.28 0.277 

Worn 45 800 6000 1.78 1.85 1.84 1.82 0.038 

Worn 45 1200 6000 2.09 2.23 2.17 2.16 0.07 

Worn 45 800 8000 2.6 2.52 2.4 2.51 0.101 

Worn 45 1200 8000 2.11 2.73 2.43 2.42 0.31 

 

Table 5-8- Delamination Measurements (Type II). 

Test Fibre Orientation 
Feed Rate 
(mm/min) 

Cutting Speed 
(RPM) 

Maximum Delamination 
Length (mm) 

Unworn 90 800 6000 0 

Unworn 90 1200 6000 0 

Unworn 90 800 8000 0 

Unworn 90 1200 8000 0 

Worn 90 800 6000 0 

Worn 90 1200 6000 0 

Worn 90 800 8000 0.4 

Worn 90 1200 8000 0 
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Table 5-9- Delamination Measurements (Type II). 

Test Fibre Orientation 
Feed Rate 
(mm/min) 

Cutting Speed 
(RPM) 

Maximum 
Delamination Length 

(mm) 

Unworn 45 800 6000 0 

Unworn 45 1200 6000 0 

Unworn 45 800 8000 0 

Unworn 45 1200 8000 0 

Worn 45 800 6000 1.6 

Worn 45 1200 6000 1.5 

Worn 45 800 8000 2 

Worn 45 1200 8000 2 

 

5.1-5 Main Effects Plot- Unidirectional Laminate 

Statistical software mini-tab was used in order to look at the mean trends in 

the data for the surface roughness [80]. Main effects plots show the mean 

response in the dataset for a particular input and output parameter change. 

They have been used to show the mean response in the surface roughness and 

machining forces due the experimental variables from the previous data in  

Table 5-6 and Table 5-7. The mean effects on the Sa surface roughness are 

shown in Figure 5-13. The factors were fibre orientation, CER, feed rate and 

cutting speed and their corresponding output effect on the surface roughness. 

The P values for each of the parameters effects on the surface roughness are 

shown in Table 5-10. The effect of fibre orientation on surface roughness 

showed the lowest P value in Table 5-10, followed by CER. An increase in 

surface roughness on the 45 degree fibre orientation was shown in Figure 5-13. 

The lower surface roughness was found on the 90 degree fibre orientation 

which is due to a different cutting mechanism with fibre orientation. This also 

correlates with the maximum delamination shown previously in Table 5-8 and 

Table 5-9, because there was less un-cut fibres on the top and bottom plies 

measured on the 90 degree compared to the 45 degree fibre orientation. The 
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larger surface roughness in the 45 degree orientation can mainly be attributed 

to the top and bottom edge delamination due to un-cut fibres. Shown in 

Figure 5-13, the Sa surface roughness also increases with CER due to an 

increased tool workpiece contact area and higher friction. There were more 

delaminated fibres and the PCD milling tool is unable to cleanly shear the fibres 

due the blunt cutting edge. The P value of 0.122 also showed that the statistical 

contribution of the CER on Sa can be assumed to be significant. 

Table 5-10- Parameter effects on Surface Roughness (Sa)- P Values 

Parameter P Value 

Fibre Orientation 0 

Feed Rate 0.4 

Cutting Speed 0.056 

CER 0.122 

 

 

Figure 5-13 – Sa Main effects plot. 
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In Figure 5-14 and Figure 5-15 the main effects plot for the Fx and Fy cutting 

forces are shown for the Fx and Fy cutting forces. The P values are shown in 

Table 5-11 and Table 5-12. The feed rate and CER were found to have the 

lowest P values for the effects on both the Fx and Fy machining forces. In 

Figure 5-14 the Fx cutting forces increase with an increase in feed rate and 

decrease with increasing cutting speed. Increasing the feed rate and decreasing 

the cutting speed will correspond with an increasing chip thickness and larger 

area of chip removed. This causes the cutting mechanism to change to a 

mechanical wrenching as opposed to a fibre shearing mechanism [81]. Increase 

in the cutting edge radius had a corresponding increase in both the cutting 

and thrust forces. A negligible effect was seen in the two main effects plost for 

the effect of the material fibre orientation on the Fx and Fy machining forces, 

which was also represented by the high P values for the effect of fibre 

orientation in Table 5-11 and Table 5-12. 

Table 5-11- Parameter effects on Mean Cutting Force (Fx)- P Values 

Parameter P Value 

Fibre Orientation 0.879 

Feed Rate 0.007 

Cutting Speed 0.118 

CER 0 
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Figure 5-14- Main effects plot for mean Fx cutting force unidirectional test. 

Table 5-12- Parameter effects on Mean Thrust Force (Fy)- P Values 

Parameter P Value 

Fibre Orientation 0.641 

Feed Rate 0.010 

Cutting Speed 0.866 

CER 0 
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Figure 5-15- Main effects plot for mean Fy thrust force unidirectional test. 

5.2 Experimental Results- Multidirectional Laminate  

The results from the second multidirectional test are presented. The test was 

performed successfully with incremental levels of wear on the tool which was 

tracked by optical system in the cutting edge radius measurements over the 

test progression. The top and bottom laminate layers of the machined surface 

were free of un-cut fibres and delamination. Cutting forces have been 

presented along with measured surface roughness against increasing tool wear 

and machining parameters. Multiple linear regression models will be applied in 

next section to analyse the contribution of each parameter and create a 

regression equation. 

Firstly, as the experiment was performed, the tool wear was tracked 

throughout the test. The cutting edge radius was measured from each of the 

three cutting edges of the tool to find an average. The average cutting edge 

radius is shown in Table 5-13 for Tool 1 and in Table 10-9  for Tool 2 in the 

Appendix.  
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Table 5-13- Cutting edge radius from Alicona scans (Tool 1). 

Test Feed Cutting Speed Edge Radius µm Distance Machined (mm) 

      3.36 0 

1 1000 7000 3.36 80 

2 1000 9000 3.36 160 

7 1200 7000 4.94 240 

8 1200 9000 4.94 320 

9 1000 7000 5.2 400 

10 1000 9000 5.2 480 

13 1000 7000 5.84 560 

14 1000 9000 5.84 640 

19 1200 7000 6.11 720 

20 1200 9000 6.11 800 

21 1000 7000 6.34 880 

22 1000 9000 6.34 960 

27 1200 7000 6.48 1040 

28 1200 9000 6.48 1120 

29 1000 7000 6.6 1200 

30 1000 9000 6.6 1280 

33 1000 7000 6.6 1360 

34 1000 9000 6.6 1440 

39 1200 7000 6.69 1520 

40 1200 9000 6.69 1600 

 

5.2-1 Surface Roughness Measurements 

Optical scans were taken of the surface using the focus variation system in the 

two positions on the machined surface described previously. The scan size was 

10 mm by 2 mm. An image of the scans taken using optical device is shown in 

Figure 5-16. This represents the machined surface at different levels of tool 

wear. These images are 2D images, of a 3D surface profile, which are shown 

looking directly onto the machined surface- perpendicular to the machined 

face of the sample. The machined surface goes from left to right across the 

page where the tool length axis will pass across the surface in the same 

direction, which is in the direction of feed. In Figure 5-16 is shown the surface 

quality at increasing levels of tool wear from four different tests at a feed rate 
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of 1000 mm/min and a cutting speed of 7000 RPM. The cutting tool edge 

radiuses, due to edge wear, and are 3.36 µm, 5.35 µm and 6.38 µm for test 1, 

test 17 and test 37, respectively. It is shown in the image that there is increased 

surface damage with an increasing tool edge radius. Also, it can be seen that 

there is a variation in surface structure and magnitude of visual damage on 

different fibre orientations. Figure 5-17 shows the surface quality from optical 

focus variation scans taken at an angle to the plane of the surface, against 

increasing tool wear from (a) to (c). These are 3D images which detail the 

optical focus variation system as used to capture surface profile height and 

colour information. The images show the range of damage on each of the ply 

layers, where the darker regions represent the more pitted and torn surface of 

the 135 degree orientation. The lighter regions highlighted in Figure 5-16 and 

Figure 5-17 represent ply orientations at 0 degrees where the fibres are lying 

parallel to the machined surface. The laminates each have the same stacking 

sequence, so that the fibre orientations on each laminate correspond to the 

following image but with a greater level of cutting tool wear, and consequently 

have shown a more rough and pitted surface. 
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Figure 5-16- Multidirectional optical focus variation scans. Images show a 2D 

plane image of the machined surface profile texture at increasing tool weal. The 

full laminate thickness of 10mm is shown. 

(a) Test 1, (c) Test 17 (d) Test 37.  

 



147 

 

 

Figure 5-17- Machined Surface Optical scans from focus variation system of 

multidirectional laminate. . Images show a 3D surface image of the machined 

surface profile texture at increasing tool weal. The full laminate thickness of 

10mm is shown. 

 (a) Test 7, (b) Test 19 and (c) Test 27.  

Surface roughness parameters (Sa, skewness and kurtosis), were calculated for 

each of the 40 tests. The average of each parameter was calculated from the 

two positions and is shown in Table 5-14 for tests 1-20 and in Table 10-10 in the 

Appendix Part A for tests 21-40. The standard deviation from the two 

measurement positions is shown. 

 Shown in Figure 5-18 is the increase in roughness with feed grouped by the 

two different cutting speeds applied, 7000 and 9000 RPM. The error bars 
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represent the standard deviation in the surface roughness measurement in the 

vertical direction. This is found from the repeat measurement of roughness on 

one sample in two different positions. The graphs show a higher rate of 

increase in surface roughness at the larger feed rate of 1200 mm/min 

compared to 1000 mm/min. An increased roughness with feed correlates with 

other results from the literature [26]. The highest roughness was seen at the 

higher feed rate and lower cutting speed, and this will correlate with the 

greatest chip thickness, as also reported by Azmi et al, [34]. Therefore in order 

to reduce surface roughness the tool wear should be minimised while using a 

smaller chip thickness. 

 Table 5-14- Average Sa calculated from the test samples in Test 1-Test 20. 

Test 
Number 

Feed 
(mm/min) 

Cutting 
Speed 
(RPM) 

Scan 1 Sa 
(µm) 

Scan 2 
Sa (µm) 

Average 
Sa (µm) 

Standard 
Deviation 

Test 1 1000 7000 1.77 1.71 1.74 0.04 

Test 2 1000 9000 1.89 1.78 1.83 0.08 

Test 3 1200 7000 1.72 1.69 1.71 0.02 

Test 4 1200 9000 1.43 1.29 1.36 0.10 

Test 5 1000 7000 1.84 1.7 1.77 0.10 

Test 6 1000 9000 1.47 1.47 1.47 0.00 

Test 7 1200 7000 1.79 1.93 1.86 0.10 

Test 8 1200 9000 1.82 1.74 1.78 0.06 

Test 9 1000 7000 1.76 1.72 1.74 0.03 

Test 10 1000 9000 1.67 1.63 1.65 0.03 

Test 11 1200 7000 1.93 1.9 1.92 0.02 

Test 12 1200 9000 1.61 1.56 1.58 0.04 

Test 13 1000 7000 1.67 1.77 1.72 0.07 

Test 14 1000 9000 1.65 1.56 1.6 0.06 

Test 15 1200 7000 1.74 1.65 1.69 0.06 

Test 16 1200 9000 1.39 1.48 1.44 0.06 

Test 17 1000 7000 1.45 1.45 1.45 0.00 

Test 18 1000 9000 1.41 1.31 1.36 0.07 

Test 19 1200 7000 2.15 2.13 2.14 0.01 

Test 20 1200 9000 1.66 1.73 1.7 0.05 
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Figure 5-18- Surface roughness (Sa) vs feed rate (grouped by applied cutting 

speed). (Error bars show standard deviation in roughness measurement.) 

Shown in Figure 5-19 and Figure 5-20 is the Sa surface roughness scatter plot 

against increasing cutting edge radius, the lines are fitted and grouped on 

dependant parameters cutting speed and feed rate. Figure 5-19 shows the 

increase in surface roughness with cutting edge radius for a cutting speed of 

7000 RPM and a feed rate of 1000 and 1200 mm/min. While Figure 5-20 is 

shown for a cutting speed of 9000 RPM. The horizontal error bars represent 

the standard deviation in the cutting edge radius measurement for each of the 

three cutting edge radii. Figure 5-19 and Figure 5-20 both shown an increasing 

trend in the Sa surface roughness with increased cutting edge radius. There is 

also shown to be a greater increase in roughness with cutting edge radius at 

the higher feed rate of 1200 mm/min, and therefore feed rate and cutting edge 

radius together both have a contributing effect on the roughness. A higher 

feed rate and higher edge radius will increase the surface roughness 

significantly. 

 It was found that there is a relatively large standard deviation in the cutting 

edge radius measurements, and this can be most likely explained due to the 

manufacture of the cutting edges, whereby they do not start with exactly the 
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same initial edge radius. Also each edge will not wear at exactly the same rate 

due to random variation in the composition of the PCD material in each edge, 

and the dynamic nature of the tool wear. The wear process is due to brittle 

fracture of the cutting edge and chipping and is not a constant process. The 

wear rate will not be constantly consistent across each edge. For each edge 

scan there is a number of cross sections along the length of each cutting edge 

to take a mean value. The standard deviation is calculated from the deviation 

from each of the three different cutting edges. Therefore a relatively large 

standard deviation between the different edge radii of the three cutting edges 

is not wholly unexpected.  

 

Figure 5-19- Mean Sa against increasing edge radius, grouped by dependant 

parameters feed rate and cutting speed at 7000 RPM. The error bars show 

standard deviation in roughness and edge radius measurement. 
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Figure 5-20- Mean Sa against increasing edge radius, grouped by dependant 

parameters feed rate and cutting speed at 9000 RPM. The error bars show 

standard deviation in roughness and edge radius measurement. 

5.2-2 Machining Forces from Experiment 

The mean cutting forces recorded from the experiment using the 

dynamometer are shown in Table 5-15 for tests 1-4 and 17-20 as an example. 

The inclusive data is presented for Tests 1-20 and Tests 20-40 in Appendix Part 

A, Table 10-12 and Table 10-13, including the minimum, maximum and mean 

cutting forces from experiment. The mean cutting force is calculated from the 

average cutting force over the length of the cut. A portion is removed at the 

beginning and end, as shown in Figure 5-21, so that the beginning and end of 

cut is not included.  
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Table 5-15- Cutting forces- test number 1-4, 17-20. 

Test 
Feed Rate 

(mm/min) 

Cutting 

Speed (RPM) 

Mean Fx 

(N) 

Mean Fy 

(N) 

1 1000 7000 32.0 1.6 

2 1000 9000 33.2 9.3 

3 1200 7000 36.1 1.8 

4 1200 9000 38.4 10.6 

17 1000 7000 57.5 33.5 

18 1000 9000 53.8 39.4 

19 1200 7000 60.6 28.2 

20 1200 9000 59.7 34.6 

 

 

Figure 5-21- Machining forces from multidirectional test dynamometer. 

Figure 5-22 shows the increase in Fx machining force with an increased cutting 

edge radius at a constant cutting speed of 7000 RPM and two different feed 

rates. Figure 5-23 shows the same output at higher cutting speed of 9000 RPM.  

There is shown to be a strong increasing trend in the Fx machining forces 

across both feed rates as the tool edge radius increases. This is caused due to 
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the increased friction and contact area between the tool and workpiece which 

will lead to higher machining forces in the cutting direction. Figure 5-24 and 

Figure 5-25 show the change in Fy thrust force with increasing cutting edge 

radius at 7000 and 9000 RPM respectively. In both Figure 5-24 and Figure 5-25  

there is also an increasing trend in the thrust direction machining forces with 

edge radius. This may be due to the rounded cutting edge’s inability to cleanly 

shear the fibres causing a change in the cutting mechanism and a higher 

friction between the tool and workpiece. It can be concluded that higher tool 

wear due to an increased cutting edge radius caused an increasing trend in 

both components of the machining forces in the edge trimming test. There are 

no error bars for the cutting forces because each point represents a single 

value in the test, where the tests have been repeated, but with an increasing 

cutting edge radius. 

 

Figure 5-22- Fx Cutting forces against increasing edge radius at 7000 RPM. The 

error bars represent standard deviation in the edge radius measurement from 3 

cutting edges. 
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Figure 5-23- Fx Cutting forces against increasing edge radius at 9000 RPM. The 

error bars represent standard deviation in the edge radius measurement from 3 

cutting edges. 
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Figure 5-24- Fy Cutting forces against increasing edge radius at 7000 RPM. The 

error bars (x-axis) represent standard deviation in the edge radius measurement 

from 3 cutting edges. 

 

Figure 5-25- Fy Cutting forces against increasing edge radius at 9000 RPM.  The 

error bars represent standard deviation in the edge radius measurement from 3 

cutting edges (x-axis). 
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5.2-3 Main Effects Plots- Multidirectional Laminate 

Statistical software mini-tab was used to look at the mean trends in the data 

[80]. The factors are feed rate and cutting speed which are compared with the 

average Fx and Fy cutting forces as shown in Figure 5-26 and Figure 5-27 

respectively. In Table 5-16 the P values for the feed rate and cutting speed on 

the Fx machining force are shown. The feed rate has a P value of 0.167 which is 

more significant than that of the cutting speed at 0.518. The effect of increasing 

the feed rate was a mean increase in the Fx cutting forces. This correlates with 

results from the literature [86]. It has been shown that increasing the feed rate 

in composite machining will generally change the cutting mechanism more 

from a fibre shearing into a ploughing mechanism, where the fibres will be torn 

and plucked from the workpiece. Increasing the cutting speed caused a slight 

decrease in the Fx machining forces, which is due to a decreased chip thickness 

for each pass of the cutting edge. Yet the effect of cutting speed is found to be 

fairly insignificant. The P values in Table 5-17 show that the feed rate and 

cutting speed do not have a very strong statistical effect on the Fy thrust force 

in machining. This may be due to the relatively small mean change in thrust 

force with change in machining parameters. Finally, the effect of the 

experimental variables on the Sa roughness parameter is shown in Figure 5-28. 

It was found that the feed rate had an increasing trend in the surface 

roughness which corresponds with previous work and the literature [34],[79]. 

The P values in Table 5-18 show that the feed rate and cutting speed have a 

significant effect on the surface roughness. Decreasing the chip thickness has 

therefore been shown to minimise the areal surface roughness in this instance. 

N. Nguyen-Dinh et al. [87] have shown that surface quality will decrease with 

an increase in feed speed, which they attributed to mechanical degradation of 

the matrix on the machined surface. 
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Table 5-16- Predictor P values effect on Fx machining force. 

Predictor P Value 

Feed Rate 0.167 

Cutting Speed 0.518 

 

 

Figure 5-26- Main effects plot for average Fx. 

 

Table 5-17- Predictor P values effect on Fy Thrust Force. 

Predictor P Value 

Feed Rate 0.903 

Cutting Speed 0.377 
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Figure 5-27- Main effects plot for average Fy. 

 

Table 5-18- Predictor P values effect on Sa Surface roughness. 

Predictor P Value 

Feed Rate 0.03 

Cutting Speed 0 
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Figure 5-28- Main effects plot for average surface areal roughness parameter 

Sa.  

5.2-4 Effects of Machining Forces on Surface Roughness 

The effects of the measured machining forces on the surface roughness, 

plotted as a scatter diagram grouped by feed rate and cutting speed, are 

shown in Figure 5-29 and Figure 5-30. In general there appears to be a slightly 

increasing trend in the surface roughness with both Fx and Fy machining 

forces. The increasing trend in roughness with an increasing Fx feed force has a 

steeper slope at the higher feed rate of 1200 mm/min. It is expected that this 

effect is due to the larger chip thickness.  At the lower cutting speed of 7000 

RPM there is generally a slightly higher roughness. It can be concluded that the 

effect of the cutting forces on the surface roughness has an interacting effect 

with the cutting speed and the feed rate applied.  
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Figure 5-29- Surface roughness (Sa) vs Fx machining force from experiment. 

Grouped by applied cutting speed and feed rate. 

 

Figure 5-30- Surface roughness (Sa) vs Fy machining force from experiment. 

Grouped by applied cutting speed and feed rate. 
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5.3 Discussion- Surface Roughness Measurements 

It is important to be able to accurately quantify the surface roughness of a 

fibrous composite material and this should be made possible using a 

repeatable method. The benefits of the optical system were found to be most 

apparent when measuring surface roughness of a multidirectional laminate 

machined surface. This is because the unidirectional laminate has a lower 

variation in surface texture and it can be concluded that the roughness 

measurement is less sensitive to stylus path than on a multidirectional laminate. 

This finding was also reported by Ramulu et Al. [5]. In addition, Ahmad et al. 

[88], made an assessment of machined surface morphology and showed that 

fibre orientation will have an effect on measured surface parameters. It was 

found in this work that the variation or scatter in roughness measurements on 

the multidirectional laminate, which was calculated using the optical system, 

was significant, and was considerably higher than that found on the 

unidirectional laminate. Therefore, the use of the optical device is highly 

advised on a multidirectional composite surface, (including GFRP), as it 

provides the ability to account for the different damage types, surface profile 

and directional measurement properties due to fibre orientation effects. The 

majority of industrial composite parts are made up of multidirectional 

laminates to optimise the strength of components by incorporating the 

directional properties of fibres, and therefore adoption of more accurate 

methods to quantify surface roughness from machining is necessary. Inability 

to take into account the different damages on each layer of the laminate will 

lead to uncertain measurements, and the findings suggest that use of stylus 

methods to measure surface roughness of a multidirectional laminate will lead 

to unreliable results.  

Usefully, the optical device and areal parameters have been found to be less 

sensitive to measurement position, or path, than the stylus and therefore 
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provide a more accurate metric with which to assess machined composite 

surfaces.  

In consequence it would be advisable to use the optical device for surface 

roughness measurements in this application with the adoption of additional 

roughness parameters to increase the surface profile information which is 

quantified. However, if due to the unavailability of this method, some 

recommendations can be applied if continuing to use stylus measurement for 

calculating surface roughness of machined surfaces of composites. On a 

multidirectional laminate it would be appropriate to do transverse 

measurements, (across the laminate thickness), and therefore passing over 

multiple fibre orientations. If making measurements parallel to the laminate the 

layer being measured is uncertain. It would also be advisable to use a greater 

number of repeat roughness measurements, in multiple positions, than would 

be applied on a standard metallic or more homogeneous surface. Using the 

stylus, the roughness measurement will have a larger standard deviation across 

measurement points due to the variation in surface structure. Additionally, care 

must also be introduced to use a repeatable method for positioning the stylus 

on different samples and there should be checks that there are no adhered 

fibres to the stylus tip.  

5.4 Results- CT Scanning of Machined Samples 

Micro-CT scans were performed using a CT scanner on machined samples with 

the method previously described. Firstly the unidirectional CT scanned samples 

will be shown, followed by the multidirectional samples. The sample views are 

detailed in Figure 5-31, where the top view is looking from above on the 

sample, and the left hand edge is being machined. The side view is looking 

directly onto the plane of the machined face and the front view is looking 

through thickness in the material travelling into the page in the tool feed 

direction. The sample views will follow this image orientation across the rest of 
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the figures. Shown in Figure 5-31 there are un-cut fibres which can be seen as 

type II delamination on the top and bottom layers of the laminate. This is 

caused by un-cut fibres during edge trimming which have been bent but not 

fully cut. They are then are allowed to spring back to their original orientation 

once the cutting tool has passed and are not cut. These fibres can be removed 

post-machining. 

 

Figure 5-31- CT scan of machined unidirectional 45 degree fibre orientation, 

showing planar views. 

Figure 5-32 show CT scans from the 45 degree fibre orientation unidirectional 

carbon fibre composite sample, which was edge trimmed with the worn PCD 

cutting tool- and an average edge radius of 10µm. The sample was machined 

at a feed rate of 800 mm/min and cutting speed of 8000 RPM. Shown in Figure 

5-32 are the three different views for the 45 degree fibre orientation. The 

images in Figure 5-32(b) and Figure 5-32(c) show cross sections cut through 

the machined sample in the positions shown. The internal cracks which are 
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shown in Figure 5-32(a) are then imaged from alternate views through the 

sample to see the size of internal defects. It is shown that there is some internal 

cracks and inter-laminar delamination which propagate through the sample. 

