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Abstract
Most of point-of-care diagnostics and lab-on-chip devices that do on-chip sample preparation

require active fluid actuation. In a laboratory setting, this is done via bulky benchtop equipment

such as syringe pumps, peristaltic pumps and pressure systems. However, integration of a

pumping unit onto the device allows for increased portability and decreased footprint of the device.

Although there are multiple examples of realised micropumps based on different technologies, no

one solution offers a combination of small footprint, low costs, scalable manufacturing and high

performance required for point-of-care devices.

Surface acoustic wave (SAW)-based micropumps are an exciting alternative to the current

micropump systems due their small footprint and simplicity of manufacturing, yet many of the

SAW micropumps presented to date suffer from poor performance and/or utilisation of open

channels, which can be a problem regarding contamination. The SAW micropump demonstrated

here uses a novel planar design and SAW scattering effects to significantly improve the pump

performance and maintain closed channels, which is a pre-requisite for point-of-care applications.

This thesis evaluates the fabrication of SAW devices and microfluidic channels using soft

lithography. After evaluating the SAW device design concerning electrical characteristics both

experimentally and theoretically, the first iteration of SAW micropumps utilising SAW momentum

along the piezoelectric substrate is presented and characterised in terms of fluid flow velocity

profiles and volume flow rates produced. Subsequently, a concept of a more efficient SAW

micropump is presented based on out of the plane interaction between SAW and liquid. To fully

utilise this interaction a protocol on the development of 3D microfluidic channels is introduced

followed by a discussion on SAW-liquid coupling setting the scene for a demonstration of efficient

and closed-loop SAW micropump that delivers pressure gradients up to an order of magnitude

higher than the best to-date reported values at a similar input power levels.

Finally, the newly developed pump is utilised in an on-chip flow cytometer to showcase the

advanced flow manipulations, showing the potential applications of the SAW micropump beyond

simple fluid actuation.
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Chapter 1

Introduction

1.1 Introduction

The microchip industry has shaped the world for the past 40 years thanks to the invention

of the transistor earlier in the 20th century.[1] Indeed, the ability to crunch numbers at

unprecedented speeds has given humankind abilities such as sending a man to the moon,

making air travel ubiquitous and the sharing of the information without the need to be

in the vicinity of the source. The latter is an example of how other fields have built

success on the fact that millions of simple number operations can be performed in an

instant. The smartphone revolution is the pinnacle of the microchip industry which, again,

has allowed many other fields to exploit the immense computing power available at our

fingertips. Take, for example, mobile banking which has revolutionised the way people

handle money[2]; at first glance the banking and microchip industry has but a few things

in common.

Right now we are seeing a microelectronics industry slow-down due to the challenges

of scaling transistor sizes, which have now reached 12 nm. Moore’s law, an empirical

law, which stated that the transistor count on a die will double every 12 months, has been
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revised by the Semiconductor Industry association multiple times now.[3]

As growth in the microelectronics industry slows, microfabrication companies, such as

TSMC (Taiwan Semiconductor Manufacturing Company) are seeking new avenues of

development, which coincides with advancements in the scaling of biosensor and point of

care diagnostics (POC) devices.[4, 5, 6] Microchip companies like TSMC are investing in

these technologies with the idea that the next world-shaping trend will be in personalised

medicine (sometimes referred to precision medicine), which will disrupt the existing,

one-size-fits-all approach of the current patient system, and POC devices are one of the

enablers for this.[7, 8, 9]

Microfluidics is one of the facilitating technologies for enabling the POC devices, which

rely on reduced sample sizes and on-chip sample preparation systems. There are many

examples of proof of principle microfluidic devices (often regarded as Lab on Chip

(LOC) devices) in applications ranging from chemistry to biosensors to polymerase chain

reactions.[10, 11, 12, 13, 14, 15, 16] However, in a similar fashion that vast amount of

transistors on a single chip allow to perform billions of calculations per second thus

creating a computer chip, there is a need for large scale integration to truly unleash

the potential of microfluidic devices. For example, being able to perform laboratory

grade experiments onto a single, portable chip could see large scale parallelisation of

experiments, such as enzyme-linked immunosorbent assay (ELISA) tests, currently done

by robotic pipetting machines, done on a single chip, thus helping the development of

diagnostic tests.[17, 18]

Despite the clear advantages of the technology, microfluidics as a field has struggled

to see large scale device use in industry (besides examples like Illumina).[19] Drawing

parallels to the now matured microelectronics industry, microfluidics currently is where

microelectronics technology was before the invention of the integrated circuit and

complementary metal oxide semiconductor (CMOS) technology.[18] The missing piece

is the integration of the proof of principle microfluidic technologies into a single device.
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To achieve this integration there is an inherent need to move the liquid sample between

the various parts of the system without adding bulk or taking up large area of the device,

thus setting the scene for this thesis.

1.1.1 Basic concepts

Although there is a dedicated theory section in this thesis, it is important to introduce a few

basic concepts used in the literature review to aid the reader in understanding the context

of micropump development. Some of the key concepts utilised here are polymerase chain

reaction (PCR), Reynolds number and laminar flow, and microfluidic flow resistance.

PCR is a molecular biology technique used to exponentially amplify DNA (or part of

it) with a known sequence.[20] The amplification of DNA molecules from the starting

sample aids efficient detection and helps to improve the limit of detection of the system

due to an increased number of molecules present. The PCR process has three key steps:

• Denaturation - this step heats the liquid containing DNA to temperatures where

double-stranded DNA (target DNA) splits into two single-stranded DNA sequences

due to the breaking of hydrogen bonds (typical temperatures 94 − 98°C).

• Annealing - a lower-temperature step, in which short single-stranded DNA

fragments, called primers, bind to the target DNA ends in the solution. Primers

are designed to be complementary to the sequence of target DNA ends.

• Extension - this is the final step of a PCR cycle where an enzyme called polymerase

searches for the double stranded DNA, binds to the end of the primer, and

builds a complementary strand to the target sequence by using deoxynucleoside

triphosphates (dNTPs), which are the building blocks of DNA.

These three steps are repeated sequentially for 30 - 60 times, although depending on the
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polymerase and the target DNA it is possible to combine steps 2 and 3 for a 2-step PCR

protocol.[20, 21]

Reynolds number is a dimensionless number used to describe the regime of fluid flow.[22]

There are two main regimes of fluid flow - laminar and turbulent which are defined

by having a Reynolds number below 2300 or above 2600, respectively. Laminar fluid

flow is a flow where fluid flows in parallel layers with no lateral mixing, vortices or

eddies in the flow, and fluid velocity within the same layer is constant. A turbulent flow

regime is completely opposite to laminar flow, in that it is chaotic and fluid velocity can

change across the width of the channel, as well as the in the same layer. There is an

intermediate flow regime between laminar and turbulent fluid flows, where laminar flow

starts to develop local turbulence, yet the flow is not fully developed.[23] The Reynolds

number can be calculated using:

Re =
vL

ν
(1.1)

where v is the fluid velocity, L is a characteristic dimension such as channel radius and

ν is the kinematic viscosity of the fluid. In microfluidics, the Reynolds number is almost

always in the laminar flow regime.

Microfluidic resistance is a term that links the pressure drop across a microfluidic channel

to the volume flow rate of the liquid, in the same way that electrical resistance links

voltage drop and current. A particularly important feature of microfluidic resistance is

that the hydraulic radius of the channel (i.e. the channel area to double perimeter ratio)

dominates the microfluidic resistance equation. This means that even small changes

in channel dimensions can lead to significant changes in microfluidic resistance.[24]

Microfluidic resistance is given by:

RH =
8µL

πr4
(1.2)

where µ is the fluid viscosity, L is the channel length, and r is the channel radius.
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1.2 Lab-on-Chip (LOC)

As discussed in Section 1.1, a reduction in the size of diagnostic tools could enable

their use to become more widespread, thus fully unleashing the potential of personalised

medicine. Before delving into the details of LOC devices, it is important to identify

the key components that make up a typical LOC device. These are the components

of a standalone LOC device, which is often integrated onto a single cartridge that is

complimented by a sophisticated instrument. The instrument operates the LOC device and

converts the read-out data into meaningful information. By having a separate cartridge

and instrument systems, this ensures there is no cross-contamination between samples

and allows for simple operation of the instrument.[25] Lee et al. asserts that a typical

LOC device will have most of the following[26]:

• Sample preparation system - typically, a pre-concentration or filtering step.

Depending on the analyte and the LOC system this step might be unnecessary,

but for some of the assays this will require rare cell capture, concentration of

cells/biomolecules and cell lysis.

• Reactor and/or mixing system - this would be a PCR step for any DNA based LOC

devices, or an incubation step (requiring mixing) in the case of more sophisticated

biosensors.

• Separation system - this can either be a wash system in the case of DNA/other

target molecule hybridisation device or dielectrophoretic separation of DNA/protein

in other cases.

• Detection/Readout system - this is dictated by the analyte of interest, and the

environment within the fluid. Examples include fluorescence, electrochemical

signal readout, mass spectroscopy, colourimetry, etc.[26]
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• Fluid handling system - unless it is a lateral flow device1, there will be an active

fluid handling system. It is important to minimise the size of the pumps if it is

integrated into the LOC itself rather than the readout system. Fluid handling is an

integral part of the LOC device, because it interconnects all the different modules

listed here. It must provide efficient and non-harmful means of transporting

biological sample from module to module; without this capability it is impossible

to develop a functional LOC device. Commercial LOC systems therefore put strong

emphasis on the development of liquid handling systems.[27, 28]

An active fluid handling system is an integral component for all but the most trivial LOC

devices. However, despite its significance there is still no single ’gold standard’ means of

pumping liquid that combines small footprint, high performance, scalable manufacturing

and low cost.

Significant effort has went into scaling down both diagnostic and analysis systems,

typically named LOC or Total Micro Analysis systems (µTAS).[29] The name LOC

comes from the idea of scaling analysis systems onto a small chip which would be able to

perform the same tests as a large, laboratory-scale system. The research into miniaturised

analysis systems has been active since the late 1970s, but significant advancement only

came with the development of microfluidics in 1990s.[30, 31] One of the first examples of

a modern LOC device was presented by the Manz group, which demonstrates an example

of chip-based capillary electrophoresis.[32, 33]

Further work in the field has seen the integration of additional components as

microfabrication techniques have advanced. For example, heaters for on-chip DNA

amplification through PCR[34, 35] and integrated valves for more advanced PCR

processes[36]. Notably, each chip design is driven by the application, thus the key

parameters in these studies were the time from sample injection to test result. This is
1A LOC device that utilises capillary driven flow of liquid in porous media, such as, paper. Most notable

example of lateral flow devices is pregnancy tests.
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a crucial factor for any POC diagnostic application - quicker tests allow for a higher

number of patients to be tested in a given time unit or higher number of tests on a single

patient.[37]

The aforementioned LOC examples are currently largely reliant on microfabrication

techniques developed by the microchip and microelectromechanical system (MEMS)

industries. Micromachining, which is the overarching name for techniques utilised by

MEMS industries, allows for accurate feature fabrication at a resolution down to a few

µm; however, this comes at a significant fabrication cost because the processes rely on

cleanroom environments for fabrication.[33, 38] Micromachining remained the primary

means of fabricating LOC devices until the advent of cheap soft lithography methods and

materials.

Alternative means of fabricating LOC devices employs master-mould replication via soft

lithography. Soft lithography is a family of techniques that rely on the repeated casting

of a certain design via the use of a template, usually called a master mould. This is a

negative of the desired design, just as a stencil is in screen printing.[38] Figure 1.1 shows

the schematic of microfluidic channel replication through the use of soft lithography. The

channel material can either be an elastomer, such as polydimethylsiloxane (PDMS) or

plastic such as polymethylmethacrylate (PMMA), polycarbonate (PC) or others.[39, 40,

41, 42]

The microfluidic channel material choice is important. PDMS is well suited for rapid

prototyping channel designs due to the ease and speed of channel production, as well

as the generally low cost of the material.[39, 43, 44] On the other hand, plastics such

as PMMA, PC and others can be mass manufactured through the use of injection

moulding; consequently, this option is more appealing for the commercialisation of such

devices.[45, 46] PDMS, however, has more recently emerged as a material of choice

for any work involving live cells and more complex microfluidic cellular structures

(named the ”organ-on-chip”), in which the live cells of a particular organ are cultivated
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Figure 1.1: A schematic diagram depicting the replication of features using a master mould.

(a) A flat and clean substrate is required; typically, silicon wafers are used due to their flatness;

(b) A photoresist is spin-coated onto the substrate material to the desired thickness, which is

dependent on the desired feature size (typically few µm thick); (c) The light-sensitive photoresist

is selectively exposed to light through the use of a dedicated photomask; (d) The photoresist

is immersed in a solution that removes either exposed or unexposed areas of the resist (areas

removed are dependent the type of resist); (e) The soft-lithography material (in this case, PDMS)

is poured over the master mould (template); (f) the PDMS is hardened at elevated temperature.

Figure reproduced from [43] with permission from Springer Nature.
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in microfluidic channels and are subjected to characterised, intentional perturbations

intended to replicate those typically experienced by cells in a real organ.[47, 29, 48, 49]

Contrary to its plastic counterparts, PDMS is gas and vapour permeable, meaning that

cells can obtain more oxygen and exchange carbon dioxide produced during metabolism;

therefore PDMS is the preferred material of choice when working with live cells in

microfluidics.[50, 51] To date, liver[49], lung and gut[52], heart[53], as well as various

diseases of these organs[54] have been successfully demonstrated in PDMS based organ-

on-chip devices. Furthermore, there are examples of rare cell cytometers built on-

chip.[55, 56, 57]

In conclusion, soft lithography allows for quick and cheap replication of microfluidic

channels following the production of master moulds, which are still produced using

conventional micromachining techniques[58] (albeit, more recently 3D printing has been

employed to reduce the costs of the master moulds[59]), thus reducing the cost of the

devices.

The previous sections have showed the context of LOC devices within the expanding field

of personalised medicine, and have showed that LOC devices have historically evolved as

a result of advancements in microfabrication industry. However, to fully take advantage of

LOC technology, there is a need for an inherently better way of actuating liquid around the

miniaturised modules of the device.[29, 60, 61] This was the key premise that defined the

need to develop a microfluidic pump that fits the previous requirements of small footprint,

high performance, low cost and scalable for manufacturing, thus resulting in this PhD

work.

1.3 The structure of this thesis

The first chapter of this thesis examines the background of personalised medicine and the

need for better liquid handling systems as a part of the LOC device.
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In the second chapter the existing literature on various types of microfluidic pumps is

explored, and a literature review focusing on SAW micropumps is done.

The third chapter describes the theoretical background that underpins physics covered

in this thesis - the basic physics of microfluidics, the surface acoustic waves and the

interaction of surface acoustic wave with liquid.

Chapter 4 includes the materials and the device preparation methods used in the three

following experimental chapters.

Chapter 5 reviews the device fabrication and characterisation methods, the pump

characterisation technique and finally discusses the initial approach employed in this

work.

Chapter 6 then discusses an improved version of surface acoustic wave micropump, which

has also formed a base of a publication[62].

In Chapter 7 the previously described pump is utilised for more advanced fluid

manipulations required for an on-chip flow cytometer.

Chapter 8 summarises and concludes the work done in this thesis, along with providing a

future outlook.

1.4 Statement of originality

This thesis has 4 key contributions to the field. First of all, is a thorough analysis of

SAW wavelength choice and IDT design principles described in Chapter 5. None of

the SAW micropump papers to date have thoroughly explained the principle of choice

for wavelength used in the paper. Throughout this PhD I have studied 10 different

wavelengths, how they couple to the piezoelectric substrate, and how the IDT design

choice affect parameters such as aperture width and finger pair count, and finally how the
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wavelength affects the performance of a SAW pump.

Second contribution is the development of a simple protocol for high resolution 3D

microfluidic channel fabrication in a single PDMS cast described in Chapters 4 and

5. Previous processes were evaluated and in the desired design of channels produced

low yields. While stacking of PDMS blocks allows 3D channel fabrication, due to

the diffraction of the light between the layers, particle image velocimetry is severely

complicated.

Since SAW couples to the liquid at 22° with respect to the normal, 3D microfluidic

channels allows to harness most of the SAW energy. Combining this with the selection of

the most efficient SAW wavelength for the given substrate and geometry, allowed me to

develop a fully enclosed SAW micropump, which at low input powers (i.e. up to 0.5 W),

delivers an order of magnitude higher output powers than to date best SAW micropumps.

This work is described in Chapters 5 and Chapter 6.

Final contribution to the field is a particle sorting system described in Chapter 7. Having

shown an efficient SAW pump, the next step was to utilise it in a more complex network.

Thus, I have shown fluid flow focusing and shifting using SAW micropump network,

which is capable of sorting up to 10 particles per second, which is comparable to

other particle sorting systems that are utilising the hydrodynamic flow shifting as the

mechanism for shifting.
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Chapter 2

Literature review

2.1 Literature review of microfluidic pumping systems

There are two principal types of microfluidic systems: droplet microfluidics, which is

concerned with manipulating small amounts of liquid in the form of, for example, droplets

in air[63, 64, 65] (referred to as digital microfluidics) or droplets of aqueous liquid in

immiscible oil or vica versa used for small sample studies [66, 67, 68, 69, 70, 71].

In contrast, continuous flow microfluidics uses liquid of a single phase (oil or water),

which is continuously introduced into the reaction chamber.[61, 29, 72, 73, 47] Of these

approaches, droplet microfluidics is considered useful for single entity studies, enabling

use of small sample volumes.[66] On the other hand, continuous flow microfluidics are

typically utilised in systems requiring higher sample throughput and in which simpler

channel geometries are required/can be tolerated.[61] The work in this thesis focuses on

the development of a liquid handling system suited for continuous flow microfluidics

with applications in POC diagnostics field. As such, the literature discussed in the

following section is limited to a review of continuous flow microfluidic systems. For

more information on droplet microfluidics, some excellent reviews can be found in the

references.[74, 75, 76]
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2.2 Commercially available liquid pumping systems

It is important to begin by discussing commercially available bench-top technologies used

for achieving fluid pumping in microfluidic systems. There are three main categories of

liquid pumps: syringe pumps, peristaltic pumps and pressure-based pumps, these are

explored in the subsequent sections.

2.2.1 Syringe pumps

A syringe pump is the most common way of moving liquid within microfluidic systems.

These pumps are based on a precise linear actuator system, such as a stepper motor and

a lead screw, which controllably compress a syringe containing the fluid to be introduced

into the microfluidic system. Example of a syringe pump is given in Figure 2.1. Such

Figure 2.1: The schematic and example of a commercial syringe pump.
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systems vary in price from few hundred pounds to thousands of pounds, with high-

precision motors and linear motion systems used in the high-end models forming a

substantial part of the cost. Due to the simplicity of the system and advancements in

affordable 3D printing, there are multiple open-source designs for syringe pumps, which

utilise commercially available linear motion parts and 3D printed parts.[77] The key

advantages of syringe pumps are their simple and robust design, which ensures system

longevity, and their ability to pump large range of volumes (this, effectively, depends on

the volume of syringe used). The simplicity of this setup is contrasted by the limited

portability of such systems, which means it cannot be placed onto a POC diagnostics

cartridge, and the slow response times of the pump, which makes it impossible to create

sudden increases of pressure in the system. Consequently, syringe pumps are suited

for the infusion of large volumes at constant flow rates, as required in cell separating

technologies, for example.

2.2.2 Peristaltic pumps

Peristaltic pumps offer an alternative continuous flow setup. A peristaltic pump consists

of a flexible tube that is sequentially compressed by a set of rollers moving the zone of

compression radially. Where the tube volume is restricted by the rollers a local pressure

drop is caused, which sucks the liquid into the tube, and transits it along with the motion of

the rollers as shown in Figure 2.2. Miniaturised peristaltic pumps have been demonstrated

by Unger et al.[78] for inclusion on chip, which typically adopt a linear design in contrast

to the radial designs of their larger counterparts. This is described in more detail in Section

2.6.

Peristaltic pumps are inherently scalable and can therefore produce volume flow rates

ranging between nl/min[79] to more than 1000 l/min[80]. Furthermore, since the actuator

never comes into contact with the pumped fluid, peristaltic pumps can be used in harsh

chemical conditions, where pumping of aggressive liquids such as hydrochloric acid
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and sodium hydroxide is necessary, for example, in industrial plastic manufacturing.[80]

Another inherent advantage is reduction of cross-contamination since fluid is only in

contact with tubing and not open to atmosphere at any point.

The main disadvantage of the peristaltic pump is the degradation of the tubing due to

constant friction between the rollers and the tubing; therefore the tubing will require

regular replacement. The second disadvantage of the peristaltic pump arrises from

sequential compress-release cycle, which creates a pulsating flow. This can be a

disadvantage for applications that rely on constant volume flow rate, such as continuous

flow PCR.

Figure 2.2: The sequential peristaltic pump action as the liquid is sucked into the lower pressure

region (A) and is moved towards the exit of the pump (D). Image adapted from [81].

2.2.3 Precision pressure systems

Precision pressure systems such as those made by Fluigent, Elveflow and others rely on

pre-pressurising a liquid storage chamber, liquid is flown into the microfluidic channels by

opening a set of valves that are controlled by a feedback loop, allowing for stable volume
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flow rates.[82] The principle of operation is reliant on fast-working pumps which regulate

the pressure in the closed liquid storage chamber. Pressure controlled microfluidic pumps

are by far the most expensive external pumping solution, often costing at around £10,000

for a multi-channel control system. The key advantages of the pressure-driven systems

are the typically quick response times (on the order of 100 ms), but these are dependent on

the air to liquid ratio in the pressurised chamber. Secondly, since this is a pressure driven

system, the volume flow rate of is often very stable, which is important for activities like

flow cytometry.

As with the previously described methods, portability is an issue due to the necessity of a

pressure generating unit, which cannot be scaled down and integrated onto the POC device

itself. The second disadvantage is the cost of the system, which can only be justified if

the response time and the volume flow rate stability is paramount to the work carried out.

2.3 Summary of commercial devices

Three main commercial liquid pumping systems have been reviewed here. Syringe pumps

are the most common microfluidic pumping systems due to their simplicity and ease of

use; however, these systems suffer from long lag times between changes in flow rate,

and the fixed volume that can be passed through the device. Peristaltic pumps are cheap

continuous pumps with no volume limit; however, they are restricted by the wear of the

tubing, compatibility between the liquid and the tubing, and the pulsed nature of the

fluid flow. Finally, precision pressure driving systems have excellent response times and

generally have no compatibility issues between pumping fluid and the system; however,

these systems are costly, and the controlling units are typically large.

Having reviewed the commercially available external microfluidic pumping solutions, the

current research into microfluidic pumping solutions will next be examined.
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2.4 Electroosmotic micropumps

Electroosmotic (EO) flow of liquid is induced by application of an electric field across a

liquid containing electric charges. Liquid flow is induced by the applied electric field

imposing a Coulomb force on an electrical double layer of ions next to the channel

walls.[83] Typically, the electrodes generating the electric field are placed in the inlet

and the outlet of the microfluidic channels. Since the fluidic channel walls are usually

fabricated from a dielectric material, the flow profile of EO flow is not parabolic.[24] The

flow velocity is found to be almost uniform along the width of the channel, and it becomes

non-uniform at distance of less than 200 nm from the channel wall, as shown in the Figure

2.3.

Figure 2.3: The flow profile of EO flow, adapted from [24].

2.5 DC EO pumps

Considering that the operating principle of the EO is based on a surface confined effect,

the channel dimensions are thus critical; the channel depth is typically on the order of

tens of µm to enhance the EO flow. The linear velocity of the liquid in EO flow can be
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defined by the Equation 2.1

veo =
εζV

4πµL
(2.1)

Where ε is the dielectric constant of the buffer solution, ζ is the zeta potential, V is the

applied voltage, µ is the liquid viscosity, and L is the channel length across which the

voltage is applied. It can be seen that the fluid velocity and the volume flow rate are

directly proportional to the voltage.[84] Therefore, DC EO flow pumps typically have

operating voltages in the kV region. Early reports by Pretorius et al. reported the first use

of the EO effect for pumping liquid, and achieved a fluid flow velocity of 200 µm/s at an

applied electric field of 2000 V/cm. [85, 86] To enhance the EO effect and increase the

flow velocity, porous capillaries were used with pore sizes ranging between 1 and 20 µm.

These were further refined to reduce the pore size of the capillaries to 0.1 µm, which

enhanced the performance of the pump. As a result, the volume flow rate of the pump was

reported to be 83 nl/min at the applied electric field of 160 V/cm.[87] Early application of

EO pumps was for high-performance liquid chromatography, where volume flow rate is

not the key performance factor. However, to use an EO pump in a POC diagnostics tool, it

would be necessary to achieve flow rates on the order of 100 µl/min.[88] Such flow rates

were reported by Paul et al. but at an extremely high applied voltage of 10 kV.[89, 85] the

high electric field necessary to operate this pump cannot be utilised in a POC device due

to potential harm to the end user, and also because the high electric fields cause excessive

bubble formation and pH changes within microfluidic channels.[84] Consequently the

remainder of this discussion focusses on low-voltage EO pumps only.

2.5.1 Membrane-porosity based EO pumps

One approach to reduce the operating voltage is achieved by reducing the distance across

which the voltage is applied, thereby maintaining a high electric field. One such technique

utilises a porous membrane material in which a high electric field is established in the
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membrane pores. Figure 2.4 shows the schematic of the experimental setup utilised by

Snyder et al.[90]

Figure 2.4: The experimental setup of a porous membrane EO pump. Figure adapted from [90],

©2013 National Academy of Sciences.

This EO pump consisted of a porous 15 nm-thick silicon membrane, which had multiple

active windows (with different surface areas) across which the liquid was pumped. The

pump was capable of delivering up to 10 µl/min flow rate at an applied voltage of 20 V

(equivalent electric field 1.3 MV/cm), although the operational voltage could be as low as

0.25 V for the pump to work. This demonstrates that it is possible to lower the operating

voltage of EO pump by scaling down the length across which voltage is applied.

In addition, a porous silicon membrane for EO pumps was also demonstrated by Yao

et al.[91] Whereas Snyder et al. used a porous nanocrystalline Si membrane, Yao et

al. employed uniformly spaced micrometre-sized pores in silicon wafer with a thermally

grown porous silica on top for EO pumping, as seen in Figure 2.5.[91] Yao et al. show

that the that the pore diameter decreases with increasing thickness of the silica membrane.

This acts to decrease the volume flow rate at a given applied voltage while simultaneously

increasing the maximum pressure generated by the device. The maximum volume flow

rate achieved across membranes comprised of only the native silicon dioxide (which is
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Figure 2.5: The experimental setup of a porous membrane of the EO pump. Figure adapted from

[91], ©2006 IEEE .

on the order of 1 nm thick) was 14 µl/min at an applied voltage of 25 V.[91, 92] In

contrast, devices formed from a 0.25 µm thick thermally grown oxide achieved flow rates

of 12.5 µl/min at 35 V (1.4 MV/cm) applied voltage. The fact that native oxide devices

perform better is to be expected, as the native oxide films are significantly thinner than the

grown oxide films, which results in a higher electric field. On the other hand - controllably

grown oxide devices should have much more stable and repeatable characteristics as it has

been shown that native oxide swells after being submerged in water for prolonged times,

which is a potential concern for devices intended to pump liquid.[92]

This work was expanded beyond silicon membranes by Vajandar et al. who used alumina

oxide as the porous material achieving up to 0.6 ml/min volume flow rate at an applied

electric field of 1 kV/cm.[93] Electroosmotic liquid pumping through nanometer-sized

pores have also been shown in polycarbonate[94] and also carbon nanotube substrates[95]

with operating principles similar to those as outlined by Snyder, Yao and Vajandar et

al.[90, 91, 93]
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2.5.2 AC EO pumps

An alternative strategy to scaling down the distance between the electrodes is to use an AC

electric field to induce fluid flow. The initial theoretical and experimental work on AC-EO

pumps was done by Ajdari[96] who demonstrated a local, unidirectional fluid flow could

be achieved by applying an AC electric field to planar and symmetric electrodes.[84]

Although there was an apparent EO flow, it was only local and did not result in a net fluid

flow. Ajdari showed theoretically that it is possible to induce a net positive EO fluid flow

using AC fields by utilising non-symmetric electrodes, a schematic of which can be seen

in Figure 2.6.[96]

Figure 2.6: A schematic of the electrode design for AC-EO as proposed by Ajdari, where a net EO

flow is generated by applying an AC electric field to non-equal sized electrodes. Figure reproduced

from [84] with permission from Springer Nature.

