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Abstract 

 
The Intensive Care Unit (ICU) is where the critically-ill are treated. The first 24-hours 

(‘the golden hours’) of treatment is crucial to determine patient’s recovery and 

survival, and mechanical ventilation plays a major role as the main life support system 

in the ICU. The efficiency of mechanical ventilation and its management strategy are 

assessed by observing the arterial blood gases (ABG), which are sampled every few 

hours using a catheter inserted into the patient’s artery. This procedure is invasive thus 

can only be performed a handful of times each day. The ICU also has an abundance of 

underutilized data which until recently can only be translated by expert clinicians, who 

unfortunately always have clinical responsibilities to undertake concomitantly.   

 

This thesis proposes a series of new fuzzy logic-based models with a new type of fuzzy 

sets (type-2), which have not been investigated before in this clinical setting, for the 

relative dead-space (Kd), the carbon-dioxide production (VCO2), and the shunt sub-

components for the SOPAVent (Sheffield Simulation of Patients under Artificial 

Ventilation) system, which performs predictions of arterial blood gases non-invasively 

and automatically. The Kd model, the VCO2 model and the resulting overall 

SOPAVent model are validated with retrospective real ICU patient data obtained from 

the Sheffield Royal Hallamshire Hospital (UK). The SOPAVent model is also 

validated with newly obtained data from patients diagnosed with Faecal Peritonitis 

(FP), from the Sheffield Royal Hallamshire Hospital (UK). Results showed an 

improved prediction accuracy for the Kd and the VCO2 sub-components when 

compared to existing systems. The prediction capability of SOPAVent is also 

improved from previous models for arterial blood gases before and after ventilator 

settings changes are made.  

 

A second new simplified model for predicting ABG using ventilator settings is also 

proposed with excellent prediction outcomes. Additionally, this thesis also looks into 

Electrical Impedance Tomography (EIT) as a potential bedside monitoring tool for 

pulmonary functions. EIT has the ability to provide a non-invasive, portable, and a 

relatively low cost alternative to other medical imaging systems. This thesis details the 
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development of the hardware for a compact 16-electrode EIT measurement system, 

with the objective for future pulmonary applications. A method to generate three-

dimensional (3D) images of the lungs from two-dimensional (2D) medical images of 

the thorax is also proposed with the estimation of lung volumes being presented.  
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Chapter 1  
 

Introduction 

 
1.1 Research motivation 

 

1.1.1 Blood Gas Sampling for Artificially Ventilated Patients in 

the Intensive Care Unit 

 
The intensive care unit (ICU) is where severely-ill patients requiring 

constant monitoring are treated. Patients are usually admitted to the ICU to recover 

following major surgery, or when one or more of their organs fail from injuries or 

serious infections. Between 2015 and 2016 the UK National Health Service (NHS) 

estimated that 270,000 adults were admitted into ICUs in England, with 75% of them 

being above 50 years old. Each year an estimated 20% of patients admitted to the ICU 

did not survive to leave the ICU (ICNARC report, 2013/14). The first 24 hours (the 

so-called ‘golden hours’) of care is the most critical, and will eventually determine the 

outcome of the patient. However, due to severe constraints on health services, patients 

in the ICU are monitored by only a few nurses, who have many tasks to perform 

concomitantly and are of varying levels of seniority and experience. The intensive care 

medical staff are spread thinly, with responsibility for seeing critically-ill patients 

inside and outside the ICU.   

 

Artificial ventilation plays a key role as the main life support system for 

patients in the ICU. The NHS estimated that 45% of patients admitted to the ICU 

require respiratory support from artificial ventilators. Artificial ventilation aids 

spontaneous breathing, and can also take over the normal breathing functions for 

patients who are unable to do this for themselves. Patients are usually artificially 

ventilated when they suffer from respiratory failure, circulatory failure or neurological 

failure. Clinicians optimize ventilator settings to ensure appropriate oxygenation, 
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which would allow tissues to metabolize effectively, and at the same time would try 

to reduce the risk of ventilator induced injuries to the lungs, trachea or vocal cords.  

 

To evaluate the efficiency of artificial ventilation, blood samples are taken 

from the patient’s arteries, usually every two to three hours. Blood samples are also 

taken from the veins, although much less frequently. Blood gas analysis is performed 

on the blood samples to determine the partial arterial pressure of oxygen (PaO2), the 

partial arterial pressure of carbon-dioxide (PaCO2) and the acid-base levels (pH). 

When necessary, adjustments in ventilator settings are made following the blood gas 

results to ensure proper oxygenation is achieved.  

 

Changes in ventilator settings can induce a response in blood gas 

parameters in as early as 30 minutes. However, verification of this can only be carried-

out when the next blood sampling is due in two or three hours. The procedure to take 

arterial blood samples is invasive: a catheter must be inserted to the artery at the wrist, 

or other parts of the body if the artery at the wrist cannot be accessed. Careful 

consideration is usually given before this procedure is performed. These 

considerations can include the quality of blood supply, i.e. poor blood supply or blood 

clots and damaged arteries, and sometimes this may be challenging in the awake 

patient, especially if they are very young or confused.  These factors can potentially 

reduce the number of blood gas samples for a 24-hour period which lead to a lack of 

knowledge of the blood gases qualities. A ballpark estimation of blood gases however, 

may lead to the wrong clinical decisions being made.  

 

The ICU generates data from multiple sources, some of which can only be 

interpreted and cross-correlated by expert clinicians. Unfortunately, clinicians, often 

become very busy, with other clinical and non-clinical duties. These data include 

measurements of physiological parameters, medication dosage and frequency, 

ventilator settings, sensor readings, and results from tissue, urine and blood analyses. 

An objective and evidence-based approach towards interpreting this rich data can help 

towards the strategy for patient recovery and survival. An automatic and non-invasive 

blood gas prediction tool is highly desired to bridge the time gap and information 

between actual blood gas analyses. Furthermore, computerization can relieve tedium 

for clinicians and nurses, so they can focus on other more critical decisions.   
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1.1.2 Electrical Impedance Tomography for a Non-invasive 

Bedside Monitoring of the Lungs 

 
The management of ventilated patients is achieved through the optimal 

setting of ventilator parameters, such as the tidal volume (VT), the positive-end 

expiratory pressure (PEEP) and the inspiration time (Tinsp). The patient’s 

physiological information, the result of blood gas samplings, and the measurements of 

pressures and volumes obtained by the artificial ventilator provide the gold standard 

for assessing the global functions of the lungs, and ultimately guide the decisions taken 

by clinicians in ventilator management strategy.  

 

However, blood gas sampling and ventilator measurements alone do not 

provide clinicians with enough information regarding regional lung behaviour. Thus, 

imaging techniques such as x-ray, computed tomography (CT), and magnetic 

resonance imaging (MRI) are used to provide a comprehensive representation of the 

regional lung condition.  Unfortunately, some of these imaging techniques expose the 

patients to harmful radiations and involve transporting critically-ill patients outside of 

the ICU. These imaging techniques are also costly and labour intensive. Thus, the case 

for an alternative for a portable, safe and a non-invasive bedside monitoring approach 

for the imaging of the lungs can easily be made. 

 

Electrical Impedance Tomography (EIT) aims to reconstruct the spatial 

image of the lungs by mapping the internal distribution of conductivities within the 

thorax. This is done by placing a set of electrodes at equal distances around the 

circumference of the thorax. A small alternating current is injected via one pair of 

adjacent electrodes and measurements are taken from all other adjacent electrode 

pairs. EIT is non-invasive and radiation free, and allows for the estimation of the 

lung’s absolute resistance, which is then used to derive the lung volume and lung 

density. Relative EIT however, allows for comparison of impedances at two different 

times and can be translated into images. These images can be used in tracking the 

process of respiration during artificial ventilation. The merging of EIT imaging and 

the estimation of lung volume and lung density from EIT, with blood gas predictions 

and interval blood gas samplings, and ventilator measurements can provide clinicians 
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with an increased knowledge on the lungs’ regional and global behaviour. This may 

lead to the improved quality for the management of artificially ventilated patients in 

the ICU.  

 

1.2 Aims and Objective of the Research 

 
The main objective of this thesis is to improve existing blood gas models for ventilated 

patients and validation of these models with real ICU patient data. In this thesis an EIT 

measurement system for pulmonary application is also proposed. Several sub-

objectives are outlined as follows:  

 

1. To further improve the prediction accuracy of the relative dead-space 

(Kd) model, the carbon-dioxide production (VCO2) model, and the 

shunt model of SOPAVent, and to validate the Kd, VCO2, and shunt 

models with real ICU patient data. 

 

2. To integrate the VCO2, Kd and shunt models into the SOPAVent 

system for the prediction of partial arterial pressure of oxygen (PaO2), 

the partial arterial pressure of carbon-dioxide (PaCO2), and the acid-

base measurement (pH) of arterial blood gases, and to systematically 

validate the SOPAVent blood gas models with retrospective ICU 

patient data and some newly obtained ICU patients’ data.  

 

3. To model the relationship of ventilator settings to arterial blood gas 

parameters for the newly obtained ICU patients’ data using the synergy 

between expert knowledge and a data driven approach. 

 

4. To investigate the Electrical Impedance Tomography (EIT) as a 

potential bedside monitoring tool for pulmonary applications and to 

develop the hardware of an EIT system.  

 

5. To estimate the lung volume from 2D conventional magnetic 

resonance (MRI) and computed tomography (CT) medical images of 
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the human thorax and to perform 3D rendering of the lungs from 2D 

MRI and CT medical images of the human thorax. 

 

1.3 Outline of thesis 


This thesis is distributed over seven chapters.  

 

Chapter 2. Literature Review 

 

This chapter is divided into two major sections. The first section discusses 

pioneering work and current trends in blood gas modelling for ventilated 

patients in the ICU. The second section describes previous and recent 

works involving the application of electrical impedance tomography (EIT) 

for pulmonary monitoring. 

 

Chapter 3. Evolutionary Fuzzy Type-2 Blood gas Models for 

Ventilated Patients in ICU 

 

This chapter provides in detail the modelling of the relative dead-space 

(Kd), the carbon-dioxide production (VCO2) and the shunt using interval 

type-2 fuzzy logic system (IT2FLS). The Kd, the VCO2 and the shunt 

models are further improved using the ‘new structure’ particle swarm 

optimization (nPSO) and is validated using real ICU patient data. A 

performance comparison with previously developed models is also 

provided. 

   

Chapter 4. Fuzzy C-means Clustering (FCM) for Kd and VCO2 

Models and Validation of SOPAVent with ICU Data 
 

In this chapter, the fuzzy c-means clustering (FCM) algorithm is employed 

to model the Kd and the VCO2 subcomponents. The Kd, the VCO2 and the 

shunt models are integrated into the SOPAVent (Simulation of Patients 

under Artificial Ventilation) model for the prediction of partial arterial 
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pressure of oxygen (PaO2), the partial arterial pressure of carbon-dioxide 

(PaCO2) and the acid-base measurement (pH) of arterial blood gases. The 

SOPAVent blood gas model is validated using real ICU patient data and 

the performance comparison of different Kd, VCO2 and shunt models in 

SOPAVent is also presented.  

 

Chapter 5. Validation of Blood Gas Models for Patients with Faecal 

Peritonitis 

 

This chapter provides the results of the SOPAVent blood gas models for 

the prediction of PaO2, PaCO2 and pH blood gas parameters on newly 

obtained ICU patient data, where patients were diagnosed with faecal 

peritonitis. This chapter also details a simplified modelling approach of 

blood gas components of PaO2, PaCO2 and pH of faecal peritonitis 

patients’ data via an adaptive neural-fuzzy inference system (ANFIS), 

using ventilator settings as model inputs. 

 

Chapter 6. Electrical Impedance Tomography (EIT) for Monitoring 

of the Lungs 
 

Chapter 6 details the fundamentals of electrical impedance tomography 

(EIT) in pulmonary applications, and the development of a 

microcontroller-based, portable hardware, of a 16-electrode, EIT system. 

This chapter also describes the process for rendering 3D images of the 

lungs by utilising 2D medical images such as magnetic resonance imaging 

(MRI) and computed tomography (CT) images of the human thorax. The 

estimation of lung volumes using MRI and CT images is also presented in 

this chapter. 

 

Chapter 7. Conclusion  

 

The final chapter provides an overall summary of works done in the thesis 

and highlights the achievements of the project. A set of recommendations 

for future works is also presented. 
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Chapter 2  
 

Literature Review 

  
2.1 Blood Gas Models and Decision Support for Ventilator 

Management in the Intensive Care Unit 

 
Mechanical ventilation plays a critical role in the Intensive Care Unit 

(ICU). The integration of sensor measurements, ventilator settings and other routine 

clinical data should provide clinicians with information that enables them to 

implement immediate and appropriate treatments that may save lives. Ventilation 

management is a complex process involving not only ventilator settings and ventilator 

measurements, but also the patient’s physiological parameters. Large and 

interdependent dataset generated by the ICU can lead to challenges as the information 

contained in the dataset can only be interpreted by a small number of expert clinicians. 

Researches have been focusing on developing Decision Support Systems (DSS), in 

order to provide clinicians with solutions to integrating and processing the large 

amount of information in the ICU. Sim et al., (2001) defined DSS as ‘a software-based 

application that matches the patient-specific characteristic to computerised knowledge 

in order to provide recommendations for clinical decisions’.  

 

DSS for ventilator management can either be an open-loop system or a 

closed-loop system, with an open-loop system providing advice for clinicians without 

performing therapeutic actions, while a closed loop system directly executes decisions 

for ventilator control. The DSS can be either knowledge-based, model-based or a 

combination of both. A knowledge-based DSS is a computer-based decision support 

using the expert opinion of clinicians. However, decisions can also vary from one 

clinician to another based on the clinician’s experience, knowledge and standard of 

practice. Meanwhile, an accurate, and purely model-based system for such a complex 

process is very hard to achieve. Most parameters required in the mathematical models 
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are non-linear, while some parameters are not routinely available in the ICU setting. 

Therefore, a combination of expert knowledge and patient model is seen as rational 

approach for an accurate and practical system that compensate for the weaknesses of 

knowledge-based and model-based systems.  

 

The Intelligent Ventilator (INVENT) is a model-based DSS for ventilator 

settings that was developed by Rees et al., (2006), which included a mathematical 

model for blood gas estimations called ARTY, and a mathematical model for 

pulmonary gas exchange called ALPE. Figure 2.1 shows the structure of INVENT. 

ALPE was developed to replace the conventional definition of oxygenation from 

PaO2/FiO2 ratio. ARTY and ALPE simulated the effects of mechanical ventilation 

strategy on patient’s physiological state. INVENT is an open loop DSS that provided 

ventilator settings advice for the fractions of inspired oxygen (FiO2), the tidal volume 

(VT), and the respiratory rate (RR), with the inclusion of penalty functions for 

barotrauma, hypoxia, acidosis/alkalosis and oxygen toxicity.  

