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Abstract	
Plant	lignocellulose	is	the	most	abundant	raw	material	on	the	planet	and	a	promising	

substrate	for	biofuel	production.	While	this	complex	polymer	is	efficiently	degraded	

by	a	range	of	naturally	occurring	microbial	communities,	cost-	and	energy-efficient	

industrial	use	 is	hampered	by	 its	 recalcitrance	to	degradation.	By	gaining	a	better	

understanding	of	how	microbial	lignocellulose	degrading	communities	function	we	

may	be	able	to	improve	industrial	processes.	In	this	thesis,	I	used	a	combination	of	

ecological	and	evolutionary	approaches	to	uncover	the	species	and	functional	traits	

that	 drive	 lignocellulolytic	 microbial	 community	 productivity.	 I	 found	 that	 the	

presence	 of	 key	 highly	 active	 cellulolytic	 bacteria	 increased	 the	 productivity	 of	

microbial	consortia.	Specifically,	we	identified	two	species,	Cellulomonas	sp.	D13	and	

Paenibacillus	sp.	A8,	with	a	range	of	cellulase	and	hemicellulase	enzymes	that	have	

potential	 for	 application	 in	 industrial	 processes.	 Experimental	 evolution	 revealed	

that	 the	 rate	 of	 phenotypic	 adaptation	 of	 a	 focal	 bacterial	 species,	

Stenotrophomonas	 sp.	 D12,	 to	 growth	 on	 wheat	 straw	 was	 accelerated	 by	 the	

presence	of	other	competing	species.	The	trajectory	of	focal	species	evolution	was	

determined	by	both	the	 identity	and	the	ecological	and	evolutionary	responses	of	

the	competing	species.	Genome	sequencing	of	evolved	clones	suggested	that	genetic	

adaptation	by	the	focal	species	to	degrade	wheat	straw	involved	mutations	targeting	

regulatory	genes	involved	in	catabolite	repression	and	carbon	storage,	two	systems	

that	 may	 represent	 promising	 targets	 for	 the	 improvement	 of	 industrial	 strains.	

Overall	these	results	suggest	the	ecological	and	evolutionary	approaches	can	be	used	

to	design	and	improve	microbial	consortia	for	lignocellulose	bioconversion.		 	
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1 Introduction	
	

1.1 Lignocellulosic	biofuel	production	
As	global	energy	consumption	continues	to	increase,	the	demand	for	sustainable	and	

environmentally	 friendly	 fuel	 sources	 is	 growing	 (Demain,	 2009;	 Van	 Dyk	 and	

Pletschke,	 2012).	 The	 majority	 of	 liquid	 biofuels,	 known	 collectively	 as	 first-

generation	biofuels,	are	currently	produced	from	sugar	rich	crops	such	as	sugarcane	

and	maize.	These	crops	require	dedicated	land	for	growth	and	it	is	argued	that	this	

not	only	reduces	food	production	but	also	increases	prices	(Tenenbaum,	2008).	Plant	

lignocellulose,	 the	most	 abundant	 organic	material	 on	 Earth,	 offers	 an	 attractive	

alternative	as	a	sustainable	substrate	for	biofuel	production	due	to	its	low	cost	and	

high	 sugar	 content	 (Bhatia	 et	 al.,	 2012;	 Shekhar,	 2011).	 Composed	 primarily	 of	

cellulose,	 hemicellulose	 and	 lignin	 (Figure	 1.1),	 lignocellulose	 evolved	 to	 provide	

plants	with	both	their	structural	rigidity	and	resistance	to	microbial	and	enzymatic	

attack	and	as	such,	 it	 is	extremely	recalcitrant	to	degradation	(Cragg	et	al.,	2015).	

Finding	an	energy-efficient	and	cost-effective	method	to	depolymerise	this	complex	

substrate	 is	 a	 key	 challenge	 that	must	 be	overcome	before	 lignocellulosic	 biofuel	

production	can	be	achieved	on	a	commercial	scale	(Naik	et	al.,	2010).	

	

Current	 industrial	 processing	 of	 lignocellulose	 relies	 on	 physiochemical	

pretreatments	to	disrupt	the	lignin-polysaccharide	interactions	thereby	reducing	the	

degree	 of	 recalcitrance	 (Van	 Dyk	 and	 Pletschke,	 2012).	 These	 processes	 are	

expensive,	 require	 a	 large	 energy	 input	 and	 can	 produce	 compounds	 that	 are	

inhibitory	 to	 saccharification	 and	 fermentation	 (Agbor	 et	 al.,	 2011;	 Zheng	 et	 al.,	

2014).	Following	pretreatment,	cellulose	and	hemicellulose	polymers	are	exposed	to	

hydrolysis	enzymes	to	release	monosaccharides	which	can	then	be	converted	into	

ethanol	by	fermentation.	The	saccharification	enzymes	currently	used	require	high	

enzyme	loading	due	to	their	low	catalytic	efficiencies	contributing	to	the	cost	barrier	

associated	with	lignocellulosic	biofuels	(Lynd	et	al.,	2008,	2017).	For	lignocellulose-

derived	 biofuels	 to	 become	 economically	 competitive,	 more	 energy-	 and	 cost-

effective	processing	methods	need	to	be	developed	(Lynd	et	al.,	2008;	Naik	et	al.,	

2010).		
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Figure	1.1	Structure	of	 lignocellulose	and	its	main	components:	 lignin,	hemicellulose	and	cellulose.	
“Fer”	 represents	 esterification	 with	 ferulic	 acid,	 which	 is	 characteristic	 of	 xylans	 in	 commelinid	
monocots	such	as	wheat.	Figure	reproduced	from	(H.	Isikgor	and	Remzi	Becer,	2015).	
	

Despite	the	recalcitrance	of	lignocellulose,	its	breakdown	is	achieved	in	a	wide	range	

of	 environments	 as	 part	 of	 the	 global	 carbon	 cycle.	 Microbial	 communities	 are	

responsible	 for	 a	 large	 portion	 of	 lignocellulose	 degradation	 in	 soil	 (Woo	 et	 al.,	

2014a),	compost	(Wei	et	al.,	2012)	and	sediments	(Cortes-Tolalpa	et	al.,	2016).	Most	

animals,	 including	 ruminants	 (Haitjema	 et	 al.,	 2014)	 and	 termites	 (Brune,	 2014;	

Warnecke	et	al.,	2007),	also	rely	on	specialised	microbial	communities	in	their	guts	

to	 degrade	plant	materials	 and	 release	 sugars	 that	 can	 be	 absorbed	by	 the	 host.	

These	microbial	communities	are,	therefore,	a	promising	source	of	microorganisms	

and	enzymes	with	high	lignocellulolytic	activity	and	potential	industrial	applications	

(Brune,	2014;	Cragg	et	al.,	2015).		

1.2 Lignocellulose	degradation	by	microbial	communities	
Microbial	 communities	 play	 an	 essential	 role	 in	 various	 natural	 and	 industrial	

processes.	 They	are	 key	 to	human	health	 and	digestion	 (Eloe-Fadrosh	and	Rasko,	

2013),	 global	 nutrient	 cycling	 (Hättenschwiler	 et	 al.,	 2005)	 and	 industrial	

biotechnology	 (Kouzuma	 and	 Watanabe,	 2014).	 In	 order	 to	 manage	 these	

communities	 effectively	 and	 predict	 how	 they	 will	 perform,	 we	 require	 a	 better	



	 11	

understanding	of	 the	 features	which	drive	microbial	 community	 function.	 Several	

studies	have	shown	microbial	communities	to	be	more	efficient	than	monocultures	

when	degrading	micropollutants	(Johnson	et	al.,	2015),	resisting	invasion	(Elsas	et	al.,	

2012)	and	degrading	lignocellulosic	biomass	(Halsall	and	Gibson,	1985;	Ponce-Noyola	

and	Torre,	1993;	Szambelan	et	al.,	2004).	Studies	examining	the	relationship	between	

biodiversity	and	ecosystem	functioning	(BEF)	often	find	a	positive	relationship	which	

can	be	explained	by	two	key	mechanisms.	First,	the	complementarity	effect	in	which	

diverse	communities	possess	a	wider	range	of	functional	traits	and	are	therefore	able	

to	occupy	more	of	the	available	niche	space	(Salles	et	al.,	2009;	Singh	et	al.,	2015).	

Second,	the	selection	effect	in	which	diverse	communities	are	more	likely	to	contain	

highly	active	species	or	species	that	are	preadapted	to	environmental	perturbations	

(Awasthi	et	al.,	2014;	Hooper	et	al.,	2005).	Bell	et	al.	 (2005)	 found	a	positive	BEF	

relationship	 between	 bacterial	 strains	 isolated	 from	 beech	 treeholes	 and	 their	

productivity	 when	 grown	 on	 beech	 leaf	 extract	 (presumably	 containing	

lignocellulose).	The	selection	effect	played	a	minor	role	 in	driving	this	relationship	

with	no	single	species	dominating	productivity.	The	results	suggest	that	while	it	may	

be	possible	to	maximise	community	functioning	by	selecting	a	particular	consortium	

of	species,	an	increase	in	function	can	also	be	achieved	by	increasing	species	richness	

(Bell	et	al.,	2005).	This	may	be	particularly	true	for	cellulose	degrading	communities	

which	 have	 been	 shown	 to	 achieve	 greater	 rates	 of	 degradation	 with	 increasing	

diversity,	despite	the	constituent	species	having	similar	functional	traits	(Wohl	et	al.,	

2004).		

	

Exploiting	 lignocellulolytic	 microbial	 communities	 could	 improve	 industrial	

lignocellulose	 degradation	 in	 two	 main	 ways.	 First,	 enzymes	 produced	 by	 these	

communities	 may	 be	 more	 efficient	 than	 those	 currently	 used	 by	 industry	 and	

numerous	efforts	are	ongoing	to	identify	and	characterise	the	enzymes	used	by	these	

communities	(Mori	et	al.,	2014).	Microbial	communities	offer	the	added	benefit	of	

being	able	to	adapt	to	specific	substrates	and	experimental	conditions.	For	example,	

Gladden	 et	 al.	 (2011)	 showed	 that	 compost-derived	 microbial	 communities	 that	

adapted	to	degrade	switchgrass	at	high	temperature	(60°C)	produced	enzymes	that	

were	 more	 thermotolerant	 and	 stable	 in	 the	 presence	 of	 by-products	 than	
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commercially	 available	enzyme	cocktails	 (Gladden	et	 al.,	 2011).	 Second,	microbial	

communities	can	be	utilised	through	the	consolidated	bioprocessing	(CBP)	approach.	

In	 CBP,	 lignocellulose	 is	 converted	 into	 valuable	 products	 by	 a	 single	 engineered	

strain	or	a	consortium	of	naturally	occurring	and/or	engineered	strains	 in	a	single	

step	improving	the	efficiency	and	reducing	the	cost	of	bioethanol	production	from	

lignocellulose	(Lynd	et	al.,	2002;	Zuroff	and	Curtis,	2012).		

	

While	current	industrial	bioprocessing	is	dominated	by	the	single	species	approach,	

using	a	multispecies	consortium	for	CBP	has	several	benefits.	Metabolic	load	means	

that	single	species	are	limited	in	the	number	of	resources	they	can	utilise	and	the	

number	 of	 products	 they	 can	 produce.	 In	 addition,	 it	 can	 be	 difficult	 to	 optimise	

individual	processes,	let	alone	multiple	processes	in	a	single	species	system	[e.g.	the	

expression	 of	 carbohydrate	 degradation	 enzymes	 and	 the	 production	 of	 ethanol	

(Brenner	 et	 al.,	 2008)].	 By	 contrast,	 microbial	 consortia	 can	 contain	 species	

specialised	at	degrading	different	parts	of	a	complex	substrate	and	so	the	metabolic	

load	is	shared	(Gerchman	and	Weiss,	2004;	Shong	et	al.,	2012).	Cross-feeding,	the	

process	by	which	species	utilise	the	by-products	of	 the	metabolism	of	others,	can	

also	slow	the	accumulation	of	inhibitory	compounds	in	the	media,	increasing	overall	

productivity	 (D’Souza	et	al.,	 2018;	Estrela	et	al.,	 2012).	One	 limiting	 factor	 to	 this	

approach	 is	 that	 it	 is	 often	 difficult	 to	 control	 and	predict	 changes	 in	 community	

composition	 and	 functioning	 over	 time.	 Designing	 stable	 microbial	 communities	

capable	 of	 efficient,	 predictable	 CBP	 requires	 a	 better	 understanding	 of	 how	

microbial	communities	function	and	how	they	adapt	over	time.	

1.3 Evolution	of	increased	lignocellulose	degradation	
Experimental	 evolution	 allows	 various	 evolutionary	 questions	 to	 be	 rigorously	

studied	 in	 a	 controlled,	 laboratory	 environment.	 Microorganisms	 are	 particularly	

useful	model	organisms	for	these	experiments	as	they	typically	have	rapid	generation	

times,	they	can	be	frozen	to	produce	a	complete	living	fossil	record,	and	they	readily	

adapt	 to	 various	 abiotic	 and	 biotic	 selection	 pressures	 (Elena	 and	 Lenski,	 2003).	

Various	experimental	evolution	studies	have	aimed	to	elucidate	the	mechanisms	by	

which	microbes	adapt	to	growth	in	new	environments,	often	in	limiting	resources	or	
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novel	substrates	(Chubiz	and	Marx,	2017;	Herring	et	al.,	2006;	Lee	and	Palsson,	2010).	

These	 studies	 are	 particularly	 powerful	 when	 coupled	 with	 omics	 approaches	 to	

uncover	 the	 genetic	 and	 transcriptional	 changes	 which	 underpin	 phenotypic	

adaptations	(Barrick	and	Lenski,	2013;	Brockhurst	et	al.,	2011a).	For	example,	genes	

involved	in	glycerol	metabolism	by	Saccharomyces	cerevisiae	were	discovered	by	a	

combination	 of	 experimental	 evolution	 and	 genome	 sequencing	 (Strucko	 et	 al.,	

2018).	 Introduction	 of	 mutations	 in	 these	 genes	 in	 industrial	 strains	 increased	

glycerol	 utilisation	 and	 have	 the	 potential	 to	 increase	 the	 efficiency	 of	 industrial	

processes.	

	

Experimental	 evolution	 is	 being	 explored	 as	 a	 method	 to	 improve	 lignocellulose	

degradation	by	 strains	of	both	bacteria	 and	 fungi.	 Serial	 propagation	of	 the	 fungi	

Trichoderma	 citrinoviride	 with	 filter	 paper	 (cellulose)	 as	 substrate	 led	 to	 a	 2.5	

increase	in	degradation	of	the	substrate	(Lin	et	al.,	2016).	Increased	cellulase	activity	

was	attributed	to	changes	in	the	regulatory	strategies	by	the	cells	which	increased	

the	amount	of	total	secreted	cellulase	with	only	small	increases	in	metabolic	load.	

Due	to	the	complexity	of	regulatory	networks	that	both	bacteria	and	fungi	possess,	

this	 phenotype	 would	 be	 difficult	 to	 design	 and	 engineer	 by	 synthetic	 biology	

approaches	 (Falke	 et	 al.,	 1997;	 Mira	 et	 al.,	 2012).	 Recently,	 the	 industrial	

fermentative	bacteria	Corynebacterium	glutamicum	was	experimentally	evolved	to	

increase	its	tolerance	of	lignocellulose	derived	inhibitors	(Wang	et	al.,	2018).	A	68.4%	

increase	in	glutamic	acid	production	was	achieved	by	the	evolved	populations	and	

transcriptomic	analysis	revealed	this	was	a	result	of	upregulation	of	glucose	transport	

and	the	pentose	phosphate	pathway.		

	

One	key	benefit	of	experimental	evolution	is	that	the	resulting	phenotypes	are	the	

result	 of	 natural	 selection	 and	 therefore	 are	 likely	 to	 be	 more	 stable	 than	

synthetically	 engineered	 strains.	 For	 example,	 studies	 aiming	 to	 increase	 enzyme	

production	often	lead	to	impaired	growth	or	eventual	loss	of	viability	(Dong	et	al.,	

1995;	Eguchi	et	al.,	2018).	The	negative	effect	that	adding	these	engineered	traits	

have	on	the	fitness	of	the	cell	may	eventually	lead	to	the	emergence	of	genotypes	

where	the	engineered	trait	has	been	lost	(i.e.	the	emergence	of	non-producers).	Non-
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producers	 are	 likely	 to	 be	 fitter	 than	 the	 engineered	 strain	 and	 will	 therefore	

outcompete	it	over	time	(Rosano	and	Ceccarelli,	2014;	Travisano	and	Velicer,	2004).	

By	contrast,	experimental	evolution	relies	on	natural	selection	and	so	for	genotypes	

to	reach	fixation,	they	must	be	able	to	outcompete	other	genotypes	and	are	likely	to	

have	undergone	compensatory	evolution	to	mitigate	the	costly	pleiotropic	effects	of	

mutations	 (Park	and	Krug,	2007).	 For	example,	 the	 tolerance	of	C.	glutamicum	 to	

lignocellulose	derived	inhibitors	increased	until	transfer	70	and	thereafter	its	growth	

and	 glucose	 consumption	 remained	 constant	 until	 the	 end	 of	 the	 experiment	

(transfer	130)	(Wang	et	al.,	2018).	

	

Industrially-focused	 applications	 of	 the	 experimental	 evolution	 approach	 have	

typically	 focused	 on	 single-species	 populations,	 however,	 as	 described	 above	

lignocellulose	degradation	is	performed	by	communities	in	nature.	Various	studies	

have	shown	that	the	trajectory	and	rate	of	evolution	can	be	shaped	by	the	presence	

of	competing	strains	(Fiegna	et	al.,	2015a;	Lawrence	et	al.,	2012).	These	studies	have	

revealed	 that	 when	 negatively	 interacting	 bacterial	 species	 are	 evolved	 in	 new	

environments,	the	overall	community	productivity	increases	even	though	the	ability	

of	species	to	grow	alone	in	the	selection	environment	decreases.	This	is	as	a	result	of	

the	 evolution	 of	 cross-feeding	 metabolic	 dependencies	 between	 the	 coexisting	

species,	such	that	originally	negative	competitive	interactions	can	become	positive	

facilitatory	interactions	following	community	evolution	(Barraclough,	2015;	Fiegna	et	

al.,	 2015a).	 It	 is	 reasonable	 therefore	 to	 assume	 that	 community	 experimental	

evolution	may	 be	 a	 promising	method	 to	 improve	 the	 stability	 and	 increase	 the	

efficiency	of	microbial	communities	with	potential	industrial	applications	(Brenner	et	

al.,	2008;	Jimenez	et	al.,	2014;	Puentes-Téllez	and	Salles,	2018).		

	

1.4 Thesis	outline	
In	 this	 thesis	 I	 investigate	 a	 range	 of	 these	 issues	 in	 detail	 using	 wheat	 straw	

degradation	 by	 bacterial	 compost	 communities	 as	 a	 model	 system.	 The	 various	

chapters	of	the	thesis	address	the	following	research	questions:	
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Chapter	2	–	The	isolation	of	lignocellulolytic	bacteria	from	wheat	straw	compost	

Various	lignocellulosic	substrates	are	degraded	in	compost	by	the	action	of	a	diverse	

microbial	community.	As	our	research	focusses	on	wheat	straw	degradation,	I	used	

wheat	straw	adapted	compost	as	a	source	for	the	bacterial	strains	used	throughout	

this	thesis.	Compost	enrichment	cultures	were	grown	for	eight	weeks	with	bacteria	

isolations	each	week.	Isolates	were	assayed	for	their	ability	to	degrade	cellulose	and	

hemicellulose	and	 identified	by	16S	rRNA	sequencing.	We	show	that	compost	 is	a	

viable	source	of	phylogenetically,	functionally	and	phenotypically	diverse	culturable	

lignocellulolytic	bacteria.	

	

Chapter	 3	 -	 Defining	 the	 functional	 traits	 that	 drive	 lignocellulose	 degrading	

community	productivity	

We	 assembled	 12	 phylogenetically	 and	 functionally	 diverse	 species	 isolated	 from	

compost	into	communities	of	varying	diversity	and	measured	their	ability	to	degrade	

wheat	 straw.	Similar	 to	 several	previous	 studies,	we	 found	a	positive	 relationship	

between	the	diversity	of	the	community	and	their	ability	to	grow	on	wheat	straw.	

We	found	that	 this	positive	relationship	was	driven	by	 the	 increased	 likelihood	of	

diverse	communities	containing	two	highly	active	species,	Paenibacillus	sp.	A8	and	

Cellulomonas	sp.	D13.	Furthermore,	we	identified	that	the	ability	of	these	species	to	

drive	community	productivity	was	due	to	their	ability	to	degrade	key	components	of	

cellulose.	

	

Chapter	4	-	Lignocellulolytic	bacteria	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	

possess	a	wide	range	of	carbohydrate	active	enzymes	

In	this	chapter,	we	investigate	the	lignocellulolytic	potential	of	Paenibacillus	sp.	A8	

and	Cellulomonas	sp.	D13	further	by	measuring	their	ability	to	degrade	wheat	straw	

in	monoculture	and	in	coculture	and	by	obtaining	whole	genome	sequences	for	both	

species.	 We	 found	 that	 while	 both	 species	 were	 able	 to	 degrade	 wheat	 straw,	

Cellulomonas	sp.	D13	was	more	efficient,	achieving	the	same	degree	of	wheat	straw	

degradation	 in	 monoculture	 as	 the	 coculture.	 Genome	 sequencing	 revealed	 that	

both	these	strains	possess	a	diverse	range	of	cellulase	and	hemicellulase	enzymes.		
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Chapter	5	–	The	influence	of	competing	species	and	their	ecoevolutionary	responses	

on	the	rate	and	trajectory	of	focal	species	evolution	

We	next	experimentally	evolved	a	compost	 isolate,	Stenotrophomonas	sp.	D12,	to	

increase	its	ability	to	utilise	wheat	straw	as	a	substrate.	This	focal	species	was	evolved	

in	monoculture	and	in	the	presence	of	a	community	of	competing	species.	The	rate	

of	phenotypic	evolution	 increased	 in	 the	presence	of	 competing	 species	however	

autonomous	 growth	 rates	 of	 the	 populations	 was	 reduced.	 Ecoevolutionary	

adaptations	of	the	competing	species	altered	the	evolutionary	trajectory	of	the	focal	

species’	 phenotypic	 traits.	 Specifically,	 the	 focal	 species	 that	 had	 evolved	 against	

fixed	 competitors	 (i.e.	 in	 the	 absence	 of	 ecoevolutionary	 adaptations	 of	 the	

competing	 community)	 exhibited	 an	 increased	 ability	 to	 utilise	 the	 more	 readily	

digestible	 labile	 substrates	 of	 lignocellulose.	 However,	 in	 the	 presence	 of	

ecoevolutionary	adaptations	by	the	competing	species,	the	focal	species	evolved	to	

better	 utilise	 the	more	 recalcitrant	 components	of	 lignocellulose.	 In	 addition,	 the	

ecoevolutionary	responses	of	the	competing	communities	increased	the	phenotypic	

divergence	between	the	replicate	focal	species	populations.	Our	results	suggest	that	

both	the	ecological	and	evolutionary	responses	of	competing	species	drives	the	rate	

and	trajectory	of	evolution	to	new	environments.	

	

Chapter	6	–	Genetic	adaptation	of	Stenotrophomonas	sp.	D12	to	growth	on	wheat	

straw	involved	multiple	regulatory	pathways	

We	 obtained	 whole	 genome	 sequences	 for	 84	 experimentally	 evolved	 clones	 of	

Stenotrophomonas	 sp.	D12	 from	 chapter	 5.	We	 identify	 parallel	mutations	 in	 ten	

genes,	the	majority	of	which	occurred	in	regulatory	genes,	which	are	likely	to	play	a	

role	 in	adaption	 to	growth	on	wheat	 straw.	Specifically,	we	 identified	 several	 loci	

targeted	by	natural	selection	which	are	likely	to	play	key	roles	in	catabolite	repression	

and	 carbon	 storage.	 These	 mutations	 potentially	 allow	 the	 utilisation	 of	 a	 more	

diverse	range	of	sugars	and	are	promising	candidates	for	improving	the	productivity	

of	industrial	strains.	
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2 The	isolation	of	lignocellulolytic	bacteria	from	wheat	straw	compost	
	

2.1 Abstract	
Industry	struggles	to	degrade	lignocellulose	in	a	cost	and	energy	effective	manner,	

but	 this	 process	 is	 efficiently	 achieved	 by	 a	 wide	 range	 of	 natural	 microbial	

communities.	Identifying	the	species	and	enzymes	involved	in	natural	lignocellulose	

degradation	could	help	to	improve	industrial	processes.	Here,	we	isolated	a	range	of	

bacteria	 from	wheat	 straw	compost	and	measured	 the	ability	of	 these	 isolates	 to	

utilise	cellulose	and	hemicellulose	as	substrates.	Our	results	indicate	that	compost	is	

a	viable	source	of	culturable,	phylogenetically	diverse	bacteria	with	lignocellulolytic	

potential.	

	

2.2 Introduction	
Lignocellulose	 is	 a	 complex,	 recalcitrant	polymer	 that	 is	 a	promising	 substrate	 for	

biofuel	 production	 due	 to	 its	 abundance	 and	 low	 cost	 (Naik	 et	 al.,	 2010).	While	

industry	struggles	to	efficiently	degrade	lignocellulose	in	a	cost-effective	manner,	it	

is	a	process	achieved	in	nature	by	various	microbial	communities	(Cragg	et	al.,	2015).	

Understanding	 both	 the	 enzymes	 and	 species	 involved	 in	 natural	 lignocellulose	

degradation	 could	 improve	 the	efficiency	 and	 reduce	 the	 cost	 barriers	 associated	

with	lignocellulose	degradation	(Lynd	et	al.,	2002).	

	

Lignocellulose	is	composed	primarily	of	cellulose,	hemicellulose	and	lignin	and	has	

evolved	 various	 chemical	 and	 structural	 characteristics	 that	 provide	 plants	 with	

structural	rigidity	and	protection	from	microbial	attack	and	grazing		(Himmel	et	al.,	

2007).	 Cellulose,	 the	 major	 constituent	 of	 plant	 material,	 is	 a	 polysaccharide	

composed	of	chains	of	between	500	and	14,000	ᴅ-glucose	monomers	linked	by	β-

1,4-glycosidic	bonds	(Somerville,	2006).	These	chains	are	held	together	by	hydrogen	

bonds	 to	 form	 crystalline,	 cable-like	 structures	 known	 as	 microfibrils,	 typically	

composed	 of	 36	 parallel	 glucan	 chains	 (Somerville,	 2006).	 Hemicelluloses	 are	 a	

diverse	group	of	 short-chain,	branched	heteropolysaccharides	 characterised	by	β-

1,4-linked	 sugar	 backbones	 with	 various	 side	 chains	 (Zhao	 et	 al.,	 2012).	 The	

predominant	hemicellulose	in	wheat	straw	is	xylan,	a	polysaccharide	composed	of	a	
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β-1,4-linked	xylose	backbone	with	various	side	chains,	commonly	arabinose	to	form	

arabinoxylan	 (Scheller	 and	 Ulvskov,	 2010).	 Lignin	 is	 a	 large,	 complex	 three-

dimensional	 polymer	 composed	 of	 three	 phenyl	 propane	monomers:	 p-coumaryl	

alcohol,	 coniferyl	 alcohol,	 and	 sinapyl	 alcohol	 (Buranov	 and	 Mazza,	 2008).	 This	

aromatic	 polymer	 is	 the	 major	 contributor	 to	 lignocellulose	 recalcitrance	 as	 it	

covalently	binds	to	hemicellulose,	and	to	a	lesser	extent	cellulose,	to	form	complexes	

which	prevent	saccharification	enzymes	accessing	the	polysaccharides	(Buranov	and	

Mazza,	2008;	Draude	et	al.,	2001;	Ishizawa	et	al.,	2009).		

	

As	lignocellulose	is	the	most	abundant	organic	substrate	on	Earth,	its	degradation	is	

a	 vital	 part	 of	 the	 carbon	 and	 nitrogen	 cycles.	 Degradation	 of	 this	 recalcitrant	

material	 is	 primarily	 achieved	by	microbial	 communities	 in	 various	 terrestrial	 and	

aquatic	ecosystems	including	soil	(Woo	et	al.,	2014a),	compost	(Mello	et	al.,	2016),	

the	rumen	(Cai	et	al.,	2010)	and	aquatic	sediments	(Cortes-Tolalpa	et	al.,	2016).	Due	

to	 its	 complexity,	 lignocellulose	 degradation	 requires	 the	 combined	 action	 of	

multiple	enzymes	produced	by	various	species	present	in	these	communities	(Cragg	

et	 al.,	 2015).	 Release	 of	monosaccharides	 from	 cellulose	 requires	 the	 synergistic	

action	of	both	endo-	and	exo-glucanases	and	β-glucosidase	(Lynd	et	al.,	2002).	Due	

to	the	heterogeneous	structure	of	hemicellulose	 it	 is	 less	resistant	to	degradation	

than	 cellulose,	 but	 complete	 depolymerisation	 requires	 the	 synergistic	 action	 of	

multiple	 enzymes	 including	 endoxylanases,	 endomannanases,	 xylosidases,	

glucosidases,	 arabinosidases,	 galactosidases,	 mannosidases	 and	 glucuronidases	

(Cobucci-Ponzano	 et	 al.,	 2015).	 These	 enzymes	 are	 classified	 into	 one	 of	 the	 152	

glycoside	 hydrolase	 (GH)	 families	 which	 can	 be	 found	 in	 the	 CAZyme	 database	

(www.cazy.org).		