An experimental proof of principle was done by Brown et al., in a system consisting

of 4.2 and 25.7 µm wide electrodes separated by a 4.5 µm gap with a repeated pitch

of 50 µm.[97] Due to the small spacing between the electrodes, small applied voltages

(up to 1.2 V, RMS) resulted in electric fields of up to 250 V/cm and were shown to

propel the liquid at a linear velocity of up to 75 µm/s. When this is compared to DC



Chapter 2. Literature review 23

EO, the electric fields necessary are significantly lower, thus expanding the applications

of EO flow pumps. Similar results were also reported by Studer et al., where arrays

of asymmetric interdigitated electrodes (IDTs) were utilised to generate a fluid velocity

on the order of 300 µm/s with an applied RMS voltage below 6 V, see Figure 2.7.[98]

Importantly, Studer et al. demonstrated that the EO pump direction is dependent on the

frequency of the applied AC signal, and that the flow direction was observed to reverse as

the applied AC frequency was increased above few tens of kHz.

Figure 2.7: The EO pump design used by Studer et al. Figure reproduced from [98] with

permission from The Royal Society of Chemistry.

It is important to note that the non-uniform electric field in asymmetric IDT systems will

also generate a dielectrophoretic particle movement, which explains as to why often EO

pumps are the preferred means of manipulating liquid in dielectrophoresis systems.[99,

100, 101]

An alternative electrode geometry was demonstrated by Lastochkin et al. who proposed

that using a strip and a T-shaped electrode pair will generate a net fluid flow in a pump

by exploiting oxidisation/reduction reactions at the electrodes as seen in Figure 2.8.[102]

This yields in an EO pump capable of delivering volume flow rates of 0.7 µl/min with an

applied electric field of 1.3 kV/cm. Utilisation of high-frequency oxidisation/reduction
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enabled the authors to generate a local electric charge which drove the EO flow. They were

able to avoid bubble generation by choosing the electrode material and buffer contents to

avoid reactions that would yield gas generation.[102]

Figure 2.8: An EO pump design based on high-frequency electrochemical reactions. Due to the

asymmetry in the electrode geometry, there is a net volume flow rate of the liquid. The black lines

show the net electroosmostic flow streamlines. Figure reprinted from [102] with the permission of

AIP Publishing.

2.5.3 Summary of EO micropumps

Two types of EO pumps were discussed herein based on the use of DC and AC electric

fields. DC-based electroosmotic pumps typically have a simple electrode setup, where the

cathode and anode are immersed in the inlet and the outlet of the channels, respectively,

and EO flow is produced by the charge generated along the dielectric walls of the

microfluidic channel. However, this kind of setup requires high voltage sources to make it

operate at the volume flow rates required for POC applications. Not only the high voltage

is a risk to the end-user, but also such high electric fields cause radical pH changes of the

aqueous media, as well as excessive bubble generation and Joule heating.
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Small voltages can be used in a DC-based EO pumps, that utilise porous membranes

across which the electric field is applied, which then causes liquid pumping through the

membrane. These membranes usually have thicknesses of tens of nanometers to few

micrometres. Consequently, a small voltage applied across the membrane will result in

a high-electric field, which will in turn generate EO flow. However, these pumps are not

capable of delivering the required volume flow rate of tens of µl/min, required in POC

devices.

Another way of decreasing the operating voltage is to use AC electric fields for EO

pumping. The operating principle of such pumps relies on non-uniform electrode

geometry, which causes a net EO flow from the smaller to the bigger electrodes. This

method was first proposed by Ajdari, and later confirmed experimentally by multiple

other groups. However, although the operating voltage of the pumps is decreased, so is

the volume flow rate achieved by the pumps.

EO pumps can therefore only be used in a POC device where low sample volume flow

rates are acceptable, such as biosensors, or in instances where the POC device does not

have to be battery operated, and therefore high driving voltages can be achieved using

mains supply. This however, limits POC device use in, for example, the developing world.

Finally, EO pump operation is dependent on the conductivity of the liquid, as the EO is

dependent on the liquid ion interaction with the electric double layer on the surface of an

insulator. Consequently this limits the EO pump operation to high conductivity liquids.
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2.6 Membrane pumps

The principle of a membrane pump is based on the use of a membrane (or a system of

membranes), which is externally actuated, thus creating a local volume change within a

microchannel. The local volume change results in a local pressure change, which drives

the liquid motion.[88]

2.6.1 Pneumatic membrane pumps

PDMS is a typical material that is used in membrane pumps due to its low cost, ease

of preparation, relatively good adhesion to different materials, as well as suitability

for spin-coating.[58, 50, 61, 29, 103, 104] Consequently, there are multiple examples

of using PDMS as a membrane material. The actuation of the elastomer membrane

can be achieved through the use of actuation chambers, which deflect the membrane,

either pneumatically[78] or thermopneumatically[105]. Both of these techniques rely on

pressure increase of a gas (air in most cases) in the channel actuating chambers.[105, 78,

88]

Pneumatically driven membrane pumps were first reported by the Quake group in their

seminal paper in 2000.[78] The operating principle of pneumatically actuated PDMS

pumps can be seen in the Figure 2.9. Considering that the pump is based on a small valve

that opens or closes the channel, the resultant fluid displacement per valve is minuscule.

A set of valves are therefore required to obtain constant fluid flow, as shown in Figure

2.9. This article started the research of PDMS-based membrane pumps and, at the time

of writing this thesis, has been cited more than 2400 times making it one of the most

influential papers in the field of microfluidic pumps. The valves at the heart of these

micropumps, are now referred to as Quake valves.

Keeping the same operating principle, there are a few variables that can be changed to
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Figure 2.9: The operating principles of a pneumatically actuated membrane pumps, first reported

by Unger et al. Figure from [78], reprinted with permission from AAAS.

improve the design of the Quake-valve based micropumps. By differing the placement

of the actuating channels, it is possible to increase the height of the channel from 10 µm

to 56 µm, without comprising the pump characteristics as shown by Studer et al.[106]

However, even with increased channel height, the cross-section of the channel still has to

resemble a half-circle to aid the actuation.

Further, to reduce the footprint of the equipment, it is important to reduce the pressure

required for channel actuation, which can be achieved by altering the membrane

characteristics. For example, Studer et al. found that the actuation pressure decreases

linearly with respect to decreasing membrane thickness, with the lowest actuation

pressure of 2 kPa achieved for a membrane thickness of 3.8 µm.[106] However, thin

membranes do not close the channels completely, thus there is a tradeoff between

successful channel actuation and the actuation pressure. Furthermore, handling of such

thin PDMS membranes can be problematic and decrease the device fabrication yield.

Alternatively Pandolfi and Ortiz showed that, by inducing controlled swelling in the

PDMS membrane, it is possible to reduce the actuation pressure required to 3 kPa for

15 µm thick PDMS membranes. The controlled swelling decreases the stress in the

membrane, consequently decreasing the actuation pressure.[107]
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The relatively large footprint of the pneumatic actuation devices is countered by the

scalability of the pumps. Thorsen et al. have shown that it is possible to fabricate

more than 3500 individually addressable micro-valves in one square inch area (625mm2),

which can act as valves or local micropumps.[18] Figure 2.10 shows an example of the

valve integration achieved by Thorsen et al.

Figure 2.10: Large-scale integration of Quake valves achieved using standard PDMS microfluidic

chip fabrication methods. Figure from [18], reprinted with permission from AAAS.

Unger et al. showed that at 50 kPa actuation pressure, it is possible to obtain 0.12 µl/min

flow rate. A follow-up publication by Studder et al. showed that it is possible to obtain

the same volume flow rate at 1⁄4 of the actuation pressure. By adjusting the actuation

chamber placement and volume, Sundararajan et al. have demonstrated a single-layer

membrane micropump with a volume flow rate of 0.4 µl/min.[108] By adjustment of the

pumping chamber volume and utilisation of normally-closed doormat style microvalves,

Grover et al. were able to show PDMS micropumps exhibiting volume flow rates of up to
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14.4 µl/min.[109] By utilisation of three actuation chambers connected in series, Lien et

al. demonstrated peristaltic membrane pumping using a single pneumatic source with a

maximum volume flowrate of 100 µl/min at 173 kPa actuation pressure.[15] At a similar

pressure of 137 kPa, Huan et al. were able to obtain only 6 µl/min pumping rate using a

single chamber device, although the channel resistance of their devices was higher, and

furthermore the bottom substrate of their devices was PMMA, rather than glass, which

might have adversely affected the volume flow rate.[110, 88]

The volume of the microvalves affects the response time of the valve, defined as the time

it takes for the valve to completely close from being fully open. This effect was used by

Lai and Folch, where a series of different volume pumps were actuated in a ’single-stroke’

as shown in Figure 2.11.[111] Due to response time differences between adjacent valves,

a single stroke produced a peristaltic liquid movement of up to 6 µl/min.

2.6.2 Thermopneumatic membrane pumps

Pneumatic actuation of the previously described elastomer membrane pumps is achieved

through the use of an external, pressure-generating equipment. An alternative to a

pneumatic membrane pump is a thermopneumatic micropump, in which the membrane

motion is induced by heating a gas (usually air) in the actuating channel. The operational

principle of these pumps is based on the Charles law.[112] Since heat is generated through

resistive heating of an element such as a circuit track on a printed circuit board (PCB) or

electrodes deposited on a chip, the footprint of these pumps is smaller than that of classic

pneumatic micropumps.

The first thermopneumatic pump was reported by Pol et al., in a paper where the flexible

membrane was formed from a 19 µm thick silicon membrane, and which achieved volume

flow rates of up to 34 µl/min.[113] The use of a thermopneumatic system allows reduction

of the applied voltage in comparison to comparable piezoelectric membrane pumps,
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Figure 2.11: The operating principles of a pneumatically actuated membrane pumps, with

working principles based on the response time differences of different volume valves. Figure

reproduced from [111] with permission from The Royal Society of Chemistry.

which typically require DC voltages in excess of 100 V. The fabrication of these pumps in

a cleanroom allows the pumps to be manufactured on a large scale, as described in [113].

However, reliance on cleanroom fabrication makes solid membrane pumps expensive in

comparison to cheaper membrane materials, such as PDMS. With the advent of soft-

lithography tools kick-started by Whitesides’ group in the late 1990s, elastic silicone

materials became the main membrane material used in thermopneumatic pumps (and

pneumatic pumps).[58, 114, 88] The key reasons for this transition were the low cost

of PDMS (and the like) materials, as well as the ease of replication of the design, which

is achieved by casting the material over pre-made moulds, allowing large numbers of

devices to be formed from a single mould. The associated cost reduction also allows

ordering moulds with higher resolution from more reputable manufacturers.
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Ou et al. demonstrated a PDMS-membrane based thermopneumatic pump with a 50 µm

thick membrane.[115] By utilising an asymmetric valve system, the group were able to

obtain 0.1 µl/min volume flow rate with 1.75 W energy drawn on the device. Song and

Lichtenberg used the principle of thermopneumatic pumps in a single chamber system,

where the heater element is connected to the same chamber the liquid injected. By cooling

the resistive element at a constant rate, a continuous fluid flow of 0.34 µl/min was obtained

at a given cooling rate of 10 K/min.[116] The principle of operation of the pump described

in [116] is shown in Figure 2.12.

Figure 2.12: The operating principle of the thermopneumatic pump. Figure from [116], ©IOP

Publishing.

2.6.3 Piezoelectric membrane pumps

Another type of pneumatic membrane pumps utilises a piezoelectric membrane which has

electrodes patterned on it‘s surface. By applying a voltage to the electrodes, the membrane

deflects due to the piezoelectric effect. Application of AC voltage stimulates oscillation of

the membrane, which consequently produces liquid movement. Piezoelectric membrane

pumps typically use materials with large piezoelectric coefficients to generate maximum

membrane deflection and therefore which produces the biggest volume change per

cycle.[60]
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Bu et al. reported a system of three lead zirconate titanate (PZT) membranes capable of

producing 200 µl/min volume flow rate, with a maximum membrane deflection of 7 µm

and applied voltage of 100 V.[117]. The volume flow rate was sufficient to perform on-

chip PCR with single heating cycles below 2 s.

Figure 2.13: The operating principles of a microthrottle based centre-offset micropump reported

by Tracey et al. Figure from [118], ©IOP Publishing.

Piezoelectric membrane pumps were developed thanks to advances in the

microfabrication industry. However, material costs still remain the same, therefore

for large-scale production research has shifted towards low-cost materials such as

PDMS and PMMA as the base material.[60] To reduce material costs and increase the

portability of piezoelectric membrane pumps, there is on-going research into single-

stroke piezoelectric pumps as a replacement technology for the valve-based micropumps.

One approach is to use flow-rectification as a means to improve the piezoelectric pump

performance. Due to the channel resistance scaling with the fourth power of the channel

radius, even small changes in channel dimensions can lead to significant changes in

the flow resistance, which, effectively, rectifies the flow direction. Tracey et al. show

an example of flow a rectification based micropump that utilises microthrottles in the

channel. By having a centre-offset piezoelectric membrane, flow rectification is achieved

as shown in the Figure 2.13.[118] The pump reported in [118] can produce volume flow

rates of up to 1.6 ml/min at 1.6 kHz actuation frequency and 360 V (peak to peak) applied

voltage. Notably, two channels in parallel can be actuated with a single piezoelectric

disc, consequently reducing the price of the pump.



Chapter 2. Literature review 33

Similarly, Johnston et al. utilise microthrottles to open and close the inlet or outlet

of the chamber, consequently improving the volume flow rate of a single actuator

micropump[119] up to 130 µl/min at 360 V peak to peak applied voltage.

In 1996 Stehr et al. reported a piezoelectric membrane-based pump, which utilised a

lagging deflection rate of a silicon membrane induced by oscillations of the piezoelectric

membrane, to achieve volume flow rates in excess of 2 ml/min at 200 V drive

voltage.[120] The operating principle of this pump is shown in Figure 2.14. Stehr et

al. achieved these flow rates in a hybrid system where the piezoelectric pumping unit was

combined with thermoplastic microfluidic channel system, thus showing the early trends

of switching towards lower cost systems.
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Figure 2.14: The operating principles of a piezoelectric membrane pump reported by Stehr et al.

consists of 5 steps: (a) Stand-by state; (b) The piezoelectric membrane is rapidly actuated, which

causes the buffer membrane(made from silicon) to deflect; (c) The fluid is sucked in both ports

driven by the relaxation of the silicon membrane; (d) Port 2 is rapidly blocked by the piezoelectric

membrane consequently deforming the silicon membrane; (e) As the silicon membrane relaxes all

the fluid is pushed through the Port 1. Figure adapted from [120]. Red arrows show the direction

of membrane deflection, and blue arrows show the fluid flow direction.
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2.6.4 Summary of membrane pumps

Two types of membrane-based pumps were discussed herein - pneumatic membrane

pumps and thermopneumatic pumps. Generally, there are two different pneumatic pumps

depending on the material of the membrane used. Piezoelectric pumps were the first

pneumatic pumps described in the literature, stemming from the MEMS industry and

advances in the microfabrication industry. Typically, materials with high piezoelectric

coefficient, such as PZT, are used to ensure high membrane displacement, therefore

increasing the displaced volume per actuation cycle. Due to the piezoelectric material

used, the membrane can be actuated at high frequencies (often tens of kHz), consequently

significantly increasing the volume flow rate of piezoelectric membrane pumps, which

is on the order of few ml/min. Due to microfabication of the piezoelectric membrane

pumps, these pumps can be fabricated in large quantities. However, the cost per unit is

still relatively high, which limits the applications of piezoelectric membrane pumps in

POC diagnostic devices. Along with the relatively high cost, these pumps require high

DC voltages (usually in excess of 100 V amplitude) to induce sufficient deflection of the

membrane. A cheaper alternative to piezoelectric pumps are Quake-valve pumps. These

pumps use an external pneumatic source, which cycles applied pressure to an actuating

channel. By using a peristaltic pumping pattern in which a series of valves are opened

and closed sequentially, it is possible to obtain directed fluid flow. Although cheap, these

pumps require an external pressure actuation source (often requiring applied pressures

of more than 100 kPa), which increases the footprint of the devices. Furthermore,

elastomer-based membrane pumps typically produce volume flow rates one to two orders

of magnitude lower than their piezoelectric membrane pumps.

The second type of membrane pumps discussed were thermopneumatic pumps, which

utilise thermal expansion of gas to deflect a membrane in the actuation chamber. Since the

heating element can be scaled down (in the form of electrodes deposited on the substrate,

or a PCB for example), these devices have a small footprint compared with those based on
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Quake-valves (or piezoelectric membrane pumps). However, the achievable volume flow

rates are on the order of 0.1 to 0.34 µl/min, smaller than pneumatic micropumps using

the same membrane material, and significantly lower than piezoelectric membrane-based

micropumps.[115, 116, 88, 60, 118] Consequently, the application of thermopneumatic

pumps can be somewhat limited, however, the principle of the thermopneumatic actuation

can be used for microfluidic valves, which do not require short response times.
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2.7 Acoustic force micropumps

Another means of achieving fluid flow in microfluidic channels is through the use of

surface acoustic waves (SAWs). For the purposes of this work a SAW is a mechanical

wave that propagates along the surface of a piezoelectric substrate, with its energy

confined to few (<5) wavelengths depth in the substrate.[121, 122] The concept of SAWs

was first introduced by Lord Rayleigh in his seminal paper, and subsequently the most

common form of SAW is named after him - the Rayleigh SAW.[123] Rayleigh SAWs are

those whose mechanical displacement lies perpendicular to the surface of the substrate.

This is the most common mode of SAW propagation, and they can be generated in a

wide variety of materials including lithium niobate[124, 125, 126, 127], GaAs[128, 129],

quartz[130, 131, 132] and others. A more detailed discussion of SAW generation and the

solid state material theory of the SAWs can be found in the Chapter 3. An image of a

Rayleigh SAW can be seen in Figure 2.15

Figure 2.15: An image of a Rayleigh SAW. Figure adapted from [133], ©University of Kansas

2014.

SAWs are used most commonly in telecommunication devices operating at radio

frequencies[121], including as filters and delay lines. Most surface acoustic wave devices

consist of interdigitated electrodes (IDTs, see Figure 2.16) formed on the piezoelectric

material surface aligned with the SAW wave propagation axis.

In the telecommunications industry, one of the IDT is connected to an input source, and

the other IDT is connected to the rest of the electronic circuit. Since the IDTs are designed
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Figure 2.16: A schematic of a IDT setup used in the telecommunications industry.

to generate a SAW only at the fundamental frequency (along with a small bandwidth

around the fundamental frequency), the applied signal can be filtered from the unwanted

noise, which does not generate a SAW; this is the principle of the SAW filter.[121]

In the recent years, more focus has been given to utilising SAWs as sensors and tools for

liquid manipulations. The use of surface acoustic waves as biosensors and particle/droplet

manipulation devices is beyond the scope of this thesis. The reader can find more

information in the overview reviews by Länge et al.[134], Fu et al.[135] and Jakubik[136].

There is more information on specific devices the reader can refer to:

• fluid mixing[137, 138],

• 1D particle alignment[139],

• 2D particle alignment[140],

• cell trapping and separation[141, 142, 55, 143, 144, 145, 57],

• liquid nebulisation[146, 147].

This work, however, focuses on the fluid pumping using SAWs, therefore the following

sections will be devoted to review of work in this area.[148, 149, 124, 150].
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The earliest work on SAW induced liquid pumping was performed by Girardo et al.,

who utilised SAW induced fluid atomisation to advance the fluid front into a microfluidic

channel, as seen in Figure 2.17.[150] The work performed was utilising lithium niobate

(LiNbO3) substrate using PDMS microfluidic channels, and the SAW frequency utilised

in this work was 160 MHz with the S12 insertion loss of -40 dB. The operating principle of

this pump is based on atomisation of the fluid front: once a sufficient amount of droplets

land on the LiNbO3 surface, they coalesce, and form the new, advanced fluid front.

Figure 2.17: Advance of the liquid front in the presence of a SAW. The principle of operation of

the pump described by Girardo et al. is based on the atomisation of the fluid front by the SAW.

Time between (a) and (l) is 5.5s. Figure reproduced from [150] with permission from The Royal

Society of Chemistry.

The subsequent work of the Pisignano group has been focused on multiplexing of the

previously described pump. In a publication by Masini et al., the group reports the use of

the pump in a 6 x 6 matrix of microfluidic channels, showing the ability to direct the fluid
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flow as necessary. An image of the multiplexed pump can be seen in Figure 2.18.[151]

Figure 2.18: A multiplexed microfluidic pump system based on the pump by Girardo et al. Figure

reproduced from [151] with permission from The Royal Society of Chemistry.

The main advantages of the pump described in publications [150] and [151] are the ability

to operate the pump in a completely closed system (although the [150] had open-ended

channels) and the independence of pump operation on the fluid composition, which means

that fluids with different conductivities can be used (one of the fundamental limitations

of the EO pump). On the other hand, each of the IDTs requires applied power of

27 - 33 dBm, which means high power consumption for volume flow rates limited to

approximately 500 nl/min, which is relatively low compared to the membrane-based

micropumps.

A publication by Tan et al. showed a continuous fluid flow induced by a SAW in

a microfluidic channel.[152] The experimental setup consisted of an open-top channel

which was directly engraved in the LiNbO3 substrate, and the experimental setup can be

seen in Figure 2.19. Tan et al. were studying the effect of the channel width to SAW

wavelength ratio on the fluid velocity induced by the SAW, which was fixed at 200 µm

wavelength.
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Figure 2.19: The experimental setup utilised by Tan et al. Figure reproduced from [152], ©2009

Europhysics Letters.

This work focuses on the fluid flow in two planes of the channel - the top plane, B-B,

which is the one expected to interact most strongly with the SAW, and the C-C plane, in

which the bulk flow effects could be studied. In the B-B plane Tan et al. demonstrated,

that as long as the width of the channel is smaller than the wavelength of the SAW, the

fluid flow is uniform, with speeds up to 10 mm/s, see Figure 2.20

Figure 2.20: Images (a) - (d) show the fluid stream lines imaged with fluorescent particles for

channel widths of 50, 150, 200 and 280 µm, respectively. SAW wavelength is fixed at 200 µm.

Images (e) and (f) show the bulk fluid movement along C-C plane, as expected, the SAW is

reflected into the main bulk volume of the fluid, where it causes standing waves, which causes

particle alignments. Figure reproduced from [152], ©2009 Europhysics Letters.

However, as the width of the channel becomes larger than the SAW wavelength, the fluid

flow becomes more chaotic. This is most likely because wider channels would support

more SAW reflection positons, which then mix the flow. The authors confirm this using
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simulations showing that with increasing time, more SAW energy is wasted as reflections

which slow down the flow due to SAW-SAW interactions, and standing wave formation

in the channel.[152, 145] A similar effect can be observed along C-C plane, where the

fluid experiences SAW reflections that create standing waves resulting in particle capture.

An enclosed (i.e. the liquid is sealed in the channels) SAW pump has been demonstrated

by Langelier et al.[124] Since PDMS is an elastic material with a low Young’s

modulus[153, 154], it will dampen SAW, which propagates underneath it as seen in Figure

2.21a.

Figure 2.21: The schematic of SAW damping by materials like PDMS (a) and harder materials

such as glass or silicon (b). Figure reproduced from [124] with permission from The Royal Society

of Chemistry.

However, the piezoelectric and pyroelectric properties of LiNbO3 complicate the

fabrication process of microfluidic channels made from materials other than PDMS. Thus,

at the heart of the publication by Langelier is a technique that allows bonding LiNbO3 to

glass substrates.[124] Materials with a higher Young’s modulus will have a complex wave

attenuation mechanism which combines attenuation and reflection, see Figure 2.21b for

a schematic. The attenuation component for rigid materials is certainly lower than that

of elastic materials (such as PDMS) coefficient thus increasing the transmitted energy.

Langelier et al. have shown that the total attenuation of SAW is smaller in a glass

block than that of equivalent length PDMS block, thus it must be concluded that the

reflection losses of SAW are not as significant. As a consequence of using a more SAW-

reflective material, the authors were able to improve the transmitted SAW energy by 20 dB
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(comparing to the same channel geometry made using PDMS), which corresponds to 100

times higher transmitted energy. The authors assessed transmitted energy by measuring

the S12 characteristics of different device designs using a network analyser.[124]

The SAW pump consisted of a loop-like channel design with a serpentine feature (see

Figure 2.22a for a full schematic of the design and the subsequent sub-Figures for various

microscope images of channels during SAW operation) connected to the main SAW

interaction region seen in Figure 2.22e and 2.22f.

Figure 2.22: The experimental setup (a), particle aggregation regions (b,c) and observed flow (e,f)

induced by the pump described by Langelier et al. Figure reproduced from [124] with permission

from The Royal Society of Chemistry.

The channel width was increased directly in front of the SAW aperture for a larger volume

of interaction with the SAW. The pump generates 46 Pa across the contour at applied

power of 0.4 W. The pressure difference was calculated using the method described in

Chapter 5. Figure 2.22c shows particle alignment away from the SAW aperture similarly

to that observed by Tan et al. This can be attributed to the use of more rigid materials,

which scatter and reflect the SAW leading to standing waves and therefore creating local

higher and lower pressure regions where the tracer particles aggregate.

One of the key problems facing POC devices is requirement for any sample-handling
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cartridges to be disposable to minimise cross-contamination between samples.[155,

156, 12] The price of any disposable unit must therefore be kept as low as possible.

Consequently, a SAW micropump that is integrated into the disposable cartridge must

be small and low cost, or the SAW micropump itself must be separate to the disposable

cartridge, and therefore the fluid flow must be induced remotely. Schmid et al. have

taken the latter approach and demonstrate a SAW pump that can produce fluid flow in

a remote chip through the use of a thin water layer that couples the SAW from the

LiNbO3 to the glass superstrate, as shown in Figure 2.23.[148] As it can be seen, the

Figure 2.23: The experimental setup of the SAW pump described by Schmid et al. 1 - LiNbO3

chip, 2 - water layer, 3 - glass chip, 4 - water in the microfluidic channel network, 5 - PDMS

microfluidic channels. Figure reproduced from [148] with permission from Springer Nature.

microfluidic channels are made from PDMS and are bonded to a glass superstrate, forming

a potentially disposable cartridge. The authors were able to produce pressure differences

of up to 4.8 Pa and volume flow rates of up to 150 µl/min at an applied power of 0.8

W. The pressures generated by the pump are significantly lower than those reported by

Langelier et al. due to the large channels used in the publication.[148] However, the

volume flow rate is appropriate for POC device applications, which is more important in

applications such as shuttle-flow PCR[157], in which the contour geometry is circular,
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and the flow therefore does not experience high back-pressures.

The key issue with the SAW micropump described by Schmid et al. stems from the

use of an intermediate medium, in this case water, to couple the SAW into the remote

microfluidic channel. This introduces two key limitations: firstly the efficiency of the

device is reduced as the SAW is damped both by the coupling water layer and when

coupling through the glass layer. Secondly, such thin layer of water is prone to evaporate,

thus severely limiting the operation time of such SAW device.[158] The authors also note

that the presence of the water layer limits the operating power to 0.8 W. At higher powers,

the vibrations of the water layer induced by the SAW are too strong, which prevents

imaging of the microfluidic channels.[148]

Finally, using a similar approach to Schmid et al.[148], Dentry et al.[159] avoid using an

intermediate glass layer and instead couple a SAW directly into an adjacent microfluidic

channel via a water layer which is connected to an open aperture, as seen in Figure 2.24a.

The work described in [159] studies the effect of the SAW wavelength on the pressure

and volume flow rate attained by the pumps by utilising a closed-loop (yet open channel)

design seen in Figure 2.24b, as well as the created pressure difference in the setup seen in

Figure 2.24c. The wavelengths used in the study are 16 and 32 µm, and the beam chamber

length seen in Figure 2.25 is designed to attenuate the SAW amplitude to 1% of the initial

value (i.e. ensuring that 99% is coupled into the overlaid fluid), which in turns changes

the length of the racetrack (closed-loop) length. The maximum pressure attained between

inlet and outlet ports was 15 Pa (measured by the setup seen in Figure 2.24c), and a

maximum measured volume flow rate of 100 µl/min, both of these characteristics compare

very well to the previously reviewed publications on SAW micropumps. However, it is

important to note that the device is not capable of delivering 15 Pa pressure at 100 µl/min

volume flow rate and vica versa. The highest delivered power shown by the authors is 8.8

Pa at 76 µl/min, implying that the efficiency of the device does not increase linearly with
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Figure 2.24: The experimental setup of the SAW pump described by Dentry et al. The setup (a)

involves coupling the SAW from the substrate into the microfluidic channels through a droplet

of water and open channel aperture. Authors have also explored various different pump designs,

(b) a closed-loop device for measuring the pressure gradients generated by the SAW pump, (c) a

ported device design directly connected to open atmosphere pressure. Figure 2.24d shows a 3D

schematic of the setup seen in (a). Figure reproduced from [159] with permission from The Royal

Society of Chemistry.
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Figure 2.25: The image of the racetrack channel setup used to determine the volume flow rate

of the devices, with the design features such as the beam port outlined. Figure reproduced from

[159] with permission from The Royal Society of Chemistry.

applied power. The delivered power of the pump (calculated by the product of the pressure

and volume flow rate) clearly shows that this is the best performing SAW micropump to

date.