 

AllerØd et al., 2008 performed a validation of INVENT for VT, RR, and 

FiO2 ventilator settings using retrospective ICU data. From the simulations performed, 

the DSS was able to provide reasonable advice when compared to a clinician’s 

decisions, apart for variables concerning oxygenation such as the arterial partial 

pressure of oxygen (PaO2) and the oxygen saturation (SpO2). All parameters were 

assumed to be constant and the DSS did not account for large changes in ventilation. 

The system also required the tuning of parameters for individual patients thus limiting 

the system’s generalization properties. Furthermore, all patients used in this study had 

pulmonary-artery catheters (PAC) inserted. 

 

 
Figure 2.1 The INVENT structure (Rees et al., 2011) 
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An advisory system named FLEX, was developed by Tehrani and Roum, 

(2008), to provide ventilator settings suggestions and also to provide advice on when 

patients should be weaned-off ventilators in volume control mode or pressure control 

mode. FLEX computes the optimal ventilation from the levels of the arterial partial 

pressure of carbon-dioxide (PaCO2), SpO2 and body weight, and also provided advice 

on weaning by checking the patient’s parameters. The DSS has been validated with 

decision made by clinicians. From the simulations performed, FLEX was able to 

predict the failure of weaning for two patients it suggested not to wean. However, 

FLEX was not designed to simulate the oxygen and carbon-dioxide transport models 

but instead derives the parameters of gas exchange from hypotheses.  Figure 2.2 shows 

the structure of the FLEX system. 

 

 
Figure 2.2. The structure of the FLEX system (Tehrani and Roum, 2008). 

 

Kretschmer et al., (2014) proposed four models to represent the gas 

exchange process in ventilated patients. The gas exchange models are shown in Figure 

2.3. The first model consisted of the shunt compartment and the alveolar compartment 

receiving 100% ventilation, and used to simulate the value of PaO2 only, and was 

calibrated by deriving shunt from patient data. The second model represented the dead-
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space compartment and was used to simulate the value of PaCO2. The third model was 

a combination of the first and the second model, but it was unable to reproduce the 

effect of ventilation/perfusion (V/Q) mismatch. The fourth model had fixed perfusion 

distribution of compartments, and an additional alveolar compartment was included, 

which resulted in a variable of perfusion distribution amongst the compartments. The 

respiratory mechanics were developed using a first order R-C model to represent the 

resistive effect of the lungs and compliant effect of the lung. The system computed the 

suggestions for RR, FiO2, inspiration pressure (Pinsp), minute volume (MV), 

inspiration to expiration (I:E) ratio and inspiration time (Tin). From the simulations 

performed, the authors showed the system’s ability to provide plausible clinical 

predictions. However, the ventilator settings advice for MV was higher in models two 

and three for the same target PaCO2. The system also provided multiple 

recommendations, hence a decision had to be made on which recommendation to use. 

The system also needed validation with clinical data.  

 

 
Figure 2.3. The gas exchange models in the decision support for ventilator settings 

(Kretschmer et al., 2014) 
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The Sheffield’s Simulation of Patient under Artificial Ventilation 

(SOPAVent), is a mathematical model for pulmonary gas transports which was also 

able to predict the arterial blood gases (ABG) in ventilated patients. It was first 

developed by Goode, (2000). The blood gases produced by the SOPAVent system 

were the PaO2, the PaCO2 and the acid-base measurement, pH. The SOPAVent model 

was used in a fuzzy logic-based DSS for artificially ventilated patients called FAVEM, 

which provided suggestions for ventilator settings (see Figure 2.4). The fuzzy rules of 

FAVEM were hand-crafted through consultations with an expert clinician, and later 

refined after closed-loop simulations were performed.  The DSS produced suggestions 

for FiO2, VT, RR and Pinsp ventilator settings. ICU patient data was used to validate 

FAVEM. The author reported that 23% of the generated advice gave poor results when 

compared to an expert clinician’s decision and suggested further improvements to be 

made. Some parameters used in SOPAVent such as the cardiac output (CO), the 

carbon-dioxide production (VCO2), and the relative dead-space (Kd) also required the 

use of a metabolic tester, or included invasive procedures, which resulted in a very 

small number of usable data.  

 

 

 
Figure 2.4 Overview of the FAVEM structure (Goode, 2000) 

 

 Modifications to the SOPAVent blood gas models were proposed and 

implemented by Kwok et al., (2001), by replacing the CO and the VCO2 

subcomponents, which initially were obtained from metabolic tester, to estimations 

from population means. The shunt component was replaced with an adaptive neural-

O
bs

er
va

tio
n 

P
ro

ce
ss

in
g 

M
od

ul
e 

 Patient State 

 Patient Goals 

 Alarms 

 Ventilator 
Settings 

 
 

 
 

 

FiO2 Antecedents 

PEEP Antecedents 

MV Antecedents 

VT Antecedents 

Tin Antecedents 

FiO2 Advisor 

PEEP Advisor 

MV Advisor 

VT Advisor 

Tin Advisor 

Q
ua

nt
iz

at
io

n 

Advice 
Change   New Ventilator 

Settings 

 ∑ 



13 
 

fuzzy inference system (ANFIS), and the relative dead-space (Kd) component was 

replaced with a fuzzy model. The advisory system was developed using fuzzy 

principles and was called the Sheffield Intelligent Ventilator Advisor (SIVA) (Kwok 

et al., 2004a and 2004b) (see Figure 2.5). The input variables of SIVA were decided 

upon following discussions with a clinical expert and the fuzzy rules were obtained 

from observations during simulation studies. SIVA provided advice for the direction 

of change and the amount of change to be made to the ventilator settings. Real ICU 

data was used for validation of SIVA. Simulation results showed that SIVA was able 

to improve the accuracy of FAVEM when the generated advice were validated with 

the clinician’s decisions. However, the use of population means from a limited number 

of patients significantly reduced   the system’s ability to predict blood gases when 

some parameters lie outside of the existing limits. 

 

 
Figure 2.5. The overall system structure of SIVA (Kwok et al., 2004a) 

 

Wang et al., (2010a) proposed new models for the Kd and the VCO2 

subcomponents of SOPAVent using ANFIS to improve the accuracy of the blood gas 

predictions that enabled the elicitation of a non-invasive patient model. This was done 

using data from a new ventilator that was able to record the measurements of Kd and 

VCO2. The blood gas models were then integrated into a DSS for optimizing the 

ventilator management strategy (Wang 2010b). The objective of the system is to 

achieve target PaO2 and PaCO2, while at the same time avoiding excessive airway 

pressures. Figure 2.6 shows the structure of the proposed DSS. The author also 
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proposed a patient specific model of SOPAVent that automatically updated the 

patient’s parameters every 30 minutes. Retrospective real ICU data was used to 

evaluate the DSS. From the closed-looped simulation of the DSS, the author was 

satisfied of the system’s performance. However, the DSS was designed with fixed 

ventilator targets which were unpractical in real clinical settings. The data-driven 

approach of the ANFIS models also reduced the system’s capability to predict 

parameters outside of the modelling range.  

 

 
Figure 2.6. Ventilator management decision support system (Wang et al., 2010) 

 

Al Otaibi and Hardman (2011), proposed a new mathematical model for 

predicting the absolute change of magnitude for the arterial blood gas component of 

PaO2, at 20 minutes after the change of the FiO2 ventilator setting, with the assumption 

that the ratio of PaO2/FiO2 and the ratio of PaO2/PAO2 remained constant.  The 

prediction results were compared with the absolute change of magnitude for PaO2 

from ABG sampling, and from the estimations using a standard isoshunt diagram. 

Simulation results showed that the bias and the 95% limit of agreement between the 

measured change of PaO2 and the predicted change of PaO2 for the new model were 

lower when compared to the bias and the 95% limit of agreement between the 

measured change of PaO2 and the estimated change of PaO2 from the isoshunt 

diagram. The new model was proposed as an alternative to PaO2 estimation, however 

the authors only recommend the use of the model for stable ventilated patients. The 

model also did not indicate the direction of change of the PaO2 magnitude. 
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In summary, blood gas modelling and DSS for mechanical ventilators are 

promising tools that can provide comprehensive information to clinicians in order to 

effectively plan the best course of treatment. This is made obvious due to the fact that 

most ventilators still maintain an open-loop control approach, and clinicians are made 

responsible to manually select the ventilator settings. Thus, for a DSS to be practical 

it should validate well against real data, detect and correct artefacts, is applicable to 

various ventilator modes and should be able to elicit all the ventilator parameters. Most 

importantly it should be flexible enough to be implemented for a wide range of 

patients’ state, accounting for both intra-patient variability and inter-patient 

variability. 

 

2.2 Electrical Impedance Tomography for Lung Monitoring 

 
Electrical Impedance Tomography (EIT) is an emerging technology that 

enables a real-time, non-invasive, and low-cost approach to map the internal 

conductivity distribution of an object. It is defined by the potential distribution within 

a conducive volume when current is applied (Brown, 2003). Obtaining the conductivity 

distributions enables the mapping of unknown structures within the object. Normally, 

a pair of electrodes are used to inject a low amplitude current into the surface of a 

conducive object. The generated boundary potentials are then measured by a second 

pair of electrodes. This is called the four-electrode configuration (Brown et. al, 2000). 

An even number of electrodes are used in the drive-and-measure process.  

 

Electrodes are commonly arranged as an equally-spaced ring around the 

circumference of an object. Measurements are taken in sequence for every adjacent pair 

of electrodes (see Figure 2.7 and Table 2.1), while excluding measurements taken from 

electrodes involved in driving the input current. A total of n2-3n independent 

measurements are produced in one complete cycle called a ‘frame’, with ‘n’ 

representing the number of electrodes. The number of electrodes can vary from as little 

as four electrodes to more than a thousand electrodes depending on the type of 

application, the geometry and size of the object, and if a two-dimensional (2D) plane, 

or three-dimensional (3D) representation is required. Rods, probes or flexible strips are 

also used in non-uniformed areas.  
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Figure 2.7. An example of an 8-electrode, Ei, (i = 1 to 8) EIT, drive-and-measure sequence 

producing 40 measurements for each frame 

 

Table 2.1. Voltage measurements, Vk, (k = 1 to 40), for one frame of an 8-electrode EIT system 

Measured 

pair 

Drive pair 

E1 E2 E2 E3 E3 E4 E4 E5 E5 E6 E6 E7 E7 E8 E8 E1 

E1 E2 - - V11 V16 V21 V26 V31 - 

E2 E3 - - - V17 V22 V27 V32 V36 

E3 E4 V1 - - - V23 V28 V33 V37 

E4 E5 V2 V6 - - - V29 V34 V38 

E5 E6 V3 V7 V12 - - - V35 V39 

E6 E7 V4 V8 V13 V18 - - - V40 

E7 E8 V5 V9 V14 V19 V24 - - - 

E8 E1 - V10 V15 V20 V25 V30 - - 

 

The impedance of a conducive object can be calculated using Ohm’s law. 

If the potentials on the surface are known, the distribution of conductivity within the 

volume can be obtained. The measured potential and conductivity parameters can be 

processed to produce an image of the surface boundary and internal profile of the object 

using methods similar to x-ray or computed tomography (CT). The filtered back 

projection algorithm (Brown et al., 1985) is largely employed to reconstruct a two-

dimensional image of a cross-sectional plane. Static reconstruction refers to the 

generation of absolute conductivities from a single set of measurement, and often 

referred to as ‘absolute EIT’. Dynamic reconstruction is the change of resistivity based 

on two measurements at different times, or at different frequencies, and is often referred 

to as ‘relative EIT’ (Brown et al., 2002). 
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Table 2.2 shows the resistivity of human tissues when injected with a small 

current at 10 kHz. Blood, muscle, bones and soft tissues are good conductors of 

electricity. The lung, however is porous, filled with air and is very poor in conducting 

electricity. During respiration, the conductivity of the lung changes. At high 

frequencies, the tissues of the lung are made up of only two components; condensed 

matter and air. Condensed matter has homogenous resistivity, while air has an almost 

infinite resistivity. It is then possible to calculate the air volume and the lung density, 

if the lung resistivity is known, and the knowledge of lung volume and lung density 

can be used to monitor the respiratory process effectively (Brown et. al., 2007).  

 

Table 2.2. Resistivity of human tissues at 10 kHz (Brown, 2003) 

Type of tissue Resistivity (Ωm) 

Muscle 2 - 4  

Fat 20  

Lungs 7 – 20 (range due to respiration activity) 

Liver 3.5  

Blood 1.6  

Bone > 40  

 

Electrical Impedance Tomography is now considered to be an emerging 

technology in monitoring of pulmonary functions. Its non-invasiveness, portability, 

minimal and simple construction suggest a promising bedside monitoring support. A 

portable and non-invasive bedside monitoring systems can reduce the danger of 

moving critically ill patients and can, as a result, limit their exposure to harmful 

radiations. Currently, two-dimensional (2D) EIT has proven to be effective in 

determining lung volume and density using relative and absolute resistivity. It is also 

able to produce low resolution images of the lung during respiratory activity. In EIT 

for lung monitoring, electrocardiogram (ECG) electrodes are arranged in equal 

distances circling the thorax, at approximately 5 cm above the xyphoid process (see 

Figure 2.8). A small current is injected via one pair of electrodes, and electrical 

potential measurements are taken from all other adjacent pairs of electrodes. The 

frequency of the drive current in EIT systems for pulmonary application is typically a 

single frequency between 1 kHz and 50 kHz (Holder, 2004). EIT systems can also 
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employ multiple frequencies between 1 kHz and 1 MHz, if any impedances at different 

frequencies are required.  

 

 
Figure 2.8 ECG electrode placement on the thorax 

 

Riedel et.al, (2005) examined the effects of body position on conductivity 

distribution for subjects on mechanical ventilation using EIT measurements. Supine, 

prone, left lateral and right lateral body positions were examined. Sulphur hexafluoride 

washout were used to monitor respiratory activities. Lissajous loop analysis was used 

to calculate the phase angles between the independent lung and the dependent lung to 

the total lung distribution and the lung clearance index.  The study concluded that the 

body position did not influence the ventilation of the dependent lung, while the 

independent lung showed good ventilation in the supine position. It was also reported 

that both lateral positions showed less tidal volume for the independent lung.  

 

Pulletz et.al, (2012) evaluated the effects of peak end expiratory pressure 

(PEEP) and regional respiratory time constant using EIT on patients under mechanical 

ventilation. Patients with healthy lung but undergoing surgical procedures were 

compared to patients with Acute Respiratory Disorder Syndrome (ARDS). A modified 

Sheffield back projection method was used to reconstruct the EIT images. The research 

showed that patients with ARDS had a lower time constant compared to patients with 

healthy lungs. The time constant was larger in the dorsal region of the lungs compared 

to the ventral region of the lungs. Is was also reported that PEEP caused significant 

changes to the time constants. The setback of the system is that the set up was for the 

regional lung instead of the global lung and the differences in pressure caused higher 

flow rates.   
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Denaı̈ et.al, (2008) also developed a simulation model based on the EIT 

system to demonstrate ventilated patients with ARDS. Electrodes were placed on the 

surface of the thorax to monitor lung activity. Relationships between lung volume and 

lung conductivities were established, and predictions of the lung volume based on EIT 

measurements were elicited. The lung’s image was estimated using a finite element 

model (FEM) for the cross section of the thorax. The lungs assumed two possible states; 

recruited lungs or de-recruited lungs, governed by a Threshold Opening Pressure 

(TOP). Effects of PEEP changes on lungs with moderate ARDS and severe ARDS were 

examined. Simulation results showed that EIT was able to detect ventilation 

distribution and has the potential to become indicators for adjusting ventilator PEEP 

values. Images of the lungs with ARDS were also produced.   