 

Figure 5-32- 45 degree fibre orientation with internal crack.  

Shown in Figure 5-33 are cross-cross section images of the 45 degree fibre 

orientation machined sample, which was machined with the same parameters 

as Figure 5-32. The images are shown progressing through thickness in the 

plane of the top view, in which the planar view is shown by the green rectangle 

in Figure 5-33(e). Each images show progressive cross-sections from the top 
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moving through the material thickness from Figure 5-33(a)- Figure 5-33(d). It 

was found that there was inter-laminar delamination and material voids 

present, and these defects appear to propagate from the machined edge.  

 

Figure 5-33- Inter-laminar Delamination propagating through thickness shown 

from the top view of the unidirectional laminate, machined at 45 degree fibre 

orientation.  

Shown in Figure 5-34 is the CT scan images showing the unidirectional edge 

trimmed 45 degree fibre orientation, which show sample cross-sections of the 

front view. These images show progressing views through the sample thickness 

in the front plane from image (a)-(d). Shown in Figure 5-34 the propagation of 

the same crack along the inter-laminar boundary can be seen. This is a crack 

between two plies, and the crack appears to grow smaller as it goes deeper 

into the material and further away from the machined edge.  The inter-laminar 

delamination, shown in Figure 5-34, lies between two plies in the material and 

this weak layer will allow propagation of cracks, because of the poor strength 

between adjacent plies.  
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Figure 5-34- CT scans of delamination propagation from machined edge of 

unidirectional 45 degree fibre orientation laminate. 

A 90 degree fibre orientation sample machined with feed rate of 800 mm/min, 

cutting speed of 8000 RPM and 10 µm mean edge radius is shown in Figure 

5-35. CT scan for 90 degree fibre orientation machined sample is shown in 

Figure 5-35, and the planes in Figure 5-35(b) show the position of the cross-

sections. The cross sections are shown in green for the top view, blue for the 

front view and red for the side view. It was found that there were internal voids 

between inter-ply layers, and Figure 5-35 again shows that the machining 

process has propagated some internal machining damage in the unidirectional 

laminate.  
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Figure 5-35- 90 degree fibre orientation with internal crack. 

In order to make a comparison of machined samples versus non-machined, 

there was samples which were CT scanned but had not been edge trimmed. 

These are shown in Figure 5-36 and Figure 5-37  for the 45 and 90 degree fibre 

orientation respectively. This was to compare the un-machined state versus the 

machined samples and see if damage has been caused due to machining or if 

it was already present as voids in the material from manufacturing defects. It 

can be seen in Figure 5-36 that there is less internal voids or inter-laminar 

delamination compared to the edge trimmed samples. There is one very small 

void which can be seen in the centre of the material. It can therefore be 

concluded, that in the machined samples, machining may have increased the 

size of internal voids- by propagation of inter-laminar delamination and cracks- 

in the machined sub-surface of the unidirectional laminates. It is possible that 

this mechanism may have been caused during machining which has allowed 

pre-existing voids to propagate into large delaminations, which are formed 

between ply boundaries in the sub-surface. It is hypothesised, that forces 
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generated during machining may have caused cracks to propagate further as 

the weaker bond between fibre-matrix and ply boundaries begins to separate. 

Also, in the unidirectional samples the material strength is predominantly in 

one direction due to the orthotropic material properties; unlike the 

multidirectional laminate in which the material will have support in many 

directions. A multidirectional laminate will give support against flexion and 

crack propagation in all directions through the material. Hence, in a 

unidirectional laminate it would be more likely to find crack propagation and 

sub-surface inter-laminar delamination, produced by machining, than in a 

multidirectional laminate. 

 

Figure 5-36- CT scans 45 degree orientation, un-machined sample. 

Shown in Figure 5-37 is a 90 degree sample, which was not cut by edge 

trimming, where it can be seen there is still some voids present and some inter-
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laminar delamination. The images show cross-sections in the positions shown 

in Figure 5-37(a). However, the defects were found to be smaller in magnitude 

than in the edge trimmed samples. It can therefore be assumed that these 

internal voids could have been propagated due to external forces during the 

machining process from smaller existing voids. It is also worth noting, that in 

order to prepare the samples they had to be cut down to a smaller size using a 

band saw so that an 8 µm resolution could be obtained. It is possible that 

cutting the samples using this saw could have added some internal damage to 

the un-machined samples. However, again as in the previous samples on the 

45 degree fibre orientation there appears to be larger internal inter-laminar 

delamination in the edge trimmed samples, than the ones which have not been 

machined. The machining process has shown that it may have added some 

internal damage in the unidirectional laminate, in this case. Therefore from CT 

scanning images, it can be concluded that this technique was capable of 

finding internal voids and damage in the form of inter-laminar delamination in 

the samples. Also that the edge trimming process has increased some internal 

damage in the unidirectional samples due to crack propagation. However 

some initial voids already present in the material may have allowed these 

delamination and cracks to propagate. Next an analysis was made on the 

multidirectional edge trimmed samples using CT images to see if there was any 

damage present and to compare with the unidirectional samples. 
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Figure 5-37- CT scans 90 degree fibre orientation, un-machined sample. 

5.4-1 Multidirectional Laminate CT Scanning Results 

Figure 5-38 and Figure 5-39 show CT scan from multidirectional laminate edge 

trimming test of the carbon fibre laminate. The sample is from test number 40, 

which was machined with a cutting speed of 9000 RPM, feed rate of 1200 

mm/min and cutting edge radius of 6.7 µm. This was towards the end of the 

machining test where the cutting edge had become worn so any damage due 

to worn cutting edge would be more likely. Figure 5-38 shows a cross-section 

cut through the top view which was used to assess for any inter-laminar 

delamination across the sample thickness. The machined edge is seen on the 

left hand side of Figure 5-38.  It was found that that there was no significant 

inter-laminar delamination found in any of the CT scans for the multidirectional 

laminate samples, as shown in Figure 5-38.  



171 

 

 

Figure 5-38- Multidirectional laminate- top view showing no internal 

interlaminar-delamination. 

In Figure 5-39 the CT images show the machined surface damage progressing 

further from the machined edge, shown through the side plane. These images 

show a cross section through the machined surface, starting very close to the 

machined surface, at 0.01, 0.02, 0.03 and 0.04 mm away from the edge. Any 

damage found by the CT images in the multidirectional laminate was therefore 

localised damage on the surface, which was also captured as shown previously 

using SEM images. The maximum damage depth was found to be around 0.04 

mm from the machined edge, as shown in Figure 5-39(d). This damage is 

characterised by machining induced surface defects, including surface 

roughness, fibre pull-out and torn fibres, as shown in Figure 5-39. The 

maximum damage depth was found on the 135 degree fibre orientations. The 

variation in surface damage, due to fibre orientation effects, is similar to that 

shown by the SEM images. 
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Figure 5-39- Machined surface- CT scans showing damage at progressing 

distance from the machined edge.   

5.4-2 Discussion- CT Scanning Results  

CT scanning has been used to assess internal defects in the unidirectional and 

multidirectional machined samples. The unidirectional machined samples have 

been compared against un-machined samples to compare the difference in 

magnitude of internal defects. The CT scans of the unidirectional laminate have 

shown that sub-surface inter-laminar delamination and cracks, (which cannot 

be seen by surface measurements), may be generated during CFRP machining. 

Inter-laminar delamination in the unidirectional laminate may have propagated 

from small existing voids which were already created during manufacture.  

Shown previously in Figure 5-39, for the multidirectional laminate, the variation 

in surface structure and machining damage type is shown to be dependent 

upon the material fibre orientation, and the maximum damage depth was on 

the 135 degree fibre orientation. This maximum damage also correlated with 

roughness measurements on the multidirectional sample. It was shown that 

sub-surface defects were not present in the multidirectional laminate with the 

machining parameters and tool conditions applied in this study. The lack of 
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inter-laminar delamination or significant propagation of sub-surface cracks, as 

compared to the unidirectional laminate, may be because the different fibre 

orientations play a supporting role to increase stiffness and reduce inter-

laminar delamination. The superior properties of the multidirectional resin 

compared to the epoxy in the unidirectional laminate may also have played a 

part in the lack of internal damage. The multidirectional laminate was also 10 

mm thick as opposed to 6 mm in the unidirectional and would therefore have 

more rigidity and stiffness to support bending or flexion. In the future, the 

machining tests could be repeated with a highly worn tool and harsher 

machining parameters to find if any internal defects would be generated in 

these conditions. 

These findings have shown that for the multidirectional laminate damage 

measurement of the machined surface is appropriate, by roughness 

measurements and SEM images, to capture the extent of machining generated 

defects. Under the applied machining conditions, in this study, the CT scans did 

not show any significant sub-surface damage or voids. Therefore it can be 

concluded, that roughness measurements are the critical measurements to be 

used for assessing surface damage generated during machining in this 

circumstance. The implementation of CT scanning has been shown to be a 

useful technique to check for inter-laminar delamination, which may have been 

propagated by machining. However in well-chosen machining conditions with 

a suitable material, which is free of internal voids, then sub-surface damage 

should not be present and was not shown on the multidirectional laminate. The 

CT scanning technique was also able to show the depth of defects generated 

on the 135 degree plies, which were approximately 0.04 mm maximum depth 

from the machined edge. 
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Chapter 6  
Multiple Linear Regression Modelling  

Multiple linear regression modelling is a tool which is used to show the 

relationship between a set of variables and an output response. In multiple 

linear regression modelling a number of predictor variables are applied, and 

the equation aims to fit the variable response as well possible using input 

model data. Multiple linear regression equations have been calculated, and the 

aim of these regression equations is to correlate changes in the input 

parameters, feed rate, cutting speed, Fx and Fy, and cutting edge radius, and 

their contributing effect on output Sa Surface roughness. The regression 

equations are calculated from the experimental test data and measured surface 

roughness. Data is applied from multidirectional and unidirectional test results 

using the PCD tool. The regression equations will then be used as part of a 

prediction method for calculating surface roughness and to show the statistical 

contribution of each of the parameters on surface quality. 

6.1 Multiple Linear Regression Modelling- Predictor Effects on 

Surface Roughness 

The surface roughness of a machined profile has a non-deterministic 

functional relationship with input machining parameters; this is due to the 

complexity and dynamics of the machining process, complex material surface 

structure and material inhomogeneity. This means the calculated effects of 

parameters on roughness cannot be pre-determined, and therefore the use of 

statistical methods has been applied, because it is a useful way to assess and 

predict parameter effects on the surface structure from experimental data. In 

order to find the effect of model parameters on the output surface roughness 

(Sa), design of experiments has been combined with multiple linear regression 

methods. This will show the influence of machining parameters on 
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experimentally measured surface roughness. In the regression models, 

statistical methods have been applied to check for linear regression model 

suitability and parameter significance. The regression model has been applied 

with the areal surface roughness Sa as output response variable and regression 

equations have also been calculated for skewness and kurtosis parameters. 

Software Minitab has been used to analyse the data and find the statistical 

contribution of each of the input parameters. Linear regression assumptions 

have been assessed by checking for data normality and equal variance of 

residuals. The R-Sq, Histogram and residual response have been used to check 

model assumptions and the effectiveness of the fit from the predictor line to 

the data response. The design of experiments has been applied as previously 

shown. A stepwise method has been used in combination with parameter P 

values and model R-Sq values to assess the statistical significance of each 

parameter and the need of their inclusion for the regression equations.  

6.2 Regression Analysis- Multidirectional-laminate 

A multiple linear regression analysis was performed from the test data in 

Chapter 5.2 using statistical software Minitab. Design of experiments was 

performed using 2 levels of feed rate and cutting speed and progressively 

increasing levels of tool wear. A stepwise method was used to assess the 

inclusion or removal of different model terms. Experimentally measured 

parameters were the cutting forces and the surface roughness. The predictor 

parameters for the model are feed rate, cutting speed, tool edge radius and 

cutting forces in the Fx and Fy direction. The inclusion of interaction terms 

between the predictor parameters has also been assessed which can improve 

model prediction capabilities. From graphs shown in the results sections of the 

multidirectional test, it looked probable that there is some interaction between 

cutting forces, feed rate and edge radius. Interaction terms in the model allow 

for the possibility that a predictors effect on the response may vary at different 
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levels of one of the other predictor variables. For example, the effect of the 

feed rate on the surface roughness may also depend upon the current level of 

tool wear or cutting speed, and therefore the need for inclusion of interaction 

terms will be considered, and included where required.  

Firstly a fitted line plot was used to assess the effects of each individual 

predictor on the surface roughness. The fitted line plot is shown for each of the 

5 predictors in Figure 6-1 and the response which is the measured Sa 

roughness by optical system. A fitted line plot is also shown for the interaction 

terms in Figure 6-2. The fitted line plot gives an indication of the trend of the 

predictor effect on the surface roughness and the suitability of inclusion of the 

different predictor variables in regression equation. It shows the general trend 

in that the predictor effect will have on the surface roughness, and also the 

strength of the significance of that parameter on the roughness. 

Shown in Figure 6-1 are fitted line plots with the R-Sq and S values. The 

coefficient of determination (R-Sq) represents the strength of the predictor 

effect on the surface roughness, and the R squared value is used in order to 

find how well the regression equation fits the experimental data. The R-Sq 

value gives an indication of how well the model explains the variability of the 

data response around the mean and is calculated as the ratio of the explained 

variation to the total variation. A high R squared value tells us that the 

regression equation fits the experimental data well and that the majority of the 

data lies close to the regression line. Also, a high R-Sq means that the predictor 

has a strong effect on the surface roughness. The S value is known as the 

residual standard error and is used to find the sample variance of each of the 

populations of data from the fitted regression line. The closer the data lies to 

the regression line the lower the S value will be. Thus it gives an indication of 

the mean variance of the sample points from the fitted line.  
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The prediction interval (PI) with a 95 % confidence is shown for the fitted line 

plots in Figure 6-1 and Figure 6-2 by the dotted red line. This means that if a 

new predicted point is made within this parameter range using the equation 

then there is a 95 % confidence that it will lie within the upper and lower 

bounds of the shown lines.  

In Figure 6-1 the parameters with the highest R-Sq value are the cutting speed 

followed by Fx cutting force, edge radius and feed rate. It was found that 

reducing the cutting speed seems to have a positive effect on surface 

roughness, while increasing the other three parameters has an increasing effect 

on the roughness. The Fy thrust force has a low R-Sq value which suggests that 

changes in this predictor do not have a strong effect on the surface roughness. 

The cutting speed and Fx cutting force have a low S value due to having a low 

sample variance around the fit predictor line. The feed rate has a higher S value 

due to having some sample variance around the 1200 mm/min data point, 

which may indicate some interaction effects from other parameters.  

The need for interaction effects between predictors has firstly been assessed 

by using fitted line plots. Looking at the interactions fit line plots in Figure 6-2, 

the predictors with the highest R-Sq are the interaction of the feed rate and 

cutting edge radius, feed rate and cutting force (Fx). The interactions tell us at 

higher levels of cutting edge radius the effect of increasing feed appears to 

have a stronger effect than at lower levels of tool wear. Interactions between 

cutting speed and other variables including, cutting edge radius, Fy and Fx, 

appears to have very little significant effect on the surface roughness, as shown 

by the zero R-Sq value and low gradient of the fit lines in Figure 6-2 and Figure 

6-3. This interaction effect tells us that a change in cutting edge radius does 

not seem to impact the effect of cutting speed on surface roughness or 

alternatively the cutting speed effect on surface roughness appears to be 

independent of tool wear.  
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It has been found that the feed rate and cutting edge radius interaction effect 

on the surface roughness are linked. Therefore without inclusion of this 

interaction effect in the multiple linear regression model, the joint effect of 

changing both feed rate and cutting edge radius would not be captured 

effectively. 
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Figure 6-1- Fitted line plot for predictor variables effect on surface roughness, 

shown with 95 % confidence interval, (a) Mean Fx, (b) Mean Fy, (c) Feed rate, (d) 

Edge radius. 
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Figure 6-2- Fitted line plot for interaction variables effect on surface roughness, 

shown with 95 % confidence interval: (a) Mean Fx * Edge Radius, (b) Mean Fy * 

Edge Radius, (c) Feed rate * Edge Radius, (d) Cutting Speed * Edge Radius. 
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Figure 6-3- Fitted line plot for interaction variables effect on surface roughness, 

shown with 95 % confidence interval: (a) Cutting speed * Mean Fx, (b) Cutting 

Speed * Mean Fy, (c) Feed Rate * Mean Fx, (d) Feed Rate * Mean Fy, (e) Cutting 

Speed * Feed Rate. 

6.2-1 Selection of Predictor Variables 

In order to assess the suitability of the regression equation fit and the need for 

inclusion of each different predictor variables a stepwise method has been 

applied. This method assesses the importance of different predictor variables, 

with and without their inclusion in the model.  This method has been applied 

while using the R-Sq and the adjusted R-Sq (adj) to look at the ability of model 
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to fit observed data. The R-Sq is similar to the R-Sq, except that it is adjusted 

for the number of predictor terms in the model. This means if a new predictor 

is added to the model which does not improve the model accuracy (greater 

than would be improved by chance), then the R-Sq (adj) will reduce, whereas 

the R-Sq would always increase due to the addition of another predictor. For 

that reason the R-Sq (adj) is useful to find whether the addition of another 

predictor term is beneficial to the model or if it should be removed because it 

is not improving model accuracy. 

Figure 6-4 shows the regression model output with the 5 predictor terms 

included but without any inclusion of the interaction variables. The predictors 

with the highest contribution to the roughness are cutting speed and edge 

radius, as they have the lowest P values. R-Sq values and residual plots have 

been checked for different variations of the model to find if there is an 

improvement in the model fit. The R-Sq value is 49.8 % and the R-Sq (adj) is 

42.4 % for this model- Figure 6-4.  As shown in Figure 6-5 there are the four 

residual plots of this model output. The residual plots are used to look for data 

normality and fit of the regression line to the observed variables. In order to 

use the assumption of a linear regression model then there should be a normal 

distribution of the data. As the relationship between the response and the 

predictors is a statistical one in this case then a checks must be made for the 

suitability of the use of a linear regression model. 

The histogram of residuals is shown in Figure 6-5 which shows the error in the 

response of the observed data points from the regression equation. The 

histogram of residuals is used to see whether the residual response has a 

normal distribution or is skewed away from the mean regression line. It is a 

useful check to see whether any skewness exists in the data or there are 

extreme outliers. As shown in Figure 6-5, the data shows fairly normal 
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distribution, but is not fully symmetric about the centre line, and some 

skewness is shown in the upper portion of the data.  

The residual response of the data vs run order is shown in Figure 6-5, where 

each point represents the deviation of the data point from the fit regression 

line. This is used to see if there is any noticeable trend in the data as the test 

progresses. The test looks for a random distribution of error terms as the test 

increases. It appears there is a fairly random distribution of the points over the 

test range, shown in Figure 6-5, which suggests there are no obvious 

experiment deviations or errors. The residual response vs run order is useful to 

perform because it can pick up on any experimental errors as the test 

progresses: for example due to drift in the dyno plate, or an error in the test 

setup. The R-Sq represents the fit of the data to the regression line but does 

not reliably suggest if there are any biases or mismatches in the data 

distribution, which could therefore be missed by relying solely on the R-Sq. 

Mismatches in data distribution could be due to poor fit of the regression 

equation at certain limits, or experimental errors. Therefore a random 

distribution is the ideal for the variation in error terms of each data point, as 

the test number increases. Shown in Figure 6-5 the test bias due to errors 

caused by experimental run order can be assumed to be negligible. 

The residual response of the data from the calculated regression line is shown 

in Figure 6-5 in the normal probability plot.  This plot is similar to the histogram 

and is used to show the deviation of the error terms from a normal distribution. 

It is used to identify skewness and kurtosis of the data and a poor fit of the 

regression equation. A normal distribution is represented by a straight line and 

the data points which lie close to this straight line are representative of a 

normal distribution. An assumption required in order to use a linear regression 

model is that there is a normal distribution of the error terms. Shown in Figure 
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6-5 there is some trend away from the straight line in the upper portions of the 

model and there is some skewness present.  

It has been shown in histograms and normal probability plots that there may 

not be a fully ideal fit of the regression equation to observed data for the Sa 

surface roughness.  Therefore histograms and normal probability plots will be 

compared in further models using stepwise method, and with the inclusion of 

additional interaction terms. This will see if skewness in regression line fit to 

data in upper portions can be reduced. Further checks will be included on R-Sq 

values to find if overall model fit is improved with additional terms. 

 

Figure 6-4-Regression analysis output with initial predictors. 
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Figure 6-5- Residual plots of Sa surface roughness for first multiple linear 

regression model attempt. 

Using a stepwise method and including the predictor terms and interactions of 

predictors was then applied to see if this would increase the capability of the 

model to fit the observed data. Including the interaction effect for the predictor 

of Feed Rate * Edge Radius gives an improvement to the model prediction with 

an improvement in the R-Sq and R-Sq (adj) to 57.5 % and 49.8 % respectively, 

shown in Figure 6-6. As a result there appears to be an improvement in the 

model capability to be able to fit the observed data with the inclusion of the 

feed rate and cutting edge radius interaction term. The interaction terms 

cutting speed with edge radius showed no significant improvements to model 

predictive capabilities and was therefore not included in the model predictions. 

This interaction would be expected to have little effect on the model predictive 

capability as shown previously in Figure 6-2. It has a negligible effect on surface 

roughness in the fitted line plot and a low R-Sq value. 
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Figure 6-6- Regression model output with additional model predictors. 

The optimum model fit was found by inclusion of selected predictor terms 

shown in Figure 6-7. This was found by using stepwise method to remove and 

include specific terms depending upon their contribution and the overall ability 

of model to fit observed data. An R-Sq value of 73.5 % was found with an 

adjusted R-Sq (adj) of 66.7 % which is a significant improvement over the initial 

model prediction shown in Figure 6-4.  The Thrust Force (Fy) has been 

removed as an individual term to the model due to having a low contribution 

to model prediction, but it is still included in interactions with edge radius and 

feed rate because these interaction terms showed an overall improvement in 

the model prediction.  

Shown in Figure 6-8 are the four residual plots for the optimum regression 

equation. The histogram and normal probability plots show a clearer normal 

distribution than was seen in the original regression equation in Figure 6-5. 

Most of the points lie close to straight line in the normal probability plot and 

show no significant skewness or extreme outliers. The use of stepwise method 

to include or remove additional parameter terms has led to an improved 

model prediction and consequently this regression equation has been applied 
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for model fit. Shown in Figure 6-7 the overall R-Sq value of 73.5 % for the 

regression equation fit to the data seems reasonable due to random scatter in 

the Sa measurements. This scatter in roughness could be anticipated as there 

will always be some variation in surface structure of machined CFRP and the 

measurements could be expected to have a reasonably high standard 

deviation. 

 

 

 

Figure 6-7- Final regression equation output with final predictors and 

interaction terms included. 
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Figure 6-8- Residual plots of Sa surface roughness for best model fit. 

 

The final regression equation for the Sa roughness from experimental data is 

shown in Equation 2: 

Equation 2: 

Sa = 6.54 − 0.0155 Fx − 0.0033 Fr − 0.000080 RPM − 1.04 Er

+ 0.00085 Fr Er + 0.00363 Fx Er + 0.0032 Fy Er

− 0.000024 Fy Fr 

Where Fr is the feed rate in mm/min, RPM is the cutting speed in rotations per 

minute, and Er is the edge radius in µm and the other values are interaction 

terms. The P values for each of the contributing variables is shown previously in 

Figure 6-7. The P value indicates the statistical contribution of the variable on 

the regression model. A low P value indicates that the indicator has a strong 

statistical influence on the predicted output, in this case surface roughness. The 

lowest P values were found for the edge radius, cutting speed and the 

interaction between feed rate and edge radius. Also, the interaction between 

Fy machining forces and feed rate. These parameters have most significant 

effect on the surface roughness and thus a change in these parameters will 
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have a strong correlating effect on surface roughness. Increasing the cutting 

edge radius has been found in previous studies to have a significant effect on 

the surface roughness. This is because a sharp cutting edge is very important in 

cleanly cutting the fibres in composite machining. A greater cutting edge 

radius will change the cutting mechanism from fibre shearing and cutting to 

fibre bending and ploughing. This has been found during this study to cause 

larger chunks of material to be removed, especially on the 135 degree fibre 

orientation, leading to torn fibre chunks and pits on the surface. Consequently 

the regression model tells us that a sharp cutting tool will be important to have 

high surface quality which is low in surface defects and fibre pull-out. The 

cutting speed was also found to have a statistical effect on the surface quality 

of the composite surface. A higher cutting speed causes a decrease in chip 

thickness and correlates with a lower surface roughness. Minimising the feed 

rate was found to improve surface quality, which agrees with previous work 

from this project  [79],[89].  