Dentry et al. stated that longer wavelength devices perform better than short wavelength

devices. However, this result could be affected by the fact that beam port length was

identical for both wavelength devices, meaning that the shorter wavelength devices would

experience relatively higher SAW losses within the beam port, which do not contribute to

liquid streaming.[159]

Notably, there are two main limitations inherent to the SAW micropump described by

Dentry et al. Firstly, due to the channel design used by the authors, the delivered pressure

by the pump increases exponentially with applied power. Therefore for peak performance
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authors applied 2.2 W of RF power to the devices, which is very high for a POC device,

while applying lower power to devices leads to poor performance. Secondly, the open

droplet required to couple the SAW into the chamber presents a route for contamination.

[160] Conversely, if the SAW micropump could be contained in a sealed device allowing

re-use of the substrate, then the use of harsh chemicals (such as concentrated sodium

hypochlorite solution) required to clean such a device for medical use, would be damaging

the IDTs.[160]

2.7.1 Summary of acoustic force micropumps

Surface acoustic waves offer an excellent solution for POC micropumps. The surface

acoustic wave micropumps have low operating voltage. They can be produced using

standard microfabrication techniques and exhibit long lifetimes due to the small strains

induced in the system. Surface acoustic wave micropump research was started by

Pisignano group in the University of Salento, where the group has been focusing on

atomisation of a fluid front, induced by surface acoustic waves, to transfer fluid along

a channel. The atomisation process is used to pull a droplet towards the surface acoustic

wave source by continuous coalescence of atomised droplets which have been expelled

from the fluid front. The group showed the concept of such a pump in 2008 followed by

a more complicated 2D channel system in 2010.

Another group heavily invested in the surface acoustic wave micropumps is run by

Professor Yeo from Monash University. This group has published multiple papers on

devices formed on lithium niobate substrates, ranging from simple straight channel

geometries, to fully enclosed glass channel system, and finally to highly efficient 3D

printed microfluidic channel networks. Yeo’s group have shown the principle of the

surface acoustic wave with the highest delivered power to date.

Finally, investigations into potentially disposable, microfluidic cartridge systems has been
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performed by Professor Franke’s group, now at the University of Glasgow. The group has

shown that it is possible to couple surface acoustic waves into a remote set of microfluidic

channels thus inducing fluid flow.
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2.8 Motivation for SAW micropumps

Although the progress on SAW-driven microfluidic pumps has been considerable, the

current work leaves a lot to be desired. On the one hand there are systems such

as those described by Dentry et al.[159] and Girardo et al.[150], which use an open

channel geometry to produce high-performance SAW micropumps capable of delivering

the volume flow rates and associated high pressures required for use in POC devices,

which may often contain low Reynolds number environments. However, the key issue

with such systems is their open nature, which provides access points for contamination

and which therefore makes such devices less likely to gain the approval of Health and

Safety governing bodies, such as the Food and Drug Administration (FDA), as is required

for any medical application.

On the other hand, fluid flow can be remotely induced by the SAW such as that by Schmid

et al.[148] Such systems pass the criterion of the completely closed system (in terms

of sample containment); however, these suffer from a need of coupling medium which

transmits the SAW into the remote channels. The extra medium limits the delivered power

of the device due associated dampening of the SAW, and furthermore, the operating time

of such devices is limited by the evaporation rate of the coupling layer, which usually is

on the order of few minutes. This constraint can rarely be met by the relatively slow PCR

processes, which typically require tens of minutes in the quickest cases, thus such devices

would be limited to simple and quick biosensor tests only.[157, 63, 88]

A shared limitation of the previously described SAW micropumps is the relatively high

cost of the starting material. A 6” LiNbO3 wafer currently costs on the order of 200,

therefore even the smallest SAW-pumps will be too costly to be incorporated in the

cheapest of applications. However, these pumps could still be used in more expensive

POC tests that would benefit from scaling down the sample volume (and consequently

the necessary reagent costs, which account for large part of the total unit cost) and
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performing multiple tests on the same cartridge.[161] It is therefore important to put

emphasis on integration that microfluidics, and SAW pumps in particular, offer to the

various applications (such as multiplexed POC tests), and for some of these applications

integration will indeed outweigh larger associated costs, thus paving the way for use of

SAW micropumps.

Finally, limitation of the previously described SAW micropumps is their relatively high

power consumption for a given pump output power. It is important to put the power

consumption in perspective, Belgrader et al. report a typical portable PCR and readout

unit, can operate continuously for 4 h, using a standard laptop battery.[162] This equates

to about 15 W of continuous power draw given the standard battery operation voltage. In

perspective, an actuator used in a syringe pump has a continuous power draw of about

10 W during operation.[77] This means that any actuator driven micropump, will have

a significant effect on the battery-life of the instrument. Therefore, because of the high

power consumption for the currently used micropumps, there still exists a need for a fully

enclosed, high-performing SAW micropump with low power consumption, setting the

scene for this thesis.

This concludes the literature review chapter, however, in order to summarise all the

publications reviewed in this chapter, Table 2.1 has been made in the following page.
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Chapter 3

Theory of Microfluidics and Surface

Acoustic Waves

At the heart of this thesis are two underlying technologies, which are combined to develop

a micropump, these are - microfluidics and surface acoustic waves. This chapter will

explain what each of these technologies are, giving a brief background and the underlying

principles. Finally, the last section will describe how these two technologies interface with

each other to allow the development of SAW micropump devices.

3.1 Microfluidics

Microfluidics is a field of engineering and physics that deals with precise control of fluid

confined within a small volume, such as small droplet (pl to µl volume) or in fluidic

channels with a small cross-section area (typically at least one dimension is below 1 mm).

Recently, there has been a particular interest in using microfluidic devices for applications

in biology and diagnostics due to a need to scale down sample volumes, which allows

observing small populations of sample, such as cells for example.[29]
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Microfluidics also exhibits interesting physical properties as a result of being confined

within a small volume, for example, surface effects become dominant.[163]

For example, viscosity, diffusion, and surface tension become increasingly more

important. Mixing occurs on slower timescales, whilst surface tension dominates at any

interfaces due to a higher proportion of the material being at the interface (due to increased

surface to volume ratios). Another example, is low momentum diffusion times defined as

the time it takes for a system dissipate a disturbance, this timescale in microfluidic systems

typically is on the order of few microseconds.

In terms of fluid flow, almost all microfluidic systems operate in either the creeping regime

or the laminar flow regime. The quantification of flow regime is performed by assessing

Reynolds number, which is a dimensionless quantity given by:

Re =
ρvL

µ
(3.1)

where ρ is the liquid density, v is the velocity of the liquid, L is a typical dimension,

e.g. the diameter of the tube, the microfluidic channel height or hydraulic radius of the

channels and µ is the viscosity of the liquid.[23] The Reynolds effectively describes the

ratio of inertial forces to viscous forces. Typically, if the Reynolds number is below 2300

then the flow is most likely to be laminar, whereas if the Reynolds number is higher than

2600 the flow will most likely be completely turbulent. Values between these two limits

describe situations in which the flow is transitioning from laminar to turbulent.[164] An

example for a transitioning flow can be seen in Figure 3.1

A special case exists for Reynolds numbers which are less than unity. Such regime is

regarded as creeping flow, also known as Stokes flow.[24] Stokes flow is a special case of

laminar flow because of the very low contribution of inertial forces to the flow dynamics,

physically a system operating under creeping flow conditions either has very small fluid

velocities or high fluid viscosities. One of the most prominent physical implications of

creeping regime is that the flows are reversible in direction and time. An example of
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Figure 3.1: An example of a transitioning flow. The image shows the hot air rising (also

called thermal plume in fluid dynamics) from a conventional candle captured using Schlieren

photography. Figure from [165] ©2011 Taylor & Francis.
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the time and direction reversibility in creeping flow regime is injection of dye solution

in highly viscous liquid (such as glycerol or corn syrup) that is contained in a cylinder

shaped vessel with another rotating rod in the middle, see Figure 3.2. Upon rotation of

the middle rod, the dye will start to move due to shear movement. However, if the rod

is rotated in the opposite direction, it is possible to ”unmix” the dye. This shows the

time and direction reversibility, which is a prominent characteristic of systems operating

at creeping flow regime.[166]

Since inertial forces can effectively be ignored in creeping flow systems, the fluid

motion equations governed by Navier-Stokes equation can be linearised and solved using

differential equations.[24] The following section will be devoted to derivation of the

Navier-Stokes equations, which govern the fluid flow in microfluidics, based on work by

Professor Brian Kirby[24] and Professor Patrick Tabeling[22] in their respective books.

3.1.1 Navier-Stokes equations

Derivation of the Navier-Stokes equations relies on conservation of mass and momentum

in steady-state fluid flow, along with a few key assumptions. The first assumption

is that the liquid is incompressible and uniformly dense, this is a valid assumption

for most Newtonian liquids.[22] The incompressible fluid assumption allows us to

neglect any transformation of kinetic energy into internal energy (e.g. any increase in

temperature).[24] This derivation considers a small sample volume in liquid (with volume

V and surface S), so the following equations relate to this sample volume.

Conservation of mass is given by the surface integral of the mass flux across a control

area:
δ

δt ∫V
ρ dV = −∫

S
(ρu⃗) ⋅ n⃗ dA (3.2)

In Equation 3.2 n⃗ is the unit outward normal from surface S with a sample volume V and

t is time, ρ is the fluid density and u⃗ is the fluid velocity. Since it was assumed that the
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Figure 3.2: An example of a system with Re << 1, where two injected dyes experience time

reversibility. Image obtained from [167].
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fluid is incompressible, the left hand side (LHS) of the Equation 3.2 is zero, and therefore

becomes:

∇ ⋅ (ρu⃗) = 0 (3.3)

However, we know that ∇ρ = 0 due to the assumption that the density of the fluid is

uniform, therefore the conservation of mass can be simplified to:

∇ ⋅ u⃗ = 0 (3.4)

To incorporate conservation of momentum, Cauchy momentum equation is used1:

ρ
δu⃗

δt
+ ρu⃗ ⋅ ∇u⃗ = ∇σ⃗ +∑ fi (3.5)

The Cauchy momentum equation states that any changes in momentum ρ δu⃗δt can be

calculated by taking into account the net momentum convection - ρu⃗ ⋅ ∇u⃗, the net

force produced by stress applied to control surface area, ∇σ⃗, and the sum of all the

external forces per unit volume applied onto the control volume of sample - fi. In

Equation 3.5 σ⃗ is a general stress tensor and the fi are the external forces acting on the

liquid, e.g. gravitational forces or Coulomb forces. The Cauchy momentum equation

is a general momentum conservation equation in a continuum. To obtain the Navier-

Stokes equation, the general stress tensor has to be written in terms of fluid velocity and

viscosity.[24] Therefore, by utilising the divergence of the general stress tensor[23] for an

incompressible Newtonian fluid can be written as:

∇ ⋅ σ = −∇p +∇τ (3.6)
1N.B! Cauchy momentum equation is a derivation from the momentum conservation for a continuum.

However, this requires utilisation of dyadic tensors and divergence theorem, which is beyond the scope of

this thesis. For a full Cauchy momentum equation derivation see [24], along with the previously derived

mass conservation equation.
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As can be seen, Equation 3.6 introduces two new terms - p is a pressure term which

arises from the stress perpendicular to the sample surface, and which is independent of

the velocity of the fluid. The final term, τ , represents the viscous forces acting on the

fluid. τ contains both tangental and normal components, and is therefore dependent on

the velocity of the fluid.

In one dimension, the viscous forces can be related to the fluid velocity using:

τ⃗ = µ
δu⃗

δy
(3.7)

which, in a three dimensions, for an incompressible Newtonian fluid can be written as:

τ⃗ = ∇ ⋅ µ∇u⃗ (3.8)

In Equation 3.8 it was important to assume an incompressible Newtonian fluid, as the

general term for stress is a 3x3 tensor relating to the strain via constant with value 2µ,

where µ is the viscosity of liquid.

Assuming that the viscosity of the fluid is uniform and by combining of Equations 3.5,

3.6 and 3.8, we obtain:

ρ
δu⃗

δt
+ ρu⃗ ⋅ ∇u⃗ = −∇p + µ∇2u⃗ + fi (3.9)

In Equation 3.9 Equation 3.9 can be simplified even further, since in a unidirectional

incompressible flow u.∇u = 0, the Equation 3.9 becomes:

ρ
δu⃗

δt
= −∇p + µ∇2u⃗ + fi (3.10)

3.1.2 Poiseuille flow

In order to derive a flow profile, we will begin by considering the simplest case of a

microfluidic chip: a straight channel of a circular cross-section (see Figure 3.3).

The key assumptions for derivation of the flow profiles are:
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Figure 3.3: The schematic for fluid flow profile derivation in a straight channel of circular cross-

section.

• The liquid in the system is a non-compressible Newtonian liquid, such that Equation

3.9 can be used.

• The fluid flow is unidirectional, thus the convective term can be ignored allowing

use of Equation 3.10.

• There are no body forces acting on the liquid, e.g. no gravity, or the mass of the

fluid is negligible.

• Only the steady state case is considered, so the fluid has no acceleration, i.e. δu
δt = 0.

• Only the two-dimensional case is considered, because of radial symmetry.

• Polar coordinate system is used with the zero point located in the middle of the

cylinder.

Considering these assumptions, Equation 3.10, reduces to:

∇p = µ∇2u (3.11)

Furthermore, since the only direction in which the velocity will change is radially from

the channel centre. Equation 3.11 can be re-written as:

p2 − p1
L

= µ
δ2u

δr2
(3.12)
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To solve Equation 3.12 and therefore to find the velocity profile, we must define our

boundary conditions:

• We assume that there is a ”no-slip” condition at the walls, meaning that the velocity

at the walls is 0 and u(r = Rc) = 0.

• We also assume symmetry conditions: the velocity at given r value will always be

the same, thus δu
δr (r = 0) = 0.

These two boundary conditions can be used to find the two integration constants required

to solve Equation 3.12, resulting in a velocity profile given by:

u(r) =
∆p

4µL
(R2

c − r
2) (3.13)

As it can be seen, the velocity of the fluid across the diameter of the channel will change

parabolically. This is regarded as the Poiseuille flow profile. Previous publications show

that the theory of fluid flow profile indeed matches with the experimental results, see

Reference [168] as an example.
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3.2 Surface Acoustic Waves

Surface acoustic waves (SAW) are mechanical waves that propagate along the surface

of an elastic substrate and whose energy is confined to a region close to the substrate

surface, usually no more than five wavelengths deep. The SAW propagates at a speed

equal to its acoustic velocity within the material, and its amplitude decays exponentially

into the substrate.[121] Table 3.1 shows acoustic velocities in air for common SAW device

materials.

Table 3.1: Acoustic velocities for common SAW materials and their respective cuts.

Material Cut Propagation direction Acoustic velocity (vSAW ), m/s

Lithium niobate 128o Y-cut X 3982[169]

Lithium tantalate 42o Y-cut X 4022[57]

Quartz ST X 3158[121]

Gallium arsenide [100] [011] 2864[121]

There are two main types of SAW:

• Shear-horizontal SAW (SH-SAW) - SH-SAWs exhibit a mechanical displacement

within the plane of the substrate and normal to the wave propagation direction, i.e.

they are a transverse wave. See Figure 3.4 for a schematic.

• Rayleigh SAW (RSAW) - RSAWs are a combination of transverse and longitudinal

waves, meaning that the mechanical displacement of a RSAW occurs both

perpendicular and parallel to the propagation direction of the wave. See Figure

3.5 for a schematic.

The following sections will, firstly, describe how to excite a SAW on a piezoelectric

substrate and, secondly, derive the SAW propagation equation.
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Figure 3.4: A schematic of the SH-SAW, the black line shows the in-plane movement of a fixed

particle (black dot) in a SH-SAW. Image reprinted from [170] with permission from Elsevier.

Figure 3.5: A schematic of a RSAW, note the red circle showing a region of both transversal and

longitudinal nature of the wave. Image from [171], ©2015 Purdue University.

3.2.1 SAW excitation

This section focuses on the means of producing an electrically driven SAW within a

piezoelectric material. On a piezoelectric material, SAWs are generated by applying an

AC electric field to interdigitated electrodes (IDTs) formed on the substrate surface, see

Figure 3.6. If the frequency of the AC field and the spacing between the IDTs is matched,
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a SAW is generated.

Figure 3.6: A schematic of IDTs in a typical setup, where one of the electrodes is grounded and

an oscillating signal is applied to the other, thus generating a SAW.

The relationship between the acoustic velocity (vsaw) in the material, the AC electric field

frequency (f ) and the SAW wavelength (λ) is given by Equation 3.14:

vSAW = f ⋅ λ (3.14)

Typically, the mark to space ratio (the ratio of the gap width to the electrode width)

of the IDTs will be 1:1, thus the SAW wavelength would be four times the electrode

width. However, there are alternative designs to the electrodes, some of which are made

to produce unidirectional SAW devices, since a symmetric 1:1 electrode design (seen in

Figure 3.6) produces equal amplitude SAWs propagating in both directions.[121, 145,

172] Although the insertion loss of a 1:1 mark to space ratio electrode design usually

is slightly lower, it was utilised in this work due to simplicity of electrode fabrication

process. Since the smallest SAW wavelength used in this work was 20 µm, the smallest

electrode width was 5 µm. For designs that use alternative mark to space ratio (such

as split electrode or single phase unidirectional transducer (SPUDT)), the minimum

feature size can be as little as 1/8 of wavelength, which significantly complicates the
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fabrication protocol.[173] Also, Oh et al. mention that the utilisation of piezoelectric

with high coupling coefficient (such as LiNbO3), can reduce some of the insertion losses

experienced by IDTs with 1:1 mark to space ratio.[173]

3.2.2 SAW propagation description

In order to describe a SAW propagating along a piezoelectric substrate, we need to derive

a wave equation that contains information about the mechanical stress and electrical

displacement of the crystal caused by this wave. To do this, the basic equations for

elastic compressional and shear waves will be combined with equations describing

piezoelectricity. Derivations are obtained by following the methods in [174] and [121].

Description of elastic waves

To make notation of subscripts easier, the Einstein summation will be used, and all

diagrams and equations are described for an orthogonal Cartesian coordinate system.

Stress (T) is defined as the force exerted per unit area of material.[121] Stress is described

by the direction of the force and the normal of the area onto which the force is exerted.

Txy =
Fx
Ay

(3.15)

For a simple compressional wave, force and area are in the same direction as the wave

propagation. If the direction of force does lie along the area normal, a shear stress is

induced. Strain (S) is defined as the fractional change of length, i.e. the change of

length over original length (L). Strain also can be described in terms of physical particle

displacement (u) due to the wave, as the rate-of-change of displacement in the direction

of wave propagation.

S =
∆L

L
=
∂u

∂z
(3.16)



Chapter 3. Theory of Microfluidics and Surface Acoustic Waves 66

Label subscripts

1 xx

2 yy

3 zz

4 yz,zy

5 xz,zx

6 xy,yx

Table 3.2: Subscript abbreviation

For small strains, the stress and strain can be related using Hooke’s law F = −kx.

Tzz = czzzzSzz (3.17)

Since both stress and strain have two subscripts for every direction, the elasticity tensor

czzzz (i.e. the Young’s modulus, a constant that relates stress to strain) has four subscripts.

To simplify the notation, we can replace double subscripts with a single subscript,

according to Table 1:

Since each of the subscripts can have a value between 1 and 6, the elasticity tensor consists

of 36 components. Subscripts 1-3 relate to compressional effects, while 4 to 6 relate to

shear effects; thus the elasticity tensor can be reduced to two 3x3 matrices, one relating to

compressional effects and another for shearing effects.[121] Therefore, stress and strain

can be related by:

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

T1

T2

T3

T4

T5

T6

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

⋅

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

S1

S2

S3

S4

S5

S6

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(3.18)
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Finally, it is possible to describe the propagation of the wave in terms of Newton’s second

law (F =ma). Equation 3.16 showed that strain can be related to the particle displacement

direction; similarly stress can be related to particle displacement, u, via:

∇T = ρs
∂2u

∂t2
(3.19)

where ρs is the density of solid, and t is the time. Consequently, the force can be obtained

from:

F =
∂T

∂x
(3.20)

Therefore the particle displacement in terms of time and distance can be written as:

∂Txy
∂x

= ρs
∂2Ux
∂t2

(3.21)

Which is the full wave equation for an elastic wave.

Propagation of waves in piezoelectric materials

To describe the propagation of acoustic wave in piezoelectric material, we will use

unit vectors i, j, k in the direction of x, y and z axes of Cartesian coordinate system,

respectively. The three unit vectors therefores can be expressed as:

i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.22)

A piezoelectric material has a crystal structure in which the positive and negative charge

centres are not in the same place. The unit cell is therefore said to lack inversion symmetry

(Figure 3.7). Therefore, application of a mechanical stress to the crystal structure will

induce a dipole within that structure. Equivalently, an application of electric field to the

unit cell will cause a mechanical deformation.[121] Consequently, applying a voltage to

alternating fingers of an IDT produces an alternating pattern of mechanical expansion and
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compression due to the piezoelectric effect. These regions oscillate in time due to the

alternating direction of electric field, and this gets converted into a wave. To derive a full

Figure 3.7: (a) A unit cell with inversion symmetry and (b) a unit cell without inversion symmetry.

Image from [175] ©University of Leeds.

wave expression for a travelling wave in a piezoelectric medium, we need to define the

electric displacement (D) in terms of the dielectric constant (ε) and electric field (E).

Di = εijEj (3.23)

Earlier it was shown that strain can be written in terms of the particle displacement,

therefore the stress-strain relationship can be written as:

Tij = Cijkl
∂Ul
∂k

(3.24)

Which allows the wave equation to be rewritten as:

Cijkl
∂Ul
∂k∂j

= ρ
∂2Ui
∂t2

(3.25)

However, within a piezoelectric medium, some of the mechanical energy of the travelling

wave is converted back into electrical energy and correspondingly, some of the electric

field developed in the piezoelectric material will be converted back into mechanical

energy, thus the stress-strain relationship can be written in terms of piezoelectric

tensor(eikl):

Tij = CijklSkl − eiklEj (3.26)



Chapter 3. Theory of Microfluidics and Surface Acoustic Waves 69

And the electric displacement with respect to the electric field becomes:

Di = eiklSkl + εikEk (3.27)

The electric field can be written in terms of the potential[176]:

E = −∇φ (3.28)

Finally, substituting Equation 3.28 for E in Equations 3.27 and 3.26 and combining it

with Equation 3.25, a system of full coupled wave equations are obtained:

ρ
∂2Ui
∂t2

−Cijkl
∂Ul
∂k∂j

− eikl
∂2φ

∂k∂l
= 0 (3.29)

eikl
∂2Ul
∂i∂k

− εik
∂2φ

∂k∂i
= 0 (3.30)

3.3 SAW device intergration with microfluidics

When a travelling SAW interacts with liquid it is mechanically dampened by the liquid

through a leaky-SAW mechanism. Considering the simplest case of a liquid droplet

positioned on a piezoelectric surface in air, a SAW will be diffracted as it enters the

liquid because the velocity of sound in the liquid is different to that of air[177], as shown

in Figure 3.8. The SAW within the droplet is attenuated by the liquid through viscous

dissipation which, consequently, creates an internal fluid flow within the droplet. An

in-depth theoretical treatment of SAW coupling mechanism and a description of fluid

flow generated in the liquid has been studied by Vanneste and Buhler.[179] Thorough

mathematical derivation of the fluid flow contributions and stream function derivations

(both in an open droplet and in a channel) can be found in [179] and are beyond the

scope of this work, therefore only the main concepts and results found by authors will be

presented here. Briefly, the ”stream function” is a parameter that describes how the liquid

velocity changes along x and y axes in a 2D system. The stream function can be related

to streamlines, which are a family of curves representing fluid velocity in the liquid.
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Figure 3.8: Schematic of travelling SAW coupling to liquid droplet through leaky SAW. Image

reproduced from [178] with permission from The Royal Society of Chemistry.

As the SAW couples into the liquid, it transfers energy into the liquid and generates

multiple types of fluid flow: this process is known as acoustic streaming.[180, 181]

Acoustic streaming consists of two main components - interior streaming and boundary

streaming. Interior streaming is associated with vortices generated by the SAW in the

bulk of the liquid, while boundary streaming describes the vortices generated within thin

boundary layers. Navier-Stokes equations describe the mean flow of the liquid bulk,

whereas Eulerian and Lagrangian models are used to describe vortices generated within

the thin boundary layers. Figure 3.9 shows the 2D damping of a 53- µm-wavelength

SAW as it couples into the water at x = 0. The y-axis shows the normal velocity of solid-

liquid interface. In order to evaluate the flow induced in the liquid, the authors evaluate

the stream function of the flow in 2D by calculating the volume flux through series of

curves with respect to x,y coordinates and t.[179] As mentioned earlier, there are two

main contributions to the acoustic flow. Figure 3.10 shows a comparison between stream

functions calculated by considering only the mean flow (interior streaming, Figure 3.10a)

within a 1 mm thick water layer, and those calculated by considering both interior and

boundary streaming (Figure 3.10b). From Figure 3.10 predicts that the SAW generates

an internal vortex within the liquid, which was subsequently observed experimentally by

several groups.[178, 182, 183] When the applied SAW power is sufficiently high, whole

droplets can be actuated using this method.[64, 184] Despite the applications of droplet
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Figure 3.9: Normal velocity of surface (in mm/s) plotted versus distance in the liquid, at x = 0

SAW enters the liquid. Image reproduced from [179] with permission from The Royal Society.

Figure 3.10: Calculations of the stream functions within a fluid with respect to position in channel

(y is the height, x is the length, both in mm) in water performed by considering (a) only interior

streaming, and (b)both interior and boundary acoustic streaming. Contour labels have units of (a)

mm2/s and (b)10-3mm2/s for RHS. Figure reproduced from [179] with permission from The Royal

Society.

actuation in the field of digital microfluidics, there remains a need for actuating liquid

within microfluidic channels with height on the order of 100s of µm. Because of this,

Vanneste and Buhler have evaluated the stream function in a 100 µm high fluid layer as
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shown in Figure 3.11, which shows that, as the liquid is confined to a thinner region (for

example, within a microfluidic channel), the formation of vortices within the liquid is

somewhat suppressed in favour of generating a flow in the direction of SAW propagation.

This can be explained as follows: since the height of the fluid is now comparable to

the wavelength of the SAW, the boundary layer fluid flow (governed by Eulerian and

Lagrangian flows) is as large as the interior flow. The SAW generates a flow in the

boundary layers, which causes the interior of the liquid (which takes up less volume now,

since the fluid is confined) to move as well. Therefore, the stream function has smaller

vertical components and a bigger flow component.[179]

Figure 3.11: Stream function of water with respect to position in channel (y - height, x - length,

both in mm). Calculations were performed by considering both internal and boundary streaming.

Figure reproduced from [179] with permission from The Royal Society.
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Chapter 4

Materials and Methods

This Chapter discusses the fabrication of the SAW devices and the microfluidic channels

and explains the device assembly procedure. Further, the electrical assemblies used to

drive devices and to characterise device performance will be discussed. Finally, a section

is devoted to the protocols used to prepare tracer particles for fluid flow measurements

and the associated particle image velocimetry protocols developed in this thesis.

4.1 SAW device fabrication

SAW devices were fabricated using 3” 128o Y-cut, x-propagating ”black” LiNbO3 wafers

supplied by PM Optics, MA. In this sense, ”black” refers to the fact that dopants were

added to the LiNbO3 during growth, in order to decrease the pyroelectric effect which

otherwise can complicate fabrication. S1813 (Shipley, MA) photoresist was spun at 5000

RPM on the wafers before cutting them into chips using a 0.4 mm thick resin blade

on a LoadPoint Micrace 66 wafer saw. The chip dimensions varied according to each

individual experiments.

IDTs were fabricated using a sacrificial layer photoresist process, also known as lift-off
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resist (LOR) process. Before spinning on LOR (Shipley, MA), chips were cleaned by

leaving them in ”piranha solution” consisting of sulphuric acid (H2SO4) and hydrogen

peroxide (H2O2) in a 7:3 ratio for 10 min, followed by a rinse with DI water, and blow-

drying using N2 gas. Following this, chips were cleaned in an O2 asher at 50W power for

5 min. Finally, a dehydration bake was performed at 185oC (the temperature was ramped

from 50oC to 185oC for a total of 3 min to avoid electrostatic discharge) for 10 min.