 

A continuation study provided consistent images of ventilation distribution 

in collapsed or injured lung using absolute EIT (Denaı̈ et.al, 2010). The model 

combined respiratory mechanics with a 2-D finite element mesh of the thorax and 

absolute resistivity representing the content of air. Specific tissues of the thorax (blood, 

muscle, bones and organs) were assigned with fixed resistivity values between 3 Ω and 

80 Ω. The fixed values were compared with actual measured resistivity varying from 3 

Ω to 80 Ω. The model was successful in producing images of the ventilation distribution 

for injured and collapsed lungs. A DSS for ventilator management combining blood 

gas predictions from SOPAVent and absolute EIT was also proposed.  

 

Mohammad Samuri et.al, (2011) proposed a subject-specific adaptive 

neural-fuzzy inference system (ANFIS) to determine lung volume from absolute EIT 

measurements (see Figure 2.9). The resulting lung volumes were validated with data 

collected from volunteers using a spirometer and a body plethysmograph. The study 

showed that the model was able to successfully predict the lung volume, but with a 

20% mean error when comparing the lung volume from absolute EIT measurements 

with measurements taken from the spirometer and the body plethysmograph, due to 

inaccuracies inherited from the EIT measurements. The authors suggested performing 

an extension to the model that allows for auto-calibration in order to rectify the 

inaccuracies of the EIT system, and also to take account of inter-subject variability.  
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Figure 2.9. ANFIS model for predicting lung volume from absolute EIT 

 

2.2.1  Three-Dimensional Electrical Impedance Tomography  

 
The flow of electrical current is characteristically 3D in nature, and when 

flowing through a conducive body, cannot be confined to flow at the electrodes planes 

only. However, most work on pulmonary EIT uses 2D approach to represent a 3D 

domain. A 2D representation is the common assumption made to reduce the 

complexity of computations and associated hardware equipment (Stephenson et. al, 

2009). This often causes distortions of the results due to off-plane conductivities and 

requires constant calibration. Researchers are now showing a strong interest in 3D EIT 

for monitoring pulmonary functions. The 3D EIT of the lung during ventilation can 

provide significant information of the lung function. In combinations with an optimal 

ventilator management system and an accurate blood gas prediction system, 3D 

pulmonary EIT has the ability to provide a non-invasive and effective real-time 

monitoring support for ventilated patients in the ICU.  

 

In 3D EIT, the same drive and measure configuration of 2D EIT can be 

applied for multiple planes. The electrodes can be placed in several configurations 

such as planar, zigzag, offset, spiral or square as describe by Graham and Adler (2007). 

The number of independent measurements is the same regardless of the electrode 

configuration or the number of planes. A 16-electrode EIT, with 8 electrodes arranged 

in two layers around the circumference of the thorax in equal spacing, will produce a 

frame of 208 data.  
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Studies into three-dimensional (3D) EIT in pulmonary and ventilation 

management have expanded due to the advancement of computational systems. 3D EIT 

imaging is gaining popularity as a potential tool for bedside monitoring. Fan et.al, 

(2009) studied the modeling of the human thorax using 3D EIT integrated with CT 

scan. Three finite element mesh models were selected to represent the human thorax; 

the cylindrical mesh, the elliptical mesh and the thorax mesh. 32 electrodes were 

arrange in three configuration; a two-layer 16-electrode planar configuration, a two-

layer 16-electrode spiral configuration and a three-layer 8-electrode spiral 

configuration. The forward problem was solved using COMSOL Multiphysics® 

optimization module, and the inverse problem was solved using SChur Conjugate 

Gradient (CG) algorithm. It was reported that the thorax mesh and the three-layer 8-

electrode spiral configuration provided a close approximation to the human thorax. It 

also produced the highest correlation and minimal relative error.  

 

Yang et.al, (2013) designed an anatomically realistic forward solver for the 

thorax. The work involved predicting the surface impedance as well as the electrical 

field in the interior of the thorax. A consensus framework for thoracic impedance from 

gated MRI imaging was also developed.  To solve the forward problem, manual 

segmentation of the lung tissue was done from MRI images into 36 categories 

addressing conductivity. 3D volumetric masks created for each category and the 3D 

volumetric masks were discretized into hexahedral elements. The inverse problem was 

solved using the Sheffield filtered back projection method (Brown et al., 1985). 

 

Despite the positive attributes of EIT such as being non-invasive, safe and 

relatively inexpensive in comparison to other medical imaging approaches, EIT is still 

not widely used in standard clinical settings for producing diagnostic and monitoring 

images, due to its low image resolution.  However, more attention has recently been 

given to EIT for representing ventilation distribution, determining regional and global 

lung volumes and lung densities, and further understanding of lung functions.  Studies 

in absolute EIT enables the measurement of absolute resistivity which is used to 

generate absolute lung volumes. Absolute lung volumes can be compared with normal 

clinical range and can then be used in DSS for setting of ventilator parameters.   
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Chapter 3  
 

Evolutionary Fuzzy Type-2 Blood Gas Models 

for Ventilated Patients in Intensive Care Unit 

 
3.1 Introduction 

 
The human respiratory system under artificial ventilation is complex to 

model. There is a higher degree of uncertainty in ICU patients when compared to the 

general population. This is attributed to the variation in the diagnosed illness of 

patients, the treatment they are undertaking and possible changes in treatment, 

medications prescribed, pre-existing conditions they might have, and the physiological 

variations from body size, age and gender. The goal for modelling the human 

respiratory system under artificial ventilation is for it to be exploited for optimal 

ventilator settings, to avoid morbidity and reduce mortality.  

 

The human respiratory and circulatory systems can be divided into five 

compartments (see Figure 3.1). These compartments are the alveolar, pulmonary, 

arterial, tissue, and venous compartment. The lungs are composed of three types of 

alveolar; the normal alveolar, when there is ideal ratio between ventilation and 

perfusion (V/Q = 1), the dead-space alveolar where there is ventilation but no 

perfusion (V/Q = ∞), and the shunted alveolar where there is perfusion but no 

ventilation (V/Q = 0).  Blood from the venous compartment which is lower in oxygen 

passes through the pulmonary compartment where carbon-dioxide is transferred into 

the alveolar compartment and oxygen is transferred from the alveolar compartment 

into the pulmonary compartment to oxygenate the blood.  
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Figure 3.1. Human respiratory and circulatory systems under artificial ventilation (adapted 

from Goode, 2000). 

 

Blood that leaves the pulmonary compartment mixes with a portion of 

shunted blood from the venous compartment which did not participate in the gas 

transfer process. Blood then passes into the arterial compartment which is then 

transferred into the tissue compartment. The tissue compartment diffuses oxygen into 

various types of tissues to allow normal metabolic process to take place. Tissues then 

diffuse carbon-dioxide back into the bloodstream in return. The de-oxygenated blood 

is then carried to the venous compartment, and back to the pulmonary compartment 

where gas transfers can continue to occur (Goode, 2000).  

 

3.2 The Sheffield SOPAVent Model 

 
The SOPAVent model (Sheffield Simulation of Patients under Artificial 

Ventilation) is a mathematical model that simulates the human respiratory system 

when it is under artificial ventilation, and was first developed at The University of 

Sheffield (Goode, 2000).  SOPAVent derived itself from fundamentals of gas 

exchange in lung mechanics. The gas exchange equations that governs SOPAVent are 

divided into oxygen transport equations, carbon-dioxide transport equations, oxygen 

dissociation function and carbon-dioxide dissociation function. 
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Oxygen (O2) Transport Equations in SOPAVent: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑎𝑎 = 𝑄𝑄𝑡𝑡̇ �𝑋𝑋𝐶𝐶𝑣𝑣𝑂𝑂2 + (1 − 𝑋𝑋)𝐶𝐶𝑝𝑝𝑂𝑂2 − 𝐶𝐶𝐶𝐶𝑂𝑂2� (3.1) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑡𝑡 = 𝑄𝑄𝑡𝑡̇ [𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝑂𝑂2]−𝑉𝑉𝑂𝑂2̇  (3.2) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑣𝑣 = 𝑄𝑄𝑡𝑡̇ [𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝑂𝑂2] (3.3) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑝𝑝 = 𝑄𝑄𝑡𝑡̇ (1− 𝑋𝑋)[(𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝑂𝑂2) + 𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] (3.4) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝐴𝐴 = 𝑅𝑅𝑅𝑅(𝑉𝑉𝑇𝑇 − 𝑉𝑉𝐷𝐷) �𝐹𝐹𝐹𝐹𝑂𝑂2 −
𝐶𝐶𝐶𝐶𝑂𝑂2
1000

� − 𝑄𝑄𝑡𝑡̇ (1 − 𝑋𝑋)𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (3.5) 

𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐵𝐵𝑂𝑂2 �𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
𝐶𝐶𝐴𝐴𝑂𝑂2
1000

� − 𝑃𝑃𝑝𝑝𝑂𝑂2� (3.6) 

𝑃𝑃𝑃𝑃𝑂𝑂2 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶𝑂𝑂2) (3.7) 

 

Where,  

𝑉𝑉𝑥𝑥  Volume (l), where x is A (alveolar), a (arterial), t (tissue), v (venous) and p 

(pulmonary) 

𝑄𝑄𝑡𝑡̇  Cardiac output (ml/min) 

X Fraction of blood shunted passed the lungs 

𝑉𝑉𝑂𝑂2̇  O2 consumption by tissues (ml/min) 

𝑉𝑉𝐷𝐷  Alveolar dead-space volume (ml) 

𝑉𝑉𝑇𝑇 Tidal volume (ml) 

RR Respiratory rate (breath/min) 

𝐶𝐶𝐶𝐶𝑂𝑂2  O2 concentration (ml/l). 

𝐵𝐵𝑂𝑂2       O2 diffusion constant (ml/kPa/l) 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Mean airway pressure (kPa) 

𝐹𝐹𝐹𝐹𝐹𝐹2    Inspired fraction of O2 

𝑃𝑃𝑃𝑃𝑃𝑃2  Pulmonary partial pressure of O2 (kPa) 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖  Inverse of the O2 dissociation function 
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Carbon-dioxide (CO2) Transport Equations in SOPAVent: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑎𝑎 = 𝑄𝑄𝑡𝑡̇ �𝑋𝑋𝐶𝐶𝑣𝑣𝐶𝐶𝑂𝑂2 + (1 − 𝑋𝑋)𝐶𝐶𝑝𝑝𝐶𝐶𝑂𝑂2 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2� (3.8) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑡𝑡 = 𝑄𝑄𝑡𝑡̇ [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2]+𝑉𝑉𝐶𝐶𝐶𝐶2̇  (3.9) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑣𝑣 = 𝑄𝑄𝑡𝑡̇ [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2] (3.10) 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝑝𝑝 = 𝑄𝑄𝑡𝑡̇ (1 − 𝑋𝑋)[(𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2 −  𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2) − 𝐶𝐶𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷] (3.11) 
𝑑𝑑𝐶𝐶𝐴𝐴𝐶𝐶𝑂𝑂2
𝑑𝑑𝑑𝑑

𝑉𝑉𝐴𝐴 = 𝑅𝑅𝑅𝑅(𝑉𝑉𝑇𝑇 − 𝑉𝑉𝐷𝐷) �𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂2 −
𝐶𝐶𝐴𝐴𝐶𝐶𝑂𝑂2
1000

� + 𝑄𝑄𝑡𝑡̇ (1 − 𝑋𝑋)𝐶𝐶𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (3.12) 

𝐶𝐶𝑂𝑂2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐵𝐵𝐶𝐶𝑂𝑂2 �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �
𝐶𝐶𝐴𝐴𝐶𝐶𝑂𝑂2
1000

� − 𝑃𝑃𝑝𝑝𝐶𝐶𝑂𝑂2� (3.13) 

𝑃𝑃𝑃𝑃𝐶𝐶𝑂𝑂2 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2) (3.14) 

 

Where,  

𝑉𝑉𝐶𝐶𝐶𝐶2̇   CO2 production (ml/min) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂2 CO2 concentration (ml/l) 

𝐵𝐵𝐶𝐶𝑂𝑂2      CO2 diffusion constant (ml/kPa/l) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹2  Inspired fraction of CO2 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 Pulmonary partial pressure of CO2 (kPa) 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖  Inverse of the CO2 dissociation function 

 

O2 Dissociation Function 

  

𝐶𝐶(𝑂𝑂2) = 𝛽𝛽ℎ.𝐻𝐻𝐻𝐻. 𝑆𝑆𝑂𝑂2 + 𝛼𝛼𝑏𝑏 .𝑃𝑃𝑂𝑂2 (3.15) 

 

Where,  

𝐻𝐻𝐻𝐻       Haemoglobin concentration 

𝑆𝑆𝑆𝑆2    O2 saturation 

𝛽𝛽ℎ        Haemoglobin O2 combining capacity 

𝛼𝛼𝑏𝑏        O2 plasma carrying capacity  
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CO2 Dissociation Function 

 

[𝐶𝐶𝑂𝑂2]𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 22.2 [𝐶𝐶𝑂𝑂2]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 {𝑑𝑑.𝑃𝑃𝑃𝑃𝑃𝑃 + (1 − 𝑃𝑃𝑃𝑃𝑃𝑃)} (3.16) 

 

Where,  

𝑃𝑃𝑃𝑃𝑃𝑃      Packed cell volume (haematocrit)   

 

  The mean airway pressure Pmean is derived from the following equation: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  �(𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). 𝑡𝑡𝐼𝐼
𝑡𝑡𝐼𝐼+𝑡𝑡𝐸𝐸

� + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝐵𝐵                       (3.17) 

And,  𝑡𝑡𝐼𝐼
𝑡𝑡𝐼𝐼+𝑡𝑡𝐸𝐸

= 𝐼𝐼:𝐸𝐸
𝐼𝐼:𝐸𝐸+1

 

 

Where PEEP is the positive end expiratory pressure (kPa), PIP is the peak inspiratory 

pressure (kPa), 𝑡𝑡𝐼𝐼 is the inspiration time (s), 𝑡𝑡𝐸𝐸  is the expiration time (s),  𝑃𝑃𝐵𝐵 is the 

barometric pressure (kPa), and 𝐼𝐼:𝐸𝐸 is the ratio of inspiration time to expiration time 

 

The main objective of SOPAVent is to provide accurate predictions of the 

partial arterial pressure of oxygen (PaO2), the partial arterial pressure of carbon-

dioxide (PaCO2) and the acid-base measurement (pH) of arterial blood gases, which 

prior to this, were only made available from blood sampling and blood gas analysis 

(see Figure 3.2). SOPAVent can also be integrated into advisory models to provide 

decision support for parameters of ventilators in the ICU, such as the settings for 

fraction of inspired oxygen (FiO2), PEEP, respiratory rate (RR), tidal volume (VT) 

and inspiration time (TI) as described by Goode (2000), Kwok et al., (2004a, 2004b) 

and Wang et al., (2010b).  
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Figure 3.2. The SOPAVent model structure (adapted from Wang et.al 2010b). 