	

Lignin	degradation	is	less	common	among	microbial	species	and	is	therefore	less	well	

understood	(Brown	and	Chang,	2014).	Basidiomycete	white-rot	fungi	are	the	most	

active	lignin	degraders	studied	to	date.	They	utilise	various	heme	peroxidases	(lignin	

peroxidase,	 manganese	 peroxidase	 and	 versatile	 peroxidase),	 laccases	 and	 small	

molecular	mediators	to	depolymerise	lignin	(Dashtban	et	al.,	2010).	Several	bacterial	

enzymes	have	also	been	identified	which	play	a	role	in	lignin	degradation	including	
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dye-decolourising	peroxidases	(DyPs),	laccases,	β-esterases,	superoxide	dismutases	

and	catalase-peroxidases	(Brown	and	Chang,	2014;	de	Gonzalo	et	al.,	2016).	These	

enzymes	 are	 produced	 by	 various	 bacterial	 strains	 including	 members	 of	

Streptomyces,	Rhodococcus,	Microbacterium,	Pseudomonas	and	Sphingobacterium	

genera	 (Taylor	et	 al.,	 2012)	 and	efforts	 are	ongoing	 to	 fully	 characterise	bacterial	

lignin	degradation	(Brown	and	Chang,	2014;	de	Gonzalo	et	al.,	2016).		

	

Both	culture-dependent	and	culture-independent	techniques	are	being	employed	to	

enhance	 our	 understanding	 of	 the	 species	 and	 enzymes	 involved	 in	 natural	

lignocellulose	 degradation.	 In	 recent	 years,	 metagenomic,	 metaproteomic	 and	

metatranscriptomic	approaches	have	allowed	microbial	 communities	 to	be	mined	

for	enzymes	with	potential	industrial	applications	(Cragg	et	al.,	2015).	Comparative	

transcriptomics	allows	 identification	of	enzymes	that	are	expressed	under	specific	

growth	 conditions,	 such	 as	 at	 high	 temperatures,	 that	 have	 potential	 roles	 in	

industrial	processes	(Simmons	et	al.,	2014).	While	these	methods	have	the	benefit	of	

identifying	 species	 and	 enzymes	 out	 with	 the	 culturable	 fraction	 of	 microbial	

communities,	 the	 complexity	 of	 these	 communities	 makes	 it	 difficult	 to	 fully	

understand	 the	 role	 individual	 species	 and	 enzymes	 play	 in	 lignocellulose	

degradation	 (Widder	et	 al.,	 2016).	 Culture	based	methods	have	 identified	 several	

microbial	species	with	high	lignocellulolytic	activity	(Gupta	et	al.,	2012;	Haitjema	et	

al.,	2014;	Taylor	et	al.,	2012).	The	functional	potential	of	isolated	microbes	can	be	

fully	interrogated	using	a	combination	of	sequencing	and	activity	assays	to	provide	a	

better	understanding	of	how	these	species	function.	These	isolated	species	can	also	

be	 studied	 in	 communities	 in	 an	 effort	 to	 understand	 how	 interactions	 between	

species	impact	their	functioning	(Widder	et	al.,	2016;	Wongwilaiwalin	et	al.,	2010).	

	

One	source	of	highly	active	lignocellulolytic	microbes	is	compost	(Wei	et	al.,	2012).	

Composting	 is	 the	 process	 by	 which	 organic	 materials	 (e.g.	 food	 waste,	 plant	

material,	crop	residues)	are	degraded	by	a	diverse	microbial	community	to	produce	

a	nutrient	rich	material	that	can	be	used	to	improve	the	fertility	of	soil	(Ryckeboer	

JR,	2003;	Wei	et	al.,	2012).	These	natural	communities	provide	a	phylogenetically	and	

functionally	 diverse	 inoculum	 source	 for	 enrichment	 cultures.	 Enrichment	 culture	
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methods	 exploit	 the	 ability	 of	 microbial	 communities	 to	 adapt	 to	 both	 abiotic	

conditions	and	the	substrate	they	are	degrading	(Wei	et	al.,	2009).	The	substrate	a	

community	 is	 adapted	 to	 significantly	 affects	 the	 phylogenetic	 and	 functional	

composition	of	 the	resulting	community	 (de	Lima	Brossi	et	al.,	2016;	Wong	et	al.,	

2016).	 For	 example,	 Allgaier	 et	 al.	 (2010)	 found	 significant	 differences	 in	 species	

abundance	 before	 and	 after	 adaptation	 to	 switchgrass.	 Adaptation	 resulted	 in	

species	 sorting	 with	 some	 species	 increasing	 in	 abundance	 >20	 fold,	 though	

evolutionary	adaptation	may	have	also	occurred.	Adaptation	to	particular	substrates	

is	likely	due	to	the	structural	and	compositional	differences	between	lignocellulosic	

feedstocks	which	result	in	slight	differences	between	the	niche	spaces	available	to	

microbes.	Another	important	factor	defining	enrichment	culture	composition	is	the	

source	 of	 the	 original	 inoculum.	 Cortes-Tolalpa	 et	 al.	 (2016)	 initiated	 enrichment	

cultures	with	wheat	straw	as	the	substrates	but	with	inoculum	from	three	distinct	

sources.	While	each	community	had	similar	functional	traits	following	enrichment,	

the	phylogenetic	composition	of	the	communities	varied	depending	on	the	source	of	

the	inoculum	(Cortes-Tolalpa	et	al.,	2016).	

	

The	aim	here	was	to	isolate	lignocellulolytic	bacterial	strains	which	could	be	used	to	

study	the	ecology	and	evolution	of	synthetic	microbial	communities	when	grown	on	

wheat	straw.	We	used	wheat	straw	adapted	compost	as	an	inoculum	to	improve	the	

likelihood	of	isolating	species	able	to	degrade	this	substrate.	Bacteria	were	isolated	

from	 batch	 enrichment	 cultures,	 assayed	 for	 activity	 against	 cellulose	 and	

hemicellulose	 and	 active	 strains	 were	 identified	 by	 16S	 rRNA	 gene	 sequencing.	

Although	these	culturable	isolates	will	not	represent	the	full	diversity	of	the	compost	

community,	they	do	represent	a	functionally	and	phylogenetically	diverse	range	of	

co-occurring	lignocellulolytic	bacteria	with	industrial	potential.	

	

2.3 Methods	

2.3.1 Compost	enrichment	cultures	

Wheat	straw	compost	was	homogenised	in	a	blender	and	7	g	was	used	to	inoculate	

700	ml	M9	media	(22	mM	KH2PO4,	42	mM	Na2HPO4,	19	mM	NH4Cl,	1	mM	MgSO4,	
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0.09	mM	CaCl2,	9	mM	NaCl)	containing	5%	(w/v)	wheat	straw.	Cultures	were	grown	

on	an	orbital	shaker	(150	rpm)	at	30°C	for	eight	weeks.	Six	replicate	cultures	were	

initiated,	three	of	which	were	treated	with	25	μg/ml	cycloheximide	with	the	aim	of	

inhibiting	fungal	growth.	This	enrichment	culture	method	will	favour	species	able	to	

grow	at	30°C	 in	a	well	aerated	environment	which	are	required	characteristics	for	

further	 experiments.	 Each	 week	 serial	 dilutions	 were	 prepared	 and	 spread	 onto	

nutrient	agar,	potato	dextrose	agar	and	M9	minimal	media	containing	1.5%	(w/v)	

agar	and	1%	(w/v)	milled	wheat	straw.	Single	colonies	that	appeared	morphologically	

distinct	 on	 agar	 plates	 were	 assayed	 for	 activity	 against	 carboxymethylcellulose	

(CMC)	 and	 xylan	 (both	 from	 Sigma-Aldrich,	 Dorset,	 UK)	 using	 Congo	 red	 staining	

assays	(Teather	and	Wood,	1982).	Briefly,	plates	containing	0.2%	(w/v)	CMC	or	xylan	

in	M9	media	 and	 1.5%	 (w/v)	 agar	 were	 prepared.	 Bacterial	 isolates	 were	 grown	

overnight	in	nutrient	agar	and	10	µl	was	spot	plated	onto	the	CMC	and	xylan	plates.	

Plates	were	incubated	at	30°C	overnight	then	flooded	with	1	mg/ml	Congo	red	in	5	

mM	NaOH	for	15	minutes.	The	Congo	red	solution	was	washed	off	and	plates	were	

destained	with	1	M	NaCl	in	5	mM	NaOH	for	30	minutes.	5%	acetic	acid	was	added	to	

plates	for	2-3	seconds	to	darken	stains	and	plates	were	photographed.	Clear	halos	

indicate	CMC	or	xylan	degradation	(Teather	and	Wood,	1982).	

2.3.2 Identification	of	active	isolates	

Isolates	that	appeared	to	have	xylanase	and/or	CMCase	activity	were	identified	using	

16S	 rRNA	gene	 sequencing	with	primers	UniF	7f	 5’-AGAGTTTGATYMTGGCTCAG-3’	

and	UniR	1510r	5’-ACGGYTACCTTGTTACGACTT-3’	 (Weisburg	et	al.,	1991).	A	 single	

colony	was	added	to	50	μl	ddH2O	and	incubated	at	95°C	for	5	minutes	to	lyse	cells.	1	

μl	of	this	mixture	was	used	as	the	source	for	template	DNA.	Each	25	μl	PCR	reaction	

contained	5	μl	5X	Phusion	HF	buffer,	0.5	μl	10	mM	dNTPs,	1.25	μl	each	primer,	1	μl	

template	DNA	and	16	μl	dH2O.	PCR	conditions	were	as	follows:	98°C	for	30s;	30	cycles	

of	98°C	 for	10s,	56°C	 for	30s,	72°C	 for	90s;	72°C	 for	5	minutes.	The	 resulting	PCR	

fragments	were	purified	and	sent	for	Sanger	sequencing	to	GATC	Biotech	(Cologne,	

Germany).	Forward	and	reverse	strand	sequences	were	aligned	and	used	in	BLAST	

analysis	with	the	National	Centre	for	Biotechnology	Information	database	to	identify	

similar	16S	rDNA	sequences.	
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2.3.3 Quantitative	functional	trait	assays	

To	 quantify	 the	 xylanase	 and	 cellulase	 activity	 of	 isolates	 their	 productivity	 was	

measured	when	grown	on	arabinoxylan	(the	most	abundant	hemicellulose	in	wheat	

straw)	and	β-glucan.	Isolates	were	also	grown	on	nutrient	broth	as	a	positive	control.	

Isolates	were	grown	for	48	hours	in	nutrient	broth	then	cells	were	harvested,	washed	

and	suspended	in	M9	media.	Cultures	were	diluted	to	an	OD600	of	0.5	and	5	μl	was	

used	to	inoculate	495	μl	M9	media	with	0.2%	(w/v)	arabinoxylan,	0.2%	(w/v)	β-glucan	

or	nutrient	broth.	Productivity	of	cultures	was	measured	using	the	MicroResp	system	

similar	to	the	method	used	by	Lawrence	et	al.	(2012)	(Campbell	et	al.,	2003).	Briefly,	

each	well	in	the	deepwell	plate	is	sealed	to	a	microplate	well	containing	indicator	dye	

which	 changes	 colour	 in	 response	 to	 CO2	 concentration.	 Microplates	 containing	

indicator	 gel	 were	 replaced	 every	 24h	 to	 prevent	 cultures	 becoming	 anaerobic.	

Community	 productivity	 was	 quantified	 as	 cumulative	 respiration	 .	 Specifically,	

cultures	 were	 grown	 for	 3	 days	 at	 30°C	 and	 productivity	 was	 measured	 as	 the	

cumulative	change	in	absorbance	(λ=570	nm)	of	the	indicator	gel	immediately	before	

and	after	being	sealed	to	deep	well	cultures	plates.	The	change	in	OD	of	the	indicator	

gel	from	control	wells	containing	no	inoculum	was	used	to	account	for	atmospheric	

CO2	concentration.		

	

	

a	 b	 c	 d	

	 	 	 	
	

Figure	 2.1	 Representative	 qualitative	 cellulase	 and	 xylanase	 plate	 assays.	 10	 μl	 overnight	 culture	
spotted	onto	plates	containing	M9	minimal	media,	1.5%	agar	and	0.2%	CMC	(a	and	c)	or	xylan	(b	and	
d).	After	24h	plates	are	stained	with	Congo	red.	Clear	halos	indicate	CMC	or	xylan	degradation.	Shown	
are	plates	 inoculated	with	Paenibacillus	sp.	A8	which	can	degrade	both	CMC	(a)	and	xylan	 (b)	and	
Luteimonas	sp.	A23	which	can	degrade	xylan	(d)	but	not	CMC	(c).		
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2.4 Results	

2.4.1 Isolation	and	plate	assays	

One	hundred	and	five	colonies	were	isolated	from	the	six	enrichment	cultures	over	

eight	weeks.	Gram	staining	and	microscopy	revealed	that	23	of	these	isolates	were	

archaeal.	 The	 remaining	 isolates	 were	 assayed	 for	 cellulase	 and	 xylanase	 activity	

using	plate	assays	which	revealed	that	thirty-nine	isolates	appeared	to	be	active	on	

at	 least	one	of	the	CMC	and	xylan	assay	plates	(Figure	2.1).	Treating	cultures	with	

cycloheximide	did	not	 significantly	 increase	 the	number	of	active	bacterial	 strains	

isolated	 from	 cultures	 (21	 from	 untreated,	 18	 from	 treated	 cultures).	 One	 active	

strain	was	isolated	in	week	one,	while	eleven	were	isolated	at	week	three	suggesting	

cultures	were	efficiently	enriched	for	bacterial	strains	able	to	degrade	lignocellulose	

by	this	stage.	The	number	of	active	strains	isolated	decreased	after	week	three	with	

only	 two	 active	 strains	 isolated	 in	 week	 eight.	 Colonies	 were	 isolated	 based	 on	

morphological	differences	and,	as	such,	the	reduction	in	the	number	of	active	strains	

isolated	in	the	later	stages	of	the	experiment	is	likely	due	to	colonies	not	being	picked	

if	they	resembled	already	isolated	strains	rather	than	a	reduction	in	the	density	of	

cellulolytic	or	xylanolytic	strains.		
		

2.4.2 Identification	of	active	isolates	

Active	isolates	were	identified	by	16S	rRNA	gene	sequencing.	Fifteen	of	the	active	

isolates	were	from	the	Microbacterium	genus	and	seven	were	Cellulomonas	strains	

suggesting	the	enrichment	and	isolation	process	favoured	these	genera.	Six	isolates	

belonged	to	the	Bacillus	genus	with	an	additional	five	belonging	to	the	Paenibacillus	

genus.	 The	 additional	 species	were	 identified	 as	 belonging	 to	Cellulosimicrobium,	

Luteimonas,	 Paracoccus,	 Rheinheimera,	 Rhodococcus	 and	 Stenotrophomonas	

genera	(Figure	2.3).		

	

2.4.3 Quantitative	functional	traits	

To	 gain	 a	 better	 understanding	 of	 isolates’	 metabolic	 functional	 traits	 and	 the	

diversity	in	metabolic	functional	traits	between	isolates	of	the	same	genera	we	used	
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quantitative	growth	assays	with	arabinoxylan	or	β-glucan	as	a	sole	carbon	source.	

Linear	models	revealed	significant	variation	between	genera	in	terms	of	their	growth	

on	each	substrate,	although	the	relationship	was	stronger	for	β-glucan	(F9,	29	=	13.2	P	

<	 0.0001,	 R2	 =	 0.74)	 than	 arabinoxylan	 (F2,	 29	 =	 4.1,	 P	 <	 0.01,	 R2	 =	 0.43).	 Isolates	

belonging	to	the	Paenibacillus,	Cellulomonas	and	Bacillus	genera	(with	the	exception	

of	two	isolates)	were	able	to	utilise	β-glucan	efficiently	while	the	remaining	strains	

achieved	only	 low	productivity	on	 this	 substrate	 (Figure	2.2).	 The	ability	 to	utilise	

arabinoxylan	was	more	common	than	β-glucan	utilisation	which	is	unsurprising	due	

to	the	labile	nature	of	this	polysaccharide.	Paenibacillus	strains	A12	and	E3	achieved	

the	highest	productivity	while	Rheinheimera	sp.	D14A	was	the	least	efficient	on	both	

substrates.	These	functional	trait	assays	confirmed	that	a	functionally	diverse	range	

of	lignocellulolytic	isolates	was	successfully	isolated.	

	
	

	
Figure	2.2	Productivity	of	isolates	in	M9	minimal	media	with	0.2%	β-glucan	(x-axis)	or	arabinoxylan	(y-
axis).	Productivity	is	cumulative	change	in	OD	of	MicroResp	indicator	plates	three	days	as	a	measure	
of	CO2	production,	points	indicate	mean	of	three	reps	with	standard	error	represented	by	error	bars.	
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Figure	2.3	Neighbour-joining	phylogenetic	tree	based	on	bacterial	16S	rRNA	gene	partial	sequences.	
Sequences	were	aligned	using	the	SILVA	Incremental	Aligner	(SINA)	and	analysed	by	MEGA6.	Isolates	
from	this	study	are	highlighted	in	bold	with	accession	numbers	provided	in	brackets.	Bootstrap	values	
representing	 percentage	 of	 1000	 replicates	 are	 shown	 at	 nodes.	 If	 isolates	 had	 100%	 16S	 rRNA	
sequence	identity,	only	a	representative	is	shown	(i.e.	Microbacterium).	
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2.5 Discussion	
This	work	aimed	to	 isolate	a	selection	of	phylogenetically	and	functionally	diverse	

bacterial	strains	from	wheat	straw	compost.	Enrichment	cultures	were	initiated	with	

wheat	straw	as	a	carbon	source	and	wheat	straw	adapted	compost	as	an	inoculum.	

Thirty-nine	bacterial	 isolates,	belonging	 to	 ten	genera,	with	 the	ability	 to	degrade	

CMC	and/or	xylan	were	isolated.		

	

The	bacterial	species	isolated	here	do	not	represent	the	full	diversity	of	the	natural	

microbial	community	present	in	compost.	Enrichment	culture	conditions	selected	for	

bacterial	species	able	to	grow	at	30°C	in	well-aerated	conditions	which	are	required	

characteristics	 for	 future	 planned	 experiments.	 Although	 these	 conditions	 would	

have	 selected	 against	 anaerobic	 species,	 it	 has	 been	 reported	 that	 90-95%	 of	

cellulose	 degradation	 in	 nature	 is	 achieved	 aerobically	 (Carere	 et	 al.,	 2008).	 In	

addition,	 metagenomics	 has	 revealed	 Cellulomonas,	 Cellulosimicrobium	 and	

Stenotrophomonas	 among	 the	 dominant	 genera	 in	 lignocellulose	 degrading	

communities	growing	on	poplar	wood	or	xylan	(Carlos	et	al.,	2018)	and	16S	amplicon	

sequencing	found	Paenibacillus	and	Cellulomonas	to	be	among	the	most	dominant	

genera	 in	 sugarcane	 bagasse	 compost	 (Mello	 et	 al.,	 2016).	 This	 suggests	 that	

although	 the	 full	 diversity	of	 the	 compost	 community	has	not	been	captured,	we	

have	 successfully	 isolated	 a	 phylogenetically	 diverse	 range	 of	 species	 that	 are	

abundant	 in	 these	 natural	 communities	 and	 representative	 of	 the	 ecologically	

important	taxa	for	lignocellulose	degradation	in	natural	communities.	

	

Quantitative	 growth	 assays	 on	 β-glucan	 and	 arabinoxylan	 revealed	 that	 the	most	

productive	strains	on	these	substrates	belonged	to	the	Paenibacillus	genus.	Strains	

of	this	genus	have	been	isolated	from	pulp	mill	waste	(Mathews	et	al.,	2016)	and	soil	

(Puentes-Téllez	and	Salles,	2018;	Woo	et	al.,	2017)	and	studied	for	various	functions	

including	nitrogen	 fixation,	phosphate	solubilisation	 (Weselowski	et	al.,	2016)	and	

lignocellulose	degradation	(Mathews	et	al.,	2016).	Interestingly,	strains	of	this	genera	

have	 been	 shown	 to	 be	 capable	 of	 degrading	 lignin	 in	 addition	 to	 cellulose	 and	

hemicellulose	however	ligninolytic	potential	was	not	measured	here	(Mathews	et	al.,	

2016).	
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Four	of	the	six	Bacillus	strains	grew	well	on	both	β-glucan	and	arabinoxylan.	Bacillus	

subtilis	is	a	promising	candidate	for	CBP	as	there	are	several	very	well	characterised	

strains,	it	can	utilise	both	pentose	and	hexose	sugars	and	it	is	already	established	as	

an	industrial	strain	(Zhang	and	Zhang,	2010).	While	most	common	laboratory	strains	

of	 Bacillus	 are	 not	 cellulolytic,	 various	 environmental	 strains	 are	 and	 these	 may	

provide	 a	 source	 of	 enzymes	 to	 enhance	 the	 lignocellulolytic	 ability	 of	 industrial	

strains	 (Amore	et	al.,	2013a).	The	Bacillus	strains	 isolated	here	are	culturable	and	

grew	 well	 on	 both	 cellulose	 (β-glucan)	 and	 hemicellulose	 (xylan)	 making	 them	

promising	targets	for	the	discovery	of	cellulases	and	hemicellulases.	

	

Cellulomonas	 is	a	well-known	genus	of	cellulose	degrading	bacteria	that	has	been	

studied	for	more	than	40	years	(Han	and	Srinivasan,	1968).	The	genome	sequences	

of	Cellulomonas	fimi	ATCC	484	and	Cellulomonas	flavigena	ATCC	482	revealed	89	and	

76	 GHs	 respectively	 (Christopherson	 et	 al.,	 2013)	 and	 efforts	 are	 ongoing	 to	

understand	the	functions	of	these	enzymes	and	the	conditions	under	which	they	are	

expressed	(Wakarchuk	et	al.,	2016).	Consistent	with	previous	work	investigating	the	

functional	 traits	of	members	of	 the	Cellulomonas	genus,	 the	 strains	 isolated	here	

appeared	to	be	highly	active	on	cellulose	and	were	also	able	to	utilise	xylan	as	a	sole	

substrate.	

	

Fifteen	 (39%)	 of	 the	 active	 isolates	 were	 identified	 as	 members	 of	 the	

Microbacterium	 genus	 suggesting	 the	 isolation	 protocol	 favoured	 these	 strains.	

Microbacterium	 strains	 have	 previously	 been	 shown	 to	 have	 high	 cellulolytic	 and	

xylanolytic	activities	(Okeke	and	Lu,	2011)	and	some	strains	are	able	to	depolymerise	

Kraft	lignin	(Taylor	et	al.,	2012)	though	this	was	not	measured	here.		

	

Stenotrophomonas	 has	 been	 identified	 in	 several	 lignocellulose	 degrading	

communities	(Montella	et	al.,	2017;	Puentes-Téllez	and	Salles,	2018;	Qi	et	al.,	2011).	

Using	metatranscriptomic	analysis	to	study	a	highly	active	five	species	consortium,	

Jiménez	 et	 al.	 (2018)	 found	 that	 three	 species,	 including	one	Paenibacillus	 strain,	

were	 active	 during	 the	 initial	 stages	 of	 the	 culture	while	 Stenotrophomonas	was	
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more	 active	 (higher	 expression	of	 RNA	polymerase	 rpoA)	 towards	 the	 end	of	 the	

culture	without	significantly	contributing	to	lignocellulolytic	enzyme	production.	The	

authors	of	that	study	suggested	that	Stenotrophomonas	may	be	acting	as	a	‘sugar-

cheat’,	i.e.	it	benefits	from	the	release	of	sugars	by	other	taxa	without	contributing	

to	lignocellulose	degradation	itself	(Jiménez	et	al.,	2018b).	Alternatively,	Montella	et	

al.	 (2017)	 found	 that	 Stenotrophomonas	was	a	dominant	 strain	 in	natural	 energy	

crop	degradation	and	also	contributed	a	significant	proportion	of	the	GHs	identified	

by	metagenomics.	Identifying	the	conditions	under	which	Stenotrophomonas	strains	

express	 GH	 enzymes	 may	 help	 to	 understand	 the	 role	 this	 species	 plays	 in	

lignocellulose	degradation.	Stenotrophomonas	strains	are	metabolically	diverse	and	

can	grow	well	under	a	wide	variety	of	environments	conditions	and	so	they	are	also	

under	 investigation	 for	 their	potential	 industrial	applications	 (Mukherjee	and	Roy,	

2016).	

	

Rhodococcus	strains	have	been	well	researched	for	their	role	in	bioremediation	as	

they	 are	 able	 to	metabolise	 a	 wide	 range	 of	 hydrocarbons	 (Alvarez	 et	 al.,	 2017)	

including	 lignin	 (Mahan	 et	 al.,	 2017).	Cellulosimicrobium	 cellulans	 is	 a	 recognised	

lignocellulose	degrading	bacterium	and	has	been	studied	for	 its	ability	to	produce	

bioflocculants	 directly	 from	 lignocellulose	 (Liu	 et	 al.,	 2015).	 The	 lignocellulolytic	

capability	of	Paracoccus,	Rheinheimera	and	Luteimonas	 species	has	not	been	well	

studied.	 Cellulolytic	 Paracoccus	 strains	 have	 been	 isolated	 from	 the	 termite	 gut	

(Ferbiyanto	et	al.,	2015)	and	salt	marshes	(Deng	and	Wang,	2016)	while	Luteimonas	

strains	have	been	shown	to	degrade	cellulose	and	have	the	enzymes	necessary	for	

xylan	degradation	(Zhang	et	al.,	2015).	To	the	best	of	my	knowledge,	Rheinheimera	

has	not	previously	been	isolated	from	lignocellulolytic	communities.	This	is	perhaps	

unsurprising	as	it	achieved	the	lowest	productivity	on	both	xylan	and	β-glucan	growth	

assays	and	produced	only	a	faint	halo	on	xylan	assay	plates.	However,	Rheinheimera	

strains	have	been	studied	 in	recent	years	as	potential	 industrial	 laccase	producers	

(Sharma	et	 al.,	 2017).	 Laccase	 is	 involved	 in	bacterial	 lignin	degradation	 and	may	

improve	the	overall	efficiency	of	converting	lignocellulose	to	ethanol	(Moreno	et	al.,	

2016).		
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In	conclusion,	a	functionally	and	phylogenetically	diverse	range	of	bacterial	strains	

have	 been	 isolated	 from	 wheat	 straw	 compost	 enrichment	 cultures.	 While	 the	

enrichment	culture	conditions	appear	to	have	favoured	strains	well	adapted	to	the	

isolation	conditions,	several	of	the	strains	isolated	have	previously	been	identified	as	

playing	 a	 significant	 and	 ecologically	 important	 role	 in	 lignocellulose	 degrading	

communities.	
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3 Defining	the	functional	traits	that	drive	lignocellulose	degrading	
community	productivity	

	

This	chapter	 is	adapted	from	the	published	article:	Evans,	R.,	Alessi,	A.M.,	Bird,	S.,	

McQueen-Mason,	 S.J.,	 Bruce,	 N.C.,	 and	 Brockhurst,	 M.A.	 (2017).	 Defining	 the	

functional	traits	that	drive	bacterial	decomposer	community	productivity.	ISME	J.	11,	

1680–1687.	

	

3.1 Abstract	
Microbial	communities	are	essential	to	a	wide	range	of	ecologically	and	industrially	

important	 processes.	 To	 control	 or	 predict	 how	 these	 communities	 function,	 we	

require	a	better	understanding	of	the	factors	which	influence	microbial	community	

productivity.	Here,	we	combine	functional	resource	use	assays	with	a	biodiversity-

ecosystem	functioning	(BEF)	experiment	to	determine	whether	the	functional	traits	

of	constituent	species	can	be	used	to	predict	community	productivity.	We	quantified	

the	abilities	of	12	bacterial	species	to	metabolise	components	of	lignocellulose	and	

then	assembled	these	species	into	communities	of	varying	diversity	and	composition	

to	measure	their	productivity	growing	on	lignocellulose,	a	complex	natural	substrate.	

A	positive	relationship	between	diversity	and	community	productivity	was	caused	by	

a	selection	effect	whereby	more	diverse	communities	were	more	 likely	to	contain	

two	 species	 that	 significantly	 improved	 community	 productivity.	 Analysis	 of	

functional	traits	revealed	that	the	observed	selection	effect	was	primarily	driven	by	

the	 abilities	 of	 these	 species	 to	 degrade	 b-glucan.	 Our	 results	 indicate	 that	 by	

identifying	the	key	functional	traits	underlying	microbial	community	productivity	we	

could	improve	industrial	bioprocessing	of	complex	natural	substrates.	