Ramping was performed for all resist coating steps as it was noticed that there is some

observable pyroelectric effect even in the ”black” lithium niobate (LiNbO3) chips, which

causes an electric discharge if the chips are put on a high-temperature surface without

appropriate precautions. Although, not all electrical discharge resulted in observable

degradation of the material surface, subsequent device characterisation (described in

Section 4.4) revealed significantly worse performance, which suggests some structural

damage occurs within the material during such electric discharge.

LOR resist was spun onto the chips at 4000 RPM for 45 s, resulting in a 400 nm thick

LOR film. The LOR was baked at 185oC for 3 min; the temperature was ramped in the

same manner as described earlier. After baking, the chips were allowed to cool down for

3 min before spin coating S1813(Shipley, MA) photoresist at 4500 RPM for 45 s. The

photoresist was soft-baked at 115oC for 3 min, again ramping the temperature from 50oC

to 115oC, over a minute. The measured S1813 film thickness was 1.3 µm.

The photoresist was exposed through a Soda Lime glass mask (Delta Mask, Netherlands),

at an exposure dose between 70 - 90 mJ/cm2. The exposed resist was then developed in

MF-319 solution for 60 - 70 s depending on the feature size. Typically, it is sufficient to

develop S1813 for about 40 - 45 s, however, extra time was taken to create an undercut in

the underlying LOR. The LOR is not photosensitive, but it is isotropically etched when

exposed to MF-319, allowing an undercut to be achieved after pro-longed development

times. After development, devices were rinsed in DI water and blow-dried using N2

gas. Figure 4.1 shows an example of 100 µm wavelength device imaged using a 50x
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objective after resist development, but prior to metal deposition. It can be seen that the

line roughness is negligible in comparison to the feature size.

Figure 4.1: A microscope image of a 100 µm wavelength device after resist exposure and

development, taken through a 50x objective.

Finally, before loading chips into the evaporator, they were cleaned in an O2 asher at 50

W power for 1 min to remove any residual resist from the exposed features. A 5 nm Ti

layer followed by 50 nm Au layer was deposited using electron beam evaporation, at a

typical pressure of 4 x 10-7 mbar, ensuring low defect-density in the deposited film.

Metal lift-off was performed in 1165 developer that was heated to 80oC, and the samples

were left in the developer for 1 h. Once the metal film had lifted off, chips were rinsed in

IPA, blow-dried with N2, spun-coat with S1813 photoresist (coated and baked using the

same parameters as previously described) to protect the IDTs and stored until required.

Note that no sonication was used to ensure that the deposited electrodes were not lifted-off

from the surface.
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4.2 Microfluidic channel fabrication

Master moulds for PDMS fluidic channels were fabricated using a stereolithographic 3D

printer (Miicraft, Taiwan). The 3D printer resin used was HT Miicraft, supplied by Spot-A

materials, Spain. The channel width and height in the planar sections was 500 µm and

100 µm, respectively.

Since 3D printer resin is based on acrylic chemistry, PDMS will not cure when in direct

contact with master mould. The moulds were therefore coated with a thin fluorocarbon

layer by CHF3 deposition in an RIE chamber for 2 min at 50 W power. This fluorocarbon

coating makes the surface highly hydrophobic[185] which has two main effects: firstly,

the surface of the master moulds is passivated, allowing cast PDMS to cure completely;

secondly, the hydrophobic surface aids peeling off the PDMS from the moulds, once set.

[185, 186]

PDMS itself was made using SYLGARD-184 silicone elastomer kit supplied by Dow

Corning, USA, by mixing base and curing agent in a 10:1 weight to weight ratio. PDMS

was de-gassed for 20 min at 5 mbar pressure before pouring it over the moulds and baking

on a hot-plate for 1 h at 70oC. Once cured, the PDMS was peeled from the moulds,

trimmed into the required dimensions, sonicated in IPA for 5 min and blow-dried using

N2 gas before storing until required.

Three-dimensional microfluidic channels were fabricated by combining the protocol

named ESCARGOT (term coined by Saggiomo and Velders[187]) with the previously

described use of stereolithography 3D printer for master mould fabrication.[186]

Resin-based 3D printers are capable of printing suspended features with sub-500 µm

dimensions. However, after PDMS casting and curing around such a 3D strucuture, the

difficulty lies with removal of the mould.[186] Chan et al. describes a protocol of direct-

one step moulding of three-dimensional microfluidic channels.[185] This protocol relies

on ripping out the three-dimensional master mould from partially-cured PDMS block,



Chapter 4. Materials and Methods 77

which will self-repair upon further curing without the master mould. Although the paper

states yield of more than 80%, replication of the protocol was unsuccessful during this

work, with a yield below 10% (N=15).

Consequently, there was a need for a protocol that allowed three-dimensional microfluidic

channel fabrication in a single PDMS cast. A single-cast process was necessary because,

in order to characterise microfluidic pumps, fluorescent particle image velocimetry (PIV)

was required. However, two-layer multi-layer PDMS structures have been shown to

result in poor imaging because of diffraction at the layer interface.[60, 78] The protocol

developed here consisted of 3D printing the planar microfluidic channel master mould

along with a vertical pillar (grey areas in the Figure 4.2), followed by temporarily adhering

an acrylonitrile butadiene styrene rod (ABS, common fused deposition modelling printing

plastic) to the top of the pillars using a few drops of acetone.

Figure 4.2: A schematic of a three dimensional microfluidic channel mould, suitable for

fabrication of a closed microfluidic channel a single PDMS cast.

The master moulds were then baked for 30 minutes at 65oC in an oven to evaporate

any residual acetone from the ABS rods. The degassed PDMS was next poured over

the moulds, taking care to ensure that no air bubbles were introduced, particularly at

the overhanging ABS structures. PDMS was then cured as described previously. Once
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cured, the PDMS blocks were carefully peeled out of the master moulds. Since ABS

does not adhere well to the acrylic resin the ABS will easily broke away from the acrylic

master mould and remained embedded within the PDMS. The PDMS block complete

with embedded ABS rod was sonicated in acetone for 30 minutes dissolving the ABS.

Residual acetone was then removed from the PDMS by baking in the oven at 65oC for 30

min to prevent solvent-induced swelling of the PDMS.[188]

4.3 Chip assembly

The fabricated PDMS channels were bonded to the IDT-containing chips using an oxygen

plasma bonding process.[78, 144, 189] Firstly, the LiNbO3 chips were placed in acetone

beaker for 5 min to strip the photoresist that was protecting the IDTs. Then both the

PDMS block and LiNbO3 substrates were rinsed with IPA and dried with N2. Upon

drying, both PDMS and LiNbO3 chips were placed in UVO cleaner (Jelight Company,

Model 42) for 5 min, which creates dangling -OH groups on the material surfaces. The

process bonding using an oxygen treatment of the surfaces followed by immediate contact

between the surfaces is referred as the plasma bonding, made popular by Whitesides

group.[114, 39] After UVO exposure, the samples were pressed together for 1 min and

then placed on a hot plate for 20 min at 70oC with a light weight (< 50 g) on top of the

PDMS in order to finalise the plasma bonding process.[190]

Once the LiNbO3 and PDMS were bonded, the sample was glued onto an in-house

made printed circuit board (PCB) using a thermal epoxy glue (Electrolube TBS20S). The

electrical connections between the PCB and the SAW device were made using a gold

wire-bonder. Finally, an SMA connector was soldered onto the PCB to allow electrical

connections between the operating equipment and the electrical chips.

During experiments, the devices were mounted onto a 40 x 40 x 10 mm3 brass block,

which was used as a heatsink. The Figure 4.3 shows a fully assembled chip glued onto the
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PCB. The middle section of the PCB consists of multiple, plated vias, which are connected

to the ground plane and provide a better thermal conductivity to the PCB. This setup was

designed to keep the chip below 300 K when driven using 3 W electrical input, which

is the load required for experiments described in Chapter 7 which utilise three individual

IDTs per device, each powered by 1 W electrical power. The absolute maximum heat load

therefore corresponds to the unlikely scenario of all of the input electrical power being

converted directly into heat.

Figure 4.3: A fully assembled chip with the LiNbO3 substrate and PDMS channels glued onto

the PCB.

4.4 Electrical characterisation

In order to understand the following discussion, a brief introduction to scattering

parameters (S-parameters) is necessary. Scattering parameters describe the steady state

behaviour of an electrical system under a small, continuous electrical signal input. The
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system is assumed to be a black box (i.e. the internal features are unknown) and

has multiple ports, typically either one or two. The scattering parameters describe the

relationship between the incident and reflected waves. An incident wave is a wave that

passes through the system via inlet and outlet ports, and a reflected wave is a wave that is

reflected back to the inlet port. Figure 4.4 shows the incident (a) and reflected (b) waves

in a two port system.

Figure 4.4: A schematic of incident (a) and reflected (b) waves in a two port system.

The relationship between incident and reflected waves therefore can be written:

⎛
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(4.1)

Parameters S11 and S22 describe the reflected signal from the black box system, called

voltage reflection coefficient. The amplitude of S12 and S21 parameters describe the

insertion loss of the device, i.e. the loss of signal induced by the black box between

two ports with the same reference. Insertion loss allows to characterise the efficiency

of the device, and is a crucial parameter for SAW device quantification as it gives the

fundamental frequency of the device as well allows to calculate the SAW power produced

by the SAW device.

All the devices were characterised using an Agilent 8753E S-parameter Network Analyser

in a single port setup, using RF coaxial cables rated up to 3 GHz. The measured

scattering parameter data were analysed using Microwave office and Origin Pro 9.0

software packages. Prior the S-parameter analysis the solder joints of the devices were
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tested with a multimeter to ensure a good connection between the network analyser and

the LiNbO3 chip.

To measure the S12 parameters, the devices were measured on the Network Analyser in

a two-port setup, which combines the magnitude and phase readings into a single output

readout.

4.5 Electronic experimental setup

Chapters 5 and 6 utilise a setup with a single power input. The signal, generated using a

signal generator (2022E, Marconi Instruments, UK), was fed into Minicircuits (NY, USA)

ZHL-1-2W+ amplifier capable of producing up to 2 W output power. The amplifier was

biased at 24 V using a DC source (E3620A, Agilent Technologies, CA, USA)

Chapter 7 requires the capability to individually address each of three channels used for

fluidic pumping. This was not possible with the setup utilised in Chapters 5 and 6, and

therefore a customised setup was built, which is as follows. The signal generation was

based on Analog Devices (MA, USA) AD9959 evaluation board. The AD9959 is a chip

consisting of four direct digital synthesiser cores, capable of producing up to four different

frequency signals. Each core can be individually addressed using the evaluation board

and a custom Python script (courtesy of Mr Dominic Platt) powered by a Raspberry Pi 3

computer.

Each signal generated by the AD9959 board was amplified using a custom-made RF

amplifier, which consisted of two sequential RF gain blocks, each providing fixed

signal amplification. Figure in Appendix A(a) shows a schematic of the custom RF

amplifiers, and the resultant PCB design is shown in Appendix A (b). Briefly, initial

signal amplification was performed by a Hittite Microwave Corporation (MA, USA)

HMC481ST89 chip, which produces 19 dBm (P1dB) output (P1dB compression point
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indicates the power level that causes the gain to drop by 1 dB from its small signal value,

where the amplifier is in the linear gain mode). The final amplification (up to 30 dBm)

was performed using a Macom Technology solutions (MA, USA) MAAM-010617 chip,

capable of 31 dBm output (P1dB) point. Both of the gain blocks were connected in series

to provide sequential signal amplification. The remaining of the circuit elements seen

in Figure A.2 are used to provide impedance matching for the input signal, except for

the capacitors on the signal line which filter any DC noise. Figure 4.5 shows the input

signal versus the measured output signal of each of the three amplifiers made for this

purpose. The output signal was measured by using an oscilloscope protected using 20 dB

attenuator.

Figure 4.5: A plot of the output signal as a function of the input signal for the custom amplifiers

at 100 MHz input frequency. The red line shows the desired output level of 30 dBm.

4.6 Tracer particles

In this work 2 µm (L3030, Sigma-Aldrich, UK) and 5 µm (G0500B, Thermo Fischer

Scientific, UK) diameter carboxylate-modified polystyrene particles were used to image
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fluid flow in the devices. Unless otherwise stated, the particles were used in 0.125% (v/v)

dilution of the original concentration in DI water (> 13.6 MΩ) with 0.1% (v/v) Triton

X-100 (Sigma-Aldrich, UK) added to ensure that the polystyrene beads would not stick to

the PDMS.

For the characterisation of the microfluidic pumps described in Chapter 6, the particles

were not diluted in DI water, but in a DI water-ethylene glycol mix (324558, Sigma-

Aldrich, UK, molecular weight: 62.07 g/mol), with a molar ratio of 3:1. The ratio was

used to raise the viscosity of the mixture was 3.69 times higher than that of DI water, in

order to slow down particles for easier tracking.[191]

4.7 Particle tracking

To characterise the microfluidic pumps described in Chapters 5 and 6, particle image

velocimetry (PIV) was performed. The particle motion was recorded using a Rolera EM-

C2 CCD camera at 62.5 frames per second. In order to analyse the PIV data the channel

was divided into 25 equal width sections within which the average particle velocities

could be measured. The particles were tracked using ImageJ software[192] with the

Trackmate[193] plugin, which allows frame to frame particle identification, coordinates

and corresponding velocities to be extracted. This data was exported into MS Excel,

where a custom macro command sorted the particles according to their coordinates along

the width of the channel. The macro then counted how many particles had velocities 0 -

10 µm/s, 10 - 20 µm/s, etc., until there were no more particles to be counted. A Gaussian

profile was fitted to a plot of particle count versus velocity, giving the average velocity

value of all particles present along one of the 25 specified channel positions across the

width of the channel. Using this technique, velocity profiles were produced for each

device at a range of applied powers. No fewer than 10,000 (typically 15,000) particles

were tracked to produce each velocity profile.
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Finally, ProFit 7.0 software was used to fit Equation 5.7 to each of the velocity profiles

using a custom Python script.
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Chapter 5

Device characterisation and early work

on SAW-micropumps

5.1 Introduction and chapter summary

As described in Chapter 2 there are a number techniques for producing liquid flow within

a microfluidic channel. However, none of those have the combined characteristics of low

cost, small footprint, low power consumption and high performance. Therefore, the work

in this thesis has been dedicated to utilising SAWs to build a micropump that satisfies all of

the previously mentioned characteristics. This chapter provides a review of the protocols

utilised for device fabrication, and an evaluation of the key steps to device fabrication, i.e.

the cleanroom fabrication of LiNbO3 chips and microfluidic channel fabrication, and the

importance of 3D printing for microfluidic channel fabrication.

Although there are previous reports of different methodologies for achieving liquid

pumping using SAWs, there is no thorough analysis as to why certain wavelengths

of SAWs are used, how to design the IDTs and how the choice of materials affect

the electrical performance of each device. This chapter and part of the next chapter
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sets out to perform a thorough electrical characterisation of different wavelength SAW

devices, with the intention of maximising the efficiency of SAWs on LiNbO3 substrates

for pumping liquid within PDMS microfluidic channels. Although this thesis focuses on

the aforementioned materials, the principles can be applied to any set of piezoelectric

substrates and microfluidic channel materials. The chapter begins with a discussion of the

design principles of IDTs whose impedance is matched to the driving electronics. This is

followed by a discussion of how SAWs are transmitted through PDMS material, alongside

an investigation of pump efficiency versus SAW wavelength.

Finally, the chapter concludes with the early work on SAW-micropumps, in particular the

early design of fluidic channels. A thorough analysis of the flow profiles and achieved

pressure gradients is presented alongside a discussion of the key limitations of this

generation of device, which are used to inform improvements to the SAW micropumps,

presented in subsequent Chapters.

5.2 Device fabrication and fabrication process evaluation

5.2.1 Active SAW devices

All SAW devices were fabricated in a cleanroom environment following the protocols

described in the Chapter 4. Figure 5.1 shows a 10x magnification image of a successfully

fabricated LiNbO3 chip with gold IDTs.

The mark to space ratio of the metallised (yellow colour) to open (grey) areas is close to

unity; this is achieved through an appropriate selection of the exposure time during the

photolithography process. For example, over exposure (when using ’positive’ photoresist,

such as S1813 used here) is characterised by higher than unity mark to space ratio.

Conversely, under exposure usually leads to poorly defined features, which do not

resemble the pattern on the photomask.
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Figure 5.1: A 10X magnification image of a successfully fabricated IDT for a 100 µm wavelength

SAW device.

The next step in the fabrication process is thin film metal deposition followed by lift-off.

Considering a two-layer lithography process is used here, an appropriate undercut ensures

a high yield of devices during the lift-off stage. It also decreases the ’lily padding’ effect,

which is characterised by the presence of a residual material at the edges of the electrodes.

This effect is a common source of failure in single-layer lithography protocols, as shown

in Figure 5.2. After fine-tuning the protocol, the fabrication yield of the devices was 83%

(N = 102).

In order to image an undercut formed in photoresist a high magnification lens with a small

focal depth must be used, which allows focusing on the top and bottom of the S1813 resist

layer. By subtracting both images, it is then possible to obtain the profile of the undercut

and consequently, image it. Figure 5.3 shows a picture of 100 µm wavelength device

before the Ti/Au metallisation. The measured undercut was approximately 2 µm.
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Figure 5.2: LHS: A schematic of an undercut formed in a two-resist process where the bottom

resist is a sacrificial layer formed from lift-off resist, and the top resist is a positive resist. Use of

two-resist process reduces metal linkage between the required features and the waste material, thus

decreasing failure rate during the lift-off process. RHS: A single layer photoresist protocol that

produces pronounced ’lily-padding’ after lift-off. If a single resist protocol is used, an undercut

profile still can be achieved by treating the top layer of the resist with a chemical that reduces its

etch rate in the developer. Note: The reason why the sidewalls of the positive resist are slanted

is due the nature of contact-photolithography, where the edges of the top resist layer are slightly

over-exposed due to diffraction of UV light.[38]

5.2.2 Microfluidic channel fabrication and the importance of 3D

printing in this process

Arguably, microfluidics as a field has been evolving side-by-side with the developments of

the MEMS and general silicon devices, all of which heavily rely on cleanroom fabrication.

Consequently, the most common way of fabricating microfluidic channels is through the

use of photolithography processing, either to build enclosed microfluidic channels in a

substrate material [46] or to prepare master moulds for soft-lithography as discussed



Chapter 5. Device characterisation and early work on SAW-micropumps 89

Figure 5.3: An image of an undercut formed in the photoresist pattern for a 100 µm wavelength

SAW device. The image was generated by capturing separate images at focal points on the top and

bottom of S1813 resist, and then subtracting the images to highlight the non-overlapping regions.

in the Chapter 2. [194, 61] The latter approach was taken at the start of this work.

However, it quickly became apparent that master mould fabrication in a cleanroom is

time-consuming and cost-effective only if the design of the microfluidic channels does

not change. Thus, cleanroom fabrication of microfluidic channel master moulds is

prohibitively expensive, and consequently is ill suited for rapid prototyping and multiple

design iterations of microfluidic channels. Furthermore, as discussed in Chapter 2 this

method is limited to the formation of planar structures only unless expensive two-photon

lithography systems[195] or complicated multi-layer channel structures[104] are used.

All of the microfluidic channels reported in this work were made from PDMS using soft-

lithography. PDMS is particularly suited to LOC applications owing to its low cost, which

enables single-use platforms where fouling and/or cross-contamination is a concern; its

rapid prototyping capabilities, for development of complex channel networks; and finally,

its gas permeability, which is particularly advantageous for biological applications such as

the organ-on-chip.[196, 197, 49] For this work, the ability to rapidly prototype different
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designs of PDMS microfluidic channels was of significant importance, along with the

capacity for future integration of SAW pump with organ-on-chip systems.

Figure 5.4: Surface of a 3D printed master moulds before the RIE.

The protocol of preparing a master mould through the use of stereolithography 3D

printing is detailed in Chapter 4. As such, only the results and analysis steps of the

process will be discussed here. After the 3D printer has finished producing the mould, it

cannot be used for soft lithography straight-away, as the resin consists of acrylic-based

chemistry (the exact content of the resin is proprietary), and the PDMS just above the

printed surface does not set. Therefore, to passivate the surface and aid peeling off the

PDMS, the surfaces were treated in an RIE chamber. Figure 5.4 and Figure 5.5 show the

master moulds before and after RIE treatment of the master moulds respectively. Prior to

RIE passivation, the material surface is glossy, however, after RIE, the surface appears to

have a more matte finish, presumably due to increased surface roughness owing to partial

surface etching during the RIE process.

The aforementioned surface roughness of the master moulds has no adverse effects on

plasma bonding the PDMS to the LiNbO3 substrate. Figure 5.6 shows a PDMS channel
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Figure 5.5: Surface of a 3D printed master mould after the RIE passivation step, with a

characteristic matte finish. Note for this particular sample a red-coloured base resin was used,

instead of the blue base seen in Figure 5.4.

plasma-bonded to a LiNbO3 chip. The few scattered defects observable within the plasma

bond are also present on the master moulds themselves, and that most likely is due to

contamination of the resin bath utilised by the 3D printer (which is not housed within a

cleanroom).

Once the PDMS-LiNbO3 plasma bonding procedure has completed, the plasma bond is

strong and stays over extended periods of time (>2 years). In fact, none of the PDMS

channels that were bonded during the course of this work have delaminated to date. No

strict quantification of the plasma bond strength was done, but Figure 5.7 shows a chip,

where the PDMS block has been ripped off from the chip. The PDMS-LiNbO3 bond is

clearly stronger than the PDMS-PDMS bond within bulk of the block. Thus it can be

concluded that the bonding strength is higher than 180 kPa according to a study done by

Tang and Lee.[198] The bond was also found to survive flow rates of 5 ml/min (channel

cross section was: 500 µm width and 100 µm height) without signs of deterioration.
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Figure 5.6: Micrograph of a successfully bonded PDMS fluidic channel onto LiNbO3, using

plasma bonding process. Although the master moulds have increased surface roughness due to the

RIE process, this does not result in poor plasma bonding of the PDMS to LiNbO3.

5.3 Electrical characterisation of the devices and SAW

transmission through PDMS

The SAW devices were characterised using a Network Analyser to obtain the S11

scattering parameter. As discussed in Section 4.4 S11 gives information about what

fraction of the applied power is reflected back to the signal source as a function of applied

frequency. A trough is expected at the fundamental frequency of the SAW device, which

corresponds to the frequency at which the transfer of applied signal into an acoustic wave

is a maximum. If the applied power to the device is not reflected back into the network

analyser, it can be assumed that the majority of the applied signal is used either to generate
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Figure 5.7: A chip with part of the PDMS block ripped off. The plasma bond between PDMS and

LiNbO3 is stronger than the PDMS-PDMS bond.

a SAW, or is lost in phonon generation or through radiative losses, for example.[199]

Although in a single-port device it is impossible to know precisely what fraction of energy

is used to produce a SAW, the numerical value of the resonant S11 scattering parameter

can give a good approximation, which aids in characterising the device efficiency. In this

work, a minimum required S11 value was chosen as -15 dB, which, assuming no losses,

corresponds to more than 97% of energy coupled into the launched acoustic wave.

Initially, devices were fabricated with an arbitrary impedance and then impedance

matched to the 50 Ω impedance using a surface-mount, lumped element circuit. Since

this method relies on simulating the device parameters after matching using a ’black

box’ approach, the actual impedance is rarely actually 50 Ω. Therefore an alternative

approach was introduced in which the IDTs were designed to have 50 Ω impedance (at

the operating frequency). This relies on modelling the IDTs as a delay line consisting of

multiple capacitors and inductors, as described in [200]. This approach allows the IDT

impedance to be controlled through four variables, namely Hw, Rin, f0 and Np. These

correspond respectively to the acoustic aperture width (the overlap length of signal and

ground IDT fingers), the IDT input resistance, the SAW centre frequency and the finger
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pair count. These variables are related through the following equation:

Hw =
1

Rin

(
1

2f0CsNp

)
4k2Np

(4k2Np)
2 + π2

(5.1)

Cs and k2 are the material dependent constants of static capacitance and piezoelectric

coupling coefficient, respectively.[121] Rin was fixed at close to 50 Ω, to match RF

equipment used. As a result, the relationship between Na, the number of finger pairs, and

acoustic aperture width (Hw) could be plotted for a given SAW wavelength/frequency as

shown in Figure 5.8 for a 100 µm wavelength SAW device.

Figure 5.8: A graph depicting how the acoustic aperture varies with finger pair count for 100 µm

wavelength SAW device.

Equation 5.1 and Figure 5.8 can be further used in determining the design constraints of

a SAW device. A design rule of thumb for SAW devices described by Professor S. Datta

in [121] states the aperture width must be at least five wavelengths wide in order to keep

the SAW device efficiency high. Thus a 100 µm wavelength device with more than 65

finger pairs will have higher losses due to signal scattering according to this rule, as a

result device design should be constrained to no more than 65 finger pairs.
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Figure 5.9: A graph of how the aperture width varies with respect to the finger pair count for

100 µm wavelength SAW device.

On the other hand, if the finger pair count and the input impedance are fixed, the aperture

width changes linearly with the SAW wavelength, and the gradient of this function will

be dependent on the material constants Cs and k2.

Figure 5.10 shows the difference in S11 for a lumped element matched 100 µm wavelength

device (blue line) and a device designed to have an intrinsic impedance of 50 Ω (red

line), both at the same SAW wavelength. Although S11 has a higher value for the

lumped element, matched device still qualifies for the minimum −15 dB trough value.

The difference between the reflected signal amplitudes is only 1.2%: with the values

being 0.4% for the lumped-element matched device and 1.6% for the intrinsically 50 Ω

device. It is quite important to note that the lumped element matching circuit seems

to produce a resonator-like S11 response at the 25 - 35 MHz region, this response also

was one of the reasons for moving towards intrinsically matched devices. The resonator-

like response might be due to the resonant response of the LiNbO3 chip, but Ogi et al.

studied LiNbO3 crystals and found various resonant frequencies at around 1 MHz value

for a single crystal with all dimensions of 5 mm.[201] However, the chips used here are
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Figure 5.10: A comparison between a device designed with an intrinsic impedance of 50 Ω (red

curve) and one which has been matched to 50 Ω impedance using a lumped-element matching

circuit.

significantly thinner (0.5 mm thick substrates were used), thus potentially inducing a shift

towards higher frequencies. The impedances and fundamental SAW frequencies of all

intrinsically matched devices fabricated in this work can be found in Appendix B, where

it can be seen that upon fabrication protocol optimisation most of the SAW devices have

impedance between 45 and 55 Ω in the device wavelength range that was used in Chapter

6.
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5.3.1 SAW transmission through PDMS

In order to isolate the SAW IDTs from the liquid within the microfluidic channel, the IDTs

must be located externally to the channel and the SAW must therefore propagate beneath

the PDMS wall before interacting with the liquid. It is therefore important to understand

how the SAW interacts with the overlaid PDMS, and how this interaction depends on the

wavelength of the SAW. Since PDMS is a material with low Young’s modulus [202], it is

expected to elastically dampen the SAW.[148] The 3D printer used here to fabricate the

moulds limits the resolution of the thinnest possible channel wall that can be made in front

of the IDT aperture to 156 ± 9 µm (N = 8 test pieces used to average the channel wall

thickness). In order to assess the PDMS-induced losses, two-port devices were fabricated

to allow measurement of the full scattering parameters (S11, S12, S21 and S22 ) of SAWs

at different wavelengths both with and without a 156 µm PDMS wall positioned between

opposing IDTs. A typical device used in the transmission study can be seen in the Figure

5.11.

Figure 5.11: Image of SAW devices with wavelengths from 60 µm to 125 µm, each with a 156 µm

thick PDMS block plasma bonded between opposing IDTs.

All devices were designed to have 50 Ω impedance and acoustic aperture width between
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0.8 - 1.0 mm to aid the alignment process during the plasma bonding (see Table 5.1).

Table 5.1: Acoustic aperture widths and finger pair count for SAW devices operating at different

wavelengths, with a design impedance of 50 Ω and acoustic aperture between 0.8 and 1.0 mm.

These values were calculated using Equation 5.1.

Device wavelength, µm Aperture width, µm Finger pair count

20 748 20

25 936 20

30 815 25

40 814 30

50 785 35

60 745 40

70 869 40

80 803 45

100 1000 45

125 1030 50

By restricting these two design parameters the characteristic impedance was determined

only by number of finger pairs used in different wavelength devices. Without a PDMS

wall present between the two sets of IDTs, the insertion loss of each device as function of

frequency could be measured. The subsequent introduction of a PDMS wall in between

opposing IDTs, allows assessment of how much of the applied energy is lost within the

PDMS wall. The delay line length between the opposing IDTs was maintained to 20

wavelengths for all devices to reduce the SAW dampening in air to minimum. These

losses were determined to be αloss = 2.1∗10−4 dB/wavelength (less than 1% of the total

losses in the system) due to transmitting a SAW as calculated using Equation 5.2[121]:

αloss
ν̃

= 1.69 ∗ 106(
k2

2Cs
)∣Cy ∣

2 (5.2)
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where ν̃ = 2πλ is the wavenumber, and k2, Cs, Cy are piezoelectric coupling constant,

equivalent dielectric constant and ratio describing particle displacement at the surface

given an applied potential, respectively. These are material dependent constants that can

be found in reference [121].