6.3 Regression Equations- Skewness and Kurtosis 

Skewness and kurtosis have previously been shown to be useful to give more a 

more thorough information on surface quality and profile shape of a machined 

non-homogeneous composite surface. They were shown to characterise 

machining defects including torn fibre chunks and un-cut protruding fibres. 

The skewness and kurtosis were found to be useful indicators of machining 

damage which is not included in the Ra and Sa roughness parameter, Therefore 

multiple linear regression equations have been assessed for these parameters 

on the multidirectional laminate to find the effects of changes in process 

parameters. 

The regression equation for the skewness and kurtosis was also calculated and 

is shown in Equation 3 and Equation 4 for the skewness and kurtosis 

respectively.  
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Equation 3: 

Rsk = 17.1 − 0.423 Fx − 0.359 Fy − 0.0179 Fr − 1.75 Er

− 0.000291 FyFr + 0.000344 FrFx + 0.00174 FrEr

− 0.000017 RPM Er 

Equation 4: 

Rku = −247 + 7.6  Fx − 5.75  Fy + 0.138  Fr + 0.00625 RPM

+ 18.5  Er − 0.398  Fx Er + 0.327  Fy Er − 0.00466 Fr Fx

+ 0.0035  Fy Fr − 0.00096 RPM  Er 

Normal probability plots for the skewness and kurtosis are shown in Figure 6-9 

and Figure 6-10. A reasonably normal distribution was found for the normal 

probability plots and histograms for skewness and kurtosis, however the 

statistical fit of the regression equations was not as strong as in the Sa 

roughness model. A R-Sq of 53.2 % and a R-Sq-(adj) of 41.1 % was found for 

the skewness fit to the regression model. While the best model fit was an R-Sq 

of 23 % and R-Sq-(adj) of 15 % for the kurtosis regression model. The R-Sq 

values are lower for the regression equations in the skewness and kurtosis 

equations compared to the Sa mode. Especially the kurtosis which was found to 

show a poor fit of the regression equation to the data. The reasons of this are 

that each of the process variables did not show a very strong effect on the 

skewness and kurtosis. There is a higher standard deviation in the skewness 

and kurtosis measurements due to profile variation across the surface. Another 

reason for the difference is due to the fibre orientations of each of the different 

layers. It has been found that the skewness and kurtosis will behave differently 

on each fibre orientation. Due to the cutting mechanism and chip removal on 

the 135 degree fibre orientation there was found to be a decrease in skewness 

with an increase in cutting edge radius caused by torn fibre chunks and more 

machining damage. There was a decrease in kurtosis due to the increase in 

large rounded valleys on the 135 orientation. However on the 90 degree fibre 
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orientation there is a different effect, the increase in cutting edge radius causes 

more un-cut fibres protruding from the surface profile and an increase in 

skewness. There are sharp protruding fibres which cause an increase in kurtosis 

which is generally increasing with feed rate and cutting tool wear. Therefore 

there is an opposite effect on the skewness and kurtosis on different fibre 

orientations due to machining damage. This explains poorer fit of the model 

which tries to take into account the whole surface structure, compared to the 

Sa parameter where an increase in machining damage will always cause a mean 

increase in roughness.  

 

Figure 6-9- Residual plots for skewness, histograms of residuals, normal 

probability plot and residuals versus run order. 
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Figure 6-10- Residual plots for kurtosis, histograms of residuals, normal 

probability plot and residuals versus run order. 

The P values of each of the contributing predictor variables for the skewness 

and kurtosis is shown in Table 6-1. The lower the P value indicates a stronger 

statistical significance of that parameter and its effects on either the skewness or 

kurtosis. The parameter with the strongest effect on the skewness was the feed 

rate followed by the thrust force and cutting force. The interactions of feed rate 

with the cutting forces were also shown to have a strong effect on the skewness. 
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Table 6-1- Skewness and kurtosis P values for experimental parameters. 

Parameter Skewness P 

Value 

Kurtosis P 

Value                                                                                                                                                                                    

Constant 0.001 0.01 

Feed Rate 0.0001 0.014 

Cutting Speed - 0.237 

Edge Radius 0.093 0.236 

Mean Fx 0.006 0.002 

Mean Fy 0.001 0.006 

Feed Rate * Mean Fy  0.002 - 

Feed Rate * Mean Fx 0.008 0.004 

Feed Rate * Edge Radius 0.061 - 

Cutting Speed * Edge 

Radius 
0.163 0.299 

Mean Fx* Edge Radius - 0.162 

Mean Fy* Edge Radius - 0.124 

 

6.4 Multiple Linear Regression Equation- Unidirectional Model 

Again, multiple linear regression method has been used to assess the 

predictors response on the surface roughness and create equations for the 

unidirectional test. A regression equation has been made for the 90 and 45 

degree fibre orientation surfaces and following this surface roughness 

predictions will be made from FE model data at increased levels of tool wear. 

The same method was applied as in the previous regression model, where the 

effect of each parameter was assessed individually on the surface roughness 

and a stepwise method was used to remove or include predictor variables 

based upon the overall fit of the model by R-Sq and R-Sq-(adj). Histogram of 

residuals and normal probability plots were assessed to look for normal 

distribution of error terms or if there is any model skewness. Equation 5 shows 

the multiple linear regression equation for the 90 degree fibre orientation 

output on Sa surface roughness due to the corresponding parameters. Where 
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Fr is the feed rate in mm/min, RPM is the cutting speed in rotations per minute, 

and Er is the edge radius in µm. 

Equation 5, (90 degree fibre orientation): 

𝑺𝒂 = 𝟎. 𝟖𝟗𝟗 + 𝟎. 𝟎𝟎𝟎𝟐𝟔 ∗ 𝑭𝒓 − 𝟎. 𝟎𝟎𝟎𝟎𝟔 ∗ 𝑹𝑷𝑴 + 𝟎. 𝟎𝟎𝟖𝟐𝟏 ∗ 𝑭𝒙

− 𝟎. 𝟎𝟎𝟒𝟔𝟐 ∗ 𝑭𝒚 + 𝟎. 𝟎𝟓𝟔𝟕 ∗ 𝑬𝒓 

The P values for each of the parameters contributing to the surface roughness 

is shown in Table 6-2. The P value indicates the statistical contribution of that 

variable on the regression model, and the lower the P value then the higher the 

statistical contribution of that parameter to the surface roughness. A low P 

value indicates that the indicator has a strong statistical influence on the 

predicted output, in this case surface roughness. Therefore changes in 

parameters with a lower P value are likely to have a greatest change in the 

surface roughness. The parameter with the highest contribution to surface 

roughness was the cutting edge radius followed by the thrust and feed forces. 

Therefore tool wear and increasing the cutting edge radius, are most probable 

to cause a lower surface quality due to roughness. 

Table 6-2- P Values of parameters from regression equation. 

Parameter P Value 

Constant 0.213 

Feed Rate (mm/min) 0.464 

Cutting Speed (RPM) 0.676 

Feed Force (Fx) 0.385 

Thrust Force (Fy) 0.317 

Edge Radius 0.175 
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In this model the need for interaction terms was not required as a good model 

fit was found with the inclusion of standard predictor variables. This was shown 

by the R-Sq value of the regression equation which was 93.8 %, which indicates 

a good model fit. A R-Sq value of 100 % would have all of the data points lying 

on the fitted regression line. This R-Sq value tells us that a high proportion of 

the data lies close to the regression line and the model therefore has a good fit 

with the experimental data within the ranges of parameters studied.  

The histogram of residuals is shown in Figure 6-11 which shows the response of 

the regression equation. The histogram of residuals is used to see whether the 

residual response has a normal distribution or is skewed away from the mean 

regression line. In Figure 6-11 the data has a quite normal distribution and is 

fairly symmetric around the centre line. It is a useful check to see whether there 

is a trend in the data or extreme outliers exist.  

The residual response of the data from the calculated regression line is shown 

in Figure 6-12.  This plot is similar to the histogram and is used to show the 

deviation of the data points from a normal distribution. A normal distribution is 

shown by the straight line in this plot and points which lie away from this line do 

not represent a normal distribution. It can then identify skewness and kurtosis of 

the data and a poor fit of the regression equation. The points from this data all 

lie close to the straight line and therefore have a normal distribution. An 

assumption required in order to use a linear regression model is that there is a 

normal distribution of the data, and it therefore appears in this instance that this 

is the case. The calculated regression equation will accordingly be used to make 

further roughness predictions.  
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Figure 6-11- Histogram of residual response for Sa regression equation showing 

fairly normal distribution. 

 

Figure 6-12- Normal probability plot for surface roughness (Sa) response 



198 

 

  



199 

 

Chapter 7  
Introduction- FE Modelling of Machining 

The modelling of machining of carbon fibre is a complex process and is highly 

non-linear. This is due to geometric nonlinearities arising from the large 

deformation of the cutter and workpiece material, material degradation and 

failure as well as the contact conditions. Material non-linearity arises principally 

from the failure of the material - in this case, the Hashin failure model. The 

contact non-linearity originates from the interaction between the cutter and 

the continuously changing workpiece cutting surface, which introduces friction, 

touching, sliding and separation contact behaviours. The analysis of composite 

milling using FE methods is an area which requires research, as there is a 

limited amount in the literature. Also the prediction of the effects of tool wear 

and surface damage on the milling process is an area which requires further 

study. For this reason these areas have been chosen as a focus for 

development in this research.  

7.0-1 FE Edge Trimming of CFRP 

The project aim has therefore been to develop novel 2D and 3D FE models for 

a CFRP edge trimming process. This has required application of new modelling 

strategies for an edge trimming process. A user subroutine has been used to 

control cutter displacement by modifying the time step and advancing local 

adaptive re-meshing has been applied to the workpiece. 2D models have been 

developed for assessing the effects of tool wear due to an increased cutting 

edge radius. 

Experimental machining results have been compared with unidirectional and 

multidirectional edge trimming tests discussed in the experimental sections. 

The unidirectional tests are compared with 2D plane stress model and 3D 

models at different levels of tool wear. Multidirectional CFRP tests have been 
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compared with 3D models and regression equations to predict roughness 

values. The 3D model uses a sharp cutting edge which represents a tool in a 

new cutting condition. 

MSC Marc software has been used for this research. A comparison was 

performed in order to analyse the suitability of different methods in order to 

characterise the machining process. ABAQUS Explicit and MSC Marc which is 

primarily an implicit solver have both been compared using 2D equivalent 

homogeneous models and multiphase models to model both the fibre and 

matrix as separate phases with a bonding strength modelled by cohesive 

elements. It was found that there were some advantages to using the implicit 

solver Marc due to the results from the ABAQUS explicit solver being very 

sensitive to time step size. The time step size used was found to have a strong 

influence on the final solution and whether the simulation would successfully 

complete.  It was also found that, in the explicit solver, a very large number of 

small time steps were required since the complexity of the problem demanded 

a refined mesh. The very large number of time steps meant that the 

computational time became very high. The implicit nature of the Marc analysis 

used in this research is not subject to the stability limit and, therefore, does not 

require such large time steps. The user can use tools such as adaptive 

convergence control, which will be discussed, in order to have a suitable and 

stable load step and which was found to be useful in an intermittent machining 

problem like milling. Therefore new 3D and 2D milling simulations were 

developed with finite element software Marc and used to find output cutting 

forces, for different cutting parameters and tool wear condition.  

7.1 Method- FE Modelling of Composite Milling  

7.1-1 CFRP Properties- EHM Model 

An equivalent homogeneous material (EHM) approach is used to model the 

composite workpiece material properties. This is used to model the workpiece 
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Equation 7. [90] 

 

stiffness and elastic behaviour as a single phase with orthotropic properties and 

is based on laminate theory. A Hashin progressive damage material model [8],  

has been used to trigger the initiation of failure at an integration point, along 

with the subsequent stiffness degradation of the composite elements following 

until complete failure and element removal. The mechanical properties used in 

the simulations for the unidirectional laminate are shown in Table 7-1. The 

composite material is modelled as orthotropic, which means it has a different 

modulus parallel to the fibre to that in the transverse fibre direction. The 

stiffness matrix for the material properties is shown based on laminate theory, 

where E11 is the stiffness parallel to the fibres, E22 is perpendicular to the fibres, 

(in the plane of the laminate), G12 is the shear modulus and 12 and 21 are the 

Poisson’s ratio in the two orthogonal directions. Equation 6 shows the stiffness 

relation for the orthotropic material in the fibre and transverse directions [90]. 

The values are calculated from the modulus, poisons ratio and shear modulus 

as shown in Equation 7-Equation 10. The properties for the multidirectional 

laminate are shown in Table 7-2 and the fibre and matrix constituent strengths 

are shown in Table 7-3. 

 

[

𝝈𝒙𝒙

𝝈𝒚𝒚

𝝉𝒙𝒚

] =  [

𝑸𝟏𝟏 𝑸𝟏𝟐 𝟎
𝑸𝟐𝟏 𝑸𝟐𝟐 𝟎

𝟎 𝟎 𝑸𝟔𝟔

] [

𝜺𝒙𝒙

𝜺𝒚𝒚

𝜸𝒙𝒚

]   

 

 

Where: 

𝑸𝟐𝟐 =
𝑬𝟐𝟐

𝟏 −  𝝊𝟏𝟐𝝊𝟐𝟏
  

 

Equation 6. [90] 

 



202 

 

𝑸𝟏𝟏 =
𝑬𝟏𝟏

𝟏 −  𝝊𝟏𝟐𝝊𝟐𝟏
  

 

𝑸𝟏𝟐 = 𝑸𝟐𝟏 =
𝝊𝟏𝟐𝑬𝟐𝟐

𝟏 −  𝝊𝟏𝟐𝝊𝟐𝟏
  

 

𝑸𝟐𝟐 =  𝑮𝟏𝟐 

Table 7-1- CFRP mechanical properties for Hashin FE model- unidirectional. REF 

[83] 

Mechanical Property-Unidirectional 

Laminate 

 Tensile Modulus- (E1t)  (GPa) 148 

Tensile Strength- (Xt)  (MPa) 2375 

Transverse Tensile Modulus (E2t) (GPa) 51 

Transverse Tensile Strength (Yt)  (MPa) 68 

Compressive Modulus (E1c) (GPa) 119 

Compressive Strength (Xc) (MPa) 1465 

Transverse Compressive Strength (Yc) 150 

Poisson’s Ratio (ʋ ) 0.3 

Inter-laminar Shear Strength (S13) (MPa) 113 

In Plane Shear Strength (S12) (MPa) 112 

In Plane Shear Modulus (G12) (GPa) 4.7 

 

 

 

 

Equation 9. [90] 

Equation 8. [90] 

Equation 10. [90] 
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Table 7-2- CFRP mechanical properties for Hashin FE model- multidirectional. 

REF [91] 

Mechanical Property-Multidirectional 

Laminate 

 Tensile Modulus- (E1t)  (GPa) 165 

Tensile Strength- (Xt)  (MPa) 2980 

Transverse Tensile Modulus (E2t) (GPa) 66 

Transverse Tensile Strength (Yt) (MPa) 72 

Compressive Modulus (E1c) (GPa) 150 

Compressive Strength (Xc) (MPa) 1860 

Poisson’s Ratio (ʋ ) 0.3 

Inter-laminar Shear Strength (S13) (MPa) 110 

In Plane Shear Strength (S12) (MPa) 108 

In Plane Shear Modulus (G12) (GPa) 4.4 

 

Table 7-3- Constituent carbon fibre and matrix properties 

Carbon Fibre 

Properties 
Matrix Properties 

Tensile Strength- 4900 

MPa 

Tensile Strength- 111 

MPa 

Compressive Strength- 

1860 MPa 

Compressive 

Strength- 214 MPa 

 

7.2 Hashin Progressive Damage Material Model 

In composite machining there will be a combination and accumulation of 

different damage modes, the fibres and matrix will be progressively damaged 

in both tension and compression. The damage will depend upon material 

strengths, the tool position and material fibre orientation. It is therefore 

important that a material model which takes into account all possible damage 
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modes is used. A Hashin damage model is often used in order to model the 

progressive failure of composites and can be implemented into finite element 

code. The Hashin failure damage model is used to delete the elements based 

on the fibre and matrix strength properties. This failure model has typically 

been used by other researchers in composite machining [68],[72],[6]. The 

Hashin model takes into account four different failure modes which are used to 

relax the stiffness of damaged elements. The failure modes taken into account 

for fibre composites includes fibre tension, fibre compressive failure, matrix 

cracks and matrix crushing. Before any damage has taken place, the composite 

will have a linear elastic response with orthotropic properties. Then once the 

failure criterion has been reached there will be a degradation of the stiffness. 

The failure indices from the Hashin failure criterion are computed separately 

and the post-processing section can be used to see the extent of each damage 

mode in the material. Damage propagation and failure can therefore be seen 

due to each failure mode. This can be applied to layers of a laminate with 

different fibre orientations or stacking sequences which is useful for a 

composite machining simulation. 

A description of how Marc controls the failure of elements by the Hashin 

method is described. Firstly in order to control failure a failure index is used for 

each of the four following different failure modes, fibre tension, fibre 

compression, matrix tension and matrix compression. The failure index is 

calculated for each integration point in the element, and where the failure 

index value is greater than one there is an initiation of failure and degradation 

of element stiffness. The failure strength properties are used along with the 

different failure criteria, and once one of the failure criteria has been met then 

there is a degradation of the element stiffness. The criterion used to calculate 

the failure index for each of the four different failure modes is shown in 

Equation 11-Equation 14. 
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Equation 14 

 

Equation 13 

 

 

The first failure mode is fibre tension, where σ1 > 0:          

(
𝜎11

𝑋𝑡
)

2 

+  
1

𝑆2
(𝜎12

2 +  𝜎13) = 1 

The second failure mode is fibre compression, where σ1 < 0: 

(
𝜎11

𝑋𝑡
) = 1 

The third failure mode is matrix tension, where σ1 + σ3 > 0: 

1

𝑌𝑡
2 (𝜎2 + 𝜎3)2 + 

1

𝑆23
2  ( 𝜎23

2 − 𝜎2𝜎3) + 
1

𝑆12
2  ( 𝜎12

2 − 𝜎13
2)  

The fourth failure mode is matrix compression, where σ2 + σ3 < 0: 

 

1

𝑌𝑐
((

𝑌𝑐

2𝑆23
)

2

− 1) (𝜎2 +  𝜎3) + 
1

4𝑆23
2

(𝜎2 + 𝜎3)2

+ 
1

𝑆23
2

(𝜎23
2 − 𝜎2𝜎3) + 

1

𝑆12
2 (𝜎12

2 + 𝜎13
2) 

 

Where: 

Xt and Xc   - Maximum allowable stresses in the E11 direction in tension (t) or 

compression (c). 

Yt and Yc     - Maximum allowable stresses in the E22 direction in tension (t) or 

compression (c). 

Zt and Zc     - Maximum allowable stresses in the E33 direction in tension (t) or 

compression (c). 

    S12         - Maximum allowable in-plane shear stress. 

    S13         - Maximum allowable 23 shear stress. 

    S31         - Maximum allowable 31 shear stress. 

 

Once the failure criterion has been met then the element stiffness will be 

reduced. The elements stiffness is reduced using a stiffness reduction factor-ri. 

This will begin when one of the failure index are greater than one. The stiffness 

Equation 11 

Equation 12 
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Equation 17 

Equation 18 

Equation 19 

Equation 20 

of each modulus is reduced using the following reduction factors as shown in 

Equation 16-Equation 20.   

𝐸11
𝑛𝑒𝑤 = 𝑟1𝐸11

𝑜𝑟𝑖𝑔
 

 

𝐸22
𝑛𝑒𝑤 = 𝑟2𝐸22

𝑜𝑟𝑖𝑔
 

  

𝐸33
𝑛𝑒𝑤 = 𝑟3𝐸33

𝑜𝑟𝑖𝑔
 

 

𝐺12
𝑛𝑒𝑤 = 𝑟4𝐺12

𝑜𝑟𝑖𝑔
 

 

𝐺23
𝑛𝑒𝑤 = 𝑟5𝐺23

𝑜𝑟𝑖𝑔
 

 

𝐺31
𝑛𝑒𝑤 = 𝑟6𝐺31

𝑜𝑟𝑖𝑔
 

 

The reduction factors are calculated as shown in Equation 21-Equation 25. 

Where Ff is fibre tensile failure, Ffc is fibre compressive failure, Fm is matrix 

tensile failure and Fmc is matrix compressive failure. The reduction factors r1 and 

r3 are taken from the fibre tensile and compressive failure, r2, r4 and r5 from the 

matrix tensile and compressive failure modes. The value for r1 and r3 when there 

is a failure in the fibre tension or fibre compressive modes is 0.01 which is the 

residual stiffness factor and is the maximum reduction in stiffness. 

 

𝒓𝟏 =  𝒓𝟑 = 𝟎. 𝟎𝟏                              Equation 21 

Equation 16 

 

Equation 15 
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If there is matrix compressive failure but not significant fibre damage then the 

overall element stiffness can be reduced using Equation 19. 

𝒓𝟐 =  − ( 𝟏 − 𝒆𝟏− 𝑭𝒎𝒄)                       Equation 22 

In the case of matrix tensile damage the shear reduction factor will be 

calculated by Equation 20. 

𝒓𝟒 =  − ( 𝟏 − 𝒆𝟏− 𝑭𝒎)                        Equation 23 

In the case of matrix compressive failure the shear reduction factor will be 

calculated using Equation 21. 

 𝒓𝟒 =  − ( 𝟏 − 𝒆𝟏− 𝑭𝒎)                        Equation 24 

 𝒓𝟒 =   𝒓𝟓 =   𝒓𝟔                               Equation 25 

The reduction factors allow a coupling between the failure modes and a 

gradual degradation of element stiffness due to combinations of each failure 

type. The new stiffness matrix will be updated for the element with the new 

properties taking into account the four different failure modes. In this way it is 

possible to combine the effect of the different failure modes without instantly 

removing the element stiffness or strength. So the different damage types will 

be combined into an overall damage and reduction in stiffness which will tend 

towards zero. There is a progressive failure and there will generally be a 

reduction in element stiffness due to matrix tensile or compressive damage, 

followed by fibre failure. Also, the damage does not heal after unloading and 

therefore damage is retained if elements do not completely fail. 

7.3 Contact Body Elements and Boundary Conditions 

The main body of the cutter was modelled as a rigid body with meshed solid 

elements to define the tool surfaces while the workpiece is modelled with solid 

deformable elements. However, a smaller section at the tip of the cutter is 

given elastic properties of the PCD in order to better simulate the contact 
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conditions at the tool workpiece interface shown in Figure 7-1. An elastic 

modulus of 925 Gpa was used for the PCD tool tip, in accordance with data 

from the literature [92],[93]. 

 

Figure 7-1- 2D Milling simulation showing tool tip and fixed boundary 

conditions. 