	

3.2 Introduction	
Microbial	communities	underpin	the	functioning	of	natural	ecosystems	(Soliveres	et	

al.,	2016)	and	the	efficiency	of	a	wide	range	of	 industrial	bioprocesses	(e.g.	waste	

bioreactors)	(Cydzik-Kwiatkowska	and	Zielińska,	2016;	Widder	et	al.,	2016).	The	form	

of	 the	 biodiversity-ecosystem	 functioning	 (BEF)	 relationship	 is	 therefore	 an	

important	 property	 of	 microbial	 communities	 both	 in	 nature	 and	 the	 simpler	
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communities	 used	 in	 a	 range	 of	 industrial	 bioprocesses.	 Several	 studies	 have	

identified	positive	BEF	relationships	for	microbial	community	productivity	(Bell	et	al.,	

2005;	Gravel	et	al.,	2011),	stability	(Awasthi	et	al.,	2014),	micropollutant	degradation	

(Johnson	et	al.,	2015)	and	resistance	to	invasion	(Elsas	et	al.,	2012),	suggesting	that	

for	a	range	of	functions	microbial	community	performance	improves	with	increasing	

species	richness.	Positive	BEF	relationships	can	arise	via	the	complementarity	effect,	

whereby	 diverse	 communities	 use	more	 of	 the	 available	 resource	 space	 through	

niche	 differentiation	 or	 facilitation	 (Salles	 et	 al.,	 2009;	 Singh	 et	 al.,	 2015),	 or	 the	

selection	effect	(also	termed	the	sampling	effect),	whereby	diverse	communities	are	

more	likely	to	contain	species	which	have	a	large	impact	on	community	functioning	

(Awasthi	 et	 al.,	 2014;	Hooper	 et	 al.,	 2005;	 Langenheder	 et	 al.,	 2010,	 2012).	 Both	

complementarity	and	selection	effects	depend	on	the	functional	traits	of	constituent	

species	 and	 several	 studies	 have	 now	 shown	 functional	 diversity	 to	 be	 a	 better	

predictor	 of	 community	 function	 than	phylogenetic	 diversity	 (Krause	 et	 al.,	 2014;	

Mokany	 et	 al.,	 2008;	 Salles	 et	 al.,	 2009).	 However,	 for	 many	 ecologically	 and	

biotechnologically	 important	 microbial	 communities	 it	 is	 still	 unclear	 how	 the	

functional	 traits	of	 individual	 species	 scale-up	 to	determine	 the	performance	of	a	

diverse	community.		

	

One	of	the	most	important	ecosystem	functions	microbial	communities	perform	is	

the	decomposition	of	plant	material	and	subsequent	nutrient	cycling	(McGuire	and	

Treseder,	2010;	Van	Der	Heijden	et	al.,	2008).	Understanding	how	natural	microbial	

communities	 achieve	 efficient	 lignocellulose	 degradation	 could	 inform	 both	 the	

prediction	of	nutrient	cycling	in	natural	systems	and	the	design	of	efficient	microbial	

communities	 for	 industrial	processes	 (Wei	et	al.,	 2012).	Both	biodiversity	and	 the	

presence	of	certain	species	have	been	shown	to	influence	the	rate	of	decomposition	

by	bacterial	communities	(Bell	et	al.,	2005;	Bonkowski	and	Roy,	2005;	Langenheder	

et	 al.,	 2012)	 but	 the	 mechanisms	 which	 determine	 community	 decomposition	

performance	 remain	 poorly	 understood	 (McGuire	 and	 Treseder,	 2010).	 A	 key	

question	therefore	is	to	what	extent	community	functioning	is	predictable	from	the	

combined	functional	traits	of	constituent	species?	
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Using	 culturable	bacterial	 strains	 isolated	 from	compost	we	performed	a	 random	

partition	design	BEF	experiment	(Bell	et	al.	2009)	to	test	the	contributions	of	species	

richness	 and	 composition	 to	 productivity	 of	 communities	 when	 grown	 on	 wheat	

straw.	 Although	 using	 only	 the	 culturable	 fraction	 of	 the	 community	 is	 likely	 to	

overlook	some	functionally	important	species	in	the	natural	community,	culturability	

is	a	key	feature	of	microbes	that	could	feasibly	be	used	in	industrial	bioprocessing.	

Next,	 we	 tested	 how	 the	 functional	 traits	 of	 individual	 species	 shaped	 the	

productivity	 of	 these	 communities	 to	 determine	 the	 extent	 to	 which	 community	

productivity	was	predictable	from	the	functional	traits	of	the	constituent	species	and	

to	determine	 the	 contribution	of	 each	 functional	 trait	 to	overall	 productivity.	We	

quantified	the	functional	resource	use	traits	of	each	species	by	their	ability	to	utilise	

a	range	of	known	components	of	lignocellulose	(i.e.	cellulose,	hemicellulose,	pectin	

and	lignin).	

	

3.3 Methods	

3.3.1 Bacterial	isolates	

Bacterial	strains	used	in	this	study	were	isolated	as	described	in	Chapter	2.2.1.	The	

twelve	species	included	in	this	study	were	chosen	as	they	represent	phylogenetic	or	

functional	diversity	based	on	16S	 rRNA	 sequences	 (Figure	2.3)	 and	growth	assays	

(Figure	2.2).	

3.3.2 Biodiversity	ecosystem	functioning	experiment	

Communities	 for	 the	 BEF	 experiment	 were	 designed	 using	 the	 random	 partition	

design	 described	 by	 Bell	 et	 al.	 (2009).	 Species	 were	 randomly	 divided	 into	

communities	with	species	richness	 levels	of	1,	2,	3,	4,	6	and	12	species	with	each	

isolate	represented	an	equal	number	of	times	at	each	richness	level.	This	process	was	

repeated	to	produce	12	monocultures,	66	two-isolate	communities,	58	three-isolate	

communities,	 63	 four-isolate	 communities,	 68	 six-isolate	 communities	 and	 one	

twelve	isolate	community.	Each	community	was	replicated	five	times	to	give	a	total	

of	1340	communities.	The	twelve	species	were	grown	for	two	days	in	5	ml	nutrient	

broth	 on	 an	 orbital	 shaker	 (150rpm)	 at	 30°C.	 Cultures	 were	 harvested	 by	
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centrifugation,	 washed	 and	 suspended	 in	 M9	 minimal	 media	 and	 left	 at	 room	

temperature	 for	 2h	 to	 metabolise	 remaining	 nutrients	 before	 OD600	 was	

standardised	to	0.1	to	ensure	similar	starting	densities.	Deep	well	plates	containing	

380	µl	M9	minimal	media	with	1%	(w/v)	milled	wheat	straw	per	well	were	inoculated	

with	a	total	of	120	µl	cultures,	e.g.	monocultures	were	inoculated	with	120	µl	single	

species	culture	whereas	the	12-species	community	was	inoculated	with	10	µl	of	each	

culture.	 The	 MicroResp	 system	 was	 used	 to	 measure	 respiration	 of	 cultures	

(Campbell	 et	 al.,	 2003).	 Briefly,	 each	 well	 in	 the	 deepwell	 plate	 is	 sealed	 to	 a	

microplate	well	containing	 indicator	dye	which	changes	colour	 in	response	to	CO2	

concentration.	 Microplates	 containing	 indicator	 gel	 were	 replaced	 every	 24h	 to	

prevent	 cultures	 becoming	 anaerobic.	 Community	 productivity	 was	 estimated	 as	

cumulative	 respiration	 (Armitage,	 2016;	 Tiunov	 and	 Scheu,	 2005).	 Specifically,	

cultures	 were	 grown	 for	 7	 days	 at	 30°C	 and	 productivity	 was	 measured	 as	 the	

cumulative	change	in	absorbance	(λ=595nm)	of	the	indicator	gel	immediately	before	

and	after	being	sealed	to	deep	well	cultures	plates.	The	change	in	OD	of	the	indicator	

gel	from	control	wells	containing	no	inoculum	was	used	to	account	for	atmospheric	

CO2	concentration.	Note	that	due	to	the	presence	of	particles	of	wheat	straw	in	the	

growth	medium	 it	 was	 not	 possible	 to	 measure	 change	 in	 microbial	 biomass	 by	

absorbance.		

3.3.3 Functional	trait	assays	

To	quantify	the	fundamental	niche	of	each	species,	growth	assays	were	performed	

on	 several	 polysaccharides	 present	 in	 lignocellulose.	 Hemicellulose	 substrates	

included	 xylan	 (Sigma-Aldrich),	 arabinoxylan	 (P-WAXYL,	Megazyme,	 Bray,	 Ireland)	

and	galactomannan	(P-GALML,	Megazyme);	cellulose	substrates	 included	β-glucan	

(P-BGBL,	 Megazyme)	 and	 Whatman	 filter	 paper;	 additional	 substrates	 included	

pectin	 (Sigma-Aldrich)	 and	Kraft	 lignin	 (Sigma-Aldrich).	 Cultures	were	prepared	as	

described	for	the	BEF	experiment.	These	cultures	(5	µl)	were	used	to	inoculate	495	

µl	of	M9	minimal	media	with	0.2%	(w/v)	of	each	carbon	source	or	one	6mm	sterile	

filter	paper	disc	 in	96-well	deepwell	plates.	Cultures	were	replicated	six	times	and	

several	 blank	 wells	 containing	 no	 inoculum	 were	 included	 as	 negative	 controls.	
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Cultures	 were	 grown	 for	 7	 days	 at	 30°C	 and	 the	MicroResp	 system	was	 used	 to	

measure	culture	respiration	as	described	above.	

3.3.4 Statistical	analysis	

The	 biodiversity	 and	 ecosystem	 functioning	 relationship	 was	 analysed	 using	 the	

linear	model	method	described	by	Bell	et	al.	(2009).	The	species	coefficients	provided	

by	 this	 method	 give	 a	 measure	 of	 the	 effect	 of	 each	 species	 on	 community	

productivity	relative	to	an	average	species:	values	of	>1	indicate	an	above	average	

contribution	while	values	of	<1	indicate	a	below	average	contribution	to	community	

productivity.	To	assess	the	effect	of	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	on	

community	productivity,	communities	containing	both	species,	Paenibacillus	sp.	A8	

only,	Cellulomonas	 sp.	D13	only	or	neither	of	 these	species	were	compared	using	

analysis	of	variance	(ANOVA)	followed	by	post	hoc	Tukey	tests.	Linear	models	were	

used	 to	 compare	 the	 ability	 of	 species	 richness	 and	 the	 presence	 or	 absence	 of	

Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	to	predict	community	productivity.		

	

To	standardise	measures	of	functional	traits	across	diverse	substrates,	performance	

on	each	substrate	was	normalised	by	dividing	by	the	maximum	observed	respiration	

on	that	substrate.	For	each	bacterial	isolate	we	can	then	calculate	its	fundamental	

niche	(along	the	carbon	degradation	axis)	by	summing	performance	on	all	substrates.	

To	estimate	the	niche	space	of	each	community	we	used	the	community	niche	(CN)	

metric	described	by	Salles	et	al.	 (2009),	which	sums	the	maximal	performance	on	

each	substrate:	𝐶𝑁 = max'()* 𝑃,'-
,() ,	where	Pij	is	the	performance	of	species	j	on	

carbon	source	i	and	n	is	the	number	of	species	in	each	community.		

	

The	ability	of	each	functional	trait	to	predict	community	productivity	was	analysed	

by	summing	performance	of	all	species	in	a	community	on	each	carbon	source	to	give	

a	measure	of	the	total	fundamental	niche	space	of	that	community.	To	approximate	

the	realised	niche	space	of	communities	we	also	assessed	the	ability	of	the	maximum	

performance	 on	 each	 carbon	 source	 in	 a	 community	 to	 predict	 community	

productivity;	this	metric	assumes	that	the	species	best	able	to	grow	on	a	given	carbon	

source	 in	a	community	dominates	consumption	of	 that	carbon	source	providing	a	



	 35	

conservative	estimate	of	realised	niche.	Linear	regressions	were	used	to	analyse	how	

well	 CN	 and	 functional	 trait	 performance	 predicted	 community	 productivity.	 It	 is	

important	 to	 note	 that	 because	 all	 species	 can	 grow	 on	 several	 carbon	 sources,	

summing	functional	trait	use	may	act	as	a	proxy	of	species	richness.	To	control	for	

this	 effect,	 we	 analysed	 whether	 summed	 community	 functional	 traits	 remained	

significant	when	fitted	to	the	residuals	of	the	species	richness	model	(i.e.	community	

productivity	predicted	by	species	richness).	Competing	models	were	compared	using	

the	Akaike	information	criterion	(AIC).		

	

3.4 Results	

3.4.1 Biodiversity-ecosystem	function	relationship	

We	 observed	 a	 positive	 relationship	 between	 species	 richness	 and	 community	

productivity	 (F1,	264	=	60.1,	P	<	0.001,	Figure	3.1A)	with	species	richness	explaining	

19%	of	variation	in	productivity.	As	highlighted	by	the	variance	in	productivity	within	

species	richness	 levels,	species	 identity	also	had	a	significant	effect	on	community	

productivity	(F12,	254	=	45.3,	P	<	0.001).	The	linear	model	coefficient	for	each	species	

provides	 the	 estimated	 contribution	 of	 that	 species	 to	 community	 productivity	

relative	to	an	average	species	(Bell	et	al.,	2009).	Two	species,	Paenibacillus	sp.	A8	and	

Cellulomonas	 sp.	 D13,	 made	 significantly	 greater	 contributions	 to	 community	

function	relative	to	an	average	species	(F1,	254	=	73.1,	P	<	0.001	and	F1,	254	=	256.3,	P	<	

0.001	 respectively,	 Figure	 3.1B).	 Of	 the	 remaining	 species,	 the	 contribution	 of	

Rheinheimera	sp.	D14A	and	Stenotrophomonas	sp.	D12,	did	not	significantly	differ	

from	the	average	species	while	the	remaining	eight	species	made	significantly	below	

average	contributions	to	community	functioning	(Figure	3.1B).		

	

To	further	investigate	the	effects	of	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13,	

the	 productivity	 of	 communities	 containing	 either	 one,	 both	 or	 neither	 of	 these	

species	was	compared.	Communities	that	contained	both	Paenibacillus	sp.	A8	and	

Cellulomonas	 sp.	 D13	 were	 significantly	 more	 productive	 than	 communities	

containing	either	one	or	neither	of	these	species	(post-hoc	Tukey	tests,	P	<	0.001,	

Figure	3.1A).	The	productivity	of	communities	containing	both	Paenibacillus	sp.	A8	
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and	Cellulomonas	 sp.	D13	did	not	significantly	differ	across	species	richness	 levels	

suggesting	 additional	 species	 within	 these	 communities	 are	 not	 contributing	 to	

community	productivity	(F1,	28	=	0.42,	P	>	0.05,	green	line	Figure	3.1b).	Communities	

containing	only	Cellulomonas	sp.	D13	were	more	productive	than	those	containing	

only	Paenibacillus	sp.	A8	(post-hoc	Tukey	test,	P	<	0.001),	while	communities	which	

did	not	contain	 these	species	were	significantly	 less	productive	 than	communities	

containing	either	one	of	these	species	(post-hoc	Tukey	test,	P	<	0.001).	These	results	

indicate	that	the	positive	BEF	relationship	is	predominantly	driven	by	the	selection	

effect,	 i.e.	 more	 diverse	 communities	 are	 more	 likely	 to	 contain	 the	 highly	

performing	species	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	and	are	therefore	

more	productive.	

	

	
Figure	3.1	 a)	Relationship	between	community	productivity	and	species	 richness.	Black	 line	shows	
linear	 regression	 for	 all	 data	 points	 (F1,	 264	 =	 60.1,	 R

2	 =	 0.19,	 P	 <	 0.001).	 Each	 point	 is	 the	 mean	
productivity	 of	 five	 replicate	 communities.	 Green	 points	 represent	 communities	 containing	 both	
Paenibacillus	 sp.	 A8	 and	 Cellulomonas	 sp.	 D13	 (F1,	 28	 =	 0.42,	 P	 >	 0.05);	 red	 points	 represent	
communities	 containing	 Cellulomonas	 sp.	 D13	 (F1,	 50	 =	 4.43,	 P	 <	 0.05);	 blue	 points	 represent	
communities	containing	Paenibacillus	sp.	A8	(F1,	50	=	1.01,	P	>	0.05);	grey	points	represent	communities	
containing	neither	of	 these	species	 (F1,	129	=	60.1,	P	<	0.001).	b)	 Linear	model	 coefficients	 for	each	
species	in	the	BEF	experiment.	Positive	or	negative	coefficients	indicate	species	contribute	more	or	
less	to	community	productivity	than	an	average	species	(Bell	et	al.,	2009).	
	

3.4.2 Quantification	of	functional	traits	

To	determine	if	differences	in	productivity	could	be	explained	by	the	functional	traits	

of	 species	 we	 assayed	 the	 ability	 of	 species	 to	 utilise	 various	 components	 of	

lignocellulose.	 All	 species	 were	 able	 to	 grow	 to	 varying	 degrees	 on	 the	 labile	
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substrates,	 hemicellulose	 (xylan,	 arabinoxylan	 and	 galactomannan)	 and	 pectin,	

whereas	growth	on	recalcitrant	substrates	(β-glucan,	filter	paper	and	lignin)	was	less	

universal	(Figure	3.2).	This	pattern	is	consistent	with	the	hypothesis	that	functional	

groups	that	degrade	recalcitrant	substrates	are	not	as	common	as	those	that	degrade	

labile	substrates	(Schimel	and	Gulledge,	1998;	Waldrop	and	Firestone,	2004).	A	linear	

model	revealed	significant	main	effects	of	both	species	(F11,	336	=	30.3,	P	<	0.001)	and	

carbon	source	(F6,	336	=	105.8,	P	<	0.001)	on	productivity	and	a	significant	interaction	

between	these	factors	(F66,	336	=	6.8,	P	<	0.001),	suggesting	niche	differentiation	in	

resource	 use	 among	 the	 species.	 It	 is	 notable	 that	 some	 species,	 in	 particular	

Rhodococcus	 sp.	 E31,	 displayed	 generalist	 resource	 use,	 being	 able	 to	 grow	 on	

recalcitrant	substrates	like	lignin	as	well	as	on	the	more	labile	substrates.		

	

	
Figure	3.2	Productivity	of	species	grown	on	each	carbon	source.	Filter	paper	and	β-glucan	represent	
cellulose	 like	 substrates	 (red);	 xylan,	 arabinoxylan	 and	 galactomannan	 represent	 hemicelluloses	
(blue).	Productivity	is	measured	as	the	cumulative	change	in	OD	of	MicroResp	indicator	plates	over	7	
days.	
	

3.4.3 Community	productivity	and	functional	traits	

To	 determine	 if	 the	 functional	 niche	 of	 communities	 could	 be	 used	 to	 predict	

productivity	we	calculated	community	niche	as	described	by	Salles	et	al.	(2009).	This	

index	 sums	 the	 maximum	 growth	 achieved	 by	 a	 constituent	 species	 on	 each	

substrate.	We	 found	 a	 significant	 positive	 relationship	 between	 community	 niche	

and	community	productivity	 (F1,	264	=	73.31,	P	<	0.001,	Figure	3.3A).	Similar	 to	the	
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results	 of	 Salles	 et	 al.	 (2009),	 community	 niche	 explained	 more	 variation	 in	

community	productivity	than	species	richness	(22%	and	19%	respectively).	

	

	
	

Figure	3.3	Relationship	between	community	productivity	and	 (A)	community	niche,	 (B)	cumulative	
ability	of	 constituent	 species	 to	utilise	β-glucan	and	 (C)	maximum	ability	of	 constituent	 species	 to	
utilise	 β-glucan.	 Higher	 community	 niche	 indicates	 communities	 can	 utilise	more	 resources	more	
efficiently.	The	ability	of	constituent	species	 to	utilise	β-glucan	was	calculated	from	their	ability	 to	
grow	 on	 this	 substrate	 in	 functional	 trait	 assays	 (Figure	 3.2).	 Each	 point	 represents	 the	 mean	
productivity	of	five	replicate	communities.	

	

When	calculating	community	niche,	each	functional	trait	is	weighted	equally	despite	

differences	 in	 the	 abundances	 of	 substrates	 in	 wheat	 straw	 lignocellulose,	 e.g.	

cellulose	 constitutes	 40-50%	whereas	 pectin	 only	 constitutes	 1-2%.	 To	 determine	

which	 functional	 traits	were	 important	 for	 predicting	 community	 productivity	we	

summed	the	growth	of	constituent	species	on	each	carbon	source	used	in	functional	

trait	assays	to	calculate	the	total	fundamental	niche	of	that	community.	The	summed	

activity	on	β-glucan	had	a	significant	positive	relationship	with	productivity	(F1,	264	=	

182.7,	P	<	0.001)	and	was	the	best	predictor	of	community	productivity,	explaining	

41%	of	variation	(Figure	3.3B).	The	ability	to	utilise	arabinoxylan	and	xylan	also	had	

significant	positive	relationships	with	productivity	(F1,	264	=	105.8,	P	<	0.001	and	F1,	264	
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=	98.6,	P	<	0.001	 respectively),	 explaining	29%	and	27%	of	 variation	 respectively.	

There	were	significant	positive	relationships	between	the	remaining	carbon	sources	

and	community	productivity	though	these	explained	less	variation	than	community	

richness	and	were	not	significant	when	species	richness	was	included	in	models.	The	

fundamental	niche	space	of	community	is	unlikely	to	be	achieved	due	to	interactions	

between	species	such	as	competition	for	resources.	Therefore,	to	approximate	the	

realised	niche	space	of	each	community	we	also	analysed	the	maximum	performance	

per	 carbon	 source	 in	 a	 community.	 Consistent	 with	 the	 analysis	 of	 summed	

performance,	 maximum	 performance	 on	 β-glucan,	 arabinoxylan	 and	 xylan	 had	

significant	positive	relationships	with	productivity	(F1,	264	=	134.8,	P	<	0.001,	F1,	264	=	

76.2,	P	<	0.001	and	F1,	264=74.5,	P	<	0.001	respectively,	Supplementary	Figure	3.1)	

explaining	 34%,	 23%	 and	 22%	 of	 variation	 respectively.	 There	 were	 significant	

positive	 relationships	 between	 the	 maximum	 performance	 on	 lignin	 (F1,	 264=7.4,	

p<0.01),	pectin	(F1,	264=20.8,	p<0.001)	and	galactomannan	(F1,	264=47.1,	p<0.001)	and	

community	 productivity	 though	 these	 explained	 less	 variation	 than	 community	

richness.	 There	 was	 no	 significant	 relationship	 between	 the	 maximum	 ability	 to	

degrade	filter	paper	and	community	productivity.	This	suggests	that	identifying	and	

measuring	 key	 functional	 traits	 could	 be	 a	 better	 predictor	 of	 community	

productivity	than	either	species	richness	or	community	niche.	

	

3.5 Discussion		
Understanding	 the	 factors	 that	 influence	 microbial	 community	 productivity	 has	

potentially	important	ecological	and	industrial	applications	(Widder	et	al.,	2016).	The	

ability	of	 community	niche	 to	predict	 functioning	 in	well-defined	media	has	been	

demonstrated	 previously	 (Salles	 et	 al.,	 2009).	 Here,	 we	 define	 for	 communities	

growing	 in	 complex	 undefined	media,	 the	 key	 functional	 resource	 use	 traits	 that	

predict	decomposer	community	productivity.	Crucially,	functional	resource	use	traits	

explained	more	variation	in	productivity	than	either	species	richness	or	measures	of	

community	 niche.	 Indeed,	 a	 single	 function,	 the	 ability	 to	 degrade	 β-glucan,	

explained	a	larger	proportion	of	variation	than	community	niche.	This	key	functional	
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trait	was	shared	by	two	dominant	strains	which	were	shown	to	significantly	increase	

the	productivity	of	communities.	

		

As	with	several	previous	BEF	studies	(Awasthi	et	al.,	2014;	Bell	et	al.,	2009;	Gravel	et	

al.,	 2011),	 we	 identified	 a	 positive	 relationship	 between	 species	 richness	 and	

community	 productivity.	 By	 analysing	 the	 effect	 of	 community	 composition,	 we	

found	that	the	presence	of	two	highly	functioning	species,	Paenibacillus	sp.	A8	and	

Cellulomonas	sp.	D13,	significantly	increased	community	productivity	suggesting	this	

positive	 BEF	 relationship	 is	 driven	 by	 the	 selection	 effect.	 To	 determine	 if	 the	

dominance	of	 these	 two	 species	 could	be	explained	by	 their	 functional	 traits,	we	

compared	the	ability	of	these	species	to	utilise	the	various	carbon	sources	used	in	

functional	trait	assays	to	the	other	species.	With	the	exception	of	Rhodococcus	sp.	

E31,	Paenibacillus	 sp.	 A8	 and	Cellulomonas	 sp.	 D13	were	 the	 highest	 performing	

species	on	β-glucan	 (Figure	3.2).	 The	ability	 to	utilise	β-glucan	may	 suggest	 these	

species	are	able	to	metabolise	the	cellulose	portion	of	wheat	straw	in	addition	to	the	

more	labile	hemicellulose	and	pectin	fractions.	Interestingly,	when	the	productivity	

of	communities	containing	either	one,	both	or	neither	of	these	species	is	compared	

across	 each	day	of	 the	 experiment	 (Figure	 3.4),	 it	 is	 noticeable	 that	 communities	

containing	neither	of	these	species	have	very	low	productivity	during	the	later	days	

of	the	experiment.	A	possible	explanation	is	that	easily-accessible	labile	substrates	

are	being	used	within	the	first	two	days	of	growth	after	which	only	recalcitrant	and	

inaccessible	 substrates	 remain.	 The	 ability	 to	 degrade	 cellulose	 would	 allow	

Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	to	maintain	higher	 levels	of	growth	

when	labile	substrates	become	depleted.		

	

Interestingly,	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	have	similar	functional	

traits	which	would	indicate	they	occupy	overlapping	niche	space	and	may	be	in	direct	

competition	with	each	other.	However,	communities	containing	both	these	species	

were	significantly	more	productive	than	communities	containing	only	one	or	neither	

suggesting	complementarity	or	facilitation	effect	between	these	species,	i.e.	they	are	

able	to	exploit	a	wider	niche	space	when	grown	together	potentially	because	they	

each	 produce	 enzymes	 or	 by-products	 that	 improve	 the	 overall	 community	
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productivity.	 Wohl	 et	 al.	 (2004)	 found	 a	 similar	 result	 whereby	 functionally	

redundant	cellulose	degrading	bacteria	were	more	productive	in	communities	than	

in	monoculture.		

	

	
Figure	3.4	Productivity	of	communities	on	each	day	of	the	BEF	experiment.	Points	represent	mean	of	
five	 replicate	 communities	 and	 are	 coloured	 by	 the	 presence	 of	 Paenibacillus	 sp.	 A8	 (blue),	
Cellulomonas	sp.	D13	(red),	both	these	species	(green)	or	neither	of	these	species	(black).	Productivity	
is	the	change	in	OD595	of	MicroResp	indicator	plates	after	24h.	
	

The	ability	of	species	within	communities	to	utilise	β-glucan	was	a	better	predictor	

of	community	productivity	than	measures	of	community	niche	or	species	richness.	

The	significance	of	 this	activity	 is	 consistent	with	 the	composition	of	wheat	straw	

lignocellulose,	which	is	made	up	of	40-50%	cellulose.	 Interestingly,	functional	trait	

assays	revealed	that	Rhodococcus	sp.	E31	achieved	the	second	highest	growth	on	β-

glucan	 but	 this	 species	 did	 not	 significantly	 increase	 community	 productivity	

compared	to	an	average	species.	In	addition,	Rhodococcus	sp.	E31	was	able	to	utilise	

lignin	as	well	as	the	more	labile	hemicellulose	substrates	(Figure	3.2).	It	might	have	

reasonably	 been	 expected	 that	 as	 lignin	 is	 the	 major	 contributing	 factor	 to	

recalcitrance,	species	able	to	degrade	it	would	increase	community	productivity	by	

increasing	 accessibility	 of	 saccharification	 enzymes	 to	 cellulose.	 The	 limited	

contribution	of	Rhodococcus	sp.	E31	to	community	productivity	may	be	explained	in	

part	by	structural	differences	between	Kraft	lignin	used	in	functional	trait	assays	and	

native	 lignin	present	 in	 lignocellulose	(Vishtal	and	Kraslawski,	2011).	Alternatively,	

although	 able	 to	 achieve	 efficient	 degradation	 of	 all	 substrates	 in	 monoculture	

growth	 assays,	 Rhodococcus	 sp.	 E31	 may	 be	 outcompeted	 in	 communities	 and	
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unable	 to	 achieve	 the	 functional	 potentials	 revealed	 by	 trait	 assays.	 Recalcitrant	

substrates	 may	 require	 more	 energy	 expensive	 breakdown	 pathways	 than	 labile	

substrates	(Lynd	et	al.,	2002)	which	may	put	species	that	are	specialised	to	degrade	

such	 substrates,	 e.g.	 Rhodococcus	 sp.	 E31,	 at	 a	 competitive	 disadvantage	 in	

communities.	Measuring	the	abundance	of	species	in	each	community	would	allow	

us	to	better	determine	the	functional	traits	present	in	communities	assuming	that	

enzyme	 expression	 does	 not	 differ	 between	 monoculture	 and	 communities.	