 

SOPAVent was also integrated with electrical impedance tomography 

(EIT) for monitoring of the lungs during artificial ventilation as described by Denaï et 

al., (2010) and Mohammad-Samuri et al., (2011). SOPAVent utilized routine ICU data 

as inputs to the model. SOPAVent also required parameters which were not routinely 

available in the ICU. These parameters were either derived from existing parameters, 

represented by constants, measured using special equipment and estimated or 

modelled using artificial intelligence approach. 

 

i. Ventilator settings and monitoring parameters: positive end 

expiratory pressure (PEEP), respiratory rate (RR), inspiratory 

pressure (Pinsp), minute volume (MV), ratio of inspiratory time to 

expiratory time (I:E), fraction of inspired oxygen (FiO2) and tidal 

volume (VT) 

 

ii. Blood gas parameters: partial arterial pressure of oxygen (PaO2), 

partial arterial pressure of carbon-dioxide (PaCO2), acid-base 

measurement (pH), oxygen saturation (SpO2), haemoglobin 

concentration (Hb) and bicarbonate level (HCO3).  

Predicted PaO2 PaCO2 and pH 

              
    + 
 
- 

Measured 
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PaO2 error  

Ventilator settings, ventilator measurements, blood gas and patient 
physiological information 

Relative dead space (Kd) Cardiac Output (CO)  

Oxygen consumption (VO2) 

SOPAVent Model 

Shunt (tuning) 

Carbon-dioxide production 
(VCO2) 
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iii. Physiological information: body surface area, mean arterial 

pressure, body temperature, and end-tidal carbon-dioxide 

production (EtCO2) 

 

iv. Secondary parameters derived from routine ICU data: Mean airway 

pressure (Pmean) is derived from PEEP, I:E ratio, and Pb. Volume 

for each compartment is derived from weight, functional residual 

capacity (FRC) is derived from height, airway compliance is derived 

from weight, and packed cell volume (PCV) is derived from Hb 

 
v. Parameters in SOPAVent represented by constants: the O2 and CO2 

diffusion coefficients, haemoglobin binding capacity (βh), and 

plasma absorption coefficients (αb). 

 

vi. Parameters that required the use of special equipment, estimated or 

modelled: carbon-dioxide production (VCO2), oxygen consumption 

(VO2), cardiac output (CO), dead-space (Kd) and shunt.   

 

In the earliest version of the SOPAVent, the VCO2 was measured using a 

metabolic tester (Goode, 2000). The need for a special equipment limited the 

measurements to a very small dataset, and this dataset was unable to represent the 

varying levels of VCO2 parameters in ICU patients. VCO2 was then estimated using a 

mean population value, using earlier measurements obtained from the metabolic tester 

(Kwok et al., 2004b). This approach, however, may result in significant error when 

patient’s parameter deviated from the original test group. When newer ventilators were 

able to perform measurements of VCO2, and more data became available, the VCO2 

parameter was modelled using an adaptive neural-fuzzy inference system (ANFIS) 

(Wang et al., 2010a). Although newer ventilators are now able to measure VCO2, it is 

not routine practice for ICUs to track or use this measurement to evaluate the 

ventilator’s performance. Moreover, not all hospitals are equipped with the latest 

ventilator technology. Thus, it is still deemed necessary to model the VCO2 

component. However, ANFIS modelling can sometimes lead to overfitting that may 

fail to generalize to future observations in a reliable way. 
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The dead-space (Vd) is a share of tidal volume (VT) which did not 

contribute to gas exchange. The ratio of Vd over VT is known as the relative dead-

space (Kd). The understanding of Kd will deliver crucial information on the patient’s 

physiological condition. In the first version of SOPAVent, the relative dead-space 

(Kd) was tuned to match the measured PaCO2 (Goode, 2000). The tuning process in 

the early version was time-consuming and often lead to no solution being found. Kwok 

et al., (2004b), attempted to model Kd with a fuzzy inference system (FIS) using the 

relationship of hypoxemia index (PaO2/FiO2) and Kd. However, when validated with 

real patient data, results were poor. When more data became available from newer 

ventilators, the relative dead space was modelled using ANFIS (Wang et al., 2010a). 

Similarly to the ANFIS model for VCO2, the model was unable to produce satisfactory 

predictions when the tested data falls outside of the range of the training data used in 

ANFIS.  

 

The cardiac output (CO) was first measured with the use of a pulmonary-

artery catheter (PAC) (Goode, 2000). This procedure is invasive and also limits the 

number of usable data. CO was then estimated using the population mean of patients 

with PAC (Kwok et al., 2004b). This approach may result in significant deviation of 

expected results due to inter and intra patient variability, common in ICU patients. 

Wang et al. (2010a) then proposed a method for estimating CO from Body Surface 

Area (BSA). Although this approach provided a patient specific estimation of CO 

when compared to using the population mean, patients with similar BSA may produce 

different CO values due to factors such as age, and the severity of illnesses.  Shunt 

was first tuned to match the PaCO2 (Goode, 2000). Kwok et al., (2004b) attempted to 

model shunt with ANFIS using the relationship of respiratory index (RI) and shunt. 

VO2 was derived from the relationship of respiratory quotient (RQ) with VCO2 using 

the following equation from Wang et al., (2010a): 

 

                                        VO2 = (VCO2/RQ), with RQ = 0.8                                (3.18) 

 

The following sections in this chapter will discuss the modelling of Kd, VCO2 

and shunt parameters using interval type-2 fuzzy logic system (IT2FLS) and the 

optimization of the fuzzy parameters using a ‘new structure’ particle swarm 

optimization (nPSO), to improve prediction accuracy. 
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3.3 Type-2 Fuzzy Logic System for Modelling of Relative Dead-

space, Carbon-dioxide Production, and Shunt 

 
The type-2 fuzzy logic system (T2FLS) is a relatively new formalism that 

is gaining popularity in designing complex, non-linear systems (see Figure 3.3). 

Unlike type-1 fuzzy logic systems, the membership function (MF) of type-2 fuzzy 

systems is in itself fuzzy. This enables for robust and adaptable models, which would 

be suitable for designing and controlling of systems with higher degrees of uncertainty 

(Wu, 2012). The MF of T2FLS is conceptually three-dimensional, represented by a 

footprint of uncertainty (FOU) that leads to an extra degree of freedom (Mendel et al., 

2001). An example of an FOU for a type-2 trapezoidal MF is shown as the shaded area 

of Figure 3.4. The shaded area is constrained by the upper membership function 

(UMF) and the lower membership function (UMF).  

 

 
Figure 3.3. Type-2 fuzzy system. 

 

 
Figure 3.4. Footprint of uncertainty (FOU) in a type-2 membership function (MF) (Indera-

Putera et.al, 2016) 
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In this section, the interval type-2 fuzzy logic system (IT2FLS) was used 

instead of the general type-2 fuzzy logic system. This is to reduce the computational 

burden and to reduce the overall system complexity. A 9-point trapezoidal MFs were 

selected for the input fuzzy sets of the Kd and the VCO2 models. Each input parameter 

was provided with three MFs, named ‘low’, ‘moderate’ and ‘high’. The number of 

fuzzy rules were NM, with M being the number of inputs and N the number of MFs for 

each input.  

 

To generate the fuzzy rules, the output data, with its corresponding inputs 

were arranged in ascending sequence. The average measured output values were 

calculated for each available unique combination of input MFs. The outputs were crisp 

intervals with the lower value for each output being set to the minimum output value 

and the upper value being set to the maximum output value for the specific input 

combination. An example of the fuzzy rule for the Kd sub-component is shown in 

Table 3.4. 

 

The input MFs were set as equally-spaced fuzzy sets with the distance 

between UMFs and LMFs of the fuzzy sets assigned as 10% of the input range. These 

parameters were then manually tuned to achieve a satisfactory prediction. Figure 3.5 

shows the manual membership function selection process for IT2FLS. The Kd model, 

with five inputs and three MFs for each input generated 243 fuzzy rules. The VCO2 

model, with three inputs and three MFs for each input generated 27 rules. The shunt 

model with one input and three MFs for each input generated three rules.  

 

A revised Kd model was also proposed to reduce the number of rules from 

243 to 44 by eliminating the input combinations which did not produce any output 

from the input-output sequence mapping. A sample of the fuzzy rule (Rule 22) for the 

Kd model with 44 rules reads as follows:  

 

IF PaCO2 is Moderate AND RR is Low AND VT is Moderate AND Pinsp is Low 

AND PEEP is High THEN Kd is [16-46] 
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(MF: membership function, LMF: lower membership function, UMF: upper membership 

function, MSE: Mean Squared Error) 

Figure 3.5. Manual membership function (MF) selection process for IT2FLS. 

 

3.4 Modelling of the Relative Dead-space Parameter 

 
The inputs to the relative dead-space (Kd) model was selected based on a 

sensitivity analysis found in Goode, (2000), that studied how well the parameters of 

inspiratory pressure (Pisnp), positive end expiratory pressure (PEEP), peak inspiratory 

pressure (PIP), respiratory rate (RR), partial arterial pressure of carbon-dioxide 

(PaCO2), tidal volume (VT), and minute volume (MV) correlated with Kd. The Kd 

was found to be most sensitive to PaCO2 and moderately sensitive to Pinsp, RR and 

VT. There was also a small correlation between Kd and PEEP (see Table 3.1). Thus, 

these five parameters: PaCO2, Pinsp, RR, VT and PEEP were selected as inputs to the 

Kd model as shown in Figure 3.6. Kd was found to be least sensitive to changes in 

MV and PIP, hence these two parameters were excluded from the modelling of Kd.  

 

Arrange inputs in ascending sequence. Map input to output accordingly 

Determine input and output data range 

Calculate the min, max, and mean output value for each input combination 

Assign output LMF and output UMF. Assign input LMF and UMF 

Start 

Generate predictions  

 

Stop 

No  
                 Is the MSE satisfactory? 
 
                  Yes 
 
 

Update MF 
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Table 3.1. Sensitivity analysis for the selection of Kd model inputs 

Parameter Pisnp PIP RR PEEP PaCO2 VT MV 

Correlation -0.39 -0.08 0.49 0.22 0.66 -0.41 0.11 

 

    
Figure 3.6. The Kd model 

 

3.4.1 Modelling Data and Validation Data for the Relative Dead-

space Model 

 
Data from patients was obtained from the Sheffield Royal Hallamshire 

Hospital patient data management system (PDMS) and have been previously approved 

by the ethics committee.  A total of 447 data from 25 patients was used for modelling 

of Kd, and a further 67 data was used for validation. The 67 data used for validation 

was collected from 13 patients. Patient demography is shown in Table 3.2. The 

summary for the data used in the Kd modelling and validation is shown in Table 3.3. 

All parameters, apart from PEEP, showed a normal curve based on the standard 

deviation (SD) that is smaller than one third of its mean value. PEEP however, has a 

slightly larger S.D., this can be due to the ventilator adjustments made throughout the 

patient’s course of treatment.  Figure 3.7 shows the distribution of the validation data 

for the Kd model. 

 
Table 3.2. Patient demography for the Kd model 

Indicator Gender Age Weight (kg) Height (cm) 

mean+S.D. 
Male Female 

59+14.61 70.7+23.8 167.9+10.45 
13 12 

 

 

PaCO2 

 
RR 
 
VT 
 
Pinsp 
 
PEEP 

Predicted Kd  Kd Model 
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Table 3.3. Kd modelling and validation data 

Data Parameter Mean + σ Min Max 

Modelling 

PaCO2 (kPa) 5.69 + 1.05 3.67 10.1 
RR (breath/min) 16.96 + 3.27 12 28 
VT (l) 0.52 + 0.12 0.26 0.89 
Pinsp (cmH2O) 13.93 + 3.64 6 30 
PEEP (cmH2O) 10.62 + 3.88 5 20 
Kd 27.95 + 6.72 13 52 

Validation 

PaCO2 (kPa) 5.39 + 0.84 3.74 7.62 
RR (breath/min) 16.21 + 4.19 12 28 
VT (l) 0.47 + 0.11 0.17 0.75 
Pinsp (cmH2O) 13.30 + 3.23 8 20 
PEEP (cmH2O) 9.01 + 2.87 5 15 
Kd 29.10 + 7.37 14 50 

 

 
Figure 3.7. Input-output data distribution for Kd validation 

    

3.4.2 Interval Type-2 Fuzzy Logic System Modelling Parameters 

for Relative Dead-space 

 
The Kd component was modelled using the interval type-2 fuzzy logic 

system (IT2FLS). Each of its five inputs were allocated three trapezoidal membership 

functions (MF) known as ‘low’, ‘moderate’ and ‘high’ that were equally spaced. Each 

membership function has a footprint of uncertainty (FOU), which is the shaded area 

between the upper membership function (UMF) and lower membership function 

(LMF). The FOU for the Kd model was only applied on to the horizontal axis. The 

FOUs were approximately 10% of the width of data. For an example, in Table 3.3, RR 

has a minimum value of 12 and a maximum of 28, thus the width is 16. The width of 

0               10              20             30             40             50             60      
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the FOU for RR will be approximately 1.6. This will only be used to determine the 

baseline for the horizontal FOU, which will be adjusted later as required.  

 

Each trapezoidal MF was associated with nine reference points (‘a’ to ‘i’ 

in Figure 3.4). These points showed the exact location for each MF in its fuzzy set. 

The trapezoidal MF was selected for this purpose to accommodate the algorithm 

developed for IT2FLS by Wu and Mendel (2009 and 2014). The 9-point value for the 

trapezoidal input MF is shown in Table 3.4. The fuzzy set for the input parameters of 

Kd is shown in Figure 3.8. The output parameter Kd was mapped to all possible input 

combinations. Since there were five inputs with three MF each, a total of 35 = 243 

input combinations was mapped to their corresponding Kd outputs. The crisp values 

of LMF and UMF of the output fuzzy MFs were determined by the minimum and 

maximum value of Kd for the set of inputs mapped to Kd. The rule base for Y1 to 

Y243 is available in Appendix A. The Kd fuzzy rules were then reduced to 44 by 

selecting the combination of inputs/output that provided the most significant mapping 

between the inputs PaCO2, RR, VT, Pinsp and PEEP with the output, Kd. The crisp 

intervals for LMF and UMF of the output MFs were determined by the minimum and 

the maximum value of Kd for the set of inputs mapped to Kd. These 44 output intervals 

were used to represents the fuzzy rules for the IT2FLS system (Y1 to Y44) as shown 

in Table 3.5.  