Figure 5.12a shows the S12 characteristics of devices in air (dashed line) and with a PDMS

wall of 156 ± 9 µm plasma bonded in between opposing IDTs (solid line). The Table 5.2

summarises the peak transmission values and corresponding centre frequency for each

device. The S12 parameters of unloaded, impedance matched devices are consistent to

previously published literature values, e.g. for 125 µm operating wavelength[203, 124]

and for 40 µm operating wavelength[139]. Devices without any impedance matching

tend to report significantly lower S12 values at frequencies similar to the ones used here.

[204, 205, 206]
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Figure 5.12: A Figure showing: (a) S12 characteristics of different wavelength devices in air,

and with a PDMS block between the IDTs, (b) Insertion loss dependence to SAW wavelength for

unloaded (red dots) and loaded devices (blue squares), (c) 3dB bandwidth dependence on SAW

wavelength, and (d) 3dB bandwidth dependence on finger pair count in IDT.
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Table 5.2: S12 characteristics of different wavelength devices in air and with a PDMS wall

between the IDTs.

SAW wavelength, µm S12 value in air, dB S12 with PDMS wall, dB PDMS absorption (ζ), dB

20 -7 -13.7 -6.7

25 -6.7 -12.2 -5.5

30 -6.9 -11.8 -4.9

40 -8.8 -10.4 -1.6

50 -10.2 -11.8 -1.2

60 -7.8 -10 -2.2

70 -7.8 -10.2 -2.7

80 -9.2 -11.3 -2.1

100 -11.4 -12.48 -1.08

125 -14.6 -14.6 -0.7

Figure 5.12b shows three important trends that have previously been described in the

literature, and are essential in order to understand the results from Chapter 6.

The first trend is that longer wavelength devices are observed to have a lower SAW

coupling efficiency. This is especially apparent as the wavelength reaches 80 µm. SAW

device design guidelines state that the substrate thickness should be at least five times

the wavelength of the SAW, which is approximately the distance into the substrate the

SAW is coupled into, to ensure low back-scattering losses from the underside of the

substrate.[121] A device with a substrate thickness less than five times the wavelength of

the SAW will suffer from significant back-scattering of the wave from the bottom surface

of the substrate, which in this case is fixed to a PCB and therefore cannot move freely.

The measured S12 parameters quantify the efficiency of each respective set of transducers

(ηt) as defined by the Coquin and Tiersten[130]. Here the efficiency is defined as the

electric power extracted from the SAW divided by the acoustic power of the wave[130,
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199, 121] and is defined by Equation 5.3

ηt = GQmηm (5.3)

In Equation 5.3 G, Q, ηm are dimensionless factors corresponding to the electrode

efficiency, the electric quality of the transducers and the material efficiency, respectively

and which are each discussed in more detail below.

The electrode efficiency factor is related to the location of the electrodes (top surface

only, or top surface IDTs with metallised bottom of the chip acting as ground IDTs) with

respect to the substrate, and to their metallisation ratio (for mark to space ratio of 1, the

metallisation ratio is 0.5). There are two types of electrode arrangements: the alternate

phase array (used in this work owing to its higher efficiency) in which electrodes are

spaced a half-wavelength apart from each other and are connected to signal and ground;

and the single phase array, in which electrodes are spaced a full wavelength apart, and all

of them are connected to the signal line. In this case, the ground connection is provided by

the rear surface of piezoelectric material. Such an arrangement allows for the application

of higher maximum power to the chip.[130] The electrode efficiency in alternate phase

array is given by (see Reference [130] for a full derivation):

G =
π2

K2K
′

2ε11
(5.4)

where ε11 is the dielectric constant of the piezoelectric material in the direction of SAW

propagation, K2 and K
′

2 are elliptic integrals of the first kind that are used to solve

Jacobian elliptic functions to determine the surface potential on the electrodes. In this

case, K2,K
′

2 ∼ λSAW , and therefore G ∼ 1
λ2SAW

.

Electric quality of the transducers can be obtained from the first principles, and the

equation for the transducer electric quality Q is given by:

Q =
1

ω0CeqRt

(5.5)
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In Equation 5.5 the ω0 is resonant angular frequency (ω0 = 2πf0 where f0 is the

fundamental SAW frequency), Ceq is the equivalent circuit capacitance of the transducers

and Rin is the impedance of the transducers, which here we fix cat 50 Ω. The equivalent

circuit capacitance, Ceq, can be calculated by using the electromechanical coupling

coefficient, k and the static capacitance, Cs of the piezoelectric material, and is dependent

on the bandwidth of the device.

Finally, the material efficiency, ηm is dependent on the cut of the piezoelectric crystal

and the piezoelectric coefficients of the material, and is therefore independent of the

wavelength of the SAW.

By combining Equations 5.3 to 5.5, it can be seen that the transducer efficiency

should be dependent on the SAW wavelength according to: ηt = GQmηm ∼ 1
λSAW

.

Considering we can only measure S12, it is not possible to calculate the absolute

transducer efficiencies, thus only relative transducer efficiency comparisons between

different wavelength transducers can be performed. Note that the S12 peak values should

be expressed as fractions not in dB here. Figure 5.13 shows a first-degree polynomial fit

to the first four data points of the S12 plot.

Figure 5.13: S12 data as a function of SAW wavelength with a linear fit (black line). R2
= 95.2%

for the linear fit.
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The second trend observed in Figure 5.12b relates to shorter wavelength devices for the

PDMS wall tends to dampen more energy from the SAW. This can be explained by the

attenuation length of the SAW defined as the distance into an overlaid material over which

the wave amplitude decreases by a factor of e with respect to its initial amplitude.[199]

The attenuation length of the SAW is described by [148]:

lSAW =
ρsubvsub
ρmedvmed

λSAW (5.6)

In Equation 5.6 the ρ and v terms correspond to density and velocity of sound in the

substrate (subscript sub) and medium (subscript med) respectively, while λSAW is the

SAW wavelength.

The third trend shown in Figure 5.12c and Figure 5.12d is that, with increasing number of

finger pairs, the SAW transmission bandwidth becomes smaller and therefore supports a

reduced range of frequencies around the fundamental frequency. Figure 5.12d shows the

bandwidth dependence on the finger pair count in the bare, ’in air’ devices illustrated in

Figure 5.12a.

In summary, although the shorter wavelength devices exhibit a higher SAW coupling

efficiency between the applied power and the SAW mechanical energy, they exhibit

increasing attenuation in the PDMS, which dominates their response. On the other hand,

longer wavelength devices have significantly longer attenuation lengths and therefore

experience significantly reduced dampening as a result of interaction with the PDMS, but

these devices suffer from increased back-scattering from the rear surface of the substrate.

As a consequence, devices operating at wavelengths between 40 and 70 µm tend to offer

the best compromise, and are likely to produce the most efficient micropumps.
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5.4 Early work on the SAW-micropumps

The initial work on the SAW-micropumps was based solely on SAW devices operating at

100 µm. The channel design can be seen in Figure 5.14, which utilises circular channel

(later referred to as a ”racetrack” layout), similar to that described by Langelier et al.[124].

As the SAW passes beneath the liquid, it will transfer some of its mechanical energy to

liquis as described in Figure 5.14b. To characterise the performance of the microfluidic

Figure 5.14: Schematic of the initial concept of the SAW-micropump, and the proposed working

mechanism. The SAW is generated by the IDTs, transmitted through the PDMS (where it is

dampened, and reduced in amplitude), and finally coupled into the liquid, where the liquid absorbs

the SAW energy. See the inset. N.B. Not to scale, a typical amplitude of a SAW is around 2 nm.

pump, the velocity and the position of fluorescent tracer particles were recorded as they

pass through the microfluidic channels, as described in Chapter 4.

From the tracked particle positions, it is possible to obtain a velocity profile for the

flow across the width of each channel, which in turn allows the pressure gradient and
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the volume flow rates to be indirectly calculated and compared for each microfluidic

pump.[22] From the shape of the velocity profile, it is also possible to determine whether

the flow is pressure-driven, as described by Schmid et al.[148] The velocity profile is

given by:

u(y, z) =
4G

µw

∞

∑
n=1

(−1)n+1

β3
n

(1 −
cosh(βnz)

cosh(βn0.5h)
) cos(βnz) (5.7)

Here, µ is the viscosity of the liquid, w is the width of the channel, z is the height within

the channel at which the measurements were taken, h is the total height of the channel

and β is given by β = (2n − 1)π/w. The final term, G, is the pressure gradient, which

can be determined by fitting Equation 5.7 to the experimental data, using G as a variable.

For example, Figure 5.15 shows G (black line) fitted to experimental data (red dots) for

a 100 µm wavelength SAW device powered at 0.5 W. The observed parabolic velocity

profile is confirmation that we are observing a pressure driven flow. This result is expected

considering that the acoustic force is inducing a pressure difference in the channel.[22]

Figure 5.16 shows the pressure gradient dependence on applied power for a 100 µm

wavelength SAW device within the same channel. The data (red line) is fitted to a linear

line (black line).

The linear relationship observed in Figure 5.16 is consistent with previously reported

data[148] in which the applied power was varied across a similar range. However, owing

to the small hydrodynamic radius the pressure gradients are an order of magnitude higher

than those reported by [148], although at an order of magnitude smaller observed flow

velocity.

The volume flow rate, Q, can be derived from Equation 5.7[22], and is given by:

Q =
8Gh

µw

∞

∑
n=1

1

β4
n

(1 −
2

βnh
tanh(

βnh

2
)) (5.8)

The fits of pressure gradient, such as that shown in Figure 5.16 allow the volume flow rate
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Figure 5.15: The average velocities of tracer particles (red dots) measured as a function of position

across a fluidic channel of cross-sectional dimensions h = 100 µm,w = 500 µm when pumped by

a 100 µm wavelength SAW device at 0.5 W applied power fitted to the pressure gradient, G (black

line). R2
= 91% for the fit.

generated by the 100 µm wavelength SAW devices to be calculated for different applied

powers, as shown in Figure 5.17.

As a consequence of the small microfluidic channels used here, the volume flow rate is

small and compares poorly to previously published values, e.g. 150 µl/min at applied

pressure of 4.8 Pa[148]. Therefore, the micropump described in this chapter can only

be applied to situations in which it is advantageous to have small microfluidic channel

dimensions, but in which there is no need for high volume flow rates such as infusion

with microneedles[207].

The main limitation of achieving higher flow velocities (and consequently higher pressure

gradients) seems to be the relatively low component of diffracted acoustic wave energy

which lies parallel to the fluid flow propagation direction (the x-component shown
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Figure 5.16: The pressure gradient dependence on applied power for 100 µm wavelength device.

R2
= 87.6% for the linear fit.

in Figure 5.14). This agrees with with the theoretical calculations of Vanneste and

Buhler[179], who calculate that the streamlines in the vertical direction (corresponding

to the z-axis in Figure 5.14) are an order of magnitude stronger than the streamlines lying

parallel to the direction of SAW propagation (y-axis in Figure 5.14).

5.5 Conclusions

This chapter has examined the key aspects of cleanroom fabrication of lithium niobate

devices highlighting the need for a good undercut to achieve an optimal fabrication

yield. The stereolithography 3D printer was identified as a critical equipment for the

fabrication of microfluidic channel master moulds, which allowed swift prototyping of

multiple channel designs at a significantly lower cost than alternative SU-8 master mould

fabrication process in the cleanroom. As a result, it was possible to conduct multiple
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Figure 5.17: The volume flow rate dependence on applied power for 100 µm wavelength device.

R2
= 87.6% for the linear fit.

design iterations before settling on a racetrack-like design with which to investigate SAW

pumping efficiency.

During the project, devices initially required lumped-element circuit impedance matching

to 50 Ω, which corresponds to the impedance of the device driving electronics. Although

this process significantly enhances the S11 scattering peak value, the peak form often tends

to be distorted, because the impedance matching is done for a small range of frequencies

around the resonance value. Therefore, the next iteration of SAW devices were designed

to have intrinsic 50 Ω impedance.

The effect on SAW losses of introducing a PDMS wall in front of the IDTs was

then investigated, in an arrangement, which mimicked the design of subsequent PDMS

microfluidic channels, in order to identify an optimal SAW wavelength to produce the

maximum pressure gradient and volume flow rate by the SAW microfluidic pump. A

compromise between SAW-fluid interaction length, and increased losses within the PDMS
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suggest an optimal SAW wavelength will lie in the range of 40 - 60 µm.

Finally, the operating principles of a SAW-micropump were discussed using a theoretical

model outlined by Tabeling [22] that allows calculation of the pressure gradient and

flow rate for a given micropump, from measurements of the flow profile taken across

the channel.

Although a working concept of SAW-micropump has been demonstrated, due to relatively

low achieved flow velocity and volume flow rates, it was not feasible to integrate the SAW-

micropump into a more complex system, such as an on-chip sorting device. As a result, a

different approach to harnessing SAW power by utilising three-dimensional microfluidic

channels will be explored in Chapter 6.
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Chapter 6

A more efficient SAW micropump

6.1 Introduction

The previous Chapter explained the basic techniques used for characterising SAW

devices, both electrically (by analysing the scattering parameters obtained from a Network

Analyser) and mechanically (by measuring flow profiles across an integrated microfluidic

channel). The SAW micropump performance presented in Chapter 5 was limited by

the assumption that the majority of motion induced in an overlaid fluid by the SAW

would lie in parallel to the SAW propagation direction. This Chapter sets out to improve

significantly on this performance by exploiting the three-dimensional nature of SAW

interaction with an overlaid fluid, through the introduction of 3D fluidic channels.

This three-dimensional interaction between SAW and an overlaid fluid is analysed

theoretically and experimentally by using the previously performed electrical

characterisation of the SAW devices to characterise the performance of different

wavelength SAW-pumps for pumping fluid around three-dimensional microfluidic

channels.

Finally, this generation of SAW pumps is compared to published SAW-based micropump
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performance, and form the basis of a publication[62].

6.2 SAW-liquid scattering angle and its importance in

designing a micropump

To increase the volume flow rate and linear flow velocity of a SAW-based micropump,

it is important to maximise the energy coupled from the SAW into the overlaid liquid.

When the SAW reaches a solid-liquid interface, it is elastically scattered according to

Snell’s law owing to acoustic velocity mismatch between the water and substrate.[148]

The scattering angle of a SAW into water (also called Rayleigh angle) can be calculated

Figure 6.1: Measurements of a normalised velocity field in liquid, overlaid with a schematic of a

SAW propagating along the surface of a LiNbO3 substrate. As can be seen the SAW is scattered

at an angle into the liquid, which can be obtained from the Snell’s law. Reprinted with permission

from [149] ©2014 American Physical Society.
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using Equation 6.1, and is approximately 22° from the surface normal calculated using

SAW velocity on LiNbO3 substrate (vSAW = 3989 m/s) and the sound velocity in water

(vH2O = 1498 m/s).[148]

θ = arcsin
vH2O

vSAW
(6.1)

The SAW scattering angle is confirmed experimentally by Dentry et al. who studied SAW-

liquid (water) coupling at different frequencies.[149] Figure 6.1 shows a schematic of a

SAW coupling to water. The colourmap region shows a normalised liquid velocity field

measured experimentally and averaged over 500 frames, where blue represents regions

with a low-velocity, and red represents the highest velocity field. The angle between the

normal and the middle of the maximum area is 22.3° corresponding well with the expected

values. From Figure 6.1 it can be seen that majority of the SAW energy in the liquid is

in an upwards direction, which explains why the pump described in Chapter 5 produces

such a low flow velocity. Figure 6.1 also shows the volume of interaction between the

SAW and the liquid, i.e. the region in which the SAW is generating fluid flow (sometimes

referred to as the ”beam”).[208, 209] This volume, and consequently the speed of the

actuated liquid, are highly frequency dependent. The distance that the SAW propagates

in to the liquid before being fully attenuated is inversely proportional to the frequency of

the SAW, meaning that short wavelength SAWs have a higher power density.

To harness most of the SAW energy, the ”launch region” of the microfluidic channels

should be arranged normally with respect to the plane of the substrate as illustrated in

Figure 6.2. This in itself is a technical challenge considering the inherently planar way in

which microfluidic channels are commonly fabricated as discussed in Chapter 5. The next

section is therefore dedicated to explaining the procedure for making three-dimensional

microfluidic channels.
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Figure 6.2: A schematic of the proposed SAW-pump designed to exploit the SAW scattering angle

of 22°. Since the fluid path goes upwards, the SAW beam has enough room to generate a high-

velocity stream of liquid. By utilising this design, it is possible to exploit both the vertical (Fy)

and horizontal (Fx) components of the acoustic force, the former of which is larger by a factor of

2.5 almost.

6.3 Three-dimensional microfluidic channel fabrication

The conventional way to construct three-dimensional microstructures is by using

multiphoton lithography (commonly referred to as two-photon lithography). This method

can produce high resolution, three-dimensional patterns in photoresist, such as the ones

shown in Figure 6.3. The resolution of the structures commonly reported is on the order

of 1 µm.[210] However, these systems rely on very accurate mirror movements and,

in particular, on mostly proprietary photoresists, thus making these systems expensive,

and often custom built. [210, 211] It is possible to use multilayer PDMS structures to

obtain three-dimensional microfluidic channels cheaply.[78, 212] However, most of the

previously reported multi-layer PDMS structures use circular vias to connect to the top
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Figure 6.3: Images of high-aspect ratio structures produced by multi-photon lithography system.

Figure reproduced from [210] with permission from Springer Nature.

layer(s) of the structure[78, 213], which are unfit for the use here as the effective thickness

of the wall in front of the SAW aperture would not be constant due to the curvature of the

via. Stereolithography 3D printing has been previously used to prepare two-[186] and

three-dimensional[185] microfluidic channel master moulds. However, in this work, it

was not possible to replicate the protocol described by Chan et al.[185] with a sufficient

yield although the channel dimensions used were on the same order.

Instead, the method described by Chan et al.[185] was combined with another method

called ESCARGOT introduced by Saggiomo and Velders[187]. The ESCARGOT method

is based on immersing acrylonitrile butadiene styrene plastic (ABS, commonly used in

fused filament fabrication (FFF) 3D printing) rods into PDMS, followed by curing the

PDMS and finally dissolving the ABS plastic away leaving an enclosed, 3D microfluidic

channel. The particular protocol developed here is thoroughly described in Chapter 4.

A schematic of the channel mould design is shown in Figure 6.4. Firstly, the grey

areas in Figure 6.4 (labelled ”Section A”), were 3D printed as a continuous one mould

containing the lower section of the racetrack, alongside four vertical sections: two to

serve as fluid inlets/outlets for loading the channel, and two to provide the raised return

path for the fluidic channel. An ABS tube was then aligned manually to the two vertical

square pins under a stereomicroscope, and temporarily glued using acetone, producing
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Figure 6.4: A schematic of the three-dimensional racetrack design mould used here to characterise

the SAW pump. Channel dimensions in the planar regions are: 0.5 mm width and 0.1 mm height.

the three-dimensional moulds as shown in Figure 6.5. Once the PDMS had been de-

gassed, cast, cured and peeled from the moulds, the ABS rods were dissolved in acetone

whilst sonicated in an ultrasonic bath. Although PDMS is known to swell when exposed

to acetone[188], no swelling during the sonication was observed experimentally and

furthermore, this process is reversible. To evaporate any residual acetone from the PDMS

block, the samples were incubated at 65° for 30 minutes. Figure 6.6 shows the final

PDMS channel following dissolution of the ABS rods. The three-dimensional profile of

the channel can be clearly seen in the picture. The cross-sectional area of the ABS rods

was matched that of the rest of microfluidic channels in order to match the flow resistance

of the channels, and therefore ensure that the particle velocity is uniform throughout the

channel.

6.4 Micropump characterisation

To thoroughly understand and characterise the performance of each SAW-micropump, it

is important to understand how much applied energy is converted into a SAW energy. The
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Figure 6.5: A photograph of a 3D printed mould prior to PDMS casting containing ABS tubes

temporarily glued to the vertical square pins, the design of the channel was used in Chapter 7.

discussion in Chapter 5, Section 5.3 investigates losses associated with SAW absorption

into PDMS microfluidic channel wall, by analysing the S12 parameters values for different

wavelength devices, both in air and with a PDMS wall between the IDTs. However, the

SAW-micropumps used here employ only a single SAW-generating IDT with a PDMS

wall in front of the aperture. However, since the IDT design is identical to those discussed

in Chapter 5, it is a reasonable assumption that the S12 and S21 parameter values are the

same for devices of equivalent wavelength. The SAW power as a fraction of the applied

power can be estimated to be half of the S12 value for a 2-port device, plus the additional

damping introduced by the PDMS. Note, this calculation must be performed in dB to

allow linear addition of the PDMS absorption. Therefore, following the discussion in

Chapter 5, the relative transducer efficiency (including the PDMS wall in front of the
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Figure 6.6: A picture of a PDMS block with ABS rods dissolved in PDMS, the design will be

later used in Chapter 7.

acoustic aperture), ηrt, is given by [in dB]:

ηrt =
1

2
S12 + ζPDMS (6.2)

Figure 6.7a shows the relative transducer efficiency as a function of wavelength in dB (red

dots) and Figure 6.7b - in a fraction (blue dots). The highest transducer efficiency occurs

at a SAW wavelength of 40 µm, and corresponds to 25% of the applied energy being

transmitted through the PDMS wall. Consequently, at 0.5 W applied electrical power,

approximately 125 mW of power can be expected to be coupled into the liquid from the

SAW.

The proportion of SAW energy absorbed by an overlaid liquid, α, can be estimated using

Equation 6.3, which relates the ratio of the SAW amplitudes before coupling into the

fluid and after penetrating a distance L = 1.4mm (this distance is set by the height of the

vertical launch region in the fluidic channel, section A in Figure 6.4):

α = 1 − e
−β∗L
λSAW (6.3)

In Equation 6.3 L is the penetration distance of the SAW into the liquid after Rayleigh
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Figure 6.7: A plot of the relative transducer efficiency as function of the wavelength in (a) dB

(red dots) and (b)in a fractional form (blue dots). The dashed lines show the fraction of SAW

absorbed by the overlaid liquid within distance L = 1.4mm, as a function of the SAW wavelength,

calculated using Equation 6.3

.
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scattering, λSAW is the acoustic wavelength, and β is the wavelength-dependent

attenuation coefficient of a sound wave in liquid, given by:

β =
bω2

2ρc3
(6.4)

where ρ is the density of the liquid, and b = (43µ + µo), and µ and µo are the shear and

bulk viscosities of the liquid, respectively.

It is important to note the exponential behaviour of the liquid absorption, as this implies

that shorter wavelengths should have significantly higher pumping efficiency. From this it

is possible to extract what fraction of SAW power is coupled into the liquid, and therefore

how much of energy is converted into mechanical energy of the liquid in the system.

The more efficient SAW devices were characterised in the same fashion as the devices

described in the Chapter 5. The velocity of tracer beads was measured as a function of

position across the channel width to produce a flow profile for each device, such as that

shown in Figure 6.8 for an operating wavelength of 40 µm. The flow profiles for the rest of

devices can be found in Appendix C. The velocity profiles of all the different wavelength

devices measured had the flow profile as seen in Figure 6.8, and the flow in all devices can

therefore be said to be pressure-driven.[22] The velocity of particles in these devices was

found to be over an order of magnitude higher those measured in Chapter 5. In fact, the

speed of the beads in DI water was too high to be measured using the available camera,

which was limited to recording at 62 frames per second. As a result, the particles were

suspended in a DI water and ethylene glycol mix (3:1-mole fraction), to increase the liquid

viscosity by 3.6 times and therefore to slow the particles velocities.[191] Addition of

ethylene glycol also will slightly change the Rayleigh scattering angle, Hebert Jr reported

that the acoustic velocity for a 4:1 mole fraction mix is 1590 m/s.[214] Therefore, using

this value it can be estimated that the Rayleigh scattering angle will be about 23° (up

from 22.3° for DI water). As can be seen from Equation 5.7, the velocity of the beads

is inversely proportional to the viscosity of the fluid. This alteration to the flow solution

had the additional benefit of decreasing the velocity measurement error. This is mainly
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Figure 6.8: A velocity profile of a 40 µm wavelength SAW device with an input power of 0.25

W, and beads suspended in DI water ethylene glycol mix. R2
= 98.7% for the fit.

due to reduced bead sedimentation rate, which resulted in fluorescent beads remaining

at the same Z position throughout the measurement, which consequently decreased the

variation in the speed of the beads arising from changes in height. This can be understood

by considering the equilibrium forces acting on a bead suspended in liquid[215]:

Fg = Fdrag =
4

3
πgr3(ρb − ρl) (6.5)

where Fg is the gravitational force acting on a bead, Fd is the drag force, r is the particle

radius, g = 9.81 m/s2 is gravitational acceleration, ρb is the density of the bead and ρl is

the density of the liquid. As the bead reaches its terminal velocity (vt (which is almost

instantaneous in a small-Reyonold’s number system like the one described here), the drag

force on the bead can be described by the Stokes drag force[216], and expressed for the

terminal velocity:

vt =
2

9

(ρp − ρl)

µd
gr2 (6.6)

where µd is the dynamic viscosity of the liquid.



Chapter 6. A more efficient SAW micropump 122

The pressure gradient of different wavelength SAW devices was calculated as a function

of applied power, as shown in Figure 6.9.

Theoretically it has been found that the maximum velocity of the fluid from SAW

attenuation is readily achieved at low input powers, yet it does not result in high pressure

gradient (and consequently volume flow rate) across the channel because the beam volume

(volume of fluid in which the SAW interacts with the overlaid liquid) of SAW is little.

Increased SAW power leads to increase in beam volume (yet the maximum fluid velocity

in the beam stays the same), which results in higher pressure gradients.[149] Therefore,

increase in applied power leads to higher pressure gradients generated, as seen in Figure

6.9.

The relationship between applied electrical power and pressure gradient is observed to be

linear. This is expected, since the relationship between applied electrical power, and the

resulting acoustic power is linear and the Stokes flow in turn varies linearly with acoustic

power.[148] However, it is worth noting that the slope for each of these linear functions

is different. This means that at a fixed input power, the delivered pressure gradient will

be a non-linear function, thus there is a definite peak performance wavelength, which in

the case of chosen channel geometry and substrate is at 40 µm. The non-linear nature of

delivered pressure gradient function with respect to SAW wavelength could be attributed

to the exponential function of liquid attenuation with respect to SAW wavelength.

It is important to note that devices operating at wavelengths of 40 and 60 µm were only

measured up to 0.5 W since the application of higher powers was observed to cause

excessive bubble formation in the liquid. This behaviour can be attributed to cavitation

caused by high pressure gradients generated at these wavelengths.

Figure 6.10 shows the dependence of pressure gradient on SAW at a fixed applied power

of 0.5 W. The total energy coupled into the fluid can be assessed by multiplying the

calculated energy coupled from the SAW into the overlaid liquid (α, Equation 6.3) by

the measured relative transducer efficiency (ηt), and is shown as blue crosses in Figure



Chapter 6. A more efficient SAW micropump 123

Figure 6.9: Pressure gradient plotted with respect to the input power for multiple devices. A linear

function was fitted to each of the wavelengths, R2 for the linear fits are as follows: R2
125µm =

96.9%, R2
100µm = 83.0%, R2

80µm = 88.2%, R2
70µm = 87.3%, R2

60µm = 86.9%, R2
50µm = 72.1%,

R2
40µm = 93.7%, R2

125µm = 98.3%.
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Figure 6.10: Pressure gradient at 0.5 W input power for different wavelength devices (red dots).

The blue crosses show the product transducer efficiency and the liquid absorption coefficient; this

product shows the fraction of the applied power coupled into the liquid.

6.10. Although the generated pressure gradient is expected to be proportional to the

total energy coupled into the liquid, a large discrepancy is observed at a 30 µm SAW

wavelength. This may be explained by considering that the interaction volume between

the diffracted SAW is signficantly reduced, which results in reduced surface area over

which viscous dissipation of the momentum occurs resulting in lower flow velocities. This

is demonstrated in Figure 6.11 which shows the measured interaction volume between the

SAW and the liquid as a function of SAW frequency.[149] The SAW interaction volume

is observed to decrease significantly at frequencies above 200 MHz (corresponding to

wavelengths below 40 µm), which correspondingly decreases the maximum fluid velocity.

It is also important to note the 60 µm device that performs better than expected.

