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Abstract

Positron emission tomography (PET) imaging is commonly used in clinical prac-

tice to diagnose different diseases. However, the limited spatial resolution some-

times prevents the desired diagnostic accuracy. This work examines some of

the issues related to PET image reconstruction in the context of PET-magnetic

resonance (MR) imaging, and proposes a novel PET iterative reconstruction algo-

rithm, hybrid kernelised expectation maximisation (HKEM), to overcome these

issues by exploiting synergistic information from PET and MR images. When

the number of detected events is low, the reconstructed images are often biased

and noisy. Anatomically-guided PET image reconstruction techniques have been

demonstrated to reduce partial volume effect (PVE), noise, and improve quan-

tification, but, they have also been shown to rely on the accurate registration

between the anatomical image and the PET image, otherwise they may sup-

press important PET information that may lead to false negative detection of

disease. The aim of the HKEM algorithm is to maintain the benefits of the

anatomically-guided methods and overcome their limitations by incorporating

synergistic information iteratively. The findings obtained using simulated and

real datasets, by performing region of interest (ROI) analysis and voxel-wise anal-

ysis are as follows: first, anatomically-guided techniques provide reduced PVE

and higher contrast compared to standard techniques, and HKEM provides even

higher contrast in almost all the cases; second, the absolute bias and the noise

affecting low-count datasets is reduced; third, HKEM reduces PET unique fea-

tures suppression due to PET-MR spatial inconsistency. This thesis, therefore

argues that using synergistic information, via the kernel method, increases the

accuracy and precision of the PET clinical diagnostic examination. The promis-

ing quantitative features of the HKEM method give the opportunity to explore

many possible clinical applications, such as cancer and inflammation.
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Chapter 1

Introduction

1.1 Context and Motivation

The aspiration for image quality and quantification improvements for positron

emission tomography (PET) imaging has led to the introduction and use of multi-

modality scanners such as PET-computational tomography (CT) and PET-

magnetic resonance (MR). PET-CT has become the gold-standard in clinical

routine due to the high-resolution anatomical image provided by CT and the

corresponding electron density information that can be used for attenuation cor-

rection in PET image reconstruction. On the other hand, the benefits for PET-

MR are multiple. For example, the high contrast in soft tissues provided by MR

allows for a more accurate localisation of the high uptake PET regions. This in-

formation can be used as ‘prior’ information to reduce the partial-volume effect

(PVE) (Shidahara et al. [2012]) which degrades PET image quality and quan-

tification. Due to the wide range of possible MR sequences that can be acquired

during the PET-MR scan, according to which tissue one wants to study, there
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are a number of possible applications that can be investigated. Furthermore, MR

images can be used to detect and correct motion (Tsoumpas et al. [2013]), and

the magnetic field can improve the resolution of PET by reducing the positron

range (Hammer et al. [1994] and Bertolli et al. [2014]). Finally, due to the absence

of ionising radiation during an MR acquisition, a PET-MR examination will in-

volve less dose for the patient than a PET-CT examination. As a consequence,

it is also relevant to reduce the dose delivered by the PET radiotracer. The

dose reduction as well as the use of very short frames (5-30 s), lead to low-count

circumstances, which produce noisy and biased images (Halpern et al. [2004]).

Short frames are often used in dynamic studies in both PET-CT and PET-MR.

MR-guided reconstruction techniques can be used in these circumstances as well

as in normal-count situations to reduce PVE which is especially important when

low-count data is used. Short frames are used, for example, for the estimation of

the image-derived input function (IDIF) in kinetic modelling analysis (Schmidt

and Turkheimer [2002]), and the accuracy of the IDIF is crucial for an accurate

kinetic analysis. On the other hand, the injection of lower amounts of radioac-

tivity has the potential to allow the examination to more patients, including

pregnant woman and children (Karakatsanis et al. [2015]; Cherry et al. [2018]).

This thesis focuses on developing methods for the improvement of quantifica-

tion at different count-levels. Emphasis is given to low-count datasets obtained

with short acquisition times. In fact, the improvements in terms of noise sup-

pression, accuracy and contrast seen with the proposed method for the images

reconstructed with short acquisition times is also likely to be achieved in the case

of lower injected radioactivity dose.
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1.2 Purpose of the Thesis

The main goal of this work is to propose and develop a novel image reconstruc-

tion algorithm for PET which encodes synergistic information from PET and

MR in the model. The purpose is to be able to correct for PVE, recover activ-

ity and contrast of small features, such as lesions, and avoid the suppression of

regions which are only detected by PET. The proposed algorithm is an iterative

method where the anato-functional information is included via the kernel method

described by Hoffman et al. [2008]. The reason behind the choice of synergistic

PET-MR features in this thesis is related to the fact that they allow to better

preserve the quantification and shape of the PET unique structure. This thesis

presents the validation of the proposed hybrid kernelised expectation maximisa-

tion (HKEM) method with simulated and real data where it is possible to see

how the proposed technique addresses the aforementioned issue for small lesions.

The PET-MR inconsistency problem is also studied as well as the application of

the HKEM for the estimation of the IDIF in the aorta of rabbits.

The specific achievements of this thesis are listed as follows:

1) The accuracy and precision performance and limitations of the standard

iterative algorithms using low-count datasets were investigated and dis-

cussed;

2) Both sinogram and list mode (LM)-based anatomically-guided image re-

construction algorithm, HKEM and kernelised expectation maximisation

(KEM) were implemented to reduce PVE and PET unique feature sup-

pression;

3) The parallel level sets (PLS) prior (Ehrhardt et al. [2016]) was also im-
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plemented for the comparison of the kernel method and the Bayesian ap-

proach.

4) The HKEM performance was explored in terms of quantification, and im-

provements in comparison with other techniques was shown;

5) The problem of PET-MR spatial inconsistency was investigated in terms

of image quality and accuracy;

6) A simulation study based on real [18F]Sodium Fluoride ([18F]NaF) rabbit

data was performed to provide the ground truth for the aorta. This allowed

to study the accuracy of the IDIF;

7) The accuracy and precision of the estimates of the IDIF was studied using

region of interest (ROI) analysis for rabbit data, where the ROI was ex-

tracted from both the MR image and the reconstructed PET image with

the HKEM.

1.3 Thesis Overview

The thesis is divided into seven main chapters, which are interconnected through

the theme of quantification investigation, and show the development of the re-

lated research project over time. The overview of the thesis is presented as

follows:

Chapter 2: Background

The basic knowledge required to fully understand the contents of the thesis is

briefly explained in this chapter. A concise description of the physical pro-
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cesses involved in PET acquisition and the mathematical formulation of the

most common iterative reconstruction algorithms is given. A similar explana-

tion is presented for the MR, and finally, the motivation, limitations and some

of the available techniques for PET-MR data correction and reconstruction are

discussed.

Chapter 3: Quantitative Performances of Standard Iter-

ative Reconstruction Techniques for Low-count PET-MR

Data

In this chapter, the standard iterative reconstruction algorithms, that were de-

scribed in Chapter 2, are used to reconstruct low-count datasets obtained from

the Hoffman phantom. This introduces a discussion of the limitations of these

methods on PET-MR low-count data when the anatomical information is not

taken into account in the model. The difficulty in appropriately choosing the reg-

ularisation parameter values is described in this chapter. In particular, making

the conclusion that different regions in the image may need a different parameter

value to obtain the lowest root mean squared error (RMSE). The results of this

chapter are published in Deidda et al. [2018a] and Deidda et al. [2016].

Chapter 4: Introduction and Validation of List-Mode Hybrid-

Kernelised Expectation Maximisation

In this Chapter, the HKEM algorithm, which takes into account anatomical and

functional information in the model, is proposed and validated. The novelty

of the method lies in the exploitation of the features within the PET image
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iteratively and combine these with the anatomical information within the MR

image. This was designed to overcome the issue of over-smoothing and potential

suppression of PET unique features. The method is tested with four different

datasets, including simulation, phantom and patient data, to explore lesion bias

and contrast with different noise levels. Previous related works is also discussed

in the introduction. The results of this chapter are published in Deidda et al.

[2019a] and Deidda et al. [2017]. Part of the work shown in this chapter was given

as an oral presentation at the IEEE Medical Imaging Conference, Atlanta, USA,

2017, and at the 7th Conference on PET-MR and SPECT/MR, Isola d’Elba,

Italy, 2018.

Chapter 5: Investigation of the Effect of PET-MR Incon-

sistency in the Kernel Image Reconstruction Method

The HKEM and the KEM methods used in the previous chapter are studied

here in cases where the PET and MR images contain spatial inconsistency due

to motion, inaccurate registration or simply where different regions are detected

by PET and MR. The spatial inconsistencies are created by augmenting the

MR images with shifts along the same direction and different distances for both

phantom and patient data. The aim of this study is to quantify and investigate

the possible limitations of the proposed algorithm in the case of erroneous feature

vectors due to inaccurate registration or inappropriate choice of the MR image.

The results of this chapter are published in Deidda et al. [2018b].
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Chapter 6: Hybrid PET-MR Kernelised Expectation Max-

imisation Reconstruction for Accurate Image-Derived Es-

timation of the Input Function From the Aorta of Rabbits

The synergistic nature of the HKEM is exploited in this chapter to improve the

accuracy of IDIF estimation. The HKEM is used for the reconstruction of the

PET images first, and finally the reconstructed image is used for the extraction

of the ROI of the rabbit aorta to be used for the analysis. To compare HKEM

IDIF estimates with the ground truth, a realistic rabbit simulation, with different

noise realisations, was created. The technique was also used with two real rabbit

datasets, in particular two different radiotracers were used, [18F]NaF and [18F]-

fluorodeoxyglucose ([18F]FDG), to demonstrate applicability of the method in

different cases. The results of this chapter are published in Deidda et al. [2019b].

Chapter 7: General Conclusion and Future Work

The general conclusions of the thesis are discussed in this chapter together with

work in progress and possible future directions.

Appendix A: Multiplexing Kernelised Expectation Max-

imisation Reconstruction for PET-MR

An extension of the HKEM method is proposed in this Appendix and preliminary

results from a simulation are discussed. The work is presented as submitted and

accepted for the IEEE Medical Imaging Conference, Sidney, Australia, 2018. In

this work, a version of the kernel method is proposed and investigated. This

exploits the information contained in multiple MR images, and potentially CT
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or other PET images can also be used. To do so, the HKEM was modified such

that the kernel matrix is obtained using additional Gaussian terms carrying the

features from multiple images.

Appendix B: Implementation of the Kernelised Expecta-

tion Maximisation Reconstruction in STIR

This appendix chapter schematically describes the implemented kernel recon-

struction in the form of pseudo-code. The written code reproduces the recon-

struction algorithm, and the class hierarchy.

Appendix C: Description of the Demonstrative code for

the rabbit simulation

The last appendix chapter shows the README file from the Demonstrative code

created for the simulation in Chapter 6.
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Background

The current chapter describes the basis of PET-MR imaging. In particular, it

starts with a brief discussion of the physical basis of PET and continues with

the data acquisition and image formation (Section 2.1). Emphasis is given to

the PET image reconstruction part, as it represents the background of the work

carried out throughout this research project. Section 2.2 provides a short de-

scription of the MR physics, data acquisition and image formation. Finally, in

Section 2.3 a summary of the benefits and drawbacks, and available techniques

of hybrid PET-MR imaging are provided.

2.1 PET Theory

2.1.1 Data Acquisition and Correction

PET is a non-invasive imaging technique used in clinical practice for diagnostic

imaging, dose delivery and treatment response evaluation. It is able to image

metabolism, calcification, inflammation and so on, but is mostly used clinically
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for cancer detection. It requires the patient to be injected with a radiotracer,

which consists of molecules labelled with positron-emitting radionuclides with

short half-life. The molecules used for the radiotracer are analogues of biological

molecules and thus they are able to represent typical biological processes after

in vivo administration correctly. For example, [18F]FDG with a half-life of 109.6

minutes, is an equivalent of glucose and is used to image cellular metabolism.

The positron-emitting radionuclide is extracted in a machine called cyclotron,

which basically accelerates protons in circular trajectories to reach energies of

about 10-20 MeV. When the protons reach the right energy, they are forced to

interact with a specific target material to produce the radioisotope. After this

the isotope will be linked to the [18F]FDG molecule via radiochemical processes.

The PET imaging technique takes advantage of the physical effect that goes

under the name of ‘Annihilation Matter-Antimatter’. In this process, a positron

emitted by the radiotracer travels for few millimetres before interacting with an

electron. As soon as the interaction takes place, the positron and the electron

rest masses are converted into a pair of annihilation photons. The photons with

identical energies (511 keV) are emitted simultaneously in about 180 degree

opposing directions, and are detected by two opposite detectors in the scanner

ring. The detection of the two annihilation photons allows the definition of a line

of response (LOR), which represents the line along which the event happened.

During its path, the positron will lose energy via Coulomb interactions until

it reaches thermal energies (about 0.025 eV). At this point the positron will

start interacting via anhilation. Around 84% of the anhilition photons are not

antiparallel due to the momentum of the bound electron that interacts with the

positron, and the angular variation is around 4 mrad. The distance travelled
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from the positron emission to the anhilation is called positron range, and it is

of the order of 1 mm for [18F]FDG. The LOR is characterised by its angle of

orientation respective to the horizontal plane and the shortest distance between

the LOR and the centre of the ring. In Figure (2.1), the angle is plotted as a

function of the distance from the centre and four coincidence events are shown.

When a large number of LORs are plotted corresponding to the same point (or

voxel) the resulting graph is half of a sine wave, hence the graph is aptly called a

‘sinogram’. This graph represents the measured data where the rate of detected

events (count rate) gives a measure of the injected activity.

With complex objects, the measured data will then consist of a large number

of overlapping sine waves (Fahey [2002]). The sinogram is stored in a matrix

where each LOR represents a specific entry in this matrix called a bin. Modern

scanners allow fully 3D acquisition and contain several rings, therefore, the axial

position of the LOR and the difference between the ring indexes need to be

taken into account, as there will be events where the two photons hit detectors

in two different rings. The events which occurred within one ring are referred to

as ‘direct’ coincidence whereas those occurred between different rings are called

‘cross’ coincidences. For every scanner with n rings, there are n direct plane and

for every plane there are n − 1 cross planes, which leads to a total of n2 total

sinograms.

Another way to store the detected events is LM; the events are organised into

a list where every event is associated with timing information, energy, detector

indexes and so on. This type of raw data can be space demanding according to

the number of events; however, it preserves time and spatial information that is

otherwise lost during the binning into sinogram. The LM data can also be useful

11



Chapter 2

to make the reconstruction faster in case of low-counts and implicitly avoid LOR

with no events (Reader et al. [1998b]).

Figure 2.1: Representation of sinogram formation for 2D acquisition (Fahey
[2002]).

PET data, in practice, presents a certain level of inaccuracy due to physical

phenomenon, such as Compton scattering and photoelectric absorption which

reduce the number of detected events. Compton scattering produces a change in

direction and energy of one or both photons, resulting in an erroneous LOR. This

results in a contrast loss and quantification degradation in the image (Mumcuoglu

et al. [1996]). To correct for such effect, the scattered events are estimated from

the data using the single scatter simulation method proposed by Watson et al.

[1996] where the Klein-Nishina formula is used to estimate the probability of an

event represented by a LOR to be a scattered event.

The loss of photons is also the reason behind what is called attenuation,

which represents the loss of coincident events due to both scatter and absorption

of one or both annihilation photons. For a point inside an object, the attenuation

depends on the average depth of the object and its electron density. The human

body consists of several organs and tissues with different sizes and densities.
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Therefore, an accurate estimation of the attenuation coefficients is needed for

each part of the body. An image with no attenuation correction will show the

inner part of the organ having lower activity concentration compared to the

boundaries. The adopted technique for the attenuation factor estimation uses

the X-ray CT, where a beam of photons with intensity, I0, is directed towards

an object and after passing through it the beam intensity will be reduced to, I.

The attenuation correction is performed by calculating the probability that the

two photons are detected:

P = e−
∑
i µi(d1i+d2i), (2.1)

where µi is the attenuation coefficient for a tissue i, d1i and i, d2i are the depth

travelled by photons 1 and 2 inside the tissue i. On the other hand, the CT

is measuring at different energy so there is not necessarily a straightforward

correction (Hutton et al. [2011]).

Another contribution to inaccuracy is represented by the random events.

Such events consist of two photons, from different annihilation, that have been

detected simultaneously by two opposite detectors, resulting again in an erro-

neous LOR (Brasse et al. [2005]). To correct for random events, the rate of

singles are estimated for each detector and the randoms are estimated for each

detector pair, ij, as follows:

Rij = 2τSiSj, (2.2)

where τ is the time width of the pulses for the system and Si and Sj are the single

count rates for the two detectors. In summary, the total number of events in the

13
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PET sinogram bin, also called prompts, contains also random and scattered

events which need to be estimated and subtracted. As a consequence, the true

estimated events for one bin, T , can be represented as follows:

T = P − S −R, (2.3)

where P is the prompt count rate, S the estimated scatter count rate and R the

estimated random events. Finally, as the radioactive decay is a random process,

the number of photons passing through an object and absorbed in a detector

are random variables governed by Poisson statistics (Alpert et al. [1982]). This

results in statistical noise and imprecision in activity estimates, as discussed by

Frey et al. [2012, and references therein]. Image reconstruction algorithms tend to

amplify the high frequency component of this noise, and a post-filtering process is

usually needed (Barrett et al. [1994]). The latter, however, can significantly affect

the resolution of the image. Several cutting-edge techniques have been proposed

in the literature which include Bayesian and machine learning methods to keep

the noise low while preserving resolution (Bowsher et al. [1996]; Ahn et al. [2015];

and Gong et al. [2018b]).

2.1.2 PET Image Reconstruction

PET reconstruction is an inverse problem where projection data (sinogram or

LM) are used to estimate the true activity distribution. The forward problem

in this case is represented in matrix symbols as Y = Cλ, where Y is the vector

containing the mean of each projection, C is the projection matrix and λ is

the image of the activity distribution. However, the matrix C is not a square
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matrix and therefore is not invertible. A possible way to solve the problem is

to find a pseudo inverse which can be obtained using for example the singular

value decomposition (SVD) which allows the factorisation of a matrix C in the

form UΣV ∗, where U is a real or complex unitary square matrix (n × n), Σ is

a real or complex rectangular diagonal matrix (n × m) with non-negative real

numbers on the diagonal called singular values, V is a real or complex unitary

square matrix (m × m), and V ∗ is the transpose of the complex conjugate of

V . The columns of U and the columns of V represent the left-singular vectors

and right-singular vectors of C, respectively. The condition number, which can

be described as the ratio between the largest and the smallest non-zero singular

values, gives us a way to measure the ill-conditioning of the problem. If the

condition number is high the problem is ill-conditioned, and small changes in Y

can results in large changes in λ. To reduce the problem a threshold, t, can be

used to force to zero the singular values which are smaller than t. If the image

of our linear matrix, C, is smaller than the data space, for some λ values the

equation, Y = Cλ, has no solution and it is necessary to use some conditions

such as maximum likelihood to select a vector λ′ that minimise the discrepancy

between the measured data and the estimated vector Cλ′. If the image of C is

smaller than the image space, there will be infinite solutions to the problem for

the same Y . In order to tackle this problem additional information is necessary,

which can be provided via regularisation.

The state-of-the-art for image reconstruction in the clinical practice is rep-

resented by iterative algorithms, as they make it possible to incorporate the

Poisson nature of photon measurement measurement, taking into account noise

and a number of other relevant physical features (Lange and Carson [1984]).
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The currently used algorithms for PET are based on the same concept as the

maximum likelihood expectation maximisation (MLEM) algorithm proposed by

Shepp and Vardi [1982]. In this method, every single voxel of the 3D image is

updated during each iteration with the value that maximises the Poisson likeli-

hood. The iterative methods make it possible to model noise and a number of

other relevant physical features (Reader and Zaidi [2007]) such as system reso-

lution (Reader et al. [2003]). On one hand, MLEM is accurate and a globally

convergent algorithm (Lange and Carson [1984]). On the other hand, it takes

many iterations before it reaches convergence. An accelerated version of MLEM

was developed by Hudson and Larkin [1994] using ordered subsets of projection

data. Such method, called ordered subsets expectation maximisation (OSEM) is

largely used in the clinical practice with PET studies, because it is easily imple-

mented and provides reconstruction acceleration over MLEM. Other algorithms

are available in literature, such as the Bayesian maximum a posteriori (MAP),

proposed by Green [1990a], where the posterior density function is maximised

rather than the density function, incorporating prior information.

MLEM

The mathematical description in this section uses the same formalism as Lange

and Carson [1984]. MLEM is an iterative technique for computing maximum

likelihood estimates. The basic idea is the following: suppose the measured

data in an acquisition is Y (a sinogram) with a density function g(Y, λ), which

follows the Poisson distribution, where λ is the image to be estimated. The

MLEM method aims to maximise the logarithm of this density function, l(Y, λ)
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= ln(g(Y, λ)), also called an objective function:

l(Y, λ) =
N∑
i=1

[
yi ln(

∑
j∈Ii

cijλj)−
∑
j∈Ii

cijλj − ln(yi!)

]
, (2.4)

where Ii is the set of voxel contributing to projection i, N is the number of

projections in the data, cij represents the probability that an event occurring in

voxel j produces a coincidence in the ith pair of detectors and takes into account

the attenuation and normalisation corrections, λj is the intensity of the voxel j in

the emission image, yi represents the number of events detected in projection i.

If yi represents the number of pairs of photons detected in projection i, then Xij

is defined as the number of pairs of photons emitted from voxel j and detected

in projection i and is related to yi by the following:

yi =
∑
j∈Ii

Xij (2.5)

X is also called ‘complete data’ while Y is the ‘incomplete data’. To make the

maximisation easier, the complete data log-likelihood needs to be used

l(X,λ) =
N∑
i=1

∑
j∈Ii

[Xij ln(cijλj)− cijλj − ln(Xij!)] . (2.6)

In order to obtain the algorithm updating formula, where n is the current

iteration number, two steps are necessary:

� Expectation step (E step): during this step, the algorithm estimates the

conditional expectation value of l(X,λ), E(l(X,λ)|Y, λ(n)), where λ(n) at

the first iteration is usually a uniform image. The expected value for l(X,λ)

given the measured data Y and λ(n) is:
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E(l(X,λ) | Y, λ(n)) =
∑
i,j

[
cijλ

(n)
j yi∑

k∈Ii cikλ
(n)
k

ln(cijλj)− cijλj

]
+R, (2.7)

where R are the factors that do not depend on λj and hence will not appear in

the next step.