The main cutter body is assigned infinite stiffness material properties so that 

the structural pass can be skipped, (thus saving computational time). The rigid 

cutting contact body is given X-translational and Z-axis rotational velocity 

boundary conditions, to simulate cutter feed and rotation. For the 2D model 

quadrilateral elements with 4 mid side nodes, plane strain and full integration 

were used for material and cutter. While hex elements with 8 nodes and full 

integration were used in the 3D model for the workpiece, but reduced 

integration elements with hourglass control were used for the tool. Due to the 

time taken to run the simulation the use of reduced integration elements was 

advantageous. This will reduce the time taken for the stiffness assembly matrix 

and stress recovery for each iteration, by reducing the number of integration 

points for the stiffness matrix from 8 to 1 in the hex elements or 4 to 1 in quad 

elements. The plane strain elements were applied with a thickness of 6mm in 
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the 2D model to simulate the workpiece material thickness. While in the 3D 

model the full thickness of the workpiece was modelled. A Lagrangian spatial 

framework is used, in which the material is fixed to the mesh and moves with 

any deformation of elements. The assumed strain option was switched on in 

both the 2D and 3D simulations to improve the bending performance and the 

displacement accuracy of four node or brick elements, but with a minor 

increase in computational cost. 

The cutting tool geometry was measured using an optical microscope, and the 

cutting edge radius was measured using the Alicona optical system. To create 

the cutting tool geometry in the model, the first cutting tool edge geometry 

was produced using lines in the 2D model, or surfaces in the 3D, and then 

meshed. Then the other cutting edges were created by duplicating around the 

Z-axis. In milling there is a continuous change in chip thickness as the tool 

rotates and the thickness is determined by the depth of cut, machining 

parameters, cutting tool geometry and wear. Therefore the size of the chip was 

not pre-calculated and was determined by the input parameters in the model. 

Touching contact is used between the workpiece and tool with a coefficient of 

friction of 0.08 and a Coulomb bilinear friction model. The coefficient of friction 

used was taken from the literature based on the friction coefficient between 

PCD material and CFRP [94]. Research by Chardon et al. [94] found that the 

coefficient of friction between PCD and Carbon fibre was very low: around 

0.06-0.08 for PCD tools. A lower adhesion is found for PCD tools compared to 

carbide coated tools and this can explain why PCD tools have a low wear and a 

high surface quality during composite machining. A. Mondelin et al. [95]  also 

found  that there was a coefficient of friction of 0.1 for diamond coated tools 

and CFRP in dry conditions- and 0.06 in wet. 
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The contact between the cutter and workpiece is based on a direct constraint 

method. In Marc this is called a node to segment method which was used in 

this analysis. The two bodies are defined as touching contact bodies otherwise 

two unconnected nodes from different bodies will pass through one another. 

The user selects the contact body based upon all of the elements in that body 

and then Marc will evaluate the element surfaces or edges to be used in 

contact detection. Here the cutter is the primary or touching contact body, and 

the workpiece the second contact body, which is similar to the master and 

slave contact definition in ABAQUS. The cutter has the finer mesh to ensure 

that no workpiece contact is missed. Contact constraints are only initiated when 

the node of the cutter comes within the outside distance tolerance of the 

workpiece elements, which is shown in Figure 7-2. When this happens, the 

node of the cutter is projected onto contact with the segment contacted body 

of the workpiece. Internal equilibrium between the two contact bodies is 

preserved through subsequent Newton-Raphson iterations and the node 

remains in contact unless the contact force becomes less than the relatively low 

separation force, and they will separate. Equally if the node passes through the 

element (but remains within the inside distance tolerance), it will be projected 

onto the segment of the element surface and contact is initiated, as shown in 

Figure 7-2(b). If the penetrating node passes through the element and inside 

the distance tolerance of the element, then the increment must be split and 

recycled, in order to prevent penetrating nodes.  

 

Figure 7-2- (a) Outside distance tolerance, 

               (b) Inside distance tolerance. 
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 The separation force can be set by the user, as well as the distance tolerance. 

Although the default distance tolerance is recommended, which was used in 

this case, and is calculated from 1/20th of the smallest element edge. The 

contact surfaces are updated after each increment, whereupon the elements 

may have been previously deleted or displaced. In each increment, firstly the 

material and geometric non-linearity are subject for targeting of convergence. 

Subsequently, then if the contact conditions in the analysis change, for example 

a new node comes into contact, or a node separates from contact, then the 

increment will be split. This will initialise a new iteration and the new contact 

conditions will be introduced into the equilibrium equations. The Newton-

Rhapson iterative procedure will then continue until the convergence criteria is 

suitably met. 

A contact table is used in MSC Marc which controls the contact interaction 

properties between each of the different bodies and which contact interaction 

is used. Two different contact interactions were used, a touching contact was 

used between the workpiece and cutter, as previously described, and the other 

contact interaction is a glued interaction between the workpiece and a 

geometric body. These geometric bodies act as a stationary surface or line 

which act as a fixed boundary condition and hold the workpiece in place 

preventing rotations or displacements. This is shown in the Figure 7-1 as the 

“Fixed_Side” and “Fixed_Base” geometric bodies. 

In order to simulate the motion of the cutter the rigid tool contact body is 

assigned velocity boundary conditions. A rotational velocity about the Z axis 

and a translational velocity boundary condition in the X is used to give rotation 

and feed movement respectively. Large rotations option was switched on 

during the analysis. This was used in order to ensure strain objectivity of the 

tool elements to prevent any distortion of the tool as it rotates. Without this, 

the tool elements would distort with the rotational velocity applied. The 
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geometry of one cutting edge was created using points and lines before being 

meshed to form elements. The other cutting edges were then duplicated 

around the Z axis so that they would have the same mesh size and element 

distribution as the original. 

The cutting forces were calculated after a steady state depth of cut was 

reached. During conventional milling the size of the chip being cut will change 

with rotational position, and the chip size will be determined by the feed and 

speed. The size of cut will change for each combination of feeds and speeds. 

However, a consistent size of chip will be still removed, per tool rotation, once 

a steady depth of cut is reached. Therefore the machining simulations were 

started when the workpiece was in an un-machined state which is shown 

previously in Figure 7-1 and in Figure 7-3. Then the cutter is allowed to 

progress until a steady state size depth of cut is removed which is depicted in 

Figure 7-4. The size of chip is therefore dependent upon the input machining 

parameters, and material properties, as there is no pre-calculation of the chip 

separation zone being used. 
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Figure 7-3- 3D Milling simulation with contact bodies. 

 

Figure 7-4- 2D steady state depth of cut reached. 

The forces were taken from the geometric body which is used to constrain the 

workpiece. It was found that due to the rotation of the cutter there were some 

points where the tool is not in contact with the workpiece, and the cutting 



214 

 

forces were close to zero. These points were filtered out to take the average 

force across the increments where the cutter is in contact with the workpiece.  

7.4 Adaptive Convergence and Local Mesh Adaptation 

In order to solve the non-linear equations Marc uses an incremental-iterative 

Newton Raphson solution method to solve the equilibrium equations for 

internal and external forces. Each increment may require a certain number of 

iterations in order to converge on an equilibrium state. The Newton Raphson 

method is used solve the equilibrium equations containing the nodal 

displacement and tangent stiffness matrix, against the internal and external 

load vectors. An advanced adaptive convergence control was used in the 

simulations, which allows the load step to reduce or increase within specified 

limits, and at different rates according to the level of nonlinearity currently 

being experienced. This means that the load step will automatically reduce or 

increase as required to optimise the number of iterations required in the 

analysis. This is instead of using a constant load step. Therefore, the load step 

can be cut back when an increment fails to converge possibly due to sudden 

material failure or new contact conditions. The load step will automatically 

reduce by Marc if the previous increment has taken more than the user-

specified “target” number of increments. Using adaptive load control the load 

step can also be increased if the solver easily converges and then the 

subsequent increment load step size is increased, decreasing the simulation 

time. This is useful in a milling simulation because there are points at which 

there is no contact between the tool and workpiece and the time step 

increments will be automatically increased. The use of a load step factor can be 

applied, in this case 1.4 was used, which is the maximum ratio at which the load 

step reduction, or increase, of the subsequent increment. The change in the 

subsequent increment is applied as a function, including the load step factor, 

number of previous increments and target number of increments. 
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The convergence is based on the residuals and the user has the option of 

choosing to converge on a combination of residual force and iterative 

displacements. Default values for the convergence tolerance are provided, but 

they may also be controlled by the user. It was chosen to converge on both 

residual forces and iterative displacements as this will give the higher accuracy 

by ensuring there is equilibrium on not only forces but also displacements.  It is 

useful to ensure displacement equilibrium in the presence of contact and also 

to ensure movement of the cutter is accurate. In order to try and reduce the 

simulation time multiple threads from the central processing unit were used 

across all the stages of the simulation for the assembly and recovery of the 

stiffness matrix and of the matrix solver.  

Adaptive re-meshing has been used in the cutting zone using 3 levels which 

allows the elements to decrease to 1/8th of the initial element size by successive 

element divisions. Local adaptive re-meshing of the workpiece was applied 

using the node in region cylinder method shown in Figure 7-5. This worked by 

allowing a subdivision of the elements which were within a user specified 

radius. This method worked well because a re-meshing diameter could be 

given which was slightly larger than the tool edge radius. Elements will 

therefore subdivide slightly ahead of the cutting tool tip. 
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Figure 7-5- Local adaptive re-meshing of workpiece and tool tip. 

The re-meshing zone is contained within a cylinder which moves at the same 

feed rate as the tool. The movement of the radius of the re-meshing zone is 

applied to a separate created node which is not connected to the cutter or 

workpiece. The node is created at the centre point of the tool diameter and is 

given the same feed velocity as the tool. The cylinder movement is tied to this 

created node and therefore the elements will re-mesh before the tool starts to 

cut them. This means only a portion of the workpiece elements which are 

nearby the cutting zone will have a fine mesh. For the re-meshing an increment 

frequency of 9 was used, which means that rather than re-meshing elements 

every increment, division will occur on every 9th increment and not overly waste 

computational time. Hence, the solver will not constantly be searching for 

elements to subdivide every increment. Additionally, a small portion of the 

cutter tip was also assigned local adaptive re-meshing properties so that there 

are a sufficient number of nodes contacting the workpiece at the tool tip. This 

will increase the number of contacting nodes through thickness in the Z 

direction, preventing high levels of stress at contacting nodes. 
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The contact method implemented within Marc takes into account the 

constantly updated cutting face of the workpiece as a contact surface. So, once 

the material workpiece elements have been removed the boundary contact 

surfaces of the workpiece are continuously being updated as the tool cuts 

further into the workpiece. The use of local mesh refinement also ensures the 

size of elements being removed will be consistent throughout the analysis, not 

leading to changes in convergence or cutting forces due to element size 

effects. 

7.5 Tool Wear- Cutting Edge Rounding 

In the 2D FE analysis a tool wear model has been implemented to see if the 

developed model can accurately assess the effects of tool wear due to increase 

in cutting edge radius. This has been included in the FE model and applied as a 

small cutting edge radius at the tool tip. A very fine mesh has been used at the 

tool tip, with a 0.3 meshing bias moving towards the cutting edge. A meshing 

bias means there will be a progressively finer mesh size when moving in a user 

chosen direction. This meshing bias was applied in both the X and Y directions. 

A cutting edge radius of 3.7µm and 10µm has been included in the 2D FE 

model as measured optically in the experiment. This has been used to show the 

effects on output machining forces and how increasing tool wear will affect the 

machining process. The tool tip mesh has been implemented as shown in 

Figure 7-6(a) and Figure 7-6(b). This is shown for the new tool which has a 3µm 

edge radius and the worn tool which has a 10µm edge radius. 

In addition, to predict the effects of a more extreme increase in tool wear an 

additional set of FE tests with increasing cutting edge radius up to 30 microns 

was applied, using progressive 5 micron steps, which will also be correlated 

with a hypothetical predicted increase in roughness.  
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Figure 7-6- Worn and un-worn cutting tool 2D FE mesh:  

(a) New tool,  

(b) Worn Tool.  

It was not possible to include the changing cutting edge radius in the 3D 

model due to the very large number of elements required at the tool tip. 

Modelling of the tool edge radius in the 3D FE model using solid elements lead 

to severe element distortion and an extremely large number of elements in the 

through thickness Z-direction, therefore the computational time of the analysis 

was unfeasible. 

7.6 User Subroutine Utimestep 

A user subroutine (utimestep) has been used with the 3D model in order to 

control the movement of the cutter body more efficiently. This subroutine is 

called at the end of each converged increment and allows the load (or time) 

step for the next increment to be modified if required. The subroutine is written 

in Fortran. The Fortran code enables the cutter rotational speed to be 

increased immediately after one tip has finished cutting and until the next tip 

becomes close to the workpiece, at which point the rotational speed is reduced 

again by constraining the load step to a small fraction of the local workpiece 

element size. This reduces the simulation “idle” time, allowing for more 

elements to be used in the cutting area, more time for contact of the cutters 
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with the workpiece and, therefore, the capture of more consistent cutting 

forces without additional computational cost.  

In an implicit nonlinear finite element programme it is both possible and useful 

to have a varying load step size. The size of the load step is allowed to vary 

from increment to increment (also within an increment) depending upon the 

current convergence difficulties. Although a flexible adaptive loading control 

has been implemented in Marc, there remains a significant idle time between 

the actual cutting portions in this specific cutting analysis. This is because it 

takes the cutting tool a number of increments for the load step to increase 

sufficiently (using the previously described load factor), to allow large rotational 

displacements. The load step has to decrease significantly during cutting due 

to the non-linear contact conditions and failure of elements. Ideally the user 

wants the cutter load step to increase instantaneously after cutting has finished 

for each cutter tip and decrease the simulation time. With Marc’s adaptive 

loading control which was initially implemented and used in the 2D model 

successfully, a load step factor of 1.4 was originally used to allow both an 

increase and decrease in the previous load step by 40 %. The load step factor 

applied is based on the number of iterations taken to solve the current 

increment. If the number of iterations in the increment are less than a user-

defined number of desired iterations, then the subsequent increment load step 

will be increased using a relationship that is a function of this load step factor. 

To further improve efficiency, this user subroutine has, therefore, been created 

to decrease the simulation time by immediately increasing the load step when 

cutting has just ended for each cutter, as well as immediately decreasing the 

load step when a cutter is in close proximity to the workpiece. The additional 

control over the rotational speed during cutting is also a benefit. This was of 

greater use in the 3D model due to the higher required computational 

resources and significantly reduced load step.   
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In the subroutine, the cutter rotational velocity is controlled whilst cutting by 

the edge length of the current smallest element in the workpiece after element 

re-meshing. To provide information regarding the location of the cutter tips to 

the user-subroutine a single node on each of the cutter tips is selected. After 

determining the closest of these nodes to the workpiece, the node is checked 

for a location greater than the current maximum height in the y coordinate of 

the workpiece. If this is the case, then the load-step is increased to allow the 

next cutting tip to come into position quickly. Should an increment fail to 

converge within the user-defined number of iterations, a cut-back will occur. 

The increment will be automatically restarted with a smaller load step. The cut-

backs are determined by Marc prior to calling the user subroutine and reduce 

the amount of administrative effort required in the subroutine in handling this. 

The subroutine was found to significantly decrease the simulation time for the 

3D model by reducing the cutter idle time. This reduction allowed for an 

increase in the number of elements in the cutting zone, as well as more 

consistent cutting forces due to smaller and a more mesh granularly defined 

load increment while cutting. A further benefit arising from the more accurate 

capture of cutting forces was more stable convergence behaviour during 

contact and the subsequent element deactivation upon failure.  
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Chapter 8  
Results- FE Modelling of Composite Machining 

The FE results from unidirectional and multidirectional edge trimming tests are 

presented. A comparison of mean cutting forces between experiment and FE 

will be presented to validate FE models. The change in cutting forces at 

different levels of tool wear will be predicted using FE models and compared 

with experiment. 

8.1 FE Results Unidirectional Edge Trimming Test 

8.1-1 Cutting Force Comparisons 

The cutting forces were recorded from a unidirectional edge trimming FE 

model and a comparison is made using 2D and 3D simulations. To simulate the 

effects of tool wear in the 2D FE analysis a 3.7 microns and 10 microns cutting 

edge radius was implemented as measured in experiment. An image of the 2D 

simulation with deactivated elements is shown in Figure 8-1 and the Fx and Fy 

machining force definition is explained. The 3D simulation is shown in Figure 

8-2 and Figure 8-3 with the direction of cutting tool rotation applied as a 

velocity boundary condition. Adaptive re-meshing was successful in the cutting 

zone and workpiece elements were deactivated using the Hashin damage 

model without causing model instabilities. Computations were performed on 

Intel Core 2.7 GHZ processor with 16 GB internal RAM. 
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Figure 8-1- 2D edge trimming simulation with composite elements and Fx and 

Fy machining force orientation. 

 

Figure 8-2- 3D Edge trimming simulation with composite elements and 

advancing adaptive meshing. 
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Figure 8-3- 3D Simulation with deactivation of orthotropic composite elements 

by Hashin damage model. 

Mean cutting forces have been calculated from FE simulation once full depth 

of cut had been reached at steady state cutting conditions. Figure 8-4 and 

Figure 8-5 show examples of the output forces from 2D simulation in the Fx 

and Fy direction respectively. Mean cutting forces are calculated from when the 

cutting tool is cutting the workpiece and therefore zero values were omitted 

from the mean cutting force calculation. Both Figure 8-4 and Figure 8-5 show a 

portion of the cutting forces which has been selected to make a calculation of 

the average cutting forces. The initial section of cutting has been omitted until 

steady state cutting is reached. In Figure 8-4 it can be seen that the cutting 

forces fluctuate and that there is intermittent cutting when the cutting tool 

comes in and out of contact with the workpiece. The cutting forces have a 

range of values due to fluctuation of contact forces and variation in material 

damage. Some individual outliers can be seen in the forces due to large 

contact stresses. The cutting forces in the Fy direction vary between positive 

and negative values due to the rotation of the cutting tool.  
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Figure 8-4- Fx cutting force output from FE model. 

 

Figure 8-5- Fy thrust force output from FE model. 

Mean cutting forces in the Fx and Fy direction were calculated from FE 

simulations and are shown in Table 8-1 for 2D simulation with the worn and 

unworn cutting tool edge radius. Table 8-1 also shows cutting forces for the 3D 

FE simulation. 
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Table 8-1- Mean cutting forces from FE model. 

 

Charts of the cutting forces for each of the different experiment parameters 

are shown in Figure 8-6-Figure 8-9. Cutting forces are shown for the 

experiment in the unworn tool and worn tool conditions and the 2D FE 

simulation with unworn (3.7µm edge radius), and worn (10 µm edge radius). 

The cutting forces are shown for the 3D simulation with a fully sharp cutting 

edge. The 90 degree fibre orientation Fx cutting forces are shown in Figure 8-6 

at a 6000 RPM cutting speed, and the same cutting parameters for the Fx in 

the 45 degree fibre orientations are shown in Figure 8-7.  

The Fx cutting forces were found to be reasonably well correlated between the 

FE model and experiment. The percentage difference calculated between the 

experiment and 2D model was -12 % in the Fx forces for the unworn tool 

condition at 90 degree fibre orientation, at 800 mm/min and 6000 RPM. While 

a difference of +10.1 % was found for the Fx forces between experiment and 3D 

model for the same conditions. It was found in general that the 3D simulation 

predicted higher cutting forces than the unworn 2D model.  

However the Fy forces were not as well predicted by the 2D model as the Fx 

forces and were underestimated by the model. They were better predicted by 

Fibre 

Orientation 

Feed 

Rate 
RPM 

Mean Fx 2D 

(New/Worn) 

Mean Fy 2D 

(New/Worn) 

Mean 

Fx 3D 

Mean 

Fy 3D 

90 800 6000 74.0, 84.1 22.6, 31.4 93.1 52.8 

90 1200 6000 76.3, 96.4 13.3, 32.3 108.6 72.7 

90 800 8000 69.7, 88.2 17.4, 33.2 148.4 141.1 

90 1200 8000 95.0, 88.2 13.3, 41.6 82.3 64.8 

45 800 6000 76.1, 89.0 22.9, 31.2 101.7 88.3 

45 1200 6000 95.8,100.1 30.4, 41.6 96.4 142.5 

45 800 8000 72.4, 90.7 19.1, 32.0 123 94.7 

45 1200 8000 71.2, 97.3 16.3, 36.8 113.9 118.8 
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the 3D model with a +5 % difference between the experimental and FE model 

for the Fy forces whereas the Fy cutting forces had an average difference as 

much as -50 % lower in the 2D model. This is because the 2D model is a plane 

strain model and does therefore not take into account out of plane effects. It 

has been shown that there can be out of plane fibre displacement in composite 

machining which may account for the lower machining forces in the 2D model 

[21]. It is also hypothesised as to why Fx cutting forces were predicted generally 

higher in the 3D than 2D model. It was also found that there is a small variation 

in through thickness element damage seen in the 3D model which was 

previously shown in Figure 8-3.  

The effect of increasing the cutting edge radius in the 2D simulation had a 

corresponding increase in the cutting forces which were on average 17 % and 

62 % higher for the Fx and Fy forces respectively. In the experiment the cutting 

forces were on average 32 % and 64 % higher for Fx and Fy respectively. 

Therefore the model was able to give reasonably accurate interpretation of the 

increase in machining forces due to tool wear. This method is therefore useful 

to calculate how changes in cutting edge radius due to tool wear may affect 

the overall machining forces and how they may impact the machining process. 

This can be used as a method to prevent machining forces reaching a 

maximum cut-off value. Also, the maximum tool wear by cutting edge radius 

can be predicted which will ensure an effective machining process.  
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Figure 8-6- Fx cutting forces vs feed rate from experimental and FE for 90 

degree fibre orientation at 6000 RPM.    

 

Figure 8-7- Fx cutting forces vs feed rate from experimental and FE for 45 

degree fibre orientation at 6000 RPM.    
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Figure 8-8- Fy cutting forces vs feed rate from experimental and FE for 90 

degree fibre orientation at 6000 RPM.    

 

Figure 8-9- Fy cutting forces vs feed rate from experimental and FE for 45 

degree fibre orientation at 6000 RPM.    
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8.1-2 Predicted Tool Wear Effects on Cutting Forces 

In order to predict the effects of increasing the cutting edge radius using the 

FE model an additional virtual set of progressive tool wear was calculated in the 

FE model. The cutting edge radius was increased progressively in 5µm steps 

from 0 to 30 µm to calculate the virtual change in cutting forces. This is a useful 

analysis to make because it can be used to find when the cutting forces may 

become unreasonably high and cause material damage, thus allowing an 

informed decision about when tool replacements should be made. In Table 8-2 

and Figure 8-10 the effect of increasing cutting edge radius is shown. The FE 

model showed a steady increase in the Fx cutting forces with tool wear which 

would be expected for an increased friction because more of the tool tip is in 

contact with the workpiece. A larger contact area will also cause the cutting 

mechanism to change to fibre tearing rather than predominantly a fibre 

shearing cutting mechanism. An increase of 50 % in the Fx cutting forces was 

found when going from a 5 µm to 30 µm edge radius. This will also correspond 

with a decrease in surface quality as shown previously in the experimental 

section. The Fy cutting forces were found to be more constant due to an 

increase in cutting edge radius and were not as strongly affected as the Fx 

cutting forces. This is a useful result because it shows that the increase in 

cutting forces due to an increase in tool wear can be predicted by an FE model. 

Therefore the increase in cutting forces due to cutting edge radius can be 

combined with known effects of cutting forces from experiment to make an 

assessment of surface quality. The next section will look at directly predicting 

surface quality using a combination of FE and regression equations.  
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Table 8-2- Cutting forces with increasing levels of tool wear (2D FE model.) 

  Edge Radius 
(microns) 

Mean 
Fx 

Mean 
Fy 

<-
 I

n
c

re
a
s

in
g

 w
e
a

r 0 70.5 6.12 

5 71.0 6.12 

10 81.2 7.14 

15 81.2 5.61 

20 102.2 6.12 

25 107.8 5.10 

30 105.1 5.61 

 

 

Figure 8-10- Effect of an increasing cutting edge radius on Fx and Fy from FE 

model. (45 Degree Fibre Orientation, 1200 mm/min & 6000 RPM). 