 

Table 3.4. The 9-point trapezoidal MF for Kd input parameters 

Input MF a b c d e f g h i 

PaCO2 
Low 1 2.5 5 6.5 2 3.5 4 5.5 1 

Moderate 3.5 5 7.5 9 5 6 6.5 8 1 
High 6 7.5 10 11.5 7 8.5 9 10.5 1 

RR 
Low 6 9 15 18 8 11 13 16 1 

Moderate 13 16 22 25 15 18 20 23 1 
High 20 23 29 32 22 25 27 30 1 

VT 
Low -0.15 0.05 0.3 0.5 -0.05 0.15 0.2 0.4 1 

Moderate 0.2 0.4 0.65 0.85 0.30 0.5 0.55 0.75 1 
High 0.55 0.75 1.05 1.2 0.65 0.85 0.95 1.1 1 

Pinsp 
Low -3 3 11 17 -1 5 9 15 1 

Moderate 9 15 21 27 11 17 19 25 1 
High 19 25 33 39 21 27 31 37 1 

PEEP 
Low -1 2 8 11 1 4 6 9 1 

Moderate 6 9 16 19 8 11 14 17 1 
High 14 17 23 26 16 19 21 24 1 
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Table 3.5. Input MF to output MF mapping for Kd model 

Input Output Kd 
PaCO2 RR VT Pinsp PEEP Y LMF UMF 

Low Low Moderate Low Low Y1 6 36 
Low Low Moderate Low Moderate Y2 11 41 
Low Low Moderate Moderate Low Y3 6 36 
Low Low Moderate Moderate Moderate Y4 5 35 
Low Low High Low Moderate Y5 7 37 
Low Low High Moderate Low Y6 4 34 
Low Low High Moderate Moderate Y7 2 32 
Low Moderate Low Moderate Low Y8 13 43 
Low Moderate Moderate Low Low Y9 7 37 
Low Moderate Moderate Low Moderate Y10 15 45 
Low Moderate Moderate Moderate Low Y11 13 43 
Low Moderate Moderate Moderate Moderate Y12 9 39 
Low Moderate High Moderate Low Y13 8 38 
Low Moderate High Moderate Moderate Y14 8 38 
Low High Moderate Low Moderate Y15 27 57 
Low High Moderate Moderate Moderate Y16 14 44 

Moderate Low Low Low Low Y17 20 50 
Moderate Low Low Moderate Low Y18 19 49 
Moderate Low Low Moderate Moderate Y19 16 46 
Moderate Low Moderate Low Low Y20 14 44 
Moderate Low Moderate Low Moderate Y21 20 50 
Moderate Low Moderate Low High Y22 16 46 
Moderate Low Moderate Moderate Low Y23 15 45 
Moderate Moderate Low Low Low Y24 15 45 
Moderate Moderate Low Moderate Low Y25 19 49 
Moderate Moderate Low Moderate Moderate Y26 16 46 
Moderate Moderate Moderate Low Low Y27 16 46 
Moderate Moderate Moderate Low Moderate Y28 19 49 
Moderate Moderate Moderate Low High Y29 16 46 
Moderate Moderate Moderate Moderate Low Y30 17 47 
Moderate Moderate Moderate Moderate Moderate Y31 13 43 
Moderate Moderate Moderate Moderate High Y32 15 45 
Moderate Moderate High Low Low Y33 16 46 
Moderate Moderate High Moderate Moderate Y34 9 39 
Moderate High Low Moderate Moderate Y35 20 50 
Moderate High Moderate Moderate Moderate Y36 26 56 

High Low Low Low Low Y37 11 41 
High Low Moderate Low High Y38 17 47 
High Moderate Low Low Moderate Y39 29 59 
High Moderate Moderate Low Low Y40 27 57 
High Moderate Moderate Low Moderate Y41 26 56 
High Moderate Moderate Moderate Moderate Y42 19 49 
High Moderate Moderate Moderate High Y43 25 55 
High High Moderate Low Moderate Y44 33 63 
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Figure 3.8. Input fuzzy sets for the Kd model: PaCO2, RR, VT, Pinsp and PEEP 

 

3.4.3 Validation of the Relative Dead-space Model with Real 

Patient Data 

 
The IT2FLS model was used to predict the Kd values of 68 input data sets 

from 13 patients. The Mean Absolute Error (MAE), the Mean Squared Error (MSE) 

and the coefficient of determination (R2) were used to evaluate the prediction 

performance against real Kd values. The prediction results were also compared with 

the ANFIS model previously developed by Wang et al., (2010a). The prediction plots 

for the modelling and the validation datasets for the Kd model are shown in Figure 

3.9.  
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Figure 3.9. Kd prediction results. Top: Kd with 243 rules result for modelling data and 

validation data. Bottom: Kd with 44 rules for modelling data and validation data 

 

 
Figure 3.10. ANFIS Kd model prediction results for validation data 

 

For the IT2FLS Kd model with 243 fuzzy rules, most of the predictions 

were centred within the +10% confidence band. Although a small number of 

predictions were outside of the +10% confidence band, there were significant 

improvements for the validation data predictions from the previous ANFIS model 

shown in Figure 3.10. The new model has reduced the MSE of the validation data from 

53.88 to 32.76 and reduced the MAE from 18.52 to 14.96. It has also improved the R2 

from 0.54 to 0.62.  
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It can also be seen for the IT2FLS Kd model with 44 fuzzy rules, most of 

the predictions were centred within the +10% confidence band. Although a small 

number of predictions were outside of the +10% confidence band, there were 

significant improvements for the validation data prediction from the previous ANFIS 

model. The new model has reduced the MSE of the validation data from 53.88 to 28.91 

and reduced the MAE from 18.52 to 14.62. It has also improved the R2 from 0.54 to 

0.69. Table 3.6 summarize the performances of the IT2FLS models against the ANFIS 

model performances for Kd prediction. 

 

Table 3.6. Kd performance comparison for IT2FLS model with ANFIS model 

Approach 
Modelling Data Validation Data 

MSE MAE R2 MSE MAE R2 
ANFIS 10 8.71 0.88 53 18.52 0.54 
IT2FLS (243 rules) 21.76 14.48 0.74 32.76 14.96 0.62 
IT2FLS (44 rules) 19.6 13.45 0.79 28.91 14.62 0.69 

 

3.5 Modelling of the Carbon-dioxide Production Component 

 
The inputs for the carbon-dioxide production (VCO2) model were selected 

based on the sensitivity analysis described in Goode (2000). Table 3.7 shows the 

correlation between the carbon-dioxide production (VCO2) with the end-tidal carbon-

dioxide production (EtCO2), the minute volume (MV), the peak inspiratory pressure 

(PIP), the fraction of inspired oxygen (FiO2), VT, PEEP and RR. It appeared that the 

VCO2 was most sensitive to MV and EtCO2. VCO2 was also moderately sensitive to 

VT. Thus, these three parameters, MV, VT and EtCO2 were selected to be the inputs 

to the VCO2 model as shown in Figure 3.11. VCO2 appears to be less sensitive to the 

changes of PIP, PEEP and FiO2 parameters. Hence, these three parameters were 

excluded from the modelling of VCO2. It can also be seen that VCO2 was moderately 

sensitive to RR. Here, RR was used to generate MV using the following equation: 

 
                                   MV = (VT)(RR)                                                (3.19) 

Table 3.7. Sensitivity analysis for the selection of VCO2 model inputs 

Parameter EtCO2 VT MV PEEP RR PIP FiO2 
Correlation 0.69 0.39 0.64 0.15 0.24 0.01 0.10 
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Figure 3.11. VCO2 model 

 

3.5.1 Modelling Data and Validation Data for the Carbon-dioxide 

Production Model 

 
A total of 764 data from 21 patients was used for the modelling of VCO2, 

and a further 82 data from 5 patients was used for validation. Patient demography is 

shown in Table 3.8. The summary for the data used in VCO2 modelling and validation 

is shown in Table 3.9. All parameters showed a normal bell-shaped curved based on 

the standard deviation (SD) that is smaller than one third of its mean value. Figure 

3.12 shows the distribution of the data for validation of VCO2.   

 

Table 3.8. Patient demography for the VCO2 model 

Indicator Gender Age Weight (kg) Height (cm) 
mean+S.D. Male Female 56+17.83 74+21.22 170.4+8.95 5 11 

 

Table 3.9. VCO2 modelling and validation data 

Data Parameter Mean + σ Min Max 

Modelling 

MV (l/min) 7.89 + 1.79 4.09 15.55 
VT (l) 0.54 + 0.09 0.29 0.90 
EtCO2 (kPa) 4.89 + 0.96 3.18 8.51 
VCO2 (ml/min) 217.27 + 56.77 144 405.9 

Validation 

MV (l/min) 8.90 + 1.79 5.66 15.55 
VT (l) 0.54 + 0.07 0.39 0.65 
EtCO2 (kPa) 4.68 + 0.69 3.38 6.39 
VCO2 (ml/min) 217.75 + 33.42 144.5 292 

 

MV 
 
VT 
 
EtCO2 

Predicted VCO2   
VCO2 Model 
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Figure 3.12. Input and output data distribution for VCO2 (validation) 

 

3.5.2 Interval Type-2 Fuzzy Logic System Modelling Parameters 

for Carbon-dioxide Production 

 
The VCO2 component was modelled using the interval type-2 fuzzy logic 

system (IT2FLS). Each of its three inputs was allocated three trapezoidal membership 

functions (MF) known as ‘low’, ‘moderate’ and ‘high’ that were equally spaced. Each 

MF has an FOU, which was approximately 10% of the entire data range. Each 

trapezoidal MF was associated with the same nine reference points (‘a’ to ‘i’) shown 

in Figure 3.4. The output parameter, VCO2 was mapped to all possible input 

combinations. Since there were three inputs with three MF each, a total of 27 input 

combinations were mapped to VCO2. The average VCO2 value was then calculated 

for each combination of inputs, resulting in 27 VCO2 values. An approximated +10% 

margin was introduced to the averaged VCO2 values to provide crisp intervals for 

UMF and LMF for each VCO2 MFs. The UMF and LMF were then manually adjusted 

to increase prediction accuracy. The 27 VCO2 MFs were used to represents the fuzzy 

rules for the IT2FLS system (Y1 to Y27) as shown in Table 3.10. The 9-point values 

for the trapezoidal input MF is shown in Table 3.11. The fuzzy set for the VCO2 model 

is shown in Figure 3.13. A sample fuzzy rule (Rule 23) reads as follows:  

 

IF MV is Moderate AND VT is Low AND ETCO2 is HIGH, THEN VCO2 is Y12 

[360 370] 

 

 

 0           10           20         30          40          50          60          70          80  
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Table 3.10. Input MF to output MF mapping for VCO2 model 

Input VCO2 
MV VT EtCO2 Y LMF UMF 
low low low Y1 0 160 
low low moderate Y2 195 205 
low low high Y3 260 270 
low moderate low Y4 175 185 
low moderate moderate Y5 215 220 
low moderate high Y6 280 290 
low high low Y7 195 205 
low high moderate Y8 185 195 
low high high Y9 280 290 

moderate low low Y10 195 205 
moderate low moderate Y11 250 260 
moderate low high Y12 360 370 
moderate moderate low Y13 215 225 
moderate moderate moderate Y14 385 395 
moderate moderate high Y15 345 355 
moderate high low Y16 225 235 
moderate high moderate Y17 295 305 
moderate high high Y18 350 360 

high low low Y19 215 225 
high low moderate Y20 275 285 
high low high Y21 325 335 
high moderate low Y22 240 250 
high moderate moderate Y23 365 375 
high moderate high Y24 380 390 
high high low Y25 305 315 
high high moderate Y26 350 360 
high high high Y27 385 395 

 

Table 3.11. The 9-point trapezoidal MF for VCO2 input parameters 

Input MF a b c d e f g h i 

MV 
Low -0.5 2 6 10 0.5 2 6 9 1 

Moderate 6 10.5 13.5 16 7 10.5 13.5 15 1 
High 13 16 18 18 14 16 18 18 1 

VT 
Low -0.05 0.2 0.4 0.65 0.05 0.2 0.4 0.55 1 

Moderate 0.35 0.55 0.65 0.85 0.45 0.55 0.65 0.75 1 
High 0.65 0.85 0.9 1.1 0.75 0.85 0.9 1 1 

ETCO2 
Low -1 1 3.5 6 1 1 3.5 5 1 

Moderate 3 5 7 9 4 5 7 8 1 
High 5.5 8 9.5 12 7.5 8 9.5 10 1 
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Figure 3.13. Input fuzzy sets for the VCO2 model: MV, VT, and EtCO  

 

3.5.3 Validation of the Carbon-dioxide Production Model with 

Real Patient Data 

 
The IT2FLS model was used to predict the VCO2 values of 82 input data 

sets from five patients. MSE, MAE and R2 were used to evaluate the prediction 

performance against real VCO2 values. The results were also compared with the 

ANFIS model previously developed by Wang et al., (2010a). The prediction plots for 

modelling and validation data for VCO2 model are shown in Figure 3.14. Most of the 

prediction were within the +10% confidence band with some improvements observed 

when compared to the ANFIS model (see Figure 3.15). From the results of the 

predictions of the validation data, the new model reduced the MSE from 451.89 to 

395.72, and reduced the MAE from 7.86 to 6.98. The R2 was slightly improved from 

0.84 to 0.86 (see Table 3.12).  
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Figure 3.14. IT2FLS VCO2 model prediction results for modelling data, and validation data 

 
                   Figure 3.15. ANFIS VCO2 model prediction results for the validation data 

 

Table 3.12. VCO2 performance comparison for IT2FLS model with ANFIS model 

Approach 
Modelling Data Validation Data 

MSE MAE R2 MSE MAE R2 
ANFIS 189.33 4.59 0.97 451.89 6.98 0.84 
IT2FLS 629.97 9.65 0.88 395.72 7.86 0.86 

 

3.6 Modelling of the Shunt Component 

 
The shunt model described by Kwok et al., (2004b) was investigated 

again. In this model, the input to the model was selected based on the relationship of 

the effective shunt and the Respiratory Index (RI) (see Figure 3.16).  In the above 

study, the R2 between the Respiratory Index and the effective shunt was reported to be 

0.7214. Respiratory index (RI) is the difference between partial alveolar pressures of 

oxygen (PAO2) and partial arterial pressure of oxygen (PaO2) divided by PaO2. The 

PAO2 is calculated using the following alveolar equation: 
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PAO2 = FiO2 (PB - PH2O) - PaCO2*(FiO2 + (1 - FiO2)*RQ)        (3.20) 

RI = (PAO2 – PaO2)/PaO2                (3.21) 

 

Here, FiO2 is the fraction of inspired oxygen, PB is the barometric pressure, 

PH2O is the water vapour pressure, PaCO2 is the partial arterial pressure of carbon-

dioxide and RQ is the respiratory quotient that was set to 0.8. The effective shunt is 

the estimated shunt produced by the SOPAVent system using the secant method 

(Goode, 2000). Thus, RI was selected as the sole input to the IT2FLS shunt model as 

shown in Figure 3.17.  