� Maximisation step (M step): in this step, the image that maximise the

expected objective function is estimated, this is achieved by simply taking

the partial derivatives of (2.7):

∂E(l(X,λ) | Y, λ(n))
∂λj

∣∣∣∣
λ=λ(n)

=
∑
i∈Jj

[
cijλ

(n)
j yi∑

k cikλ
(n)
k

λ−1j − cij

]
= 0, (2.8)

where Jj is the set of projections to which voxel j contributes.

The resulting formula describes the MLEM algorithm

λ
(n+1)
j =

λ
(n)
j∑

i∈Jj cij

∑
i∈Jj

cij
yi∑

k∈Ii cikλ
(n)
k

. (2.9)

Then λ
(n+1)
j will be used in the E step for the next iteration and the procedure is

repeated for a number of iterations which can be decided according to a specific

figure of merit. Equation (2.9) is summarised in Figure (2.2). Many studies have

also proposed LM reconstruction algorithms (Snyder and Politte [1983]; Barrett

et al. [1997]; Reader et al. [1998a,b]; Parra and Barrett [1998]; Byrne [2001];

Huesman et al. [2000]; and Levkovilz et al. [2001]). For the LM reconstruction,

equation (2.9) becomes:

λ
(n+1)
j =

λ
(n)
j∑

i∈Jj cij

L∑
i=1

cij
1∑

k∈Ii cikλ
(n)
k

, (2.10)
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where the sinogram bin yi is substituted by the summation over LM events which

goes from 1 to L total number of detected events, similarly to the description by

Reader et al. [2002].

The MLEM algorithm is demonstrated to be a convex algorithm, nevertheless,

it is computationally demanding and it takes a lot of iterations to reach the

maximum likelihood estimate. This derivation does not take into account random

and scatter effects. If one wants to correct the image, the algorithm can be

extended by adding the additive sinogram term, which takes into account scatter

and random events:

yi =
∑
j∈Ii

Xij + Ai, (2.11)

λ
(n+1)
j =

λ
(n)
j∑

i∈Jj cij

∑
i∈Jj

cij
yi∑

k∈Ii cikλ
(n)
k + ai

, (2.12)

where ai represent the element of the additive sinogram A in projection i.

OSEM

The OSEM algorithm provides acceleration of convergence, proportional to the

number of subsets, by simply processing the data in subsets (blocks) within each

full iteration. The projection data is organised in ordered subsets and the MLEM

method is applied to each subset in turn. The resulting reconstruction after each

subset becomes the starting point for the following subset, each step is called a

sub-iteration. In this way, every iteration passes through every subset.

These blocks are usually chosen so that the projections within a block cor-

respond to the projections of the image with down-sampled projection angle.
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Figure 2.2: Schematic representation of the iterative algorithm Maximum Like-
lihood Expectation Maximisation starting from the initial estimate λ0. In a 3D
acquisition r is the distance between the centre of the ring and the LOR, θ is
the angle between the LOR and the x axis (transaxial horizontal), z is the axial
position and δ is the ring difference and k ∈ Ii.

Hudson and Larkin [1994] showed that it is advantageous to select subsets in a

balanced way so that voxel activity contributes equally to any subset. To provide

this balance it is suggested to use a number of subset which is a divisor of the

number of detector blocks in a ring (Byrne [1998]). The Siemens mMR has 63

blocks per ring with 8 × 8 detectors per block and consequently, the choice could

be between 3, 9, 21 and 63. Following the same procedure as the MLEM, the

OSEM algorithm is obtained by substituting the sum over i with the sum over

s ∈ Sm in equation (2.12), where Sm is the chosen subset of detector pairs and
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m = 1, ...,M , where M is the number of subsets:

λ
(m+1)
j =

λ
(m)
j∑

s∈Sm csj

∑
s∈Sm

csj
ys∑

k∈Ii cskλ
(m)
k + as

. (2.13)

Although, OSEM provides order-of-magnitude acceleration over MLEM, the

MLEM noise artefact is magnified after each iteration. For this reason, in clinical

practice, the reconstruction is often stopped at early iterations (Veklerov et al.

[1988]; Gaitanis et al. [2010]; and Bissantz et al. [2006]), usually two or three for

around 20 subsets (Liow and Strother [1991] Meikle et al. [1994]; Asma et al.

[2012] and Ahn et al. [2015]) or a Gaussian post-filter is also applied (Hamill

and Bruckbauer [2002]). It has been demonstrated that if the algorithm is ini-

tialised with a positive uniform image it provides similar images to MLEM with

an acceleration factor that depends on the number of subsets. On the other

hand, OSEM does not always converge and it can reach a limit cycle around the

maximum likelihood point (Fessler [2000]).

OSMAPOSL

The ordered subset maximum a posteriori one step late (OSMAPOSL) algorithm

is an extension of OSEM, where prior distributions are used and the maximisation

step includes the differentiation of the posterior density. The derivatives of the

prior term are computed at the point λ = λm in order to find the optimum

solution of the Bayesian formulation, this approximation is called one step late

(OSL) and it was first proposed by Green [1990a,b]. The reconstructed image is
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obtained by maximising the posterior distribution:

l(λ | Y ) =
N∑
i=1

[yi ln(
∑
j∈Ii

cijλj)−
∑
j∈Ii

cijλj − βV (λ)], (2.14)

where βV (λ) is the energy function designed to penalise large differences between

neighbouring voxels. In particular, it is suggested using energy functions of the

form:

βV (λ) = β

n∑
j,k=1

ωjk v(λj − λk), (2.15)

where β > 0 scales the strength assigned to the prior, ωjk are positive constants

that define a weight value for each neighbour voxel (in general, 1 for first-order

interactions between orthogonal nearest neighbours and 1/
√

2 for second order

diagonal interactions), n is the number of neighbours and v(λj − λk) is the

potential function.

The corresponding reconstruction formula for the OSMAPOSL is:

λm+1
j =

λmj[∑
s∈Sm csj − β

∂V (λ)

∂λk

∣∣∣∣
λ=λm

] ∑
s∈Sm

csj
ys∑

k cskλ
m
k

. (2.16)

Some of the standard prior distributions, which are often used for PET imag-

ing, are the quadratic prior (QP) (Levitan and Herman [1987]; Halpern et al.

[2004]; and Huesman et al. [2000])) and median root prior (MRP) (Alenius and

Ruotsalainen [1997, 2002]; Alenius et al. [1998]). The potential function V , for

QP and MRP respectively are given by the following forms:

v (λj − λk) ∝ (λj − λk)2, (2.17)
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v (λj − λk) ∝ (λj −Mk)
2, (2.18)

where Mk is the median of the image voxels within the neighbourhood associ-

ated with voxel j. Many other prior distributions are available in the literature

including edge preserving and anatomical-guided priors and will be discussed in

the following sections. A potential pitfall of the method is the fact that big values

of β can lead to a negative denominator in (2.16) which can break the algorithm

and produce artifacts.
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2.2 MR Theory

2.2.1 MR Imaging Physics

Magnetic resonance imaging (MRI) is a diagnostic technique which is able to

image the anatomy of a human or animal body and ex-vivo tissues with high

resolution and contrast between soft tissues without using ionising radiation.

The high contrast between soft tissues makes MRI particularly useful to diagnose

problems with joints, cartilage, ligaments, and tendons. It is also used to observe

changes in tissue micro-structure and composition in disease processes such as

inflammation, infection and cancer and it is also widely used in neuroscience.

The technique takes advantage of the so called nuclear magnetic resonance

(NMR) effect. All the nuclei with an odd number of protons and/or neutrons

possess an intrinsic magnetic moment and angular moment, that is to say, they

possess a non-zero spin. Such a property makes it possible for a nucleus in a

strong magnetic field, and excited by radio waves, to emit a radio frequency

(RF) signal that can be detected. The hydrogen nucleus possesses this property

and because the human body is made up to 70% water, containing such nuclei,

the MRI is based on the resonance associated with hydrogen. In the absence of

any external magnetic field, the hydrogen spin has a random orientation, while

in the presence of a uniform magnetic field, B0, the spin will start precessing

around the B0 direction or around the antiparallel direction of B0. The angular

frequency, ω0 of the precession is given by the Larmor equation:

ω0 = γ |B0| , (2.19)
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where γ is the gyromagnetic ratio, which is 42.58 MHz/T for hydrogen, and |B0|

is the strength of the static magnetic field.

Considering all the hydrogen nuclei in a tissue, the process of precession

about B0 will raise a net magnetisation, M , which is the overall effect of all the

single magnetic moments. This is due to the fact that the magnetic moments

are more likely to orientate in parallel with the magnetic field than anti-parallel,

as it represents the lowest energy level. When there is no external field the net

magnetisation is zero (McRobbie et al. [2017]).

2.2.2 Relaxation Mechanism

When no RF pulse is present, the net magnetisation, M0, is aligned with B0,

which is aligned to the z-axis. The MR signal occurs when a RF pulse, B1, at

the Larmor frequency is applied. This will rotate the magnetisation, which will

start precessing about B0 at a certain angle. At this point, the magnetisation,

M0, can be split into two components; one along the z axis, Mz, also called the

longitudinal component and a rotating component on the xy-plane, Mxy, also

called the transverse component. During the rotation of the transverse compo-

nent about the z-axis, a fluctuating electromagnetic field, which will induce a

current through the receiver coil, is generated. This signal is the MR signal.

When the RF pulse is off, Mxy will start decaying due to two simultaneous

and independent processes: spin-lattice interaction and spin-spin interaction.The

first will cause longitudinal relaxation while transverse relaxation is caused by

both interactions.

During relaxation Mxy will start decaying and the net magnetisation will

align again with B0 while the longitudinal component will be restored, as de-
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Figure 2.3: Schematic representation of the longitudinal relaxation after the RF
pulse.

scribed in Figure (2.3). During this process the MR signal will gradually fade

away. The z-component growth during the relaxation is represented by the ex-

ponential function (only valid for a RF pulse of 90 degrees):

Mz = M0 (1− exp(−t/T1)) , (2.20)

where M0 = |M0| and T1 is the time necessary for Mz to reach 0.63 ×M0. T1

is called longitudinal relaxation time constant, or spin-lattice relaxation time

constant.

T1 tends to be large in solids (slow relaxation) where molecules are less likely

to be rotating at a rate near the Larmor frequency, while it is shorter in tissue

where water is partially bound to large molecules such as proteins, and it is

normally shortest in fat (McRobbie et al. [2017]).

After the excitation some of the spins precess coherently but this phase co-

herence is gradually lost due to spin-spin interactions. The different phases are

the reason behind the transverse relaxation as the individual magnetization vec-

tors cancel each other instead of adding together (see Figure (2.4)). The xy
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Figure 2.4: Schematic representation of the transverse relaxation after the RF
pulse.

magnetisation, Mxy, decays exponentially with time constant, T2, is represented

by:

Mxy = M0 exp(−t/T2), (2.21)

where T2 is the time required for Mxy to decay to 0.37×M0.

T2 is short (fast relaxation) for proteins and lipids and increases with increas-

ing water content. Such decay occurs in a perfectly homogeneous B0, however,

in reality this is never the case. Therefore, additional de-phasing is caused by

the variation in the field. The time constant for the decay, from both intrinsic

de-phasing and de-phasing from field inhomogeneities, is T ∗2 and it is shorter

than T2 (McRobbie et al. [2017]).

2.2.3 Image Formation

To produce MR images, the raw data is organised to spatially locate the signal

in a matrix. To do so, a spatial encoding technique, based on magnetic field gra-

dients, is used. To select a slice the main magnetic field is made inhomogeneous
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along the z direction by using a gradient coil. In this way the magnetic field

strength varies along the z-axis. As a consequence of this gradient, the Larmor

frequency will change along the axis, and therefore, each slice is excited by ap-

plying a different RF pulse. According to the gradient direction the excitations

can be restricted to a specific plane that can be transverse, sagittal, coronal or

oblique (Weishaupt et al. [Berlin, 2008]). From Figure (2.5), it can be seen that

a stronger gradient is able to select a thinner slice.

A single signal, however does not give enough information to reconstruct an

entire MR image and it is necessary to acquire multiple signals in the directions

that are orthogonal to the slice selection. This is the spatial encoding, and it

comprises phase encoding and frequency encoding, which are done by mean of

gradients in the orthogonal direction to the slice selection. The phase encoding

gradient is applied to one orthogonal direction (for example y) and the result

of this gradient is that along this direction the spin have different phases. As

a consequence, each line of the slice is characterised by a different phase. The

frequency encode gradient is applied in the third direction (x-direction) and the

result is a change of the Larmor frequency along this direction. In this way

every column in the slice is associated with a specific frequency. The spatial

encoding allows to selection of all the combinations of phase and frequency and

each combination represent a unique voxel (see Figure (2.6) for a schematic

representation of the three encoding directions). The description of the slice

selection and spatial encoding given here represents the simplest gradient-echo

MR imaging sequence (McRobbie et al. [2017]).

The MR signal is acquired during the frequency encode gradient and after

the phase-encoding, and the whole sequence pattern needs to be repeated for
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Figure 2.5: Schematic representation of the MR slice selection.

Figure 2.6: Schematic representation of the MR spatial encoding.
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every ‘line’ of data in the K-space. The K-space is an array representing spatial

frequencies, kx and ky. Once all the data are acquired, a Fourier transform is

applied to convert the raw data into an MR image.

2.3 Basis of Hybrid PET-MR Imaging

2.3.1 Motivation

Since the advent of the first hybrid positron PET-CT scanners, the idea of com-

bining PET and MR scanners has been a matter of discussion (Townsend [2008];

Beyer et al. [2000]; Zaidi et al. [2007]). As discussed by Disselhorst et al. [2014]

and Musafargani et al. [2018] the rationale behind this was that the high contrast

in soft tissue provided by MR would allow a more accurate localisation of the

high uptake PET region and with the benefit of avoiding the CT radiation dose.

In addition, MR can deliver anatomical information as well as complementary

functional information that can be obtained via diffusion, perfusion, spectroscopy

and so on. Furthermore, MR gives the ability to detect motion and thus, it can

be used for motion correction. Finally, one of the driving forces in the initial

development of PET-MR scanners was the reduction of the positron range in a

magnetic field of the MR scanner. In fact, the distance positrons travel before

annihilation is reduced in the direction orthogonal to the magnetic field. As a

result, improved in-plane resolution can be obtained and it is proportional to the

field strength.
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2.3.2 Challenges in PET-MR Imaging

Despite all the aforementioned benefits related to PET-MR, important difficul-

ties needed to be tackled. Some of these issues, such as attenuation correction,

are still a matter of ongoing research (Delso and Nuyts [2018]). The most im-

portant issue related to simultaneous PET-MR acquisition was the fact that the

PET and the MR systems can have mutual interference. For example, since the

beginning of PET technology, photomultiplier tubes (PMTs) were the gold stan-

dard for the detectors. Nevertheless, such detectors were particularly sensitive

to magnetic field, making the realisation of the PET-MR scanners very difficult.

The development of human PET-MR systems for simultaneous PET and MR ac-

quisition has been connected with the MR compatible solid state photodetectors

such as avalanche photodiodes (APDs) (Pichler et al. [1997]; Catana et al. [2006];

Renker [2007]; Britvitch et al. [2007]; and Schulz et al. [2009]). This technology,

however, presents low signal gain, high temperature dependance and a time res-

olution of the order of the ns which is not sufficient for time-of-flight (ToF). The

application of Silicon photomultipliers (SiPMs) to PET was discussed by Roncali

and Cherry [2011]). These devices represent the ideal tools as they are essen-

tially insensitive to large magnetic fields and have higher temporal resolution

than APDs.

Another major challenge for PET-MR is attenuation correction (Mehranian

et al. [2013]; Mehranian et al. [2016]; Catana et al. [2018]). In fact, the MR signal

is generated by the NMR related to proton concentration which is not related

to the attenuation of gamma rays and as a consequence, direct evaluation of the

linear attenuation coefficient is not possible with integrated PET-MR scanners.

Different attenuation correction (AC) techniques have been proposed and some
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of them are discussed by Hofmann et al. [2011] and Bezrukov et al. [2013]. These

techniques can be classified in three categories:

� Segmentation-based methods: Tissue classes are segmented from the MR

image and a uniform attenuation coefficient is assigned to each class, an

example was proposed using ultra short echo time by Keereman et al.

[2010];

� Population-based methods: use data from many patients to create an atlas

(Hofmann et al. [2008]) or a training sample for machine learning (Liu et al.

[2017]); the attenuation map is predicted by deforming a single template

image to adapt it to the individual anatomy of the patient;

� Data-driven methods: these use the information from the PET data to

create the attenuation map as proposed for example by Nuyts et al. [1999]

and Mehranian and Zaidi [2015].

In brain imaging, the cranial bone has an important impact on attenuation of

radioactivity in the brain. In particular, a high amount of photons will interact

with the bone leading to a high number of photons being absorbed. For this rea-

son, it is extremely important to estimate the bone attenuation coefficient. The

MR image, in general, does not show signal in the bone because of its short re-

laxation time T2. Ultrashort echo time sequences allow signal from the bone and

segment this into tissue classes to create the attenuation map. Fine regions, such

as, nasal cavities and cerebrospinal fluid are nonetheless commonly misclassified.

For whole-body imaging, AC can be more difficult because the ultrashort echo

time sequences are too time demanding to be applied for this purpose, and due to

the smaller field of view (FoV) of MR, the estimated attenuation map can show
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truncation artifacts Nuyts et al. [2013]. On the other hand, the impact of bone

attenuation is not as significant as in the brain. A segmentation-based technique

that separates air, lungs, fat, and soft tissue was proposed by Martinez-Möller et

al. [2009] which is currently the most used technique. Such a technique is also

the one implemented in the Siemens Biograph mMR, which is the PET-MR scan-

ner mostly used in this thesis. In general, the technique that should be applied

for AC varies depending on the application and the associated accuracy needed

(Bezrukov et al. [2013]). For instance, segmentation-based methods without a

bone tissue-class may be sufficient for standard clinical whole-body PET-MR

imaging. Nonetheless, for quantitative PET applications such as bone tumours

or bone marrow imaging, the bone tissue cannot be ignored without a loss of ac-

curacy. For this reason, atlas and machine learning algorithms are beneficial for

these studies. In brain imaging applications, consideration of bone is mandatory

to have acceptable accuracy and it is implemented in all methods for brain MR

AC. Nowadays, atlas and machine learning techniques have been shown to pro-

vide higher accuracy than segmentation-based methods (Torrado-Carvajal et al.

[2018]).

2.3.3 MR-driven Reconstruction Algorithms

One of the limitations of PET is the low resolution it provides. Because of this,

PET images are affected by the PVE which causes severe accuracy degrada-

tion, especially for small regions. Based on the assumption that the radiotracer

uptake distribution follows specific anatomical patterns, the anatomical infor-

mation can help to promote smoothness within a tissue region while preserving

edge formation. Anatomically-driven algorithms have been proposed to correct

33



Chapter 2

the PVE in PET. Several studies have recently implemented and investigated

different anatomically-driven techniques, showing improvements in accuracy and

precision while preserving the resolution that is usually lost through the reg-

ularisation process. Some of these method were applied after reconstruction

(Müller-Gärtner et al. [1992]; Rousset et al. [1998]; and Silva-Rodŕıguez et al.

[2016]), while in other techniques, the anatomical information is modelled into

the iterative process. For the latter case, the anatomical information was initially

included in a prior distribution using Bayesian techniques, which can be classi-

fied into segmentation-based (Bowsher et al. [1996]; and Baete et al. [2004]) and

segmentation-free techniques (Somayajula et al. [2011, and references therein];

Tang and Rahmim [2009]; Bai et al. [2013]; and Jiao et al. [2015]) where the

latter avoids the potential error in segmentation. In particular, some of these

techniques were also thought to include mutual information from the anatomical

and functional images: Wells et al. [1996] used the mutual information to propose

a registration method for images of different modalities, while Rangarajan et al.

[2000] used the information to create a Bayesian prior for functional image re-

construction. Nuyts [2007] showed that these approaches lead to bias when there

are differences between the anatomical and functional images, and demonstrated

that the joint entropy is a more flexible method in these circumstances.

More recent studies have proposed a different approach to introduce prior

information. Such techniques benefit from the machine learning theory which

goes under the name of the kernel method (Hoffman et al. [2008]). Hutchcroft

et al. [2014] and Wang and Qi [2015] introduced this technique in PET image

reconstruction using one prior information image, MR and PET respectively, to

regularise reconstruction, and showing better performance than a wide set of
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Bayesian techniques. Novosad and Reader [2016] used the kernel method com-

bined with temporal basis functions in order to perform full dynamic PET re-

construction. Ellis and Reader [2016] proposed the use of kernelised expectation

maximisation (KEM) in the context of dual-dataset longitudinal PET studies,

where a baseline scan reconstruction was used to define basis functions for a

follow-up scan reconstruction. Gong et al. [2018a] used a hybrid kernel method

to perform direct reconstruction of Patlak plot parameters from dynamic PET

using MR and PET information, where the latter was obtained by combining

different frames. The first relies only on the MR image which can create PET

feature over-smoothing or artifacts, while the second only relies on PET, which

already contains PVE, and further it needs preliminary PET reconstructions.

The main focus of this thesis is the implementation and investigation of a novel

hybrid image reconstruction algorithm for accurate low-count imaging. The pro-

posed method is an iterative reconstruction algorithm making use of the kernel

method. In particular, the main novelty is that synergistic PET-MR informa-

tion is included in the iterative process. This will be discussed in detail in the

following chapters.

2.4 Software for Tomographic Image Reconstruc-

tion

The main software library that will be used for this thesis is the software for to-

mographic image reconstruction (STIR) (Thielemans et al. [2012]) is an object-

oriented library based on C++; it provides classes and utilities for SPECT and

PET image reconstruction, image and sinogram manipulation, estimation of cor-
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rection sinograms, analytical simulation and image analysis.