8.2 Surface Roughness Prediction- Unidirectional Model 

Predictions have been made for the Sa surface roughness using the forces 

calculated from FE the model. From the previous results shown in Table 8-2 

with a cutting edge radius of 5 µm, and a feed rate of 800 mm/min, cutting 
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speed of 6000 RPM, there was a predicted cutting force of Fx= 71 N and Fy= 

6.12 N. This will give a predicted calculated Sa of 1.72 µm for a fibre orientation 

of 90 degrees. Shown in Table 8-3 is the value for the predicted Sa against an 

increasing cutting edge radius. In Figure 8-11 the graph of predicted Sa against 

cutting forces is shown which has been calculated by a combination of the 

predicted cutting forces from FE model and the regression equation. The 

unknown parameter is the machining forces which must be predicted by the FE 

model. There is a generally steady increasing trend in Sa roughness with an 

increasing edge radius. The chart shows a slight decrease in the slope of the 

line as the cutting edge radius increases which is an effect of the change in 

geometry at the tool tip. The increase in Sa roughness with cutting edge radius 

is expected because the tool loses its ability to cleanly shear fibres and an 

increased friction due to a higher contact area between the tool and 

workpiece.  

Table 8-3- Predicted Sa against increasing cutting edge radius. 

Edge Radius (microns) Mean Fx Mean Fy Predicted Sa 

5 71.0 6.1 1.7 

10 81.2 7.1 1.8 

15 81.2 5.6 2.4 

20 102.2 6.1 2.8 

25 107.8 5.1 3.2 

30 105.0 5.6 3.4 



233 

 

 

 

Figure 8-11- The predicted increase in Sa surface roughness with cutting edge 

radius. 

The combination of FE model and regression equation has been found to be a 

useful method to predict the critical cutting edge radius at which point the 

predicted Sa will cause large machining damage. This can be used to give 

machinists an idea of when cutting tools should be replaced and prevent 

unnecessary damage to components. PCD cutting tools can also be reground 

to sharpen the cutting edge, so, a critical limit can be applied to the edge 

radius at which point the tool should be reground. 

This method allows predictions of surface roughness at varying machining 

parameters with increasing levels of tool wear to make a judgement on safe 

machining conditions without having to do many experimental tests. It was also 

seen previously that the increased surface roughness was correlated with an 

increased delamination frequency and magnitude. Therefore minimising the 
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roughness and using roughness as a predictive measurement could be used as 

a method to reduce delamination issues during machining.  

The combination of 2D FE model and regression equation was therefore able 

to be used as a strategy for predicting roughness. An increasing trend in 

roughness was predicted with tool wear. Predictions were made using output 

forces from FE model and it was found that there was a 100 % increase in Sa 

roughness value when the edge radius increased from 5 to 30 µm edge radius. 

This represents the change in cutting edge radius from a relatively new to a 

significantly worn tool [89]. The accuracy of the prediction is determined by the 

fit of the regression equation to experimental data and by the accuracy of 

cutting force predictions of the 2D model. Due to the under prediction of 

thrust forces from the 2D model there will therefore be some error in the 

roughness prediction capabilities using the 2D model. For this reason the 3D 

model was also assessed using a roughness prediction strategy from the 

multidirectional test results which will be presented subsequently. These results 

will be compared with experiment. This also allowed the assessment of 

roughness prediction on a multidirectional laminate with multiple fibre 

orientations. 

8.3 Surface Damage Assessment 

8.3-1 Hashin Damage Model 

This section deals with an assessment of the damage and element removal 

caused by the Hashin damage model. The failure indices from the Hashin 

damage model are used to remove damaged elements. An analysis of the 

surface damage during the removal of material has been assessed to look at 

surface damage and which damage mechanism has caused removal of 

material. The surface damage in the 10 micron 2D edge trimming model due to 

the magnitudes of the different failure indexes in the Hashin damage model 

has been assessed. This has been done to find which of the different damage 
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mechanisms is most responsible for failure in a composite edge trimming 

process and to find if this has any dependency on fibre orientation. In Figure 

8-12 the progression of failure from the first failure index is shown over 

successive increments as the tool rotates. Figure 8-12 shows the first failure 

index magnitude which is fibre tension over a successive set of increments as 

an element is removed. It was found that there is generally fairly localised 

damage due to fibre tension. However in Figure 8-12(b) there is some low level 

fibre damage propagating into the material which is away from the tool-

workpiece contact zone.  

 

Figure 8-12- Tensile fibre failure magnitude (1st Failure index), over subsequent 

increments. (90 degree fibre orientation, 10µm edge radius, 800mm/min Feed 

and 6000RPM) 

In Figure 8-13 the 4th failure index is shown for the same point over the same 

set of increments as in Figure 8-12. The magnitude of damage was found to be 

higher in the 4th failure index which is a matrix compression mode, than in the 

other failure modes in this set of machining conditions and 90 degree fibre 

orientation. The magnitude of the failure indexes is shown in Figure 8-14, 
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positioned at a single node over successive increments. This node is in the 

process of being removed as the tool passes causing element failure. The 4th 

failure index is found to be the highest in magnitude followed by the 3rd and 1st, 

which are matrix compression, matrix tension and fibre tension respectively. In 

Figure 8-13 it was found that there was more damage shown in red 

propagating further into the material further than in Figure 8-12. The matrix 

compressive damage was therefore found to have a higher magnitude and 

widespread damage than the other failure modes in the 90 degree fibre 

orientation. This could be expected due to the weaker strength of matrix 

compared to the fibres. It therefore represents that widespread matrix 

compressive and tensile damage and then fibre tensile damage cause element 

failure in the 90 degree fibre orientation. 

 

Figure 8-13- Matrix compressive failure magnitude (4th Failure index), over 

subsequent increments. (90 degree fibre orientation, 10µm edge radius, 

800mm/min Feed and 6000RPM) 
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Figure 8-14- Hashin failure index at single node over successive increments 

leading to element failure. (90 degree fibre orientation, 10 µm edge radius, 800 

mm/min Feed and 6000RPM) 

In Figure 8-15 and Figure 8-16 the failure index for the Hashin damage model 

on the 45 degree fibre orientation is shown, machined with worn 10 µm edge 

radius tool at 800 mm/min feed and 6000 RPM. Figure 8-15 shows the 1st failure 

index which is fibre tensile failure in successive increments as the tool is 

rotating. It can be seen that there is a fairly localised damage area at the point 

of contact between tool and workpiece. Figure 8-16 shows the magnitude of 

each of the failure indexes at a node leading up to failure of an element. The 

3rd failure index which is matrix tension has the highest magnitude before 

element failure. There is also damage caused due to the 2nd and 4th failure 

index which are fibre compression and matrix compression respectively. The 3rd 

failure index therefore appears to be the main mechanism leading to material 

failure and material removal in the 45 degree fibre orientation, while in the 90 

degree fibre orientation the 4th failure index appears to have a higher 

magnitude leading to failure. This is due to the different cutting mechanism 

and material strength when loaded in different material fibre orientations.  
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Figure 8-15- Fibre tensile failure magnitude (1st Failure index) in subsequent 

increments (a)-(d). (45 degree fibre orientation, 10µm edge radius, 800mm/min 

Feed and 6000RPM)  
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Figure 8-16- FE model- Hashin failure index at single node position over 

successive increments. (45 degree fibre orientation, 10µm edge radius, 

800mm/min Feed and 6000RPM) 

The total equivalent Von Mises stress is shown in Figure 8-17(a) and the total 

equivalent elastic strain is shown in Figure 8-17(b). The total Von Mises stress is 

localised in the elements around the tool tip and workpiece zone and there is 

some stress in the tool tip which has elastic properties of PCD. The maximum 

stress shown in the workpiece is 1208 MPa at element node during removal of 

an element. This shows that there are high localised stresses at the point of 

material failure. The maximum tensile strength of the fibres is strength of the 

CFRP is 4900 Mpa in tension and 1860 Mpa in compression. However the 

matrix strength in tension is 111 MPa and 214 MPa in compression. In 

consequence the maximum stress reached in the elements is much higher than 

required for matrix failure. There can then be failure of the matrix in 

compression and tension which will then allow localised crushing and fracture 

of fibres. The maximum total strain is 0.03 and the material is brittle and has a 

low strain to failure in Figure 8-17(b). The strain to failure of the matrix and fibre 
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is approximately 0.02 and 0.05 respectively. This suggests the results for the 

total strain at nodal points close to failure from FE model are in line with what 

would be expected when failure is present. Again the strain appears to be quite 

localised to the tool tip workpiece contact area where the high areas of 

localised stress were seen. This would agree with the findings that the majority 

of damage appears to be localised on the surface in the form of roughness and 

torn fibre or matrix cracking damage. Stress and strain which was not localised 

in the tool tip area would suggest high workpiece damage in other areas and 

possible loss of integrity to workpiece during machining. This work has shown 

that FE models can be useful to look at machining damage during machining 

and look for damage which may propagate away from machined area. High 

localised stresses should be found where small particles or fragments of chip 

will be removed which are caused with more damage to workpiece in matrix 

tension and compression which then allows localised crushing and breakage of 

fibres, as shown by the magnitudes of the different Hashin damage failure 

indexes. 
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Figure 8-17- (a) Equivalent Von Mises stress, 

(b) Equivalent total strain. 

(45 degree fibre orientation, 10µm edge radius, 800mm/min Feed and 6000RPM) 

 

8.4 Convergence Study 

8.4-1 Mesh Sensitivity 

A convergence study and sensitivity study of model parameters has been 

performed. Firstly, the effect of mesh size and adaptive mesh refinement level 

on the force results. A sensitivity study was also performed on the force and 
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displacement residuals used for convergence, and on the friction factor, to see 

how a change in these parameters will affect the output result. Different 

element edge lengths were applied with three adaptive mesh levels as 

compared shown in Table 8-4 and Figure 8-18 using feed of -1200 mm/min 

and cutting speed of 6000 RPM with a 90 degree fibre orientation. For each 

refinement level the element which is refined will be split into four new 

elements. So for a refinement level of one, the element edge length will be one 

half of the original, and then one quarter of the original element edge length 

for a refinement level of two. It can be seen that the mesh size has a significant 

effect on the output force and, it appears that decreasing the mesh size causes 

a decreasing cutting force due to smaller CFRP elements being removed 

during each increment. For that reason having a sufficient level of mesh 

refinement will be required in order that the cutting forces are not over 

predicted by the model due to larger elements being removed with a high 

stiffness. The adaptive meshing was applied to move with the cutter body and 

so the elements are continually refined as the cutter progresses further into the 

workpiece. 

Table 8-4- Mesh Refinement Sensitivity 

Mesh Refinement 

Level 

Element Edge 

Length (mm) 

Element Area 

(mm2) 
Fx (N) Fy (N) 

1 0.15 0.0225 100.2 14.5 

1 0.1 0.01 90.1 14.4 

2 0.075 0.00563 70.9 12.5 

2 0.05 0.0025 68.1 12.6 

3 0.0375 0.00141 62.9 12.1 

3 0.0025 0.00000625 60.7 12.3 
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Figure 8-18- Mesh refinement against decreasing element size. 

The graph shows a reasonable convergence with decreasing mesh size. It was 

found that there was a general decreasing trend in the cutting forces with 

increasing mesh refinement. The average force to remove the larger elements 

was generally higher. The user subroutine improved the convergence of forces 

by ensuring the same load step size during cutting. An adaptive refinement 

level of 3 was applied in the model. 

8.4-2 Friction Factor Sensitivity 

The sensitivity of the friction factor on the output forces was analysed by 

changing it in incremental steps and leaving the other parameters constant. 

Which was analysed in the 2D simulation using a fibre orientation of 90 

degrees. It can be seen in Table 8-5 and Figure 8-19 that changing the friction 

factor from a maximum of 0.3 to 0.05 did not cause an extreme change in 

magnitude of the cutting forces. A change of 11.9 % was calculated in the Fx 

cutting forces when the friction factor changed between 0.3 to 0.05, and a 16.3 
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% change in the Fy cutting forces. While changing the friction factor between 

0.05 and 0.1 gave a percentage change of 1 % and 2.8 % for Fx and Fy 

respectively. We know from sources in the literature that the friction factor lies 

within 0.05 and 0.1 for composite machining- Figure 8-19, and hence the 

uncertainty in the known friction factor is not predicted to be one of the 

strongest parameters causing an error in the analysis.  

Table 8-5- Friction Factor Sensitivity Study. 

Friction Factor Fx (N) Fy (N) 

0.3 78.6 20.3 

0.25 87.6 24.1 

0.2 87.7 24.0 

0.15 87.7 24.1 

0.1 89.5 24.6 

0.05 88.6 23.9 

 

 

Figure 8-19- Friction factor sensitivity.  

Adapted from: Chardon et Al. [94], Mondelin et Al. [95].  
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8.4-3 Force and Displacement Residuals Convergence Sensitivity 

The tolerance of the nodal displacement and force residuals used for 

convergence was analysed and its sensitivity on the output forces recorded. 

The relative convergence method was used to perform the sensitivity study. 

This convergence works by comparing the maximum residual load with the 

maximum reaction force ratio, and for successful convergence it must be less 

than the tolerance chosen by the user. For example a tolerance of 10 % could 

be chosen by the user, and this means the the ratio of the maximum residual 

load to the maximum reaction force must be less than 0.1. The relative residual 

method is useful because the allowable residual load will scale with an 

increasing maximum residual force. Whereas if an absolute convergence 

tolerance is used the value will be constant throughout. By decreasing the 

value of the tolerance the size of the residual which is allowed for convergence 

will reduce, this will also increase the computation time but should increase the 

accuracy of the analysis. The effect of the displacement tolerance was also 

analysed. The displacement tolerance is based upon the ratio of the correction 

to the incremental displacement vector (for that iteration), to the actual 

displacement change of that increment.  

In Table 8-6 the force and displacement tolerance were decreased from 0.1 to 

0.0005 and the relative criterion was applied. There is a slightly decreasing 

trend in the cutting forces as the tolerance is decreased from 0.1 to a minimum 

of 0.0005 of -6 % in the Fx forces shown in Figure 8-20. 
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Table 8-6- Displacement & force tolerance sensitivity. 

Force Tolerance Displacement Tolerance Fx (N) Fy (N) 

0.1 0.1 87.6 24.3 

0.05 0.05 88.8 22.9 

0.01 0.01 85.7 22.5 

0.005 0.005 85.6 22.5 

0.0025 0.0025 86.1 23.8 

0.0001 0.0001 84.7 22.4 

0.00005 0.00005 82.3 21.1 

 

 

Figure 8-20- A convergence test for force and displacement tolerance 

sensitivity.  
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8.5 2D FE Model Discussion 

The 2D model was successful in analysing the change in cutting forces due to 

change in cutting edge radius due to tool wear. With further research this 

approach could be implemented with different cutting tool geometries and 

higher levels of wear. The effect of different cutting edge radius on different 

laminate thickness and fibre orientations could also be studied. The roughness 

prediction model showed a 100 % increase in roughness when going from a 

5µm tool to a 30µm tool which replicates going from a near new tool condition 

to a high level of wear. Surface damage and element failure was assessed using 

the Hashin damage model failure indices, total stress and total strain. It was 

found that element failure was predominantly due to 3rd and 4th failure index, 

which were matrix tension and compression. This is due to their weaker 

properties than in fibre tension and compression. There was found to be a 

slightly different magnitude in each of the Hashin failure indices depending 

upon the fibre orientation. In the 90 degree orientation matrix compression 

was found to have the highest magnitude before failure, whereas in the 45 

degree matrix tension was found to have the highest magnitude just before 

element failure. 

There were some problems initially with the model, the nodes of the cutter 

would penetrate into the workpiece causing very high spikes in cutting forces 

and a failure of the model to converge. This problem could be prevented by 

reducing the maximum load case time. Reducing the maximum load case 

factor restricted the growth of the load steps during the adaptive convergence 

control to a range suited to the cutting tool. The minimum load case time also 

had to be made sufficiently small, in this case to allow smaller time steps during 

increments which were proving difficult to converge due to material contact. It 

was also found that there were big fluctuations in cutting forces when elements 

were removed, however this was greatly improved by using adaptive mesh 
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refinement and locally decreasing the element size in the cutting area. Then 

smaller elements would be removed for each pass of the cutting tool and the 

removal of material would be more gradual, causing lower fluctuations in 

cutting forces and so a more representative cutting model. The use of the user 

subroutine to control the cutter movement depending upon the refined mesh 

size, and on each cutting speed, helped to control the load factor to further 

improve the cutting forces and convergence issues which lead to a more 

consistent cutting force output. 

Sensitivity and convergence studies of model parameters found that the mesh 

refinement and the convergence criterion of residual force and displacement 

both had a significant impact on the output forces. The friction factor was 

found to have a less significant impact on the output forces and hence a small 

error in the known friction factor is therefore not expected to give a large error 

in the model output. The friction factor was taken from the literature for 

between PCD and CFRP material with a cutting fluid. The use of cutting fluid 

was beneficial because it will have lubricating and cooling effect. This will 

reduce temperature build-up in the cutting area and thermal effects due to 

matrix softening. As the thermal effects were not taken into account in the FE 

model the use of flood coolant was consequently important to prevent high 

cutting temperatures and matrix softening. As stated previously the carbon 

fibres have stable mechanical properties up to a temperature of 1200 °C, while 

the matrix has a glass transition temperature of 185 °C, at which point there will 

be some softening. During the machining test there was no detected burning 

smell of the matrix. 

There is an expected uncertainty in comparing numerical finite element model 

with real machining experiment. Modelling of machining is a complex process 

with high material deformation and strain rates, high cutting temperatures and 

complex contact at tool workpiece interface. Some uncertainty could be 
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expected in mechanical properties determination, due to the nature of chip 

removal in machining, where small localised chips are removed in a fracture 

type cutting mechanism, whereas mechanical testing to determine material 

properties is determined from larger scale tension and compression testing. 

Characterization of material behaviour at high strain rates or deformations 

often requires extrapolation from measured experimental results because 

obtaining this data experimentally is very difficult [96]. However, composites fail 

typically in a brittle fracture cutting mechanism, and generally have a low strain 

to failure. The material model and mesh is based upon a macroscopic scale 

(mm) and equivalent homogeneous material, whereas the carbon fibre 

diameter is around 5µm on microscale. The EHM model does not thus analyse 

the damage on the scale of individual fibre bundles or tows. The Hashin 

damage model does, however, take into account the different possible failures 

of fibres and matrix in tension and compression based on the measured 

material strengths for a specific fibre volume fraction of material. It is also a 

progressive model which takes into account the combination of different 

damage modes and as a result allows for a combination of matrix and fibre 

tensile or compressive damage. In a machining process there is a combination 

of different damage mechanisms and the matrix and fibre are both being 

damaged in compression and tension. The cutting mechanism and damage will 

also be different depending upon the material fibre orientation and tool 

position. So the model does analyse the combination of the different possible 

failure modes. However this model is generally based on larger scale material 

properties testing (using tensile and inter-laminar shear properties) and 

therefore there will be some uncertainty when applied to a machining problem. 

The inertial effects of the milling process were ignored since there is a 

consistent size of chip removed once a steady state depth of cut is reached.  
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8.6 FE Surface Roughness Prediction- Multidirectional 

Laminate 

The aim of this section is to predict surface roughness of a multidirectional 

machined CFRP composite. Novel roughness predictions have been made by 

combining FE models and regression equations from experiments.   

3D FE models were used to simulate the edge trimming process of a 

multidirectional CFRP laminate. The machining forces from the FE model are 

calculated and recorded as an output. Following this, roughness predictions 

have been made, and the effects of changing different machining parameters 

on the surface quality will be discussed. 

Firstly machining force outputs from FE model are presented and compared 

with recorded machining forces from experiment. The 3D model has applied 

the user subroutine to control the time step size and cutter displacement. 

Consequently, surface roughness predictions will be made under different 

cutting speeds, feed rate and tool condition and compared with experimental 

parameters. 

 In order to validate the quality of predictions, an additional set of comparisons 

have been made between experimental and predicted roughness values. These 

additional predictions were made with two new feed rates and cutting speeds 

which lie out width the model training data range. An additional feed rate of 

1400 mm/min and cutting speed of 11000 RPM was compared between 

experimentally measured roughness and predicted Sa. The object of these 

additional parameters was both to validate the model and to see how 

accurately roughness predictions could be made outside of the model data 

training range.  
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8.6-1  FE Cutting Forces from 3D Multidirectional Model 

The 3D FE Models were run and the mean cutting forces have been calculated 

and compared with experiment. The mean cutting forces have been calculated 

from the output data shown in Figure 8-21 and Figure 8-22 respectively for the 

Fx and Fy machining forces. Figure 8-21 and Figure 8-22 show cutting force 

outputs from 3D model at a feed rate of 1200 mm/min and cutting speed of 

11000 RPM.  

 

Figure 8-21- 3D FE model cutting forces (Fx). vs Time  
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Figure 8-22- 3D FE model thrust forces (Fy) vs time. 

The mean cutting forces from the experiment are taken from an average of 

tests 1-8 where the tool was started in new condition. Where Table 8-7 and 

Table 8-8 show the comparison between FE model and experiment for the Fx 

and Fy forces respectively.  A difference varying between ±15 % is seen for the 

Fx forces and experiment, while a maximum difference of -75 % was found for 

the Fy forces. The predictions are quite reasonable with the majority being 

within ±15 % from the experimental value. There is an expected error or 

variability in the prediction due to the complexity of the carbon fibre machining 

process and FE model and therefore this was deemed a reasonable accuracy. In 

general it was found that the Fy cutting force were slightly under predicted and 

this issue is commonly also seen in metal cutting and other orthogonal cutting 

simulations [9],[97]. The relatively large error of -75 % in the Fy cutting forces 

predicted at 1000 mm/min and 7000 RPM may be due to the difficulty in 

predicting thrust forces, due to the average forces being calculated from both 

positive and negative values. Also, 3D model only used a sharp cutting edge to 
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represent a fully new tool and the prediction could be expected to improve if a 

worn cutting edge radius was included. 

Table 8-7- Comparison between FE model and experimental Fx forces. 

(Experimental forces are an average from tests 1-8 with close to new tool 

condition.) 

Feed Rate 

(mm/min) 

Cutting 

Speed (RPM) 

FE Model 

Feed 

Force (Fx) 

Experimental 

Feed Force (Average from 

Tests 1-8) (Fx) 

% Difference 

1000 7000 44.3 37.3 +15.8 

1000 9000 42.1 38.4 +8.9 

1200 7000 37.7 40.6 -7.4 

1200 9000 35.8 41.7 -15.2 

 

Table 8-8- Comparison between FE model and experiment Fy forces. 

(Experimental forces are an average from tests 1-8 with close to new tool 

condition.) 

Feed Rate 

(mm/min) 

Cutting Speed 

(RPM) 

FE Model 

 Feed Force (Fy) 

Experimental  

Feed Force (Fy) 

(Average from 

Tests 1-8)  

% Difference 

1000 7000 10.2 17.7 -75 

1000 9000 11.9 15.75 -27.8 

1200 7000 14 11.75 17.5 

1200 9000 15.4 13.8 11 

 

A comparison between FE and experimental predictions is shown for the Fx 

cutting forces in Figure 8-23 and Figure 8-24. In Figure 8-25 and Figure 8-26 is 

shown the same comparison of experimental and FE predicted forces for the Fy 

cutting force. The experimental values are calculated as a mean value for the 

edge radii as shown in the Figure 8-23 to Figure 8-26. 
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Figure 8-23- Experimental and FE model Fx cutting forces vs increasing feed at 

7000 RPM. 

 

Figure 8-24- Experimental and FE model Fx cutting forces vs increasing feed at 

9000 RPM. 
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Figure 8-25- Experimental and FE model Fy cutting forces vs increasing feed at 

7000 RPM. 

 

Figure 8-26 - Experimental and FE model Fy cutting forces vs increasing feed 

at 9000 RPM. 
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8.6-2 Effect of Parameter Change on Roughness 

The calculated regression equation for the surface roughness was shown 

previously in Equation 2. This was used in combination with force outputs from 

FE to see the effects of parameter changes on the roughness. Due to each of 

the different process variables having a different contribution or statistical 

effect on the surface roughness, it was useful to see how a change in each of 

the process variables will change the surface roughness graphically. A bar chart 

is shown in Figure 8-27, where each of the process parameters has been 

increased by 20 % while the other parameters will remain constant. The 

corresponding effect on surface roughness is thus shown due to an increase in 

each one of the parameters individually. For example when machining at a feed 

rate of 1200 mm/min and a cutting speed of 7000 RPM with tool edge radius of 

6 µm and cutting forces of 42.6 N and 14.1 N for Fx and Fy respectively. This 

would equate to a predicted Sa surface roughness of 2.03 µm. Then to find the 

expected effect of the feed rate increasing by 20 % to 1440 mm/min then the 

surface roughness will increase to 2.38 µm which is a 0.35 µm increase in 

roughness. Additionally if the cutting speed was to increase by 20 % to 8400 

RPM then there would be a -0.11 µm decrease in surface roughness according 

to the regression equation. The effect of an increasing feed and thrust force 

has a less strong effect on the surface roughness with a slight increase and 

decrease respectively. Looking at Figure 8-27, increasing the feed rate has the 

strongest corresponding increase in the surface roughness, followed by the 

edge radius. Increasing the cutting edge radius by 20 % shows an increase in 

the surface roughness of 0.22 µm. However, it was found earlier that the 

combined effect of increasing the tool wear and feed rate together will have a 

strong contributing effect on the roughness. A useful result was therefore 

found, that if the feed rate and tool wear are both increased by 20 % then 

there would be a 0.8 µm increase in the roughness which is over double of that 
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of increasing the feed rate alone by 20 %. From this result it can be concluded 

that one important way of minimising surface roughness is to decrease the 

feed rate at higher levels of tool wear. Therefore as tool wear increases the 

feed rate can be reduced to stay within roughness limits.  