Alternatively,	it	may	be	possible	to	match	functional	traits	to	community	productivity	

by	comparing	the	transcriptome	and	proteome	of	focal	communities,	although	any	

such	approach	 is	necessarily	 limited	by	the	correct	annotation	of	functional	genes	

and/or	proteins.		

	

Rivett	et	al.	(2016)	found	that	the	ability	of	species	to	degrade	labile	resources	could	

be	explained	by	metabolic	plasticity	whereas	the	ability	to	degrade	more	recalcitrant	

substrates	 required	 evolutionary	 adaptation.	 Species	 best	 adapted	 to	 utilise	 the	

accessible	 labile	 substrates	 may	 be	 able	 to	 dominate	 communities	 during	 initial	

growth	stages,	but	as	 labile	substrates	become	depleted,	species	able	to	adapt	to	

utilise	 the	 remaining	 recalcitrant	 substrates	 will	 become	 more	 dominant	 in	

communities.	When	comparing	the	contribution	of	species	across	each	day	of	the	

BEF	experiment,	we	found	that	the	contribution	of	species	did	not	noticeably	differ	

throughout	 the	 seven	 days	 of	 growth.	Paenibacillus	 sp.	 A8	 significantly	 improved	

community	 productivity	 relative	 to	 the	 average	 species	 on	 each	 day	 while	

Cellulomonas	 sp.	 D13	 made	 a	 significantly	 higher	 contribution	 than	 the	 average	

species	 from	 day	 two	 onwards.	 The	 presence	 of	Rheinheimera	 sp.	 D14A	made	 a	

significantly	above	average	contribution	to	community	productivity	on	day	one	of	

the	experiment,	though	for	the	remaining	six	days	the	contribution	of	this	species	did	

not	significantly	differ	from	that	of	an	average	species.	Of	the	remaining	9	species,	

contributions	remained	lower	than	or	did	not	significantly	differ	from	the	average	

species	throughout	the	7	days.	The	ability	of	Cellulomonas	sp.	D13	and	Paenibacillus	

sp.	A8	to	efficiently	degrade	both	recalcitrant	and	labile	substrates	may	allow	them	

to	 outcompete	 other	 species	 before	 they	 are	 able	 to	 adapt	 to	 utilise	 recalcitrant	

substrates.	Allowing	the	species	used	here	a	period	of	evolutionary	adaptation	to	the	
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wheat	straw	substrate	may	increase	their	ability	to	degrade	recalcitrant	substrates	

and	alter	the	dominance	hierarchy	within	these	communities	and	is	an	interesting	

topic	for	future	study.	

	

In	conclusion,	we	have	identified	key	functional	traits	that	define	the	productivity	of	

communities	 degrading	 lignocellulose.	We	 found	 that	 the	 degradative	 abilities	 of	

communities	 against	 β-glucan,	 arabinoxylan	 and	 xylan	 were	 able	 to	 predict	

community	productivity	more	effectively	than	either	measures	of	community	niche	

or	species	richness.	Furthermore,	we	found	that	two	species,	Paenibacillus	sp.	A8	and	

Cellulomonas	 sp.	 D13,	 made	 greater	 than	 average	 contributions	 to	 community	

productivity	 suggesting	 a	 key	 role	 for	 the	 selection	effect	 in	driving	 the	observed	

positive	BEF	 relationship.	Our	 results	 suggest	 that,	using	 simple	experiments,	 it	 is	

possible	to	identify	the	important	functional	traits	and	species	that	drive	microbial	

community	productivity	on	complex	natural	substrates	like	wheat	straw,	potentially	

simplifying	 efforts	 to	 predict	 the	 functioning	 of	 natural	 communities	 and	 the	

assembly	 of	 highly	 performing	 communities	 for	 biotechnological	 industrial	

applications.		
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3.6 Supplementary	figures	
	

	

Supplementary	Figure	3.1	Relationship	between	community	productivity	and	maximum	ability	of	
constituent	species	to	utilise	arabinoxylan	(left)	and	xylan	(right).	The	ability	of	constituent	species	to	
utilise	 arabinoxylan	 and	 xylan	 was	 calculated	 from	 their	 ability	 to	 grow	 on	 these	 substrates	 in	
functional	 trait	 assays	 (Figure	 3.2).	 Each	 point	 represents	 the	mean	productivity	 of	 five	 replicate	
communities.	
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4 Lignocellulolytic	bacteria	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	
D13	possess	a	wide	range	of	carbohydrate	active	enzymes	

	

4.1 Abstract	
A	 promising	 solution	 to	 tackle	 the	 problem	 of	 lignocellulose	 recalcitrance	 is	 to	

identify	 the	 microorganisms	 and	 enzymes	 which	 achieve	 efficient	 lignocellulosic	

degradation	 in	 nature.	 In	 the	 previous	 chapter	 we	 identified	 two	 species,	

Paenibacillus	 sp.	 A8	 and	 Cellulomonas	 sp.	 D13	 which	 significantly	 improved	 the	

productivity	of	 lignocellulose	degrading	microbial	communities.	Here,	we	measure	

the	ability	of	these	species	to	degrade	wheat	straw	lignocellulose	in	monoculture	and	

in	coculture.	 In	addition,	we	use	genome	sequencing	to	 identify	 the	carbohydrate	

active	enzymes	encoded	by	these	species.	We	found	that	while	both	species	were	

able	to	degrade	wheat	straw,	Cellulomonas	sp.	D13	was	more	efficient	and	achieved	

an	equivalent	extent	of	mass	loss	in	monoculture	as	was	achieved	by	the	coculture.	

We	also	discovered	a	diverse	range	of	cellulase	and	hemicellulase	enzymes	 in	the	

genomes	of	both	species	indicating	that	they	have	the	potential	to	degrade	a	range	

of	lignocellulosic	substrates.		

	

4.2 Introduction	
The	long-term	viability	of	second-generation	biofuels	is	reliant	on	improving	the	cost-

effectiveness	and	efficiency	of	lignocellulose	degradation	(Lynd	et	al.,	2008;	Naik	et	

al.,	2010).	The	major	limiting	factors	currently	affecting	biofuel	production	are	the	

requirement	of	energy-intensive	physiochemical	pretreatment	to	remove	lignin,	and	

the	high	cost	of	saccharification	enzyme	production	coupled	with	the	requirement	of	

high	enzyme	 loadings	due	to	 low	catalytic	efficiencies	 (Johnson,	2016;	Lynd	et	al.,	

2017;	Van	Dyk	and	Pletschke,	2012).		

	

One	of	the	approaches	being	investigated	to	tackle	these	issues	is	the	identification	

of	 both	 the	 microorganisms	 and	 enzymes	 involved	 in	 efficient	 lignocellulose	

degradation	 in	 natural	 systems	 (Brune,	 2014;	 Cragg	 et	 al.,	 2015).	 Highly	 active	

individual	 or	 communities	 of	 microbes	 could	 play	 a	 role	 in	 consolidated	

bioprocessing,	 the	 direct	 conversion	 of	 lignocellulose	 to	 valuable	 products	
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eliminating	the	requirement	for	pretreatment	(Lynd	et	al.,	2002;	Zuroff	and	Curtis,	

2012).	Alternatively,	the	identification	of	more	efficient	enzymes	could	reduce	the	

cost	 of	 current	 biofuel	 production	 processes	 through	 reduced	 enzyme-loading	

requirements	 (Lynd	 et	 al.,	 2017).	 Specifically,	 the	 discovery	 of	 efficient	 bacterial	

cellulases	and	hemicellulases	could	dramatically	reduce	the	cost	of	saccharification	

as	these	are	cheaper	and	more	straight	forward	to	express	than	the	fungal	enzymes	

currently	used	(Himmel	et	al.,	2010;	Mori	et	al.,	2014).		

	

One	promising	source	of	lignocellulolytic	microbes	and	enzymes	under	investigation	

is	compost	(Wei	et	al.,	2012).	Composting	is	the	process	by	which	various	forms	of	

lignocellulose	are	degraded	by	a	diverse	microbial	community	to	produce	a	nutrient	

rich	material	that	can	be	used	to	improve	the	fertility	of	soil	(Ryckeboer	JR,	2003;	Wei	

et	al.,	2012).	In	chapters	2	and	3,	we	found	that	wheat	straw	compost	is	a	promising	

source	of	microorganisms	capable	of	degrading	 the	components	of	 lignocellulose.	

We	found	a	positive	relationship	between	the	diversity	of	 these	communities	and	

their	ability	to	utilise	wheat	straw	as	a	carbon	source.	Interestingly,	the	productivity	

of	communities	was	significantly	improved	by	the	presence	of	two	dominant	species,	

Paenibacillus	 sp.	 A8	 and	 Cellulomonas	 sp.	 D13,	 with	 the	 most	 productive	

communities	 containing	both	 these	 species	 (Evans	et	 al.,	 2017).	 Species	 from	 the	

Paenibacillus	 and	 Cellulomonas	 genera	 are	 frequently	 identified	 in	 studies	 of	

lignocellulose	 degradation	 and	 efforts	 are	 ongoing	 to	 uncover	 the	 enzymatic	

machinery	that	the	genomes	of	these	species	encode	(Ahmed	et	al.,	2018;	de	Lima	

Brossi	et	al.,	2016).	

	

Paenibacillus	is	an	industrially	relevant	genus	of	bacteria	owing	to	the	ability	of	some	

strains	to	produce	antimicrobials,	promote	plant	growth	and	protect	against	insect	

pests	 and	 phytopathogens	 (Grady	 et	 al.,	 2016).	 In	 addition,	 Paenibacillus	 species	

produce	 a	 range	 of	 enzymes	 involved	 in	 bioremediation	 and	 lignocellulose	

degradation	 (Bohra	 et	 al.,	 2018).	 The	 production	 of	 various	 oxygenases,	

dehydrogenases,	 and	 ligninolytic	 enzymes	 by	 Paenibacillus	 strains	 suggests	 a	

promising	 role	 in	 bioremediation	 and	 these	 enzymes	 may	 also	 be	 able	 to	

depolymerise	 lignin	 (Abbasian	 et	 al.,	 2015;	 Chandra	 et	 al.,	 2008;	 Haritash	 and	
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Kaushik,	 2009).	 As	 a	 result	 of	 the	 various	 enzymatic	 activities	 identified	 in	

Paenibacillus	 strains,	 they	 are	 being	 studied	 for	 roles	 in	 biofuel	 production	

(Weselowski	 et	 al.,	 2016).	 For	 example,	 pretreatment	 of	 water	 hyacinth	 with	 a	

Paenibacillus	 strain	 isolated	 from	 a	 millipede	 gut	 significantly	 improved	 biogas	

production	 (Barua	 et	 al.,	 2018).	 Due	 to	 their	 potential	 agricultural	 and	 industrial	

applications,	 several	 Paenibacillus	 genomes	 have	 been	 sequenced	 revealing	 the	

presence	 of	 multiple	 carbohydrate	 active	 enzymes	 (CAZymes)	 including	 various	

cellulases	and	hemicellulases	(Bohra	et	al.,	2018;	Eastman	et	al.,	2014).		

	

The	 ability	 of	 the	 Cellulomonas	 genus	 to	 produce	 extracellular	 lignocellulolytic	

enzymes	was	first	studied	50	years	ago	(Han	and	Srinivasan,	1968)	and	the	cellulases	

produced	by	this	genus	are	among	the	best	studied	(Brumm,	2013).	Both	genomic	

and	 proteomic	 approaches	 have	 identified	 a	 diverse	 range	 of	 hemicellulase	 and	

cellulases	encoded	by	the	type	strains	Cellulomonas	fimi	ATCC	484	and	Cellulomonas	

flavigena	ATCC482,	and	shown	substrate-specific	expression	of	these	enzymes	(Abt	

et	al.,	2010;	Christopherson	et	al.,	2013;	Sánchez-Herrera	et	al.,	2007;	Wakarchuk	et	

al.,	2016).	Efforts	to	characterise	the	full	range	of	lignocellulolytic	enzymes	produced	

by	Cellulomonas	species	and	assess	their	industrial	potential	are	ongoing.	

	

Here,	 we	 further	 characterise	 Paenibacillus	 sp.	 A8	 and	 Cellulomonas	 sp.	 D13	 by	

measuring	their	ability	to	degrade	wheat	straw	lignocellulose	in	monoculture	and	in	

coculture.	We	found	that	while	cocultures	achieved	higher	wheat	straw	degradation	

than	the	monocultures	over	short	timescales,	the	Cellulomonas	sp.	D13	monoculture	

is	able	to	degrade	wheat	straw	as	well	as	the	coculture	over	longer	timescales.	We	

sequenced	 the	 genomes	 of	 these	 stains	 and	 describe	 here	 the	 range	 of	

lignocellulolytic	enzymes	they	possess.	Similar	to	previous	genomic	analysis	of	these	

genera,	 we	 found	 that	 both	 these	 species	 contain	 a	wide	 range	 of	 carbohydrate	

enzymes	 (CAZymes).	 Identifying	 which	 of	 these	 enzymes	 are	 required	 for	 wheat	

straw	degradation	could	provide	industrially	relevant	insights.	
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4.3 Methods	

4.3.1 Growth	on	wheat	straw	

To	measure	the	ability	of	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	to	degrade	

wheat	straw	lignocellulose	we	grew	these	strains	in	monoculture	and	coculture	in	10	

ml	M9	minimal	media	with	1	g	wheat	straw	lignocellulose.	Paenibacillus	sp.	A8	and	

Cellulomonas	sp.	D13	were	grown	overnight	in	nutrient	broth	at	30°C	then	diluted	to	

an	abundance	of	approximately	106	cells/ml.	10ml	of	M9	minimal	media	containing	

1	g	wheat	straw	were	inoculated	with	50	μl	each	strain	for	cocultures	or	100	μl	each	

strain	 in	 monocultures.	 A	 negative	 control	 was	 included	 which	 contained	 no	

inoculum.	There	were	three	 independent	replicates	destructively	sampled	at	each	

treatment	 for	 each	 transfer	 to	 give	 a	 total	 of	 48	 microcosms.	 Microcosms	 were	

incubated	 at	 30°C,	 150	 rpm.	 At	 days	 4,	 7,	 14	 and	 21	 three	 replicates	 from	 each	

treatment	were	removed.	Serial	dilutions	were	prepared	and	spread	onto	nutrient	

agar	plates	to	allow	the	density	of	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	to	

be	 counted.	 Biomass	 was	 harvested	 by	 centrifugation	 and	 media	 was	 removed.	

Samples	 were	 freeze-dried	 and	 weighed	 to	 determine	 the	 amount	 of	 mass	 loss.	

Microbial	 biomass	 was	 not	 removed	 and	 so	 mass	 loss	 values	 are	 likely	 to	 be	

conservative.	

4.3.2 Genome	Sequencing	

To	identify	the	CAZymes	possessed	by	these	species	we	sequenced	the	genomes	of	

Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13.	A	single	colony	of	each	species	was	

resuspended	and	grown	overnight	 in	nutrient	broth	at	30°C,	150	 rpm.	Cells	were	

harvested,	 and	 genomic	 DNA	 was	 extracted	 using	 Qiagen	 Genomic	 Tips	 20G	

following	the	manufacturer’s	instructions.	The	genome	was	sequenced	on	the	Pacific	

Biosciences	Sequel	System	by	NERC	Biomolecular	Analysis	Facility	at	the	University	

of	Sheffield.	PacBio	sequencing	of	the	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	

genomes	 produced	 217,443	 reads	 at	 an	 average	 length	 of	 5,740	 bp	 and	 237,833	

reads	at	 an	average	 length	of	5,627	bp,	 respectively.	 Trimming	and	 correction	by	

Canu	(Koren	et	al.,	2017)	produced	185,632	reads	at	an	average	length	of	5,174	bp	

and	199,449	reads	at	an	average	length	of	4,858	bp	for	the	Paenibacillus	sp.	A8	and	
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Cellulomonas	 sp.	 D13	 genomes	 which	 represents	 135x	 and	 233x	 coverage	

respectively.	 Reads	 were	 assembled	 into	 a	 single	 contig	 by	 Canu	 which	 were	

circularised	by	Circlator	 (Hunt	et	al.,	2015)	and	polished	with	Pilon	 (Walker	et	al.,	

2014)	 using	 2x250	 paired-end	 Illumina	 reads	 generated	 by	MicrobesNG.	Genome	

annotation	 was	 performed	 using	 Prokka	 (Seemann,	 2014)	 and	 CAZymes	 were	

annotated	by	HMMER,	Diamond	and	Hotpop	using	the	dbCAN	meta	server	(Yin	et	al.,	

2012).	 CAZymes	 annotated	 by	 at	 least	 two	 methods	 are	 included	 in	 results.	

Visualisation	 of	 the	 genome	 was	 performed	 in	 DNA	 Plotter	 which	 is	 part	 of	 the	

Artemis	platform	(Carver	et	al.,	2012).	

4.3.3 Statistical	analysis	

All	statistical	analysis	was	performed	in	R	version	3.5.1	(R	Core	Team,	2018).	Linear	

mixed	effects	models	using	the	nlme	package	(Pinheiro	et	al.,	2018)	were	used	to	

compare	the	density	of	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13.	The	quantity	

of	mass	loss	through	time	was	also	analysed	using	a	linear	mixed	effects	model.	To	

identify	differences	 in	 the	extent	of	mass	 loss	 in	 the	presence	or	absence	of	each	

species	we	used	the	binary	presence	and	absence	of	each	species	and	time	as	the	

independent	variables.		

4.4 Results	

4.4.1 Degradation	of	wheat	straw	by	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	

We	 first	 assessed	 the	 ability	 of	Paenibacillus	 sp.	 A8	 and	Cellulomonas	 sp.	 D13	 to	

degrade	 wheat	 straw	 lignocellulose.	 Comparison	 of	 growth	 in	 monoculture	 and	

coculture	indicates	that	competition	with	Paenibacillus	sp.	A8	inhibited	the	growth	

of	Cellulomonas	sp.	D13	(linear	mixed	effects	model,	main	effect	of	diversity,	F1,4	=	

102.6,	P	<	0.001,	Figure	4.1a)	while	Paenibacillus	sp.	A8	benefited	from	the	presence	

of	Cellulomonas	sp.	D13	(linear	mixed	effects	model,	main	effect	of	diversity,	F1,4	=	

12.8,	P	<	0.05,	Figure	4.1a).	

	

To	determine	the	extent	of	lignocellulose	degradation	we	measured	the	mass	loss	of	

wheat	straw	following	degradation	by	Paenibacillus	sp.	A8	and/or	Cellulomonas	sp.	

D13	 in	 monoculture	 and	 in	 coculture.	 The	 presence	 of	 Cellulomonas	 sp.	 D13	



	 50	

significantly	 increased	 the	 rate	 of	 lignocellulose	 mass	 loss	 (linear	 mixed	 effects	

model,	 Cellulomonas	 sp.	 D13	 presence	 by	 time	 interaction,	 F1,25	 =	 5.0,	 P	 <	 0.05,	

Figure	4.1b).		

	

a	 b	

	 	

Figure	4.1	(a)	The	density	of	Cellulomonas	sp.	D13	(left	panel)	and	Paenibacillus	sp.	A8	(right	panel)	
when	grown	in	monoculture	(red)	and	coculture	(cyan)	in	10	ml	M9	minimal	media	with	1	g	wheat	
straw	as	the	sole	substrate.	(b)	The	mass	loss	of	wheat	straw	following	degradation	by	Paenibacillus	
sp.	A8	in	monoculture	(yellow),	Cellulomonas	sp.	D13	(red)	and	both	these	species	in	coculture	(cyan).	
	

4.4.2 Genome	sequences	for	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	

De	novo	assembly	of	Paenibacillus	sp.	A8	produced	a	single	circular	contig	7,136,835	

bp	in	size	with	an	average	GC	content	of	46.1%.	The	genome	contained	6,487	coding	

sequences	(CDS)	with	99	tRNAs	and	35	rRNAs.	Prokka	annotated	62.9%	of	the	genes	

with	 the	 remaining	 genes	 annotated	 as	 hypothetical	 proteins.	 Comparison	 of	 the	

Paenibacillus	 sp.	 A8	 genome	 to	 previously	 sequenced	 genomes	 using	 average	

nucleotide	identity	(ANI)	revealed	82%	ANI	to	the	type	strain	Paenibacillus	polymyxa,	

94%	ANI	to	Paenibacillus	amylolyticus	and	95%	ANI	to	Paenibacillus	antarcticus.		

	

The	genome	assembly	of	Cellulomonas	sp.	D13	also	produced	a	single	circular	contig	

4,166,311	 bp	 in	 size	 with	 an	 average	 GC	 content	 of	 74.5%.	 Prokka	 annotation	

predicted	the	presence	of	3,777	CDS,	59%	of	which	were	annotated	by	Prokka	with	

56	 tRNAs	 and	 6	 rRNAs.	 ANI	 suggested	 that	Cellulomonas	 sp.	 D13	 is	most	 closely	

related	to	Cellulomonas	composti	(96%	ANI)	and	is	relatively	diverged	from	the	type	

strains	C.	fimi	(ANI	81%)	and	C.	flavigena	(ANI	89%).	
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a	 b	

	 	
Figure	 4.2	 Graphical	 representation	 of	 the	 chromosome	 of	 (a)	 Paenibacillus	 sp.	 A8	 and	 (b)	
Cellulomonas	sp.	D13.	From	outer	to	inner	circles:	genes	on	forward	strand	(blue);	genes	on	reverse	
strand	 (purple);	 tRNA	 genes	 on	 forward	 and	 reverse	 strands	 respectively	 (pink);	 rRNA	 genes	 on	
forward	and	reverse	strands	respectively	(green);	GC	content;	GC	skew.	Figure	produced	using	DNA	
Plotter	from	Artemis.	
	

4.4.3 Carbohydrate	utilisation	enzymes	

To	 assess	 the	 carbohydrate	 degradation	 capacity	 of	 Paenibacillus	 sp.	 A8	 and	

Cellulomonas	sp.	D13	we	annotated	the	genome	for	CAZymes	using	dbCAN2.	As	with	

previous	 analysis	 of	 Paenibacillus	 and	 Cellulomonas	 genomes,	we	 found	multiple	

CAZYme	 domains	 including	 glycoside	 hydrolases	 (GHs),	 carbohydrate-bindings	

modules	(CBMs),	glycosyl	transferases	(GTs),	carbohydrate	esterases	(CEs),	auxiliary	

activities	(AAs)	and	polysaccharide	lyases	(PL)	with	a	total	of	333	and	217	CAZyme	

hits	in	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	respectively	(Figure	4.3).	The	

genomes	of	both	species	contained	a	high	number	of	GH	enzymes	which	is	a	common	

trait	amongst	lignocellulolytic	bacteria	(Woo	et	al.,	2014b).	Cellulolytic	enzymes	are	

predominantly	 classed	 into	 families	 GH1,	 GH3,	 GH5,	 GH6,	 GH7,	 GH8	GH9,	 GH12,	

GH45	and	GH48	while	hemicellulolytic	enzymes	are	predominantly	found	in	families	

GH2,	GH10,	GH11,	GH16,	GH26,	GH30,	GH31,	GH36,	GH43,	GH51,	GH74	and	GH95	

(López-Mondéjar	et	al.,	2016a).	

	

The	 genome	of	Paenibacillus	 sp.	 A8	 contains	 333	CAZyme	domains	 in	 281	 genes,	

approximately	 4.3%	 of	 CDS,	 63	 of	 which	 have	 signal	 peptides.	 Similar	 to	 other	

sequenced	Paenibacillus	genomes,	the	majority	of	CAZyme	hits	(56.2%)	belonged	to	
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76	 GH	 families.	 Ninety-six	 genes	 were	 assigned	 to	 GH	 families	 predicted	 to	 be	

involved	 in	 cellulose	 and	 hemicellulose	 degradation	 (Table	 4.1).	 As	 is	 typical	 of	

multiple	bacterial	species	there	was	an	abundance	of	GH1	and	GH3	genes,	12	and	14	

respectively,	 which	 encode	 β-glucosidases	 (Berlemont	 and	 Martiny,	 2013).	 The	

presence	of	these	genes	is	not	considered	to	be	sufficient	for	cellulose	degradation	

with	 members	 of	 the	 other	 cellulolytic	 GH	 families	 also	 required	 for	 growth	 on	

cellulose	(Koeck	et	al.,	2014).	The	presence	of	14	genes	belonging	to	the	remaining	

cellulolytic	GH	families	suggests	Paenibacillus	sp.	A8	possesses	the	enzymes	required	

for	cellulose	degradation.	Similar	to	other	Paenibacillus	genomes	(Yadav	and	Dubey,	

2018),	we	found	the	highest	number	of	CAZymes	(23)	belonged	to	GH43,	a	family	of	

arabino/xylosidases.	 In	 addition	 to	 multiple	 members	 of	 the	 other	 GH	 families	

related	 to	 hemicellulose	 degradation,	 Paenibacillus	 sp.	 A8	 had	 19	 carbohydrate	

esterases	(CE1,	CE4,	CE10,	DE14)	that	are	predicted	to	act	on	xylan.		

	

	

	
Figure	 4.3	 Number	 of	 hits	 identified	 by	 at	 least	 two	 programs/databases	 by	 dbCAN2.	 Hits	 are	
annotated	 as	 glycoside	 hydrolases	 (GHs),	 carbohydrate-bindings	 modules	 (CBMs),	 glycosyl	
transferases	(GTs),	carbohydrate	esterases	(CEs),	auxiliary	activities	(AAs)	and	polysaccharide	lyases	
(PL).	
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	 Paenibacillus	
sp.	A8	

Penibacillus	
polymyxa	
ND24	

Paenibacillus	
sp.	O199	

Cellulomonas	
sp.	D13	

Cellulomonas	
flavigena	
ATCC	482	

Cellulomonas	
fimi	ATCC	

484	

GH	Total	 187	 116	 231	 98	 76	 98	
Ce

llu
la
se
s	

GH1	 12	 7	 11	 1	 1	 1	
GH3	 14	 2	 11	 3	 8	 7	
GH5	 5	 5	 7	 1	 2	 4	

GH6	 1	 1	 1	 3	 4	 4	

GH8	 1	 0	 0	 0	 0	 0	
GH9	 1	 0	 1	 4	 5	 4	
GH48	 1	 1	 1	 1	 1	 1	
GH51	 4	 3	 4	 2	 4	 4	
GH74	 1	 7	 4	 3	 0	 1	

H
em

ic
el
lu
la
se
s	

GH2	 8	 2	 10	 1	 0	 0	
GH10	 4	 2	 3	 18	 9	 15	
GH11	 1	 1	 1	 5	 2	 3	
GH16	 3	 2	 5	 0	 0	 1	
GH26	 4	 5	 2	 3	 1	 3	
GH30	 2	 1	 6	 0	 0	 0	
GH31	 1	 1	 2	 1	 0	 0	
GH39	 2	 0	 0	 2	 2	 2	
GH42	 5	 3	 4	 2	 2	 2	
GH43	 23	 8	 17	 5	 3	 4	
GH53	 3	 1	 3	 1	 0	 1	

CBM	 59	 55	 84	 54	 59	 72	
GT	 45	 65	 61	 40	 19	 28	
CE	 27	 43	 79	 20	 10	 11	
AA	 1	 5	 10	 3	 2	 4	
PL	 14	 9	 15	 2	 3	 4	

Table	 4.1	 Summary	 of	 carbohydrate	 active	 enzymes	 (CAZymes)	 in	 Paenibacillus	 sp.	 A8	 and	
Cellulomonas	sp.	D13	(in	bold).	The	total	number	of	CAZyme	hits	in	each	group	are	given	as	well	as	
the	number	of	hits	in	each	family	for	cellulase	and	hemicellulase	containing	families.	The	number	of	
CAZyme	hits	for	two	Paenibacillus	and	two	Cellulomonas	strains	are	given	for	comparison.	
	
	

The	Cellulomonas	sp.	D13	genome	contained	217	CAZyme	domains	in	152	genes	(4%	

CDS),	60	of	which	contained	signal	peptides.	The	majority	of	these	genes	(45%)	were	

GHs	which	were	classified	into	55	families.	There	are	three	predicted	GH3	genes	and	

one	GH1	 along	with	 14	 other	 genes	 assigned	 to	 cellulase	 families	 suggesting	 the	

Cellulomonas	 sp.	 D13	 contains	 the	 necessary	 enzymes	 for	 autonomous	 cellulose	
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degradation.	Similar	 to	C.	 flavigena,	the	genome	contained	a	high	number	 (16)	of	

GH10	genes	which	encode	endo-1,4-β-xylanase	(Wakarchuk	et	al.,	2016).	There	were	

16	genes	assigned	to	xylan	acting	CEs	(CE1,	CE3,	CE4,	CE10,	CE14)	and	three	AA10s	

which	 encode	 lytic	 polysaccharide	 monooxygenases	 (AA10)	 which	 hydrolyse	

lignocellulose	by	direct	oxidative	attack	(Hemsworth	et	al.,	2014).		

	

Our	results	suggest	that	both	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	possess	

the	genes	required	for	degradation	of	both	cellulose	and	hemicellulose.	However,	

transcriptomic	and/or	proteomic	work	would	be	required	to	identify	which	of	these	

genes	are	expressed	and	under	what	conditions.		