STIR contains a number of 2D and 3D reconstruction algorithms, such as an-

alytic, iterative and anatomically-driven (Jacobson et al. [2000]; and Bettinardi

et al. [2002]). The hierarchy of the library is characterised by inheritance which

allows each class to reuse the attributes and behaviour of the ancestor classes

without repeating part of the code that is common to different classes. Figure

(2.7) shows the class hierarchy for the image reconstruction algorithms, OSMA-

POSLReconstruction, which is widely used in this project and a derived class,

called KOSMAPOSL, described in Appendix B, was implemented to incorporate

the kernel functionalities.

Figure 2.7: Class hierarchy for the reconstruction algorithms (Thielemans et al.

[2012]).

The OSMAPOSLReconstruction allows use of many algorithms, such as MLEM,

OSEM and standard priors like MRP and QP and the anatomically-guided PLS

(implementated by the candidate during this project) via the use of different ob-
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jective functions for motion correction, LM reconstruction and so on. All these

algorithms make use of forward and backward projection operations which are

implemented in STIR, as described by Thielemans et al. [1999].

The reconstruction requires the correction sinograms to be estimated. For

every dataset in this thesis, these sinograms have been estimated as follows:

Attenuation: is estimated using the formula, e−fµ , where fµ is the forward

projection of the attenuation coefficient image obtained from the scanner.

The attenuation image has to be in units cm−1;

Normalisation: consists of multiplicative correction factors that are ap-

plied during the forward and backward projection operations. The proce-

dures for these evaluations in STIR are done following Hogg et al. [2001]

where, different components, such as geometric components, time window

misalignment between blocks and crystal efficiency factors, were estimated

using a maximum likelihood approach.

Randoms: are estimated from singles, which were calculated from delayed

events using a maximum likelihood approach (Jacobson and Thielemans

[2008]).

Scatter: it is performed as described by Tsoumpas et al. [2004] and dis-

cussed in more detail by Polycarpou et al. [2011]. In particular, the scat-

ter sinogram is estimated using an upgraded version of the Watson single

scatter simulation algorithm from a down-sampled attenuation image and

sinogram; the sinogram is then interpolated to match the data sinogram,

and finally it is rescaled using tail-fit in order to account for multiple scatter

and events outside the field of view (Thielemans et al. [2007]).
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Quantitative Performance of

Standard Iterative

Reconstruction Techniques for

Low-count PET-MR Data

In the previous chapter the theory behind PET image reconstruction was dis-

cussed, and the background required to understand the standard techniques were

introduced. In this chapter, the standard methods are assessed and compared

for low-count circumstances, which are obtained by using short frames. In this

way, an example of the limitations of such algorithms with real data is given be-

fore the introduction of the proposed MR-driven method. This chapter does not

claim to propose a novel methodology but to introduce the standard reconstruc-

tion algorithm performance using low-count real data for the Biograph Siemens

mMR.
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3.1 Introduction

As already mentioned in the previous chapter, most of the algorithms used for

PET image reconstruction are based on the same concept as the MLEM al-

gorithm. The accelerated version of MLEM, called OSEM, which divides the

datasets in balanced ordered subsets of projection data (Hudson and Larkin

[1994]), is widely used in the clinical practice with PET studies, because it is

easily implemented and provides good images using a small number of iterations.

Other algorithms are available, such as OSMAPOSL where the posterior den-

sity, which includes prior information, is maximised rather than the likelihood.

These iterative algorithms are all implemented in the STIR library (Thielemans

et al. [2012]) making it possible to perform a comparative study as a simple task.

The aim of this investigation is to study real data with the standard techniques

implemented in STIR for the Siemens Biograph mMR for low-count datasets.

The algorithms under investigation are MLEM, OSEM, OSMAPOSL-QP and

OSMAPOSL-MRP. For simplicity OSMAPOSL-QP and OSMAPOSL-MRP will

be referred to as QP and MRP, respectively. Their performances were assessed

in terms of different figure of merits on single time frame and for ten replicates.

ciao

ciao

ciao

ciao

ciao

ciao
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3.2 Methods and Material

3.2.1 Phantom Data

The data used in this study were acquired with a Siemens Biograph mMR scan-

ner at University College London Hospital. This scanner, described in detail

by Delso et al. [2011], has 8 rings, each one divided into blocks of 56 lutetium

oxyorthosilicate (LSO) crystals (each crystal: 4×4×20 mm3). The axial field of

view is 258 mm. The Hoffman 3D Brain Phantom (Hoffman et al. [1990]) was

used, which can provide a realistic approximation of the radioisotope distribution

found in the normal brain. The phantom consists of a robust plastic cylinder (Di-

ameter: 20.8 cm, Height: 17.5 cm, Fillable volume: ∼ 1.2 l) and 19 independent

plates within the cylindrical phantom. It was filled with 60 MBq 18F-FDG and

the acquisition time was 3600 s. The total number of events (prompts) including

random and scatter is about 109, which represents a standard for brain acqui-

sitions. The LM file was then partitioned into 10 time frames, so as to obtain

datasets with lower number of counts. The latter was obtained by selecting time

frames, of about 36 s, when creating the sinogram with STIR. The duration of

each time frame is calculated to take into account the decay rate and to give

approximately the same expected number of events for each replicate. Hence the

time window is calculated as follows:

∆tn = tn − tn−1 n = 1, ... , 10 (3.1)

where n represent the sample, t0 = 0, t1 = 36 s, and where

tn = −τ ln

(
n

(
exp(−t1

τ
)− 1

)
+ 1

)
n = 1, ..., 10 (3.2)
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is the time reached at the nth time frame and τ is the reciprocal of the decay

constant, λ, for 18F.

3.2.2 Reconstruction Setup

The data were reconstructed with different ordered subsets iterative algorithms.

For OSEM, 3, 9, 21 subsets were used, to study whether the choice of the num-

ber of subsets affects the reconstructed image. With the other algorithms 21

subsets and 5 complete iterations (hence a total of 105 sub-iteration) were used.

Post-filtering using an isotropic Gaussian filter (FWHM = 5 mm) allows noise

reduction for OSEM. In the clinic, 3 iterations for 21 subsets are usually used,

however, 5 is chosen here because the value of each ROI reached a plateau at this

iteration. The Bayesian algorithms include a regularising parameter, β, which

must be chosen. Several β values, 0.5, 5, 10, 25, 50, 100, 500 and 1000 were com-

pared for both QP and MRP, described in Section 2.1. Firstly, the Euclidean

distance of the points, in the plots from Figure (3.2(b)), was calculated from the

origin. The distance, D, of the points can also be seen as a modified version of

RMSE where bias and variance are normalised by the ROI mean:

D =
√
bias2 + CoV 2. (3.3)

Secondly, the sum of the distances (SOD) of each ROI was calculated as follow:

SD = Dw +Dg, (3.4)

where Dw is the distance calculated for the ‘white matter’ and Dg for the ‘gray

matter’. Finally, the best trade-off was chosen as the smallest SOD. The im-
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age size after the reconstruction is 289×289×127 with voxel size 2.04×2.04×2.03

mm3. STIR 3.0 was used both for reconstruction and for all corrections (atten-

uation, scatter, normalisation and randoms).

3.2.3 Image Analysis

The image reconstructed with 126 iterations of MLEM (126 was the iteration

number where the mean value of the ROIs had reached a plateaux) using the

3600 s acquisition data was used as a reference for the bias formula. The choice

of the 3600 s as the ‘true’ image is due to the fact that images reconstructed from

low count data are biased (Walker et al. [2011]), and the closest to the ‘truth’

is the image reconstructed from the long acquisition. To analyse the images,

circular regions of interest (ROIs), were used. Six circles with 6 mm radius,

each one positioned across three different slices, were located in a way that three

circles lay within the ‘gray matter’ and the other three in the ‘white matter’ as

shown in Figure (3.1). The analysis was carried out considering the three circles

as one ROI for each tissue. For every ROI, the bias and CoV were calculated and

used to study how the various reconstruction methods differ from MLEM, and

to assess the variability in the ROIs. Corrections were performed as described in

Section 2.4. For every ROI the bias and CoV were calculated and used to study

how the various reconstruction methods differ from the gold standard, and to

assess the variability in the ROI. The following formulas represent bias and CoV

for each region:

bias =
t−MT

MT

× 100, (3.5)
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CoV =


√

1

V − 1

∑V
j=1(tj − t)2

t

× 100, (3.6)

where MT is the mean value of the gold standard, t is the mean value within the

ROI, j the voxel index, tj denotes the value of the single voxel j inside the ROI

and V represents the number of voxels inside the three circles.

(a) (b) (c)

Figure 3.1: Regions of interest chosen for this study in different slices. The red

ROI is for ‘gray matter’ and the blue one for ‘white matter’.

To ensure exactly equal experimental conditions, ten samples with roughly

the same number of counts were created, by sub-sampling from the 3600 s data,

so as to mimic 36 s acquisition times and to allow assessment of reconstruction

repeatability. The effective acquisition time was reduced from 3600 s to 36 s

in order to simulate low-count datasets. Voxel-wise analysis was also performed

on the low-count reconstructed images, using standard deviation (SD) over time

frames, SDt, bias and RMSE to quantify respectively accuracy, repeatability and

the trade-off between the two.

In general, to define a general quantitative analysis design, suppose that K
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replicate datasets are available, {Y k : k = 1, . . . , K} and that the corresponding

result of the algorithm are estimated radiotracer concentration images {Λ̂k :

k = 1, . . . , K}. These can be used to define a mean image, Λ̄ =
∑K

k=1 Λ̂k/K.

Further, recall that a ‘gold standard’, Λ∗ is available from the 3600 s dataset

reconstructed using the MLEM algorithm. The SDt, bias and RMSE are then

defined as follows:

SDt =

√√√√ 1

K − 1

K∑
n=1

(Λ̂k − Λ̄)2; bias = Λ̄− Λ∗; RMSE =

√
SD2

t + bias2.

(3.7)

The ideal reconstruction algorithm would produce low values for each of these

measures indicating high reproducibility from the replicate datasets and lack of

overall bias.

3.3 Results

Convergence of the algorithms was studied by plotting the bias as a function of

the number of iterations. Figure (3.2(a)) shows, for OSEM, the percentage bias

and CoV for different subsets and number of iterations with the CoV represented

by the bars. Such a study represents a preliminary investigation to investigate

the quantitative effect of the number of subsets and the number of iterations.

The penalty factor for the OSMAPOSL methods was optimised in order to find

a reasonable trade-off between bias and CoV. In Figure (3.2(b)) the results of

this optimisation study were shown and the chosen β values are listed in Table

(3.1). Figure (3.2(c)) represents a comparison between the optimised algorithms

in terms of bias and coefficient of variation (CoV) (bars), for each method and
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ROI. Figure (3.3), shows the reconstructed phantom images for the 3600 s and 36

s reconstructed images with OSEM and the images obtained from the optimised

OSMAPOSL algorithms for the low-count case. The SDt was evaluated for these

ROIs over the samples and the results showed that optimisation also helps to

reduce the variability over samples, which is 9% for ‘gray matter’ and 24% for

‘white matter’, whilst in the worst case scenario, i.e. OSEM with no post-

filtering, is 61% and 90%.

Table 3.1: Optimised β values for MAP algorithms for the 36 s frames.

β values (36 s)

QP 1000

MRP 500

The results of the statistical investigation with the 36 s dataset over the

Gray Matter
OSEM OSEM+G QP,β=100 QP,β=1000 MRP,β=100 MRP,β=500

mean 2.47 ± 0.59 2.39 ±0.12 2.47 ±0.26 2.39 ±0.15 2.49 ±0.21 2.42 ±0.16
SDt 1.53 ±0.44 0.22 ±0.05 0.67 ±0.13 0.22 ±0.05 0.50 ±0.1 0.23 ±0.05
bias 0.41 ±0.36 0.22 ±0.15 0.25 ±0.18 0.22 ±0.15 0.25 ±0.18 0.23 ±0.16
RMSE 1.61 ±0.48 0.33 ±0.12 0.74 ±0.14 0.33 ±0.12 0.59 ±0.13 0.34 ±0.12

White Matter
OSEM OSEM+G QP,β=100 QP,β=1000 MRP,β=100 MRP,β=500

mean 0.55 ±0.25 0.61 ±0.07 0.55 ±0.17 0.57 ±0.09 0.56 ±0.09 0.62 ±0.07
SDt 0.57 ±0.35 0.14 ±0.03 0.38 ±0.13 0.14 ±0.03 0.17 ±0.04 0.08 ±0.02
bias 0.16 ±0.13 0.14 ±0.08 0.11 ±0.08 0.10 ±0.07 0.09 ±0.06 0.13 ±0.09
RMSE 0.61 ±0.35 0.20 ±0.06 0.41 ±0.13 0.17 ±0.05 0.20 ±0.05 0.16 ±0.07

Table 3.2: Summarised results using three circular ROIs per tissue, spread over
gray and white matter. The numbers represent the averaged voxel value over
all the voxels inside the ROI with the relative SD over the voxels within the
ROI. The SDt row, on the other hand, is a measure of the variability over the 10
samples used.

ten replicate datasets are represented in Figures (3.4) and (3.5). These show a
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(a) (b)

(c)

Figure 3.2: Results for one of the ten 36 s frames: (a) shows the behaviour of the
bias and CoV (represented by bars) as a function of the number of iterations.
In addition, it shows the effect of the number of subsets for ‘white matter’ and
‘gray matter’; (b) bias-CoV trade off for QP and MRP for several β values in
the two penalised algorithms; (c) shows bias and CoV for the images obtained
with OSEM, QP and MRP, where the β value is the one with the best bias-CoV
trade-off.
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(a) (b) (c) (d)

Figure 3.3: Transverse phantom view for images reconstructed with 21 subsets at
the 5th iteration: (a) 3600 s reconstructed image with OSEM; 36 s reconstructed
images with: (b) OSEM + 5mm Gaussian filter; (c) MRP, β=500, and (d) QP,
β=1000.

single dataset reconstruction (Sample), mean, SDt, bias and RMSE images for

6 different cases. Figure (3.4) shows the OSEM corresponding image, the image

after the Gaussian smoothing post-processing, then the OSMAPOSL estimations

using QP with β = 100. Figure (3.5) shows the remaining results for QP with

β = 1000 and then MRP with β = 100 and finally β = 500. The values of

the prior parameters were chosen to give a range of reconstruction quality, and

they were chosen based on the results from Figure (3.2(b)). The SDt shows the

variability over different samples, indeed the OSEM and OSMAPOSL estimates

with small prior parameter have SD is very high. Using a filter for OSEM to

produce the OSEM+G estimate, and higher prior parameter for MAP estimation,

help reduce the SDt and the higher the parameter the lighter are the SDt images.

Table (3.2) shows the mean voxel values for two ROIs, representing ’gray’ and

’white’ matter. Each ROI is obtained as described in Section 3.2.3. The mean,

SDt, bias and RMSE values are calculated from the images showed in Figure

(3.4) and (3.5).
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3.4 Discussion

The purpose of this chapter was to investigate the feasibility of image recon-

struction when short acquisition time is used, and compare the performances

of various iterative algorithms in this situation. The study assessed the conse-

quences on image quantification also giving a measure of the reproducibility of

the results. Figure (3.2(a)) shows that 21 subsets can be used without signifi-

cant impact on the quantification. The optimum β value was chosen as the best

trade-off between bias and CoV among a set of different β values. The images re-

constructed with the optimum β (see Table (3.1) are compared in Figure (3.2(c)).

Note that a possible way to choose the regularisation parameter is represented by

the L-curve described in Hansen [1999] which displays the trade-off between the

size of a regularised solution and its fit to the given data, as the regularization

parameter varies. The comparison shows that the region with lower uptake have

also higher bias and CoV except for the QP which has smaller bias for the ‘white

matter’ than the ‘gray matter’. In addition, QP gives the best results for both

ROIs compared to MRP and OSEM.

From Figure (3.3) it is possible to notice the loss of resolution and contrast in

the 36 s images compared to the 3600 s images. This preliminary results, however

represents the analysis performed with only one time frame. A more complete

analysis was carried out with ten samples. In this case, the same algorithms were

compared by estimating the mean image, bias image, SD image and RMSE im-

age to show the quantification results under a voxel-wise level. The mean images

from Figure (3.4) and (3.5) show the improved quality when combining the infor-

mation from all the 10 samples, however the image that one would look at after

a low-count acquisition is the sample image. The images from OSEM, QP, with
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OSEM OSEM+G QP, β = 100

Figure 3.4: Transverse view of images reconstructed with 21 subsets at the 5th

iteration: 36 s acquisition.
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QP, β = 1000 MRP, β = 100 MRP, β = 500

Figure 3.5: Transverse view of images reconstructed with 21 subsets at the 5th

iteration: 36 s acquisition.
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β=10, and MRP, with β=10, have very high RMSE although it decreases with

higher prior parameter values. The best values for ’Gray’ Matter, 0.33, 0.33

and 0.34 are reached with the post-filtered OSEM, QP-β=1000 MRP-β=500,

whilst for ’White Matter’ are 0.16, 0.17 and 0.20 which correspond to MRP-

β=500, QP-β=1000 (see Table (3.2). From Figures (3.4) and (3.5) it is possible

to appreciate how the use of regularisation helps to reduce noise, to improve

precision over samples, and, in the inner regions of ‘Gray’ and ‘White’ matter,

to reduce the bias. Nevertheless, from the bias and RMSE images it is evident

how this improvements come at the cost of PVE, especially when one looks at

small regions and borders between different tissues. From a global perspective,

improved reconstructed images can be achieved by a careful choice of the reg-

ularisation parameter, however, low-count reconstructed images always showed

high noise and bias with all the investigated algorithms illustrating the limitation

represented by the standard techniques. In addition, the performance of OSEM

with Gaussian post-filtering was shown to be sufficiently good if compared to

QP and MRP, which are difficult to optimise. This is the reason why Bayesian

techniques were not translated to the clinic until the recent study by Ahn et al.

[2015], which aims at the translation of the Bayesian reconstruction algorithm

using the relative difference prior. Ahn et al. [2015] have demonstrated that

regularisation with more advanced prior distribution can significantly improve

quantification and detectability compared with post-filtered OSEM. Anatomical

information from CT or MR is an important point to consider in the development

of hybrid reconstruction methods as it helps to preserve anatomical borders and

avoid PVE (Somayajula et al. [2011]; and Ehrhardt et al. [2016]).
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3.5 Conclusions

The objective of the study was to compare the performances and limitation of

various iterative algorithms when short acquisition times are used. Different β

values were compared, for the Bayesian techniques, showing that improved re-

construction can be achieved by a careful choice of the prior parameter, although

the loss of fine details still represents an issue to be solved. The work in this

chapter was part of the research training on studying and comparing existing

reconstruction algorithms within the STIR framework. As a consequence, the

contents do not represent novel methodologies, although, it was the first quan-

titative study using STIR for the reconstruction of low-count datasets obtained

from data acquired with the Biograph Siemens mMR.
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Introduction and Validation of

LM-HKEM

In the previous chapter the performance of iterative algorithms under low-count

circumstances was investigated. In this chapter a novel iterative algorithm,

HKEM, is introduced with the aim of improving all the issues encountered in the

previous chapter and improving quantification at different count-levels. Section

4.1 gives an introduction to the existing MR guided techniques, highlighting the

novelty of HKEM, and the purpose of the method. Section 4.2 describes the

mathematical aspects of the hybrid kernelised reconstruction algorithm. Section

4.3 describes the datasets used to study image reconstruction, LM sub-sampling

and the experimental methodology. Section 4.4 presents results and a comparison

of the different standard algorithms with the proposed algorithm. The results

are discussed in Section 4.5 and conclusions are drawn in Section 4.6.
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4.1 Introduction

Since the introduction of hybrid scanners, such as PET-CT and PET-MR, sev-

eral anatomically-driven reconstruction methods have been proposed to better

exploit the dual information provided by these scanners. There are different

ways of introducing anatomical information into the iterative reconstruction.

The most common is based on the Bayesian approach where instead of maxi-

mizing a Poisson density function, the posterior density function is maximised.

These techniques have shown promising results in terms of image quality and

quantification (Vunckx et al. [2012, and references therein]; and Ehrhardt et al.

[2016]) To exploit the fact that PET-MR scanners allow the acquisition of PET

and MR data simultaneously, synergistic reconstruction of these two has also

been investigated in order to improve the quality of both PET and MR images

(Ehrhardt et al. [2014]; Knoll et al. [2017]; and Mehranian et al. [2018]).

Most recently, another approach to include prior information was introduced

based on the kernel method, which is commonly used in machine learning (Hoff-

man et al. [2008]). The technique was first applied to PET image reconstruction

by Hutchcroft et al. [2014, 2016] and Wang and Qi [2015]. In these studies

a single prior information image, MR or PET, was used to regularise recon-

struction. Novosad and Reader [2016] used the kernel method combined with

temporal basis functions in order to perform full dynamic PET reconstruction.

Ellis and Reader [2016] proposed the use of kernelised expectation maximisa-

tion (KEM) in the context of dual-dataset longitudinal PET studies, where a

baseline scan reconstruction was used to define basis functions for a follow-up

scan reconstruction. Gong et al. [2018a] used a hybrid kernel method to per-

form direct reconstruction of Patlak plot parameters from dynamic PET using
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MR and PET information where the latter was obtained by combining differ-

ent time frames. These previous studies were carried out using sinogram-based

reconstruction. Bland et al. [2017] studied the effect of KEM on simulated dose-

reduced datasets, showing improved contrast to noise ratio, but at the cost of

possible over-smoothing of features unique to the PET data. To overcome this

issue, Bland et al. [2018] proposed an MR resolution spatially constrained kernel

method in order to maintain the noise reduction properties of the conventional

kernel method, whilst better retaining the features unique to the PET data.

The work presented in this chapter proposes a novel iterative reconstruction

technique to overcome the issues associated with low-counts discussed in the

previous chapter, the problem of PET unique feature suppression reported in the

previously mentioned studies using only the MR-based kernel, and to improve

contrast of lesions at different count levels. This chapter explores the performance

of the hybrid kernel method for LM reconstruction (LM-HKEM) of static images

exploiting one MR image and the PET information, iteration after iteration.

Such a procedure avoids the need for a preliminary reconstruction from PET

data, as in Wang and Qi [2015]. The MR component is a constant part of

the kernel which has to be chosen according to the type of study one wants

to perform. The proposed method is designed to improve quantification with

minimal PET unique feature suppression, while keeping good resolution and

image quality, at various count-levels. Both LM-KEM and LM-HKEM in this

study use a voxel-wise and spatially restricted kernel rather than a patch-wise

kernel (Wang and Qi [2015]). The method performance was studied on four

datasets: simulated torso, Jaszczak phantom and two patient studies showing

plaques in the arteries. The method was compared with different algorithms
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such as OSEM and OSMAPOSL with different priors.