 

Figure 8-27- Effect of a 20 % increase in process parameters on the Sa surface 

roughness. 

8.6-3 Roughness Predictions from FE Comparison with Experimental Results 

Next the predicted cutting forces from the FE model were combined with 

developed experimental regression equation to calculate the new predicted 

surface roughness. The predicted surface roughness has been compared with 

additional experimental results. The experimentally measured roughness at 

various cutting edge radius is used to validate predictions made using FE 

model and regression equations. The Sa predictions have been calculated from 

the FE obtained force outputs shown in Table 8-9 and then compared with 

experiment. 

Table 8-10-Table 8-13 and Figure 8-28-Figure 8-31 show the comparison 

between predicted Sa roughness and experimentally measured roughness. The 
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values which have been highlighted are additional parameters at 1400 mm/min 

and 11,000 RPM which lie outside the range of the experimental data set used 

to train the regression model. These additional parameters (shown in red) are 

stepped up values for the cutting speed and feed rate. They were used as 

additional model validation points to see how well the model will predict 

roughness at extreme ranges of the model training limits, compared with 

experiment. They were also used as additional validation points to find how an 

increased feed rate and cutting speed outside the regression model limits 

might affect the surface roughness, and how accurately a prediction at these 

ranges could be made. The standard deviation of the experimentally measured 

roughness is shown in the graphs of Figure 8-28-Figure 8-31 by the error bars 

shown. 

Table 8-9- Predicted machining FE forces from 3D model. (Values to be used as 

additional validation points are shown in red.) 

 Feed Rate 

(mm/min) 

Cutting 

Speed (RPM) 
Feed 

Force (Fx) 

Thrust 

Force (Fy) 

(FE) 1000 7000 44.3 10.2 

(FE) 1000 9000 42.1 11.9 

(FE) 1000 11000 41.8 12.7 

(FE) 1200 7000 41.1 14.2 

(FE) 1200 9000 39.5 15.4 

(FE)  1200 11000 41.2 16.3 

(FE) 1400 7000 57.8 12.2 

(FE) 1400 9000 45 13.1 

(FE) 1400 11000 37.2 11.2 
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Looking at the graphs for the predicted roughness shown in Figure 8-28 in the 

first column, there is a feed rate of 1000 mm/min and a cutting speed of 7000 

RPM (for an edge radius of 5.95 µm). An experimental surface roughness of 

1.66 µm was measured and is shown in dark red, and with a standard deviation 

of 0.10. The predicted roughness was 1.78, which has a difference of +7 % 

between experimental and predicted values, as is also shown in Table 8-10. In 

the third column of Figure 8-28 there was an experimentally measured 

roughness of 2.6 µm with a standard deviation of 0.09 µm. The predicted Sa 

roughness was 3.68 µm, and there is a percentage difference of +34.4 % 

between experimental and predicted roughness. The third column is 

highlighted in red because it lies outside of the parameter limits used in the 

model training data. Therefore the model was able to more accurately predict 

roughness values within the range of parameters used to train the regression 

equation. It was found that the predicted roughness was slightly over projected 

at the higher feed rate of 1400 mm/min. 

In general the predictions of roughness made using the FE and regression 

model method were found to lie within ±10 % of the experimentally measured 

value, although not always lying within the experimentally measured standard 

deviation. The additional predicted values for roughness which were made at 

parameters of feed and cutting speed out-with the model training data were 

less accurate and an over prediction by as much as +34 % was found. 

However, less accurate predictions were expected at the additional ranges of 

feed rate and cutting speed, and this is because the regression equation was 

not trained using experimental data at these limits. It is expected that with a 

larger training data set extended to more parameters then this error would be 

reduced. In the future, further experimental tests could therefore be performed 

to extend the limits of the model and further increase the accuracy of 
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roughness predictions across a wider range of cutting speeds, feed rates and 

tool wear.  

 

Figure 8-28- Experimental vs FE predicted Sa surface roughness at increasing feed 

rate at constant 7000 RPM. Error bar represents standard deviation between 

averaged set of test results with a different edge radius. 

 

Table 8-10- Predicted vs Experimentally Measured Sa, 7000RPM, at various 

edge radius. (Additional validation points shown in red) 

Feed 

Rate 

Cutting 

Speed 

(RPM) 

Edge 

Radius 

(µm) 

Experimental Sa 

(µm) 

Predicted 

Sa 

(µm) 

Percentage 

difference 

(%) 

1000 7000 5.95 1.66 1.78 +6.98 

1200 7000 6.06 1.96 2.03 +3.51 

1400 7000 9.1 2.6 3.68 +34.39 
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Figure 8-29- Experimental vs predicted Sa surface roughness at increasing feed 

rate at constant 9000 RPM. Error bar represents standard deviation between 

averaged set of test results with a different edge radius. 

 

Table 8-11- Predicted vs Experimentally Measured Sa, 9000RPM, at various edge 

radius. (Additional validation points shown in red) 

 

 

 

 

Feed 

Rate 

Cutting 

Speed 

(RPM) 

Edge 

Radius 

(µm) 

Experimental 

Sa 

(µm) 

Predicted 

Sa 

(µm) 

Percentage 

difference (%) 

1000 9000 4.53 1.64 1.58 -3.73 

1200 9000 4.83 1.59 1.63 +2 

1400 9000 9.1 2.4 3.3 +32 
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Figure 8-30- Experimental vs predicted Sa surface roughness at increasing feed 

rate at constant 11000 RPM. Error bar represents standard deviation between set 

of test results.  

 

Table 8-12- Predicted vs experimentally measured Sa, 11000RPM, at various 

edge radius. (Additional validation points shown in red) 

Feed 

Rate 

Cutting 

Speed 

(RPM) 

Edge 

Radius 

(µm) 

Experimental Sa 

(µm) 

Predicted 

Sa 

(µm) 

Percentage 

difference 

(%) 

1000 11000 9.1 1.59 1.42 -11.30 

1200 11000 11.4 3.28 2.66 -20.88 

1400 11000 11.4 3.26 3.74 +13.71 
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Figure 8-31- Experimental vs predicted Sa surface roughness at increasing feed 

rate at constant 11000 RPM, (10.25 µm edge radius). Error bar represents 

standard deviation between averaged set of test results with a different edge 

radius. 

Table 8-13- Predicted vs experimentally measured Sa, 7000RPM, at various 

edge radius. 

Feed 

Rate 

Cutting 

Speed 

(RPM) 

Edge 

Radius 

(µm) 

Experimental 

Sa 

(µm) 

Predicted 

Sa 

(µm) 

Percentage 

difference 

(%) 

1000 11000 10.25 2.34 1.43 -48.28 

1200 11000 10.25 2.49 2.45 -1.62 

1400 11000 10.25 2.64 3.37 +24.29 

 

In conclusion, the predictive method for calculating roughness using a 

combination of regression modelling and FE methods proved successful at 

making new projections for roughness within the range of the limits of the 

parameters used in the model training data. In the author’s opinion, the 

method proved more successful than trying to use FE methods alone for the 

prediction of roughness. There are extreme difficulties in trying to directly 



264 

 

quantify roughness from an FE model and the size of the FE mesh would 

directly affect the roughness measurement which would be made, making 

accurate predictions questionable. This has been confirmed by Xu and Mansori, 

[73],[74].  

 It is worth emphasising that these predictive models will only be appropriate 

for the material type and cutting tool geometry which has been used in this 

test. It would also be advisable that the same surface roughness measurement 

strategy is used to obtain the same accuracy of measurements and comparable 

results. However the model training data could be extended to a wider limit of 

parameters using the same test conditions and combined with existing data in 

order to increase the range at which accurate roughness predictions could be 

made. It can be concluded that the model is a useful tool for calculating critical 

limits for input parameters such as cutting edge radius, cutting speed and feed 

rate whereupon machining parameters can be optimised to ensure that the 

roughness will remain within certain limits. Once the model has been 

developed it reduces the requirement for as many experimental tests in order 

to assess and predict the surface roughness. 

8.6-5 Multidirectional Laminate 3D Model- Through Thickness Damage 

The through thickness damage in the 3D model has been assessed to see how 

the damage would vary across the laminate, and to find the influence of 

different fibre orientations. An image is shown in Figure 8-32 of the equivalent 

Von Mises Stress through thickness in the 3D multidirectional model. There is a 

variation in through thickness stress and it appears there are more widespread 

stresses propagating further into the material on some fibre orientations more 

than others. This is due to the orthotropic strength of the material and as a 

result certain fibre directions will be weaker depending upon their orientation 

in relation to the tool cutting path. There are also localised regions of stress 

depending upon the tool workpiece contact areas which are determined by the 
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continuous process of different material deformation points. The material 

deformation is a non-constant process which does not reach uniformity 

through thickness in the material of a multidirectional laminate. 

In order to see how the different failure index of the Hashin damage model 

varied through thickness it was plotted along a point.  This was plotted using a 

nodal path going from one edge to the other. The path length is 10mm which 

is the workpiece thickness and the axial depth of cut. There is strong variation 

in the magnitude of damage due to the different failure index, especially the 

2nd, 3rd and the 4th. The variation of the entire four failure index is plotted in 

Figure 8-33. Some of the variations in magnitude of the failure indexes can be 

explained by the change in fibre orientation through thickness and by isolated 

contact points causing a high stress gradient. In Figure 8-33 it can be seen that 

there is a spike in the magnitude of the 2nd, 3rd and the 4th failure index at 

around 3.1 mm through the workpiece thickness. This is due to an isolated 

point of tool-workpiece material contact causing material deformation and 

damage. Isolated contact points are initiated between the tool tip and 

workpiece due to the material non-homogeneity, material deformation, and 

the different chip removal mechanism on each of the different layers. Different 

layers of the laminate thickness will have small fragmented chip removal and 

will each fracture at different model increments and stresses. When there is a 

small areal point of contact there will be an isolated high stress gradient. Then, 

in this case there appears to be high magnitude of damage in the 3rd and 4th 

matrix damage failure modes, and in the 2nd fibre compression failure index, 

which then leads to an element failure. In experiment this will cause a small 

fragmented chips released by material fracture.  

Therefore, the 3D model is required when simulating a multidirectional 

laminate to accurately represent through thickness damage variation. There will 
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be a variation in through thickness damage due to material non-homogeneity, 

isotropic properties and continuous damage progression.  

 

Figure 8-32- Von Mises stress through thickness, 3D FE edge trimming model. 
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Figure 8-33-Through thickness of 3D model Hashin failure index damage. 

8.6-4 Predicted Increase in Roughness Due to Tool Wear 

Previously in the 2D model it was found that there would be a 50 % increase in 

Fx cutting forces and a 100 % increase in Sa roughness when tool wear 

increased from a 5 micron to 30 micron edge radius. In this case, in the 3D 

model, using the regression equation calculated for the multidirectional test 

the increase in roughness has been calculated when the edge radius increases 

from 5 microns to 30 microns. It is found that the predicted Sa surface 

roughness will increase from 1.87 µm to 6.15 µm (at a feed rate of 1200 

mm/min and 7000 RPM). This is shown in Table 8-14 and is a 3 times increase 

in roughness. The higher percentage increase in roughness in the 

multidirectional laminate, (compared to the unidirectional), is predominantly 

due to the additional different fibre orientations- noticeably the 135 fibre 

orientation- which shows the greatest increase in magnitude of machining 

damage with tool wear. Therefore the lay-up of the laminate and the different 

fibre orientations will also have an effect on the amount of increase in 

roughness due to tool wear. 



268 

 

In Table 8-14 it is shown that the theoretically predicted roughness will 

increase at a higher rate when the feed rate is increased to 1400 mm/min. 

There will be roughly a 5 times increase in roughness going from 1.98 µm to 

10.68 µm. This is caused by the interaction effect between cutting edge radius 

and feed rate, which means at the higher feed there will be a greater increase 

in roughness. This is a useful result because it tells us that at low levels of tool 

wear it is acceptable to use a high feed rate and consequently machining 

productivity could be increased. 

From previous studies, a roughness variation between 2-8 µm was seen using 

a PCD tool in wet conditions at varying conditions of tool wear increasing up to 

a 45 µm edge radius [89]. Therefore the predicted roughness in Table 8-14 lies 

within a reasonable range that could be expected from an edge trimming 

experiment.  

Table 8-14- Predicted change in roughness with an increasing cutting edge 

radius. (Multidirectional test.) 

Cutting Edge 

Radius (µm) 

Surface Roughness 

(Sa) (Feed 1200 

mm/min) 

Surface Roughness 

(Sa) (Feed 1400 

mm/min) 

5 1.87 1.98 

10 2.73 3.72 

15 3.58 5.46 

20 4.44 7.2 

25 5.29 8.94 

30 6.15 10.68 
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8.6-6 Predicted Skewness and Kurtosis 

Skewness parameters have been predicted using the regression model and 

compared with measured values in experiment which is shown in Figure 8-34. 

Skewness has been found to be a useful parameter which explains surface 

characteristics not fully represented in the mean average roughness Ra or Sa. 

Interestingly, it was found that an overall predictive model for the whole mutli-

directional surface using skewness and kurtosis was not an ideal description of 

the surface damage. This was emphasised by the lower R-Sq and R-Sq(Adj) for 

the regression equations compared to the Sa roughness parameter regression 

model. The prediction of the skewness was found to be less accurate than the Sa 

roughness parameter. It has been found, that because the different fibre 

orientations of the laminate have a different surface structure, they will have a 

different machining damage and then behave differently due to changes in 

edge radius. For example in the 135 degree fibre orientation the surface 

skewness was generally found to decrease with an increase in tool wear, shown 

in Figure 8-35. This was because of an increase in torn pits and fibre chunks, and 

caused more valleys in the surface, (and a negative skewness). However in the 0 

degree fibre orientation there was generally a slight increase in skewness with 

tool wear. This was caused by bent fibres protruding above the machined 

surface and a positive or more hill shaped profile -Figure 8-36. 
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Figure 8-34-Predicted skewness values vs experiment. 

The trend in the skewness with an increasing cutting edge radius is shown for 

the 0 degree fibre orientation and 135 degree in Figure 8-35 and Figure 8-36 

respectively. A slight increase in skewness is shown with increasing edge radius 

in Figure 8-35 for a 0 degree fibre orientation which may be due to the effect 

previously described. In the 135 degree fibre orientation there was a slight 

decrease in skewness seen with increasing tool wear- Figure 8-36. This is due 

to increasing damage depth and larger voids and chunks of removed material. 

An interesting result has been shown that the effect of skewness and kurtosis 

will be individual to each fibre orientation and therefore surface 

characterisation for skewness must be assessed across individual fibre 

orientations to fully represent the surface structure. 
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Figure 8-35- The 0 degree fibre orientation, change in skewness vs increasing 

cutting edge radius. 

 

Figure 8-36- The 135 degree fibre orientation, change in skewness vs increasing 

cutting edge radius. 

 

8.7 Discussion- Findings, Surface Roughness Prediction 

Surface roughness has been shown to be a useful indicator of machining 

damage. It indicates whether there may be a problem in the machining process 

such as worn tool or poorly selected machining parameters. It has been shown 

by the use of CT scanning that there was no noticeable sub-surface 
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delamination or cracking in the multidirectional laminate. Most of the damage 

was visible surface damage close to the machined surface and a maximum 

machining damage depth of 0.04 mm was shown. Consequently for this 

laminate it was deemed acceptable to focus on roughness measurements as an 

indicator of machining damage. The work has developed roughness 

measurement strategies and use of additional roughness parameters, including 

skewness and kurtosis. It has also helped to add further information about the 

machined surface damage mechanism and profile structure. Use of Sa areal 

roughness parameters and optical system has led to a more accurate and 

reliable measurement of roughness and therefore more confidence in being 

able to predict the effects of changing machining parameters and tool wear. 

Importantly, without being able to accurately measure roughness and 

understand the effects of machining on different fibre orientations it will be 

more difficult to make improvements to the integrity of machined components 

or increase the efficiency of machining fibrous composite components. 

Accordingly the outcomes of this work are considered to be useful for industry 

and to further academic study into machining of composites (especially in 

milling of CFRP). Improvements in numerical FE methods for edge trimming of 

CFRP have been applied, and a novel roughness prediction tool has been 

demonstrated.  

The 3D FE and roughness prediction method from multidirectional laminate 

showed a 300 % increase in roughness when increasing from a 5 microns to 30 

microns edge radius. Whereas the unidirectional laminate saw a 100 % increase 

in roughness when the same increase in cutting edge radius was applied. A 

larger rise in roughness was seen at a higher feed rate when tool wear 

increased due the interacting effect between feed and edge radius. 

The change in skewness and kurtosis was also predicted and these parameters 

have been previously found to be a useful predictor of torn fibre chunks and 
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protruding fibres. However it was found that the change in skewness and 

kurtosis will be specific to each different fibre orientation. For example the 

change in skewness on one fibre orientation due to a process parameter 

change may not apply equally to different fibre orientations. A decrease in 

skewness was seen with an increasing edge radius on the 135 degree fibre 

orientation, while the opposite was found on the 0 degree fibre orientation.  

A good correlation was seen between experimentally and predicted values for 

Sa surface roughness using the regression equation and FE models. A 

prediction within 10 % of experimental and predicted roughness was found in 

the multidirectional model. This prediction was less accurate when extended to 

an increased feed rate which did not lie within model training data range. The 

use of interaction terms in the regression equation was found to increase the 

accuracy of model fit. Fx cutting forces were generally well predicted by the 2D 

and 3D models. The Fy thrust forces were in general under predicted by FE 

models which will cause some error in the prediction of the surface roughness. 

However, the Fy forces had a smaller overall contribution to the surface 

roughness than the other variables, namely feed rate or cutting edge radius, 

and therefore the contribution to the overall error in the prediction of the 

surface roughness is less significant. Ahmad et al. [88], has researched the 

effects of machining parameters on heat generated during machining and the 

effects on surface morphology. It was shown that increased feed rate can lower 

the heat transferred into the material and may improve surface quality, and this 

could be a mechanism for error in the simulated predictions. 

It should be highlighted that the 3D roughness predictive method will only 

give accurate roughness predictions when applied with the same material and 

stacking sequence. If the material stacking sequence was changed or the 

percentage of different fibre orientations which make up the laminate, then 

there would be some change in overall surface roughness due to the different 
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cutting mechanisms on each ply as explained previously. If a change in cutting 

tool geometry or material make up was applied then a set of machining trials 

should be performed to give a new regression equation. If a change to the 

laminate fibre orientation stacking sequence is applied then it would be 

possible to make a representative model for each different fibre orientation of 

the laminate and have an overall average surface roughness based on the 

percentage of constituent laminate fibre orientations making up the overall 

laminate stack. This would be useful if many changes were to be made to the 

laminate stacking sequence, but without the need for extra machining trials. 

The surface roughness of each fibre orientation on the machined laminate 

surface could be measured individually to have a regression model for each 

layer.  
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Chapter 9  
Discussion & Outputs 

From the experiment and FE modelling results it can be concluded that the 

fibre orientation will play a significant role in the cutting mechanism, as 

confirmed in the literature [3],[20]. Also, in respect to the direction of cut, the 

135 degree fibre orientation was found to be the critical fibre orientation for 

highest machining damage. The surface structure of this fibre orientation was 

characterised by torn fibres and pitted surface, which was verified by CT and 

SEM images. It was found that there is a great variation in surface structure on 

different layers of the laminate and this has implied consequences for applying 

accurate surface roughness measurement.  

A conclusion of this work, is that surface roughness measurements may over 

or under represent the overall surface damage if all plies of the laminate and 

different fibre orientations are not contributed proportionally in a 

measurement. The 135 orientation degree fibre orientations plies have shown 

the surface structure with the highest roughness and machining damage, but it 

is also the fibre orientation which is most affected by changes in process 

parameters. This means that increases in feed rate and tool wear will have a 

corresponding negative effect on surface quality, and this effect will be most 

pronounced on the 135 positive fibre orientations. It has been shown that an 

increase in torn fibre chunks and fibre pull-out will be characterised in the 

skewness parameter by a negative value, again, this result was most prominent 

on the 135 degree fibre orientation.  

The use of Alicona focus variation optical device was found to increase the 

reliability of surface roughness measurements applied with the use of Sa areal 

roughness parameters. Consequently, the use of the areal roughness 

parameters is recommended to accurately quantify the overall damage of 
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multidirectional machined laminates. Skewness and kurtosis were found to be 

useful additional roughness parameters because they give more thorough 

information about surface profile and machining defect types. These 

parameters can quantify surface structure and machining damage: indicating 

the whether the surface is dominated by uncut fibres, torn fibres or pitting- and 

these effects are not fully represented by using the commonly used Ra or Sa 

parameters. The 135 degree fibre orientation resulted in a negative skewness, 

which was shown by the presence of machining defects- including torn fibre 

chunks and pitting. The 90 degree fibre orientation showed the highest kurtosis 

due to the presence of protruding un-cut fibre tips. It has been found that 

skewness and kurtosis should be best assessed on an individual ply level, or 

separate fibre orientations, to most expansively and reliably characterise 

machining damage. 

Experimental results have shown that tool condition and machining 

parameters will play a critical role in the machined surface quality and chip 

removal mechanism. Cutting tool wear was found to have a significant effect 

on surface quality and edge delamination. Edge delamination, in the form of 

un-cut fibres (Type II), was found to increase with tool wear; and delamination 

was most frequent on top and bottom laminate layers of the 45 degree fibre 

orientation. Edge trimming trials were performed using a PCD cutting tool, and 

then regression models were created to show the statistical influence of 

different machining parameters on surface roughness and cutting forces. 

Cutting edge radius measurements were taken using an optical system and 

then used as an input for regression equations and FE models. Tool wear was 

found to be predominantly due to cutting edge rounding by abrasive wear and 

chipping of the cutting edge, which was confirmed by optical microscope 

images and optical focus variation device. The cutting edge radius parameter 

was applied to measure tool wear and has been used effectively to indicate 
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current tool condition. The presence of substantial crater wear was not seen on 

worn cutting tools when machining of CFRP, due to the brittle and 

discontinuous chip formation- unlike in metal machining where there is chip 

adhesion and continuous chip formation. The tool wear and feed rate were 

both shown to have a strong statistical influence on the surface roughness, 

skewness, and kurtosis. Additionally, the tool wear and feed rate were found to 

have a strong interaction effect on the surface roughness, this meant that 

machining at a high feed with a worn tool will lead to a significantly higher 

roughness, compared to machining at a high feed rate without a worn tool. As 

a consequence of this result, to improve surface quality, the feed rate should 

be reduced when the cutting tool becomes highly worn. It has been found that 

the feed rate and cutting speed will predominantly change the surface 

roughness due to changes in chip thickness, and that increasing chip thickness 

will lead to higher roughness and machining damage, as confirmed in the 

literature [26]. Increasing the cutting speed caused a decrease in chip thickness 

and generally a lower surface roughness, which was again confirmed by the 

literature [35],[40]–[42]. 