	

4.5 Discussion	
The	identification	of	microorganisms	and	enzymes	capable	of	efficient	lignocellulose	

degradation	is	one	of	the	most	promising	solutions	to	optimise	second	generation	

biofuel	production	(Harris	et	al.,	2014).	Using	a	biodiversity	ecosystem	functioning	

experiment	 we	 previously	 identified	 two	 species	 which	 significantly	 improve	

community	productivity	during	growth	on	wheat	straw.	These	species	belonged	to	

the	Paenibacillus	and	Cellulomonas	genera	which	have	previously	been	identified	as	

promising	candidates	for	industrial	applications	(Christopherson	et	al.,	2013;	López-

Mondéjar	et	al.,	2016a).		

	

Here	we	confirmed	our	previous	finding	that	both	of	these	species	were	able	to	grow	

in	minimal	media	with	wheat	straw	lignocellulose	as	the	sole	carbon	source.	While	

Paenibacillus	sp.	A8	was	able	to	grow	on	wheat	straw	in	monoculture,	mass	loss	did	

not	significantly	 increase	throughout	time.	The	density	of	Paenibacillus	sp.	A8	and	

the	degradation	of	wheat	straw	was	increased	by	the	presence	of	Cellulomonas	sp.	

D13	with	cocultures	and	Cellulomonas	sp.	D13	monocultures	resulting	in	the	same	

amount	of	mass	loss	after	21	days.	Interestingly,	despite	exhibiting	the	same	degree	

of	mass	loss	as	monocultures,	cocultures	contained	significantly	lower	densities	of	

Cellulomonas	sp.	D12	suggesting	that	Paenibacillus	sp.	A8	is	also	contributing	to	mass	

loss	in	these	cultures.	One	consideration	that	should	be	taken	into	account	is	that	
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this	 experiment	 measured	 the	 total	 biomass	 following	 several	 days	 of	 bacterial	

growth	and	so	the	bacterial	biomass	as	well	as	the	remaining	lignocellulose	biomass	

is	included	leading	to	conservative	estimates	of	mass	loss.	

	

Despite	 the	 apparent	 ability	 of	Cellulomonas	 sp.	 D13	 to	more	 efficiently	 degrade	

wheat	 straw	 than	 Paenibacillus	 sp.	 A8,	 analysis	 of	 the	 genomes	 indicated	 they	

contain	 a	 similar	 number	of	 CAZymes	 relative	 to	 their	 genome	 size.	 Paenibacillus	

species	 are	 widespread	 in	 nature	 and	 have	 been	 studied	 for	 various	 industrial	

applications	 including	 their	 ability	 to	 produce	 lignocellulolytic	 enzymes	 (López-

Mondéjar	et	al.,	2016a;	Song	et	al.,	2014;	Yadav	and	Dubey,	2018).	Here	we	show	

that	 Paenibacillus	 sp.	 A8	 possesses	 40	 genes	 assigned	 to	 GH	 families	 related	 to	

cellulose	 degradation	 and	 56	 assigned	 to	 GH	 families	 related	 to	 hemicellulose	

degradation.	 Similar	 to	 the	 genomes	 of	 various	 Cellulomonas	 species	

(Christopherson	 et	 al.,	 2013;	 Lisov	 et	 al.,	 2017;	 Sánchez-Herrera	 et	 al.,	 2007),	

Cellulomonas	sp.	D13	contains	18	genes	assigned	to	GH	families	with	cellulase	activity	

and	36	assigned	to	GH	families	with	hemicellulase	activity.	As	with	previous	studies,	

analysis	of	the	Paenibacillus	sp.	A8	and	Cellulomonas	sp.	D13	genomes	predicts	the	

presence	of	multiple	genes	in	the	same	family,	however	these	enzymes	may	catalyse	

different	 reactions	 and	 further	 characterisation	 would	 be	 required	 to	 determine	

specific	 functions.	 However,	 it	 has	 been	 shown	 that	 enzymes	 involved	 in	 both	

cellulose	and	hemicellulose	degradation	often	exhibit	redundancy	which	may	explain	

the	presence	of	multiple	enzymes	in	the	same	family	(Amore	et	al.,	2013b;	Stricker	

et	 al.,	 2006).	 While	 analysis	 of	 the	 genomes	 suggests	 Paenibacillus	 sp.	 A8	 and	

Cellulomonas	 sp.	 D13	 possess	 the	 genes	 required	 for	 cellulase	 and	 hemicellulose	

degradation,	 the	 presence	 of	 these	 genes	 does	 not	 necessarily	 mean	 they	 are	

expressed.	 López-Mondéjar	 et	 al.	 (2016)	 found	 that	while	Paenibacillus	 sp.	 O199	

possesses	a	wide	arsenal	of	CAZymes,	only	about	30%	of	these	are	expressed	during	

growth	on	 cellulose	or	 lignocellulose.	However,	 the	proteins	 that	were	expressed	

represented	 the	 full	 set	 required	 for	 cellulose	 degradation,	 i.e.	 endoglucanases,	

exoglucanases,	β-glucosidases	and	cellobiohydrolases	(Brumm,	2013).	Therefore,	in	

order	 to	 identify	 enzymes	 with	 potential	 industrial	 applications,	 annotations	 of	

CAZymes	 in	a	 genome	 is	often	 coupled	with	proteomic	analysis	 to	determine	 the	
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expression	patterns	of	enzymes	under	different	growth	conditions	(López-Mondéjar	

et	al.,	2016b;	Takasuka	et	al.,	2013;	Wilson,	2012).	

	

In	summary,	we	have	identified	two	lignocellulolytic	bacteria	able	to	degrade	wheat	

straw.	Cellulomonas	 sp.	 D13	 grew	 better	 in	monoculture	 and	 achieved	 the	 same	

amount	of	wheat	 straw	degradation	 (mass	 loss)	 as	 the	 coculture	 containing	both	

Cellulomonas	 sp.	D13	 and	Paenibacillus	 sp.	 A8.	 Analysis	 of	 the	 genomes	 of	 these	

bacteria	indicate	that	they	both	possess	multiple	enzymes	required	for	degradation	

of	 cellulose	 and	 hemicellulose.	 Proteomic	 analysis	 to	 determine	 which	 of	 these	

enzymes	 are	 expressed	 would	 help	 to	 uncover	 how	 these	 species	 achieve	

lignocellulose	degradation.		
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5 The	influence	of	competing	species	and	their	ecoevolutionary	
responses	on	the	rate	and	trajectory	of	focal	species	evolution	

	

5.1 Abstract	
The	evolutionary	adaptation	of	species	to	new	environments	are	typically	studied	in	

single-species	 populations	 but	 in	 nature	 these	 processes	 occur	 in	 complex	

communities.	 Here	 I	 tested	 the	 effect	 of	 competing	 species	 on	 the	 phenotypic	

evolution	 of	 a	 focal	 species	 using	 experimental	 evolution	 of	 simple	 lignocellulose	

degrading	communities	grown	on	wheat	straw.	To	determine	the	effect	of	ecological	

and	evolutionary	responses	of	the	other	species	upon	focal	species	evolution	these	

species	were	either	held	fixed	or	allowed	to	dynamically	respond	to	changes	in	the	

focal	 species	 population.	 Evolution	 in	 the	 presence	 of	 a	 competing	 community	

accelerated	 metabolic	 phenotype	 evolution	 in	 the	 focal	 species	 relative	 to	

monoculture	controls,	but	also	led	to	reduced	autonomous	growth	performance	on	

wheat	 straw.	 Species	 sorting	 and	 evolutionary	 responses	 of	 the	 competing	

communities	 led	 to	 greater	 between	 population	 divergence	 of	 the	 metabolic	

phenotype	of	the	focal	species	in	the	dynamic	polyculture	treatment	compared	to	

fixed	polyculture	 treatment,	but	also	 limited	 the	 fitness	gains	of	 the	 focal	 species	

against	 the	 ancestral	 community.	 Taken	 together	 these	 data	 suggest	 that	 the	

combined	ecological	and	evolutionary	responses	of	competing	species	shape	both	

the	rate	and	trajectory	of	evolution	of	a	focal	species	adapting	to	a	new	environment.	

	

5.2 Introduction	
Understanding	how	species	adapt	to	new	environments	has	applications	in	managing	

human	 health	 (Eloe-Fadrosh	 and	 Rasko,	 2013),	 predicting	 responses	 to	 climate	

change	 (Berg	et	 al.,	 2010)	 and	 industrial	 biotechnology	 (Kouzuma	and	Watanabe,	

2014).	Most	theoretical	and	experimental	studies	on	evolutionary	dynamics	consider	

single	 species	 responding	 to	 abiotic	 selection	 pressures	 in	 isolation.	 However,	 in	

nature	almost	all	species	exist	as	part	of	complex	and	dynamic	communities	and	so	

to	understand	evolution	in	natural	systems	the	influence	of	community	context	on	

the	 adaptation	 of	 constituent	 species	 must	 be	 taken	 into	 account	 (Barraclough,	

2015).		
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When	 communities	 encounter	 new	 or	 changed	 abiotic	 environments,	 both	

evolutionary	and	ecological	responses	may	occur.	Evolutionary	responses	of	species	

can	be	either	promoted	or	hindered	by	species	interactions	depending	on	the	nature	

of	the	ecological	interaction	(Barraclough,	2015).	Competition	can	reduce	a	species’	

abundance	thereby	limiting	genetic	variation	and	evolutionary	potential,	which	may	

in	turn	reduce	the	rate	of	evolution	(Johansson,	2008;	Lanfear	et	al.,	2014;	Rich	et	al.,	

1979).	 If	 trait	 variation	 is	 greater	 between	 species	 than	 within	 species,	 abiotic	

selection	 pressures	 can	 lead	 to	 changes	 in	 the	 relative	 abundance	 of	 competing	

species	(i.e.	species	sorting)	before	selection	can	act	on	the	genetic	variation	within	

species,	hindering	the	evolutionary	response	(Barraclough,	2015;	De	Mazancourt	et	

al.,	 2008).	 Theory	 predicts	 that	 as	 a	 result	 of	 species	 sorting,	 species	 that	 are	

preadapted	to	the	prevailing	environmental	conditions	will	more	readily	occupy	the	

available	niche	space	and	increase	in	relative	abundance	at	the	expense	of	less	well	

adapted	 species,	which	 consequently	 evolve	 at	 a	 slower	 rate	 than	 they	would	 in	

monoculture	(De	Mazancourt	et	al.,	2008).	However,	the	occupation	of	a	niche	by	a	

preadapted	 species	may	 force	 competing	 species	 to	 evolve	 the	 ability	 to	 occupy	

different	niche	space,	referred	to	as	character	displacement	(Grant	and	Grant,	2006),	

or	 to	occupy	new	niche	 space	 created	by	 the	 activity	of	 additional	 species	 in	 the	

community,	referred	to	as	facilitation	or	cross-feeding	(Jousset	et	al.,	2016;	Osmond	

and	de	Mazancourt,	2013;	Zhang	et	al.,	2012).	An	increased	rate	of	evolution	due	to	

the	presence	of	biotic	interactions	is	supported	by	Lawrence	et	al.	(2012)	who	found	

that	four	species	adapted	by	a	combination	of	niche	partitioning	and	cross-feeding	

when	evolving	 in	polyculture.	Populations	that	had	evolved	in	polyculture	evolved	

more	but	achieved	lower	growth	when	in	monoculture	than	those	that	had	evolved	

in	 monoculture	 suggesting	 a	 trade-off	 between	 adaptation	 to	 biotic	 and	 abiotic	

selection	pressures	(Lawrence	et	al.,	2012).		

	

In	addition	to	their	ecological	effects	on	the	focal	species,	 interacting	species	may	

themselves	evolve	which	in	turn	could	shape	the	evolutionary	response	of	the	focal	

species.	Such	reciprocal	evolutionary	change	 is	 termed	coevolution	(Janzen,	1980;	

Thompson,	2016).	The	Red	Queen	hypothesis	proposes	that	for	antagonistic	species	
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interactions,	 each	 adaptation	 made	 by	 a	 species	 will	 be	 matched	 by	 counter-

adaptations	of	 interacting	species	driving	continual	coevolution	without	change	 in	

the	 relative	 fitnesses	 of	 species	 over	 time	 (Brockhurst	 et	 al.,	 2014;	 Stenseth	 and	

Smith,	1984;	Van	Valen,	1973).	Experimental	evolution	using	microorganisms	allows	

the	effects	of	coevolution	to	be	studied	in	a	controlled	laboratory	setting	(Brockhurst	

and	Koskella,	2013).	Such	studies	generally	provide	support	for	the	central	tenet	of	

the	Red	Queen	hypothesis	that	reciprocal	evolution	accelerates	evolutionary	rates	

compared	to	controls	where	only	one	of	the	species	is	allowed	to	evolve	(Paterson	

et	al.,	2010;	Schulte	et	al.,	2010).	However,	studies	of	coevolution	and	the	Red	Queen	

hypothesis	 have	 predominantly	 focussed	 on	 pairs	 of	 interacting	 species	 and	

consequently	 little	 is	 known	 about	 how	 these	 pairwise	 coevolutionary	 processes	

scale-up	in	more	complex	communities	(Brockhurst	et	al.,	2014).	Recently,	Betts	et	

al.	(2018)	found	that	when	a	bacterial	host	was	coevolved	with	a	community	of	phage	

parasites,	 the	 rate	 of	 evolution	 and	 divergence	 among	 replicate	 populations	was	

greater	than	when	coevolved	with	a	single	phage	parasite.	 	Similarly,	Fiegna	et	al.	

(2015)	 found	 that	 species	 interactions	 evolved	 more,	 becoming	 less	 negative,	 in	

more	diverse	communities.	Further	work	is	required	to	understand	how	community	

context	shapes	the	adaptation	of	a	species	to	new	environments	and	whether	this	

process	is	affected	by	coevolution	with	the	community.	

	

Here,	we	investigate	how	adaptation	of	a	focal	species	(Stenotrophomonas	sp.	D12)	

to	a	new	resource	environment	is	affected	by	the	presence	and	the	evolution	of	a	

community	of	competing	species.	Specifically,	we	tracked	the	evolutionary	response	

of	a	focal	species	to	a	novel	wheat	straw	environment	both	in	monoculture	and	in	

polyculture	 where	 the	 competing	 species	 were	 either	 held	 constant	 (fixed	

polyculture	treatment)	or	allowed	to	themselves	make	ecological	and	evolutionary	

responses	 (dynamic	 polyculture	 treatment).	 At	 the	 end	 of	 the	 experiment	 we	

measured	the	autonomous	growth	performance	of	the	focal	species	on	wheat	straw	

to	 test	 for	 abiotic	 adaptation	 and	 estimated	 relative	 fitness	 against	 the	 ancestral	

community	to	test	for	biotic	adaptation.	We	also	quantified	change	in	the	metabolic	

phenotype	of	 the	 focal	 species	 over	 time	 to	 estimate	 differences	 in	 the	 rate	 and	

trajectory	 of	 phenotypic	 evolution	 within	 and	 between	 treatments.	 Finally,	 we	
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evolved	the	focal	species	in	pairwise	coculture	with	each	of	the	constituent	species	

to	distinguish	the	evolutionary	trajectories	driven	by	each	competitor	species	alone.	

We	 report	 that	 evolution	 in	 the	presence	of	 a	 competing	 community	 accelerated	

metabolic	 phenotype	 evolution	 relative	 monoculture	 controls,	 but	 also	 led	 to	

reduced	 autonomous	 growth	 performance	 on	 wheat	 straw.	 Species	 sorting	 and	

evolutionary	 responses	 of	 the	 competing	 communities	 led	 to	 greater	 between	

population	 divergence	 of	 the	 metabolic	 phenotype	 of	 the	 focal	 species	 in	 the	

dynamic	polyculture	treatment	compared	to	 fixed	polyculture	treatment,	but	also	

limited	the	fitness	gains	of	the	focal	species	against	the	ancestral	community.	Taken	

together	 these	 data	 suggest	 that	 the	 combined	 ecological	 and	 evolutionary	

responses	of	competing	species	shape	both	the	rate	and	trajectory	of	evolution	of	a	

focal	species	adapting	to	a	new	environment.		

	

5.3 Methods	

5.3.1 Bacterial	isolates	and	experimental	design	

All	 isolates	 used	 in	 this	 experiment	 were	 isolated	 from	 wheat	 straw	 compost	

enrichment	cultures	as	described	in	Chapter	2.	Stenotrophomonas	sp.		D12	was	used	

as	 the	 focal	 species	 as	 it	 was	 found	 to	 be	 resistant	 to	 high	 concentrations	 of	

kanamycin	in	minimum	inhibitory	concentration	assays.	Five	additional	strains	from	

the	Bacillus,	Paenibacillus,	Microbacterium,	Cellulomonas	and	Rhodococcus	genera	

were	chosen	as	they	were	susceptible	to	kanamycin	and	exhibited	varying	functional	

metabolic	traits	(Figure	3.2).		

	

The	focal	species	was	evolved	in	monoculture	and	in	polyculture	with	all	additional	

strains	 with	 wheat	 straw	 lignocellulose	 as	 the	 sole	 carbon	 source.	 In	 half	 of	 the	

polyculture	replicates	both	the	focal	species	and	additional	species	were	allowed	to	

adapt	to	the	environment	(referred	to	hereafter	as	dynamic)	and	in	the	other	half	

only	the	focal	species	was	allowed	to	adapt	while	the	additional	species	were	held	in	

evolutionary	stasis	(referred	to	hereafter	as	fixed).	Cultures	were	serially	transferred	

to	 new	media	 each	 week	 for	 16	 weeks.	 To	 identify	 the	 evolutionary	 trajectories	
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driven	by	each	of	the	five	competing	species	we	also	evolved	the	focal	species	in	the	

presence	of	dynamic	and	fixed	cocultures	with	each	of	the	additional	species.	

5.3.2 Experimental	set	up	

All	 isolates	 were	 grown	 overnight	 in	 nutrient	 broth	 at	 30°C	 then	 diluted	 to	 an	

abundance	of	approximately	106	cells/ml.	These	cultures	were	used	to	inoculate	6	ml	

M9	media	with	60	mg	wheat	straw.	Monocultures	were	inoculated	with	60	μl	of	the	

focal	species,	polycultures	were	inoculated	with	10	μl	of	each	species	and	cocultures	

with	 30	 μl	 of	 each	 species.	 Each	 community	was	 replicated	 six	 times	 to	 yield	 18	

microcosms	which	were	incubated	at	30°C,	150	rpm	for	6	days.	Cultures	were	then	

diluted	to	10-5	in	M9	media	and	100	µl	was	spread	onto	nutrient	agar	plates	(dynamic	

polyculture	 and	 monocultures)	 or	 nutrient	 agar	 plates	 containing	 50	 µg/ml	

kanamycin	(fixed	polyculture).	Plates	were	incubated	overnight	at	30°C	then	1	ml	M9	

media	was	added	to	plates	and	colonies	were	disrupted	using	a	spreader.	100	μl	was	

transferred	to	a	microplate	and	cells	were	pelleted	by	centrifugation,	then	washed	

and	 suspended	 in	 M9	 media.	 Dynamic	 communities	 and	 monocultures	 were	

inoculated	with	60	µl	of	these	cultures.	Fixed	communities	were	inoculated	with	10	

µl	of	the	evolved	focal	species	population	and	10	µl	of	each	additional	species	grown	

overnight	in	nutrient	broth	from	ancestral	glycerol	stocks	and	diluted	to	106	cells/ml.		

5.3.3 Relative	fitness	assays	

To	measure	the	fitness	of	the	focal	species	relative	to	the	ancestral	community	we	

inoculated	microcosms	with	10	μl	of	the	community	of	additional	species	(106	cfu/ml)	

grown	 from	 ancestral	 glycerol	 stocks	 and	 10	 μl	 of	 the	 ancestral,	 monoculture	

evolved,	coevolved	or	evolved	focal	species	population.	Cultures	were	grown	for	6	

days	at	30°C,	150rpm.	Cultures	were	serially	diluted	and	plated	onto	nutrient	agar	to	

count	the	total	community	density	and	nutrient	agar	containing	50	μg/ml	kanamycin	

to	count	the	focal	species	density	at	the	beginning	of	the	experiment	and	after	6	days	

of	incubation.		Relative	fitness	(w)	was	calculated	as	w	=	x2(1-x1)/	x1(1-x2)	where	x1	is	

the	proportion	of	focal	species	in	the	community	at	the	start	of	the	experiment	and	

x2	is	the	final	proportion	of	focal	species	(Ross-Gillespie	et	al.,	2007).	Relative	fitness	

was	 standardised	 to	 the	 relative	 fitness	 of	 the	 ancestor	 to	 control	 for	 variation	
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between	starting	replicates	and	one-tailed	t-tests	were	used	to	test	for	significant	

differences	 between	 the	 relative	 fitness	 of	 the	 evolved	 and	 the	 ancestral	

populations.	

5.3.4 Activity	assays	

To	quantify	the	functional	traits	of	the	ancestral	and	evolved	Stenotrophomonas	sp.	

D12	populations,	growth	assays	were	performed	on	several	polysaccharides	present	

in	lignocellulose	as	described	in	Chapter	3.	Hemicellulose	substrates	included	xylan	

(Sigma-Aldrich),	arabinoxylan	(P-WAXYL,	Megazyme)	and	galactomannan	(P-GALML,	

Megazyme);	 cellulose	 substrates	 included	 β-glucan	 (P-BGBL,	 Megazyme)	 and	

Whatman	 filter	 paper;	 additional	 substrates	 included	 pectin	 (Sigma-Aldrich)	 and	

Kraft	lignin	(Sigma-Aldrich).	Ancestral	Stenotrophomonas	sp.	D12	strains	were	grown	

from	 glycerol	 stocks	 overnight	 in	 nutrient	 broth	 at	 30°C,	 150	 rpm.	 Cultures	were	

harvested	by	centrifugation,	washed	and	suspended	in	M9	minimal	media	and	left	at	

room	temperature	for	2	hours	to	metabolise	remaining	nutrients.	Communities	from	

transfers	4,	8,	12	and	16	were	diluted	to	10-5	and	100	µl	was	spread	onto	nutrient	

agar	plates	with	50	µg/ml	kanamycin.	Plates	were	 incubated	at	30°C	 for	24	hours	

then	 1	 ml	 M9	 media	 was	 added	 to	 plates	 and	 colonies	 were	 disrupted	 with	 a	

spreader.	100	µl	of	culture	was	added	to	900	µl	M9	minimal	media	and	cells	were	

harvested	by	centrifugation,	washed	and	suspended	in	1ml	M9	minimal	media	then	

left	for	2	hours	at	room	temperature	to	metabolise	remaining	nutrients.	All	cultures	

were	standardised	to	an	OD600	of	0.1	and	5	µl	of	culture	was	used	to	inoculate	495	µl	

of	M9	minimal	media	with	0.2%	(w/v)	of	each	carbon	source	or	one	6mm	sterile	filter	

paper	disc	in	96-well	deepwell	plates.	Cultures	were	grown	for	5	days	at	30°C	and	the	

MicroResp	system	was	used	to	measure	culture	respiration	as	described	in	Chapter	

3.	

5.3.5 Amplicon	sequencing	

To	confirm	the	presence	of	each	species	in	the	coevolved	polycultures	and	quantify	

their	relative	abundances	over	time	we	 isolated	total	genomic	DNA	from	dynamic	

polycultures	from	every	fourth	transfer	using	Qiagen	DNeasy	Blood	and	Tissue	kits	

following	the	protocol	for	Gram-positive	bacteria.	16S-EZ	amplicon	sequencing	of	the	
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V3	 and	V4	 hypervariable	 regions	 of	 the	 16S	 rRNA	 gene	 and	 all	 data	 analysis	was	

performed	by	Genewiz	(New	Jersey,	USA).	Briefly,	the	V3/V4	regions	were	amplified	

by	PCR	and	sequenced	using	the	Illumina	platform	with	2x250	bp	paired	end	reads.	

Raw	 reads	were	optimised	by	 assembling	 read	pairs	 and	 removing	undetermined	

bases	and	primer	and	adapter	sequences.	Chimera	sequences	were	also	removed.	

Qiime	was	used	 to	assemble	 reads	 into	OTU	clusters	 (similarity	=	97%)	and	 these	

were	identified	and	relative	abundance	was	calculated.	

5.3.6 Statistical	analysis	

Phenotypic	 diversification	 from	 the	 ancestor	was	 quantified	 using	 the	Bray-Curtis	

dissimilarity	(BCD).	BCD	between	the	evolved	populations	and	the	centroid	of	each	

treatment	was	used	to	quantify	within	treatment	divergence.	Linear	mixed	effects	

models	were	used	to	test	for	differences	in	phenotypic	divergence	from	the	ancestor	

and	within	 treatments.	Analysis	 of	 variance	 (ANOVA)	 followed	by	post	 hoc	 Tukey	

tests	were	used	to	test	for	differences	between	the	BCD	of	the	evolved	populations	

at	 each	 transfer.	 To	 assess	whether	 phenotypic	 traits	 or	 community	 composition	

varied	 between	 treatments	 or	 polycultures	 we	 conducted	 permutational	

multivariate	analysis	of	variance	(MANOVA)	with	999	permutations	using	the	‘adonis’	

function	 in	 the	 vegan	 package	 in	 r	 (Oksanen	 et	 al.,	 2018).	 Post	 hoc	 pairwise	

comparisons	 of	 the	 results	 were	 conducted	 using	 the	 pairwise.perm.manova	

function	from	the	RVAideMemoire	package	(Hervé,	2018).	Linear	models	were	used	

to	 compare	 phenotypic	 divergence	 between	 the	 focal	 species	 populations	 and	

community	composition	for	the	dynamic	polycultures.		

	

5.4 Results	

5.4.1 Abiotic	and	biotic	adaptation	of	the	evolved	focal	species	populations	

We	first	compared	the	growth	performance	of	the	evolved	focal	species	populations	

when	grown	autonomously	on	wheat	 straw.	 Focal	 species	populations	evolved	 in	

fixed	or	dynamic	polycultures	had	lower	autonomous	growth	on	wheat	straw	than	

focal	species	populations	that	had	evolved	in	monoculture	(t(5)	=	-2.6,	P	=	0.05	and	

t(5)	=	-3.7,	P	<	0.05,	respectively),	and	moreover	had	declined	in	autonomous	growth	
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compared	to	the	ancestor	(t(5)	=	-4.0,	P	<	0.05	and	t(5)	=	-4.9,	P	<	0.01,	respectively,	

Figure	5.1a).	This	suggests	that	polyculture-adapted	populations	did	not	adapt	to	the	

abiotic	environment.	This	 lack	of	abiotic	adaptation	 could	have	been	caused	by	a	

trade-off	 with	 biotic	 adaptation,	 potentially	 due	 to	 the	 evolution	 of	 metabolic	

dependencies	upon	other	species	in	the	polyculture.	Such	metabolic	dependencies	

could	allow	the	focal	species	to	exploit	the	products	of	the	metabolism	of	competing	

species,	 increasing	 the	 fitness	 of	 the	 focal	 species	 in	 competition	 with	 the	

polyculture.	 To	 test	 this,	 we	 next	 directly	 competed	 the	 evolved	 focal	 species	

populations	 from	 the	 end	 of	 the	 experiment	 against	 the	 ancestral	 polyculture	

community	 on	 wheat	 straw.	 The	 focal	 species	 populations	 evolved	 in	 fixed	

polyculture	had	evolved	higher	fitness	against	the	ancestral	polyculture	than	those	

evolved	in	dynamic	polyculture	(t(5)	=	4.0,	P	<	0.05)	or	those	evolved	in	monoculture	

(t(5)	=	6.4,	P	<	0.01),	neither	of	which	showed	fitness	significantly	different	to	the	

ancestor	(t(5)	=	0.36,	P	>	0.05	and	t(5)	=	-2.6,	P	>	0.05,	respectively,	Figure	5.1b).	This	

suggests	 that	 biotic	 adaptation	 of	 the	 focal	 species	 populations	 evolved	 in	 fixed	

polyculture	had	evolved	to	exploit	metabolites	produced	by	the	other	species	in	the	

ancestral	polyculture.	In	contrast,	this	outcome	was	prevented	where	the	polyculture	

community	 was	 absent	 or	 where	 it	 was	 able	 to	make	 ecological	 or	 evolutionary	

responses.	Taken	together	these	data	are	consistent	with	the	existence	of	a	trade-

off	between	biotic	and	abiotic	adaptation	but	suggest	that	neither	biotic	nor	abiotic	

adaptation	was	achieved	by	the	focal	species	when	evolving	in	dynamic	polyculture.	