4.2 Theory

The kernel method is a technique commonly used in machine learning (Hoffman

et al. [2008]). It aims to find a short description of the data by taking advantage

of what is called a training sample where ‘structure’ can be extracted. One of

the most general ways to represent data is to specify a similarity between pairs

of objects. Suppose to empirical data is available

(v1, w1), ..., (vn, wn) ∈ V ×W, (4.1)

where V is the domain of the inputs, vj, and W is the domain of the outputs,

wj. The idea is to generalise for unseen data points. That is to say, given some

new input v ∈ V , one wants to predict the corresponding output, w ∈ W . In

this case, the task is to predict the PET image of a subject, using PET data as

well as information from an image of the same subject in a different modality

(MR or CT).

The output, wj, can be written as a function, F , of the input, vj

wj = F (vj), j = 1, ..., Nj, (4.2)

F (vj) is a high dimensional and non-linear function but it can be described

linearly in a transformed space, {Φ(vj)}Njj=1,

F (vj) = µTΦ(vj), (4.3)
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where Nj is the number of inputs used to estimate output j, Φ is a vector

mapping function and µ is a weight vector also sitting in the transformed space

with

µ =

Nj∑
l=1

αlΦ(vl), (4.4)

where αl is an element of the coefficient vector, α. At this point, it is clear how

the outputs can be described as a linear function in a dot product space, called

feature space, as

wj =

Nj∑
l=1

αlΦ(vl)
TΦ(vj). (4.5)

The dot product is a similarity measure in the space V and it defines the kernel,

k

k : V × V → R, (vl, vj) 7→ k(vj, vl) (4.6)

satisfying, for all vl, vj ∈ V , the following identity

k(vj, vl) = 〈Φ(vl),Φ(vj)〉 . (4.7)

The advantage of using a kernel as a similarity measure is that it allows con-

struction of algorithms in dot product spaces without explicitly defining Φ. The

kernel approach can be applied using the LM-OSEM reconstruction algorithm.

For simplicity, the mathematical formulation of the algorithm is shown for 1 or-

dered subset. The LM-OSEM iterative update for a voxel, j, and sub-iteration,
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n+ 1 is given by

λ
(n+1)
j =

λ
(n)
j∑

i∈Jj cij

L∑
i=1

cij
1∑

k∈Ii cikλ
(n)
k + si

, (4.8)

where λ
(n)
j is the estimated jth voxel value at the nth sub-iteration and cij is

the ijth element of the system matrix. This represents the probability that an

event occurring in voxel j produces a coincidence in the ith pair of detectors, si

is the additive sinogram containing scatter and random events, Jj is the set of

projections that contribute to the value in voxel j, and Ii is the set of voxels that

contribute to projection i.

Each voxel value of the image, λ, can be represented as a linear combination

using the kernel method. So, λj can be described using the kernel matrix

λj =

Nj∑
f=1

αfkfj, (4.9)

where kfj is the fjth kernel element of the matrix, K, where Nj is the number

of feature vectors used to estimate voxel j, typically one for every nearest neigh-

bour allowed (50 in a 7×7×7 window in Wang and Qi [2015]). Different kernel

functions are proposed in the literature, with the most used in medical imaging

being the Gaussian kernel

k(vf ,vj) = exp

(
−‖vf − vj‖

2

2σ2

)
. (4.10)
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4.2.1 Kernel Matrix Construction

In contrast to previous work, where the kernel was created using either MR or

PET images, or where the kernel method is used in conjunction with spectral

temporal basis functions for dynamic PET reconstruction, here a LM hybrid

kernel method that uses information from both MR images and PET update

images is proposed. The PET image, used to construct the hybrid kernel, is

helpful in tackling the mismatch problem between PET and MR. The dependency

on the iterative process helps avoiding the need for a preliminary reconstruction

to obtain the kernel. Taking into account the fact that the kernel is iteration

dependent, the iterative step becomes the following

α
(n+1)
f =

α
(n)
f∑Nf

j=1 k
(n)
fj

∑
i∈Jf cfi

Nf∑
j=1

k
(n)
fj

L∑
i=1

cij
1∑

l∈Ii cil
∑Nl

q=1 k
(n)
ql α

(n)
q + si

, (4.11)

with

k
(n)
fj = km(vf ,vj) · kp(z(n)f , z

(n)
j ), (4.12)

where

km(vf ,vj) = exp

(
−‖vf − vj‖

2

2σ2
m

)
exp

(
−‖xf − xj‖

2

2σ2
dm

)
, (4.13)

is the kernel coming from the MR image and

kp(z
(n)
f , z

(n)
j ) = exp

(
−
‖z(n)f − z

(n)
j ‖2

2σ2
p

)
exp

(
−‖xf − xj‖

2

2σ2
dp

)
, (4.14)
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is the part coming from the PET iterative update. The α
(n)
f is the kernel coef-

ficient f estimated at iteration n, xj is the coordinate of the jth voxel, vj and

z
(n)
j are the feature vectors calculated respectively from the MR image and nth

PET update image, α, while σm, σp, σdm and σdp are scaling parameters for the

distances in (4.13) and (4.14), which allow to adjust noise suppression and edge

preservation. To make it easier to choose the kernel parameters (such as σm and

σp), the feature vector, vj, is normalised as

v̄j =
vj
SDm

, (4.15)

for km(vf ,vj), where SDm is the SD of the mean voxel value over the whole MR

image vj. For the PET contribution, kp(z
(n)
f , z

(n)
j ), this normalisation is slightly

different. The differences in (4.14) are normalised with α
(n)
j

z̄
(n)
f − z̄

(n)
j =

z
(n)
f − z

(n)
j

α
(n)
j

. (4.16)

In this way, the normalisation is the same for every voxel f in the neighbourhood.

Local mean voxel values are not used because the operation would need to be

repeated for every voxel of the image and every sub-iteration making the method

more computationally demanding. The SD is also not used because of the fact

that the first PET image used for the kernel is uniform, the standard deviation

is then zero, and division by zero will break the reconstruction. If the voxel,

α
(n)
j , is zero the kernel is not applied to avoid division by zero. Note that α

(n)
j is

exactly zero only outside the field of view.

Once the kernel matrix is created it is used in the first sub-iteration of HKEM

to estimate α1, and as a consequence the PET image λ1. Then, image α1 will be
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used to calculate the PET component of the kernel, while the MR component is

stored in memory. The process will be repeated for every sub-iteration. Figure

(4.1) describes the creation of the feature vectors from the PET and MR image

voxel values, and the process of the learning and reconstruction of the HKEM

method, the KEM diagram can be obtained easily by removing the PET compo-

nent in the creation of the kernel. In the traditional kernel method the learning

part comes before the reconstruction, while the HKEM contains an iterative

learning component which comes from the iterative reconstructed image.

The iterative property of the HKEM method updates the training sample with

more relevant information. In addition, preliminary reconstructions to obtain the

PET input to estimate the kernel are not necessary, therefore making the process

faster and direct.
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(a) (b) (c)

Figure 4.2: Slices of the MR images used to estimate the kernel matrix for
different type of PET data (a) simulated anthropomorphic torso, (b) [18F]FDG
and (c) [18F]NaF.

Note that the method has a certain similarity with the use of Sieves with the

MLEM proposed by Snyder and Miller [1985]. In fact, in this study a Gaussian

kernel convolution is used containing only the PET information.

4.3 Methods and Materials

4.3.1 Simulation Study

A realistic simulation study was carried out to validate the proposed method

and investigate its performance under controlled conditions. The simulated data

were produced by a Monte Carlo numerical simulation based on GATE (Jan

et al. [2004]) which uses accurate physical modelling. The specific simulation is

described in detail by Tsoumpas et al. [2011], but in brief, it uses the Philips

Gemini TF scanner, described by Surti et al. [2007] having cylindrical geometry

with 70 cm diameter, 18 cm length and consists of detector blocks with 44×23

crystals along 28 detector blocks. Each crystal size is 22×4×4 mm3. The syn-
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thetic data represents an anthropomorphic torso showing uniform contrast in

clustered regions: lungs, myocardium, liver and three different spherical lesions

between lungs and liver as shown in Figure (4.3(a)). The three lesions have

their centres in different axial positions. To speed up the simulations they did

not include effects such as patient motion and positron range which would need

to be treated with appropriate modelling within the reconstruction system ma-

trix. The total number of simulated events is 6.5 ×107 with 18F-fludeoxyglucose

(FDG). In this study, the quantification in four cases was investigated: L1 (6

mm diameter) and L2 (12 mm diameter) are lesions which appear only in the

PET images; L3 (12 mm diameter) is a lesion appearing both in the PET and

the MR data (note from Figure (4.2(a)) that the MR image was augmented with

a synthetic lesion equal to L3); and L4 is the part of the soft tissue which ap-

pears only in the MR. The true uptake for these ROIs is 7, 8, 4 and 1 arbitrary

units (a.u.), respectively, for L1, L2, L3 and L4. The reconstructed image were

obtained using 23 subsets on a 128×128×87 grid with a 4×4×2 mm3 voxel size.

4.3.2 Phantom Experiment

A phantom experiment was performed with a Jaszczak phantom for resolution

studies and PET-MR data were acquired with the Siemens Biograph mMR scan-

ner at Mount Sinai Hospital, NY, USA. The phantom consists of cold rods of

different diameters: 12.7 mm, 11.1 mm, 9.5 mm, 7.9 mm, 6.4 mm and 4.8 mm.

The background represents the hot region, which was filled with 155 MBq of

[18F]FDG. PET data were acquired over 1 hour (5×109 measured events). The

attenuation image was obtained from a MR volumetric interpolated examina-

tion (VIBE) acquisition segmented into two tissue classes: air and water. This
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was done because the gold standard Dixon technique cannot discriminate fat

from water (Karakatsanis et al. [2016]) and the attenuation coefficients were

assigned erroneously. The MR contribution for the kernel was obtained from a

co-registered MR-VIBE sequence. The original voxel size was 0.35×0.35×1 mm3,

but it was then aligned to the PET field of view (FOV) and re-sliced to match the

PET native voxel size, 2.087×2.087×2.031 mm3, and FOV size, 344×344×127

voxels. PET images were reconstructed in two different cases: the original, high

count, 3600 s acquisition times and modified, low-count, 5 s acquisition times.

The low-count time frames were taken from the beginning of the long acquisitions

and, in order to contain around the same number of events, the decay process

was taken into account to give around 8.75×106 events.

4.3.3 Clinical Application

The LM-HKEM method was also applied to dynamic data for a patient with

suspected atherosclerotic plaques in the carotid arteries. The acquisition was

carried out using the Siemens Biograph mMR at Mount Sinai Hospital, NY,

USA, and a consent form was signed by the patient. The patient was injected

with [18F]FDG 184 MBq (1.62×109 measured events) for the first study and

[18F]NaF 189 MBq (8.31×108 measured events) for the second, both lasted 90

min. The attenuation images were obtained from the Dixon MR from a free-

breathing MR VIBE sequence using four tissue classes (air, fat, water and lungs).

The LM data were divided to reproduce 10 short time frames of about 30 s each.

Each of these frames contains about 1.17×107 events for the [18F]FDG study

and about 6.90×106 for [18F]NaF. The acquisition commenced 10 minutes after

the injection of the tracer. The MR part of the kernel matrix is obtained from
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a time-of-flight (TOF) MR angiography sequence (Figure (4.2(b)) and (4.2(c)))

producing an image with voxel size 0.7×0.7×1 mm3. This image is then aligned

to the PET field of view (FOV) and re-sliced to match the PET native voxel

size, 2.087×2.087×2.031 mm3, and FOV size, 344×344×127 voxels. The MR

TOF acquisition time is 540 s. A head and neck coil was employed: 3 slabs, each

consisting of 60 slices of 1 mm thickness and a coil attenuation map is included as

described by Eldib et al. [2015]. This image sequence is particularly suitable for

carotid PET-MR studies, because it provides high contrast between the carotid

arteries and the surrounding tissue.

4.3.4 Reconstruction Setup

All datasets were reconstructed with 21 subsets and 10 full iterations using LM-

HKEM. Given that subsets are used in this thesis the subset sensitivities were

caluclated for each case. The values of the parameters, N , σm, σp, σdm and

σdp are reported in Table (4.1). The size of the cubic neighbourhood, N , was

chosen to be 3×3×3 voxels, although 5×5×5 and 7×7×7 were also studied. It is

possible to see, in the results that for HKEM this does not show big improvement

but actually the RMSE becomes a little higher in some cases. For the KEM

the lesions L1 and L2, which are the most interesting as they are PET unique

feature, are over-smoothed when using bigger neighbourhood. In addition, a

bigger neighbourhood make the computation slower by a factor equal or bigger

than 2. Note that if the PET and MR images have the same dimension and voxel

size, then the Euclidean distances in Equations (4.13) and (4.14) are the same.

This is why σdm and σdp values are the same for HKEM. For the KEM there is no

σdp but only σdm. As demonstrated in both Wang and Qi [2015] and Hutchcroft
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et al. [2016], the RMSE is reduced when using more nearest neighbours. They

used the k nearest neighbours (knn) technique to reduce the number of voxels

in the neighbourhood and make the method less computationally demanding.

Because of the fact that this study uses compact feature vectors, the knn is

not used and it is possible to use the total number of available voxels in the

neighbourhood, which is 27. A preliminary study was carried out to confirm this

result. For comparison, the same datasets have been also reconstructed with

OSEM, as this is the algorithm used in clinical routine; the OSMAPOSL-MRP

and the OSMAPOSL-PLS (to be referred to as MRP and PLS), and the KEM

using the MR image. The PLS prior was implemented for this purpose in STIR,

following the description in Ehrhardt et al. [2016]. This inclusion was motivated

by the fact that the PLS prior depends on the gradient of the PET image and

the gradient of the MR image and as a consequence, its hybrid nature makes it

particularly relevant in the comparison. The PLS prior is decribed as follows:

V (λ) =

√
α2 + |∇λ|2 − 〈∇λ, ξ〉2 (4.17)

where α is a parameter which controls the edge preservation property of the PLS,

and

ξ =
∇m√

|∇m|2 + η2
(4.18)

contains anatomical information from the MR; where m is the MR image and η

is a parameter to avoid division by zero. Note that all algorithms in this study

use LM reconstruction; for this reason, the proposed algorithm is referred to as

HKEM, instead of LM-HKEM, from now on.
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Kernel parameter values

N=3×3×3

σdm=σdp σp σm

Simulation 1 1 1

Phantom 3600 s 3 1 1

Phantom 5 s 5 1 1

Patients 5400 s 3 1 1

Patients 30 s 5 1 1

Table 4.1: Parameter settings used for the different datasets

Scatter, attenuation, normalisation and random corrections were performed

in the same way as described in Chapter 3.

4.3.5 Image Analysis

The comparison was carried out in terms of contrast-to-noise ratio (CNR) for

the full dataset including all events, while bias and contrast recovery coefficient

(CRC) were considered for the low-count cases. The rationale behind the choice

of different image metrics for different count levels is that for the low-count case

it is possible to use the long acquisition reconstructed image with 10 iterations as

the ‘true’ image for the bias assessment and ‘true’ contrast for CRC. On the other

hand, only CNR is a meaningful measure of contrast for the long acquisition. The

10th iteration was chosen because it is assumed to be closer to convergence than

the 3rd, since the difference compared to the 30th iteration is only 0.8 %. Although

this study is focused on quantification, which is performed for all 10 iterations,

the images are shown at the 3rd iteration which provided good quantitative results

70



Methods and Materials

for all algorithms. The iteration could be chosen as the one which optimises a

specific figure of merit, such as CNR, however this is dependent on the chosen

ROI and varies between datasets. Therefore, using a fixed iteration number

to show the reconstructed images allows better consistency among the different

cases. For the Jaszczak phantom, the two regions which are reported in Figure

(4.3) have been chosen: the full hot region which was segmented from MR and

the cold rods were used as background to assess the impact of the noise and the

contrast in a uniform region. Region of interest (ROI) analysis was performed

on the clinical data using two separate regions: (a) the target ROI located in the

atherosclerotic plaque of the right carotid bifurcation, which was segmented from

the MR image, and (b) the background ROI drawn in the surrounding tissue of

the lesion.

Quantitative comparison was performed using different figures of merit for

the phantom and the patient. For the phantom:

CNR =
t− b√

SDt
2 + SDb

2
, (4.19)

bias =
1

P

P∑
p=1

tp −MT

MT

, (4.20)

and

CRC =
1

P

P∑
p=1

tp − bp
CT

, (4.21)

CoV =
1

P

P∑
p=1

CoV p, (4.22)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Regions of interest (ROI) chosen for this study: (a) three lesions,
L1, L2 and L3 and normal tissue region, L4 for the simulation, (b) the target
ROI extended over all the transaxial slices of the phantom (white part), and
the background described by the black rods; (c) target, t, and background, b,
ROIs for the patient [18F]FDG study with 5400 s acquisition; (d) target, t, and
background, b, ROIs plaque for patient [18F]NaF study with 5400 s acquisition;
(e) target, t, and background, b, ROIs for the patient [18F]FDG study with 30
s acquisition and (f) target, t, and background, b, ROIs for patient [18F]NaF
study with 30 s acquisition. The target and background ROIs are indicated by
the white arrows for (c), (d), (e) and (f).
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where t and b are the mean values over target (hot region) and background

(cold rods) ROIs, SDt and SDb are the standard deviations related to target and

background ROI, respectively. Note that CNR was used only for the single long

acquisition image. For the low-count images, a mean CRC, and a mean bias,

were calculated over the 10 sub-samples: MT is the mean value in the ROI of the

long acquisition reconstructed with OSEM at the 10th iteration and 21 subsets,

which is taken as the ‘true’ value, tp is the mean value of the chosen ROI and

sample p, P is the number of sub-samples, bp is the mean value of the target

background ROI, CT is the true contrast calculated from the long acquisition

image, and CoVp is the coefficient of variation (CoV) of the voxels inside the

region of interest for the specific sample or time frame and is estimated as the

percentage SD.

Apart from the calculation of CNR for the long acquisition, the analysis

procedure is slightly different with the patient data. This is due to the fact that

there are several sources of variability for a real human body, such as motion,

kinetics and others. Therefore, the average value over the 10 time frames was

not evaluated, while the CRC was calculated for each time frame. In addition,

a different form of bias, the bias of the sum was estimated in this case. In

particular, all the 10 time frame images were summed up and compared with

a reconstructed image from a 304.349 s acquisition. Note that the duration of

each time frame takes into account the decay process, which is the reason why

the sum is not 300 s. Bias and CRC were calculated as follows:

bias =
S −MT

MT

and CRCp =
tp − bp
CT

(4.23)

where S is the value of the sum over the time frames in the selected ROI, MT is
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the value in the same ROI for the 304.349 s image, and CT is the true contrast

calculated on the long acquisition image as the difference between the values of

target and background ROIs.

4.4 Results

4.4.1 Simulation

Figure (4.4) shows the optimisation of the kernel parameters (σp, σm, σdp and

N) in terms of RMSE. Note that σdm = σdp in this study because the voxel size

of the MR image is the same as of the PET image.

Figure (4.5) presents the bias-CoV plot in all ROIs, and over 10 iterations.

Also, it shows a comparison between OSEM, MRP, PLS, KEM and HKEM. The

image quality comparison is reported in Figure (4.6). Figure (4.7) shows the

line profiles for each lesion of the simulated phantom and for all algorithms, at

the 10th iteration.

RMSE

Lesion OSEM MRP PLS KEM HKEM

L1 11.37 55.92 68.0.5 36.49 20.48

L2 36.99 40.67 48.81 37.36 34.95

L3 38.35 43.10 16.78 26.92 27.65

L4 49.75 24.22 29.60 25.50 25.46

Table 4.2: RMSE at the iteration with minimum RMSE: OSEM 10, MRP 10,

PLS 9, KEM 25, HKEM 16.
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(a) (b)

(c) (d)

Figure 4.4: Effect of hybrid kernel parameters: (a) σp, (b) σm (c) σdm = σdp and
(d) N on RMSE using the simulated torso. The comparison is performed at the
10th full iteration.
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Figure 4.5: Bias-CoV plot for the ROIs L1, L2, L3 and L4. The figure shows the
comparison between reconstructed images with PLS, OSEM, OSEM+G, MRP,
KEM, the proposed method HKEM over 10 iterations for the simulated torso.
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(a)

(b)

Figure 4.6: Image comparison (a) between the True image and the reconstructed
images with OSEM, OSEM + 5 mm Gaussian post filter, MRP, PLS, KEM, the
proposed method HKEM over 10 iterations for the simulated torso; (b) the bias
image calculated from the ground truth.
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Figure 4.7: Line profile (LP) comparison between the true simulated image and
the reconstructed images with PLS, OSEM + 5 mm Gaussian post filter, OSEM,
MRP, KEM, the proposed method HKEM for the lesions L1, L2, L3, of the
simulated torso, at the 10th iteration.

78



Results

4.4.2 Phantom

Figure (4.8) reports the mean value of the phantom ROI as a function of the iter-

ation number to study the convergence rate of the kernel methods in comparison

with the convergence rate of OSEM. Figure (4.9) shows the ROI comparison,

using the Jaszczak phantom, between OSEM, MRP, PLS, KEM using MR, and

the proposed HKEM in terms of CNR for the long acquisition. All the images

shown correspond to the 3rd iteration. Figure (4.10) shows the image quality

obtained with all methods in this study. The top row represents the long ac-

quisition while the bottom shows the 5 s frame. Figure (4.11) reports the line

profiles showing the differences between rods of different diameter. Figure (4.12)

shows the mean bias, from equation (4.20), as a function of CoV . In Figure

(4.13) a ROI comparison is provided for the mean CRC, shown as a function of

the CoV over 10 iterations, using the 5 s reconstructions. The CRC was averaged

over the 10 sub-samples using the formula in (4.21) while the CoV was obtained

similarly using equation (4.22). The penalty factors of the MRP and all PLS

parameters were chosen to find a reasonable trade-off between bias and CoV.

A similar procedure was followed for each parameter of the kernelised methods.