Modelling tools have been developed for the analysis of milling of CFRP using 

an edge trimming process and zero helix PCD tool. These developments 

included new 2D and 3D edge trimming models using finite element MSC Marc 

software, and a Hashin damage model, for simulation of edge trimming of 

unidirectional and multidirectional laminates. The new modelling methods were 

used to develop a surface roughness prediction tool that used a combination 

of FE methods and regression equations, calculated by experimental analysis. A 

user subroutine was applied to control simulation load step; additionally the 

use of moving adaptive local re-meshing was applied to the workpiece and 

moved with the tool path. The modelling tools have been shown to be capable 

of predicting machining forces at different machining parameters, material 
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fibre orientations and cutting tool edge-condition. The 2D FE model 

implemented a changing cutting tool tip mesh, representative of the 

experimentally measured cutting edge radius, to assess the effects on the 

cutting forces. In the FE model adaptive re-meshing and adaptive convergence 

control were used to increase accuracy of the milling model- where there is 

intermittent cutting and a continuous change in the chip thickness during the 

rotation of the cutting tool. The user subroutine was applied to control the size 

of the time step and cutter motion in the 3D model, which improved 

convergence and reduced the simulation time. The effect of tool wear was 

assessed in 2D models using different cutting edge radii and implemented in 

the cutting tool FE mesh. This model was able to predict the effect of tool wear 

on increasing cutting forces with reasonable accuracy. Cutting forces were 

predicted with greater accuracy than thrust forces by the 2D model. 2D FE 

predictions for the increase in cutting forces were made from a 5 micron to 30 

micron cutting edge radius and showed a 100 % increase in surface roughness 

on the 90 degree fibre orientation unidirectional laminate. The 3D model made 

predictions of the Fx feed force within ± 15 % of the experimental values, while 

a maximum difference of -70 % was seen in the Fy thrust forces. The poorer 

prediction in the Fy forces has previously been found in the literature. However, 

a better prediction may be possible with the inclusion of the cutting edge 

radius in the 3D model. This would however require significantly higher 

computational resources, making it unfeasible. 

Being able to predict the effects of tool wear is important because the wear 

rate can be very high in composite machining, particularly for CFRP materials, 

and tool wear has been shown to lead to a significant decrease in surface 

quality. Tool wear has been shown to cause an increase in machining defects, 

including un-cut fibres and delamination. Consequently, being able to predict 

the effects on surface quality of an increase in tool cutting edge radius will 
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allow machinists to make more informed decisions about when a milling tool 

has become critically worn. It has been shown that diamond cutting tools such 

as PCD will optimise machined surface quality, however these tools are 

expensive. It is of interest to industry to use these tools right up to end of life 

before replacement or re-grinding, because of their expense. Being able to 

quantify when cutting tools have reached their end of life using FE prediction is 

useful, because it can be used to determine when prohibited damage may be 

introduced into the component. This will safeguard a cost effective machining 

process and prevent scrapping of material due to failure to conform to surface 

quality limits.  

A sensitivity study has been performed on the effects of friction factor, force 

and displacement tolerance residuals on the FE output forces. It was found that 

small changes in the friction factor did not cause a highly sensitive change in 

the output results and therefore a small error in the applied friction factor is 

not anticipated to be a significant contributor to output errors in the FE 

analysis. The output forces were found to be sensitive to the mesh size, as a 

decreasing mesh caused a decreasing trend in the cutting forces. The user 

subroutine allowed the size of the load step to be controlled and it was used to 

reduce large fluctuations in cutting force output. 

The machining forces and surface quality were measured from experiment and 

predictive tools have been created to assess the effects of tool wear and 

predict roughness. A novel approach has used regression models in 

combination with FE models to predict the effects of machining parameters 

and machining forces on the surface roughness. Interaction effects between 

parameters were assessed using linear regression modelling and a step wise 

method was applied to generate regression equations. In general it was found 

that reducing tool wear and chip thickness will improve surface quality.  Surface 

roughness was predicted in combination with novel 3D FE milling models and 
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regression models. These models show the capability of FE methods to be 

applied to complex composite machining problems in order to make predictive 

assessment of outputs including surface quality. It has been shown that there is 

a predicted 300 % increase in Sa roughness of the multidirectional laminate 

when tool wear increases from 5µm to 30µm. Surface roughness predictions 

were found to lie close to or within the error shown by standard deviation in 

the experimental results. It must be emphasised that there will always be a 

reasonable amount of scatter in measurements of surface roughness due to 

the inherent variation of surfaces, material properties and material non-

homogeneity. Therefore there will be some uncertainty in the generated 

regression equations, and also a greater uncertainty in predictions which lie 

outside of the model limits or lie at the extreme range of model predictions. 

This was shown, in this case, because the model made poorer predictions for 

feed rates and cutting speeds which were extrapolated outside of the model 

range. Therefore to increase model predictive capabilities over a larger range 

then more parameters levels must be included in experiments. Additionally to 

this, there will always be some uncertainty in data based models and as a result 

further work could make an effort to include a multi-scale approach or include 

direct predictions from FE. This will become possible as computational 

resources become more extensive.  

SEM images were used in order to study the surface structure across different 

fibre orientations of a multidirectional laminate and verified the findings from 

experimental surface roughness measurements. It was shown that the 135 

degree fibre orientation was dominated by pits or torn fibre chunks and the 

fibres had been bent out of plane. Whereas the 90 and 45 degree fibre 

orientations were dominated by sheared fibres and had a lower surface 

roughness than the 135 degree fibre orientation. The 0 degree orientation was 

found to have fibres which had been de-bonded, bent and then fractured. It 
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was also found that machining with a worn tool on the unidirectional laminate, 

Type II delamination was found to be prevalent on the 45 degree plys which 

were located on the top and bottom outer edges of the laminate. These 

defects were in the form of un-cut fibres protruding from the top and bottom 

layers of the laminate. This finding advocates the adoption of new machining 

strategies to avoid certain fibre orientations, or to include a design for 

manufacture approach which will apply different lay-up directions on the top 

and bottom of laminate to prevent delamination and un-cut fibres. In this case 

it has been shown that 45 degree fibre orientation plys should be avoided on 

the outer layers because they show an increased frequency of type II 

delamination, which is enhanced with tool ageing. 

CT scanning has been found to be capable of showing the presence of internal 

voids in the unidirectional laminate caused by machining. It was found that 

some sub-surface damage was present due to the manufacturing process 

which was increased in magnitude by machining. CT scanning process showed 

that the multidirectional laminate was found to be free of internal voids or any 

inter-laminar delamination caused by the machining process. This lack of 

internal damage can be predominantly explained by the overall constituent 

degree of directional stiffness and high level of consolidation during 

manufacture of the multidirectional laminate. A scanning resolution of 8 µm 

was applied using 3D micro CT scanner. CT scanning has thus been shown to 

be a useful additional tool to look for machining damage and can show the 

presence of internal cracks, voids and inter-laminar delamination. However due 

to the need to prepare small samples, (which must be destructively cut), and 

the cost and time of the CT scanning it is unsuitable for everyday checking of 

all components presently. For this reason roughness measurements are a more 

practical technique to test at reasonable cost and time for damage due to 

machining of CFRP components in industry. 
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Chapter 10  
Conclusions 

The main aims of this research were to assess the surface damage generated 

and the surface roughness measurement methods for a composite edge 

trimming process. New surface analysis techniques and roughness parameters 

have been applied to quantify surface damage of a machined multidirectional 

laminate. The second aim was to develop new FE methods and surface 

roughness prediction tools for an edge trimming process during CFRP 

machining. The research has used surface analysis techniques to assess surface 

damage and has developed methods to predict the effects of different 

machining process parameters on the surface roughness using regression 

equations and FE modelling. 

A summary of the conclusions is presented: 

1. New roughness measurement strategies have been developed using an 

optical focus variation device and additional roughness parameters. This has 

increased reliability of roughness measurements and understanding of damage 

caused during machining. Areal roughness parameters have been found to 

increase roughness measurement accuracy of post-machined surfaces from the 

uncertainty due to material inhomogeneity and variation in damage on 

different fibre orientations. It is suggested that roughness measurements 

should systematically include a relative ratio of all fibre orientations in a 

composite lay-up. 

2. Skewness and kurtosis roughness parameters have been used to 

characterise surface quality of a machined CFRP composite edge. When 

included in surface quality it is found that they can each individually give a 

more thorough information on surface structure and defects than using Ra or Sa 
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parameters alone. They can indicate the presence of torn chunks and un-cut 

fibres. Firstly, the skewness can indicate the presence of torn fibre chunks and 

deep valleys from machining damage. Alternatively, the kurtosis was able to 

describe the presence of sharp protruding fibres on the 90 degree fibre 

orientation, while on the 135 degree fibre orientation it indicated wide valleys 

caused by torn chunks. Machining damage and torn fibre chunks were found 

to be most prevalent on the 135 degree fibre orientation compared to the 0, 45 

and 90 degree fibre orientations. The 135 degree fibre orientation was also 

found to have a greater increase in roughness than the other fibre orientations 

when there was a change in feed rate or tool wear. A detailed description of 

defects and cutting mechanism on each of the different fibre orientations was 

presented. Histograms were used to present the different surface structure due 

to profile distribution on each of the fibre orientations, which was found to vary 

significantly due to different machining damage, machining defects and cutting 

mechanism.   

3. Machining tests were performed on a multidirectional laminate using a PCD 

tool at progressive levels of wear. Regression models were created which show 

the contribution of different machining parameters and tool wear on 

machined surface roughness and machining forces during edge trimming. 

Statistical methods and design of experiments were applied in order to show 

the significance of parameters on surface roughness. The cutting edge radius 

was found to be the most significant parameter and showed an increasing 

trend in the surface roughness and machining damage. Feed rate and cutting 

speed were also found to be significant parameters, and an increasing chip 

thickness was shown to increase Ra and Sa surface roughness. It was shown 

using statistical methods that feed rate and tool wear had a strongly interacting 

effect on the surface roughness and this is due to an increased ploughing and 

tearing cutting mechanism when the cutting edge becomes more rounded. 
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Also, at higher feeds the fibres are torn and pulled from the material, rather 

than being abrasively cut, and this effect is accelerated at higher levels of wear. 

4. Novel 2D and 3D composite milling finite element models have been 

developed and compared with experimentally obtained machining forces at 

different levels of tool wear. New methods have been applied, including the 

use of a user subroutine and adaptive re-meshing. The effect of tool wear has 

been analysed on machining forces in a 2D FE model and compared with 

experimental results. The FE models have been combined with experimental 

regression models to make a prediction tool for surface roughness at different 

machining parameters on a multidirectional laminate. New modelling methods 

have been developed using MSC Marc implicit modelling software and a 

subroutine used to adapt the time step size. Two dimensional models have 

been used to assess and predict the change in cutting forces due to increasing 

levels of tool wear. A predictive assessment of the increase in cutting forces 

due to increasing cutting edge radius with wear was made in unidirectional 

laminate. It was found that there was a 50 % increase in the Fx cutting forces 

when tool wear increased from a 5 micron edge radius to a 30 micron edge 

radius in the unidirectional test. This was shown to correspond with a 100 % 

calculated increase in the predicted Sa surface roughness.  

Three dimensional predictive models have shown that the surface roughness 

would increase from 1.87 µm to 6.15 µm, by a factor of three, when cutting 

edge radius changed from 5 µm to 30 µm. The predictive model also showed 

that increasing the feed rate from 1000 mm/min to 1400 mm/min while 

maintaining a constant cutting speed of 7000 RPM would have a 

corresponding 65 % increase in Sa surface roughness, on the multidirectional 

laminate. The experimentally predicted roughness was found to be accurate 

within ±10 % when lying within the range of the regression model training data. 

However, when the feed rate was increased outside of the model training limits 
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to 1400 mm/min, there was an over prediction of 30 % by the FE model, 

compared to experimentally measured Sa. Therefore the best predictions for 

surface roughness will lie closer to the regression model data training limits. 

This means that predictions can likely be improved by extending the range of 

the experimental training data set with further trials. Also, by including the 

change in cutting edge radius due to tool wear in the 3D simulations. The 

results and project findings have shown increase in cutting edge radius will be 

a critical factor in the accuracy of comparison between numerical and 

experimental results. It was also shown that the Fy machining forces may be 

under predicted, in accordance with the literature, and this was found 

especially in the 2D FE models.  

5. SEM and CT scans have been applied to look at surface and sub-surface 

machining damage. SEM images showed that a different surface structure, 

machining damage type and chip removal mechanisms are present on 

different fibre orientations. A detailed analysis of the cutting mechanism and 

damage type was made of the 0, 45, 90 and 135 degree fibre orientations by 

use of SEM images. The fibre orientation was found to be a critical factor in the 

machined surface quality and damage type and therefore on the surface 

roughness measured. This has confirmed that the use of the optical surface 

roughness measurement system and areal roughness parameters will be 

beneficial for a composite surface. It is therefore advised that areal parameters 

be used to quantify surface damage of a multidirectional composite due to the 

inhomogeneous structure and variation in damage on different fibre 

orientations. Internal CT scans were performed on an edge trimmed CFRP 

sample and showed the presence of voids, and of propagating cracks in the 

form of inter-laminar delamination. There was no internal subsurface damage 

found on the multidirectional laminate using CT scanning, including the tests 

comprising of the most worn tool condition. Inter-laminar voids were found on 
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the unidirectional laminate and the voids were found to have a higher 

magnitude in the machined samples. Consequently, it is probable that the 

machining process increased sub-surface damage in the unidirectional 

laminate. However some voids may have been present from manufacture and 

preparation of the samples. CT scanning was found to be capable of showing 

inter-laminar delamination and voids, and is therefore a useful technique to 

check for either manufacturing defects pre- or post-machining and for internal 

machining defects which cannot be seen on the surface. However it has the 

disadvantage of being a destructive technique because the samples must be 

cut into small specimens in order to achieve a high image resolution so as to 

be able to see small fibre scale diameter defects. 

6. The use of different CVD and PCD cutting tools have been compared in wet 

and dry cutting conditions - with different feed rates and cutting speeds, and 

increasing levels of tool wear,  to investigate their effects on surface roughness 

and machining forces. It was found that the CVD abrasive style router 

performed well in wet conditions and produced a high surface quality at a high 

production rate, and performed significantly better in wet than dry cutting 

conditions. This work has been summarised in REF [89]. 
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11.1 Future Work 

Some potential developments in composite machining have been outlined and 

there are a number of areas where this work can be continued in the future. 

Firstly, improving modelling predictive capabilities in the field of composite 

machining of CFRP can continue. Modelling of the end milling process would 

be a challenging but useful further continuation of this work. Additionally, 

modelling the effects of using different complex tool geometry in combination 

with the roughness prediction tool will allow the quantitative development of 

new cutting tool geometries. New tool geometries can be optimised with 

machining parameters in order to see the effects on the cutting forces and 

surface damage caused. 

 The effects of tool wear incorporating different cutting tool geometry and 

coatings at different machining parameters can be further optimised to 

improve CFRP machining productivity and cost/meter of machining. Direct 

improvements of the current work will include the effects of edge radius 

change in the 3D FE model. This should be implemented with use of 

supercomputer to increase computational power due to large number of 

elements required. It is therefore recommended that future work should 

combine developments in modelling of new and more complex cutting tool 

geometries with additional experimental tests. These tests and FE models can 

be used to make assessments of how to reduce machining forces and tool 

wear rate. The testing should be optimised to obtain a high material removal 

rate and still maintain a reasonable surface quality. 

A diagram has been created which is shown in Figure 10-1 and shows a large 

range of possible input and output factors which could be included in a 

composite machining study. It was created to show the possible data and 

parameters which should be considered as variables in future composite 

machining testing. The diagram shows a multitude of possible development 
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areas in machining of CFRP and how the combination of different data sets 

should be used to fully extend the understanding of the machining process. 

New tests can be compared with benchmarked results and used to develop 

further regression modelling tools to encompass larger data sets. These 

developments can be incorporated with industrial applications and therefore 

drive further research opportunities. Increased testing to develop regression 

models will include a further range of parameters and can be correlated with 

mechanical performance of machined material. 

A useful addition would be the application of thermocouples to experimental 

test to quantify cutting temperatures and find the correlation between 

machining temperatures and surface damage. Previous researchers have 

developed thermocouple sensor for in process temperature measurement in a 

milling process [98]. Applying experimental measurement of generated 

machining temperatures and introduction of thermal analysis to modelling 

strategy could increase accuracy of FE simulations by including the effects of 

matrix glass transition temperature and material thermal softening. The 

validation of the effects of temperature in a structural thermal model can be 

applied to show how softening of the matrix will affect both the machining 

forces and surface quality. As the surface quality could be affected by both 

matrix burning and matrix smearing, this could be a by-product of machining 

at elevated temperatures or with excessive cutting tool wear. Experimental tests 

using thermocouple can also be used to create a regression model which 

includes the effects of different tool geometries and tool wear on the 

generated machining temperature and the resulting induced surface quality. 

This would be a further improvement on the current work, and combining 

experimental tests with the continued use of the new recommended optical 

technique for measuring surface roughness will allow more thorough surface 

damage detection.  
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Some research into cryogenic machining has shown some benefits in 

composite machining, using either liquid nitrogen or compressed CO2. 

Researchers have shown that tool wear is reduced and that there may be some 

improvements in surface quality and a reduction in damage depth [99]–

[102].The reduction in temperature causes an increase in hardness and 

modulus of the matrix which will cause a change in cutting mechanism. Some 

additional work into milling using cryogenics would thus be useful to further 

understand the cutting mechanism and focussing on machined surface quality 

at reduced temperatures. The application of cryogenics could be applied with 

different geometry tools. 

New FE modelling strategies can be applied, incorporating the use of additional 

damage models like Puck or new damage models from the literature. This may 

allow better estimation of cutting forces, especially the Fy cutting forces in 2D 

model which were shown to be under predicted. They may be able to better 

represent the matrix damage during machining. Another method which can be 

applied would be the use of a 2 phase cohesive model for the 2D simulation of 

milling and may allow better estimation of cutting forces and show the damage 

in the matrix and fibre phases separately. This method could then also be 

applied to roughness measurement prediction with a similar method to that 

applied in this research. A two phase model could be compared with an EHM 

model and experimental tests on a unidirectional laminate. In the future it may 

be possible to attempt a 3D two phase model with cohesive elements but it is 

expected this would use very high computational resources. Also the individual 

material properties of the two constituent material fibres and matrix may not 

correctly represent the overall material strength in a machining process when 

applied to the composite material two-phase model. It is recommended that 

additional strain rate testing of material should be applied and then be 

implemented into finite element code. This will show how machining is effected 
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by strain rate and time dependant loading at increased cutting speeds during 

machining.  

In FE modelling, further analysis can apply 2D models with an extremely fine 

mesh to see if it is possible to make a direct comparison between machined 

surface quality and surface roughness from experiment with FE models. 

Although the current method does look at how the different failure index of 

the Hashin damage model will vary through thickness of the workpiece, it does 

not directly quantify surface roughness from damage of surface elements. 

Another potential area for future work is the use of CT scanning techniques, 

which should be further applied to a large scale machining test with different 

cutting tool geometries and increased levels of tool wear. Machining 

parameters and tool wear should be pushed above normal standard operating 

conditions to promote sub-surface damage. This will show at what point there 

is a material breakdown and increase in inter-laminar delamination. It was seen 

from the unidirectional CFRP samples that there is inter-laminar delamination 

to the material caused during an edge trimming operation. Therefore CT-

scanning should be combined with fatigue and load testing to find a 

correlation between harsh machining conditions and material strength. This 

would be a useful study for industry to understand under which point safe 

machining conditions will still be obtained, and when will there be a critical 

damage to components due to machining. CT scanning will allow this to be 

correlated with internal damage to components from machining. The use of 

image analysis methods could also be applied in combination with CT scanned 

images to look at volume fraction of damage or delamination, a grey scale of 

pixels could be used to quantify damage size. In summary, this study has 

focussed on surface damage and roughness measurements, yet a number of 

different possible future research opportunities are available for composite 

machining researchers. 
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Figure 10-1- Future work- test variables. 
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Appendix 

Part A- Unidirectional Test 

Table 10-1- Mean Fx Cutting forces from test, 45 degree fibre orientation, and 

un-worn tool. 

Fibre 

Orientation 

Feed Rate 

(mm/min) 
RPM 

Fx 

Sample 1 

Fx 

Sample 2 

Mean 

Fx (N)  
STD 

45 800 6000 67.7 79.6 74.0 8.4 

45 1200 6000 80.7 78.1 79.4 1.8 

45 800 8000 72.7 78.3 75.0 4.0 

45 1200 8000 79.5 85.2 82.3 4.0 

 

Table 10-2- Mean Fy Cutting forces from test, 45 degree fibre orientation, and 

un-worn tool. 

Fibre 

Orientation 

Feed 

Rate 

(mm/min) 

RPM 
Fy 

Sample 1 

Fy 

Sample 2 

Mean Fy 

(N)  
STD 

45 800 6000 60.2 56.5 58.3 2.7 

45 1200 6000 75.7 76.7 76.2 0.7 

45 800 8000 64.9 68.3 66.6 2.4 

45 1200 8000 81.3 89.5 85.4 5.7 

 

Table 10-3- Mean Fx Cutting forces from test, 90 degree fibre orientation, and 

un-worn tool. 

Fibre 

Orientation 

Feed 

Rate 

(mm/min) 

RPM 
Fx 

Sample 1 

Fx 

Sample 2 

Mean Fx 

(N)  
STD 

90 800 6000 81.3 78.9 80 1.7 

90 1200 6000 98.9 100.1 99.5 0.8 

90 800 8000 79.7 84.5 82.1 3.4 

90 1200 8000 80.4 84.2 82.3 2.7 
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Table 10-4- Mean Fy Cutting forces, 90 degree fibre orientation, un-worn tool. 

Fibre 

Orientation 

Feed 

Rate 

(mm/min) 

RPM 
Fy 

Sample 1 

Fy 

Sample 2 

Mean Fy 

(N) 
STD 

90 800 6000 55.2 54.6 54.9 0.4 

90 1200 6000 60.2 66.5 63.4 4.5 

90 800 8000 57.0 60.4 58.7 2.4 

90 1200 8000 57.3 63.4 60.3 4.4 

 

Table 10-5- Mean Fx Cutting forces from test 45 degree fibre orientation worn 

tool. 

Fibre 

Orientation 

Feed 

Rate 

(mm/min) 

RPM 
Fx 

Sample 1 

Fx 

Sample 2 
Mean Fx (N)  STD 

45 800 6000 116.6 109.2 112.9 5.2 

45 1200 6000 130.4 126.0 128.2 3.1 

45 800 8000 102.1 100.5 101.3 1.1 

45 1200 8000 126.1 123.2 124.7 2.1 

 

Table 10-6- Mean Fy Cutting forces from test 45 degree fibre orientation worn 

tool. 

Fibre 

Orientation 

Feed 

Rate 

(mm/min) 

RPM 
Fy 

Sample 1 

Fy 

Sample 2 

Mean Fy 

(N)  
STD 

45 800 6000 116.6 108.2 112.1 5.9 

45 1200 6000 130.2 128.6 129.2 1.1 

45 800 8000 103.6 104.4 104 0.6 

45 1200 8000 130.2 127.8 129 1.7 
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Table 10-7- Mean Fx Cutting forces from test 90 degree fibre orientation worn 

tool. 

Fibre 

Orientation 

Feed Rate 

(mm/min) 
RPM 

Fx 

Sample 

1 

Fx 

Sample 

2 

Mean Fx 

(N)  
STD 

90 800 6000 109.1 105.0 107.1 2.9 

90 1200 6000 119.3 120.7 120.0 1.0 

90 800 8000 96.5 89.0 92.7 5.3 

90 1200 8000 116.1 102.1 109.1 9.9 

 

Table 10-8- Mean Fy Cutting forces from test 90 degree fibre orientation worn 

tool. 