	

	

Figure	5.1	(a)	Density	of	the	evolved	focal	species	populations	when	grown	in	monoculture	relative	to	
ancestral	 density	 (y	 =	 1).	 (b)	 Relative	 fitness	 of	 evolved	 focal	 species	 populations	when	 grown	 in	
polyculture	with	the	ancestral	community	presented	relative	to	the	fitness	of	the	ancestor	(y	=	1).		
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5.4.2 Evolution	of	the	focal	species’	multivariate	metabolic	phenotype	

To	estimate	how	the	rate	and	trajectory	of	evolution	varied	between	treatments	and	

the	extent	of	phenotypic	diversification	between	evolved	replicate	populations,	we	

quantified	multivariate	metabolic	phenotypes	for	each	focal	species	population	over	

time.	Specifically,	the	performance	of	each	focal	species	population	was	quantified	

on	 seven	 components	 of	 lignocellulose	 at	 every	 fourth	 transfer.	 Phenotypic	

divergence	 from	 the	 ancestor	was	 quantified	 using	 Bray-Curtis	 dissimilarity	 (BCD)	

which	gives	an	estimate	of	the	rate	of	evolution	in	each	population.	Divergence	from	

the	ancestor	increased	over	time	and	occurred	at	different	rates	between	treatments	

(linear	mixed	effects	model,	treatment	by	time	interaction,	F1,51	=	6.6,	P	<	0.01).	The	

focal	species	populations	that	had	evolved	in	the	polyculture	treatments	displayed	

higher	rates	of	phenotypic	evolution	than	the	populations	evolved	in	monoculture	

suggesting	 that	 biotic	 interactions	 increased	 the	 rate	 of	 evolutionary	 divergence	

from	the	ancestral	metabolic	phenotype	in	the	focal	species	(Figure	5.2,	BCD	from	

ancestor	represents	distance	between	evolved	population	points	and	ancestral	point	

in	grey).	

	
Figure	 5.2	 Trajectory	 of	 evolution	 of	 multivariate	 phenotypic	 traits.	 Points	 indicate	 mean	 PCoA	
coordinates	of	six	replicate	populations	with	error	bars	indicating	standard	error	at	each	time	point.	
Larger	 error	 bars	 indicate	 greater	 phenotypic	 divergence	within	 treatments.	 Arrows	 join	 points	 in	
sequential	order,	 i.e.	 transfers	4,	8,	12	and	16.	Starting	point	 (grey)	 indicates	ancestral	phenotypic	
traits.	Increase	in	principal	coordinate	1	indicates	increased	ability	to	utilise	arabinoxylan,	xylan	and	
pectin	while	increase	in	principal	coordinate	2	indicates	an	increased	ability	to	utilise	filter	paper,	β-
glucan	and	lignin.	
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The	trajectory	of	evolution	of	the	focal	species’	metabolic	phenotype	varied	between	

treatments	 and	 diverged	 over	 time	 (permutational	MANOVA,	 treatment	 by	 time	

interaction	 F6,55	 =	 5.0,	 P	 <	 0.001,	 Figure	 5.2).	 The	 focal	 species	 populations	 that	

evolved	in	the	polyculture	treatments	followed	similar	evolutionary	trajectories	up	

to	transfer	8,	increasing	their	productivity	on	xylan,	arabinoxylan	and	pectin.	These	

substrates	are	protected	from	saccharification	by	lignin	but	once	liberated	are	the	

more	 readily	 digestible,	 or	 labile,	 components	 of	 lignocellulose.	 By	 contrast,	

thereafter,	 whereas	 the	 focal	 species	 populations	 that	 had	 evolved	 in	 fixed	

polyculture	 continued	 to	adapt	 to	better	exploit	 these	 labile	 substrates,	 the	 focal	

species	populations	that	had	evolved	in	dynamic	polyculture	instead	switched	from	

labile	substrates	to	increase	their	productivity	on	the	more	recalcitrant	substrates	(β-

glucan,	filter	paper	and	lignin)	by	transfer	16.	Notably,	the	extent	of	this	change	in	

evolutionary	 trajectory	 varied	 among	 replicate	 populations	 and	 we	 therefore	

observed	greater	diversification	between	replicate	focal	species	populations	evolved	

in	dynamic	polyculture	 than	 those	evolved	 in	 fixed	polyculture	or	 in	monoculture	

(linear	mixed	 effects	model,	 treatment	 by	 time	 interaction	 F3,68	 =	 6.5,	P	 <	 0.001,	

Figure	5.2,	within	treatment	diversification	represented	by	error	bars).	This	suggests	

that	biotic	interactions	per	se	potentiated	the	specialisation	of	the	focal	species	on	

labile	substrates,	presumably	because	these	were	liberated	from	wheat	straw	by	the	

action	of	one	or	more	of	the	additional	polyculture	species.	However,	in	the	dynamic	

polyculture,	 ecological	 or	 evolutionary	 responses	 by	 the	 polyculture	 community	

appear	 to	 have	 favoured	 alternate	 evolutionary	 trajectories	 between	 replicate	

populations,	 leading	 to	 greater	 diversification	 and	 enhanced	 utilisation	 of	 more	

recalcitrant	substrates	by	the	focal	species.		

5.4.3 Species	sorting	in	dynamic	polycultures	

Diversification	between	replicate	populations	in	the	dynamic	polyculture	treatment	

could	have	been	driven	by	changes	in	community	composition	(species	sorting)	or	

evolution	of	the	non-focal	competing	species.	To	estimate	the	contribution	of	species	

sorting	we	quantified	the	relative	abundance	of	the	species	every	fourth	transfer	in	

each	community	from	the	dynamic	polyculture	treatment	by	amplicon	sequencing	of	
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the	16S	rRNA	gene.	Community	composition	varied	between	replicates:	all	six	species	

coexisted	throughout	the	experiment	in	four	of	the	six	replicates,	whereas	at	transfer	

16	 replicate	 38A	 had	 lost	 Paenibacillus	 sp.	 A8,	 Microbacterium	 sp.	 D14B	 and	

Rhodococcus	sp.	E31	and	replicate	39A	had	lost	Cellulomonas	sp.	D13	(Figure	5.3a).	

Using	 the	 relative	 abundance	 data,	 we	 next	 calculated	 the	 BCD	 for	 community	

composition	 and	 tested	whether	 this	 explained	 variation	 in	metabolic	 phenotype	

between	the	replicate	focal	species	populations	that	had	evolved	embedded	in	these	

communities.	The	effect	of	community	composition	on	the	metabolic	phenotype	of	

the	 focal	 species	 strengthened	 over	 time	 (community	 composition	 x	 transfer	

interaction;	F1,87	=	6.4,	P	<	0.05,	Figure	5.3b),	such	that	there	was	a	significant	positive	

relationship	between	functional	metabolic	divergence	and	community	compositional	

divergence	only	at	transfer	16	(F1,	28	=	8.2,	P	<	0.01,	R2	=	0.20,	purple	line	Figure	5.3b).	

At	 transfer	 16,	 the	 replicates	 formed	 2	 clusters	 with	 distinct	 community	

compositions.	The	first	cluster	was	formed	of	the	dynamic	polycultures	37A	and	38A	

which	were	 dominated	 by	 the	 focal	 species,	 Stenotrophomonas	 sp.	 D12	 (relative	

abundance	of	94%	and	97%	respectively),	but	also	contained	Cellulomonas	sp.	D13	

at	relative	abundances	of	2-3%.	These	focal	species	populations	followed	a	similar	

evolutionary	trajectory	with	increased	utilisation	of	the	labile	substrates	at	transfer	

4	followed	by	a	decrease	 in	productivity	on	these	substrates.	However,	unlike	the	

other	 four	 populations	 evolved	 in	 dynamic	 polyculture	 which	 form	 the	 second	

cluster,	the	focal	species	in	polycultures	37A	and	38A	showed	only	a	small	increase	

in	productivity	on	lignin	and	filter	paper	relative	to	the	ancestor	at	transfers	12	and	

16.	The	key	difference	in	community	composition	between	the	two	clusters	appears	

to	 have	 been	 that	 whereas	 37A	 and	 38A	 were	 dominated	 by	 the	 focal	 species	

Stenotrophomonas	 sp.	 D12	 after	 transfer	 8,	 the	 other	 coevolved	 polycultures	

retained	relatively	higher	abundances	of	other	species.	In	particular,	all	4	replicates	

in	cluster	2	had	high	relative	abundance	of	Bacillus	sp.	D26,	whilst	replicates	40A,	

41A	and	42A	also	contained	appreciable	relative	abundances	of	Microbacterium	sp.	

D14B	 and	 Paenibacillus	 sp.	 A8.	 Furthermore,	 replicates	 37A	 and	 38A	maintained	

higher	relative	abundances	of	Cellulomonas	sp.	D13	(2-3%)	compared	to	the	other	4	

replicates	 in	 the	 second	 cluster	 where	 this	 species	 declined	 to	 very	 low	 relative	

abundance	(<0.05%).	Our	results	indicate	that	species	sorting	significantly	influenced	
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the	 evolutionary	 trajectory	 of	 the	 focal	 species	 populations	 in	 the	 dynamic	

polyculture	 treatment,	 and	 that	 this	effect	 strengthened	over	 time	as	 community	

composition	diverged	between	replicates.	

	

a	

	
	 											T4		T8		T12	T16		T4		T8		T12	T16		T4		T8		T12	T16	
b	

	

Figure	 5.3	 (a)	 Relative	 abundance	 of	 the	 six	 species	 in	 dynamic	 polycultures	 at	 transfer	 16.	 (b)	
Relationship	 between	 phenotypic	 BCD	 and	 community	 composition	 BCD	 between	 replicate	
populations	 at	 transfers	 4,	 8,	 12	 and	 16.	 Black	 line	 shows	 linear	 regression	 for	 full	 data	 set	while	
coloured	lines	show	linear	regression	of	data	points	from	each	transfer.	
	

5.4.4 Evolution	of	functional	traits	in	coculture	

To	determine	whether	the	different	competitor	species	drove	distinct	evolutionary	

trajectories	 of	 the	 focal	 species’	 metabolic	 phenotype,	 and	 the	 contribution	 of	

competitor	species	evolution	to	this,	we	also	evolved	the	focal	species	with	each	of	

the	constituent	species	in	fixed	or	dynamic	coculture.	The	metabolic	phenotype	of	

the	focal	species	evolved	over	time	with	the	trajectory	of	evolution	depending	on	the	
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identity	of	the	competitor	species	and	whether	the	competitor	was	 itself	evolving	

(permutational	MANOVA,	coculture	by	fixed/dynamic	by	time	 interaction,	F30,200	=	

6.5,	 P	 <	 0.001,	 Figure	 5.4).	 Four	 out	 of	 five	 competitor	 species	 drove	 increased	

utilisation	of	 recalcitrant	 substrates	by	 the	 focal	 species,	whereas	one	competitor	

species	 drove	 increased	 utilisation	 of	 labile	 substrates	 by	 the	 focal	 species.	

Specifically,	focal	species	populations	evolved	with	Bacillus	sp.	D26	or	Cellulomonas	

sp.	D13	increased	their	utilisation	of	lignin	while	focal	species	populations	evolved	

with	Rhodococcus	 sp.	 E31	 or	Paenibacillus	 sp.	 A8	 increased	 their	 utilisation	 of	 β-

glucan	 and	 filter	 paper,	 respectively.	 In	 contrast,	Microbacterium	 sp.	 D14B	 drove	

large	increases	in	utilisation	of	xylan	(8	to	9-fold	increase	relative	to	ancestor)	and	

arabinoxylan	(5	to	6-fold	increase	relative	to	ancestor)	by	the	focal	species	while	the	

other	competitor	species	drove	less	than	a	4-fold	or	2-fold	increase	in	utilisation	by	

the	focal	species	of	these	substrates,	respectively.		

	

	
Figure	5.4	Evolutionary	trajectory	of	focal	species	phenotypic	traits	when	evolved	in	dynamic	and	fixed	
cocultures.	An	Increase	in	PCo1	indicates	an	increased	ability	to	utilise	arabinoxylan,	xylan	and	pectin	
(labile	substrates)	while	a	decrease	in	PCo2	indicates	increased	ability	to	utilise	recalcitrant	substrates	
lignin,	filter	paper	and	β-glucan.	
	

Significant	 effects	 of	 competitor	 evolution	 on	 the	 evolutionary	 trajectory	 of	

metabolic	phenotype	of	the	focal	species	were	observed	when	the	focal	species	was	

cocultured	 with	 Bacillus	 sp.	 D26	 (main	 effect	 of	 fixed/dynamic;	 permutational	
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MANOVA,	F1,40	=	4.1,	P	<	0.05),	Rhodococcus	sp.	E31	(main	effect	of	fixed/dynamic;	

permutational	MANOVA,	F1,40	=	3.1,	P	<	0.05),	Paenibacillus	sp.	A8	(fixed/dynamic	by	

time	interaction;	permutational	MANOVA,	F3,40	=	4.0,	P	<	0.01)	or	Microbacterium	sp.	

D14B	(fixed/dynamic	by	time	interaction;	permutational	MANOVA	F3,40	=	3.6,	P	<	0.01	

respectively).	 Relative	 to	 the	 evolutionary	 trajectories	 driven	 by	 non-evolving	

competitors:	the	evolution	of	Bacillus	sp.	D26	inhibited	focal	species	adaptation	to	

utilise	 labile	 substrates;	 the	 evolution	 of	 Rhodococcus	 sp.	 E31	 drove	 greater	

adaptation	of	the	focal	species	to	utilise	both	labile	and	recalcitrant	substrates;	the	

evolution	of	Paenibacillus	 sp.	 A8	drove	 greater	 focal	 species	 adaptation	 to	 utilise	

both	labile	and	recalcitrant	substrates	at	transfers	four	and	eight;	while	the	evolution	

of	Microbacterium	sp.	D14B	delayed	adaptation	of	 the	 focal	 species	 to	utilise	 the	

labile	substrates.	

	

These	 data	 suggest	 that	 the	 observed	 differences	 in	 the	 relative	 abundance	 of	

competitor	 species	 in	 the	 dynamic	 polycultures	 is	 likely	 to	 have	 driven	 divergent	

evolutionary	trajectories	of	the	focal	species	populations.	Specifically,	higher	relative	

abundance	of	Bacillus	sp.	D26	and	Paenibacillus	sp.	A8	in	the	dynamic	polycultures	

40A,	41A	and	42A	at	 transfers	12	and	16	 is	 likely	 to	have	driven	the	 focal	species	

adaptation	to	utilise	recalcitrant	substrates.	Similarly,	while	the	dynamic	polyculture	

39A	had	a	low	abundance	of	these	species	at	transfer	12	(relative	abundance	of	all	

three	<0.5%),	reinvasion	of	the	community	by	Bacillus	sp.	D26	by	transfer	16	may	

have	 driven	 the	 observed	 focal	 species	 adaptation	 to	 better	 utilise	 recalcitrant	

substrates.	In	contrast,	the	dynamic	polycultures	where	these	species	were	at	low	

abundance	 after	 transfer	 eight,	 37A	 and	 38A,	 followed	 an	 alternate	 evolutionary	

trajectory	specialising	on	 labile	 substrates.	Competitor	evolution,	especially	 in	 the	

case	 of	 Bacillus	 sp.	 D26,	 appears	 to	 reinforce	 the	 adaptive	 trajectory	 towards	

improved	utilisation	by	the	focal	species	of	recalcitrant	substrates.	It	is	notable	that	

in	 three	 of	 the	 four	 coevolved	 polycultures	 where	 the	 focal	 species	 adapted	 to	

recalcitrant	substrates,	Bacillus	sp.	D26	reinvades	the	community	after	falling	to	low	

relative	abundance,	suggesting	that	adaptive	evolution	of	Bacillus	sp.	D26	could	be	

playing	 an	 important	 role	 in	 determining	 the	 evolutionary	 trajectory	 of	 the	 focal	

species	in	these	dynamic	polycultures.	
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5.5 Discussion	
Microbial	 communities	 are	 diverse	 and	 dynamic,	 with	 each	 constituent	 species	

engaged	in	a	complex	network	of	ecological	interactions.	By	tracking	the	evolution	

of	a	focal	bacterium	embedded	within	a	multispecies	bacterial	community	we	show	

that	both	the	rate	and	trajectory	of	focal	species	evolution	is	shaped	by	the	ecological	

and	evolutionary	responses	of	the	competing	community.	Evolving	in	a	competitive	

community	 increased	 the	 rate	 of	 phenotypic	 evolution	 of	 the	 focal	 species	 but	

prevented	its	adaptation	to	the	abiotic	environment	relative	to	monoculture	control	

populations,	 suggesting	 a	 trade-off	 with	 abiotic	 adaptation.	 Eco-evolutionary	

responses	by	the	competing	community	changed	the	evolutionary	trajectory	of	the	

focal	species,	leading	to	increased	utilisation	of	recalcitrant	substrates	when	evolved	

in	dynamic	polycultures	in	contrast	to	improved	utilisation	of	labile	substrates	when	

evolved	 in	 fixed	 polycultures.	 Consequently,	 only	 those	 focal	 species	 populations	

evolved	in	fixed	polyculture	adapted	to	the	ancestral	biotic	environment,	evolving	to	

outcompete	 the	 ancestral	 polyculture,	 presumably	 by	 exploiting	 the	 metabolic	

activities	 of	 competitors	 that	 would	 have	 been	 required	 to	 liberate	 these	 labile	

substrates	 from	 lignocellulose.	 The	 combined	 effects	 of	 species	 sorting	 and	

competitor	 evolutionary	 responses	 increased	 evolutionary	 divergence	 of	 focal	

species	 metabolic	 phenotype	 between	 replicate	 populations	 evolved	 in	 dynamic	

polyculture,	suggesting	that	eco-evolutionary	dynamics	in	competitive	communities	

make	the	outcome	of	evolution	less	predictable.	

	

Previous	 studies	 suggest	 that	 species	 interactions	 can	 either	 promote	 or	 limit	

evolution	depending	on	 the	nature	of	 the	ecological	 interaction.	Competition	 can	

reduce	the	rate	of	evolution	of	a	species	by	reducing	its	abundance	and	therefore	

the	limiting	supply	of	genetic	variation	for	natural	selection	to	act	upon	(Barraclough,	

2015;	Johansson,	2008).	Alternatively,	the	presence	of	biotic	selection	pressures	may	

enhance	 the	 rate	 of	 evolution	 and	 alter	 the	 evolutionary	 trajectory	 of	 species	 by	

altering	 the	 ecological	 opportunities	 available	 to	 the	 focal	 species	 or	 by	

strengthening	selection	(Barraclough,	2015;	Osmond	and	de	Mazancourt,	2013).	In	
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common	with	 several	 other	 studies	 (Fiegna	et	 al.,	 2015a,	 2015b;	 Lawrence	et	 al.,	

2012)	we	report	that	biotic	interactions	accelerated	phenotypic	evolution	relative	to	

monoculture	controls.	This	suggests	that	competition	with	a	multispecies	community	

strengthened	selection	upon	the	metabolic	phenotype	of	the	focal	species	relative	

to	 abiotic	 selection	 alone.	 In	 contrast	 to	 other	 studies	 (Lawrence	 et	 al.,	 2012),	

monocultures	 here	 showed	 no	 improvement	 relative	 to	 the	 ancestor	 in	 their	

autonomous	 growth	 performance	 on	 wheat	 straw,	 perhaps	 due	 to	 this	 solid	

substrate	 being	 inherently	 more	 challenging	 for	 single	 species	 to	 metabolise	

compared	to	a	liquid	medium.	However,	while	the	monoculture	evolved	populations	

showed	no	improvement	in	their	autonomous	growth	on	wheat	straw	they	did	not	

lose	 adaptation	 to	 this	 abiotic	 environment	 unlike	 the	 polyculture	 evolved	

populations.	This	loss	of	abiotic	adaptation	when	evolved	in	polyculture	suggests	a	

trade-off	between	biotic	and	abiotic	adaptation.		

	

When	 evolved	 in	 a	 fixed	 polyculture,	 the	 focal	 species	 evolved	 increased	 fitness	

against	 the	ancestral	polyculture	community.	Functional	 trait	assays	revealed	that	

these	populations	evolved	to	better	utilise	xylan	and	arabinoxylan,	the	hemicellulosic	

components	 of	 lignocellulose.	 In	 the	 native	 lignocellulose	 structure	 these	

components	are	protected	from	enzymatic	hydrolysis	by	lignin	and	depolymerisation	

of	lignin	is	required	to	allow	efficient	degradation	(Chen	and	Dixon,	2007;	Ding	et	al.,	

2012;	Zhao	et	al.,	2012).	Taken	together	these	findings	suggest	that	the	metabolic	

activities	of	other	species	 in	the	fixed	polyculture	 liberated	these	 labile	substrates	

allowing	 the	 focal	 species	 to	 exploit	 them	 and	 adapt	 to	 improve	 its	 utilisation	 of	

them.	Our	co-culture	experiments	suggest	that	Microbacterium	sp.	D14B	may	have	

played	a	particularly	important	role	in	driving	this	evolutionary	trajectory,	since	only	

those	focal	species	populations	evolved	in	co-culture	with	Microbacterium	sp.	D14B	

increased	their	utilisation	of	these	hemicellulosic	components	of	lignocellulose.	To	

liberate	 these	 requires	 breakdown	 of	 lignin,	 and	 in	 common	 with	 other	

Microbacterium	 species	 (Li	et	al.,	2005;	Taylor	et	al.,	2012;	Wang	et	al.,	2013)	we	

have	previously	shown	that	this	isolate	has	the	ability	to	depolymerise	lignin	(Evans	

et	al.,	2017).		
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In	 contrast	 to	 the	 focal	 species	 populations	 evolved	 in	 fixed	 polyculture,	 those	

evolved	in	dynamic	polyculture	showed	no	fitness	gains	in	competition	against	the	

ancestral	polyculture	community	despite	extensive	evolutionary	divergence	of	their	

metabolic	 phenotype.	 This	 is	 consistent	 with	 the	 Red	 Queen	 hypothesis	 which	

predicts	 continual	 evolution	without	 concomitant	 increases	 in	 competitive	 fitness	

(Brockhurst	 et	 al.,	 2014).	 Increased	 fitness	 in	 competition	 with	 the	 ancestral	

community	was	associated	with	 improved	exploitation	of	 labile	substrates	 in	focal	

species	 populations	 evolved	 in	 fixed	 polycultures.	 In	 contrast,	while	 focal	 species	

populations	 evolved	 in	 dynamic	 polyculture	 improved	 in	 their	 utilisation	 of	 labile	

substrates	 to	begin	with,	 these	populations	 later	 switched	evolutionary	 trajectory	

towards	 improved	 utilisation	 the	 recalcitrant	 substrates	 (i.e.	 cellulose	 and	 lignin).	

This	suggests	that	eco-evolutionary	responses	by	the	other	species	in	the	dynamic	

polyculture	prevented	focal	species	adaptation	to	exploit	labile	substrates.	The	labile	

substrates	are	likely	to	represent	the	most	favoured	and	productive	ecological	niche	

in	 a	 lignocellulose	 degrading	 community	 because	 these	 substrates	 require	 less	

energy	to	degrade	than	the	more	recalcitrant	cellulose	(Gupta	et	al.,	2012).	In	fixed	

polycultures	 the	 lack	of	eco-evolutionary	response	by	the	community	allowed	the	

focal	species	to	adapt	to	the	labile	substrate	niche	and	outcompete	the	other	species.	

However,	in	the	dynamic	polycultures,	it	is	likely	that	adaptation	of	one	or	more	of	

the	other	species	to	occupy	this	niche	prevented	its	exploitation	by	the	focal	species	

driving	 niche	 differentiation	 towards	 improved	 utilisation	 of	 the	 recalcitrant	

substrates.	 Interestingly,	 Rivett	 et	 al.	 (2016)	 similarly	 found	 that	 during	 bacterial	

succession,	resource	use	switched	from	labile	substrates	during	early	succession	to	

recalcitrant	substrates	later	in	succession.	This	shift	in	resource	use	was	coupled	with	

a	reduction	in	the	strength	of	negative	interactions,	potentially	as	a	result	of	niche	

partitioning.	

	

We	 observed	 greater	 diversification	 in	metabolic	 phenotype	 among	 focal	 species	

populations	evolved	in	dynamic	polyculture	as	a	result	of	eco-evolutionary	changes	

by	 the	 other	 species	 in	 the	 competitive	 community.	 Specifically,	 dynamic	

polycultures	 formed	 two	 clusters	 that	 varied	 according	 to	 their	 community	

composition	at	the	end	of	the	experiment.	Where	these	were	dominated	by	the	focal	
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species	 we	 observed	 less	 evolution	 towards	 recalcitrant	 substrate	 use.	 Notably,	

these	communities	contained	higher	relative	abundances	of	Cellulomonas	 sp.	D13	

compared	to	other	replicates,	which	is	a	species	that	we	have	previously	shown	to	

be	highly	effective	at	degrading	lignocellulose	(Evans	et	al.,	2017).	S.	maltophilia	has	

previously	 been	 shown	 to	 dominate	 a	 five	 species	 lignocellulose	 degrading	

community	 after	 96	 hours	 growth	 without	 significantly	 contributing	 to	 enzyme	

production	 (Jiménez	et	al.,	2018a)	by	exploiting	monosaccharides	 released	by	 the	

enzymatic	activity	of	other	species.	 It	may	be	the	case	that	 in	these	two	replicate	

communities,	selection	on	the	focal	species	to	adapt	to	utilise	recalcitrant	substrates	

was	weaker	due	to	the	high	effectiveness	of	Cellulomonas	sp.	D13	in	lignocellulose	

metabolism.	The	four	other	dynamic	polyculture	communities	were	dominated	by	

both	the	 focal	species	and	Bacillus	 sp.	D26	at	 the	end	of	 the	experiment	and	had	

higher	relative	abundances	of	Paenibacillus	sp.	A8	and	Microbacterium	sp.	D14B.	The	

focal	species	populations	from	these	replicates	evolved	to	better	utilise	recalcitrant	

substrates	(cellulose	and	lignin).	Our	co-culture	experiments	revealed	that	evolution	

in	coculture	with	Bacillus	sp.	D26	and	Paenibacillus	sp.	A8	led	to	improved	utilisation	

of	the	recalcitrant	substrates	by	the	focal	species,	suggesting	that	these	competitors	

played	 an	 important	 role	 in	 driving	 this	 evolutionary	 trajectory	 in	more	 complex	

communities.	Moreover,	the	reinvasion	by	Bacillus	sp.	D26	observed	in	3	dynamic	

polycultures	 coincided	 with	 the	 shift	 of	 the	 focal	 species	 evolutionary	 trajectory	

towards	the	recalcitrant	substrates,	suggesting	that	counter-adaptations	of	Bacillus	

sp.	D26	in	particular	favoured	improved	use	of	recalcitrant	substrates	by	the	focal	

species.		

	

The	majority	 of	 experimental	 evolution	 to	 date	 has	 focussed	 on	 the	 evolution	 of	

species	in	isolation.	Here	we	add	to	the	growing	body	of	evidence	showing	that	the	

rate	 and	 trajectory	 of	 evolution	 is	 influenced	 by	 interactions	 with	 other	 species	

(Barraclough,	 2015).	 We	 show	 that	 in	 communities,	 adaptation	 to	 the	 abiotic	

environment	is	 likely	to	be	constrained	due	to	trade-offs	with	adaptation	to	biotic	

selection.	Moreover,	adaptation	 to	 the	biotic	environment	 is	 likely	 to	be	counter-

acted	by	eco-evolutionary	responses	of	the	other	species	in	the	community.	These	

Red	Queen	evolutionary	dynamics	in	communities	lead	to	greater	divergence	among	
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populations	 and	 make	 their	 evolutionary	 trajectories	 less	 predictable.	 	 Natural	

microbial	 communities	 are	 much	 more	 complex	 than	 those	 studied	 here,	 and	 it	

remains	to	be	tested	whether	these	patterns	translate	to	even	more	diverse,	natural	

communities.	However	the	communities	studied	here	are	of	a	similar	complexity	to	

those	being	used	in	industrial	applications	(Cortes-Tolalpa	et	al.,	2016;	Jimenez	et	al.,	

2014)	suggesting	that	it	will	be	important	to	account	for	biotic	interactions	and	their	

eco-evolutionary	dynamics	when	selecting	microbial	 communities	 to	perform	bio-

industrial	functions.	
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6 Genetic	adaptation	of	Stenotrophomonas	sp.	D12	to	growth	on	
wheat	straw	involves	multiple	regulatory	pathways	

	

6.1 Abstract	
Experimental	evolution	combined	with	genome	sequencing	allows	the	genetic	basis	

of	 evolved	 phenotypes	 associated	with	 adaptation	 to	 be	 identified.	We	 obtained	

whole	genome	sequences	for	84	evolved	clones	of	Stenotrophomonas	sp.	D12	that	

had	been	experimentally	evolved	in	Chapter	5	on	wheat	straw	in	monoculture	or	in	

the	 presence	 of	 other	 competing	 species.	 Despite	 displaying	 higher	 rates	 and	

different	 trajectories	 of	 phenotypic	 evolution,	 focal	 species	 clones	 evolved	 in	 the	

presence	of	competing	species	did	not	differ	in	the	number	or	targets	of	mutations	

compared	to	clones	evolved	in	monoculture.	Instead,	we	identified	several	genetic	

loci	targeted	by	parallel	mutations	that	were	associated	with	adaptation	to	growth	

on	wheat	straw	per	se.	The	majority	of	parallel	mutations	were	in	regulatory	genes,	

including	 genes	 predicted	 to	 regulate	 catabolite	 repression	 suggesting	 the	 focal	

species	may	 have	 evolved	 to	 better	 exploit	 a	wider	 range	 of	 the	 carbon	 sources	

liberated	from	lignocellulose.	