The values of the kernel parameters are reported in Table (4.1). To give an idea

of the computational time, in Table (4.3) the reconstruction time required for

10 iterations of a 5 s frame for each algorithm is reported and they refer to the

University of Leeds high performance computer: each reconstruction used one

of the 10 cores Intel E5-2660v3 (2.6GHz) processor, and the available memory is

256 GB. The compiler that was used was GCC 4.4.7. ciao

c

79



Chapter 4

Computational time for 1 iteration

5 s frame reconstruction

Method OSEM MRP PLS KEM HKEM

Time (min per iteration) 11 12.8 13.5 14.8 16.2

Table 4.3: Computational time performances for the algorithms.

4.4.3 Patient studies

Similar image analysis was carried out for the patient studies. Figures (4.14) and

(4.18) show the CNR comparison, among all algorithms, for the [18F]FDG and

[18F]NaF study respectively, using the right carotid plaque (as it shows higher

uptake) in Figures (4.3(c)), (4.3(d)), (4.3(e)) and (4.3(f)) as the target (hot

region) and the surrounding tissue as the background (cold region). In Figures

(4.15) and (4.19), the CRC metric, as evaluated for the [18F]FDG and [18F]NaF

carotid study with equation (4.23) for four low-count (30 s) frames, illustrates

the consistency of the results. The four time frames cover, respectively, from

630-660 s, 720-750 s, 810-830 s and 870-900 s after [18F]FDG injection, and

600-630 s, 750-780 s, 780-810 s and 870-900 after [18F]NaF injection, and they

have been labelled accordingly. Bias was evaluated as described in section 4.3.5

using equation (4.20). Figures (4.16) and (4.20) show the comparison among

the different methods using the [18F]FDG and [18F]NaF data. The plot shows

the bias of the sum, as a function of the CoV related to each iteration. The

MR images used as the source of the kernel are shown in Figures (4.2(b)) and

(4.2(c)).

80



Results

(a)

(b)

Figure 4.8: Mean value over 30 full iterations: (a) for the hot ROI of the Jaszczak
phantom (b) for one voxel in the hot region of the phantom.
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Figure 4.9: CNR comparison between reconstructed phantom images with PLS,
OSEM, MRP, KEM, and the proposed method HKEM for 3600 s acquisition.

4.5 Discussion

In this chapter the proposed HKEM, which includes information from both MR

and PET, was validated and investigated. In addition, the results were compared

with a set of different algorithms. Particular attention is focused on the improve-

ment in quantification at different count-levels. The parameter study using the

simulation investigates four different cases. Regions L1 and L2 represent the

case of a lesion being only detected by PET, however L1 represents a borderline

case where the lesion is very small and it is also attached to the liver, making

it possible to study the limitations of the proposed method. Region L3 shows

the case where the lesion is detected from both MR and PET. Finally, L4 is the

region where PET contains uniform uptake while MR shows different soft tissues.

From Figure (4.4) it is possible to see how the RMSE changes as a function of

the parameters and for each ROI. It is generally safe to use the setting in Table
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Figure 4.10: Reconstructed images, at the 3rd iteration, with OSEM, OSEM +
5 mm Gaussian post filter, MRP, PLS, KEM using only MR and the proposed
method HKEM for the Jaszczak phantom. The figure reports in the top line the
3600 s acquisition, and in the bottom line the 5 s frame.
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Figure 4.11: Line profiles for the Jaszczak phantom images, at the 3rd iteration,
with PLS, OSEM, MRP, KEM using only MR and the proposed method HKEM
for the Jaszczak phantom. The figure reports in the line profiles for the different
size rods, R1, R2, R3, R4, R5, R6, from the smallest to the biggest.
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Figure 4.12: Bias-CoV plot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right, for 5 s acquisition in the hot ROI of the Jaszczak
phantom. The error bars represent the standard deviation of the ROI value over
the 10 sub-samples. The quantity CoV represent the average over the 10 time
frames.
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Figure 4.13: CRC-CoV plot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right, on 5 s phantom acquisition. The quantity CoV
represent the mean CoV over 10 time frames.

(4.1), which has led to the detection of all lesions in the study. If the study

aim is, however, a high level of quantitative accuracy for lesions that are smaller

than the kernel neighbourhood, it would be better to use either σdp = 0.5 or

σp = 0.3. Both these values will have the effect of increasing the noise but mak-

ing the quantification, even for small regions, very accurate. Finally, although

large values of N have been shown to better suppress the noise, they also make

the RMSE higher in some cases (Figure (4.4)) and the computation slower.

The σm and σp parameters reflect the relative contribution of MR and PET.

When the data are very noisy, it is better to increase the PET contribution to

obtain a smoother image, however this will gradually reduce the quantification

accuracy of the proposed method. Figures (4.5) and (4.6) show the comparison

between the different algorithms and for all the ROIs in terms of quantification
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Figure 4.14: CNR comparison between reconstructed images with PLS, OSEM,
MRP, KEM, and the proposed method HKEM over 10 iterations, from left to
right, for 5400 s carotid [18F]FDG acquisition.

and image quality. Also, Figure (4.5) shows that the HKEM method outperforms

all the other techniques for lesion L2, and that when the MR features are similar

to the PET distribution, all MR-based methods perform well, whereas they can

be at least 5% worse than the HKEM when MR has not related contrast on the

corresponding area. The same outcome can be seen in Figure (4.7) where the

line profiles for HKEM are closer to the true image, while avoiding the noise that

is expressed by the OSEM. In particular this is more evident for the lesion L1

and L2. Such results describe the reliability of the proposed method even when

no information about the lesion is included in the MR image.

The L1 and L4 regions are informative showing that for quantification of

lesions smaller than the voxel neighbourhood a smaller σp is required, and that

quantification in a uniform region is not affected by the presence of MR tissue-
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Figure 4.15: CRC-CoV plot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right. The plots show four [18F]FDG patient time frames
corresponding to the time intervals 630-660 s, 720-750 s, 810-830 s and 870-900
s after injection.
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Figure 4.16: Bias-CoV plot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right. The plot shows the bias calculated from the sum
of all 10 (30 s) [18F]FDG time frames.
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Figure 4.17: FDG study reconstructed images, at the 3rd iteration with OSEM,
OSEM + 5 mm Gaussian post filter, MRP, PLS, KEM, and the proposed method
HKEM. The figure reports in the top line the 5400 s acquisition, and in the
bottom line the 30 s frame.

90



Discussion

Figure 4.18: CNR comparison between reconstructed image with PLS, OSEM,
MRP, KEM, and the proposed method HKEM for 5400 s acquisition with
[18F]NaF. The highest CNR value are the early iterations.
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Figure 4.19: CRC-CoVplot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right. The plots show four time frames corresponding to
the time intervals 600-630 s, 750-780 s, 780-810 s and 870-900 s after [18F]NaF
injection.
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Figure 4.20: Bias-CoV plot showing the comparison between reconstructed im-
ages with PLS, OSEM, MRP, KEM, and the proposed method HKEM over 10
iterations, from left to right. The plot shows the bias calculated from the sum of
all 10 time frames with [18F]NaF. The highest bias value are the late iterations
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Figure 4.21: NaF reconstructed images, at the 3rd iteration with OSEM, OSEM
+ 5 mm Gaussian post filter, MRP, PLS, KEM, and the proposed method
HKEM. The figure reports in the top the 5400 s acquisition, in the middle the
30 s frame and in the bottom the zoomed lesion of the 30 s frame.
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borders, as the bias is similar for all the algorithms.

Figure (4.8) shows the ROI mean value as a function of the iteration number

for both simulation and Jaszczak phantom, and it can be seen that HKEM and

KEM have a similar convergence behaviour as the OSEM. Figure (4.9) shows

the CNR for the 3600 s acquisition of the Jaszczak phantom as a function of

the iteration number. The figure shows good performance for all the MR-driven

methods with the HKEM having the highest CNR. In Figure (4.10), it is possible

to see that the kernel methods and PLS show good resolution recovery showing

that similar image quality can be obtained with different anatomically-driven

techniques, at normal count-levels, if the PET and MR images are spatially

matching.

Figure (4.11) shows the line profiles for the rods with different diameters.

The improvement achieved by the kernel method is evident even for the case of

the narrowest rods.

The study with ten 5 s sub-samples was carried out in terms of bias and CRC

using the 3600 s image as a reference. From Figure (4.12), it is possible to obtain

with the proposed method bias lower than 6% compared with 7.5% for KEM, 8%

for PLS and OSEM, and over 9% for MRP. Figure (4.13) shows that even though

the number of events is reduced by a factor of about 600, around 70% CRC was

obtained with the proposed method and KEM, while lower values were achieved

with the other methods. From the bottom row of Figure (4.10) it is possible

to appreciate the good performance of the kernel method in reducing the noise

while keeping a very good contrast and resolution. From the low-count Jaszczak

phantom experiment it is clear that the KEM provides the best trade-off between

bias and noise, and CRC and noise when PET and MR have detected the same
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boundaries, this is because the noise for the HKEM increases faster than KEM

with the increasing iterations.

In Table (4.3) it can be seen that both kernelised methods are slower than

OSEM. This is because a search in the neighbourhood is performed for each voxel

three times every iteration.

Patient investigations were carried out to give two different examples of ap-

plications for the proposed method using atherosclerosis studies published by

Karakatsanis et al. [2017]. Regarding the [18F]FDG patient experiment, for the

5400 s acquisition, CNR was calculated on the defined ROIs and compared all

the studied techniques. Figure (4.14) shows higher CNR for HKEM, followed by

the KEM and PLS. The low-count case consisted of 10 consecutive time frames

of around 30 s starting from 600 s post injection. Figure (4.15) shows higher

CRC over time frames for the same iteration number for HKEM, except in one

case were PLS reaches the highest CRC, while the CoV for HKEM is bigger than

KEM. Figure (4.16) shows an improved bias— less negative than all the other

algorithms. It is possible to see, from Figure (4.15), that the contrast varies

between time frames, this is due to effects such as motion and kinetics that in-

troduce variability over time. The first and third rows of Figure (4.17) show the

image quality for the 5400 s acquisition with [18F]FDG. It is worth noting the

improved carotid local resolution and contrast around the area of the carotid for

PLS, KEM and HKEM, although the PLS image shows suppression of the PET

unique lesion above the right aorta. From the second and fourth rows of Figure

(4.17) it is possible to see how the kernel method is able to suppress noise while

keeping a satisfactory level of contrast in the location of the suspected carotid

lesions even for low-count data.
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Although several parameter settings were investigated for PLS, it was not

possible to obtain a better image than the one shown in the bottom row of Fig-

ures (4.10) and (4.17). This is probably due to the fact that this technique is not

based on a local neighbourhood, which is very efficient at tackling noise. The

results from the [18F]NaF patient study in Figures (4.18)-(4.21), are consistent

with the findings for the [18F]FDG case and the phantom, showing that HKEM

provides higher or similar values of CNR, CRC and bias compared to KEM and

always higher than the other algorithms. Of particular interest is the bias, as

it has previously been shown that OSEM and penalised algorithms are biased

under low-count circumstances (Karaoglanis et al. [2015]; Walker et al. [2011]).

Positive bias is associated with the positivity constraint in iterative reconstruc-

tion algorithms, this is because the average value without negative values is

shifted to a higher value, therefore the bias is more positive. When the number

of events is very small there can be trapping of iterative estimates at zero mak-

ing the average values lower thus introducing negative bias in those regions (Jian

et al. [2014]). The results of this study show that the kernel method, and also

Bayesian anatomical priors, can reduce this effect in all datasets. Furthermore,

when the MR information is combined with the available PET information, this

reduction is even stronger, making it feasible to produce less biased images even

at lower injected doses. This is due to the fact that each voxel is correlated with

its neighbours and although one can have zero value, some of the neighbours will

have non-zero values, and this will result in an increased voxel value. For the

PLS algorithm no neighbourhood is used, however, the gradients are calculated

between pairs of neighbouring voxels in all directions. When the MR features

over-smooth the unique PET features, the PET kernel preserves the signal mak-
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ing the proposed method more reliable while providing quality image which is as

good as the KEM.

Nevertheless, depending on the noise level of the data it can be seen that in

some cases the CoV increases iteration after iteration for the HKEM whilst it

increases less in the KEM. Because of the normalisation of the feature vector

from equation (4.15) and (4.16), which avoids the dependence from the image

scale, HKEM and KEM provide stability in terms of parameter optimisation, as

the same reconstruction settings demonstrated similar performance across three

different applications and datasets at similar count levels. Although a limited

degree of tuning may improve the results, it would be better for reproducibility

to use σp between 1 and 2 (according to how much noise the data contains) and

σdp = σdm between 0.8 and 5. All the other parameters should be set as suggested

in Table (4.1).

4.6 Conclusion

In this work, a novel LM hybrid kernelised reconstruction method which takes

into account the PET features from the iterative process was proposed. The aim

was to improve accuracy in those cases where MR and PET local information is

only partially equivalent or completely different. In addition, special emphasis

was placed to the reduction of negative bias on low-count circumstances. The

proposed reconstruction method offers stable results across varied datasets. The

performance for low-count data, obtained with short acquisition times, makes

this approach particularly useful in dynamic PET-MR studies. The proposed

algorithm, with the settings in Table (4.1), outperformed the other techniques in
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terms of CNR, CRC and bias, at fixed iteration number, in regions of high focal

uptake, such as suspected carotid plaque lesions.
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Chapter 5

Investigation of the Effect of

PET-MR Inconsistency in the

Kernel Image Reconstruction

Method

The HKEM and KEM investigated in the previous chapter are used in this chap-

ter to study how spatial inconsistency between the PET and MR images can

influence quantification. This is done by augmenting the MR image with sim-

ple translation along one axis before the calculation of the kernel. Section 5.1

contains the introduction and description of the study. Section 5.2 describes

the datasets used to study image reconstruction, LM sub-sampling and the ex-

perimental methodology. Section 5.3 presents results and a comparison of the

different standard algorithms with the proposed one. The results are discussed

in Section 5.4 and conclusions are drawn in Section 5.5.
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5.1 Introduction

Anatomically-driven algorithms have become popular in PET. The rationale sup-

porting the use of these techniques is based on the assumption that the radio-

tracer uptake distribution follows specific anatomical patterns. As a consequence,

the anatomical information from MR can be used as prior knowledge. As dis-

cussed in Chapter 2, several studies have recently implemented and investigated

different anatomically-driven techniques, showing that they can suppress noise

while preserving resolution that is usually lost through the regularisation pro-

cess. Different ways of including anatomical information in the reconstruction

algorithm include: Bayesian techniques and the kernel method. Bayesian tech-

niques are also subdivided into segmentation-based and segmentation-free, the

latter avoids the potential error in segmentation. The kernel method can be

divided into hybrid (Gong et al. [2018a]; Chapter 4), where the kernel matrix

is extracted from more than one source (for example, PET and MR) and non-

hybrid (Hutchcroft et al. [2014]; Wang and Qi [2015]; Novosad and Reader [2016];

and Ellis and Reader [2016]), where the kernel is estimated from one source.

This chapter focuses on the kernel method techniques discussed in Chapter 4.

As discussed before, Bland et al. [2017] studied the effect of KEM on simulated

dose-reduced datasets, showing improved CNR, but at the cost of possible over-

smoothing of features unique to the PET data. To overcome this issue Bland

et al. [2018] proposed a method using a spatially constrained MR kernel in order

to maintain the noise reduction properties of the conventional kernel method,

whilst better retaining the features unique to the PET data. In this chapter the

limitations of the anatomically-driven kernel methods, HKEM and KEM, are

investigated. In particular, focus is given to circumstances where there is an evi-
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dent spatial inconsistency between the MR and PET signal distribution even for

perfectly co-registered PET and MR images, and to confirm that synergistic in-

formation can improve the flexibility of the reconstruction in these circumstances.

This is important because in some cases a PET lesion may be located at the bor-

der between two different regions, as shown in Schramm et al. [2018], moreover, it

has been shown that PET unique features can be severely over-smoothed (Bland

et al. [2017]) with the MR-guided kernel. Strul and Bendriem [1999] investigated

the limitations, due to MR segmentation and PET-MR registration, of different

segmentation-based partial volume correction techniques in simulation studies.

Although the segmentation does not represent a problem for the segmentation

free techniques, registration can always represent a problem. The effect on the

PET image of PET-MR inconsistencies, is investigated particularly for cold and

hot regions that are crossed by MR regions. HKEM and KEM from Chapter 4

were used to reconstruct images for four types of datasets: 5 s and 50 s acquisi-

tion with phantom data, and 30 s and 300s acquisition with patient neck data.

The MR image was shifted by a different number of pixels along the x direction.

All the data were acquired with the Biograph Siemens mMR. Both algorithm

implementations use spatially restricted kernels and, thus, reduced smoothing

of the PET unique features is expected, compared to the standard patch-based

kernel methods, as shown by Bland et al. [2018].
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5.2 Methods and Materials

5.2.1 Phantom Experiment

A phantom experiment was performed with a Jaszczak phantom for resolution

studies and was acquired with the Siemens Biograph mMR scanner at Mount

Sinai Hospital, NY, USA. The phantom consists of cold spheres with different

diameters, 13 mm, 10 mm, 9 mm, 7 mm, 6 mm and 4 mm. The background

represents the hot region, which was filled with 155 MBq of [18F]FDG, data

were acquired over 1 hour. The attenuation image was obtained from an MR

volumetric interpolated examination (VIBE) acquisition, segmented into 2 tissue

classes (air, water). The MR component of the kernel was obtained from a co-

registered MR-VIBE sequence. The original voxel size is 0.35×0.35×1 mm3. The

image is then aligned to the PET field of view (FOV) and re-sliced to match the

PET native voxel size, 2.087×2.087×2.031 mm3, and FOV size, 344×344×127

voxels. The raw PET data were reconstructed in two different cases: 5 s and 50 s

frames. These time frames are those at the beginning of the acquisition obtained

from the full LM file.
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(a) (b)

Figure 5.1: Slices of the MR images used to estimate the kernel matrix for (a)

the phantom and (b) the patient studies.

5.2.2 Patient Experiment

The LM-HKEM method was also applied to dynamic data for a patient head

and neck data. The acquisition was carried out using the Siemens Biograph

mMR at Mount Sinai Hospital, NY, USA, and a consent form was signed by

the patient. The patient was injected with [18F]FDG 184 MBq and scanned

for 90 minutes. The attenuation images were obtained from the Dixon MR

sequence using 4 tissue classes (fat, water, air, lungs), and it contains attenuation

coefficients for bed and coils. The LM data were divided into smaller time frames,

30 s and 300 s. The scan started after 10 minutes from the injection of the

tracer. Note that the two different durations are considered as two different

datasets and the uptake in these datasets is not comparable due to different

kinetic behaviour, especially because they are the first time frames after injection.

The MR part of the kernel matrix is obtained from a time-of-flight (TOF) MR

angiography sequence (Figure (4.2)), the original voxel size is 0.7×0.7×1 mm3.

It is then aligned to the PET field of view (FOV) and re-sliced to match the PET
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native voxel size, 2.087×2.087×2.031 mm3, and FOV size, 344×344×127 voxels.

The MR TOF acquisition time is 540 s. A head and neck coil was employed:

3 slabs, each consisting of 60 slices of 1 mm thickness. This image sequence

is particularly suitable to study the carotid because it provides high contrast

between the carotid arteries and the surrounding tissues.

5.2.3 Reconstruction Setup

All the datasets were reconstructed with 21 subsets and 10 iterations using

HKEM and KEM. The subset division for the LM reconstruction in STIR is made

by subdividing the events according to the view number. The values of the kernel

parameters for this study are set to find the trade-off between quantification and

noise suppression while minimizing PET feature suppression: N = 3 × 3 × 3,

σm= σp = 1, and σdm = σdp = 5. These settings have been selected to maximise

the CNR following a similar procedure as in the previous chapter.Altough the

comparison has been carried out for 10 iterations in this chapter only the 3rd

iteration is reported to reduce the influence of the noise in the quantification.

The different time frame durations are obtained by selecting only the events oc-

curred during the first 50 s and 5 s for the phantom, and 300 s and 30 s for the

patient. The MR image, for both experiments, was translated by 1, 2, 3, 5 and

10 voxels (as in Figure (5.3)) along the x direction in order to study the effect of

non-accurate registration between PET and MR images, and also to introduce

differences between the aforementioned images so that different case scenarios

are investigated. Note that the attenuation image was not translated so that

only the effect of the anatomical image used for the kernel is studied.
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5.2.4 Image Analysis

The comparison was carried out in terms of mean activity concentration. Region

of interest (ROI) analysis was performed using a sphere in a uniform cold region

of the phantom represented by the blue circle in Figure (5.3), and extracted

from the MR image. For the patient, the ROI was obtained through a few steps:

firstly, the carotid was segmented using the MR image, and used as a mask on

the HKEM image; a threshold was applied on the HKEM image only to segment

the hot part of the carotid; finally it was cropped to match the shape of the

lesion in both the HKEM and KEM image as the shape of the hot lesions are

the same between HKEM and KEM. What is different between the HKEM and

KEM lesion is the uptake. The ROI was not taken from the MR image because

it provides the whole carotid, while the OSEM image is largely affected by PVE.

One ROI is used for the 300 s acquisition, and the other for the 30 s acquisition

as the kinetics and possible motion make the 2 datasets very different (Figure

(5.2)).

Quantitative comparison between algorithms was performed using the follow-

ing figure of merit:

mean =

∑
i xi
V

(5.1)

where xi is the value of voxel inside the ROI and V is the number of voxels

included in the ROI. To estimate the bias images showing the induced error for

each MR translation, the reconstructed images with the correct MR is used as

ground truth, also labelled as shift=0. The difference between the shifted image

and the ground truth is then calculated.

107



Chapter 5

(a) (b)

(c) (d)

Figure 5.2: Regions of interest (ROI) chosen for the patient study: (a) ROI
shown on the MR image for the 300 s acquisition, (b) ROI shown on the PET
image for the 300 s acquisition, (c) ROI shown on the MR image for the 30 s
acquisition, (d) ROI shown on the PET image for the 30 s acquisition. The PET
image is obtained with HKEM.

Figure 5.3: Representation of the different shift reproductions using the phantom:
from left to right 1, 2, 3, 5, and 10 voxels translation. The blue sphere is the
ROI used for the quantification.
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5.3 Results

This study shows the effect of the anatomically-driven kernel method on the

PET reconstructed images, with a focus on those situations where MR and PET

information do not match. To recreate these circumstances the MR image was

translated along the x axis creating specific cases, such as a cold PET region

partially crossed or surrounded by an MR well-defined region with the phantom

data, and hot lesion partially crossed by MR regions with the patient data.