Fibre Orientation 
Feed Rate 

(mm/min) 
RPM 

Fy 

Sample 

1 

Fy 

Sample 

2 

Mean Fy 

(N)  

ST

D 

90 800 6000 131.4 131.0 131.2 0.3 

90 1200 6000 148.7 154.3 151.5 4.0 

90 800 8000 112.4 107.3 109.9 3.6 

90 1200 8000 163.3 145.6 154.5 
12.

5 
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Part B- Multidirectional Test 

Table 10-9- Cutting Edge Radius from Alicona Scans (Tool 2). 

Test 

Number 
Feed 

Cutting 

Speed 

Tool 2 

Edge 

Radius µm 

Distance 

Machined 

(mm) 

      2.89 0 

3 1200 7000 2.89 80 

4 1200 9000 2.89 160 

5 1000 7000 3.75 240 

6 1000 9000 3.75 320 

11 1200 7000 4.80 400 

12 1200 9000 4.80 480 

15 1200 7000 5.31 560 

16 1200 9000 5.31 640 

17 1000 7000 5.35 720 

18 1000 9000 5.35 800 

23 1200 7000 5.53 880 

24 1200 9000 5.53 960 

25 1000 7000 5.57 1040 

26 1000 9000 5.57 1120 

31 1200 7000 5.91 1200 

32 1200 9000 5.91 1280 

35 1200 7000 6.21 1360 

36 1200 9000 6.21 1440 

37 1000 7000 6.38 1520 

38 1000 9000 6.38 1600 
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Table 10-10- Average Sa calculated from the test samples- Test 21-40. 

Test 

Number  

Feed 

(mm/min) 

Cutting 

Speed 

(RPM) 

Scan 

1 Sa 

(µm) 

Scan 

2 Sa 

(µm) 

Average 

Sa (µm) 

Average 

skewness 

(µm) 

Average 

kurtosis 

(µm) 

21 1000 7000 1.73 1.74 1.73 -3.7 28.1 

22 1000 9000 1.59 1.57 1.58 -3.6 29.1 

23 1200 7000 1.83 1.82 1.83 -3.8 28.9 

24 1200 9000 1.30 1.32 1.31 -3.6 29 

25 1000 7000 1.65 1.52 1.59 -3.9 32.1 

26 1000 9000 1.48 1.47 1.47 -2.8 25.4 

27 1200 7000 2.13 2.11 2.12 -3.4 20.1 

28 1200 9000 1.72 1.75 1.73 -3.6 26.6 

29 1000 7000 1.68 2.01 1.84 -4.2 32 

30 1000 9000 1.66 1.68 1.67 -3.8 28.1 

31 1200 7000 2.04 2.00 2.02 -3.5 23.5 

32 1200 9000 1.82 1.83 1.82 -3.5 26.4 

33 1000 7000 1.81 1.96 1.89 -3.7 27 

34 1000 9000 1.75 1.67 1.71 -4 33.4 

35 1200 7000 1.97 1.83 1.90 -2.9 26.4 

36 1200 9000 1.74 1.71 1.73 -3.4 27 

37 1000 7000 1.88 1.89 1.88 -3.5 26.8 

38 1000 9000 1.69 1.59 1.64 -2.5 20.7 

39 1200 7000 2.28 2.26 2.27 -3.4 34 

40 1200 9000 1.88 1.97 1.92 -3.8 38.1 
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Table 10-11- Average skewness and kurtosis (Test 1-20) 

Test Number 
Feed 

(mm/min) 

Cutting 

Speed 

(RPM) 

Skewness Kurtosis 

Test 1 1000 7000 -3.72 23.73 

Test 2 1000 9000 -3.67 22.31 

Test 3 1200 7000 -4.07 28.16 

Test 4 1200 9000 -4.40 32.42 

Test 5 1000 7000 -3.88 25.52 

Test 6 1000 9000 -3.63 26.67 

Test 7 1200 7000 -3.73 23.84 

Test 8 1200 9000 -3.66 23.37 

Test 9 1000 7000 -3.52 24.06 

Test 10 1000 9000 -3.60 24.37 

Test 11 1200 7000 -3.88 24.81 

Test 12 1200 9000 -4.01 29.70 

Test 13 1000 7000 -3.69 26.20 

Test 14 1000 9000 -3.26 22.76 

Test 15 1200 7000 -3.52 22.87 

Test 16 1200 9000 -3.51 28.01 

Test 17 1000 7000 -3.93 31.76 

Test 18 1000 9000 -3.20 32.10 

Test 19 1200 7000 -3.57 23.23 

Test 20 1200 9000 -3.48 24.04 
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Table 10-12 Cutting Forces- Tests number 1-20. 

Test 
Feed Rate 

(mm/min) 

Cutting 

Speed 

(RPM) 

Mean 

Fx (N) 

Mean 

Fy (N) 

Min Fx 

(N) 

Min 

Fy (N) 

Max 

Fx (N) 

Max 

Fy (N) 

1 1000 7000 32.0 1.6 -108.2 132.1 191.9 121.4 

2 1000 9000 33.2 9.3 -118.8 -82.7 200.6 127.9 

3 1200 7000 36.1 1.8 -96.0 -106.1 188.2 123.2 

4 1200 9000 38.4 10.6 -100.1 -91.3 191.9 130.5 

5 1000 7000 42.6 13.5 -123.1 -92.8 206.8 172.5 

6 1000 9000 43.5 22.2 -121.8 -66.7 217.9 180.4 

7 1200 7000 45.1 21.7 -118.7 -86.3 222.6 167.4 

8 1200 9000 45.0 17.0 -144.6 -73.5 252.7 161.4 

9 1000 7000 45.9 21.9 -141.9 -71.7 247.9 208.5 

10 1000 9000 48.2 26.8 -144.3 -45.4 252.6 215.0 

11 1200 7000 56.0 22.3 -137.6 -100.1 246.2 216.4 

12 1200 9000 52.6 28.9 -143.8 -57.6 254.5 225.5 

13 1000 7000 54.4 29.8 -156.1 -81.1 259.5 242.6 

14 1000 9000 51.2 32.6 -155.4 -50.4 268.2 238.1 

15 1200 7000 56.7 25.2 -157.1 -94.9 264.7 241.0 

16 1200 9000 52.7 32.0 -168.1 -105.1 261.6 265.4 

17 1000 7000 57.5 33.5 -166.9 -65.3 277.5 254.5 

18 1000 9000 53.8 39.4 -169.6 
-

124.6 
261.1 325.4 

19 1200 7000 60.6 28.2 -162.3 -115.8 275.1 257.3 

20 1200 9000 59.7 34.6 -150.3 -48.6 292.7 235.8 
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Table 10-13- Cutting Forces- Test number 21-40. 

Test 
Feed Rate 

(mm/min) 

Cutting 

Speed 

(RPM) 

Mean 

Fx (N) 

Mean 

Fy (N) 

Min Fx 

(N) 

Min Fy 

(N) 

Max Fx 

(N) 

Max 

Fy (N) 

21 1000 7000 60.9 37. -184.0 -78.2 283.4 282.3 

22 1000 9000 56.5 41.8 -190.7 -75.1 304.3 265.4 

23 1200 7000 65.9 37.7 -167.5 -70.4 289.5 285.1 

24 1200 9000 64.1 43.3 -174.9 -75.4 295.7 284.8 

25 1000 7000 65.7 44.4 -195.1 -77.8 304.8 330.1 

26 1000 9000 61.2 49. -186.2 -102.4 286.8 338.3 

27 1200 7000 72.3 42. -199.6 -111.1 323.1 334.8 

28 1200 9000 69.8 46.8 -184.5 -68.5 323.1 301.3 

29 1000 7000 64.4 46.9 -211.6 -80.4 312.6 336.1 

30 1000 9000 60.2 48. -211.0 -105.6 314.6 356.7 

31 1200 7000 79.5 47. -189.8 -120.8 323 344 

32 1200 9000 77.1 54.4 -191.3 -81.9 313.4 363.3 

33 1000 7000 70.8 51.7 -213.4 -90.7 -309.7 345.8 

34 1000 9000 63.5 52.5 -214.7 -132.5 315.1 400.5 

35 1200 7000 70.0 53.1 -223.4 -76.1 330 379.6 

36 1200 9000 68.8 57.4 -214.4 -102.1 320.5 368.4 

37 1000 7000 73.2 58.6 -209.3 -96.3 323.2 390.9 

38 1000 9000 63.5 61.3 -200.4 -142.7 308.4 424.1 

39 1200 7000 71.1 51.3 -219.7 -88.87 343.1 356.4 

40 1200 9000 68.0 54.6 -205.2 -95.21 338.3 370.6 
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Part C- Subroutine 

      subroutine utimestep 
     *(   tstepc     ,tstepl     ,icall      ,timei      ,timelc     ) 
      implicit none 
      include 'concom' 
      include 'creeps' 
      integer  
     *    icall, iun6, ldebug, i, j, itype, ndof, icut, icnode, idum, 
     *    maxnod, maxdof 
      real*8  
     *    tstepc, tstepl, timei, timelc, r0, r1, r2, r180, timeo,  
     *    xcur, ycur, pi, tcut, coord, disp, tadj, radiuswp,   
     *    ttime, xcurc, ycurc, rotadj, xtransc, radiuswp1, radiuswp2 
      integer 
     *    inclast, nnodes, nodes, ncut, nidle, nstept 
      real*8 
     *    xminw, xmaxw, yminw, ymaxw, gap, vtrans, vrot, radius,  
     *    edepth, xmaxw0, angmin, angdef, rotfac, yminc 
      parameter 
     *(   maxnod = 20        ,maxdof = 6  ) 
      dimension 
     *    coord(maxdof,maxnod)         ,disp(maxdof,maxnod) 
      common 
     *    xminw, xmaxw, yminw, inclast, nnodes, nodes(maxnod), 
     *    ymaxw, gap, vtrans, vrot, ncut, nidle, radius, edepth,  
     *    xmaxw0, angmin, angdef, rotfac, nstept, yminc 
      data 
     *    r0         ,r1         ,r2         ,r180       ,iun6       , 
     *    ldebug     ,pi         / 
     *    0.0d0      ,1.0d0      ,2.0d0      ,180.0d0    ,6          , 
     *    1          ,3.1415926d0/ 
c--------------------------------------------------------------------- 
c user subroutine for modifying the time step  
called right after the time step has been updated  
c 
c*variables 
c=tstepc - current time step as suggested by marc to be modified  
c tstepl - current time step before it was modified by marc 
c icall  - control flag describing when this routine is called 
c            1 = setting the initial time step 
c            2 = called during an increment 
c            3 = called at the beginning of the increment 
c timei  - time at the start of the current increment 
c timelc - time period of the current load case 
c nnodes - number of tip node numbers specified 
c--------------------------------------------------------------------- 
c initialisation 
c--------------------------------------------------------------------- 
c      flag to indicate cutting is occurring 
      icut = 0 
c                              
      timeo = tstepc 
c 
      ttime = cptim + timinc 
c                              
c                              
      call scla 
     *(   coord      ,r0         ,maxnod     ,maxdof      ,idum       ) 
c          check for presence of a cut-back this case we need to let Marc specify the time step 
      if( inc .eq. inclast ) then 
        icut = 3 
      end if 
c                             update last increment number 
      inclast = inc 
c 
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c--------------------------------------------------------------------- 
c evaluate time adjustment needed for cutter to rotate between lowest  
c cut position and top of workpiece 
c--------------------------------------------------------------------- 
c                             time for the next cutter to reach the next position 
      tcut = (r2 * pi) / (ncut * vrot ) 
      rotadj = abs(abs(ymaxw)-abs(yminw)) / radius 
c                             : here we check the angle (in degrees)  
c                               and define a default typical value  
c                               (radians) 
      if( rotadj * r180/pi .lt. angmin ) then 
        write(iun6,2800) rotadj 
        rotadj = angdef * pi/r180 
      end if 
c                             
      rotadj = rotadj * rotfac 
c                             then evaluate the time for  this rotational adjustment 
      tadj = rotadj / vrot 
c                             adjust the time so that the next cutter  
c                             comes into the cutting zone at a lower 
c                             position than the previous one left 
      tcut = tcut - tadj 
c 
c--------------------------------------------------------------------- 
c current node coordinates 
c--------------------------------------------------------------------- 
c                            loop over number of cutter tip nodes  
c                            to extract the original  
c                            coordinates and displacements as separate  
c                            arrays 
      do i = 1, nnodes 
c                            original coordinates 
        call nodvar 
     *(   0          ,nodes(i)   ,coord(1,i) ,ndof       ,itype      ) 
        call nodvar 
     *(   1          ,nodes(i)   ,disp(1,i)  ,ndof       ,itype      ) 
      end do 
c                            loop over number of nodes to establish 
c                            the new coordinate 
      do i = 1, nnodes 
c                            loop over number of DOFs 
        do j = 1, ndof 
c                             evaluate current cooordinate 
          coord(j,i) = coord(j,i) + disp(j,i) 
        end do 
      end do 
c 
c--------------------------------------------------------------------- 
c establish if any cutter node is close to workpiece 
c                            loop over cutter nodes 
      do i = 1, nnodes 
c                            extract current x and y coordinates 
        xcur = coord(1,i) 
        ycur = coord(2,i) 
        if( (ycur-ymaxw) .lt. r0 ) then 
c                             check if any cutter nodes are close to 
c                             the current cut face 
          if( xcur-gap .lt. xmaxw ) then 
            tstepc = tstepc 
c                             set flag to indicate we are cutting: 
c                               0 = not in cutting zone 
c                               1 = very close to cutting zone 
c                               2 = in cutting zone, but not likely to contact 
c                               3 = use marc-calculated time step 
c                               4 = in cutting zone, but not close enough 
            icut = 3 
c-----------------------------alternatively, evaluate a time step based  
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c                             on the cutter passing through only a  
c                             fraction of the typical workpiece element  
c                             dimension by specifying a number of time 
c                             steps 
            tstepc = edepth / (radius * abs(vrot) * nstept) 
c                             set flag to indicate we are cutting: 
c                               0 = not in cutting zone 
c                               1 = very close to cutting zone 
c                               2 = in cutting zone, but not likely to contact 
c                               3 = use marc-calculated time step 
c                               4 = in cutting zone, but not close enough 
            icut = 1 
c-----------------------------account for the case in which the cutter  
c                             is close to the workpiece, but not close  
c                             enough for small time steps yet 
c                             : needs to account for feedrate since  
c                               xcur is at end of last increment and 
c                               xcur will actually be greater than seen 
c                               here 
            xtransc = abs(vtrans) * (5.0d0*edepth / (radius*abs(vrot))) 
c                             now, check how close we are 
            if( abs(abs(xcur) - xtransc - abs(xminw)) .gt.  
     *          r2*edepth .and.  
     *         (abs(xcur) - xtransc - abs(xminw) .lt. r0 )) then 
              tstepc = 5.0d0*edepth / (radius*abs(vrot)) 
c                             set flag to indicate we are cutting: 
c                               0 = not in cutting zone 
c                               1 = very close to cutting zone 
c                               2 = in cutting zone, but not likely to contact 
c                               3 = use marc-calculated time step 
c                               4 = in cutting zone, but not close enough 
              icut = 4 
            end if 
            icnode = nodes(i) 
            xcurc = xcur 
            ycurc = ycur 
          end if 
        end if 
      end do 
c 
c--------------------------------------------------------------------- 
c determine next time step, depending on whether the cutting is cutting or not 
c--------------------------------------------------------------------- 
c                             if not cutting, then take bigger steps by 
c                             dividing the time to rotate to the next  
c                             cutter tip by a user-defined number 
c-----------------------------cutter far from workpiece so use large  
c                             time step 
      if( icut .eq. 0 ) then 
        tstepc = tcut / float(nidle) 
c                             inform user  
        write(iun6, 2200) tstepc, timeo, xmaxw, ymaxw, gap, icut 
c-----------------------------cutter close to workpiece so use small  
c                             time step 
      else if( icut .eq. 1 ) then 
c                             inform user 
        write(iun6, 2300) 
     *    tstepc, icnode, xcurc, ycurc, xmaxw, ymaxw, gap, icut 
c-----------------------------cutter close to workpiece but unlikely  
c                             to contact - so use slightly larger time  
c                             step 
      else if( icut .eq. 2 ) then 
c                             inform user 
        write(iun6,2400) tstepc, icnode, radiuswp, radius, icut,  
     *                   xminw, yminc 
c-----------------------------cut-back detected, so use marc-calculated 
c                             time step 
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      else if( icut .eq. 3 ) then 
c                             revert to the marc-calculated time step 
        tstepc = timeo 
c                             inform user 
        write(iun6,2500) tstepc, icut 
c-----------------------------cutter close to workpiece, but not close  
c                             enough yet - so adjust the time step 
c                             to get us closer 
      else if( icut .eq. 4 ) then 
c                             inform user 
        write(iun6, 2900) 
     *    tstepc, icnode, xcurc, ycurc, xmaxw, ymaxw,  
     *    abs(xcurc-xminw), icut, xcur, xtransc, xminw, edepth,  
     *    radius, vrot 
      end if 
      return 
      end 
c--------------------------------------------------------------------- 
c extract original coordinate and current displacement for all nodes of current element 
        call scla 
     *(   coord      ,r0         ,maxnod     ,maxdof     ,idum       ) 
c                             loop over number of nodes of current 
c                             element 
        do i = 1, nnods 
c                             extract external/user node number 
          nodec = nodext(nodlist(i)) 
c                             extract original coordinates 
          call nodvar 
     *(   0          ,nodec      ,coord(1,i) ,ndof       ,itype      ) 
c                             extract current displacements 
          call nodvar 
     *(   1          ,nodec      ,disp(1,i)  ,ndof       ,itype      ) 
        end do 
c                            check for dimension mismatch 
        if( ndof .gt. maxdof ) then 
          write(6,1003) ndof, maxdof 
        end if 
c--------------------------------------------------------------------- 
c evaluate the current coordinate position for all nodes of current element 
c--------------------------------------------------------------------- 
c                             loop over number of nodes of current 
c                             element 
        do i = 1, nnods 
c                             loop over number of DOFs 
          do j = 1, ndof 
c                             evaluate current cooordinate 
            coord(j,i) = coord(j,i) + disp(j,i) 
          end do 
        end do 
c--------------------------------------------------------------------- 
c                             loop over number of nodes 
        do i = 1, nnods 
c                             extract external/user node number 
          nodec = nodext(nodlist(i)) 
c                             update x-coordinate that represents the 
c                             current depth of cut (axially) in the  
c                             workpiece, along with corresponding  
c                             y-coordinate value 
          if( abs(coord(1,i)) .gt. abs(xmaxw) ) then 
            xmaxw = coord(1,i) 
c                             inform user 
            write(iun6,1002) xmaxw, m(1), nodec 
          end if 
c                             update y-coordinate that represents the 
c                             lowest point of the cut (vertically) in  
c                             the workpiece 
          if( coord(2,i) .lt. yminw ) then 
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            yminw = coord(2,i) 
c                             inform user 
            write(iun6,1001) yminw, m(1), nodec 
          end if 
c                             update x-coordinate that represents the 
c                             current front face of the workpiece  
c                             (axially) in the area of the current cut 
          if( abs(coord(1,i)) .lt. abs(xminw) ) then 
            xminw = coord(1,i) 
            yminc = coord(2,i) 
c                             inform user 
            write(iun6,1004) xminw, m(1), nodec 
          end if 
        end do 
      end if 
c     write(6,*) 'Exit UACTIVE' 
      return 
      end 
c======================================= 
c ncycle - iteration number 
c--------------------------------------------------------------------- 
c initialise  
c--------------------------------------------------------------------- 
c                             increment zero only 
      if( inc .eq. 0 ) then 
c                             closest initial x-coordinate of workpiece to the cutters 
c                             : updated to measure depth of cut 
        xmaxw = xmaxw0 
        xminw = xmaxw 
c                             minimum cut height of workpiece 
        yminw = ymaxw 
c                             last increment number 
        inclast = -1 
      end if 
      return 
      end 
 
c==================================== 
 
      subroutine ubginc 
     *(   inc        ,incsub     ) 
      implicit none 
      integer 
     *    inc, incsub, ios, nios, ilen1, i, maxnod, maxdof 
      real*8 
     *    r0 
      integer 
     *    inclast, nnodes, nodes, ncut, nidle, nstept 
      real*8 
     *    xminw, xmaxw, yminw, ymaxw, gap, vtrans, vrot, radius,  
     *    edepth, xmaxw0, angmin, angdef, rotfac, yminc 
c                             common block for file name 
      include '../common/jacb' 
      include '../common/jname' 
      character*50 
     *    datafile 
      parameter 
     *(   nios = 1           ) 
      parameter 
     *(   maxnod = 20        ,maxdof = 6  ) 
      common 
     *    /user_ab/      
     *    xminw, xmaxw, yminw, inclast, nnodes, nodes(maxnod), 
     *    ymaxw, gap, vtrans, vrot, ncut, nidle, radius, edepth,  
     *    xmaxw0, angmin, angdef, rotfac, nstept, yminc 
      dimension 
     *    ios(nios) 
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      data 
     *    r0         / 
     *    0.0d0      / 
c--------------------------------------------------------------------- 
c----------------- read data from external file (PRM File) 
        read(990,*) nnodes 
c                             
        nnodes = int(nnodes) 
c                              
        write(6,1002) nnodes 
c                             number of cutting tip nodes  
        if( nnodes .gt. maxnod ) then 
          write(6,3001) nnodes, maxnod 
          call quit(9000) 
        end if 
c                              cutter tip nodes 
        do i=1,nnodes 
          read(990,*) nodes(i) 
          nodes(i) = int(nodes(i)) 
          write(6,1003) nodes(i) 
c                              
          if( nodes(i) .eq. 0 ) then 
            write(6,3000) i, nnodes 
            call quit(9001) 
          end if 
        end do 
c                             maximum y-coordinate of workpiece initially 
c                             
        read(990,*) ymaxw 
        ymaxw = real(ymaxw,8) 
        write(6,1004) ymaxw 
c                             distance in front of current cut face 
 
        read(990,*) gap 
        gap = real(gap,8) 
        write(6,1005) gap 
c                             cutter translational velocity 
        read(990,*) vtrans 
        vtrans = real(vtrans,8) 
        write(6,1006) vtrans 
c                             cutter rotation speed (rad/s) 
        read(990,*) vrot 
        vrot = real(vrot,8) 
        write(6,1007) vrot 
c                             number of cutters 
        read(990,*) ncut 
        ncut = int(ncut) 
        write(6,1008) ncut 
c                             number of load increments to cover the  
        write(6,1009) nidle 
c                             typical element length in workpiece in 
c                             cutting zone 
        read(990,*) edepth 
        edepth = real(edepth,8) 
        write(6,1011) edepth 
c                             closest initial x-coordinate of workpiece 
c                             to the cutters 
        read(990,*) xmaxw0 
        xmaxw0 = real(xmaxw0,8) 
        write(6,1012) xmaxw0 
c                             angle below which rotadj is given a  
c                             typical default value (degrees) 
        read(990,*) angmin 
        angmin = real(angmin,8) 
        write(6,1013) angmin 
c                             typical default angle given to rotadj if  
        read(990,*) angdef 
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        angdef = real(angdef,8) 
        write(6,1014) angdef 
        read(990,*) rotfac 
        rotfac = real(rotfac,8) 
        write(6,1015) rotfac 
c                             number of increments through which the  
c                             cutter tip should traverse a typical 
c                             workpiece element dimension  
        read(990,*) nstept 
        nstept = int(nstept) 
        write(6,1016) nstept 
c                             finished reading, 
        goto 999 
  900   call ioserr 
     *(   ios        ,nios       ,datafile   ) 
      end if 
  999 continue 
      return 
      end 
c========================================= 
      subroutine vcizer 
     *(   ivec       ,n          ) 
      implicit none 
      integer 
     *    ivec, n, i 
      dimension  
     *    ivec(n) 
c----------------------------------------------------------------------- 
c*description 
c initialises a vector with integer zeros 
c----------------------------------------------------------------------- 
      do i = 1,n 
        ivec(i) = 0 
      end do 
      return 
      end 

 
 
 