Considering that the impedance and S11 values of the 60 µm devices are similar to those

of 50 and 70 µm, and that the relative transducer efficiency does not have an increase at

60 µm, most likely the increase of the increased pressure gradient is a geometrical effect

of SAW scattering or resonance associated with the geometry of the three-dimensional
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Figure 6.11: The SAW beam volume dependence on the frequency. (a) 19.7 MHz, (b) 54.2 MHz,

(c) 122 MHz, (d) 240 MHz, (e) 490 MHz, and (f) 936 MHz. The power levels for frequencies

were matched for comparison, and the velocity of the liquid was normalised with respect to the

maximum velocity measured for the particular frequency. (a) US = 7 mm/s, P = 7.4 mW; (b) US =

23 mm/s, P = 5.8 mW; (c) US = 47 mm/s, P = 2.7 mW; (d) US = 27 mm/s, P = 3.2 mW; (e) US =

42 mm/s, P = 7.5 mW; and (f) US = 28 mm/s, P = 0.8 mW. Reprinted with permission from [149]

©2014 American Physical Society.

channels. This could potentially be tested by changing the width of the PDMS wall in

front of the aperture, and checking wether the peak still persists.

To quantify the efficiency of the SAW pumps reported here and therefore to allow direct

comparison with literature values, the delivered power, Ppump, defined as the energy

imparted on the fluid to increase its velocity and pressure can be calculated using Equation

6.7:

Ppump = pQ (6.7)

where Q is the volume flow rate given by Equation 5.8, Chapter 5, and p is the pressure

drop across the fluidic channel:

p = Gl (6.8)
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where G is the pressure gradient derived by fitting Equation 5.7 to the measured flow

profiles, and l is the contour length of the microfluidic channel, which for all channels

used here is equal to 15 mm. The efficiency of the pump, ηpump is then determined by

using Equation 6.9:

ηpump =
Ppump
Pe

(6.9)

where the Pe is the applied electrical power. However, as discussed in Chapter 5, the

applied electrical power is not the actual power coupled into the liquid. Instead the product

of the transducer efficiency, ηt and the liquid absorption coefficient, α (as shown in Figure

6.10) is more appropriate quantity to use to calculate the SAW pump efficiency. The

relative pump efficiency, ηp.rel is therefore given by:

ηp.rel =
Ppump
ηtαPe

(6.10)

Table 6.1 provides values for the transducer efficiency, the delivered power at 0.5 W input

power, the pump efficiency with respect to the applied electrical power and the pump

efficiency with respect to the power absorbed by the liquid, for devices operating at all

design wavelengths.

Figure 6.12: A plot of the relative pump efficiency with respect to SAW wavelength.
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Table 6.1: Various characteristics of the more efficient SAW pumps.

SAW

wavelength,

µm

Transducer

efficiency, %

Delivered

power

(Pi = 0.5 W ),

nW

ηpump,

∗10−8%

ηp.rel,

∗10−7%

30 14.6 7.00 1.4 2.2

40 25.1 51.39 10.3 15.2

50 23.4 15.45 3.1 7.3

60 24.5 17.74 3.5 11.1

70 21.9 3.99 0.8 3.7

80 21.4 2.67 0.5 3.1

100 21.0 1.01 0.2 1.9

125 15.8 0.70 0.1 2.9

The overall behaviour of the pumps shown in Figure 6.12 follows the relationship seen

in Figure 6.10, as expected. The best performing pump is observed at an operating

wavelength of 40 µm, which agrees with previous assessments of relative transducer

efficiency and SAW-liquid coupling efficiency.

It may also be seen from Figure 6.12 and Table 6.1, that the liquid absorbs more than

six orders of magnitude less power than the SAW-pump outputs, suggesting that the

flow generation is still a highly inefficient process. The observed fluid flow velocity

at the source of the SAW, i.e. within Section A in Figure 6.4 is at least an order of

magnitude higher than the steady-state flow velocities measured at other locations within

each channel, although the exact value cannot be measured as the liquid velocity is too

high for the equipment used here. Measurements with very high frame rate cameras (more

than 1000 frames per second) suggest the fluid velocity in the vortices is on the order

of 100 mm/s.[149] Figure 6.13 shows that, within this launch region, flow are vortices
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observed.

Figure 6.13: A captured image of vortices formed in the liquid at the point of entry (top of the

image) into the microfluidic channel, i.e., at the top of Section A, Figure 6.4.

The velocity of particles within these vortices is significantly higher than the linear

velocity measured around the channel, suggesting that the conversion of SAW power into

linear flow remains highly inefficient.

The pressure difference driving the vortices generated by the SAW can be calculated by

integrating the volume force generated by the SAW along the height of the channel. The

volume force is caused by the damping of SAW which happens through a relaxational

dissipation.[148] The integration is done along the SAW propagation axis, which is along

the Y-axis as shown in Figure 6.2b:

Fy =
2Pa

cAlacosθ
e−

2x
la (6.11)

In Equation 6.11 c is the velocity of sound in liquid (water in this case), la is attenuation

length of the SAW in the liquid (calculated using by Equation 5.6), Pa is the acoustic
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power of the SAW, given by

Pa = ηtPe (6.12)

Finally, the pressure difference, ∆p, is given by:

∆p = ∫

h/cosθ

0
Fy dy (6.13)

where h is the height of the channel at which point SAW interacts with liquid, in this case

h = 1.3 mm, corresponding to the height of Section A in Figure 6.4.

For a 40 µm wavelength device driven at 0.5 W input power, the pressure difference

generated by the SAW is: ∆p ∼ 3200 Pa. In comparison, pressure calculated using

Equation 6.8 is approximately 145 Pa, again confirming that the mechanism of liquid

momentum dissipation is not an efficient process. The values found here are in agreement

with those measured by Schmid et al., who also observed more than an order of magnitude

difference between the vortex-driving pressure and the effective pump pressure measured

around a fluidic channel.[148]

Considering the calculations done in Equation 6.13 and Table 6.1 it is clear that not

all of applied energy to the IDTs is converted to fluid flow, which brings a discussion

on the possible loss mechanisms. More importantly, seeing that there is excessive

bubbling observed in 40 and 60 µm devices, a question might arise wether the key energy

dissipation mechanism is not heating of liquid boiling the liquid after some time. The

racetrack design hols approximately 1 µl of liquid, thus the energy required to boil such

small amount of fluid indeed is small (comparable to the energy input per second of the

device). However, there are two main aspects to the argument that shows that the liquid

is not heated to boiling temperatures during micropump operation. First of all, is that 50

and 70 µm devices have similar transducer efficiencies (and therefore losses), yet these do

not seem to produce the liquid boiling, and can be operated at even higher input powers

than 40 µm devices without causing bubbles. Secondly, although the liquid mass is small,

the system consists of more than just liquid, thus the lost power would also heat up other
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parts of the system, for example: the PDMS block will absorb large part of SAW energy

and consequently will heat up, but considering it has much larger volume than the liquid,

the temperature increase will be small. More importantly, as discussed in Chapter 4 the

LiNbO3 chip is glued to plated-via PCB using thermally conductive epoxy, and the PCB

is mounted onto a large brass block during the experiments. The brass block the acts as

a heatsink, preventing the heating of the system. Therefore, the bubble generation in the

40 µm and 60 µm devices, most likely can be associate to cavitation rather than liquid

boiling.

6.5 Comparison with literature values

Although the results described in this Chapter are promising and the pump characteristics

demonstrate significantly improved performance with those described in Chapter 5, it is

important to put the SAW pump described here in the context of the previously published

work on SAW micropumps.[62] Figure 6.14 shows the delivered power gradient with

respect to applied power for multiple of the devices investigated here, in comparison

with the best performing literature values to date. A more thorough review of previously

published work can be found in Chapter 3; here only the results are discussed. Note

that instead of comparing the delivered power, instead the delivered power gradient is

used as the basis for comparison. This is because the delivered power is a function

of pressure (see Equation 6.7), which itself is dependent on the microfluidic channel

geometry (specifically the total channel length, as seen in Equation 6.8); thus it is not

an objective characteristic.

SAW micropumps which do not exploit the vertical component of the scattered SAW,

including those presented in Chapter 5, alongside those published by Langelier et al., are

seen to perform significantly worse than the pumps detailed in this Chapter.

Furthermore, the system described by Schmid et al. also exhibits a low delivered power
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Figure 6.14: A comparison of previously published work with the results presented here. The

output power of the pump has been converted to power per unit length to factor out the geometry

of the channels and make an accurate comparison.

gradient in comparison with other results. This can be attributed to the reported low

relative transducer efficiency ηt = −11.1 dB[148], which are thought to arise from high

losses introduced at the water and glass interfaces through which the SAW must couple

before finally interacting with the liquid to be pumped.

Similarly, the SAW pump described by Dentry et al. [159] was found to perform worse at

low input powers, because the SAW has to be first coupled through an intermediate water

droplet before interacting with the microfluidic channel. This layer of water is observed

to dampen the SAW without contributing to the acoustic streaming (i.e. liquid pumping),
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the loss for 122 MHz device due to the water layer can be estimated using Equation 6.3,

α = −6.65 dB. At higher powers, the system reported by Dentry et al. performs better than

the system reported here, possibly through use of a high-power SAW effect not previously

described.[159] One of the reasons for the non-linear performance of the pump at high

input powers could be attributed to vibrations of the water droplet (or the piezoelectric

substrate), which cause peristaltic motion of the droplet thus aiding the liquid pumping.

6.6 Conclusions

In this Chapter it has been shown that a SAW interacts with an overlaid liquid vertically

from the surface. Consequently, the utilisation of planar microfluidic channels will

produce inefficient micropumps such as those discussed in Chapter 5. To harness

the majority of the SAW energy, a protocol to develop three-dimensional microfluidic

channels has been described here. This protocol allows the preparation of three-

dimensional microfluidic channels cheaply, and in a single PDMS cast, which allows

diffraction-free imaging of tracer particles flowing around the channels.

Furthermore, different wavelength SAW pumps were studied with respect to their relative

transducer efficiency, fluid absorption characteristics, generated pressure gradient and

other pumping characteristics. The best performing devices by far were those operating

at 40 µm wavelength, which could produce 10 kPa/m pressure gradients at low input

powers of 0.5 W. The low power consumption of these devices is especially important

when considering the integration of SAW micropumps into point-of-care devices, which

should ideally be battery operated.

An analysis of SAW damping by an overlaid liquid was performed, which explained

why shorter wavelength devices tend to perform unexpectedly poorly. It was confirmed

that the mechanism of SAW acoustic streaming, i.e. viscous dissipation of the liquid

momentum, is a highly inefficient process, a conclusion supported by the fact that the
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pressure generated by the source of the SAW launch region is on the order of 3 kPa,

whilst the measured effective pressure contributing to linear fluid flow is only 145 Pa

(assessed for 40 µm wavelength devices).

Finally, the SAW pumps presented here were compared with previously published

equivalent devices. The delivered power gradients achieved here are an order of

magnitude higher than any previously reported SAW micropumps at low input powers (up

to 0.5 W). As a result, it can be concluded that this pump design represents significant step

forward in the use of SAWs as a means to generate liquid flow in real-world applications,

and this was the primary goal for this thesis.

The following Chapter demonstrates applications of the developed SAW micropumps,

including their use as an on-chip fluorescently activated cell sorting (FACS) system.
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Chapter 7

Advanced manipulations of fluid flow

on chip

7.1 Introduction

In the previous two chapters, the use of SAWs to provide fluid pumping within

microfluidic channels was discussed from the perspective of electrical characterisation

and fluid dynamics. Following improvements in IDT design, alongside appropriate

selection of SAW operating wavelength (throughout this Chapter - 40 µm), and through

utilisation of three-dimensional microfluidic channels, a SAW micropump was developed

capable of producing delivered power gradients that exceed previously published values

by an order of magnitude, whilst operating at low input powers.

The next step in this work is to demonstrate the versatility of these pumps at controlling

more complex fluid flows, such as that required for an on-chip sorting device, by creating

arrays of individually addressable IDTs.

The first step in this process was to characterise the chosen SAW pump design in terms

of its response time, i.e. the time it takes for the pump to switch between different liquid
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velocities.

This was next extended to demonstrate hydrodynamic fluid flow manipulations, including

flow focusing and flow shifting. Flow focusing, for example, plays a vital role in on-chip

particle sorting, as it is necessary to confine the material of interest to a small region

of space before sorting to ensure high enrichment levels. In order to demonstrate the

concept, fluorescent tracer particles are used throughout this Chapter to characterise fluid

flow. Additionally, flow shifting is demonstrated in which the lateral position of a focused

stream of fluorescent tracer particles is altered across the width of the channel.

The penultimate section of this chapter introduces two different pump array designs which

are used to demonstrate the concept of on-chip particle sorting using SAW pumps, and to

characterise the force exerted on the particles travelling down the centre of the channel.

The Chapter culminates in a discussion of achieved fluid shifting rates (and consequently,

the achievable particle sorting speeds) in comparison to theoretically predicted limits.

7.2 Fluid response time

To build an on-chip sorting system, it is important to understand how the fluid velocity

can be altered and on what timescales this happens. These timescales are governed by the

fluid response time, which defines the minimum transition time between fluid velocities in

a given system. For example, when using a conventional syringe pump, the response time

varies from a few seconds up to several minutes.[148] To measure the response time of the

SAW micropumps discussed here, the applied electrical power was adjusted in time by

amplitude modulation of the carrier frequency with a low-frequency square wave. Since

the SAW pump pressure is input-power dependent, amplitude modulation of the carrier

signal allows the applied power (and therefore resultant flow velocity) to be switched

controllably at a defined frequency. This was achieved using an amplitude-modulation

mixer circuit, in a combination with a signal generator.
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In this set of experiments, instead of tracking every particle in every frame, a region of

interest was defined, which encompassed the central 100 µm of the microfluidic channel.

This was done since tracking and manipulating data for every particle frame by frame is

computationally expensive, and yet does not give significantly more information.

Figure 7.1: A plot of the frame by frame displacement of a test particle used to assess fluid

response times, in which the particle velocity corresponds to the gradient of the plot. The plot

consists of two linear regimes, and the time it takes to change the gradient in this plot corresponds

to the pump response time.

The transient flow experiments were performed using an applied carrier signal power of

-12 dBm modulated with a 2 Hz square wave which allowed control of the peak to peak

voltage in the range between 150 and 350 mV. Particles within the region of interest were

tracked individually using Trackmate plugin, as discussed previously. Figure 7.1 shows

the coordinate change of a single particle when the SAW micropump was modulated at a

frequency of 2 Hz.

The instantaneous particle velocity can be obtained by differentiating the particle position

in Figure 7.1 with respect to the time as shown in Figure 7.2. It can be seen clearly that

the particle experiences two distinct speed regimes corresponding to the two states of

modulation.



Chapter 7. Advanced manipulations of fluid flow on chip 138

Figure 7.2: The velocity of a test particle, obtained by differentiating its position with respect to

time.

The particle velocity was normalised to [0, 1] values and then fitted with a sigmoid, as

shown in Figure 7.3.

The next step in the analysis fitted two linear functions to the upper and lower plateau

values, the transition time between these two values then is the fluid response time.[217]

The sigmoid function has been used here as to take into account not only the exponential

rise or fall of the fluid velocity but also the saturating-like features of the curve as the

speed approaches the plateau value. Table 7.1 shows the liquid response times calculated

from particle velocities measured at several modulation amplitudes at 2 Hz modulation

frequency, which are also plotted in Figure 7.4.

Both in Table 7.1 and Figure 7.4 data shows large error, which represents the standard

deviation of the measurement. The source of error is likely associated to the fact that

the time between two frames in the setup was limited to 26 ms, which means that the

transition happens in three frames or less making it complex to reliably fit data. It is

important to understand if the fluid response time is dependent on the magnitude of

the pressure change required to step between the maximum and minimum measured
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Figure 7.3: Normalised fluid response time fitted with two sigmoidal function (solid line for

first decay and a dashed line for the second decay), which is determined as the fall (or rise) time

between 1% and 99% of the lower and upper plateau values. R2
= 99.8% for both of the sigmoidal

fits.

particle velocities in Figure 7.3. If so, this would imply that a pressure build-up limits

the switching time, rather than the response time of the fluid. Figure 7.4 shows the

velocity switch time as a function of pressure difference required to switch between the

two velocity states. Figure 7.4 shows that the fluid response time is almost independent of

the pressure difference, which implies that the particle reaches terminal velocity instantly

(as expected theoretically).[218] The modulating signal switching speed (less than 2 µs)

is far faster than response times, which have an average value of 76.2 ± 16 ms; therefore

the measured fluid response time is a characteristic of the SAW device, and potentially

could be associated with the slow momentum dissipation discussed in Chapter 6. Another

way to describe the relatively constant fluid response time is to analyse the microfluidic

channel using hydraulic circuit analysis[24], in which the Hagen-Poiseuille law (Equation

7.1) states that the flow rate is linearly dependent on the pressure difference across the
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Table 7.1: The response time of water measured at multiple modulation amplitudes at 2 Hz

modulation frequency. The time between two frames was limited to 26 ms.

Input power

difference, W

Pressure

difference, Pa

Modulation

frequency, Hz

Fluid response

time, ms

0.12 30.1 2 72 ± 15

0.15 35.5 2 74 ± 20

0.17 43.2 2 76 ± 8

0.20 55.0 2 80 ± 19

0.26 64.5 2 79 ± 18

system. In the same fashion, Ohm’s law (shown in Equation 7.2) states that the current

flowing in a circuit is linearly dependent on the applied voltage difference.

Q =
p

Rh

(7.1)

In the Equation 7.1 Q is the volume flow rate, p is the pressure difference between inlet

and outlet, and Rh is the hydraulic resistance of the channels.

I =
V

R
(7.2)

In Equation 7.2 I is the current flowing in the resistor with resistance, R, and the V is

voltage difference across the resistor.

Similarly, the compliance of the system (which describes the ability of the channel-fluid

system to store fluid under pressure) can be modelled as capacitance in electric circuit and

should be considered here.[24] Considering that the liquid used here is water, it can be

assumed to be incompressible and therefore the liquid does not contribute to the system

compliance. However, the microfluidic channels themselves are fabricated from PDMS,

which has a finite compliance, due to its low Young’s modulus.[24, 202] Figure 7.5 shows

a magnified view of section A (refer to Figure 6.4), in which the darker region is the
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Figure 7.4: Graph showing the dependence of fluid response time on the change in pressure

difference at 2 Hz modulation frequency. Error bars show the standard deviation in the fluid

response time measurements. The high deviation is likely to be associated with the low frame rate

of the setup used here.

vertical channel section protruding out of the picture. When the SAW is turned on, the

PDMS side-wall separation decreases implying that some of the SAW energy is lost in

deformation of the PDMS.

Having visually observed effect of PDMS compliance, it is important to understand how

this effect contributes to the fluid response times. Sudden pressure changes produced

by the SAW-pump (by switching the SAW-power) are smoothed out by the release (or

absorbtion) of elastic energy by elastic expansion (or contraction) of the PDMS walls.[24]

During this process, the effective volumetric flow rate, Qc at which the fluid is stored or

released by the system is given by:

Qc = Ch
dp

dt
(7.3)

where the Ch is the hydraulic capacitance of the PDMS system, p is the pressure, and t is

the time. It can be seen that, if there is no change in pressure, there is no change in flow
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Figure 7.5: Micrographs of the PDMS channel (a) with the SAW switched off, and (b) undergoing

compression after the SAW is turned on, an effect which illustrates the finite compliance of the

PDMS microfluidic channel wall.

rate (Qc = 0). However, if the pressure in the system is altered (e.g. during drive power

modulation), there is a finite contribution to the flow rate arising from the PDMS, which

effectively increases the fluid response time.

The compliance stemming from the low Young’s modulus is one of the key contributors

to high fluid response times. Another effect of the channel collapse seen in Figure 7.5 is

that the hydraulic diameter of the channel is reduced during the collapse of the channel.

Since the microfluidic resistance has the fourth power relationship to the hydraulic

diameter, even small decrease in the hydraulic radius will lead to significant increase in

the resistance. The increase of resistance during channel collapsing (degree of collapse,

presumably is dependent on SAW power, as seen in Equation 7.3) will lead to longer
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response time due to the fact that smaller effective pressure difference is accelerating the

particles.

Schmid et al. showed previously that an alternative method of measuring the response

time of a fluid is done by fitting an exponential decay function to the velocity profile

(from Figure 7.2), this is shown in Figure 7.6 as this accurately represents the physics of

the process. From this, the decay constant, τ , which corresponds to the fluid response

time, can be determined. An average decay constant of τ = 29 ± 3 ms (N = 36) was

Figure 7.6: The blue dots in the plot show the particle as a function of time. The black lines are

an exponential decay fitted to the velocity transition (solid line for the first decay, a dashed line for

the second), that allows the decay constant of the velocity transition to be determined.

measured by averaging across all modulation frequencies given in Table 6.1. This value is

significantly lower than the observed fluid response time of ∼ 76.2 ms obtained previously

because it estimates the pressure drop to only 1/e (36%) of the maximum value. Therefore,

to accurately determine the particle sorting time, 3τ value could be used, which would

represent the decay to within 5% of the initial value.
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An important timescale in microfluidic systems is referred to as a momentum diffusion

time, which characterises how quickly a given microfluidic system can dissipate a sudden

disturbance. The momentum diffusion time can be approximated by conducting an order

of magnitude analysis of the Navier-Stokes momentum equation:

ρ(
δu

δt
+ u∇u) = −∇p + µ∇2u + f (7.4)

where ρ is the fluid density, u is the fluid velocity, t is time, ∇u is the three dimensional

velocity operator, ∇p is the pressure operator, f is the volume force and µ is fluid

viscosity. Since we are only considering small changes of velocity, and moreover we

are not expecting the three-dimensional flow profile to change, the volume force and

pressure terms on the RHS of Equation 7.4 have a value of 0. Hence, a sudden disturbance

in the flow is governed by a balance between the instantaneous change in the fluid

momentum and the viscous dissipation of the disturbance. Consequently, Equation 7.4

can be rewritten as:

ρ
δu

δt
∼ µ∇2u (7.5)

In Equation 7.5 the velocity, u, is dependent on the volume flow rate, Q, and the cross-

sectional area of the channel, A, by u ∼ Q/A. Furthermore, the timescale corresponds to

the momentum diffusion time, so δt ∼ ∆tm. Finally, the gradient, ∇, is dependent on the

effective hydraulic diameter of the fluidic channel, therefore ∇ = 1
Dh

.[131] As a result,

Equation 7.5 can be rewritten as:

ρ

∆tm

Q

A
∼
µ

D2
h

Q

A
(7.6)

Finally, Equation 7.6 can be rearranged to produce an expression for ∆tm:

∆tm ∼D2
h

ρ

µ
(7.7)

The ratio µ/ρ is referred to as the kinematic viscosity of the liquid. By factoring in the

channel dimensions used here, and recalling that the experiments were performed in an
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ethylene glycol - water mix (with a corresponding viscosity 3.6 times that of water), the

momentum diffusion time can be approximated as ∆tm ∼ 10 ms.

The momentum diffusion time therefore imposes a theoretical maximum sorting rate in

a system that uses flow switching, to sort particles. The maximum sorting rate in such

system is νmax = 100 particles/s, which can be obtained by:

νmax =
1

∆tm
(7.8)

For example, Chen et al. show a µFACS system based on hydrodynamic gating where

cells are sorted by closing two of three outputs in the system to divert the particles to open

outlet. The reported sorting rate of such system is 1.4 cells per second.[219] Similarly,

Sugino et al. who use heat-activated valves to selectively close outputs achieve cell sorting

rates of 2.8 cells per second.[220]

To achieve higher sorting rates of similar size particles in on-chip sorting systems an

external force on the system must be exerted, e.g. a dielectrophoretic force[221], acoustic

force[222] or laser-based bubble generation[223].

The theoretical maximum sorting rate using the system described here can be obtained

from the Figure 7.4. The fluid response time is nearly independent of the applied

pressure difference, consequently the response time of the pump is estimated to be

∆tpump = 76.1 ms, which corresponds to the maximum sorting rate of approximately

ν = 13 particles per second.

7.3 Hydrodynamic fluid manipulations

7.3.1 Design considerations

Particle sorting consists of two main actions: sorting and flow focussing. Sorting, i.e. the

ability to direct the particles towards different regions of the fluidic system, requires the
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ability to hydrodynamically shift the liquid (and therefore, the particle) along the width

of the microfluidic channel. In order to improve sorting efficiency and accuracy, focus

of the fluid flow within the microfluidic channel is also desirable. Previous designs of

hydrodynamic flow focusing are based upon only two distinct designs both of which

have three input channels and one output.[224, 225, 226] The first design comprises

side channels arranged at an acute angle with respect to the central channel (see Figure

7.7a)[227] whereas the side channels in the second design are arranged perpendicularly

to the central channel (see Figure 7.7b) - typically this arrangement is used to generate

microdroplets, for example.[228]

All microfluidic channels here were fabricated according to the same protocol as

described in Chapter 4. Figure 7.8 shows an example of a microfluidic channel design

based on the first arrangement, in which two side channels are arranged at a fixed angle

with respect to the central inlet channel. A serpentine feature was added to the central

channel to equalise the length of all the channels.

7.3.2 Flow focusing

As discussed previously, to enhance cell sorting rates it is important to pre-focus the fluid

flow so as to confine the particles of interest to a narrow stream within the microfluidic

channels. When focused sufficiently tightly, this results in particles entering the sorting

region in a single file.[229] This is important for two reasons, the first of which is that

for efficient sorting, it is important to be able to deflect each particle individually, and

secondly any particle detection mechanism is usually restricted to processing a single

particle at a time to reduce the time required for image processing and decision making

during the sorting process.

Hydrodynamic flow focusing is achieved by adjusting the respective flow rates in each

of the three inlet channels in order to create a ”sheath” flow around a central stream
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Figure 7.7: Two types of microfluidic channel designs that have been shown to achieve

hydrodynamic fluid flow focusing: (a) an arrangement in which side channels are positioned at

a defined angle (typically 22.5° − 45° with respect to the central stream, and (b) in which the

side channels are perpendicular to the central channel, a design typically used for microdroplet

generation.
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Figure 7.8: A microfluidic channel designed to allow cell sorting on chip, with side channel

arrangement from Figure 7.7a.

containing the particles to be sorted. As described in Chapter 5, for a SAW-based

micropump, the flow rate is directly proportional on the power applied to the IDTs.

Consequently, by fixing the input power of the side channels that generate the sheath

flow, and adjusting the power of the central SAW pump, it is possible to modulate the

width of the central stream (as shown in Figure 7.9). The flow rate from the side channels

was selected at 18.5 µl/min (achieved by fixing the applied power), whereas the central

channel flow rate was set at 20.1, 18.5, 15.7 or 13.3 µl/min values (corresponding to

Figures 7.9 (a), (b), (c) and (d) respectively). It can be seen that when the flow rates

for all three inlet channels are equal (Figure 7.9b, the corresponding width of each flow-

stream is similar.
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Figure 7.9: Hydrodynamic flow focusing using a three channel setup, in which fluorescent

particles are flown through the central stream and flow focusing achieved by varying the ratio

of the central to the side flow rates. Note that the slight shift to one side is due to the side IDTs

not having identical transducer efficiency. w shows the width of the outlet channel. The central

channel flow rate was fixed at 18.5 µl/min, and the side channel flow rates were varied between

20.1, 18.5, 15.7 or 13.3 µl/min values (corresponding to (a), (b), (c) and (d) respectively).

The theoretical width of the central stream, lm, can be calculated using:

lm = lc ∗
Qm

Qlhs +Qm +Qrhs

(7.9)

where the Qlhs, Qm, Qrhs are the flow rates of the LHS, central and RHS channels, and

lc is the total width of the channel after the three inlets have joined together in a single

channel. A detailed discussion of this equation is given by Kirby[24]. Briefly, away from

the junction the flow velocity is, across the width of the channel, parabolic as expected

from Poiseuille flow (as opposed to when the three inlets join together, where the flow

velocity across the width is dependent not only to the Poiseuille distribution, but also the

respective inlet flow velocity), therefore applying the conservation of mass, it is possible
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to calculate the cross-sectional area of each component of the flow, i.e. the LHS, central or

the RHS stream. Considering all streams have the same height, then the cross-sectional

area ratio will correspond to a width ratio. Figure 7.10 shows both the expected and

measured values for the width of the central stream as a function of flow rate, when the

side channel flow rates are fixed at 18.5 µl/min.

Figure 7.10: The theoretical and experimental widths of the central stream as a function of volume

flow rate in the central stream. The R2 values of linear fit for theoretical and experimental results

were 99.6% and 93.6%.