	

6.2 Introduction	
The	 experimental	 evolution	 of	 microorganisms	 allows	 the	 identification	 of	 the	

strategies	 that	 species	 employ	 to	 adapt	 to	 their	 environment.	While	 traditionally	

these	studies	focussed	on	the	phenotypic	adaptations	of	species,	the	development	

of	 high-throughput	 and	 low-cost	 sequencing	 technologies	 now	 allow	 the	 genetic	

adaptations	 underlying	 these	 phenotypic	 changes	 to	 be	 uncovered	 (Barrick	 and	

Lenski,	2013;	Brockhurst	et	al.,	2011b;	Bruger	and	Marx,	2018;	Dettman	et	al.,	2012).	

The	ability	to	include	multiple	replicate	populations	allows	the	identification	of	genes	

mutated	in	several	replicate	populations,	i.e.	parallel	mutations.	The	probability	of	

these	parallel	mutations	occurring	by	chance	is	extremely	low	and	so	the	presence	

of	parallel	mutations	 is	usually	attributed	 to	natural	 selection	acting	on	a	 specific	

gene	(Bailey	et	al.,	2017).	
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One	area	where	experimental	evolution	is	being	used	to	uncover	genetic	responses	

is	the	adaptation	of	species	to	new	or	different	resource	environments.	A	common	

adaptive	 response	 to	 selection	 in	 a	 constant	 resource	 environment	 is	 the	 loss	 of	

metabolic	functions.	When	essential	metabolites	are	available	in	the	growth	media	

some	 bacterial	 species	 quickly	 lose	 the	 ability	 to	 synthesise	 these	 metabolites	

(Nilsson	 et	 al.,	 2005).	 Experimental	 evolution	 followed	 by	 genome	 sequencing	

revealed	parallel	mutations	 in	both	 regulatory	 and	 structural	 genes	 lead	 to	 these	

auxotrophic	phenotypes	in	E.	coli	mutants	(D’Souza	and	Kost,	2016).	Lee	and	Palsson	

(2010)	identified	four	nonsynonymous	mutations	which	allowed	E.	coli	K-12	MG1655	

to	utilise	the	novel	substrate	L-1,2-propanediol.	Two	of	the	four	mutations	occurred	

in	genes	directly	involved	in	L-1,2-propanediol	catabolism	while	the	remaining	two	

occurred	 in	 a	 hypothetical	 protein	 and	 the	 23S	 rRNA	 subunit.	 The	 ability	 of	

Shewanella	 oneidensis	 to	 catabolise	 the	 non-native	 substrate	 glucose	 has	 been	

shown	to	be	achieved	by	deletions	in	the	proximity	of	the	transcriptional	repressor	

nagR	(Chubiz	and	Marx,	2017).	

	

Adaptive	mutations	have	also	been	identified	which	allow	species	to	improve	existing	

metabolic	 traits.	Herring	et	 al.	 (2006)	 identified	parallel	mutations	 in	 three	 genes	

which	played	a	role	in	enhancing	E.	coli’s	ability	to	utilise	glycerol	as	a	substrate.	One	

of	 these	 genes	 was	 directly	 involved	 in	 glycerol	 catabolism	 while	 the	 other	 two	

affected	global	transcriptional	patterns.	A	similar	study	identified	the	genes	involved	

in	 efficient	 glycerol	 utilisation	 by	 Saccharomyces	 cerevisiae	 which	 were	 then	

introduced	into	an	industrial	strain	to	improve	efficiency	(Strucko	et	al.,	2018).	Two	

of	the	affected	genes	were	metabolic	proteins	while	two	were	global	signalling	or	

regulatory	proteins.	Perhaps	the	most	striking	example	of	 the	gain	of	a	metabolic	

function	 during	 experimental	 evolution	 is	 from	 long-term	 evolution	 experiment	

(LTEE)	where	Escherichia	coli	has	been	evolved	in	a	glucose	limited	medium	for	over	

69,000	generations	(Barrick	et	al.,	2009;	Good	et	al.,	2017).	Here,	1	of	the	12	replicate	

populations	 evolved	 the	 ability	 to	 utilise	 citrate	 after	 30,000	 generations	 even-

though	the	inability	to	metabolise	citrate	is	a	diagnostic	characteristic	of	the	species	

E.	coli	 (Blount	et	al.,	2008).	Genomic	analysis	revealed	that	the	emergence	of	this	

new	phenotypic	trait	relied	on	multiple	sequential	mutations	and	the	duplication	of	
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a	promoter	to	induce	expression	of	a	citrate	transporter	(Blount	et	al.,	2012).	While	

mutations	 in	genes	associated	with	metabolic	functions	are	often	clearly	 linked	to	

the	 evolved	 phenotype	 (Dettman	 et	 al.,	 2012),	 in	 some	 cases	 the	 way	 in	 which	

genetic	adaptations	cause	observed	changes	 in	phenotypic	changes	 is	not	 initially	

clear.	 For	 example,	 a	 mutation	 in	 the	 large	 subunit	 of	 carbamoyl-phosphate	

synthetase	(carB)	in	Pseudomonas	fluorescens	caused	colony-morphology	switching	

through	disruption	of	pyrimidine	biosynthesis	(Beaumont	et	al.,	2009;	Gallie	et	al.,	

2015)	 .	 Thus,	 evolutionary	 adaptation	 to	 simple	 environments	 can	 give	 rise	 to	

surprisingly	complex	innovations.		

	

Genomic	 analyses	 of	 experimentally	 evolved	 species	 have	 identified	mutations	 in	

both	structural	and	 regulatory	genes	 (as	per	examples	above)	and	several	 studies	

have	addressed	which	type	of	gene	is	most	commonly	targeted	by	natural	selection.	

The	evolution	of	auxotrophy	in	E.	coli	was	found	to	be	more	commonly	caused	by	

mutations	in	regulatory	genes	than	structural	genes,	which	was	hypothesised	to	be	

due	to	more	pervasive	negative	epistatic	among	structural	gene	mutations	(D’Souza	

and	Kost,	2016;	D’Souza	et	al.,	2015).	 It	has	been	suggested	that	the	type	of	gene	

targeted	by	adaptive	evolution	may	depend	on	the	environment	in	which	the	species	

has	evolved	 (Dettman	et	al.,	 2012).	 In	experiments	 conducted	 in	nutrient	 limiting	

environments,	such	as	where	E.	coli	and	S.	cerevisiae	were	adapted	to	better	utilise	

glycerol	 (Herring	et	al.,	2006;	Strucko	et	al.,	2018),	the	ancestral	genomes	already	

possessed	the	necessary	pathways	for	substrate	catabolism	and	so	mutations	in	the	

regulatory	genes	controlling	expression	of	these	pathways	alone	can	be	sufficient	to	

produce	a	fitness	advantage.	However,	adaptation	to	a	novel	substrate,	such	as	the	

emergence	of	citrate	utilisation	in	the	LTEE	(Blount	et	al.,	2008),	may	require	adaptive	

neo-functionalisation	of	structural	genes.		

	

Most	 experimental	 evolution	 studies	 focused	 on	 abiotic	 adaptation	 have	 been	

carried	out	under	conditions	where	a	single	species	was	propagated	alone	in	a	simple	

defined	environment.	The	effect	on	genome	evolution	of	more	complex	ecological	

settings	that	better	represent	the	conditions	experienced	by	microbes	in	nature	are	

rarely	 studied.	While	 several	 studies	 have	 observed	 the	 phenotypic	 evolutionary	
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responses	 of	 bacteria	 evolving	 in	 communities	 adapting	 to	 a	 complex	 natural	

resource	 (Fiegna	 et	 al.,	 2015a;	 Lawrence	 et	 al.,	 2012),	 the	 genetic	 bases	 of	 the	

observed	 adaptation	 have	 not	 been	 characterised.	Nevertheless,	 selection	 arising	

from	biotic	interactions	is	expected	to	alter	evolutionary	rates	and	trajectories,	giving	

rise	to	different	patterns	of	molecular	evolution.	For	example,	studies	of	bacteria-

phage	interactions	have	found	that	phage	genes	involved	in	host	infection	evolve	at	

a	higher	rate	in	the	presence	of	a	coevolving	bacterial	host	compared	to	a	fixed	host	

genotype	(Paterson	et	al.,	2010).	Similarly,	bacterial	hosts	that	coevolved	with	more	

diverse	phage	communities	showed	higher	rates	of	molecular	evolution	than	those	

coevolving	 with	 a	 single	 phage	 (Betts	 et	 al.,	 2018).	 Understanding	 the	 genomic	

response	 to	 selection	during	adaptation	 to	utilise	 complex	natural	 substrates	and	

how	community	context	affects	this	response	is	a	key	next	step.	

	

We	 previously	 evolved	 Stenotrophomonas	 sp.	 D12	 in	 environments	where	wheat	

straw	was	 the	sole	carbon	source,	either	with	or	without	competing	species,	 that	

were	either	fixed	or	dynamic	(i.e.	allowed	to	change	ecologically	or	evolutionarily).	

At	the	phenotypic	level,	interspecific	competition	increased	the	rate	of	evolution	of	

the	 Stenotrophomonas	metabolic	 phenotype,	while	 ecoevolutionary	 responses	 of	

the	 competing	 community	 drove	 greater	 diversification	between	populations	 and	

the	 different	 competing	 species	 drove	 different	 metabolic	 adaptations	 in	

Stenotrophomonas	 sp.	 D12.	 To	 understand	 the	 underlying	 genetic	 response	 to	

selection	and	how	 this	 varied	among	 treatments	we	obtained	 the	whole	genome	

sequence	 for	 an	 evolved	 clone	 from	 each	 replicate	 population.	 Specifically,	 we	

sequenced	 the	 genomes	 of	 84	 evolved	 clones,	 of	 which:	 12	 had	 evolved	 in	

monoculture,	60	had	evolved	in	coculture	together	with	one	of	Paenibacillus	sp.	A8,	

Cellulomonas	sp.	D13,	Microbacterium	sp.	D14B,	Bacillus	sp.	D26,	or	Rhodococcus	sp.	

E31,	and	12	had	evolved	in	polycultures	containing	all	species.	In	half	of	the	coculture	

and	polyculture	 replicates	 the	 competing	 species	 had	 been	 fixed	 (i.e.	 replaced	 at	

each	transfer	with	the	ancestral	genotype)	whereas	in	the	other	half	of	replicates	the	

competing	species	were	ecoevolutionarily	dynamic.	Surprisingly,	despite	the	higher	

rates	 of	 phenotypic	 evolution	 that	 were	 driven	 by	 interspecific	 competition,	 we	

observed	 no	 significant	 differences	 in	 either	 the	 number	 or	 targets	 of	mutations	
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between	monoculture,	coculture	or	polyculture	treatments.	This	suggests	that	the	

main	genetic	response	to	selection	was	associated	with	adaptation	to	wheat	straw.	

Consistent	with	this,	we	observed	parallel	mutations	in	a	number	of	genes	involved	

in	metabolism,	with	 the	 highest	 number	 of	 parallel	mutations	 occurring	 in	 genes	

controlling	catabolite	repression	(i.e.	the	preferential	use	of	glucose	as	a	substrate).		

	

6.3 Methods	

6.3.1 Genome	sequencing	ancestral	Stenotrophomonas	sp.	D12	

To	 identify	 mutations	 in	 the	 evolved	 Stenotrophomonas	 sp.	 D12	 clones,	 we	 first	

obtained	 the	 complete	 closed	 genome	 sequence	 of	 the	 ancestral	 strain.	 A	 single	

colony	was	resuspended	and	grown	overnight	 in	nutrient	broth	at	30°C	shaken	at	

150	 rpm.	 Cells	 were	 harvested,	 and	 genomic	 DNA	 was	 extracted	 using	 Qiagen	

Genomic	Tips	20G	following	the	manufacturer’s	instructions	(Qiagen	Genomic	DNA	

handbook,	2015).	The	genomic	DNA	was	sequenced	on	the	PacBio	Sequel	System	

(Pacific	 Biosciences)	 by	 NERC	 Biomolecular	 Analysis	 Facility	 at	 the	 University	 of	

Sheffield,	 and	on	 Illumina	MiSeq	by	MicrobesNG	at	 the	University	of	Birmingham	

(www.microbesng.com).	 PacBio	 sequencing	 produced	 377,905	 reads	 with	 an	

average	 length	 of	 5,597	 bp.	 Illumina	MiSeq	 sequencing	 produced	 337,653	 2x250	

paired-end	 reads	 with	 a	 median	 insert	 size	 of	 529	 bp	 representing	 59x	 genome	

coverage.	Canu	 (Koren	et	al.,	2017)	was	used	 for	de	novo	assembly	of	 the	PacBio	

reads	using	the	default	settings.	Following	correction	and	trimming,	334,634	reads	

with	 an	 average	 length	 of	 5,148	 bp	 representing	 370x	 genome	 coverage	 were	

assembled	into	two	contigs	with	a	total	length	of	4,682,283	bp.	Circlator	(Hunt	et	al.,	

2015)	 using	 the	 default	 settings	 combined	 these	 into	 a	 single	 contig	 which	 was	

polished	with	Pilon	(Walker	et	al.,	2014)	using	Illumina	Miseq	reads.	The	assembled	

genome	 was	 annotated	 using	 Prokka	 (Seemann,	 2014).	 The	 KEGG	 automated	

annotation	server	(KAAS)	(Moriya	et	al.,	2007)	and	InterPro	(Apweiler	et	al.,	2001)	

were	used	for	functional	annotation.	
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6.3.2 Genome	sequencing	evolved	clones	

A	single	clone	from	each	evolved	population	was	grown	overnight	in	nutrient	broth	

at	30°C	then	spread	onto	nutrient	agar	and	incubated	at	30°C	overnight.	Cells	were	

scraped	 from	 half	 the	 agar	 plate	 and	 transferred	 to	 bead	 tubes	 provided	 by	

MicrobesNG.	Tubes	were	then	sent	to	MicrobesNG	for	genomic	DNA	extraction	and	

genome	sequencing	on	Illumina	Miseq	using	2x250	paired	end	reads.	Forward	and	

reverse	reads	were	aligned	to	the	Prokka	annotated	reference	genome	and	variant	

were	called	using	breseq	with	default	settings	(Deatherage	and	Barrick,	2014).		

6.3.3 Statistical	analysis	

Analysis	 of	 variance	 (ANOVA)	 was	 used	 to	 compare	 the	 number	 of	 mutations	

between	different	evolutionary	treatments.	To	account	for	the	unbalanced	design,	

we	 used	 weighted	 means	 and	 Type	 I	 Sums	 of	 Squares.	 Diversity	 (monoculture,	

coculture,	 polyculture),	 community	 (each	 coculture	 and	 polyculture)	 and	 type	 of	

biotic	interaction	(dynamic,	fixed)	were	added	to	the	model	sequentially.	Altering	the	

order	 of	 factors	 did	 not	 alter	 the	 result	 of	 the	 ANOVA.	 Multivariate	 analysis	 of	

variance	(MANOVA)	was	used	to	compare	the	type	of	mutations	between	diversity,	

community	and	biotic	interaction	treatments.	Permutational	MANOVA	was	used	to	

test	 whether	 different	 community	 and	 biotic	 interaction	 treatments	 resulted	 in	

different	sets	of	mutated	genes.	Statistical	analyses	and	figures	were	generated	in	R	

version	3.5.1	(R	Core	Team,	2018)	using	the	vegan	(Oksanen	et	al.,	2018)	and	ggplot2	

(Wickham,	2016)	packages.	

	

6.4 Results	

6.4.1 Genome	sequence	of	Stenotrophomonas	sp.	D12	

The	genome	sequence	of	Stenotrophomonas	sp.	D12	consisted	of	a	single	circular	

chromosome	 4,659,921	 bp	 in	 size	 and	 with	 a	 GC	 content	 of	 66.2%.	 Annotation	

identified	4180	coding	sequences	(CDS)	with	13	rRNAs	and	78	tRNAs.	Whole	genome	

based	 average	 nucleotide	 identity	 (ANI)	 revealed	 87.2%	 similarity	 to	

Stenotrophomonas	maltophilia	K279a	and	98.4%	similarity	to	Stenotrophomonas	sp.	
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MYb57,	a	strain	isolated	from	the	microbiome	of	Caenorhabditis	elegans	(Zhang	et	

al.,	2017).		

6.4.2 Genetic	basis	of	Stenotrophomonas	sp.	D12	adaptation	to	wheat	straw	

Eleven	 of	 the	 84	 clones	 sequenced	 contained	 no	mutations.	 In	 the	 remaining	 73	

clones,	we	found	138	mutations	of	which	89.2%	were	in	coding	regions.	There	were	

82	non-synonymous	single-nucleotide	polymorphisms	(SNP),	24	synonymous	SNPs,	

and	17	 small	 insertions	 and	deletions.	 There	was	no	difference	 in	 the	number	of	

mutations	(ANOVA	with	total	number	of	mutations	as	the	dependent	variable:	main	

effects	of	diversity	F2,81	=	0.6,	P	>	0.05,	community	F6,77	=	1.3,	P	>	0.05	and	treatment	

F2,81	=	0.6,	P	>	0.05)	or	type	of	mutation	(MANOVA	with	the	number	of	each	type	of	

mutation	 [intergenic,	 indel,	 nonsynonymous,	 synonymous]	 as	 the	 dependent	

variables,	main	effects	of	diversity	F2,81	=	0.7,	P	>	0.05,	community	F6,77	=	1.0,	P	>	0.05	

and	treatment	F2,81	=	1.0,	P	>	0.05,	Figure	6.1)	between	evolutionary	treatments.			

	

	
	

Figure	6.1	 Average	number	of	 each	 type	of	mutation	across	 the	 replicate	populations	 (N	=	12	 for	
monocultures,	N	=	6	for	all	other	treatments).	
	

Mutations	occurred	in	84	genes	of	which	23	contained	only	synonymous	mutations	

and	were	not	analysed	 further.	Among	the	61	genes	 targeted	by	nonsynonymous	

mutations,	we	observed	multiple	 cases	of	 gene	 level	parallelism	with	48	of	 these	

nonsynonymous	mutations	 occurring	 in	 just	 ten	 genes	 (Figure	 6.2,	 Table	 6.1).	 Of	
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these,	31	displayed	nucleotide	level	parallelism	(NLP)	with	mutations	occurring	at	the	

exact	same	nucleotide	location	in	multiple	clones.	Loci	targeted	by	parallel	mutations	

in	multiple	independent	evolved	clones	suggests	that	these	genes	were	the	targets	

of	natural	selection.	The	occurrence	of	parallel	mutations	did	not	significantly	differ	

between	 evolutionary	 treatments	 (permutational	 MANOVA,	 main	 effects	 of	

diversity,	treatment	and	community:	F2,	71	=	1.1,	P	>	0.05,	F1,	71	=	1.1,	P	>	0.05	and	F4,	

71	=	1.2,	P	>	0.05)	suggesting	these	genes	may	be	involved	in	general	adaptations	to	

growth	on	wheat	straw	rather	than	specific	responses	to	the	presence	of	competing	

species.	

	

	
Figure	6.2	Summary	of	genes	containing	mutations	in	each	evolutionary	treatment.	Rings	represent	
the	Stenotrophomonas	sp.	D12	genome	with	each	ring	representing	the	six	clones	sequenced	from	
each	evolutionary	treatment.	Nonsynonymous	SNPs	and	indels	are	represented	by	dots	with	the	size	
of	the	dots	scaled	by	the	number	of	mutations	in	that	gene	within	each	treatment.	Genes	with	parallel	
mutations	in	more	than	one	clone	are	labelled	(using	annotation	generated	by	Prokka)	and	coloured	
grey.	Rings	are	coloured	by	the	community	clones	were	evolved	 in.	Circle	plots	showing	 individual	
replicates	are	provided	in	Supplementary	Figure	6.1	
	

Hereafter,	the	analysis	is	focused	on	the	ten	loci	most	affected	by	parallel	mutations	

across	 all	 treatments.	 Six	 of	 the	 ten	 genes,	 containing	 31	 (64.6%)	 of	 the	 parallel	

mutations,	 were	 predicted	 to	 be	 involved	 in	 phosphorelay	 signal	 transduction	

systems	 (histidine	 kinases	 and	 response	 regulators,	 Table	 6.1).	 This	 suggests	 an	

important	 role	 for	 changes	 in	 gene	 regulation	 in	 adaptation	 to	 the	 wheat	 straw	

environment.	
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Fourteen	 parallel	mutations	 occurred	 in	 gene	 3559	 (originally	 annotated	 as	 qseC	

encoding	a	sensory	histidine	kinase,	Figure	6.2)	while	eight	mutations	occurred	in	the	

neighbouring	 gene	 3558	 (Figure	 6.2)	 which	 has	 sequence	 similarity	 to	 an	 ABC	

transporter	 substrate-binding	 protein.	 Analysis	 of	 the	 Stenotrophomonas	 sp.	 D12	

genome	suggests	that	these	genes	form	a	three-gene	operon	with	tctD	(mutated	in	

one	clone)	similar	to	that	found	in	Xanthomonas	campestris	pv.	vesicatoria	(Tamir-

Ariel	et	al.,	2011).	Gene	3559	shares	100%	sequence	identity	with	Stenotrophomonas	

sp.	 92mfcol6.1	 gene	 tctE	 and	 this,	 along	 with	 its	 proximity	 to	 tctD,	 led	 us	 to	

reannotate	 this	 gene	as	 a	 tctE.	 There	were	eight	mutations	 in	 gene	3558,	 half	 of	

which	were	 in	 clones	evolved	 in	 fixed	 coculture	with	Bacillus	 sp.	D26	 (Figure	6.2,	

Supplementary	Figure	6.1).	 Fourteen	clones	contained	mutations	 in	 tctE	 including	

four	 clones	 evolved	 in	 monoculture,	 four	 clones	 evolved	 in	 coculture	 with	

Rhodococcus	sp.	E31	and	four	clones	evolved	in	polyculture.	There	was	at	least	one	

clone	 containing	 a	mutation	 in	 either	 gene	3558	 or	 tctE	 in	 all	 treatments	 except	

clones	evolved	in	fixed	coculture	with	Paenibacillus	sp.	A8	or	Cellulomonas	sp.	D13,	

or	in	dynamic	coculture	with	Bacillus	sp.	D26.		

	

We	observed	four	parallel	mutations	in	each	of	the	genes	3633	(annotated	cckA_2)	

and	 3635	 (cph1)	 which	 are	 members	 of	 the	 same	 operon	 and	 encode	 a	 sensor	

histidine	 kinase	 and	 phytochrome-like	 protein,	 respectively.	 All	 eight	 of	 these	

mutations	occurred	in	clones	that	had	evolved	in	the	presence	of	competing	species.	

Three	 of	 the	 four	 clones	 with	mutations	 in	 cph1	 evolved	 in	 fixed	 coculture	 with	

Paenibacillus	sp.	A8	while	no	clones	evolved	in	dynamic	coculture	with	Paenibacillus	

sp.	A8	contained	mutations	in	this	gene.	In	contrast,	two	clones	evolved	in	dynamic	

coculture	with	Microbacterium	 sp.	D14B	 contained	mutations	 in	 cckA_2	while	 no	

mutations	were	found	in	clones	evolved	in	fixed	coculture	with	Microbacterium	sp.	

D14B.		
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gene#	 #mutations	
Prokka	

annotation	

BLASTP	top	hit	

Functional	annotations:	GO	terms	Non-redundant	
protein	sequence		

UniProtKB	
SwissProt	

(identity,	E-value)	

3558	 8	 hypothetical	
ABC	transporter	
substrate-binding	

protein	
pgtC	(33%,	0.002)	 No	GO	terms	

3559	 14	 qseC	 tctE	 qseC	(29%,	9e-35)	

F:phosphorelay	sensor	kinase	activity	
P:phosphorelay	signal	transduction	

system	
F:ATP	binding	
C:intracellular	

C:integral	component	of	membrane	
P:signal	transduction	by	protein	

phosphorylation	

3633	 4	 cckA_2	
Hybrid	histidine	
kinase/response	

regulator	
cckA	(29%,	2e-34)	

F:phosphorelay	sensor	kinase	activity	
P:phosphorelay	signal	transduction	

system	
P:signal	transduction	
P:phosphorylation	

F:transferase	activity,	transferring	
phosphorus-containing	groups	

3635	 4	 cph1	
PAS	domain	S-box	

protein	 cph1	(34%,	3e-36)		

F:phosphorelay	sensor	kinase	activity	
P:phosphorelay	signal	transduction	

system	
F:ATP	binding	
C:intracellular	

C:integral	component	of	membrane	
P:signal	transduction	by	protein	

phosphorylation	

0731	 4	 mprA_1	
DNA-binding	

response	regulator	
mprA	(43%,	5e-

50)	

P:phosphorelay	signal	transduction	
system	

F:DNA	binding	
C:intracellular	

P:regulation	of	transcription,	DNA-
templated	

3164	 3	 barA_2	
Hybrid	histidine	
kinase/response	

regulator	
luxO	(30%,	2e-8)	

P:phosphorelay	signal	transduction	
system	

F:protein	histidine	kinase	activity	
C:intracellular	

F:protein-glutamate	methylesterase	
activity	

P:peptidyl-histidine	phosphorylation	
0414	 3	 hypothetical	 hypothetical	 No	hits	 C:integral	component	of	membrane	

4266	 3	 glpQ	 glpQ	 glpQ	(36%,	8e-54)	
P:lipid	metabolic	process	

F:phosphoric	diester	hydrolase	
activity	

2090	 3	 fliF	 fliF		 fliF	

F:motor	activity	
C:bacterial-type	flagellum	basal	

body,	MS	ring	
C:integral	component	of	membrane	
P:bacterial-type	flagellum-dependent	

cell	motility	

3236	 2	 luxQ_3	
Hybrid	histidine	
kinase/response	

regulator	
luxQ	(35%,	3e-60)	

F:phosphorelay	sensor	kinase	activity	
P:phosphorelay	signal	transduction	

system	
C:intracellular	

C:integral	component	of	membrane	
P:peptidyl-histidine	phosphorylation	
P:signal	transduction	by	protein	

phosphorylation	
Table	 6.1	 Summary	 of	 genes	 which	 contained	 parallel	 mutations.	 Functional	 annotations	 were	
conducted	using	InterPro	and	predicted	gene	ontology	(GO)	terms	are	provided.	
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Four	clones	contained	mutations	 in	gene	0731	 (annotated	as	mprA_1,	Figure	6.2).	

Sequence	 identity	 and	 functional	 annotation	 suggests	 this	 gene	 is	 a	 DNA-binding	

response	 regulator	 with	 43%	 sequence	 identity	 to	 Mycobacterial	 persistence	

regulator	 A	 (mprA,	 Table	 6.1).	 Clones	with	mutations	 in	 this	 gene	 evolved	 in	 the	

presence	of	competing	species,	two	NLP	mutations	were	observed	in	clones	evolved	

in	dynamic	coculture	with	Paenibacillus	sp.	A8.		

	

There	were	three	parallel	mutations	in	gene	3164	and	two	parallel	mutations	in	3236	

(annotated	 barA_2	 and	 luxQ_3	 respectively,	 Figure	 6.2).	 Gene	 3164	 shares	 92%	

sequence	similarity	to	the	signal	transduction	histidine	kinase	protein	barA	(BLASTP	

non-redundant	sequence	search)	which	forms	a	two-component	regulatory	system	

with	uvrY	(where	we	also	observed	a	singleton	mutation	in	a	monoculture	evolved	

clone,	Supplementary	Figure	6.1)	while	gene	3236	shares	80%	sequences	identity	to	

luxQ	 (BLASTP	 non-redundant	 sequence	 search)	 an	 autoinducer	 2	 (AI-2)	 response	

regulator	involved	in	quorum	sensing.	

	

Three	clones	carried	parallel	mutations	in	gene	2090	encoding	the	flagellar	M-ring	

protein	fliF.	In	addition	to	parallel	mutations	in	this	gene,	we	also	observed	singleton	

mutations	 in	 fliG	 (flagellar	 motor	 switch	 protein),	 fliM	 (flagellar	 motor	 switch	

protein),	flgI	(flagellar	P-ring	protein)	and	flgK	(flagellar	hook-associated	protein	1).	

In	 total,	 we	 found	 seven	mutations	 in	 flagellum-associated	 genes.	 The	 impact	 of	

these	 mutations,	 specifically	 whether	 they	 impede	 cell	 motility,	 remains	 to	 be	

determined.	 As	 clones	 were	 evolved	 in	 liquid,	 well-mixed	 cultures,	 flagellum	

mediated	motility	 may	 not	 have	 been	 necessary,	 and	 loss	 of	 function	may	 have	

provided	a	competitive	advantage.	