 
Figure 3.16. Relationship between RI and effective shunt (Kwok et al., 2004) 

 

 
Figure 3.17. Shunt model 

 

3.6.1 Modelling Data and Validation Data for the Shunt Model 

 
A total of 156 data from 12 patients was used for modelling of shunt and 

a total of 96 data from 12 patients was used for validation. The summary for the data 

used for the shunt modelling and validation is shown in Table 3.13. Figure 3.18 shows 

the distribution of the data for the validation of the shunt model. 

 

Table 3.13. Shunt modelling and validation data 

Data Parameter Mean + σ Min Max 
Modelling RI 2.85 + 1.69 0.62 8.11 

Effective shunt 23.15 + 9.50 5.57 54.11 

Validation RI 2.75 + 1.59 0.62 8.11 
Effective shunt 23.23 + 9.34 5.57 54.11 
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Figure 3.18. Data distribution for shunt model validation 

 

3.6.2 Interval Type-2 Fuzzy Logic System Modelling Parameter 

for Shunt 

 
The input to the shunt model, the Respiratory Index (RI), was assigned 

with 5 fuzzy membership functions (MFs): ‘Very Low’, ‘Low’, ‘Moderate’, ‘High’ 

and ‘Very High’. These MFs were 9-point trapezoidal MFs which were equally spaced 

with an FOU of approximately 10% of the input range. Each input corresponded to 

one output with a crisp interval. A total of five output MFs map the RI value to the 

effective shunt (Y1 to Y5) as shown in Table 3.14. The 9-point values for the 

trapezoidal input MF are shown in Table 3.15. The fuzzy set for the shunt model is 

shown in Figure 3.19. An example of the fuzzy rule (Rule 2) used is given as follows:  

 

IF RI is Low THEN Shunt is [13.5 29.5] 

 

Table 3.14. Input MF to output MF mapping for Shunt model 

Input Output  
RI Y LMF UMF 

Very Low Y1 -10 17.5 
Low Y2 13.5 29.5 

Moderate Y3 24 37.5 
High Y4 30 44 

Very High Y5 30 55 
 

Table 3.15. 9-point trapezoidal MF for Shunt input parameters 

Input MF a b c d e f g h i 

RI 
 

Very Low -2.5 0 0 2.5 -1.5 0 0 1.5 1 
Low -0.5 2 2 4.5 0.5 2 2 3.5 1 

Moderate 1.5 4 4 6.5 2.5 4 4 5.5 1 
High 3.5 6 6 8.5 4.5 6 6 7.5 1 

Very High 5.5 8 8 10.5 6.5 8 8 9.5 1 
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Figure 3.19. RI fuzzy set for shunt input  

 

3.6.3 Validation of Shunt Model  

 
The IT2FLS model was used to predict the shunt values of 96 datasets 

from 12 patients. The MAE, MSE and R2 indices were used to evaluate the prediction 

performance against effective shunt values. The prediction results were also compared 

with the ANFIS model previously developed by Kwok et al., (2004b). The prediction 

plots for the validation data of the shunt model are shown in Figure 3.20. From Table 

3.16, it can be seen that the new IT2FLS shunt model has reduced the MSE from 25.48 

to 22.91. The MAE was marginally reduced from 19.07 to 18.90 and the R2 was also 

marginally improved from 0.85 to 0.86.  

 

 
Figure 3.20. IT2FLS shunt model prediction results for IT2FLS and ANFIS (validation data) 

 

Table 3.16. Shunt performance comparison for IT2FLS model with ANFIS model  

Approach 
Validation Data 

MSE MAE R2 
ANFIS 25.48 19.07 0.85 
IT2FLS 22.91 18.90 0.86 
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3.7 New Particle Swarm Optimization for the Optimal 

Selection of Fuzzy Membership Functions 

 
Particle swarm optimization (PSO) follows the behaviour of a flock of 

birds or a school of fish in search of the best location for resources. Each individual in 

the swarm is called a ‘particle’. Each particle has information on the best location for 

resources from its own experience, and shares this information with the other members 

in the swarm.  Upon receiving this information, all the other particles adjust their 

speeds and directions towards the optimal location, also known as the ‘global best’. 

PSO is a powerful yet simple algorithm to implement on non-linear systems, and has 

the ability to generally converge to a good solution quickly (Zhang and Mahfouf, 

2006). In this work, an updated version of the PSO, called the ‘new structure’ PSO 

(nPSO), was used to increase the accuracy of the VCO2, Kd and the shunt prediction 

models by tuning the output membership functions (MFs) (see Figure 3.21).   In nPSO, 

the term ‘momentum’ was used to replace the term ‘inertia’ of the original PSO 

algorithm. This should enable the particles to circumvent any local optimum and 

prevent premature convergence (Zhang and Mahfouf, 2006). 

 

vid(t+1)  =      [wid(t+1)*r1*(t+1)vmaxi] + [c1*r2(t+1)*[pid(t) - xid(t)] +   (3.22) 

    c2*r3(t+1)*[pgd(t) - xid(t)]               

     

xid(t+1)  =     xid(t) + vid(t+1)   (3.23) 

     

 

 

wid(t+1) = 

 1,  

 

wid(t)*m1, 

 

wid(t)*m2, 

if Vi(t)<Ɛ*Vmax and posid (t+1)=1; 

 

If(notVi(t)) < *Vmax and f(Xi(t)>f(Pi(t-1)); 

 

if(notVi(t)<Ɛ*Vmax)and f(Xi(t)<f(Pi(t-1)) 

  

 

(3.24) 

      

m1<1 and m2>1   (3.25) 

  

 

   



49 
 

Here, i is the particle number, d is the dimension number, vid is the velocity 

or change in particle position within its search area, w is the momentum weight, r1, r2 

and r3 are random variables between 0 and 1, Vmax is the maximum velocity, xid is the 

particle position, c1 and c2 are acceleration constants, m1 and m2 are scaling 

parameters, Ɛ is a positive coefficient, and posid is a discrete variable (0 or 1). The 

dimension of nPSO is equal to the number of output MFs multiplied by two, since 

each MF is represented by an upper MF (UMF) and lower MF (LMF). The nPSO was 

used to tune the Kd model with 44 fuzzy rules, the VCO2 model with 27 fuzzy rules 

and the shunt model with 5 fuzzy rules. The nPSO algorithm selects the fuzzy sets that 

produced the least mean squared error (MSE).  

 

The relative dead-space (Kd) with 44 output MFs has a particle dimension 

of 88. The carbon-dioxide production (VCO2) with 27 output MFs has a particle 

dimension of 54, and the shunt model with 5 output MFs has a particle dimension of 

10. The input MFs for the shunt model were also tuned using nPSO, since the model 

is less complex than Kd or VCO2. The fuzzy sets were tested on the models until the 

maximum epoch is reached. The nPSO algorithm then returned the fuzzy set with the 

least MSE. The initialising parameters for nPSO are shown in Table 3.17. The result 

for shunt input MF tuning are shown in Figure 3.22 and Table 3.18. The nPSO 

optimization result for the output MFs for the Kd model, the VCO2 model and the 

shunt model is shown in Table 3.19.  

 

Table 3.17. Parameters for nPSO Initialization 

Parameter c1, c2 m1, m2 d Vxar Vmax epoch r1,r2,r3 

Value 1.8, 1.8 0.5, 2 88, 54, 10 data range 0.5Vxar 30 [0, 1] 
 

Table 3.18. 9-point trapezoidal MF for shunt input after tuning 

Input MF a b c d e f g h i 

RI 
 

Very Low -2.999 -2.476 5.407 7.165 -1.307 1 1.983 2.255 1 
Low -1.277 0.352 3.587 3.806 1 2.186 3.321 3.372 1 
Moderate -0.287 1 6.269 6.540 1.861 5.370 5.606 5.861 1 
High 0.485 1 5.169 9.905 2.879 3.490 4.044 4.447 1 
Very High 1 2.050 10.113 10.348 3.734 5.415 6.518 8.254 1 
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Figure 3.21. Membership function selection using nPSO 

 

 
Figure 3.22. Tuned input membership function for the shunt model 
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Table 3.19. The tuning result for the Kd model, the VCO2 model and the shunt model 

Kd Model 
Output LMF UMF Output LMF UMF 

Y1 11.95153 26.76352 Y23 16.54308 34.90325 

Y2 1.943871 56.02744 Y24 31.71382 36.85449 

Y3 6.304774 31.59038 Y25 5.272399 60.15405 

Y4 5.425955 30.37743 Y26 7.554265 43.93199 

Y5 10.69186 41.88724 Y27 18.45848 21.67796 

Y6 1.216366 20.79793 Y28 22.83077 52.56087 

Y7 4.495041 34.15593 Y29 14.5068 56.95415 

Y8 27.24409 47.87682 Y30 22.11961 42.20132 

Y9 8.394214 34.18694 Y31 3.707069 44.68312 

Y10 6.767473 41.18542 Y32 15.3378 41.18921 

Y11 25.00115 36.49195 Y33 10.43651 51.1443 

Y12 10.72191 35.61868 Y34 33.12716 28.20647 

Y13 3.764249 39.6861 Y35 9.10398 48.95976 

Y14 7.693577 38.45613 Y36 14.28307 62.15822 

Y15 32.81382 62.29011 Y37 20.07898 24.57227 

Y16 20.45761 57.78256 Y38 14.96541 40.86009 

Y17 18.34761 54.16636 Y39 36.52609 58.41877 

Y18 8.254939 41.41683 Y40 4.991641 41.8549 

Y19 17.69926 53.48385 Y41 34.64175 47.68374 

Y20 2.782323 27.29492 Y42 27.9155 47.64417 

Y21 12.17879 36.73364 Y43 23.86115 49.22595 

Y22 2.292789 23.1341 Y44 28.57476 62.56782 

VCO2 Model 
Y1 25.59264 134.0487 Y15 368.8466 341.2231 
Y2 152.3353 235.2353 Y16 327.3282 200.9932 
Y3 167.9844 259.7977 Y17 353.6114 273.1941 
Y4 138.059 165.9586 Y18 339.9651 228.385 
Y5 188.5205 253.9587 Y19 64.85753 210.9764 
Y6 430 217.4145 Y20 312.2349 254.5367 
Y7 230.7809 279.2906 Y21 318.9626 289.1905 
Y8 178.7078 268.8228 Y22 301.7819 193.5026 
Y9 86.2252 301.1571 Y23 393.8858 429.1923 

Y10 156.7144 15.36991 Y24 327.2807 280.544 
Y11 230.1731 397.9124 Y25 293.2346 249.3352 
Y12 426.6639 430 Y26 430 358.9201 
Y13 190.7528 152.7474 Y27 398.4007 275.6278 
Y14 370.4015 319.7526    

Shunt  Model 
Y1 -12.0433 21.63106 Y4 35.41843 43.66498 
Y2 13.85383 30.1571 Y5 35.4893 55.27925 
Y3 17.54528 39.32554    
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3.7.1 Validation of the New Structure Particle Swarm 

Optimization-tuned Relative Dead-space Model, Carbon-

dioxide Production Model and Shunt Model using Real 

Patient Data 

 
The surface plots for the Kd model before and after tuning were performed 

are shown in Figure 3.23, with the tuned Kd prediction curve shown in Figure 3.24. 

Prediction results for Kd are shown in Table 3.20. The optimized Kd model has 

reduced the number of predictions outside of the +10% confidence band. However, 

some predictions were slightly higher than the actual measurements. The new model 

has reduced the overshooting error that exists when PaCO2 is between 8.0 kPa and 

8.18 kPa, and when PEEP is between 16cmH2O and 20cmH2O. There still exist 

‘plateaus’ in the lower regions of PaCO2 which are related to the middle and upper 

regions of PEEP. This was probably due to the existing fuzzy rules which were unable 

to represent the entire range of inputs.  

 

When compared to the manually tuned IT2FLS model, the optimized 

model has reduced the MSE of the modelling data set from 19.61 to 14.47, and 

improved the MAE from 13.45 to 10.92. It has also increased the coefficient of R2 

from 0.79 to 0.83. For the validation data set, the optimized model has reduced the 

MSE of the manually tuned IT2FLS Kd model from 28.91 to 22.39 and improved the 

MAE from 14.62 to 10.98. It has also increased the R2 from 0.69 to 0.80. 

 

   
Figure 3.23 Surface plot for the IT2FLS Kd model. Left: manual tuning. Right: nPSO-tuned 
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Figure 3.24 Prediction result for the nPSO-tuned IT2FLS Kd model (validation data) 

 
Table 3.20 Prediction results for IT2FLS Kd model 

Tuning Method Modelling Data Validation Data 
MSE MAE R2 MSE MAE R2 

Manual 19.61 13.45 0.79 28.91 14.62 0.69 
nPSO 14.47 10.92 0.83 22.39 10.98 0.80 

 

The surface plots for the VCO2 model before and after tuning were 

performed are shown in Figure 3.25, with the tuned VCO2 prediction curve shown in 

Figure 3.26. The prediction results for VCO2 are shown in Table 3.21. The optimized 

VCO2 model has removed most of predictions outside of the +10% margin of error. 

The model has smoothed the indentation observed for MV values between 12 l/min 

and 14 l/min. A plateauing effect can be seen on the upper region of the input, this is 

due to the limitation of the lungs to produce carbon-dioxide (CO2) more than its 

maximum capacity. When compared to the manually tuned IT2FLS model, the 

optimized model has reduced the MSE of the modelling data sets from 629.97 to 

476.85, and improved the MAE from 9.65 to 7.96. It has also increased the R2 

significantly from 0.79 to 0.92. For the validation data set, the optimized model has 

reduced the MSE from 395.72 to 315.46, and improved the MAE marginally from 

6.98 to 6.33. It has also increased the R2 from 0.84 to 0.91. 
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Figure 3.25 Surface plot for the IT2FLS VCO2 model. Left: manually tuned. Right: nPSO-

tuned. 