All the shifts can be seen in Figure (5.3). The blue circles in the figure help

to better understand and locate the area of interest. This investigation was

carried out using the hybrid and non-hybrid kernel method in Chapter 4 to

explore the limitation of these methods as well as to study whether the hybrid

method performs better when small differences between PET and MR images

are introduced. The σm and σp in equations (4.13) and (4.14) were fixed at 1 as

it represents the best CNR. The neighbourhood size, N , was set to 3×3×3 to

keep computation quick and also to avoid PET unique feature suppression. The

values used for the two modulation parameters, σdm and σdp, were set to 5 which

was the optimum value in terms of quantification and noise suppression. Figure

(5.4) shows the images reconstructed with OSEM using 5 mm Gaussian post-

filter, and KEM and HKEM with the correct MR image, for Jaszczak phantom

50 s acquisition (a), Jaszczak phantom with 5 s acquisition (b), patient data

with 300 s acquisition (c), patient data with 30 s acquisition (d). Figure (5.5)

shows the quantitative results for the 50 s acquisition phantom datasets. The x

axis reports the shift in terms of the number of voxels, while the y axis is the

mean value in the ROI, calculated with equation (5.1). The OSEM ROI mean

value (with no post filtering) is also reported for reference. The coloured bar
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reports the range of coefficient of variation (CoV) values in the plot. In Figure

(5.6) an image-based comparison for the 50 s acquisition phantom datasets is

shown, where it is possible to appreciate the effects of the different translations

on HKEM and KEM. The bias in all the image voxels is shown in Figure (5.7);

and the zoomed cold spheres for the case where the MR image was translated

by 10 voxels in Figure (5.8). The same experiment was repeated for the 5 s

acquisition and the quantitative analysis is reported in Figures (5.9)-(5.12).

Figure (5.13) reports the mean ROI value as a function of the shift for the

patient data obtained from 300 s acquisition. The OSEM ROI mean value is

also reported for reference. The coloured bar reports the range of CoV values

in the plot. Figure (5.14) shows the reconstructed images with each translation,

while Figure (5.15) reports the bias images estimated as the difference between

the image reconstructed with the correct MR and the image obtained using each

translated MR. The same is repeated for the 30 s acquisition, where image-

based and quantitative results are shown in Figures (5.16), (5.17) and (5.18)

respectively.

5.4 Discussion

The images in Figure (5.4) show the improvements, in terms of contrast and

resolution, provided by the two anatomically-driven kernelised method over the

OSEM. With the Jaszczak phantom the effect of the PET-MR misalignment

was investigated on cold spheres: in Figure (5.5) the ROI mean shows how

the mean value, which is supposed to be zero, increases as the shift increases,

with a significantly stronger effect for KEM. The maximum increase is 100% for
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(a)

(b)

(c)

(d)

Figure 5.4: Reconstructed images with OSEM+G, KEM, and no shift, and
HKEM with no shift, on all the datasets and count-levels. (a) Jaszczak phan-
tom 50 s acqusition; (b) Jaszczak phantom 5 s; (c) patient 300 s acqusition; (d)
patient 30 s acqusition acqusition.
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Figure 5.5: Mean activity concentration comparison between reconstructed phan-
tom image with HKEM and OSEM on 50 s acquisition with the Jaszczak phan-
tom. The x axis is the MR image shift in terms of number of voxels.

KEM against the 37% of HKEM. This is due to the introduction of the PET

information in the kernel, which makes HKEM more flexible allowing the PET

borders to be restored. The increase in activity along with the shift seems to

indicate that the activity was pushed from its original position to the area after

the MR border. Figure (5.6) shows the same result visually, where the effect of

the difference between PET and MR can already be seen for the 1 voxel shift

for both HKEM and KEM. In Figure (5.7) bias appears close to the borders of

the MR and PET images. In particular, positive bias can be seen in the cold

region and negative bias in the hot regions close to the borders. From this figure

and from Figure (5.8) it is also possible to see that the smoothing effect is more

visible for the smaller spheres.

For the 5 s acquisition, Figure (5.9) shows more moderate variation than the
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Figure 5.6: Reconstructed images with KEM and HKEM on 50 s acquisition.
Each column represents a different shift (the first one is without shift), in terms
of number of voxels.
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Figure 5.7: Comparison between bias images with KEM and HKEM on 50 s
acquisition. Each column represents a different shift, in terms of number of
voxels. Reconstructed images with the correct MR are used as ground truth;
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Figure 5.8: Zoom of the cold spheres of the Jaszczak phantom for the 50 s images
and the case with shift = 0 voxels with HKEM and KEM.
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Figure 5.9: Mean activity concentration comparison between reconstructed phan-
tom image with HKEM and OSEM on 5 s acquisition with the Jaszczak phantom.
The x axis is the MR image shift in terms of number of voxels.

higher count case. In this case the maximum variation was 33% for KEM and

15% for HKEM with the 5 voxels shift. The fact that the short acquisition shows

less quantitative change than the 50 s acquisition is probably due to the fact that

the noise here has a more important impact and there is already an increased

uptake even with the correct MR image. In fact, the OSEM value is close to

the ‘wrong’ HKEM value. Looking at the zoomed spheres in Figure (5.12) it is

possible to see that the degradation is actually more visible for the low count.

Note also that in Figure (5.12) the zoom for each sphere is different to allow a

better visual recognition. That is why the size does not appear in a decreasing

order.

With the patient data, the effect of the PET-MR inconsistency was shown

on hot lesions in the carotid artery. In contrast to the phantom data, here it

is more difficult to visually detect the effects because the human body is more
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Figure 5.10: Reconstructed phantom images with KEM and HKEM on 5 s ac-
quisition. Each column represents a different shift (the first one is without shift),
in terms of number of voxels.
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Figure 5.11: Comparison between bias images with KEM and HKEM on 5 s
acquisition. Each column represents a different shift, in terms of number of
voxels. Reconstructed images with the correct MR are used as ground truth.
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Figure 5.12: Zoom of the cold spheres of the Jaszczak phantom for the 5 s images
and the case with shift = 0 voxels with HKEM and KEM.
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Figure 5.13: Mean activity concentration comparison between reconstructed pa-
tient image with KEM, HKEM and OSEM on 300 s acquisition. The x axis is
the MR image shift in terms of number of voxels.

complicated and there is a wider variety of tissues in the MR image. Figure (5.13)

shows the consequences of translation for the 300 s acquisition. An instant drop

in uptakes can be seen as soon as the shift takes place. The HKEM performs

better for the small shifts, however, after the 2 voxels translation it behaves

similarly to the KEM with a maximum variation of 7% for both. Although the

ROI analysis for the hot regions show more moderate variation than the case

of the cold spheres, in Figure (5.14), it is possible to see that the shape of the

lesion changes with the shift and gradually becomes blurred. Also, in Figure

(5.15) negative and positive bias can be seen all over the image, which can reach

±50% in certain locations. The ROI quantification for the 30 s acquisition,

as reported in Figure (5.16), shows slightly larger variation with a maximum of

10% for KEM and 8% for HKEM. In this case, HKEM performs better in all

translations except the 5 voxel translation. Similarly to the 300 s case, in Figure

(5.17) it is possible to see the gradual blurring of the lesion and the variation
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(a)

Figure 5.14: Reconstructed patient images with KEM and HKEM on 300 s ac-
quisition using different translations; The different columns represent a different
shift (the first one is without shift).
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Figure 5.15: Comparison between bias images with KEM and HKEM on 300 s
patient acquisition. Each column represents a different shift, in terms of number
of voxels. Reconstructed images with the correct MR are used as ground truth.
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Figure 5.16: Mean activity concentration comparison between reconstructed pa-
tient image with KEM, and HKEM and OSEM on 30 s acquisition. The x axis
is the MR image shift in terms of number of voxels.

voxel by voxel for all shifts. The dark blue and the dark red areas in Figures

(5.15) and (5.18) represent voxel bias up to ±50% and it is more significant for

the low-count case. Note that, 2 cm of motion is probably too big to be missed,

and this type of motion can be corrected by registration. However, in this case

the effect of the uniform MR area of the neck overlaying the carotid artery of

the PET image was studied. This represents, for example, cases where a high

uptake region in PET does not show any signal in the MR. Note that there were

no PET-MR mismatches in the attenuation map so that only the effect of the

anatomical image used for the kernel is studied. The artefacts due to attenuation

mismatches may be, however, so significant that the error due to the kernel part

would not be a problem in comparison (Schleyer et al. [2010]).

In general, the PET-MR inconsistencies can induce partial volume effects,

more specifically spill-in for the affected cold regions and spill-out for the hot

regions. The largest errors are introduced for the cold spheres than the hot

123



Chapter 5

Figure 5.17: Reconstructed patient images with KEM, HKEM on 30 s acquisition
using different translations ; The different columns represent a different shift (the
first one is without shift), in terms of number of voxels.
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Figure 5.18: Comparison between bias images with KEM and HKEM on 30 s
patient acquisition. Each column represents a different shift, in terms of number
of voxels. Reconstructed images with the correct MR are used as ground truth.
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lesions. In this case the HKEM appears more flexible thanks to the PET in-

formation included in the kernel. The average ROI error for the hot lesions

was always smaller or equal to 10% and the HKEM outperformed KEM only in

some cases while they behave similarly in others. Finally, although the PET-MR

spatial inconsistencies introduce voxel variations and errors, it is a consistent

result over the datasets that the application of a 5 mm Gaussian filter provides

a bigger PVE than the one created by any MR translation generated, when the

attenuation map does not contain mismatches. This can be seen from Figure

(5.5), (5.9), (5.13) and (5.16). The findings highlight the increased flexibility of

both HKEM and KEM compared to the clinical gold standard, OSEM, and the

importance of a well-chosen MR sequence to use as anatomical information, as

well as an accurate registration between PET and MR. In fact, to obtain the

most accurate result, a study making use of anatomical information should be

thoroughly planned according to the region of interest one wants to study in

order to avoid unwanted artifacts and erroneous quantification.

5.5 Conclusion

In this chapter, the effect of mismatches between PET and MR images was

investigated, for cold and hot regions, when the kernel method is used with MR

information for PET reconstructed images. It was shown that even small changes

in the MR can result in a change in quantification and increase in blurring.

However, hybrid information can help to reduce these effects, especially in the

case of cold regions. The ideal solution is to avoid MR sequences having tissue-

borders crossing the PET ROI as well as very accurate PET-MR registration. In
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addition, creating a protocol where the chosen MR sequence is acquired during

the PET scan would minimise the PET-MR inconsistencies.
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Hybrid PET-MR KEM

Reconstruction for Accurate

Image-Derived Estimation of the

Input Function From the Aorta

of Rabbits

In this chapter the HKEM introduced and discussed in Chapter 4 is applied to

the estimation of the rabbit aorta IDIF. In particular, the HKEM is used for

the reconstruction of the image which is also used for the extraction of the ROI

with the aim of producing an accurate estimation of the IDIF. For this study a

simulation based on rabbit dynamic data was created, and a demonstration code

to simulate, reconstruct and extract the ROI, was made available in Code Ocean

(Deidda [2018]). Section 6.1 introduces the issues related to the estimation of the
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IDIF and explore some of the work available in the literature. The methodology

of the study, with the realisation of the simulation, the acquisition of the real

data and the explanation of the method for the ROI extraction is discussed in

Section 6.2. The results are shown and discussed in Sections 6.3 and 6.4 and the

conclusion of this chapter are in Section 6.5.

6.1 Introduction

[18F]-based PET imaging has been used successfully as a non-invasive imag-

ing biomarker of different human diseases. [18F]NaF is associated with calcium

molecular metabolism and has been used to study benign osseous diseases such

as osteoporosis, vascular calcification, osteoarthritis, rheumatoid arthritis and so

on (Raynor et al. [2016]; and Li et al. [2012]). [18F]NaF has been proposed, for

example, as a quantitative pharmacodynamic biomarker for bone homeostasis

during anti-DKK1 therapy for multiple myeloma (Wang et al. [2017]), for the

quantification of skeletal kinetic indices in Paget’s disease (Cook et al. [2002]),

and to determine therapy efficacy and response (Frost et al. [2013]; and Simoncic

et al. [2015]). [18F]FDG is the most commonly used tracer in clinical practise

and particularly for the detection, quantification, staging and therapy evalua-

tion of cancerous lesions (O’Connor et al. [2017]), as well as in cardiovascular

and neurological diseases (Wu et al. [2013]). It can be used for the estimation

of the volumetric growth rate of tumours from pre-treatment to post-treatment

imaging as shown by Seyal et al. [2014] for breast cancer liver metastases and

Seyal et al. [2015] for colorectal liver metastases. In addition, it is used for the

localisation, and quantification of inflammation in arteries (Alenezi et al. [2016];
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Jødal et al. [2017]) and so on. The availability of preclinical PET studies has al-

lowed the calculation of molecular biomarkers at the preclinical stage with small

animals being used in the context of clinical trials.

All the aforementioned applications of [18F]-based PET imaging have in com-

mon the requirement of the accurate measurement of the IDIF, especially in the

context of clinical translation. PET imaging in general can provide more ac-

curate and precise quantitative biomarkers by exploiting the pharmacokinetic

information which is inherited in the measured data (Kotasidis et al. [2014]).

However, in most cases for the calculation of the pharmacokinetic parameters,

the radiotracer concentration in the arterial blood plasma (input function) is

required. The gold standard for such measurement is blood sampling during the

PET acquisition, via arterial cannulation (Bentourkia [2015]). However, such

techniques are invasive and can be complicated, as it requires arterial blood

samples in specific quantities and at precise times and corrections for delay and

dispersion to account for the distance between the sampling site and the ROIs

(Fung and Carson [2013]).

A non-invasive technique is the IDIF which uses a ROI to measure the uptake

in the vessel over time. The IDIF is a simple way to calculate activity over time,

however, it is challenging due to image related issues. Firstly, the choice of the

ROI has a very important impact and erroneous ROIs will affect the accuracy.

Secondly, as discussed in the previous chapters, PET image quality is degraded

by the PVE which can cause spill-in of activity in cold region and spill-out from

hot region. Other challenges are related to the use of MR images to extract the

ROI, because a potentially inaccurate registration between PET and MR images

can lead to erroneous estimates of the activity in the chosen arterial ROI. With
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hybrid PET-MR scanners, however, the problem of co-registration is expected

to be minimised.

The aforementioned problems are mostly related to the ordered subset expec-

tation maximisation (OSEM) which is usually followed by post reconstruction

Gaussian filtering due to the high noise levels expected for the very narrow time

frames used for the IDIF estimation. In preclinical experiments these issues can

be even more challenging (Tsoumpas et al. [2016]) because of the smaller size of

animal vessel tissues, such as rabbit aortas, especially when they are performed

with clinical scanners designed for human subjects. In this case, the PVE can

be significant, as the diameter of the rabbit aorta is about 5 mm, which is com-

parable to the order of magnitude of the PET resolution.

Different studies have proposed methods for the use of IDIF by correcting or

avoiding PVE (Germano et al. [1992]; Lin et al. [1995]; Litton [1997]; and Lafor-

est et al. [2005]). Nevertheless, Zanotti-Fregonara et al. [2011], have shown in

their comparison between cannulation-based and image-derived input functions

that the use of high resolution PET images is often not enough to avoid the use

of blood samples to obtain a reliable IDIF. Moreover, the accuracy of the IDIF

may vary between radiotracers and scanners. The HKEM algorithm, introduced

and validated in Chapter 4 as a method for improving PET image resolution and

uptake recovery in PET-MR phantom experiments, as well as contrast and quan-

tification of atherosclerotic plaque lesions in carotid arteries in clinical PET-MR

studies, is used in this study to minimise PVE during the reconstruction step so

that it is possible to obtain more accurate IDIF estimates. The HKEM recon-

structed image at the peak activity time frame was used together with the MR

image to extract the ROI to be used for the estimation of the input function.

132



Methods and Materials

This chapter focuses on the quantification of the aorta IDIF of rabbits using 18F

based radiotracers such as [18F]FDG and [18F]NaF, to extend the applicability

and usefulness of HKEM. Here it was assumed that if HKEM can recover the

uptake while retaining satisfactory noise suppression for low-count PET acquisi-

tions, it will also be capable of providing accurate IDIF estimates using a wide

range of dynamic PET time frame durations.

6.2 Methods and Materials

6.2.1 Simulation and real datasets

A realistic simulation was created using a model derived from real [18F]NaF

rabbit data and utilities implemented in the STIR library. The real data were

acquired with the Siemens Biograph mMR scanner at Mount Sinai Hospital,

NY, USA. The voxel size for the simulated image was 1.56×1.56×2.031 mm3.

The rabbit was a healthy subject and was anaesthetised before the scan. It was

injected with [18F]NaF 170 MBq and scanned for 90 minutes. Different organs

and tissues were segmented from the acquired MR UTE sequence, using 0.07 ms

echo time. The original voxel size was 1.56×1.56×1.56 mm3. It is then aligned to

the PET field of view (FOV) and re-sliced to match the PET native z voxel size,

1.56×1.56×2.031 mm3, and FOV size, 344×344×127 voxels. The same image is

also used for the calculation of the kernel matrix. The acquisition is the same for

the real data. In particular, the abdominal aorta, kidneys, bladder, myocardium,

lungs, stomach and background were extracted as independent images. Each one

of the aforementioned tissue images was used as a ROI in the real PET data which

had been divided into 45 time frames organised as follows: 17×6 s, 4×15 s, 4
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×30 s, 4 ×60 s, 4 ×180 s, 12 ×300 s. For every tissue type, a file containing the

activity concentration at each time point is saved, which was then used to create

45 images of the same tissue with varying activity concentration.

In order to create the projection data, each simulated image is forward pro-

jected into the sinogram space. The attenuation sinogram is estimated using

the attenuation coefficient, obtained from a Dixon MR sequence, and the pre-

calculated hardware attenuation coefficients for the bed and coils. The projection

data containing random events was estimated as a uniform sinogram containing

20% of the total number of events in the simulated acquisition sinogram. In

order to estimate the scattered events the single scatter simulation, proposed by

Watson et al. [1996], was applied, and a mask obtained from the attenuation map

was used for the tail fitting. At this point, the random and scatter sinograms

were added to the emission sinogram to create the modelled prompts projection

data. The final step was the simulation of Poisson noise from the prompts events.

The above steps were repeated for each simulated time frame and for each 10

independent noise realisations.

6.2.2 Real Rabbit Data

The acquisition was carried out using the Siemens Biograph mMR at Mount Sinai

Hospital, NY, USA. The rabbit was an healthy subject and was anaesthetised

for the scan. They were injected with [18F]NaF 170 MBq for the first study and

[18F]FDG 133 MBq for the second, both scanned for 90 minutes. The attenuation

images were obtained from the scanner, included attenuation coefficient for bed

and coils. The LM data were divided into smaller time frames, in order to

reproduce the input function. The tracer was injected during the first seconds
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of the scan. The MR part of the kernel matrix is obtained from a MR UTE

sequence with 0.07 ms echo time, the original voxel size is 1.56×1.56×1.56 mm3.

It is then aligned to the PET field of view (FOV) and re-sliced to match the PET

native z voxel size, 1.56×1.56×2.031 mm3, and FOV size, 344×344×127 voxels.

6.2.3 Reconstruction Setup

All the datasets were reconstructed using HKEM with 21 subsets and 10 itera-

tions. The results are reported for the 10th iteration which is the iteration with

the minimum RMSE. The values of the kernel parameters were set as follows:

N=27, σm=1, σdm=3, σp=1 and σdp=3 (the last two are only used by HKEM).

These values are the results of an optimisation study in terms of RMSE on the

simulated data for both KEM and HKEM. For comparison, the same datasets

have been reconstructed also with OSEM with and without 3 mm FWHM Gaus-

sian post-filter. These methods are denoted as OSEM+G and OSEM, respec-

tively, in this study. All datasets were reconstructed using span 1.

6.2.4 Image Analysis

The comparison was carried out in terms of the mean value for all of the short

time frames and datasets, and the bias was estimated to assess the accuracy of

the proposed method. The ROI was obtained using the HKEM reconstructed

image and the MR image as follows (also see Figure (6.1)):

� the aorta was segmented from the MR image using the semi-automatic

segmentation method in ITK-SNAP based on thresholding (Yushkevich

et al. [2006]);
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� the obtained mask is multiplied by the HKEM reconstructed PET image

to obtain the segmented aorta, As, from the PET image;

� the ROI, A, is obtained by taking into account only the voxels with value

bigger than 75% of the maximum in order to minimise those affected by

PVE, as follows:

Ai =


1, Asi ≥ 0.75 · Asmax

0, otherwise

(6.1)

where i is the index of the voxel.

Quantitative comparison between algorithms was performed using the follow-

ing figures of merit:

meank = tk =

∑V
j=1 tjk

V
, (6.2)

absoulute biask =
| tk − ATk |

ATk
· 100, (6.3)

where tk is the mean value of the target ROI at time frame k, tjk is the value of

voxel j within the ROI at time frame k, and V is the number of voxels within the

ROI. The ROIs obtained with the proposed method are shown for each dataset

in Figure (6.2).
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Figure 6.1: Schematic representation of the extraction of the region of interest
(ROI), A, of the aorta using the PET and MR images as the input.
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(a) (b) (c)

Figure 6.2: Regions of interest (ROI) chosen for this study, defined by the white

regions: (a) the target ROI for the aorta in the simulation; (b) [18F]NaF rabbit

study and (c) for the [18F]FDG rabbit study. The target ROIs are indicated by

the white arrows.

6.3 Results

6.3.1 Simulation

Figure 6.3 shows the RMSE versus the threshold applied to the ROI for 2 differ-

ent time frames: 5 (24-30 s) and 33 (1062-1242 s). The IDIF estimates for the

simulated rabbit data and the early and late time frames for the IDIF are illus-

trated in Figure (6.4). In the same figure the reconstructed images with OSEM,

OSEM+G, KEM, and HKEM, at the peak time frame (24-30 s), are shown.