	

The	remaining	two	out	of	the	ten	genes	containing	parallel	mutations	were	in	gene	

0414,	 a	 membrane	 bound	 hypothetical	 protein,	 and	 gene	 4266,	 a	 periplasmic	

glycerophosphodiesterase	 phosphodiesterase	 (GP-PDE).	 Functional	 annotation	 of	

gene	 0414	 indicates	 that	 this	 is	 a	 membrane	 bound	 protein	 though	 it	 has	 no	

significant	 similarity	 to	proteins	 in	 the	SwissProt	database.	 The	presence	of	 three	

parallel	mutations	in	this	gene,	two	in	clones	evolved	in	monoculture,	suggests	a	role	
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in	 adaptation	 to	 growth	 on	 wheat	 straw.	 Gene	 4266,	 annotated	 as	 glpQ	 which	

encodes	a	GP-PDE,	 contained	mutations	 in	 three	 clones,	 two	of	which	evolved	 in	

fixed	 polycultures.	 GP-PDEs	 catalyse	 the	 hydrolysis	 of	 glycerophosphodiesters	 to	

produce	an	alcohol	and	glycerol-3-phosphate	which	plays	a	major	role	in	glycolysis	

and	 phospholipid	 biosynthesis.	 We	 also	 observed	 a	 singleton	 mutation	 in	 glpD	

(Supplementary	 Figure	 6.1)	 which	 encodes	 an	 aerobic	 glycerol-3-phosphate	

dehydrogenase.	 Both	 these	 enzymes	 play	 central	 roles	 in	 various	 biosynthetic	

pathways	 suggesting	 that	 these	 mutations	 would	 have	 substantively	 altered	 the	

metabolism	of	the	cell.	

	

6.5 Discussion	
To	identify	the	genetic	basis	of	adaptation	to	wheat	straw	we	sequenced	a	randomly	

chosen	evolved	clone	of	Stenotrophomonas	sp.	D12	from	each	of	84	independently	

evolved	populations	that	had	evolved	with	wheat	straw	as	the	sole	carbon	source	

either	with	or	without	competing	species.	Among	the	84	sequenced	evolved	clones,	

we	found	that	11	clones	contained	no	mutations	while	the	remaining	73	contained	

an	average	of	1.89	mutations	each.	Despite	significant	differences	 in	 the	rate	and	

trajectory	of	the	evolution	of	the	metabolic	phenotype	of	the	Stenotrophomonas	sp.	

D12	populations,	we	did	not	 find	differences	 in	 the	number	or	genes	 targeted	by	

mutations	 among	evolutionary	 treatments.	 This	 suggests	 that	 the	majority	 of	 the	

observed	genomic	evolution	was	in	response	to	the	wheat	straw	environment	per	se.	

Ten	 genes	 were	 repeatedly	 targeted	 by	 mutation	 across	 multiple	 independently	

evolving	populations,	and	such	parallel	evolution	suggests	that	these	mutated	loci	

were	targets	of	natural	selection	and	associated	with	adaptation	to	the	wheat	straw	

environment.	

	

The	operon	containing	the	two-component	signal	transduction	genes	tctD/tctE	and	

gene	3558	was	mutated	in	23	of	the	84	sequenced	evolved	clones.	The	remaining	

parallel	evolving	genes	were	mutated	in	a	maximum	of	four	clones	suggesting	either	

that	tctE/3558	genes	were	under	stronger	selection	or	possess	an	intrinsically	higher	

mutation	rate	(Moxon	et	al.,	1994).	The	tctD/tctE	operon	has	previously	been	shown	
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to	positively	regulate	citrate	uptake	in	Xanthomonas	campestris	pv.	vesicatoria	with	

the	presence	of	only	tctD/tctE	sufficient	to	allow	citrate	uptake	while	the	presence	

of	gene	3558	was	not	essential	for	function	(Tamir-Ariel	et	al.,	2011).	It	has	also	been	

reported	that	marker	exchange	mutagenesis	of	tctD/tctE	leads	to	reduced	virulence	

of	Xanthomonas	oryzae	pv.	oryzae	which	was	associated	with	a	reduction	in	xylanase	

and	cellulase	production	by	the	mutants	(Cho	et	al.,	2010).	The	function	of	gene	3558	

is	yet	to	be	determined	and	it	would	be	interesting	to	compare	the	phenotypic	effects	

of	tctE	mutants	to	3558	mutants.	The	tctD/tctE	two-component	system	is	predicted	

to	be	involved	in	catabolite	repression,	i.e.	preferential	utilisation	of	glucose	(or	the	

most	energy	efficient	carbon	source	available)	and	repression	of	metabolism	of	other	

sugars,	in	Salmonella	typhimurium	(Widenhorn	et	al.,	1989).	It	is	likely	therefore	that	

mutations	in	tctD/tctE	may	reduce	catabolite	repression,	allowing	utilisation	of	the	

various	 five	and	six	carbon	sugars	present	 in	 lignocellulose	 in	addition	 to	glucose.	

Interestingly,	negation	of	catabolite	repression	is	one	of	the	routes	being	explored	to	

increase	the	efficiency	of	lignocellulose	bioconversion	of	engineered	strains	(Flores	

et	al.,	2017;	Vinuselvi	et	al.,	2012),	so	understanding	the	effects	of	mutations	in	these	

genes	may	provide	insights	relevant	to	industrial	processes.	

	

Four	mutations	were	observed	 in	genes	annotated	as	barA	 and	uvrY,	which	 likely	

form	a	two-component	signal	transduction	system.	Orthologs	of	this	system	regulate	

carbon	metabolism	through	the	carbon	storage	regulation	(csr)	system	(Pernestig	et	

al.,	 2003),	 as	 well	 as	 being	 involved	 in	 regulating	 virulence,	 biofilm	 formation,	

motility,	stress	resistance	and	quorum	sensing	(Mondragón	et	al.,	2006;	Zere	et	al.,	

2015).	The	csr	system	controls	the	expression	of	more	than	700	genes	and	has	been	

identified	as	a	promising	target	to	improve	biofuel	production	(Edwards	et	al.,	2011;	

McKee	 et	 al.,	 2012).	Mutations	 in	barA	 and	uvrY	 have	 previously	 been	 shown	 to	

reduce	the	fitness	of	E.	coli	in	glucose	environments	by	inhibiting	the	switch	between	

glycolytic	 and	 gluconeogenic	 pathways.	However,	 in	more	 complex	 environments	

containing	alternative	carbon	sources,	these	mutants	were	able	to	outcompete	the	

wild	type	strain	(Pernestig	et	al.,	2003).	It	seems	likely	therefore	that	mutations	in	

uvrY/barA	may	increase	S.	maltophilia	D12	utilisation	of	sugars	other	than	glucose	by	

inhibiting	glycolysis.	Consistent	with	this,	in	addition	to	barA	and	uvrY	mutations,	we	
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also	 identified	 parallel	 and	 single	 mutations	 in	 two	 genes	 involved	 in	 glycerol	

metabolism,	glpQ	and	glpD.	These	mutations	are	predicted	to	cause	loss	of	function	

and	 may	 therefore	 also	 reduce	 the	 efficiency	 of	 glycolysis	 leading	 to	 enhanced	

metabolism	of	other	sugars.		

	

Aside	from	carbon	metabolism,	another	function	targeted	by	parallel	mutation	was	

flagellar	motility,	including	three	mutations	in	the	M-ring	protein	fliF.	Such	mutations	

were	likely	to	lead	to	loss	of	flagellar	motility,	and	similar	loss	of	flagellar	function	has	

been	previously	observed	in	multiple	experimental	evolution	studies	(Ensminger	et	

al.,	2012;	Maughan	and	Nicholson,	2011;	Sandberg	et	al.,	2014).	Biosynthesis	and	use	

of	the	flagellar	machinery	incurs	high	energy	costs	e(Martínez-García	et	al.,	2014)s	

and	loss	of	function	mutations	allow	this	energy	to	be	reallocated	to	other	functions	

if	motility	is	not	required.	Here,	populations	were	grown	in	well	mixed	liquid	media	

where	the	 lack	of	chemical	gradients	may	have	selected	against	maintenance	of	a	

functioning	flagellum.	Alternatively,	a	functioning	flagellum	may	have	been	selected	

against	 if	 the	 focal	 species	 formed	 a	 biofilm	 on	 the	 surface	 of	 wheat	 straw.	

Experimental	 evolution	 of	Cellulomonas	 fimi	 under	 similar	 growth	 conditions,	 i.e.	

aerobic	growth	on	wheat	straw,	appeared	to	lead	to	an	increased	ability	of	C.	fimi	to	

bind	to	wheat	straw	particles	(Ihsan,	2017).	This	phenotype	is	difficult	to	measure	

quantitatively	but	if	a	similar	adaptation	has	occurred	by	Stenotrophomonas	sp.	D12,	

this	may	explain	the	presence	of	multiple	mutations	in	flagellum	genes.	

	

In	common	with	previous	experimental	evolution	studies	performed	 in	a	range	of	

environments	 (Barbosa	et	 al.,	 2017;	O’Rourke	et	 al.,	 2015;	 Zhou	et	 al.,	 2015),	we	

observed	a	predominance	of	adaptive	mutations	in	genes	encoding	two-component	

or	 phosphorelay	 signal	 transduction	 pathways,	 which	 typically	 regulate	 the	

expression	 of	 many	 other	 genes	 (Hoch,	 2000).	 Evolution	 of	 regulatory	 genes	 is	

consistent	with	the	idea	that	the	early	stages	of	adaptation	to	a	new	environment	is	

driven	by	a	small	number	of	mutations	which	have	large	phenotypic	effects	(Dettman	

et	 al.,	 2012).	 Previous	 studies	 of	 single	 species	 adapting	 to	 single	 carbon	 source	

environments	often	identify	mutations	in	a	single	regulatory	system	(Herring	et	al.,	

2006;	 Strucko	 et	 al.,	 2018).	 By	 contrast,	 we	 identified	 parallel	 mutations	 in	 five	
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distinct	signal	transduction	pathways	suggesting	that	more	complex	environments	

conditions	 impose	 selection	upon	a	wider	 range	of	 functions.	While	 two	of	 these	

signalling	 pathways	 are	 predicted	 to	 be	 involved	 in	 carbon	 metabolism,	 further	

characterisation	 is	 required	 to	 determine	 the	 functions	 of	 the	 other	 three	 signal	

transduction	systems	in	the	cell.	Some	clones	contained	mutations	in	more	than	one	

signalling	pathway	and	it	may	be	an	interesting	topic	for	future	study	to	identify	the	

effects	of	multiple	regulatory	mutations	on	fitness	by	reconstruction	of	single	and	

double	mutants	in	the	ancestral	genotype,	in	particular	whether	there	are	epistatic	

effects	between	mutations	in	these	multiple	signalling	pathways.	

	

Surprisingly,	 we	 did	 not	 find	 significant	 differences	 in	 the	 genetic	 response	 of	

Stenotrophomonas	sp.	D12	to	the	evolutionary	treatments.	This	stands	in	contrast	to	

the	differences	in	metabolic	phenotype	previously	observed	at	the	population	level,	

which	showed	greater	evolutionary	divergence	from	the	ancestor	due	to	interspecific	

competition	compared	 to	monocultures.	 	There	are	 two	possible	explanations	 for	

this	 discrepancy:	 first	 the	 differences	 in	 metabolic	 phenotype	 could	 be	 due	 to	

phenotypic	responses	and	thus	did	not	require	mutational	changes,	or	second,	they	

could	 be	 an	 emergent	 property	 of	 a	 diverse	 population	 that	 was	 not	 captured	

through	 sequencing	 of	 single	 clones.	 Sequencing	 of	 additional	 clones	 or	 the	

populations	will	be	required	to	distinguish	between	these	possibilities.	

	

Taken	together	these	findings	suggest	that	adaptation	to	better	utilise	wheat	straw	

involves	regulatory	mutations	whose	effects	are	likely	to	impair	catabolite	repression	

and	carbon	storage	processes,	allowing	evolved	Stenotrophomonas	sp.	D12	to	utilise	

a	wider	range	of	the	sugars	liberated	from	lignocellulose.	It	is	interesting	that	both	

of	these	metabolic	functions	have	been	identified	as	potential	targets	for	engineering	

improved	 strains	 for	 biofuel	 applications,	 suggesting	 that	 strain	 improvement	 by	

natural	selection	could	readily	achieve	the	same	outcome.		
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6.6 Supplementary	Figures	
	

	

Supplementary	 Figure	 6.1	 Plot	 of	Stenotrophomonas	 sp.	 D12	 genomes	of	 each	 sequenced	 clone.	Genes	with	
parallel	mutations	in	more	than	one	clone	are	labelled	(using	annotation	generated	by	Prokka)	and	coloured	grey.	
Rings	are	coloured	by	treatment	
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7 General	Discussion	
Lignocellulose	represents	the	most	abundant	source	of	fixed	carbon	on	the	planet	

and	is	a	promising	substrate	to	produce	biofuels.	Uncovering	methods	to	efficiently	

degrade	this	complex	polymer	remains	a	key	challenge	that	must	be	overcome	for	

the	long-term	viability	of	these	promising	fuel	sources.	A	promising	approach	is	to	

study	 naturally	 occurring	microbial	 communities	 to	 uncover	 their	 lignocellulolytic	

potential	(Brune,	2014;	Wei	et	al.,	2012;	Woo	et	al.,	2014b).	 In	this	thesis,	various	

lignocellulolytic	 bacteria	 were	 isolated	 from	 wheat	 straw	 compost	 enrichment	

cultures	and	assayed	for	their	ability	to	degrade	the	components	of	 lignocellulose	

(chapter	2).	 I	 found	 that	while	communities	of	 these	 isolated	bacteria	were	more	

efficient	lignocellulose	degraders	than	any	of	the	species	in	monoculture,	two	species	

in	particular	drove	community	productivity	(chapter	3).	My	results	indicated	that	the	

ability	of	these	species	to	drive	community	productivity	was	due	to	their	ability	to	

degrade	cellulose,	this	was	supported	by	genome	sequencing	which	revealed	both	

these	species	possess	a	range	of	enzymes	required	for	degradation	of	both	cellulose	

and	hemicellulose	(chapter	4).	I	have	also	presented	data	that	supports	the	utility	of	

experimental	evolution	as	a	tool	to	improve	lignocellulose	degradation	(chapter	5).	

The	 presence	 of	 competing	 species	 accelerated	 the	 phenotypic	 evolution	 of	

Stenotrophomonas	 relative	 to	 monocultures.	 Importantly	 the	 trajectory	 of	 focal	

species	metabolic	evolution	was	determined	by	the	composition	of	the	community	

and	by	the	eco-evolutionary	responses	of	the	competing	species.	This	led,	in	dynamic	

polycultures,	 to	 improved	 growth	 performance	 on	 recalcitrant	 components	 of	

lignocellulose	 by	 Stenotrophomonas,	 suggesting	 that	 community	 experimental	

evolution	could	be	a	powerful	tool	for	directing	the	metabolic	evolution	of	industrial	

strains.	 Genome	 sequencing	 of	 evolved	 genotypes	 revealed	 the	 genetic	 bases	 of	

improved	 lignocellulose	 degradation	 in	 Stenotrophomonas	 (chapter	 6).	 Several	

genetic	loci	were	repeatedly	targeted	by	mutations,	including	genes	involved	in	the	

regulation	of	carbon	storage	and	carbon	metabolism.	This	suggests	that	these	genes	

may	be	useful	targets	for	engineering	more	efficient	industrial	strains.	Overall,	these	

results	 indicate	 that	 compost	 is	 a	 promising	 source	 of	 culturable,	 lignocellulolytic	

bacteria	and	further	suggest	that	community	experimental	evolution	is	a	powerful	

tool	 for	 strain	 improvement.	 I	 have	 discovered	 key	 regulatory	 genes	 involved	 in	
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wheat	straw	adaptation	that	should	be	investigated	further	as	potential	targets	for	

engineering	industrial	strains.	

7.1 Design	of	communities	for	consolidated	bioprocessing	
Consolidated	 bioprocessing	 (CBP)	 seeks	 to	 replace	 physiochemical	 pretreatments	

and	enzymatic	hydrolysis	of	lignocellulose	with	the	direct	bioconversion	to	valuable	

products	by	a	single	engineered	strain	or	a	community	of	microorganisms.	CBP	has	

the	potential	to	reduce	costs	and	improve	the	efficiency	of	industrial	processes	(Xu	

et	al.,	2009).	While	traditionally	industry	utilises	the	single	strain	approach,	the	use	

of	microbial	 communities	 in	 CBP	 is	 gaining	more	 attention	 (Brenner	 et	 al.,	 2008;	

Shong	et	al.,	2012).	As	with	previous	studies	(Bell	et	al.,	2005;	Wohl	et	al.,	2004)	we	

found	 that	 lignocellulose	 degradation	 increased	 with	 community	 diversity.	 As	 an	

insoluble	substrate,	the	degradation	of	lignocellulose	requires	the	action	of	multiple	

enzymes	with	distinct	activities	that	are	believed	to	operate	synergistically	(Cobucci-

Ponzano	et	al.,	2015;	Lynd	et	al.,	2002).	The	design	of	efficient	communities	for	CBP	

requires	a	better	understanding	of	how	species	function	and	adapt	when	interacting	

with	other	species	(Widder	et	al.,	2016).		

	

It	has	been	suggested	that	identifying	species	which	possess	complementary	enzyme	

activity	 are	 likely	 to	 produce	more	 productive	 communities	 compared	 to	 species	

which	 compete	 for	 the	 same	 resources	 (Shong	 et	 al.,	 2012).	 However,	 similar	 to	

previous	 studies	 (Fetzer	 et	 al.,	 2015;	 Wohl	 et	 al.,	 2004),	 we	 found	 that	 the	

productivity	of	lignocellulose	degrading	communities	increased	with	species	diversity	

despite	 the	 presence	 of	 functional	 redundancy	 between	 constituent	 species.	

Particularly,	 we	 found	 that	 productivity	 was	 driven	 by	 the	 ability	 of	 constituent	

species	to	utilise	cellulose	as	a	substrate.	Thus	maximising	species	complementarity	

may	not	necessarily	yield	more	highly	performing	communities.	

	

Using	a	biodiversity	and	ecosystem	functioning	(BEF)	experiment	we	identified	two	

species,	Cellulomonas	sp.	D13	and	Paenibacillus	sp.	A8,	which	significantly	improved	

community	 productivity.	 Genome	 sequencing	 revealed	 that	 these	 species	 both	

possess	a	diverse	range	of	cellulase	and	xylanase	enzymes	with	similar	numbers	of	
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carbohydrate	 active	 enzymes	 as	 previously	 sequenced	members	 of	 these	 genera	

(Christopherson	 et	 al.,	 2013;	 López-Mondéjar	 et	 al.,	 2016a).	 While	 these	 results	

indicate	that	BEF	experiments	are	useful	for	identifying	highly	performing,	it	may	be	

the	 case	 that	many	 of	 the	 culturable	 lignocellulolytic	 bacteria	 have	 already	 been	

identified	by	other	methods,	and	that	the	discovery	of	novel	lignocellulolytic	bacteria	

and	enzymes	requires	culture	independent	methods	(Mori	et	al.,	2014).		

	

Genome	 sequencing	 and	 BEF	 experiments	 could	 be	 combined	 to	 identify	 highly	

functioning	 communities/individuals	 and	 define	 the	 functional	 traits	 required	 for	

efficient	 lignocellulose	 degradation.	 One	 issue	 associated	 with	 predicting	 species	

functions	 from	 the	 genome	 sequence	 is	 that	while	 enzymes	may	be	 present	 in	 a	

species’	 genome,	 they	may	 not	 necessarily	 be	 expressed	 (López-Mondéjar	 et	 al.,	

2016a)	.	A	promising	approach	may	be	to	combine	genomics	with	proteomics	and	

transcriptomics	 to	 identify	 the	genes/enzymes	 that	are	expressed	under	different	

growth	 conditions	 and	 that	 result	 in	 increased	 community	 productivity	 (López-

Mondéjar	et	al.,	2016a;	Salvachua	et	al.,	2013;	Wakarchuk	et	al.,	2016).	This	may	help	

to	ensure	growth	conditions	are	used	which	maximise	the	expression	of	the	broadest	

range	of	enzymes.	In	addition,	identifying	the	regulatory	pathways	that	control	the	

expression	 of	 enzymes	 which	 significantly	 improve	 productivity	 could	 help	 to	

increase	enzyme	yields	and	improve	the	efficiency	of	industrial	strains.		

7.2 Adaptive	evolution	as	tool	to	improve	lignocellulose	degradation	
Microbes	 adapt	 rapidly	 in	 response	 to	 a	 range	 of	 abiotic	 and	 biotic	 selection	

pressures.	 Researchers	 can	 use	 this	 to	 their	 advantage	 in	 directed	 evolution	

experiments	 in	 which	 specific	 selection	 pressures	 are	 applied	 that	 result	 in	 the	

improvement	of	a	desirable	trait	(Lin	et	al.,	2016;	Wang	et	al.,	2018).	I	found	that	a	

focal	 species,	 Stenotrophomonas	 sp.	 D12,	 evolved	 more	 when	 grown	 on	

lignocellulose	 in	 the	 presence	 of	 competing	 species	 than	 when	 in	 isolation.	

Interestingly,	 the	 trajectory	 of	 evolution	 was	 altered	 by	 the	 identity	 and	 the	

ecoevolutionary	responses	of	the	competing	species.	These	results	have	two	main	

implications.	First,	evolving	species	in	the	presence	of	competitors	increases	the	rate	

of	 adaptation	 and	 may	 enhance	 the	 extent	 of	 functional	 trait	 improvement	 by	
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directed	evolution	experiments.	Second,	by	carefully	designing	the	structure	of	the	

competing	 community,	 the	 direction	 of	 evolution	 can	 be	 altered	 to	 produce	

favourable	outcomes	 that	may	not	 occur	 in	monoculture	 evolution.	 For	 example,	

here	we	have	shown	that	in	the	absence	of	ecoevolutionary	adaptations,	the	focal	

species	 evolved	 enhanced	 utilisation	 of	 the	 more	 readily	 degradable	 labile	

substrates.	 Alternatively,	 in	 the	 presence	 of	 ecoevolutionary	 adaptations	 by	 the	

competing	species,	the	focal	species	exhibited	increased	utilisation	of	the	recalcitrant	

substrates.	By	 including	 the	appropriate	competitors,	my	 results	 suggest	 that	 it	 is	

possible	 to	 drive	 species	 to	 evolve	 enhanced	 utilisation	 of	 substrates	 that	 are	

resistant	to	degradation.	

	

While	total	community	productivity	was	not	measured	here,	it	has	previously	been	

shown	that	as	communities	evolve,	they	tend	to	become	more	productive	as	a	result	

of	niche	partitioning	and	cross-feeding	(Fiegna	et	al.,	2015a;	Lawrence	et	al.,	2012).	

It	 is	 reasonable	 to	 assume	 therefore	 that	 experimental	 evolution	 could	 help	 to	

improve	the	efficiency	and	the	stability	of	microbial	communities	for	CBP.	However,	

here	we	 found	 that	 ecoevolutionary	 adaptations	 of	 competing	 species	 can	 cause	

replicate	populations	 to	diverge	 in	 terms	of	 their	 structure	and	phenotypic	 traits.	

Community	composition	changed	drastically	throughout	the	experiment	likely	due	

to	both	species	sorting	and	the	evolution	of	constituent	species.	These	changes	in	

community	composition	were	coupled	with	alterations	in	the	evolutionary	trajectory	

of	the	focal	species.	Microbial	communities	are	complex	and	several	ecoevolutionary	

outcomes	may	be	possible.	However,	we	found	that	dynamic	communities	followed	

two	main	trajectories	suggesting	these	outcomes	may	be	predictable.		

	

Experimental	 evolution	 has	 already	 been	 applied	 to	 improve	 the	 native	

lignocellulolytic	activities	of	 various	microorganisms	 (Lin	et	al.,	2016;	Wang	et	al.,	

2018).	 However,	 these	 experiments	 traditionally	 evolve	 the	 species	 of	 interest	 in	

monoculture.	Our	 results	 suggest	 that	 the	 rate	 of	 evolution	may	be	 increased	by	

evolving	these	species	in	the	presence	of	competitors.	As	well	as	increasing	the	rate	

of	evolution,	the	identity	of	the	competitors	led	to	distinct	evolutionary	trajectories.	

Specifically,	the	focal	species	evolved	increased	utilisation	of	labile	substrates	when	
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evolved	 against	Microbacterium	 sp.	D14B	 and	 increased	 utilisation	 of	 recalcitrant	

substrates	 when	 evolved	 against	 Bacillus	 sp.	 D26.	 Determining	 the	 functional	

characteristics	 of	 competitors	 which	 cause	 specific	 evolutionary	 trajectories	 may	

allow	directed	evolution	of	desirable	traits.	

	

Using	 genome	 sequencing	 of	 single	 clones	 we	 were	 not	 able	 to	 clearly	 link	 the	

observed	 phenotypic	 evolution	 to	 genomic	 adaptations.	 There	 are	 two	 main	

explanantions	for	this.	First,	we	only	sequenced	a	single	clone	from	each	replicate	

population	and	will	have	missed	mutations	present	in	other	clones	in	the	population.	

This	is	particuarly	likely	in	populations	that	had	evolved	with	dynamic	communities	

as	 these	 popualtions	 are	 likely	 to	 be	more	 geentically	 diverse.	 Alternatively,	 the	

phenotypic	adaptations	we	observed	may	be	a	result	of	phenotypic	plasticity.	Rivett	

et	 al.	 (2016)	 identified	 a	 shift	 from	use	 of	 labile	 to	 recalcitrant	 substrates	 during	

bacterial	succession	and	suggested	that	adaptation	to	labile	substrates	was	a	result	

of	 phenotypic	 plasticity	 while	 adaptation	 to	 recalcitrant	 substrates	 required	

evolutionary	(i.e.	genetic)	adaptation.	Although	we	did	not	identify	any	genes	that	

were	targeted	by	specific	evolutionary	treatments,	we	did	identify	genes	involved	in	

adaptation	of	Stenotrophomonas	sp.	D12	to	growth	on	wheat	straw.	The	majority	of	

parallel	 mutations	 we	 identified	 occurred	 in	 genes	 predicted	 to	 be	 involved	 in	

catabolite	repression,	i.e.	the	preferential	use	of	glucose	as	a	substrate.	Mutations	in	

these	genes	potentially	allowed	Stenotrophomonas	sp.	D12	 to	utilise	more	of	 the	

sugars	 liberated	 during	 lignocellulose	 degradation.	 It	 has	 been	 suggested	 that	

catabolite	repression	regulatory	systems	are	one	of	the	main	contributors	to	the	low	

efficiency	of	lignocellulose	bioconversion	as	multiple	sugars	present	in	ligncoellulose	

remain	unutilised	(Flores	et	al.,	2017;	Vinuselvi	et	al.,	2012).	It	is	important	to	note	

however	 that	 catabolite	 repression	 involves	 a	 range	 of	 transcriptional,	 post-

transcriptional,	 translational	 and	 biochemical	 regulations	 and	 so	 the	 effect	 these	

mutations	have	on	catabolite	repression	must	be	further	investigated.	In	addition,	

previous	 studies	have	 found	 that	modifications	 to	 catabolite	 repression	are	often	

deleterious	to	growth	(Beg	et	al.,	2007;	Brückner	and	Titgemeyer,	2002),	potentially	

explaining	why	evolved	clones	grew	less	well	in	monoculture	than	the	ancestor.	The	
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potential	 of	 these	 genes	 as	 targets	 to	 improve	 the	 efficiency	 of	 lignocellulose	

degradation	requires	further	study.		

	

There	 were	 also	 several	 mutations	 in	 genes	 predicted	 to	 be	 involved	 in	 carbon	

storage	regulation	(csr)	which	has	also	been	identified	as	a	target	to	improve	biofuel	

production	(McKee	et	al.,	2012).	Similar	to	catabolite	repression,	disruption	of	genes	

involved	in	csr	have	been	shown	to	decrease	growth	rate	but	also	reduce	the	yield	of	

acetone,	 butanol	 and	 ethanol	 produced	 by	 fermentation	 (Tan	 et	 al.,	 2015).	 In	

contrast,	the	presence	of	parallel	mutations	in	these	genes	suggests	they	confer	a	

fitness	advantage	to	Stenotrophomonas	sp.	D12	and	detemining	the	nature	of	these	

fitness	 benefits	 may	 indicate	 ways	 to	 disrupt	 these	 systems	 and	 maximise	

lignocellulose	degradation.	

	

7.3 Concluding	remarks	
The	 search	 for	 novel	 lignocellulosic	microorganisms	 by	 culturable	methods	 often	

identify	 the	 same	 species.	 It	 is	 likely	 therefore	 that	 to	 find	 new	 enzymes,	 the	

application	of	culture	independent	‘omics	techniques	are	required.	However,	here	

we	 suggest	 that	 more	 efficient	 lignocellulose	 degradation	 can	 be	 achieved	 by	

maximising	and	improving	the	functional	traits	of	those	culturable	species	already	

isolated.	 Using	 ecological	 experiments	 we	 can	 identify	 productive	 species	

combinations	for	use	in	CBP	and	furthermore,	experimental	evolution	can	then	be	

used	both	to	improve	the	productivity	of	these	communities	further	and	to	identify	

gene	 targets	 for	 engineering	 industrial	 strains.	 In	 conclusion,	 in	 order	 to	 achieve	

efficient	 CBP,	 a	 detailed	 understanding	 of	 both	 the	 ecology	 and	 evolution	 of	

lignocellulolytic	 microorganisms	 is	 required	 in	 addition	 to	 a	 mechanistic	

understanding	of	lignocellulose	degradation.			
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