 

 
Figure 3.26 Prediction result for the nPSO-tuned IT2FLS VCO2 model (validation data) 

 

Table 3.21 Prediction results for IT2FLS VCO2 model 

Tuning Method 
Modelling Data Validation Data 

MSE MAE R2 MSE MAE R2 
Manual 629.97 9.65 0.88 395.72 6.98 0.84 
nPSO 476.85 7.96 0.92 315.46 6.33 0.91 

 

 The prediction curve for the nPSO tuned shunt model is shown in Figure 

3.27. The prediction results for shunt are shown in Table 3.22. When compared to the 

manually tuned IT2FLS model, the optimized model has reduced the MSE of the 

validation data set from 22.91 to 20.55, and reduced the MAE marginally from 18.90 

to 18.31. It has also increased the R2 slightly from 0.86 to 0.88. 
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Figure 3.27 Prediction result for the nPSO-tuned IT2FLS shunt model (validation data) 

    
Table 3.22 Prediction results for IT2FLS shunt model 

Tuning Method Validation Data 
MSE MAE R2 

Manual 22.91 18.90 0.86 
nPSO 20.55 18.31 0.88 

 

3.8 Summary 

 
Interval type-2 fuzzy logic system (IT2FLS) was used to model the blood 

gas parameters of relative dead-space (Kd), carbon-dioxide production (VCO2) and 

shunt. The new IT2FLS models also showed a better generalization capability as 

compared to the ANFIS models, as a result allowing them to be more robust and 

adaptive to uncertainties and inter/intra ICU patient parameter variability respectively.  

 

A ‘new structure’ particle swarm optimization (nPSO) algorithm was then 

used to tune the IT2FLS models of Kd, VCO2 and shunt in the SOPAVent model. The 

manually tuned IT2FLS model showed a better prediction accuracy for the validation 

data when compared to the ANFIS models. The nPSO tuned models showed a better 

prediction accuracy when compared to the manually tuned ones. The new 

‘momentum’ term in nPSO enables the algorithm to avoid premature convergence and 

creates an adaptive search process for the particles. The new modelling framework has 

smoothed the output curve for the manually tuned VCO2 model, and partly reduced 

the anomalies which related to the ‘plateaus’ and ‘peaks’ in certain input ranges as 
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seen in the manually tuned Kd model. A more complex Kd model with 243 fuzzy rules 

was also considered. However, the fuzzy rules for the Kd model with 243 rules were 

not optimized. 

 

In the next chapter, further explorations of the blood gas parameters using 

fuzzy c-means clustering for type-1 fuzzy inference system (FIS) and type-2 fuzzy 

logic systems will be discussed. These are then followed with the integration of the 

Kd, VCO2 and the shunt models into the original model structure, SOPAVent as well 

as validation of SOPAVent for the prediction of PaO2, PaCO2 and pH.  
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Chapter 4  
 

Fuzzy C-Means Clustering Models for Relative 

Dead-Space and Carbon-dioxide Production 

and Validation of the SOPAVent Blood Gas 

Model 

 
4.1 Introduction  

 
Fuzzy C-Means Clustering (FCM) is a prototype-based clustering 

algorithm that partitions or ‘clusters’ data according to their similarities (in the 

Euclidian sense) (Hwang et al., 2007). Each data point has a certain membership grade 

associated to every cluster and each cluster has a centre. The cluster centres and 

membership grades are iteratively updated until the cluster centres are moved to their 

optimal location. This is achieved by reducing the distance between data points and 

their cluster centres. By creating natural groupings from a large dataset, one can extract 

a meaningful knowledge about the system (Chiu, 1994). FCM minimizes the 

following cost function: 

 

J = ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚�|𝑥𝑥𝑘𝑘 − 𝑣𝑣𝑖𝑖|�
2𝑐𝑐

𝑖𝑖=1
𝑛𝑛
𝑘𝑘=1                                                 (4.1) 

Where, 𝜇𝜇𝑖𝑖𝑖𝑖 =  1

∑ �
��𝑥𝑥𝑘𝑘−𝑣𝑣𝑖𝑖��

��𝑥𝑥𝑘𝑘−𝑣𝑣𝑗𝑗��
�

2/(𝑚𝑚−1)

𝑐𝑐
𝑗𝑗=1

                                                (4.2) 

 

Here, n is data size, c is cluster number, 𝑥𝑥𝑘𝑘 is the kth data, 𝑣𝑣𝑖𝑖  is the ith cluster 

centre, 𝜇𝜇𝑖𝑖𝑖𝑖 is the degree of membership of the kth data in the ith cluster, and m is a 

constant typically set at 2. The effectiveness of FCM is dependent on the number of 

clusters and the initial cluster centres (Chiu, 1994).   
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In this chapter a new approach for modelling the Kd and the VCO2 sub-

components using FCM is proposed. The resulting models will then be validated with 

real patient data and later will be integrated with the SOPAVent blood gas model for 

prediction of PaO2, PaCO2 and pH. The results of the SOPAVent model where Kd and 

VCO2 were designed using FCM will be compared with the results of the SOPAVent 

versions where Kd and VCO2 models were developed using interval type-2 fuzzy logic 

system (IT2FLS) (refer to Chapter 3), and will also be compared with the results of 

the SOPAVent model where Kd and VCO2 were designed using adaptive network-

based fuzzy inference system (ANFIS) as described by Wang et al., 2010a. 
 

4.2  Fuzzy C-Means Clustering for the Selection of Fuzzy Sets 

for the Kd and the VCO2 Models 

 
In this work, FCM was employed to design type-1 fuzzy sets for the VCO2 

and the Kd models. The dataset used in the FCM is the modelling data defined in 

Chapter 3. Figures 4.1 and 4.2 show the data distribution for the Kd model, while 

figures 4.3 and 4.4 show the data distribution for the VCO2 model. The selection of 

the cluster number, c was carried-out on a trial and error basis, starting from c = 4 up 

to a maximum of c = 30. The cluster centre and standard deviation for each cluster 

were used to generate the Gaussian membership functions (MFs) for the fuzzy system 

using a Mamdani rule-base.  

 

The Mean Squared Error (MSE), Mean Absolute Error (MAE), and 

coefficient of determination (R2) were used as the selection criteria for the optimal 

cluster number. The results for the FCM simulations are shown in Table 4.1. From 

these simulations performed, the cluster number c = 28 has shown to be the optimal 

setting to represent the behaviour of the Kd model, and the cluster number c = 17 was 

the best as far as the VCO2 model was concerned. Figure 4.5 shows the MSE against 

the cluster number for the Kd and the VCO2 model.  
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Figure 4.1.  Kd model output against model inputs (PaCO2, RR, VT, Pinsp and PEEP)  

 

 

 
Figure 4.2 Three-dimensional distribution for the Kd model showing relationship of inputs 

(PaCO2, RR, VT, Pinsp and PEEP) to the output, Kd 
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Figure 4.3.  VCO2 model output against model inputs (MV, VT and ETCO2) 

 

 
Figure 4.4 Three-dimensional distribution for the VCO2 model showing relationship of inputs 

(MV, VT and ETCO2) to the output, VCO2 

 

Table 4.1. FCM clustering results for the Kd and the VCO2 sub-components based on 

predictions of modelling data 
Sub-component Cluster Number MSE MAE R2 

Kd 28 13.05 10.89 0.85 
VCO2 17 1146.01 15.00 0.91 

    

 
Figure 4.5 MSE against cluster number for the Kd model (top) and the VCO2 model (bottom). 
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The following figures show the results obtained from the FCM process for 

the Kd sub-component. The clusters generated for the Kd model are shown in Figure 

4.6 and the prediction results for the modelling and the validation datasets of the Kd 

model using FCM are shown in Figure 4.7 and Table 4.2. The model was tested with 

the same data sets as in Chapter 3. The model produced an MSE of 13.05, an MAE of 

10.89 and R2 of 0.85 for the modelling dataset. For the validation dataset, the model 

produced an MSE of 23.53, an MAE of 12.94 and R2 of 0.75. A majority of the 

predictions were within the +10% confidence band, however, further improvements 

are required to reduce prediction errors.  

 

 
Figure 4.6. FCM result for the clustering of the Kd model inputs (PaCO2, RR, VT, Pinsp and 

PEEP)  

 

 
Figure 4.7. Prediction results for the FCM generated fuzzy sets for the Kd sub-component. 

Left: modelling data, and right: validation data 

X cluster centres X cluster centres X cluster centres 

X cluster centres X cluster centres 
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Table 4.2. Prediction results of the modelling and the validation datasets for the FCM Kd sub-

component 

Modelling Data Validation Data 
MSE MAE R2 MSE MAE R2 
13.05 10.89 0.85 23.53 12.94 0.75 

 

The following figures show the results obtained from the FCM process for 

the VCO2 sub-component. The clusters generated for the VCO2 sub-component are 

shown in Figure 4.8, and the prediction results for the modelling and the validation 

datasets of the VCO2 sub-component are shown in Figure 4.9 and Table 4.3. The 

model was tested with the same datasets as in Chapter 3. For the modelling dataset, 

the FCM model produced an MSE of 1146.01, an MAE of 15.00 and R2 of 0.91. For 

the validation dataset, the model produced an MSE of 704.63, an MAE of 11.23 and 

R2 of 0.86.  

 

Although the R2 values can be deemed to be good at 0.91 and 0.86 

respectively, it can be seen that for the lower-end values of VCO2, where VCO2 is 

between 125ml/min to 200ml/min, the predictions were significantly higher than the 

expected ones. This resulted in a large number of predictions sitting outside of the 

+10% confidence band. Thus, further improvements were necessary to reduce the 

number of predictions which lie outside of the +10% confidence band.  

 

The fuzzy sets and the fuzzy surface plots generated by the FCM process 

for the Kd and the VCO2 components are available in Appendix B1. 

 

 

Figure 4.8. FCM result for the clustering of VCO2 model’s inputs (MV, VT and EtCO2) 

 

 

 

X cluster centres X cluster centres X cluster centres 
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Figure 4.9. Prediction results for the FCM generated fuzzy sets for the VCO2 model. Left: 

modelling dataset, and right: validation dataset 

 

Table 4.3. Prediction results of modelling and validation datasets for the FCM VCO2 model 

Modelling Data Validation Data 
MSE MAE R2 MSE MAE R2 

1146.01 15.00 0.91 704.63 11.23 0.86 
 

 

4.3 New Structure Particle Swarm Optimization for the 

Selection of the Membership Functions for Fuzzy C-Means 

Clustering Relative Dead-space and Carbon-dioxide 

Production Models 

 
To increase the prediction accuracy of the Kd and the VCO2 sub-

components, the fuzzy sets generated from the FCM process were further tuned using 

the nPSO algorithm described in Chapter 3. The nPSO algorithm was first applied for 

the selection of the output MFs, and then followed by the selection of the input MFs. 

The smallest Mean Squared Error (MSE) was selected as the first objective of the 

optimization algorithm, and the largest coefficient of determination (R2) was selected 

as the second objective of the optimization algorithm.   

 

4.3.1  Validation Results  

 
Table 4.4 shows the results for the modelling and the validation dataset for 

the FCM nPSO optimized Kd and VCO2 models. The prediction plots for the FCM 
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nPSO optimized Kd and the FCM nPSO optimized VCO2 models are shown in Figures 

4.10 and 4.11 respectively. The surface plots and the fuzzy sets generated from the 

FCM nPSO optimization of Kd and VCO2 models are available in Appendix B2. 

 

The FCM Kd model with nPSO optimization based on the least MSE has 

generated an MSE of 9.95, an MAE of 9.12 and R2 of 0.89 for the modelling dataset. 

For the validation dataset, the model has produced an MSE of 19.52, an MAE of 11.14 

and an R2 of 0.82. The FCM Kd model with nPSO optimization based on the largest 

R2 has produced an MSE of 6.46, an MAE of 7.18 and R2 of 0.93 for the modelling 

dataset. For the validation dataset, the model has generated an MSE of 16.93, an MAE 

of 9.73 and R2 of 0.86. Several predictions of the Kd parameter were outside of the 

+10% confidence band, however, significant improvements were observed for the 

MSE, MAE and R2 when compared with the previous FCM models for both data sets. 

 

The FCM VCO2 model with nPSO optimization based on the least MSE 

has generated an MSE of 379.10, an MAE of 7.01 and R2 of 0.94 for the modelling 

dataset. For the validation dataset, the model has generated an MSE of 245.85, an 

MAE of 5.80 and R2 of 0.91. The FCM VCO2 model with nPSO optimization based 

on the largest R2 has produced an MSE of 246.38, an MAE of 5.61 and the R2 of 0.96 

for the modelling dataset. For the validation dataset, the model has generated an MSE 

of 268.74, an MAE of 5.79 and the R2 of 0.91. The nPSO optimization has significantly 

reduced the number of predictions which were outside of the +10% confidence band, 

and has improved the prediction accuracy of VCO2 within the range of 125 ml/min 

and 200 ml/min of the previous FCM model.  

 
Table 4.4. Prediction results of modelling and validation datasets for the FCM nPSO Kd and 

the FCM nPSO VCO2 models, based on the least MSE and largest R2 

Indices 
Kd Model VCO2 Model 

Modelling Data Validation Data Modelling Data Validation Data 
Least 
MSE 

Largest 
R2 

Least 
MSE 

Largest 
R2 

Least 
MSE 

Largest 
R2 

Least 
MSE 

Largest 
R2 

MSE 9.95 6.46 19.52 16.93 379.10 246.38 245.85 268.74 
MAE 9.12 7.18 11.14 9.73 7.01 5.61 5.80 5.79 

R2 0.89 0.93 0.82 0.86 0.94 0.96 0.91 0.91 
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Figure 4.10. Prediction results for the FCM nPSO generated fuzzy sets for the Kd model. Top: 

Optimized based on the least MSE for the modelling and the validation datasets. Bottom: 

Optimized based on the largest R2 for modelling and validation datasets 

 

                  

 
Figure 4.11. Prediction results for the FCM nPSO generated fuzzy sets for the VCO2 model. 

Top: Optimized based on the least MSE for the modelling and the validation datasets. Bottom: 

Optimized based on the largest R2 for the modelling and the validation datasets 
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4.4 Validation of the Sheffield SOPAVent Blood Gas Model 

using Real Patient Data from the Intensive Care Unit  
    

To allow for SOPAVent to predict the arterial blood gas parameters 

(ABG) (PaO2, PaCO2 and pH), the Kd, the VCO2 and the shunt models were integrated 

into SOPAVent together with other inputs.  The prediction of SOPAVent was then 

compared with actual blood gas measurements for performance evaluation. 

SOPAVent generated two sets of outputs. The first set are the initial ABG predictions, 

which are predictions before changes in ventilator settings were applied. The second 

set of outputs are the ABG predictions after the ventilator settings were adjusted. As 

ABG parameters can change as early as 30 minutes after ventilator settings changes 

were made, an immediate prediction will be beneficial for the following treatment 

strategy.  

 

4.4.1 Data Selection for the SOPAVent Model  

 
The data used for this work is retrospective from the Sheffield Royal 

Hallamshire Hospital, United Kingdom. The data for SOPAVent validation met the 

following conditions as previously been defined in Wang et al., 2008. 

 

i. All patients in Bi-level Positive Airway Pressure mode (BiPAP); 

ii. The ABGs were taken between 30 and 60 minutes before ventilator 

settings were adjusted; 

iii. The ABGs were taken between 30 and 180 minutes after ventilator 

settings were adjusted; 

iv. The changes in mean blood pressure (BP) between ventilator 

adjustments should be within +15% of the original BP, and, 

v. The ratio of the spontaneous breathing rate to the total breathing rate 

between ventilator adjustments should be less than 15%. 