Figure (6.5) presents the line profile of the aorta estimated for the images, as

reconstructed with all investigated methods, at two different positions (LP1 and

LP2), whilst Figure (6.6) reports the median IDIF estimated over the ten noise

realisations using the HKEM. The shaded region is the range of possible values

over the 10 simulated datasets, and the dashed line is the true IDIF. Finally,

Table (6.1), reports the percentage value of the mean, maximum, and minimum
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Figure 6.3: The figure shows the RMSE versus the threshold applied to the ROI
for 2 different time frames: 5 (24-30 s) and 33 (1062-1242 s). The comparison
reports the values measured from the reconstructed images with HKEM and
KEM.

absolute bias over the time frames and the noise realisations.

Absolute bias (%) and CoV (%) estimation over the 45 time frames

mean bias Max bias Min bias mean CoV Max CoV Min CoV

OSEM 6.3 20.8 0.1 52.0 75.6 31.5

OSEM+G 23.32 39.2 4.4 16.2 34.9 10.1

KEM 12.8 30.2 7.7 19.3 30.4 10.9

HKEM 5.0 16.1 0.8 19.9 32.8 10.7

Table 6.1: Absolute bias (%) and CoV (%) estimation over the 45 time frames.
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Figure 6.4: The figure shows a comparison between the true and the measured
IDIF values over time, as obtained from the reconstructed image with HKEM,
KEM, OSEM and OSEM+G. On the top row the peak time frame (24-30 s)
images are also shown.
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Figure 6.5: The figure shows a comparison between the true line profiles, LP1
and LP2, and the ones obtained from the reconstructed image with OSEM,
OSEM+G, KEM, and HKEM.

Figure 6.6: Median IDIF estimated over the ten noise realisations using the
HKEM. The shaded region is the range of possible values over the 10 simulated
datasets, and the dashed line is the true IDIF.
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6.3.2 NaF study

Figure (6.7) shows the comparison, on the bottom row, between the initial 200 s

of the input function on the left, and the later section of the IDIF, on the right.

Moreover, to give an idea of the image quality, the reconstructed [18F]NaF images

for the peak time are shown in the top row. Figure (6.8) reports the line profiles

of the aorta in two different positions (LP1 and LP2) for the [18F]NaF peak

images reconstructed with the investigated methods to illustrate in detail the

differences between the images reconstructed with different techniques. Figure

(6.9) gives an example of the fused PET-MR images for all the reconstruction

techniques.

6.3.3 FDG study

The IDIF was estimated for a [18F]FDG study in order to assess the method

on a different tracer. Figure (6.10) shows a comparison among the different

algorithms in terms of image quality at the [18F]FDG peak activity time frame,

input function values. On the bottom row the initial 200 s of the input function

can be seen on the left, and the remaining part of the IDIF on the right, while

on the top the reconstructed images for the peak time frame are shown. Figure

(6.11) reports the line profile of the aorta in two different positions (LP1 and LP2)

for the [18F]FDG peak images reconstructed with all the investigated methods.

6.4 Discussion

In this chapter, the use of HKEM was proposed for the estimation of the IDIF in

the aorta artery of rabbits having undergone [18F]FDG and [18F]NaF PET-MR
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Figure 6.7: Comparison between the [18F]NaF IDIF values over time, after re-
constructing with OSEM, OSEM+G, KEM and HKEM methods. On the top
row the peak time frame (30-36 s) images are also shown.
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Figure 6.8: Comparison between the line profiles, LP1 and LP2 for the [18F]NaF
study, after reconstructing with HKEM, KEM, OSEM and OSEM+G methods.

Figure 6.9: Comparison between reconstructed image with OSEM, OSEM+G,
KEM, and the proposed HKEM fused with the MR UTE image for the [18F]NaF
rabbit data.
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Figure 6.10: Comparison between the IDIF values over time, after reconstructing
with OSEM, OSEM+G, KEM and HKEM methods for the [18F]FDG rabbit data.
On the top row the peak time frame (30-36 s) images are also shown.
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Figure 6.11: Comparison between the line profiles, LP1 and LP2, after recon-
structing with OSEM, OSEM+G, KEM and HKEM methods for the [18F]FDG
rabbit data.

studies using a clinical PET-MR scanner. The study was driven by the fact that

many applications, where dynamic PET is used to extract more accurate and

precise kinetic imaging biomarkers, rely on the estimation of the IDIF, which

is problematic in preclinical studies due to extensive PVE. As a consequence,

it is relevant to propose a method which provides accurate estimates of IDIF.

The ROI was chosen to minimise the average RMSE over the frames. In Figure

(6.3) we can see that the minimum RMSE is different between different frames,

thus the average minimum RMSE was obtained using a 75% threshold. The

results in Figure (6.4) show that the proposed reconstruction method and ROI

extraction provide accurate results for all the time points. The mean, max and

min bias were also calculated over the time frames and the ten noise realisations

(Table (6.1)). It was possible to obtain a mean bias of 5 % using the HKEM
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with the maximum value being 16.1 %. Note that OSEM also provided accurate

results, although the dynamic PET image time frames were quite noisy and

thus it becomes challenging to accurately delineate the appropriate aortic input

function ROI, which is crucial for the IDIF method. The results suggest that

MR information can provide substantial improvement in terms of PVE and noise

suppression. Nevertheless, the inclusion of the PET functional information allows

better accuracy at the same noise suppression as KEM (see Table (6.1)). Figure

(6.5) shows the line profiles at two different points of the carotid for the image

corresponding to the peak. Here the better delineation of the aorta can be

seen for both the KEM and HKEM MR-guided techniques due to the noise

suppression provided in the background tissue regions. It is also important to

highlight that the extraction of the ROI from the OSEM image in Figure (6.1)

would not be accurate, as the maximum value was very high due to noise. Thus

the 75% thresholding would only extract very few voxels, therefore causing up to

100% bias in the OSEM IDIF values despite being associated with high accuracy

estimates. Figure (6.6) illustrates the median full IDIF estimate over the 10

realisations, and it is possible to notice the accuracy over time compared to the

true values.

The same analysis was applied to two real PET-MR rabbit datasets acquired

with the Biograph mMR scanner, using [18F]NaF and [18F]FDG radiotracers.

Figure (6.7) shows consistent results for the IDIF. Figure (6.8) presents the line

profiles obtained with all methods, showing the good resolution of the aorta

when using the HKEM and KEM methods, the noise in the OSEM and the poor

quality of the post-filtered OSEM which is highly affected by the PVE. In Fig-

ure (6.9) the fused PET-MR image is illustrated for each technique, confirming
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the better alignment of the aorta region between the PET and the MR images

and the resulting higher PET image resolution and aortic contrast. Moreover,

the comparison between the [18F]FDG and [18F]NaF PET-MR studies allowed

assessment of the feasibility and performance of HKEM in estimating the aorta

IDIF for two of the most commonly employed radiotracers in oncology and car-

diology. From the results in Figure (6.10) the benefit of the synergistic PET-MR

information encoded in the kernel matrix is visible especially in the IDIF plot.

These results are also supported by the line profiles in Figure (6.11) showing a

clear definition of the aorta for the proposed method and minimum spill-out of

activity from the aorta. It is worth noting that for the real data there are two

peaks in the IDIF early time frames, this is probably due to the fact that the

injection was not continuous during the scan but there was a sudden stop making

the uptake rate drop in that specific time frame.

The input function represents a very crucial data component when estimating

kinetic parameters and its accurate estimation can become extremely challeng-

ing for small animal imaging due to the very small sizes of the associated aortic

vessels. It was demonstrated that, despite the small size of the rabbit aorta, it

is feasible and promising to employ the HKEM method for the extraction of an

aorta IDIF of improved accuracy and reduced PVE even when using a clinical

PET-MR scanner. In addition, the method described to extract the ROI is easy

to use and implement as it only involves trivial mathematics between matrices.

It is worth mentioning that although this study was performed with PET-MR

data it could also work with PET-CT data especially a CT angiography image.
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6.5 Conclusion

In this chapter, it was demonstrated that the HKEM method can facilitate

the more accurate extraction of the aortic ROI for improved IDIF estimation

even when using a human hybrid scanner, compared to conventional OSEM or

antomically-guided KEM reconstruction. The findings were obtained with both

10 simulated [18F]NaF PET-MR datasets and 2 real rabbit PET-MR studies,

but the methodology can be utilised for most of the available radiotracers and

with PET-CT without any major modification. This technique can help en-

hance the use of dynamic PET in the context of imaging biomarkers with direct

pharmacokinetic information.

149





Chapter 7

General Conclusion and Future

Work

7.1 Summary

The main objective of this project was to propose and evaluate a novel PET iter-

ative reconstruction algorithm which incorporates anatomical information from

MR and functional information from the PET image itself. In particular, to

correct for PVE, reduce bias in low count regions, increase lesion contrast, and

allow noise suppression. In the different chapters of the thesis, a number of issues

have been discussed and addressed: low-count datasets and the issues related to

this with the standard algorithms, PVE and bias reduction with the proposed

technique, contrast enhancement for small lesions and noise suppression, effect

of PET-MR spatial inconsistencies on image quality and quantification and the

accuracy during the calculation of the IDIF for small vessels such as the rabbit

aorta.
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7.2 Conclusions

Following the overview and the physical and mathematical introduction in Chap-

ters 1 and 2, Chapter 3 showed that using low-count datasets, from short ac-

quisitions, generates bias and significant amounts of noise in the reconstructed

images; when regularisation is used to suppress the noise the bias has increased;

the contrast and resolution was visibly degraded and small regions were severally

blurred. Chapter 4 developed a new iterative algorithm for PET image recon-

struction using PET-MR data. The method was inspired by previous studies

carried out by other researchers on anatomically-guided techniques. These stud-

ies also showed the limitations of such techniques and the HKEM was designed

to overcome these problems. This chapter also presents the validation of the

algorithm using several datasets. In particular it was shown that by introducing

the PET information in the kernel matrix, the detection of small PET unique

(about 5 mm diameter) features can be improved compared to standard regu-

larisation algorithms and KEM. The accuracy within the ROIs and the different

measurements of contrast also improved compared to standard algorithms. The

effect of the parameters σp, σm, σdp, σdm, and N was studied, and it was shown

that the same parameter settings, for different datasets, with a comparable num-

ber of events give similar results due to the normalisation of the feature vector,

which made the method ‘independent’ of the image scale. Nevertheless, depend-

ing on the noise level of the data it can be seen that in some cases the CoV

increases iteration after iteration for the HKEM whilst the increase is slower for

the KEM. The issues related to PET-MR spatial inconsistencies, due to motion,

registration or simply the different information that the two modalities can de-

tect, were investigated in Chapter 5. Different case scenarios were simulated by
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introducing a translation along one axis in the MR image. It was shown, using

phantom and patient data, that this induced spill-in of activity in cold regions

and more moderate spill-out of activity from hot region. In addition, for patient

data there was an induced voxel-wise bias up to ±50%. It was also shown that

the HKEM can help reducing the induced error especially for the cold regions.

An important quantitative outcome from this chapter is represented by the fact

that even the worst case scenario for both HKEM and KEM is still better than

the result obtained with the application of a 5 mm Gaussian filter after the

OSEM reconstruction. Chapter 6 applied the proposed method to improve the

accuracy of the IDIF estimation in the context of PET preclinical studies using

rabbit data. In addition a dynamic simulation was generated for this purpose.

Two rabbit datasets were also used to assess the method and to show consistency

with two different radiotracers, [18F]NaF and [18F]FDG. In this chapter, it was

demonstrated that, even considering the challenging circumstances in terms of

resolution when using small animals, the HKEM can provide overall accurate

and precise estimates of the IDIF, with an average bias of 5% and average CoV

of about 20%. The extraction of the aorta ROI, which depends on both MR

and PET, can provide flexibility in case of spatial inconsistencies between PET

and MR. This is because only the maximum values are considered, avoiding low

activity values coming from outer tissues. A limitation of the method is the

fact that, like OSEM, the noise increases iteration after iteration and especially

for low-count datasets. Although this is not as significant as OSEM, it repre-

sents a problem in those applications where minimum noise levels are required.

Nevertheless, stopping at 2-3 iterations will provide a good trade-off between

noise suppression and accuracy. A potential improvement of the thesis, could be
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obtained with the use of point spread function (PSF) for additional resolution

modelling. However, it has been shown that including PSF can lead to misinter-

pretation when used in quantification of small sub-centimetre lesions due to the

edge artifact that appears near sharp intensity variations (Munk et al. [2017]).

In addition, the intent of this thesis was to investigate the improvement provided

by the kernel method over standard techniques, and to do so it is easier not to

take into account other effects that can be created with the use of PSF. It could

also be useful to study whether the effect that PSF has on the OSEM algorithm

would be the same when applied to the kernel method.

From a general perspective, the purpose of the thesis was to provide improve-

ment in accuracy, resolution, and image quality by exploiting the synergistic in-

formation provided by PET-MR scanners. The HKEM iterative algorithm has

been proposed, validated and applied for different case scenarios. It was initially

designed for the activity recovery in cases of low-count data, but subsequently

extended for different count levels. The proposed technique has been demon-

strated to reduce bias, enhance resolution and contrast whilst providing similar

noise suppression to the one obtained with a Gaussian filter. It has also been

shown that HKEM provides better flexibility in cases of anato-functional incon-

sistencies compared to the KEM, and finally optimum parameter settings were

similar across a range of different datasets for both kernel methods. This thesis,

therefore, argues that using synergistic information, via the kernel method, in-

creases the accuracy and precision of the PET clinical diagnostic examination,

and, as a consequence, accurate results can be achieved also with low-counts

making it possible to conduct future studies with lower injected radioactivity, as

well as considering other clinical applications.
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7.3 Future Work

A wide range of possible applications could be investigated. The thesis discussed

the results obtained with different datasets; however to truly assess whether the

proposed method can be translated to clinical routine, clinical studies on spe-

cific diseases should be performed. For example, as part of this PhD project a

collaboration with the Commonwealth Scientific and Industrial Research Organ-

isation (CSIRO), Brisbane, Australia was established to use the HKEM as the

reconstruction algorithm for a clinical study on epilepsy using PET-MR data.

Similarly, performing a study on lesion detectability with receiver operating char-

acteristic (ROC) analysis and with a large number of subjects will help to prove

the usefulness of the proposed method in the clinical context.

A natural extension of this work could be to study whether consistent results

are obtained when a reduced activity is injected in the patient. In the previous

chapters low-count circumstances were always obtained by injecting standard

activities and extracting frames with shorter time, which is helpful in the case of

dynamic data. Allowing injection of a lower radioactivity to the patient would

make the diagnostic examination available to more subjects, as higher doses

cannot be used for pregnant women and children for example. The same issues

related to noise and bias will occur in such situations and the HKEM could play

an important role in reduce these issues. The study on IDIF estimation could be

extended to the kinetic analysis by estimating the time-activity curve (TAC) of

the tissue of interest and use a compartmental model for the estimation of the

kinetic rate constants.

Finally, the modularity of the kernel function makes it possible to add multi-

ple information in the model. For instance, with PET-MR scanners it is possible
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to acquire many different MR sequences in parallel to the PET acquisition and

all these sequences can be used to improve the PET reconstructed image glob-

ally. In addition, information from other imaging examination modalities, such

as CT, PET with different tracers, or even single photon emission computed to-

mography (SPECT) images could be taken into account making PET imaging

applicable in a wide range of applications. A pilot study was implemented as part

of this project, and the method is introduced in Appendix A and preliminary

results with simulated data are reported, while the application of the technique

with clinical or preclinical data is ongoing research.
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Multiplexing KEM (MKEM)

Reconstruction for PET-MR

In this appendix an extension of the HKEM method is proposed and preliminary

results from a simulation are discussed. The work is presented as submitted and

accepted for the IEEE Medical Imaging Conference, Sidney, Australia, 2018. In

this work, a version of the kernel method is proposed and investigated which

exploits the information contained in multiple MR images, and potentially CT

or PET images. To do so, the HKEM was modified such that the kernel matrix

is obtained using additional Gaussian terms carrying the features from mul-

tiple MR images. The method goes under the name of multiplexing-HKEM

(MHKEM) when the PET iterative information is included and ‘multiplexing-

KEM’ (MKEM) when only anatomical images are included. Section A.1 intro-

duces the technique and possible applications that could potentially benefit from

it. The methodology of the study, with the ROI analysis is discussed in Section

A.2 and the results are shown and discussed in Section A.3.
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A.1 Introduction

Since the kernel method was first proposed (Wang and Qi [2015]) in positron

emission tomography (PET), it has been successfully used for different applica-

tions (Deidda et al. [2018a,b, 2019a,b]; Novosad and Reader [2016]). PET-MR

scanners allow the acquisition of many MR sequences, as well as PET data,

and different MR sequences, for the same subject, can be exploited to improve

image reconstruction. In oncology, for example, metastatic lesions are located

in different tissues than the primary lesion. Therefore, lesions in different soft

tissues might be detected from different sequences. In this work it is proposed

and investigated a kernel method which exploits the information contained in

different MR images and potentially CT or PET images. Multiplexed imaging

provides diverse data from a single imaging session that can be exploited to offer

improved cancer detection and treatment (Kobayashi et al. [2010]; Heinzmann

et al. [2017]). Therefore, the proposed method was named ‘multiplexing-HKEM’

(MHKEM) when the PET iterative information is included and ‘multiplexing-

KEM’ (MKEM) when only anatomical images are included. To do so, the kernel

method from Chapter 4 was modified such that the kernel matrix is obtained

from extra Gaussian terms carrying the features from the second MR image.

Although it is not proposed a specific application here for this algorithm it was

hypothesised a case where two MR images are beneficial using a simulated torso

dataset. In the kernel method, each voxel value of the image, λ, can be rep-

resented as a linear combination. Thus, λj, can be described using the kernel

matrix as in equation (4.9) and, the kernelised OSEM for the estimation of voxel

j at sub-iteration n+ 1 of the coefficient vector, α, can be written as in equation

(4.11). The fjth element of the kernel matrix is defined as
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kfj = km1(vf ,vj) · kp(zf , zj), (A.1)

where

km1(vf ,vj) = exp

(
−‖vf − vj‖

2

2σ2
m2

)
exp

(
−‖xf − xj‖

2

2σ2
md

)
, (A.2)

is the kernel coming from the MR image and

kp(zf , zj) = exp

(
−‖zf − zj‖

2

2σ2
p

)
exp

(
−‖xf − xj‖

2

2σ2
pd

)
, (A.3)

is the part coming from the iterative update. Here the Gaussian kernel functions

have been modulated by the distance between voxels in the image space. xj is

the position of the jth voxel, and σm, σp, σmd and σpd are scaling parameters

for (A.2) and (4.14). In this work, the fjth kernel element in (4.12) was further

modified by multiplying Gaussian terms coming from other images:

kmi(uf ,uj) = exp

(
−‖uf − uj‖

2

2σ2
mi

)
, (A.4)

where uj is the feature vector related to the voxel j, and i is the index of the

Gaussian term obtained from the ith image, in this study there are two MR

images so i = 1,2.

A.2 Methods and Material

A.2.1 Simulation Study

A realistic simulation study was carried out using data based on Monte Carlo

simulation (Jan et al. [2004]) which uses accurate physical modelling as published
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by Tsoumpas et al. [2011], using the Philips Gemini TF scanner. The data

represents an anthropomorphic torso showing lungs, myocardium, liver, three

different lesions between lungs and liver, and a fourth lesion in the myocardium

as shown in Figure (A.1(c)). In this study the focus is on the lesion uptake for

validation and 4 cases are reproduced: L1 and L2 are lesions which appear only

in the PET data; L3 is a lesion appearing both in the PET and the first MR

image (MR1) only, and L4 is the lesion in the myocardium, which is visible both

in the PET image and the second MR image (MR2) only.

A.2.2 Reconstruction Setup

The simulated data were reconstructed with 10 iterations and 23 subsets using

HKEM, KEM, MHKEM, MKEM in three possible scenarios:

1) HKEM1, KEM1 with MR1;

2) HKEM2, KEM2 with MR2;

3) MHKEM, MKEM with MR1 and MR2.

For simplicity the aforementioned cases are referred to as HKEM1/KEM1,

HKEM2/KEM2 and MHKEM/MKEM respectively. The parameters discussed

in Section A.1, ν, σm1, σm2, σp, σmd and σpd for the kernel were chosen from a

preliminary study as the best trade-off between bias and CoV. The size of the

neighbourhood, ν, was chosen to be, 33 voxels. The voxel size, 4× 4× 2 mm3 was

chosen based on the scanner characteristics. The algorithms are implemented in

the STIR library and all corrections were performed with STIR.
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(a) (b)

(c)

Figure A.1: Regions of interest chosen for this study. The ROIs (a) in the PET
image, the L4 ROI appearing only in image MR2 (b), and the L3 ROI appearing
only in image MR1 (c).

A.2.3 Images Analysis

The comparison was carried out in terms of bias and CoV, and the ROI analysis

was performed using: the lesions L1, L2, L3, and L4. The lesions are shown in

Figure (A.1), where L3 appears only in MR1, L4 only in MR2, while L1 and L2

represent PET unique features. The figures of merit used for the analysis are

defined as:

bias =
t−MT

MT

, (A.5)

and

CoV =

√
1

V − 1

∑V
j=1(tj −M)2

M
× 100, (A.6)

161



Chapter A

where t is the mean values over the selected lesion ROI, MT is the mean value

in the same ROI calculated from the true image, tj is the jth voxel value within

the ROI, M is the mean value of the ROI and V is the number of voxels inside

the ROI.

A.3 Results and Discussion

Figure (A.2) shows the ROI comparison in terms of bias and CoV for the 4 ROIs,

while Figure (A.3) shows the corresponding reconstructed images for the three

scenarios explained in Section A.2.

The aim of this work is to show the feasibility of a kernel method based on

two different MR images. The results from Figure (A.2) show that for lesion L1

and L2 the quantification is very similar for all the three different cases, showing

that if the MR does not have any information on a lesion MHKEM and MKEM

will give similar results as HKEM and KEM respectively. An exception of the

latter assertions is represented by the L1 lesion obtained with KEM2. In fact, the

bias is slightly more negative than KEM1 and MKEM. This might be related to

the fact that in MR2 there is no information about the liver, thus allowing spill

out from the lesion and over-smoothing. For lesion L3 the worst case scenario

is represented by case 2) for both HKEM and KEM, which is the one where

the MR image does not show information about L3. The cases 1) and 3) show

equally good results for this lesion. Lesion L4 show bias close to zero for all cases

except the KEM1 as no information about this lesion is included in the kernel.