It can be seen in Figure 7.10 that the measured width values do not follow the

corresponding predicted widths. This could arise from the fact that the equation used to

predict the stream width assumes that the channel walls are infinitely rigid and therefore

that the channel volume does not change. However, as discussed in Section 7.2 the PDMS

channels used here have a finite compliance, which is likely to affect the measured flow

rates, making them deviate from predicted values.
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7.3.3 Flow shifting

The most important part of on-chip particle sorting system is the ability to shift the

position of individual particles across the width of the microfluidic channel, i.e. to deflect

them into different channels or sorting chambers. It is possible to shift the central stream,

by fixing the flow rate of corresponding micropump, and then to adjust independently the

power applied to the side channel IDTs. An increase in flow rate from one of the side

channels coupled with a simultaneous decrease in flow rate from the other, results in the

shift of the central stream as demonstrated in Figure 7.11.

Figure 7.11: Micrographs of flow shifting of a central flow stream with a fixed flow rate of

8.1 µl/min, achieved by adjusting of the power applied to the side IDTs to produce corresponding

flows from the LHS and RHS side channels of (a) 8.1 and 12 µl/min, (b) 9.7 and 10.1 µl/min

and (c) 10.1 and 8.4 µl/min. Note the slower particles that are in focus and at the bottom of the

channel lag behind the particles in the central stream, because of lower forces that are actuating

the shift at the bottom of the channel. This is due to the nature of the flow in microfluidic channels,

i.e. the Poiseuille flow.

Shifting of central stream is dependent on the fluid response time, which characterises the

time it takes for the SAW pump to adjust the pressure (as discussed in Section 7.2). The

flow rate in the central channel was fixed to 8.1 µl/min in Figure 7.11, whilst the flow

rates from the LHS and RHS side channels were set to (a) 8.1 and 12 µl/min, (b) 9.7 and

10.1 µl/min, and (c) 10.1 and 8.4 µl/min.

During these experiments, a number of particles were observed to travel at a slower
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velocity than the majority, as evidenced by the lack of motion blurring of some particles

in Figure 7.11. This can be explained by considering the nature of flow in microfluidic

channels, in which the fluid velocity close to the microfluidic channel walls (indicated by

the white arrow in Figure 7.11a) is significantly slower than it is in the bulk of the liquid

(red arrow, Figure 7.11a). This particle velocity distribution arises from the Poiseuille

flow profile in three-dimensions, as shown in Figure 7.12.[230] As a result of Poiseuille

Figure 7.12: A COMSOL simulation of Poiseuille flow in a microfluidic channel in three-

dimensions. Image adapted and processed from [231].

flow, particles present in the centre of the channel respond quicker to a change in pressure

caused by adjusting the flow from either side channel, and are therefore shifted more

quickly to one side than those positioned closer to the channel walls. This results in

a broadening of the focussed flow stream, in which the slower particles lag the faster

particles and are therefore located to one side of the focussed flow.
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7.4 Proof-of-principle particle sorting using a SAW

micropump

7.4.1 Design considerations

Two subsequent designs of microfluidic channel, type (a) and (b) were tested as proof-of-

concept, on-chip cell sorting devices, as shown in Figure 7.13a and 7.13b, respectively.

Each on-chip particle sorting system designed here consists of three-inlet channels, in

which the sample of interest is injected into the central channel and the two side channels

are used to generate a sheath flow to focus the central stream (as shown in Section 7.3.2).

The side streams are also used to actuate the position of the sample within the central

stream to allow it to be sorted into a chosen outlet channel, of which there are two. The

proposed sorting system operates by directing the particles of interest down either the

RHS or the LHS outlet channels, as seen in Figure 7.13.

Automated decision making and particle detection techniques are not discussed here,

as the focus is to demonstrate proof-of-concept particle flow manipulation using SAW

micropumps. Considering that the racetrack channels are designed to recirculate the

material, once the particles of interest have been sorted into either outlet channel, they

must be removed from the flow and collected in a manner that does not prevent liquid

recirculation. One option is to introduce micropillars to capture the particles (or cells

later on) whilst allowing fluid to pass through, but this will result in the fluidic channel

resistance increase as more and more particles are captured thereby reducing the operating

time of the device.[232, 233] Alternatively, it is possible to exploit the sedimentation of

the particles (described by Equation 6.6) by building a well that is long enough to allow

the particle to sediment sufficiently (dependent on the sedimentation velocity), but which

will not increase the effective flow resistance as more particles are captured (see Figure

7.14 for an example).
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Figure 7.13: Two types of designs used for on-chip particle sorting in which the side channels are

arranged (a) at 45° (type a) and (b) 90° (type b) with respect to the central channel. Each design

contains two outlet channels into which particles of interest can be deflected.
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Figure 7.14: A schematic depicting the sedimentation-based mechanism of capturing the sorted

cells into the sedimentation wells. An example particle with the gravitational and buoyancy forces

depicted on the particle before the development of drag force which develops as the particle

reaches the terminal sedimentation velocity.

The next step is to analyse the forces exerted on the particles during the sorting process

using both designs, type(a) and type (b), seen in Figure 7.13.

7.4.2 Force calculations

In order to identify which design type (a) (angled side channels) or type (b) (perpendicular

side channels) is expected to produce the best particle-sorting capabilities, an analysis of

the forces exerted on a particle (Figure 7.15) was performed for each design by setting

the angle between the central and the side channels as a variable, in which case type b

corresponds to an angle α = 90°.

Consider a single particle moving in the central channel with a coordinate value x < w/2,

where w is the width of the channel and x = 0 is defined as the left hand edge of the

central channel, as shown in Figure 7.15.

Figure 7.15a shows the forces acting on a particle when it has entered the sorting region.

F is the force exerted on the particle due to the pressure difference in the sorting region

channels, Fd with x and y suffixes, indicate the drag force acting along the x and y axis
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Figure 7.15: Analysis of the forces exerted on the particle by the sheath flow (a) and the

consequent velocities developed by the particle during sorting from RHS to LHS of the channel

(b).

respectively. Ff is the driving force exerted on the particle by the fluid flow, which acts

along the y-axis, Fsx and Fsy are the x and y components of the sorting force, generated

by the pressure difference across the channel.

The interaction time between the particle and the sorting force is determined by the

particle velocity in the y-direction. This interaction time is used to determine the

relationship between the velocity of the fluid, and the necessary lateral velocity that must

be induced on the particle by the sorting force in order to adjust the particle trajectory

sufficiently such that it enters the RHS sorting channel.

If we assume that the x-coordinate of the particle must be actuated by the time the particle

has travelled half of the length of the sorting region, l (indicated in Figure 7.15), the

distance travelled in the y-direction is therefore:

Ymax =
l

2
(7.10)

The vertical coordinate y = 0 is set to coincide with the position of first interaction

between the particle and the side stream flow, i.e. the point at which the central and

side channels intersect. Thus interaction time between the force and the particle is given

by:

∆tint =
l

2vy
(7.11)
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The main difference between type (a) and type (b) channel designs is the angle of the

sorting force, F . In a type (a) device therefore, it can be seen that only x-component

of the force contributes to a change in the x-coordinate of the particle. At the same

time y-component acts to increase the velocity of the particle, which in turn reduces the

interaction time between the force and particle. This therefore suggests that, for the same

flow rates from the side channels, the type (a) channel designs will produce weaker sorting

forces than the type (b) design, which in turn will result in reduced particle sorting rates

in type (a) devices.

Since particles in low Reynolds numbers systems almost instantaneously reach their

terminal velocity, the transient characteristics of the particles can be ignored and only

the steady state is considered. Since velocity is an additive term, the velocity components

can be summed along the y-axis (see Figure 7.15b):

vy = vf + vs (7.12)

where vf is the velocity of the fluid flow, and vs is the velocity induced along the y-axis

by the sorting force. The width of the channel, w, and the interaction length, l, are related

by l = w ∗ sin(α), where α is the angle between the central and the side channel, it is

therefore possible to rewrite Equation 7.11:

∆tint =
w

2 ∗ (vf + vs) ∗ sin(α)
(7.13)

The interaction time is then used to determine the relationship between the fluid flow

velocity and the required velocity in the x-direction which will ensure that the particle

trajectory is altered sufficiently enough to allow sorting. The particle velocity along the

x-axis can therefore be written as:

vx =
w

2∆tint
(7.14)

Here we have assumed that the particle must travel the maximum possible distance, which

corresponds to half of the channel width according to the streamlines seen in Figure 7.16.
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Figure 7.16: A finite element model of the fluid streamlines in a three-inlet setup, in which the

fluid in the central channel (blue streamlines) is focused using equal volume flow rates from the

side channels (red streamlines). The volume flow rate ratio between the sheath flows and the

central was 4 to 1. It can be seen that the streamline exactly in the central of the channel stops

where the channel divides in two outlets. Therefore if the particle is to be moved in from the

LHS to RHS, in the worst case scenario, it must travel a distance equal to half of the width of the

channel. This simulation was performed with help from Dr Akshay Kale.

The terms vx and vs are respectively the x- and y-components of velocity, v, induced

on the particle by the force F generated by the difference in pressure between the side

streams, as discussed. Therefore:

vx = v ∗ sin(α) (7.15)

where, for type b channels, α = 90° and vx = v. Additionally:

vs = v ∗ cos(α) (7.16)

By combining Equation 7.13 with Equations 7.15 and 7.16, Equation 7.14 can be re-
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written as:

v ∗ sin(α) = ((vf + v ∗ cos(α)) ∗ sin(α) (7.17)

It can be seen that the channel width does not affect the relationship between the sorting

and flow velocities, though this solution is only expected to be valid for constant channel

widths. By rearranging Equation 7.17, the sorting velocity, v, can be calculated:

v =
sin(α)

sin(α) − sin(α)cos(α)
∗ vf (7.18)

It can be seen that the sorting velocity is dependent only on the angle between the side

and central channels, and the initial fluid velocity. Figure 7.17 shows a plot of the velocity

ratio v/vf as a function of angle α. As α → 90°, corresponding to a device in which the

side channels are perpendicular to the central channel the ratio tends to unity. A ratio of

greater than unity for all other cases, indicates that the sorting is becoming increasingly

less effective as the angle between channels becomes smaller.

Figure 7.17: A plot of the ratio between the total fluid velocity in the y-direction as a function

to the applied fluid velocity and the angle between the central and side channels. Note the

logarithmical plot on the ordinate axis.

The minimum necessary pressure difference between both side channels required to
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induce fluid a velocity, v, (i.e. to sort a particle from one side to another) can be obtained

by considering the equilibrium drag forces along the x-axis, as shown in the Figure 7.15b:

F⃗sx + F⃗dx = 0 (7.19)

Consequently:

Fsx = Fdx (7.20)

The force exerted on a single particle with a radius, r in a liquid with viscosity, µ, therefore

is:

∆p ∗ 4πr2 ∗ sin(α) = 6πµrv (7.21)

where ∆p is the pressure difference between the two sheath flow channels, by substituting

Equation 7.18 for the velocity, v, the relationship for ∆p is given as:

∆p =
3µ

2r
∗

sin2(α)

sin(α) − sin(α)cos(α)
∗ vf (7.22)

Equation 7.22 shows the general solution for the minimum required pressure difference

between both sheath flows for a given flow velocity in the central channel. For the two

geometries, type (a) and type (b) discussed in Section 7.3, the angle α = 45° and 90°

respectively. The corresponding pressure difference required to sort a particle of radius

r = 1 µm in water (viscosity µ = 10−3 Pa/s) can therefore be calculated for the type (a)

and type (b) devices using, respectively:

∆pa = 3.63 ∗ 103 ∗ vf (7.23)

and

∆pb = 1.5 ∗ 103 ∗ vf (7.24)

Given that the maximum flow velocity generated by the SAW micropumps used here was

vf = 5 mm/s, then the resulting pressure differences for type a and type b devices are

∆pa = 18.2 Pa and ∆pb = 7.5 Pa. This suggests that the perpendicular channel design
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is more efficient at particle sorting as a lower pressure difference between the two sheath

flows is required in order to deflect the particles.

Fluid takes approximately 80 ms to change velocity in response to a change in applied

power levels. However, in addition to this time, there is also the interaction time (∆tint)

required to physically move the particle from the LHS to the RHS outlet. Thus the

maximum sorting rate for a SAW pump is given by:

ν =
1

∆tpump +∆tint
(7.25)

The interaction time as determined by Equation 7.13 shows reducing the channel width

will decrease the interaction time, which will consequently increase the sorting rate of

the on-chip system. For the perpendicular channel design used here, ∆tint = 25 ms.

Consequently, the maximum sorting rate achievable by the system is expected to be ν =

10 particles/s.

If the solution is made up of uneven numbers of cells to be sorted (i.e. the target cells

are rare in the solution), then by adjusting the central position of the stream such that

the majority of the cells without deflection go to the sorting chamber will increase the

sorting rate. This is because to increase the sorting rate, the flow should be deflected

as infrequently as possible, thus approaching the maximum sorting limit imposed by the

fluid response time.

Finally, it must be considered that the examples described here are simplistic two-

dimensional models for the purpose of evaluating the differences between channel

designs. This example does not take into account the fact that the particle velocity is

not only a function of the width but also a function of height within the channel. This

simple analysis is therefore relevant for a particle which remains at a fixed height within

the channel, and which has an x-position that is at least 50 µm away from any channel

wall as seen in the flow profile shown in Figure 6.8. In the next section, the actual particle

sorting rates will be evaluated through experimentation.
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Figure 7.18: A schematic of the streamlines of the fluid with the focused stream of particles (in

blue) being by default directed to the LHS channel with the stream being as close to the central

of the channel as possible as to decrease the time needed to direct the particles. This figure was

produced with help from Dr Akshay Kale.

7.4.3 Particle sorting results

Having derived a framework for the required interaction time between the sorting force

and the particle, this section is concerned with evaluating the physical particle sorting

capabilities with type (a) and type (b) devices. The first set of experiments were performed

using type a (angled) microfluidic channels, with α = 45°. It was calculated in the

previous section that by applying a pressure difference of 18.2 Pa between the two side

channels, the maximum particle sorting rate of 13 particles/s will be obtained. Figure

7.19 shows that it is possible to direct a stream of particles into the left hand or right

hand outlet channel by applying a pressure difference of 12 Pa, which was the maximum

pressure difference that could have be applied. It was not possible to apply the theoretical

maximum of 18.2 Pa because of the high sheath flow rates necessary to focus the central

flow during the experiments. The expected transition time between the two regimes is
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Figure 7.19: Micrographs of a type a device in which the particle stream has been directed into

(a) the LHS outlet channel (as shown by the arrow), and (b) the RHS outlet channel, both by

application of a 12 Pa pressure difference between the side channels.

on the order of 160 ms, as the fluid response time ∆tfluid = 75 ms and the expected

interaction time therefore is 235 ms, however, the transition time between the regimes was

measured to be on the order of a second - significantly longer than expected. This was

found to be the case with even higher pressure differences, and it was therefore concluded

that the angled design is not appropriate for the on-chip sorting system.

Therefore the next step was to utilise the perpendicular design for on-chip sorting

experiments. Figure 7.20 shows time-lapse images of a pair of particles which were sorted

sequentially into first the left hand, and then the right hand outlet channel.

By recording and analysing N = 108 particles sorted from the LHS to the RHS channel,

it was possible to construct a contour plot depicting the force exerted on the particle as a

function of its location within the channel, as shown in Figure 7.21.

The smallest force exerted on the particles was found to be ∼3 pN (blue colour), which

occurred in the regions, located furthermost from the high pressure regions. Conversely,

the maximum force was recorded immediately adjacent to the high pressure inlet, and had

a peak amplitude ∼15 pN. Intuitively it is expected that the particle will experience the

maximum sorting force when it is adjacent to the centre section of the side channel, due
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Figure 7.20: A time-lapse of two particles being sorted into two different sorting chambers

recorded at (a) 0ms (defined when both particles are present in the interaction area with the side

channels), (b) 82.5 ms, (c) 165 ms, (d) 248 ms, (e) 330 ms, (f) 413 ms. Particle sorting was

achieved by setting the pressure difference between side-channels to 12 Pa, where the pressure

drops from right to left to sort into the left outlet, and vica versa.

to the Poiseuille flow distribution (i.e. the higher velocity flow from the side channel will

be at its centre).

The force map was constructed by first measuring the particle position as a function of

time, and from this extracting the force acting on the particle. Briefly, by recording the

particle’s (x, y) coordinates in any given frame of the recording, the particle displacement

between frames, and therefore the particle velocity, can be extracted. By assuming that the

particle is at its terminal velocity in each frame, the force exerted can then be calculated

using Equation 7.21, and subsequently the pressure difference between the two side flows

can be obtained using Equation 7.22, in which the vf is the measured velocity in x-

direction. See Appendix B for a table of values for displacement as a function of the

particles x and y coordinates.
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Figure 7.21: A map of the force exerted on a particle as a function of its x and y position. The

distribution of the force across the side channel opening is likely a result of the Poiseuille-like

fluid flow within the side channel, in which the maximum flow velocity is observed at the channel

centre. The force ranges from 3.2 pN (blue regions) to 15.2 pN (red regions). The pressure

difference across the sorting region is 12 Pa derived from the particle trajectory.
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The previous discussion produced an effective pressure difference value from

observations of the particle trajectory as a function of time (i.e. the pressure difference

that drives the movement of particle along the x-axis if no other forces are present). For

comparison, the actual applied pressure difference, derived from the flow rates generated

by the micropumps, can be calculated using:

∆p = prhs − plhs (7.26)

in which each pressure can be obtained by applying the Hagen-Poiseuille law [24]:

p = QRH (7.27)

whereQ is the volume flow rate generated by the IDTs, andRH is the hydraulic resistance

of the microfluidic channel given by:

RH =
8µL

AR2
(7.28)

In Equation 7.28 µ is the liquid viscosity, L is the distance between the two points across

which the pressure is applied, A is the cross-sectional area of the channel, given by A =

πR2 and R is the hydraulic radius of the channels. Since all fluidic channels used in this

project have a rectangular cross-section, the hydraulic radius is given by R = w∗h
w+h , where

w and h are channel width and height respectively.

This yields values of prhs = 68.6 Pa and plhs = 58.4 Pa and consequently the pressure

difference applied across the particle is ∆p = 12.2 Pa.

The discrepancy between the measured pressure difference and the applied pressure to

each side channel is likely to arise from multiple sources. The main discrepancy is likely

to result from the assumption used in Equation 7.27 that the PDMS channel is rigid.

However, as discussed in Section 7.2 the microfluidic channel has a none-zero compliance

due to the elasticity of the PDMS, which results in energy from the pump being lost in

expansion/contraction of the channel. Secondly, due to changing channel dimensions, the
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microfluidic channel resistance will also change, again, having negative effect on sorting

efficiency.

It is possible to estimate the time required to move a particle trajectory from the LHS

sorting channel to the RHS sorting channel by considering the particle’s average velocity.

If the particle is initially located at x = 0 (as labelled in Figure 7.21), then it must travel a

distance l = w/2 = 125 µm. Thus the interaction time between particle and the sorting force

whilst traversing this distance is 200 ms. Using Equation 7.25 it is possible to determine

the minimum sorting rate for a given pressure difference, which for a pressure difference

of 12.1 Pa is ν = 3.4 particles/s.

Since not all particles will be located at x = 0 when entering the sorting region,

the mean sorting rate at this pressure difference will be somewhat higher. Since the

flow is initialised such that the particles travel towards the LHS outlet by default, the

RMS particle x-displacement will be x = 62.5 µm, consequently the mean sorting

rate of the type (b) operating with a pressure difference of 4.3 Pa is calculated to be

ν = 5.2 particles/s.

Having established a framework to calculate both the minimum and the mean sorting

rates, the sorting force exerted on a particle, and the applied pressure, these characteristics

were then calculated for different applied pressure differences as shown in Table 7.2

Table 7.2: Various characteristics of particle sorting at different applied pressure differences.

Applied pressure

difference, Pa

Sorting

force, pN

Measured pressure

difference, Pa

Minimum

sorting rate,

s−1

Mean

sorting rate,

s−1

12.1 3.2 ... 15.2 0.3 ... 1.2 3.4 5.2

26.3 6.2... 28.3 0.5 ... 2.3 4.8 6.5

95.0 7.6 ... 34.5 0.6 ... 3.9 6.0 8.0

135 12.4 ... 52.3 1.0 ... 5.8 7.4 9.5
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7.5 Conclusions

The aim for this Chapter was to demonstrate the use of the SAW micropumps for

hydrodynamic flow switching, such as might be used in a micro FACS device, with the

emphasis on demonstrating particle sorting. The flow manipulation capabilities were

investigated using two device geometries compromised of three inlet channels and two

outlet channels: type (a), in which the side inlet channels were arranged at 45° angle to

the central channel, and type (b) devices, in which the side channels were perpendicular

to the central channel. The first part of this Chapter was devoted to studying the transient

characteristics of the pump, specifically the transition time required for the flow velocity

to alter when the pump pressure was altered between two states. It was found that the

response time of the pump is approximately constant for different pressure differences

within the range measured, although it is expected that the response time would be shorter

for smaller pressure differences.

This was followed by demonstration of hydrodynamic flow manipulation, including flow

focussing and flow switching, which are required for on-chip particle sorting. It is possible

to predict the width of the central stream during flow focusing by application of the

Poiseuille-Hagen law. However, the experiments showed significant deviations from the

predicted values, which again was attributed to the compliance of PDMS; the Poiseuille-

Hagen law assumes infinitely rigid microfluidic channel sidewalls.

Finally, proof-of-principle particle sorting was demonstrated using both type (a) and

type (b) devices. Experimentally, the sorting rates achieved using type a devices were

significantly less than one particle per second. Therefore the perpendicular channel type

(b) design was used for subsequent particle sorting experiments since it was predicted to

require a significantly lower pressure difference to induce the same sorting force on the

particles.

By applying pressure difference of 12 Pa between side channels in a type (b) device, a
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sorting rate of 10 particles/s was expected. However, by tracking the velocity of particles

within the channel, a real sorting rate of 5.2 particles/s was observed, which would

correspond to a pressure difference experienced by the particle of only 1 Pa. Furthermore,

by mapping the force experienced by a particle during sorting, it was found that the

force is not constant throughout the sorting region. This has implications on the sorting

algorithm; namely, the particle must be sorted into the correct streamline before travelling

halfway through the sorting region.

Finally, the pump described has the a maximum sorting rate of 9.5 particles/s, achieved

at 135 Pa, which is the maximum value achievable here. This is significantly lower than

the previously reported maximum values which are around 1000 particles per second in

systems that utilise external forces to actuate the particles, yet it is comparable to systems

that utilise hydrodynamic fluid flow manipulations for particle sorting.

Again, the principle explanation for the low sorting rates is the non-zero compliance of

PDMS, that increases the pump response time. Thus, to improve the sorting rate one of the

first steps would be to use a different (more rigid) material for the microfluidic channels.

Alongside changing the channel material, a higher sorting rate might be achieved through

more complex channel designs that pre-focus the sample stream prior to entering the

sorting region.
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Chapter 8

Conclusions and Outlook

This thesis outlines the development of an efficient SAW micropump suitable for LOC

applications including for example on-chip micro-FACS device. This chapter begins by

outlining the key achievements made in the project, followed by a discussion of the target

POC technologies suitable for integration with SAW micropump. The final three sections

discuss possible avenues for the future work in this field.

8.1 Summary of key achievements in this thesis

Chapter 5 reviewed the fabrication of SAW-micropumps formed on LiNbO3 substrates,

alongside their integration with microfluidic channels and subsequent electrical

characterisation of the devices. Further, the chapter described a framework for evaluating

the coupling efficiency of the applied power into the SAW and its dependency on

SAW wavelength. This was next expanded into developing a method by which the

pump operating parameters from PIV data. Finally, these investigations culminated in

fabrication of the first-generation SAW micropumps, which were based on the planar

pumping principle in which only the forward motion of the SAW was utilised to pump an

overlaid fluid flow within a microfluidic channel. The results, obtained using an enclosed
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PDMS channel, were comparable to those previously published for devices using glass

microfluidics, even though the latter is inherently better suited to SAW transmission.

Chapter 6 began with a discussion of how a SAW interacts with an overlaid liquid in

three dimensions, which underpinned the need to develop three-dimensional microfluidic

channels. The method used to fabricate three-dimensional microfluidic channels

employed a combination of planar, 3D printed moulds combined with acetone-soluble

beams positioned on top of vertical pillars. This technique allows preparation of

closed three-dimensional microfluidic channels in a single PDMS cast, which removes

issues in PIV analysis caused by interfacial scattering in multi-layer PDMS devices.

These channels were then integrated with a SAW micropump, and used to demonstrate

significantly improved pump performance. The best performing devices produced

pressure gradients of over an order of magnitude higher than previously published devices

whilst operating at significantly lower applied power levels. The results in this chapter

formed the basis of a publication.[62]

Chapter 7 focused on using the SAW micropump described in Chapter 6 to demonstrate

hydrodynamic fluid manipulation, including flow focusing and flow switching. Firstly,

the response time of the pump was characterised in order to understand the maximum

theoretical particle sorting rate of the pump. Finally, three SAW micropumps were

combined to build an on-chip flow cytometer which was capable of sorting up to 10

particles per second (mean rate). This was achieved by focusing the fluid flow to impose

single-file particle entry in the sorting region, where the flow shifting was then used to

alter the particle trajectory between two outlet channels.
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8.2 Suitability of the SAW pump in POC device

applications

The main outcome from this thesis is a well characterised Rayleigh SAW-based

micropump. The intended application for such pump throughout the work is in a POC

device, for which the following criteria are the key:

• Small footprint for on-chip integration;

• Low-power operation;

• Sufficiently high performance in terms of volume flow rate and the pressure

gradient;

• Low cost.

The SAW micropump described here has a small footprint, as active region of the pump is

the IDT, which have a typical surface area a only few tens of mm2 (as seen in Chapter 5).

Secondly, Chapter 6 shows that these pumps can be actuated by applying a continuous,

low power input (<0.5 W), and yet still deliver volume flow rates of tens of microliters per

minute, which is an appropriate value for a range of POC devices. Furthermore, the SAW

micropump described here are using a low-cost gain block and AC oscillator. It is easy

to overlook the importance of the connection between the driving unit and a POC device

cartridge: for example, any membrane-based pumps require a physical actuator, and the

pumping performance will be dependent on the actuator head alignment with respect to

the membrane centre. In the case of a SAW micropump, as long as there is an electrical

connection between the IDTs and the driving circuit, the pump will perform as expected.

Currently, the single biggest drawback of the SAW micropump described here, as it was

mentioned during the literature review, is the price. A standard 150 mm wafer of LiNbO3
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costs £200, and yields just over 500 devices used here1.[234] When the cost of metal

deposition required to make the fine IDTs is included, the pumping unit alone will cost

>£1, which might be too expensive to be commercially sustainable for rapid and cheap

diagnostic tests.

Throughout this work, PDMS was used as the material of choice for microfluidic channel

fabrication. Although, PDMS has various useful qualities, it is generally regarded as

unsuitable material for large scale manufacturing, which means that for SAW pump use

in a setting where high volume of samples are required, a switch to a different material

would be needed. Various thermoplastics, such as polypropylene, polycarbonate and

others, usually are regarded as well suited for mass manufacturing owing to the fact that

these materials are suited for injection moulding.[45] This brings the only other notable

drawback of SAW micropump technology described here, it is the integration of the pump

with the microfluidic channels formed in thermoplastics or other materials due to the

piezoelectric and pyroelectric nature of LiNbO3. This material property prevents use of

thermal bonding which is conventionally employed for mass production of POC devices

(which was one of the factors why PDMS was used here). An alternative technique would

be to use UV adhesive to bond the LiNbO3 chip to the microfluidic channels, for example,

yet requires more processing steps.

8.3 Future work

8.3.1 Rapid on-chip PCR

The SAW micropump described in the Chapter 6 have three key characteristics that are

required to produce an efficient on-chip PCR system - a high volume flow rate, the

1The calculation was done with the following assumptions: die dimensions (w × l) 5 × 5 mm, 0.2 mm

saw thickness, 5 mm edge clearance, 10 mm wafer flat
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capability to rapidly actuate a small volume of liquid and a short response time.[88, 235]

An on-chip PCR also requires a heater system, which can be integrated in the form of

resistive electrode heaters.[236, 115] The advantage of microfabricated heaters is their

small footprint and the possibility of depositing both the SAW IDTs and the heaters in

the same step. Physical realisation of an on-chip PCR device could be quite simple as the

PCR will typically require either two or three different temperature zones, thus the same

circular contour design as seen in Chapters 5 and 6 can be utilised, as described in Figure

8.1. The liquid can be actuated between the annealing and extension zones, and DNA

amplification could be monitored using real-time fluorescence (since PDMS is optically

transparent).[237, 238] This would effectively present an on-chip version of extreme

PCR setup which was done on external set of heaters by Trauba and Wittwer.[239] The

advantage of such an on-chip PCR device would be the reduced foot print compared

to conventional setup where external heaters are necessary and increased throughput

owing to reduced sample volumes, fast response time and the high flow rate of the SAW

micropump.