In this case the MKEM and MHKEM show the best trade-off between accuracy

and precision. From Figure (A.3) it is possible to notice consistent results on

the visual point of view. Lesions L1 and L2 are not affected by the change of
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Figure A.2: Comparison between reconstructed image with HKEM1, HKEM2,
MHKEM, KEM1, KEM2 and MKEM. The bias is plotted against CoV for the
four different lesions, L1, L2, L3, L4.
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Figure A.3: Reconstructed images with HKEM1, HKEM2, MHKEM in the top
row, and KEM1, KEM2, MKEM in the bottom.

MR information in the kernel when HKEM is used. In contrast, when KEM is

used these lesion express worse resolution and in case 2) it is even more evident.

This is the consequence of the absence of the liver information in MR2. Lesion

L3 shows good resolution every time the kernel also contains MR information,

while it looks over-smoothed in case 2) where MR2 only contains features from

the heart. Finally, lesion L4 show the best contrast for case 2) and 3).

In summary, the HKEM always shows more accuracy than the KEM due to

the ability to exploit functional and anatomical information together. Although

the standard HKEM can work well when the focus is on a specific region, it

over-smooths other regions that might be of interest. The MHKEM can help

providing good quantification, resolution, and noise suppression for areas where

the disease might appear.

164



Conclusion

A.4 Conclusion

In this appendix chapter it was demonstrated with simulated data that potential

improvement can be achieved in different areas if multiple images, with different

anatomical or functional information provided. Further investigation with real

data needs to be carried out to fully demonstrate the applicability of the proposed

method.
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Implementation of the KEM

Reconstruction in STIR

In this appendix it is schematically described the implemented kernel reconstruc-

tion in the form of pseudo-code. The written code reproduces the reconstruction

algorithm described the equation (4.11). Originally it was implemented as an

objective function which could be called by the OSMAPOSL reconstruction al-

gorithm described in Figure (2.7), and two objective functions were created for

the LM and for the sinogram reconstruction. Recently, the implementation was

adapted to a new reconstruction executable which is derived from OSMAPOSL

and it was named KOSMAPOSL. This was done to make the algorithm more

flexible and able to use as more as possible all the functionality included in STIR.

For instance, there is no need any more to have two different implementation for

LM or sinogram because it is possible to choose among all the objective functions

available in STIR, including motion compensated image reconstruction.
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B.1 Algorithm Architecture

As stated before and shown in Figure (B.1) the kernel method was implemented

in the KOSMAPOSLReconstruction class, which inherits the OSMAPOSLRe-

construction functionalities but includes the functions for the kernel calculation.

In addition, the member function update estimate(TargetT &current image estimate),

which perfoms the calculation in OSMAPOSL was overridden by the KOSMA-

POSL member function update estimate(TargetT &current alpha coefficent image)

which takes into account the kernel. The main member functions are described

in the following sub-sections.

Figure B.1: Class hierarchy for KOSMAPOSL reconstruction algorithms (image

modified from Thielemans et al. [2012]).
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B.1.1 Calculate Euclidean Distance Between Feature Vec-

tors

This member function extracts the feature vectors for each voxel in the input

image and creates a matrix containing the Euclidean distance between feature

vectors associated with neighbouring voxels (like in equations (4.13) and (4.14)),

and it can also be seen as the norm of the vector obtained from the difference

between the two feature vectors.

void ca l cu la t e norm matr ix ( norm matrix ,

number of rows ,

number of columns ,

input image ){

// de f i n e an array where the f e a t u r e v e c t o r s w i l l be s t o r ed :

f = Array<2, f loat>(IndexRange2D (0 , number of rows ,

0 , number of columns ) ) ;

// e x t r a c t f e a t u r e vec to r f o r each vox e l in input image

for ( int z=min z ; z<=max z ; z++){

dimy=max y−min y+1;

for ( int y=min y ; y<= max y ; y++){

dimx=max x−min x+1;

for ( int x=min x ; x<= max x ; x++){

// adapt indexes z , y , x to mono−dimensiona l index l

l =(z−min z )* ( max x−min x +1)*(max y−min y +1) +

(y−min y )* ( max x−min x +1) +

(x−min x ) ;
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// here f i s f i l l e d wi th the f e a t u r e v e c t o r s :

for ( int dz=min dz ; dz<=max dz;++dz )

for ( int dy=min dy ; dy<=max dy;++dy )

for ( int dx=min dx ; dx<=max dx;++dx ){

// adapt indexes f o r the neighbours , dz , dy , dx to mono−

// dimensiona l index m

m=(dz )* ( max dx−min dx +1)*(max dy−min dy +1) +

( dy )* ( max dx−min dx +1) + ( dx ) ;

int c=m;

i f (m<0){

c=m + number of ne ighbours ;

}

else {c=m;}

fp [ l ] [ c ] = ( pet [ z+dz ] [ y+dy ] [ x+dx ] ) ; } } } }

// the norms o f the d i f f e r e n c e between f e a t u r e v e c t o r s r e l a t e d to the

//same neighbourhood are c a l c u l a t e d now and s to r ed in to norm matrix

for ( int q=0; q<=number of rows −1; ++q ){

for ( int n=−(number of neighbours −1)/2*( !2D) ;

n<=(number of neighbours −1)/2*( !2D) ; ++n)

for ( int k=−(number of neighbours −1)/2;

k<=(number of neighbours −1)/2; ++k )

for ( int j=−(number of neighbours −1)/2;

j<=(number of neighbours −1)/2; ++j )

for ( int i =0; i<=number of columns ; ++i ){

p=j+k*( c u b i c r o o t o f n u m b e r o f n e i g h b o u r s )+
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n* square ( ( c u b i c r o o t o f n u m b e r o f n e i g h b o u r s ))+

( number of neighbours −1)/2;

// i t checks t ha t the d i f f e r e n c e i s c a l c u l a t e d only f o r ne ighbour ing

// f e a t u r e v e c t o r s and t ha t the v o x e l s in the

// edge have l e s s ne ighbours to compare ;

//dim x , dim y , dim z are dimension o f the 3D image a long each ax i s ;

//N.B. wi th number o f non zero e l ements i t i s p o s s i b l e to choose

//how many e lements o f the neighbourhood con t r i b u t e to the norm .

i f ( q mod dimx==0 && ( j+k*dimx+n*dimx*dimy)>=(dimx−1)){

i f ( j+k*dimx+n*dimx*dimy>=dimx+(num neighbours−1)/2{

continue ;}

o=q+j+k*dimx+n*dimx*dimy+1;}

else {o=q+j+k*dimx+n*dimx*dimy ;}

i f ( o>=dimf row−1 | | o<0 | | i <0 | |

i>number o f non zero e lements−1 | |

q>=number of rows−1 | | q<0){

continue ;}

normp [ 0 ] [ q ] [ p]+=square ( f [ q ] [ i ]− f [ o ] [ i ] ) ; }

}

B.1.2 Compute Kernelised Image

With this member function the calculation of the equation (4.9) is performed.

However the calculation is not only applied to the kernel coefficients image but
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also to the sensitivity image,
∑

i cfi:

∑
j

k
(n)
fj

∑
i

cfi, (B.1)

and to the term obtained from the gradient of the objective function plus the

sensitivity: ∑
j

k
(n)
fj

∑
i

cij
1∑

l cil
∑

f k
(n)
fl α

(n)
f + si

, (B.2)

the function can calculate the kernelised image in two ways according to the num-

ber of non zero elements in the feature vector: if number of non zero elements=1

the compact compute kernelised image() is used while if number of non zero elements >1

the full compute kernelised image() is used.

void compute kerne l i s ed image ( output image ,

input image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e )

{

i f ( number o f non zero e l ements==1){

compact compute kerne l i sed image ( output image ,

input image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

}

else {

f u l l c o m p u t e k e r n e l i s e d i m a g e ( output image ,

input image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

}

}
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void f u l l c o m p u t e k e r n e l i s e d i m a g e ( output image ,

input image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e )

{

i f ( hybrid ){

ca l cu la t e norm matr ix ( pet norm matrix ,

number of rows ,

number of columns ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ; }

// ca l cu l a t e norm matr i x ( ) i s c a l l e d on ly once wi th the anatomical

// image in the po s t p r o c e s s i n g ( ) which i s on ly c a l l e d at the

// beg inn ing o f the i t e r a t i v e proces s

for ( int z=min z ; z<=max z ; z++){

for ( int y=min y ; y<= max y ; y++){

for ( int x=min x ; x<= max x ; x++){

l =(z−min z )* ( max x−min x +1)*(max y−min y +1) +

(y−min y )* ( max x−min x +1) +

(x−min x ) ;

for ( int dz=min dz ; dz<=max dz;++dz )

for ( int dy=min dy ; dy<=max dy;++dy )

for ( int dx=min dx ; dx<=max dx;++dx ){

m=(dz )* ( max dx−min dx +1)*(max dy−min dy +1) +

( dy )* ( max dx−min dx +1) + ( dx ) ;

i f ( hybrid ){

i f ( c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z ] [ y ] [ x]==0){

continue ;}

else {
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kPET = exp(−pet norm matrix [ 0 ] [ l ] [m] /

square ( c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z ] [ y ] [ x ]* sigma p )/2)*

exp(− square ( d i s t ance [ dz ] [ dy ] [ dx ] ) /

(2* square ( sigma dp ) ) ) ; }

// d i s t ance i s the Eucl idean d i s t ance between two vo x e l s

else { kPET=1;}

kanatomical = exp(−a norm matrix [ 0 ] [ l ] [m] /

square ( anatomica l sd *sigma m )/2)*

exp(− square ( d i s t ance [ dz ] [ dy ] [ dx ] ) /

(2* square ( sigma dm ) ) ) ;

// anatomica l sd i s the s tandard d e v i a t i on c a l c u l a t e d over

// a l l the v o x e l s in the anatomical image

output image [ z ] [ y ] [ x ] += kanatomical *kPET*

input image [ z+dz ] [ y+dy ] [ x+dx ] ;

no rma l i s a t i on += kanatomical *kPET;}

output image [ z ] [ y ] [ x ] /= norma l i s a t i on ;

no rma l i s a t i on = 0;}}}}

}

When the compact version is called the kernel matrix is not explicitly calcu-

lated as the norm becomes the difference between voxel values between neigh-

bours, and these can be directly accessed from the images.

void compact compute kerne l i sed image ( output image ,

input image ,
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c u r r e n t a l p h a c o e f f i c e n t i m a g e )

{

for ( int z=min z ; z<=max z ; z++){

for ( int y=min y ; y<= max y ; y++){

for ( int x=min x ; x<= max x ; x++){

for ( int dz=min dz ; dz<=max dz;++dz )

for ( int dy=min dy ; dy<=max dy;++dy )

for ( int dx=min dx ; dx<=max dx;++dx ){

i f ( hybrid ){

i f ( c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z ] [ y ] [ x]==0){

continue ;}

else {

pnorm=square { c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z ] [ y ] [ x ] −

c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z+dz ] [ y+dy ] [ x+dx ] ) ;

kPET = exp(−pnorm/

square ( c u r r e n t a l p h a c o e f f i c e n t i m a g e [ z ] [ y ] [ x ]* sigma p )/2)*

exp(− square ( d i s t anc e [ dz ] [ dy ] [ dx ] ) /

(2* square ( sigma dp ( ) ) ) ) ; }

else { kPET=1;}

anorm=square { anatomical image [ z ] [ y ] [ x ] −

anatomical image [ z+dz ] [ y+dy ] [ x+dx ] ) ;

kanatomical = exp(−anorm/

square ( anatomica l sd *sigma m )/2)*

exp(− square ( d i s t anc e [ dz ] [ dy ] [ dx ] ) /

(2* square ( sigma dm ( ) ) ) ) ;
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output image [ z ] [ y ] [ x ] += kanatomical *kPET*

input image [ z+dz ] [ y+dy ] [ x+dx ] ;

no rma l i s a t i on += kanatomical *kPET;}

output image [ z ] [ y ] [ x ] /= norma l i s a t i on ;

no rma l i s a t i on =0;}}}}

}

B.1.3 Update Estimate

The update estimate() which is called by the IterativeReconstruction class iter-

atively update the reconstructed image. The sensitivity image and the gradient

are estimated from the objective function class, and the kernel is applied in

update estimate(). Subsequently, the division between (B.2) and (B.1) is calcu-

lated and the result is multiplied by α(n) to obtain α(n+1). Finally, the kernel is

applied to α(n+1) to obtain the PET image, λ(n+1).

update es t imate ( c u r r e n t a l p h a c o e f f i c e n t i m a g e )

{

compute kerne l i s ed image ( current PET update image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

Object iveFunct ion : :

c o m p u t e s u b g r a d i e n t w i t h o u t p e n a l t y p l u s s e n s i t i v i t y (

mu l t ip l i c a t i v e updat e image ,

current PET update image ,

subset num ) ;
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// app ly k e rne l to the mu l t i p l i c a t i v e update

compute kerne l i s ed image ( kmul t ip l i ca t i ve update image ,

mu l t i p l i c a t i v e updat e image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

// d i v i d e by sub s e t s e n s i t i v i t y

s e n s i t i v i t y = Object iveFunct ion : :

g e t s u b s e d i n g t s e n s i t i v i t y ( subset num ) ;

compute kerne l i s ed image ( k s e n s i t i v i t y ,

s e n s i t i v i t y ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

kmu l t i p l i c a t i v e upda t e image=d iv id e ( kmul t ip l i ca t i ve update image ,

k s e n s i t i v i t y ) ;

c u r r e n t a l p h a c o e f f i c e n t i m a g e=

mult ip ly ( c u r r e n t a l p h a c o e f f i c e n t i m a g e ,

kmu l t i p l i c a t i v e upda t e image ) ;

//Write the PET image es t imate :

compute kerne l i s ed image ( current PET image ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ,

c u r r e n t a l p h a c o e f f i c e n t i m a g e ) ;

s u b i t e r a t i o n c o u n t e r ++;

i f ( s u b i t e r a t i o n c o u n t e r mod s a v e i n t e r v a l == 0){

w r i t e t o f i l e ( current PET image f i lename , current PET image ) ;}}
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B.1.4 Parsing

The parameters that are defined by the user, such as kernel parameters, voxel

size, objective function and so on, are set in a text file, also called parameter file.

An example of such file is shown below:

KOSMAPOSLParameters :=

; Example file for using [Hybrid] Kernelized Expectation Maximisation (HKEM or KEM).

; See documentation of KOSMAPOSLreconstruction

; for more info.

;the following disable the alpha coefficient output:

disable output :=1

; here we have the possibility to choose the parameters which define the kernel

; matrix and the name of the anatomical image. the following are the defaults values:

; 1 (default): use hybrid kernel (prior from MR and PET estimate)

; OR

; 0 kernel is MR-only

hybrid:=1

; Gaussian scaling parameter for the anatomical prior (units of image intensity)

; It controls the edge preservation from the anatomical image, the bigger the stronger

; default: 1

sigma m:= 1

; Gaussian scaling parameter for the PET estimate (units of PET image intensity)

; It controls the edge preservation from the functional image, the bigger the stronger

; default: 1

sigma p:=1

; NB: sigma dm and sigma dp should be the same

; Spatial Gaussian scaling parameter for the anatomical prior (mm)

; default: 1 (usual range 1-5)

sigma dm:=5

; Spatial Gaussian scaling parameter for the PET prior (mm)

; default: 1 (usual range 1-5)

sigma dp:=5

; Number of neigbouring voxels to compare: (num neighbours X num neighbours X num

neighbours)

; default: 3

number of neighbours:= 3

; Number of non-zero elements in the feature vectors
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; default: 1

number of non-zero feature elements:=1

; this is the file name of the anatomical image

anatomical image filename:= MRbrain.hv

; the following should be 1 if you want to reconstruct 2D data

only 2D:=1

; the following is the output prefix of the PET reconstructed image

kernelised output filename prefix :=KOSMAPOSL

objective function type:= PoissonLogLikelihoodWithLinearModelForMeanAndProjData

PoissonLogLikelihoodWithLinearModelForMeanAndProjData Parameters:=

input file := myprompts.hs

; Daniel: here we have the possibility to choose the parameters which define the kernel

matrix and the name of the MR image.

projector pair type := Matrix

Projector Pair Using Matrix Parameters :=

Matrix type := Ray Tracing

Ray tracing matrix parameters :=

number of rays in tangential direction to trace for each bin := 10

do symmetry 90degrees min phi := 1

do symmetry 180degrees min phi:= 1

do symmetry swap s:= 1

do symmetry swap segment:= 1

do symmetry shift z:= 1

End Ray tracing matrix parameters :=

End Projector Pair Using Matrix Parameters :=

; additive projection data to handle randoms etc

additive sinogram := additive.hs

; norm and acf

Bin Normalisation type := From ProjData

Bin Normalisation From ProjData :=

normalisation projdata filename:= multfactors.hs

End Bin Normalisation From ProjData:=

; if the next parameters are enabled,

; the sensitivity will be computed and saved

; use ; we do this here for illustration, but also for re-use later on (to save some time)

; CAREFUL: use correct number of subsets in name to avoid confusion

subset sensitivity filenames:= sens

recompute sensitivity := 1

xy output image size (in pixels) := -1

end PoissonLogLikelihoodWithLinearModelForMeanAndProjData Parameters:=
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; if you want to continue from a particular image

; initial estimate:= reconML.hv

; Number of subsets should usually be a divisor of num views/8

; the following is an example for the Siemens mMR

number of subsets:= 21

number of subiterations:= 210

save estimates at subiteration intervals:= 21

END KOSMAPOSLParameters:=

The KOSMAPOSLReconstruction and the classes used for the reconstruction

parse this file in order to assign these values to the appropriate class members.

The member function used for this purpose is called initialise keymap(). An

example for the overriden function in KOSMAPOSLReconstruction is shown

below:

void i n i t i a l i s e k e y m a p ( )

{

parent : : i n i t i a l i s e k e y m a p ( ) ;

pa r s e r . add s ta r t key ( ”KOSMAPOSLParameters” ) ;

pa r s e r . add stop key ( ”End KOSMAPOSLParameters” ) ;

pa r s e r . add key ( ” anatomical image f i l ename ” ,

anatomica l image f i l ename ) ;

par s e r . add key ( ”number o f ne ighbours ” , num neighbours ) ;

pa r s e r . add key ( ”number o f non−zero f e a t u r e e lements ” ,

num non zero feat ) ;

pa r s e r . add key ( ”sigma m” , sigma m ) ;

par s e r . add key ( ” sigma p ” , sigma p ) ;
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par s e r . add key ( ” sigma dp ” , sigma dp ) ;

par s e r . add key ( ”sigma dm” , sigma dm ) ;

par s e r . add key ( ” only 2D ” ,2D) ;

par s e r . add key ( ” hybrid ” , hybrid ) ;

pa r s e r . add key ( ” k e r n e l i s e d output f i l ename p r e f i x ” ,

k e r n e l i s e d o u t p u t f i l e n a m e p r e f i x ) ;

}
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Appendix C

Description of the Demonstrative

Code for the Rabbit Simulation

The last appendix chapter shows the README file from the demonstrative code

created for the simulation in Chapter 6 and published in Deidda [2018]. The file

describes all the steps from the simulation to the extraction of the ROI.
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# NaF Rabbit image-derived input function with hybrid kernelised expectation 
maximisation.
If you use this code or part of it please refer to its DOI.
# Author Daniel Deidda, University of Leeds
 email: D.Deidda@leeds.ac.uk, danieldeidda@gmail.com
 
This code creates simulated realistic PET-MR rabbit data using the NaF tracer and 
the Biograph Siemens mMR. 
The rabbit data is simulated using a UTE MR image to segment tissues and organs . 
The data is then reconstructed using the hybrid
kernelised expectation maximisation (HKEM) proposed by  Deidda et al, (“Hybrid PET-
MR list-mode kernelized expectation maximization reconstruction for quantitative 
PET images of the carotid arteries,” 
NSS/MIC/RTSD, Atlanta, Georgia, 2017). In this script the sinogram based HKEM is 
used.
 
After the reconstruction, the HKEM image is used together with the MR image to 
extract the aorta region of interest (ROI) that 
can be used for the estimation of the image derived input function (IDIF).
 
The main script is "run_main.sh", this will call other different scripts and STIR 
utilities (https://github.com/UCL/STIR). 
If you are willing to create your personalised simulation you can open the 
"run_main.sh" and the other scripts to change the 
variables according to what you need. For example, you can change the number of 
frames, the span, the number of iterations, 
the tissues that you want in your simulation and so on.
 
 
    Looking at the main script:
    
    I) the first three steps will call "create_single_tissue_frames.sh", 
"create_simulated_image.sh" and "time_rescale_frames.sh", 
       once these are completed you will have 45 simulated images in the folder ../
results/ and they are called 
       simulated_frames_f(frame).hv/.v,  each image correspond to one time frame.
 
    II) run "run_simulated_projdata.sh": this will create your PET raw data (ex: 
noisyprompts_s11_pn1_f5.hs /.s,
        multfactors_s11_pn1_f5.hs /.sh and./scatter_s11_pn1_f1/
additive_sino_s11_pn1_f5.hs)
 
        - If you look at the scripts you will see variables like pn (for the seed 
of the poisson noise), span 
          (for the axial compression of the data) and frame (the time frame 
number);
        - the data is only simulated for one frame (the number 5, which correspond 
to the time activity peak);
        - you can choose as many noise realisations as you want, in this example 
is 1, but you can choose by modifying the script;
        - span is 11 in this example to make the code running faster;
        - once this script has successfully finished to run  you will have all 
your sinograms and you are ready to reconstruct your
          PET images.
        
    III) "run_hkem.sh" start the reconstruction of your simulated data using the 
HKEM. This will reconstruct 3 full iterations with 
         21 ordered subsets. You can modify the parameter file kOSEM.par to choose 
your own settings. Note that the reconstructed 
         image is named as follows:
         6__H1_N3_M1_P1D3D3ks_rec_s1_pn1_f5_63_k.v/.hv. If you see an image with 
the same name but without the final "_k", that is 
         the kernel coefficient image, it should not be used for the analysis the 
only image you are interested in are those ending
         with "_k". 
         
    IV) "extract_aorta_ROI.sh" will extract the aorta ROI that you can use for the 
accurate estimate of the IDIF.
    



N.B. If you have your own data to test you can modify the scripts accordingly by 
providing the sinogram file names and the MR image file
name in step III). To extract the ROI you should provide the extrated aorta from 
your MR image because in step IV) it will be used as a
mask to extract the aorta from the PET image.
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