8.3.2 Alternatives to PDMS

PDMS has a finite compliance, i.e. it can absorb and release energy from/to a coupled

system. Sometimes the compliance can be useful, e.g. in membrane-based pumping,

but in other circumstances (such as particle sorting) it can impede device performance

as demonstrated in Chapter 7 by the low achievable particle sorting rates. Therefore,

a logical investigation would explore alternative channel materials to replace PDMS.

The earlier of potential applications for SAW micropumps included high-value POC

devices, in which high device function density is required. High microfluidic channel

density can only be achieved using surface micromachining techniques. Although it is

possible to use photolithography, for example, on advanced thermoplastics[40], more

common materials which are compatible with such processing are silicon and glass.[46]
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Figure 8.1: A schematic of an on-chip PCR device utilising SAW micropumps, where A is the

LiNbO3 substrate, B is the PDMS block containing microfluidic channels, C are the gold IDTs,

D, E and F are three gold heater tracks that generate Joule heating.

Furthermore, as shown in Chapter 6 SAW energy is scattered upwards from the device

surface, therefore the channel must be three dimensional. This is achieved commercially

either by stacking and bonding multiple thin layers of material by laser ablation[240, 241]

or by 3D printing[242, 243], the first two of which are compatible with processing both

glass and silicon. Finally, any channel must be bonded to the LiNbO3 chip, which is

complicated by the pyroelectric nature of the LiNbO3, which prevents high temperature

bonding. However, there are examples of using laser-mediated bonding of LiNbO3 to

silicon[244], as well as examples of bonding quartz to LiNbO3 via a thin film adhesion

layers[245].

8.3.3 On-chip flow cytometer using alternative material

The primary reason for investigating alternative microfluidic channel materials, is to

replace PDMS in the on-chip flow cytometer described in Chapter 7. Such devices would
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require re-evaluation in terms of their pump response time, and correspondingly, particle

sorting rates. Notably, previously published on-chip cytometers achieve sorting rates in

the region of 1000 cells/s, but it is done using external actuating system.[56] Publications

utilising hydrodynamic flow manipulation, typically report sorting values similar to those

described here. To obtain the highest cell sorting rate possible, the cross-sectional

geometry of the microfludic channels, as well as the overall channel contour, would have

to be optimised. Furthermore, a suitable cell capture system must be developed to prevent

recirculation of sorted cells in the closed, circular channel. An implementation of, for

example, a filter[246, 247] or sedimentation based[248] cell capturing region.

8.4 Final remarks

The invention of integrated circuit and translation of electronic circuit elements into a

single substrate components by Kilby and Noyce in the 1950s have allowed the very large

scale integration of electronic components that can be observed nowadays. In a similar

fashion, the use of microfluidic systems in various fields allows the potential to scale

down sample sizes, reagents used and offers an unprecedented level of integration and

parallelisation in the fields of diagnostics, biology, chemistry and others. However, the

field of microfluidics has not yet seen a fully developed toolbox of the various components

used in the ’circuits’. For example, although, there has been a large focus devoted to

the microfluidic pumping, there is no one ’gold standard’ approach that delivers high

performance, small footprint, low cost and scalability. Surface acoustic wave based

micropumps offer an exciting alternative to the currently used systems. However, to date

presented SAW micropumps suffer from either poor performance or from the use of open

channel systems which present contamination issues.

The goal of this thesis was to present a SAW-based micropump, which would attempt

to deliver these requirements. Throughout this work, four key developments to the
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field were presented. First of all was thorough analysis of SAW wavelength choice for

SAW pumping alongside electrode design principles. Since SAWs interact with liquid

in three dimensions, there was a need for a single-cast protocol that would allow three

dimensional microfluidic channel fabrication. Such protocol was presented in Chapters 4

and 5, and as such is the second development. Further, combination of appropriate SAW

wavelength choice and use of three-dimensional microfluidic channels, allowed to present

a SAW micropump capable of delivering an order of magnitude higher power than to

date published SAW micropumps. This work resulted in a publication.[62] Finally, using

herein developed micropumps, an on-chip particle sorting system was presented capable

of sorting up to 10 particles per second, which compares well to systems utilising similar

working principles.
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Appendices

A Image of the in-house developed amplifiers utilised in

Chapter 7.

Figure A.2: A schematic (A) and the PCB (B) used for the custom-made RF amplifiers.
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Appendices

A Impedances and S11 values for devices fabricated

throughout the work

Wavelength, µm S11 peak, dB Impedance, Ω

20 -27.0 42.5

20 -15.7 35.7

20 -15.1 44.2

20 -23.0 44.3

25 -21.2 70.3

25 -19.0 40.2

25 -15.6 40.0

25 -26.4 51.2

30 -18.9 46.0

30 -26.1 46.7

30 -23.0 54.6

30 -19.6 54.6

30 -16.4 46.8

30 -25.1 51.0

30 -17.0 47.0

40 -34.0 49.0



Appendices 182

40 -30.0 54.1

40 -22.7 48.7

40 -28.4 46.7

40 -19.6 53.0

40 -28.1 53.1

40 -27.2 -53.2

40 -27.3 53.6

40 -26.0 49.9

40 -33.0 50.1

40 -25.5 54.1

40 -44.0 49.6

40 -25.4 49.7

40 -45.0 55.1

40 -30.0 51.0

40 -31.4 53.1

40 -27.3 50.1

40 -29.5 51.1

40 -28.6 52.4

40 -32.1 49.7

40 -30.2 50.5

40 -30.0 50.7

40 -29.8 53.6

50 -15.9 44.8

50 -23.7 49.1

50 -22.5 48.5

50 -21.5 55.0

50 -22.3 46.8

50 -24.0 51.4
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50 -19.0 48.6

60 -24.4 48.0

60 -20.7 48.0

60 -19.1 45.0

60 -22.0 45.0

60 -23.3 48.0

60 -19.1 45.0

60 -19.4 46.2

60 -19.6 46.4

60 -18.0 50.5

60 -19.7 44.8

60 -22.9 46.1

60 -18.5 52.6

60 -20.1 55.1

60 -20.0 47.0

70 -15.3 46.0

70 -27.0 54.3

70 -21.0 49.7

70 -17.6 54.5

70 -17.9 44.7

70 -20.6 54.5

70 -19.2 50.6

80 -23.9 45.6

80 -19.8 52.0

80 -29.0 46.5

80 -22.4 47.2

80 -23.4 45.3

80 -21.1 47.1
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80 -20.0 45.2

80 -22.7 48.0

80 -24.0 44.8

80 -22.5 45.3

80 -19.2 52.4

80 -17.7 52.9

80 -31.0 50.6

80 -28.7 50.8

80 -25.0 46.0

100 -22.0 47.2

100 -24.0 48.3

100 -22.4 54.4

100 -18.5 45.5

100 -17.0 45.4

100 -37.7 50.4

100 -29.5 47.2

100 -30.2 51.6

100 -27.2 53.4

100 -22.8 48.6

100 -22.3 48.3

100 -27.2 49.8

100 -29.0 49.4

100 -46.0 50.1

100 -23.2 47.2

125 -17.0 47.0

125 -19.0 45.4

125 -15.2 46.5

125 -17.2 47.0
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125 -15.7 52.2

125 -17.0 49.0
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Appendices

A Data for fluid flow velocities as a function of applied

power and SAW wavelength

Table 2: A table of average fluid flow velocities (with errors) for 125 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 W error 0.5 W 0.5 W error 0.75 W 0.75 W error 1 W 1 W error

-240 57.42 0.73 96.23 1.26 163.63 2.14 198.20 3.08 239.07 3.72

-220 84.92 1.49 175.60 2.33 389.97 5.18 456.30 4.38 562.17 5.39

-200 123.85 2.16 253.45 1.12 548.60 2.43 668.91 4.30 788.23 5.07

-180 140.11 2.29 290.20 1.13 637.27 2.47 784.74 3.55 921.46 4.16

-160 153.20 1.85 311.50 1.45 683.36 3.17 832.07 5.03 997.86 6.03

-140 155.89 0.86 314.51 0.62 696.61 1.37 863.09 6.97 1050.55 8.49

-120 161.18 2.71 323.01 1.83 708.14 4.01 879.68 4.30 1059.52 5.18

-100 162.35 1.84 338.06 0.35 718.55 0.74 901.08 4.85 1086.67 5.85

-80 161.73 1.93 334.48 0.55 729.42 1.21 901.14 5.08 1087.74 6.13

-60 163.00 6.68 336.28 0.28 724.22 0.61 886.72 6.84 1094.40 8.44

-40 162.10 0.59 326.81 1.49 731.42 3.33 890.57 9.45 1102.63 11.70

-20 161.73 1.08 331.86 1.67 730.44 3.67 894.88 5.44 1093.69 6.65

0 164.02 2.20 346.32 1.38 719.71 2.86 890.70 6.61 1084.03 8.05

20 161.11 2.44 339.17 1.49 722.16 3.16 895.05 5.64 1091.78 6.88

40 162.92 1.46 330.77 1.26 725.14 2.77 888.31 9.14 1073.28 11.05

60 160.08 0.68 331.91 1.71 714.44 3.68 892.33 6.41 1084.11 7.79

80 160.63 1.14 328.66 1.64 705.67 3.51 881.12 6.27 1067.07 7.60

100 159.44 1.52 339.09 0.41 709.31 0.86 867.49 8.21 1057.90 10.01

120 156.41 1.43 325.17 1.40 713.22 3.06 853.50 5.97 1038.07 7.26

140 157.77 1.44 324.41 1.39 685.85 2.94 870.40 6.09 1027.22 7.19

160 149.77 2.75 305.04 1.74 677.35 3.87 830.51 5.52 1016.94 6.76

180 144.56 1.08 295.42 0.80 650.39 1.76 800.24 6.80 982.10 8.34

200 132.02 4.40 274.63 1.01 592.13 2.17 751.45 4.98 875.91 5.81

220 111.72 1.73 233.96 1.34 503.97 2.88 608.54 3.97 719.71 4.70

240 69.93 1.72 148.25 0.47 326.74 1.03 368.34 4.92 429.30 5.73
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Table 3: A table of average fluid flow velocities (with errors) for 100 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error 0.75 W 0.75 error 1 W 1 W error

-240 126.40 1.61 129.19 1.69 512.98 6.94 502.54 9.62 315.93 4.92

-220 194.28 3.41 311.21 4.13 684.40 7.35 750.14 11.22 598.43 5.74

-200 206.24 3.59 381.05 1.69 697.49 11.05 948.89 5.27 803.73 5.17

-180 201.66 3.30 432.54 1.68 772.35 7.13 943.16 12.54 912.73 4.12

-160 229.00 2.76 456.79 2.12 823.44 5.58 1029.83 10.40 1002.98 6.06

-140 242.74 1.33 478.02 0.94 817.82 8.03 1115.75 6.78 997.46 8.06

-120 231.24 3.89 496.15 2.81 894.38 4.80 1106.31 9.58 1055.01 5.16

-100 238.52 2.71 488.69 0.50 880.59 8.88 1082.51 8.93 1055.37 5.68

-80 248.64 2.97 494.17 0.82 876.90 5.66 1073.90 14.18 1055.88 5.95

-60 204.91 8.39 502.30 0.42 912.66 6.79 1120.48 6.51 1069.30 8.25

-40 259.76 0.94 517.22 2.35 892.17 8.36 1029.45 13.53 1025.42 10.88

-20 253.44 1.68 500.47 2.52 844.12 7.14 1073.63 13.12 1038.87 6.32

0 238.93 3.20 499.24 1.98 869.19 6.15 1076.56 12.19 1014.39 7.53

20 231.20 3.50 497.49 2.18 895.63 4.70 1102.81 7.88 1037.73 6.54

40 240.94 2.16 500.21 1.91 860.20 8.26 1092.42 10.13 1001.99 10.31

60 257.78 1.09 506.88 2.61 868.65 6.19 1039.46 10.76 1040.71 7.48

80 256.75 1.82 484.46 2.41 814.62 8.16 1073.03 9.30 1004.93 7.15

100 243.56 2.32 478.80 0.58 833.22 5.96 1119.58 7.01 972.90 9.21

120 245.68 2.25 481.92 2.07 816.14 5.16 1094.27 7.66 962.88 6.74

140 245.68 2.25 481.92 2.07 816.14 5.16 1093.96 7.64 962.88 6.74

160 209.00 3.84 482.15 2.75 788.26 6.85 1005.11 7.66 890.37 5.91

180 225.69 1.69 432.16 1.17 743.41 5.77 956.07 6.45 847.86 7.20

200 193.03 6.43 445.99 1.64 651.86 5.59 883.67 9.78 787.51 5.22

220 158.34 2.46 400.29 2.29 519.26 6.47 789.64 9.16 613.48 4.01

240 304.49 46.67 340.92 1.08 301.02 7.47 471.29 7.68 376.23 5.02
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Table 4: A table of average fluid flow velocities (with errors) for 80 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error 0.75 W 0.75 error 1 W 1 W error

-240 169.15 5.15 263.13 7.62 763.50 12.56 825.36 12.22 836.49 18.74

-220 343.76 7.42 576.35 6.85 1084.83 4.95 1108.31 8.28 1236.96 14.15

-200 427.20 4.66 753.45 3.95 1272.51 5.15 1279.86 9.65 1448.12 12.08

-180 471.93 5.24 871.92 2.89 1364.22 8.27 1398.09 12.97 1580.91 12.83

-160 475.40 5.85 918.85 2.79 1387.07 7.29 1398.58 9.63 1630.44 15.22

-140 510.82 6.17 966.65 1.37 1436.60 6.81 1458.39 13.13 1663.11 13.40

-120 514.41 4.99 978.12 1.79 1424.80 8.49 1462.76 12.46 1705.60 19.49

-100 530.49 6.65 985.00 3.91 1427.83 9.33 1471.08 16.01 1734.73 10.80

-80 547.50 2.68 1001.60 1.74 1427.97 7.72 1477.22 10.91 1727.60 16.05

-60 568.29 3.04 991.60 3.43 1485.02 5.26 1497.10 10.24 1765.72 16.71

-40 507.91 6.02 992.79 3.70 1429.51 12.55 1510.01 14.24 1771.43 10.64

-20 506.73 5.62 986.17 3.85 1423.79 9.34 1478.73 13.04 1596.25 24.73

0 501.34 7.04 1011.12 3.26 1448.54 8.08 1485.88 14.43 1820.58 10.76

20 496.47 8.67 976.63 3.84 1454.76 8.12 1486.66 10.12 1728.34 11.65

40 548.64 4.24 967.86 5.03 1440.77 8.53 1488.97 12.09 1630.49 18.47

60 565.62 2.42 995.67 4.51 1433.49 8.21 1473.81 11.76 1647.55 17.83

80 534.12 4.40 986.64 3.59 1402.53 8.40 1417.35 13.98 1625.70 19.46

100 517.82 3.91 975.67 3.08 1406.18 7.07 1429.93 11.13 1619.30 22.68

120 540.47 4.81 963.04 4.09 1415.42 7.13 1458.55 17.48 1657.77 19.13

140 540.47 4.81 963.04 4.09 1415.42 7.13 1458.55 17.48 1657.77 19.13

160 464.95 5.18 934.81 2.98 1334.42 6.47 1304.87 5.41 1601.20 12.88

180 468.45 3.62 885.60 3.87 1236.21 7.92 1265.35 12.07 1532.18 10.87

200 405.29 5.19 812.33 3.84 1083.13 7.26 1155.46 10.49 1318.09 10.46

220 296.40 8.71 679.02 6.77 742.83 10.13 823.35 12.30 1011.66 11.25

240 120.69 1.52 369.22 12.92 270.66 1.53 383.87 8.47 486.08 14.09
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Table 5: A table of average fluid flow velocities (with errors) for 70 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error 0.75 W 0.75 error 1 W 1 W error

-240 142.10 4.12 93.06 0.92 190.90 2.69 125.09 1.05 186.73 10.11

-220 158.03 8.74 252.77 2.72 337.49 6.75 432.36 9.22 636.65 7.43

-200 222.24 9.05 351.74 3.31 394.53 2.96 610.30 3.49 718.21 11.76

-180 273.42 2.63 399.56 2.49 436.04 7.21 653.32 4.02 781.76 5.51

-160 275.14 8.42 416.48 1.32 413.85 1.69 631.54 17.80 795.72 15.94

-140 289.33 5.81 437.52 2.52 454.72 4.14 642.42 12.48 787.23 13.96

-120 296.77 4.16 459.66 2.87 495.33 7.68 716.16 10.35 834.11 13.18

-100 300.91 3.95 463.12 3.58 439.11 2.59 660.14 15.43 839.94 11.78

-80 309.42 2.35 450.66 2.79 440.03 3.13 691.06 12.07 811.12 13.69

-60 298.27 12.14 455.91 1.67 456.21 3.61 652.26 12.62 876.39 12.16

-40 309.90 4.76 438.49 3.73 532.79 10.96 688.03 8.76 817.57 11.27

-20 297.31 3.55 428.77 3.06 474.41 5.31 680.55 11.30 872.61 15.92

0 303.38 2.62 444.24 1.27 432.85 3.62 690.62 16.84 826.27 15.31

20 305.33 3.93 447.16 3.63 535.62 14.37 703.57 10.13 834.12 10.65

40 301.75 6.21 449.59 3.91 588.57 20.00 703.10 18.15 842.05 10.03

60 297.80 10.10 451.24 1.71 495.80 8.97 741.27 13.59 834.07 11.48

80 305.53 3.47 454.03 2.65 485.70 8.80 773.20 8.11 849.85 14.43

100 302.56 2.51 457.09 2.97 486.03 12.52 692.74 14.25 816.91 7.61

120 301.90 2.33 454.93 2.08 538.94 9.50 705.38 11.33 814.95 9.40

140 301.90 2.33 454.93 2.08 538.94 9.50 705.38 11.33 814.95 9.40

160 288.26 2.74 416.98 1.97 453.03 0.87 665.10 4.54 840.88 12.30

180 254.71 11.01 406.74 2.63 398.33 1.76 667.92 15.90 761.86 7.39

200 233.05 10.49 370.12 3.19 409.02 7.53 709.99 2.85 723.22 7.07

220 168.11 3.34 296.96 3.32 350.35 5.05 684.35 6.59 674.23 6.22

240 126.30 4.46 114.79 0.98 171.14 5.49 485.83 10.60 499.49 18.87
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Table 6: A table of average fluid flow velocities (with errors) for 60 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error

-240 183.75 7.75 305.79 20.89 429.93 2.19

-220 343.09 6.52 544.33 5.86 617.24 6.78

-200 454.56 3.28 656.30 3.69 763.79 22.16

-180 484.31 3.44 734.45 4.26 894.84 5.60

-160 516.92 4.78 756.50 6.14 902.00 16.96

-140 531.20 4.75 757.33 4.38 937.87 1.46

-120 540.14 6.72 781.76 4.91 925.22 17.95

-100 535.69 3.99 770.84 6.89 922.50 12.96

-80 539.27 3.79 770.87 5.21 977.02 8.71

-60 539.12 3.75 778.42 5.83 950.13 7.02

-40 563.78 2.67 768.34 3.18 983.27 2.67

-20 528.00 4.12 786.45 4.48 968.40 6.69

0 525.04 5.31 797.79 6.06 955.31 10.10

20 523.29 5.81 776.53 4.91 933.80 9.62

40 574.88 4.44 790.77 8.26 943.92 5.42

60 549.45 5.18 797.36 7.07 977.04 3.59

80 528.35 8.79 802.53 5.15 984.79 5.24

100 532.39 9.07 789.69 8.79 982.95 12.01

120 537.69 3.32 786.94 6.98 1001.98 7.35

140 537.69 3.32 786.94 6.98 1001.98 7.35

160 555.05 4.63 759.15 3.57 894.59 14.44

180 516.85 1.57 754.70 5.94 933.99 5.54

200 442.28 6.61 658.28 5.78 816.95 15.77

220 336.32 7.38 504.33 12.24 673.53 6.80

240 178.51 6.12 227.99 10.55 138.45 13.46
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Table 7: A table of average fluid flow velocities (with errors) for 50 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error

-240 101.74 45.96 292.70 3.10 159.10 8.95

-220 291.32 6.14 499.39 5.08 681.48 5.56

-200 340.95 6.76 560.00 3.48 726.89 10.89

-180 376.23 11.41 664.20 1.00 795.51 6.44

-160 429.60 6.37 656.28 4.71 889.27 2.74

-140 390.72 13.59 675.75 5.14 804.90 15.87

-120 398.31 16.93 679.44 2.56 873.62 17.57

-100 463.12 7.61 690.95 2.94 877.88 16.35

-80 447.32 7.55 693.26 4.47 886.26 12.41

-60 456.14 2.13 679.57 3.35 937.49 5.56

-40 474.15 3.14 702.86 1.30 907.25 15.72

-20 462.73 4.28 696.85 7.23 905.06 14.27

0 449.66 3.85 694.52 4.35 855.89 18.79

20 452.76 3.43 694.04 3.39 857.48 14.24

40 444.03 8.35 686.04 2.77 844.85 15.54

60 437.86 6.27 671.53 1.54 842.89 13.44

80 458.83 1.44 674.77 7.04 893.24 7.91

100 457.42 0.95 680.08 5.08 836.14 11.22

120 436.16 2.56 662.35 1.06 851.53 7.27

140 436.16 2.56 662.35 1.06 851.53 7.27

160 404.70 4.92 660.35 2.56 833.54 9.17

180 409.40 1.03 646.97 2.75 770.25 7.49

200 336.24 2.15 558.52 8.95 712.94 6.66

220 266.44 2.98 402.61 13.07 680.55 5.04

240 82.18 37.47 178.78 12.15 356.41 22.67
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Table 8: A table of average fluid flow velocities (with errors) for 40 µm wavelength SAW device

as a function of position in the channel and applied power.

X position, µm 0.125 W 0.125 W error 0.25 W 0.25 W error 0.5 W 0.5 W error

-240 299.30 44.99649267 183.00 1.43 663.86 21.31

-220 425.89 3.856868568 766.27 5.67 1179.48 8.46

-200 545.48 2.136876699 995.53 3.78 1445.95 8.89

-180 599.06 3.270603897 1086.22 2.17 1602.41 7.07

-160 618.18 3.738628374 1152.66 3.77 1643.78 12.89

-140 630.47 4.867578733 1181.61 3.84 1754.41 9.06

-120 646.78 3.009810726 1214.09 2.36 1769.97 11.17

-100 649.80 3.867620989 1190.58 5.39 1725.21 13.20

-80 653.18 2.455866314 1238.20 0.57 1741.43 8.09

-60 661.67 5.661643017 1208.11 3.73 1735.46 12.96

-40 651.46 3.631500447 1219.58 4.40 1759.78 10.93

-20 642.18 2.842350324 1165.95 7.73 1822.54 6.89

0 656.96 2.205206552 1187.84 4.27 1774.37 11.41

20 660.73 1.698463983 1182.31 6.66 1767.53 10.43

40 656.30 2.385165336 1212.44 3.05 1800.13 10.73

60 649.77 3.839582386 1196.11 3.38 1764.20 8.95

80 646.89 3.642049688 1188.44 4.06 1743.20 12.70

100 638.12 3.739540191 1167.39 4.37 1728.43 12.89

120 638.38 4.403621533 1176.86 3.95 1699.77 9.33

140 638.38 4.403621533 1176.86 3.95 1699.77 9.33

160 665.24 1.25864448 1114.81 2.98 1612.90 11.20

180 584.58 3.157425019 1044.25 2.36 1532.19 11.44

200 528.06 2.449931206 908.57 4.13 1335.98 13.62

220 397.45 2.292845573 691.68 5.86 1061.35 14.06

240 341.77 1.120286602 273.71 17.52 119.52 2.46
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Table 9: A table of average fluid flow velocities (with errors) for 30 µm wavelength SAW device

as a function of position in the channel and applied power.

X position 0.125 W 0.125 W error 0.25 W 0.25 error 0.5 W 0.5 W error 0.75 W 0.75 error 1 W 1 W error

-240 55.00 0.23 114.97 0.25 155.00 14.29 191.26 14.21952027 461.80 32.87

-220 88.71 1.15 181.10 0.78 299.75 18.26 539.82 6.194411401 631.14 6.74

-200 132.45 0.08 196.10 0.55 585.00 1.15 686.29 2.875227992 823.61 7.10

-180 137.44 0.58 263.20 0.51 561.86 4.04 754.18 3.686128603 919.56 5.99

-160 151.96 0.38 266.33 0.67 602.41 2.51 800.78 2.162816934 979.50 4.98

-140 145.62 1.60 265.00 3.96 599.91 4.17 838.27 3.180099439 992.94 13.56

-120 159.30 0.26 273.01 2.79 630.51 14.80 841.85 1.476295301 1011.25 5.68

-100 161.72 1.78 275.23 1.03 631.65 3.79 862.79 1.277187336 1006.09 4.67

-80 163.45 0.37 282.33 2.45 618.31 1.41 835.75 2.854979413 1017.53 6.08

-60 161.71 0.50 266.77 2.14 598.06 3.69 856.77 1.785431605 1022.44 8.27

-40 163.16 0.20 270.11 0.92 616.33 2.16 869.91 0.914784714 1003.71 7.12

-20 161.68 0.58 283.15 2.91 620.34 1.90 841.66 2.731599095 1023.75 5.60

0 161.84 0.26 275.00 8.45 622.34 0.74 837.93 2.28377299 1024.50 6.40

20 161.35 0.28 271.13 0.86 611.57 3.30 840.26 1.623360844 1023.92 7.42

40 161.90 1.77 272.13 2.27 599.61 2.51 838.23 3.463641049 1002.40 6.98

60 161.68 0.26 273.57 0.57 622.65 3.03 805.97 3.822516851 1000.47 2.47

80 160.39 22.73 265.14 0.96 600.16 2.18 821.73 2.406335373 978.90 6.56

100 161.84 0.47 272.88 0.50 598.63 3.25 813.93 2.062543836 996.92 7.15

120 161.14 0.26 272.46 0.90 595.33 0.68 820.81 2.648014104 977.54 5.55

140 161.14 0.26 272.46 0.90 595.33 0.68 820.81 2.648014104 977.54 5.55

160 153.15 0.08 246.19 0.72 562.78 3.26 759.85 2.373428932 942.94 6.95

180 145.94 0.22 244.99 1.75 550.00 3.73 768.86 2.392368432 906.79 3.84

200 129.68 0.19 234.54 1.86 497.66 2.94 662.95 4.869839798 808.14 8.17

220 98.33 0.19 187.43 0.67 361.08 1.23 528.50 6.00568441 673.72 9.44

240 55.00 0.31 106.75 0.15 215.57 3.07 269.07 12.18423707 401.12 12.14
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Appendices

A Particle velocity dependence on the x-y coordinates in

sorting region of type-b devices seen in Chapter 7

Table 10: Particle velocity dependence on the x-y coordinates at 12.1 Pa pressure difference

between side channels. Columns are the x-coordinates, and rows are the y-coordinates.

Y//X 50 100 150 200

50 449.5 521.3 471.2 551.4

100 798.7 619.1 558.1 501.3

150 753.3 663.7 531.4 403.0

200 715.8 660.0 443.6 327.5

250 726.9 431.1 360.9 215.6

300 421.1 591.5 421.1 167.1
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Table 11: Particle velocity dependence on the x-y coordinates at 26.3 Pa pressure difference

between side channels. Columns are the x-coordinates, and rows are the y-coordinates.

Y//X 50 100 150 200

50 1494.8 625.0 625.0 386.9

100 966.5 472.9 456.6 329.4

150 1140.2 927.5 646.9 467.9

200 1179.7 1038.6 776.8 390.6

250 1270.2 979.7 937.5 453.1

300 1129.5 989.6 834.5 471.0

Table 12: Particle velocity dependence on the x-y coordinates at 96 Pa pressure difference between

side channels. Columns are the x-coordinates, and rows are the y-coordinates.

Y//X 50 100 150 200

50 1504.1 1161.4 1822.9 401.0

100 1331.3 936.7 1236.1 401.0

150 1653.0 1132.2 971.1 968.7

200 1694.1 1260.9 1236.1 1354.1

250 1659.9 1346.6 1295.5 1212.8

300 1440.2 1222.9 1284.7 1193.1
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Table 13: Particle velocity dependence on the x-y coordinates at 135 Pa pressure difference

between side channels. Columns are the x-coordinates, and rows are the y-coordinates.

Y//X 50 100 150 200

50 1441.3 2250.0 1156.2 656.2

100 1833.3 2333.3 1265.6 656.2

150 2189.6 1807.3 1441.3 1143.7

200 2333.3 2134.5 1991.2 1881.5

250 2434.9 2261.9 2324.4 2020.0

300 1935.3 2056.7 2386.2 2758.3
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