 

Twenty-nine (29) data sets obtained from 21 patients, were used to 

validate SOPAVent. The patients consisted of 7 females and 14 males with a mean 

age of 58 + 13 years, a mean height of 170 + 9.18 cm and a mean weight of 70.4 + 16 
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kg. Table 4.5 shows the summary for all patients used in this study. Figure 4.12 show 

the distribution of 29 data sets used in the SOPAVent model validation. 

  
Table 4.5. Summary of patients for SOPAVent validation. 

Age Height (cm) Weight (kg) Gender 
Male Female 

58+13 170+9.18 70.4+16 14 7 
 

 
Figure 4.12. SOPAVent validation data. Top: Initial ABG (PaO2, PaCO2 and pH). Bottom: 

ABG after ventilator settings change (PaO2, PaCO2 and pH) 

 

4.4.2 SOPAVent Validation Results   

 
In perspective, the results of the SOPAVent predictions will be compared 

for the Kd and the VCO2 models which were designed using the Interval Type-2 Fuzzy 

Logic System (IT2FLS), the Fuzzy C-Means Clustering (FCM), and the Adaptive 

Neural-fuzzy Inference System (ANFIS). As the prediction of PaO2 is dependent on 

shunt, and there is no physical measurement of shunt to validate the model with, the 

SOPAVent model with the shunt which was designed using IT2FLS (manual and 

nPSO tuned) was first compared with the shunt model which was derived using the 

secant tuning method as described in Wang et al., 2008.  
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This exercise is carried out in order to determine the most suitable shunt 

models to be integrated with the FCM generated Kd and the FCM generated VCO2 

models. From the simulations performed, the best shunt model achieved was the secant 

tuning method, and this can be seen from the initial PaO2 predictions in Table 4.6. The 

IT2FLS shunt was modelled based on the respiratory index (RI) (as describe in 

Chapter 3), and since only a limited number of samples were available for modelling 

of shunt from RI, a degradation in accuracy was observed for initial PaO2 predictions, 

as shown in Table 4.6. However, it did not significantly affect the prediction accuracy 

for the initial and the post-settings change of PaCO2, and the initial and the post-

settings change of pH. Nonetheless, only the secant tuning model for shunt is 

considered for all future evaluations of SOPAVent.  

 

For the initial predictions of PaO2, the SOPAVent model showed similar 

performances whether the Kd and the VCO2 models were designed using IT2FLS, 

FCM, or ANFIS. For these models, the R2 were equal to 1 and the MSE and MAE 

were near zero (see Table 4.6). For the post-setting-change predictions of PaO2, when 

the shunt was modelled using the secant tuning method, SOPAVent showed similar 

performances whether the Kd and the VCO2 models were elicited using IT2FLS, 

FCM, or ANFIS, with an MSE averaging at 11.65, an MAE averaging at 15.65 and an 

R2 averaging at 0.50 (see Table 4.7).  

 

For the initial predictions of PaCO2, all models outperformed the previous 

SOPAVent model by Wang et al., (2010a), where Kd and VCO2 were elicited via 

ANFIS. The best prediction was achieved by the combination of the IT2FLS model 

with 243 rules for the Kd parameter, and the IT2FLS nPSO model for the VCO2 

parameter, where the MSE was 0.39, the MAE was 9.11 and R2 was 0.91. This was 

closely followed by the SOPAVent version where both the Kd and the VCO2 sub-

components were elicited via the IT2FLS nPSO model, which generated an MSE of 

0.64, an MAE of 9.85 and R2 of 0.86. For the post-setting-change predictions of 

PaCO2, the best performing model was the SOPAVent version where the Kd was 

elicited via the IT2FLS model with 243 rules, and the VCO2 was modelled using the 

IT2FLS nPSO model, which produced an MSE of 0.74, an MAE of 10.31 and R2 of 

0.81, which outperformed the previous SOPAVent model where Kd and VCO2 were 

modelled using ANFIS. All other combinations of Kd and VCO2 were either 
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marginally less performing or were marginally better performing when compared to 

the SOPAVent version where the Kd and the VCO2 models were stimulated via 

ANFIS.  

  

 For the initial predictions of pH, all models also outperformed the 

previous SOPAVent version, with all models producing R2 above 0.80. The best 

performing version was the SOPAVent version where the Kd sub-component was 

modelled using the IT2FLS model with 243 rules, and the VCO2 sub-component was 

elicited via the IT2FLS nPSO model, where the MSE was 2.50e-3, the MAE was 0.54 

and R2 was 0.88. This was followed by the SOPAVent version where both Kd and 

VCO2 sub-components were modelled using the IT2FLS nPSO model, where the 

generated MSE was 2.70e-3, the generated MAE was 0.57 and the R2 was 0.84. For 

the post-setting-change predictions of pH, all version of the SOPAVent showed an 

equal or better prediction accuracy, when compared with the previous SOPAVent 

model where Kd and VCO2 were designed using ANFIS.  

 

Samples of the prediction plots for the initial ABG predictions and the 

post-setting change ABG predictions for the SOPAVent model where both the Kd the 

and the VCO2 sub-components were elicited via the FCM nPSO model, are shown in 

Figures 4.13 and 4.14 respectively. Other samples of prediction plots for the 

SOPAVent model for initial ABG predictions and post-setting change ABG 

predictions are available in Appendix B2. 
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Table 4.6. SOPAVent initial ABG prediction results  

Sub-component Modelling Approach Initial PaO2 Initial PaCO2 Initial pH 
Kd VCO2 Shunt MSE MAE R2 MSE MAE R2 MSE MAE R2 

ANFIS ANFIS Secant Tuning 1.14e-5 1.68e-2 1.00 1.30 11.60 0.69 5.60e-3 0.71 0.67 
IT2FLS  IT2FLS  IT2FLS 30.79 32.06 0.73 0.84 12.56 0.78 4.78e-3 0.76 0.74 
IT2FLS  IT2FLS  IT2FLS (nPSO) 28.38 31.00 0.70 0.85 12.52 0.78 4.75e-3 0.75 0.74 
IT2FLS  IT2FLS  Secant Tuning 1.17e-5 1.55e-2 1.00 0.89 11.88 0.76 4.04e-3 0.71 0.76 

IT2FLS (nPSO) IT2FLS (nPSO) IT2FLS  23.19 30.47 0.82 0.67 10.89 0.82 3.45e-3 0.64 0.81 
IT2FLS (nPSO) IT2FLS (nPSO) IT2FLS (nPSO) 21.82 30.43 0.80 0.69 11.02 0.82 3. 50e-3 0.65 0.81 
IT2FLS (nPSO) IT2FLS (nPSO) Secant Tuning 1.92e-5 2.35e-2 1.00 0.64 9.85 0.86 2.70e-3 0.57 0.84 

IT2FLS (243 rules) IT2FLS (nPSO) Secant Tuning 1.92e-5 2.66e-2 1.00 0.39 9.11 0.91 2.50e-3 0.54 0.88 
T1 FCM T1 FCM Secant Tuning 1.50e-5 2.24e-2 1.00 0.84 12.47 0.78 4.06e-3 0.74 0.81 

T1 FCM (MSE nPSO) T1 FCM (MSE nPSO) Secant Tuning 1.27e-5 2.00e-2 1.00 0.85 11.77 0.77 4.00e-3 0.70 0.81 
T1 FCM (R2 nPSO) T1 FCM (R2 nPSO) Secant Tuning 9.90e-6 2.00e-2 1.00 0.78 10.39 0.81 3.18e-3 0.64 0.80 

 

Table 4.7. SOPAVent post-setting change ABG prediction results  

Sub-component Modelling Approach Post-setting change 
PaO2 Post-setting change PaCO2 Post-setting change pH 

Kd VCO2 Shunt MSE MAE R2 MSE MAE R2 MSE MAE R2 
ANFIS ANFIS Secant Tuning 11.41 15.07 0.49 0.87 10.68 0.78 4.70e-3 0.69 0.71 
IT2FLS  IT2FLS  IT2FLS 33.48 32.86 0.39 0.97 13.21 0.75 5.35e-3 0.83 0.70 
IT2FLS  IT2FLS  IT2FLS (nPSO) 31.27 30.68 0.42 0.96 13.22 0.75 5.22e-3 0.83 0.71 
IT2FLS  IT2FLS  Secant Tuning 11.61 19.29 0.48 0.97 12.83 0.75 4.41e-3 0.76 0.73 

IT2FLS (nPSO) IT2FLS (nPSO) IT2FLS  31.19 31.85 0.45 1.23 11.73 0.66 4.48e-3 0.68 0.74 
IT2FLS (nPSO) IT2FLS (nPSO) IT2FLS (nPSO) 29.74 30.37 0.46 1.22 11.41 0.67 4.40e-3 0.68 0.74 
IT2FLS (nPSO) IT2FLS (nPSO) Secant Tuning 11.44 15.18 0.50 1.09 10.11 0.74 3.40e-3 0.60 0.78   

IT2FLS (243 rules) IT2FLS (nPSO) Secant Tuning 13.30 14.94 0.50 0.74 10.31 0.81 3.00e-3 0.59 0.84 
T1 FCM T1 FCM Secant Tuning 11.17 14.88 0.51 0.97 12.87 0.74 4.41e-3 0.76 0.79 

T1 FCM (MSE nPSO) T1 FCM (MSE nPSO) Secant Tuning 11.23 14.94 0.51 1.02 12.45 0.73 4.00e-3 0.75 0.78 
T1 FCM (R2 nPSO) T1 FCM (R2 nPSO) Secant Tuning 11.45 15.27 0.49 1.16 11.77 0.71 4.40e-3 0.74 0.72 
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Figure 4.13. SOPAVent initial ABG prediction results for the Kd and the VCO2 sub-

components elicited via the FCM nPSO model  

 

 

 
Figure 4.14. SOPAVent post-setting change ABG prediction results for the Kd and the VCO2 

sub-components elicited via the FCM nPSO model.  

 

 

4.4.3 Analysis of the SOPAVent Model Validation  

    

Four versions of SOPAVent; each using the secant tuning for obtaining 

shunt, were selected for further analysis. These are: (i) the SOPAVent version where 

the Kd and the VCO2 sub-components were elicited via ANFIS, (ii) the SOPAVent 
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version where the Kd and the VCO2 sub-components were derived using the IT2FLS 

nPSO model, (iii) the SOPAVent version where the Kd sub-component was elicited 

using the IT2FLS model with 243 rules, and the VCO2 sub-component obtained using 

the IT2FLS nPSO model, and (iv) the SOPAVent model where the Kd and the VCO2 

sub-components were elicited via the FCM nPSO model with the MSE as the 

optimization objective. Each model was analysed based on the percentage of error 

obtained between the predicted ABG parameters and the real ABG parameters. For 

the PaO2 and the PaCO2 parameters, the predictions were grouped into one of three 

categories: (i) less than 10% error, (ii) between 10% to 20% error, and (iii) greater 

than 20% error. For the pH parameter, the predictions were grouped into one of three 

categories: (i) less than 2% error, (ii) between 2% to 5% error, and (iii) greater than 

5% error. The number of predictions and their percentages for each error category 

were also recorded.  

 

For the initial PaO2 predictions, all four models showed a similar 

performance with all 29 predictions (100%) had errors less than 10%. For post-setting 

change PaO2 predictions, the SOPAVent version with the Kd and the VCO2 sub-

components obtained via the FCM nPSO model had the most prediction with errors 

less than 10% (14 out of 29, or 48.28%). This was followed by the SOPAVent model 

where the Kd sub-component was derived using the IT2FLS model with 243 rules, 

and the VCO2 sub-component was elicited using the IT2FLS nPSO model, where 

thirteen out of 29 predictions (44.83%) had errors less than 10% (see Table 4.8). For 

the initial PaCO2 predictions, the SOPAVent version where the Kd sub-component 

was derived using the IT2FLS model with 243 rules, and the VCO2 sub-component 

was elicited via the ITFLS nPSO model had the most prediction with errors less than 

10% (19 out of 29, or 65.52%). This was followed by the SOPAVent version where 

the Kd and the VCO2 sub-components were simulated using ANFIS. Eighteen out of 

29 predictions (62.07%) had errors less than 10%. For the post-setting change 

predictions of PaCO2, the SOPAVent version where the Kd and the VCO2 sub-

components were elicited via ANFIS had the most prediction with errors less than 

10% (18 out of 29, or 62.07%). This was followed by the SOPAVent model where the 

Kd sub-component was derived using the IT2FLS model with 243 rules, and the VCO2 

sub-component was elicited using the ITFLS nPSO model. Fifteen out of 29 

predictions (51.72%) had errors less than 10% (see Table 4.9).  
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For initial pH predictions, all the SOPAVent version except for when the 

Kd and the VCO2 sub-components were simulated using ANFIS, had all predictions 

(100%) with errors less than 2%. For the SOPAVent model where the Kd and the 

VCO2 sub-component were developed using ANFIS, 27 out of 29 predictions 

(93.10%) had errors less than 2%. This was also observed for the post-setting change 

predictions of pH, where all SOPAVent versions apart from where the Kd and the 

VCO2 sub-components were derived via ANFIS, had all predictions (100%) with 

errors less than 2% (see Table 4.10).  

 

 

 

 
Figure 4.15. Number of errors in SOPAVent’s for initial predictions and post-setting 

change predictions of PaO2 (top), PaCO2 (middle) and pH (bottom). 
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Table 4.8 SOPAVent ABG prediction errors for PaO2. 

  Error for initial predictions Error for post-setting-change predictions 

Kd Approach VCO2 Approach < 10%  10% to 20%  > 20% < 10%  10% to 20%  > 20% 
Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) 

ANFIS ANFIS 29/29 100% 0/29 0% 0/29 0% 12/29 41.38% 9/29 31.03% 8/29 27.59% 
nPSO-tuned IT2FLS nPSO-tuned IT2FLS 29/29 100% 0/29 0% 0/29 0% 10 /29 34.48% 3/29 10.34% 16/29 55.17% 

243 rule IT2FLS nPSO-tuned IT2FLS 29/29 100% 0/29 0% 0/29 0% 13/29 44.83% 8/29 27.59% 8/29 27.59% 
nPSO-tuned FCM nPSO-tuned FCM 29/29 100% 0/29 0% 0/29 0% 14/29 48.28% 7/29 24.14% 8/29 27.57% 

 

Table 4.9 SOPAVent ABG prediction errors for PaCO2. 

  Error for initial predictions Error for post-setting-change predictions 

Kd Approach VCO2 Approach < 10%  10% to 20%  > 20% < 10%  10% to 20%  > 20% 
Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) 

ANFIS ANFIS 18/29 62.07% 6/29 20.69% 5/29 17.24% 18/29 62.07% 7/29 24.14% 4/29 13.79% 
nPSO-tuned IT2FLS nPSO-tuned IT2FLS 14/29 48.28% 12/29 41.38% 3/29 10.34% 13/29 44.83% 11/29 37.93% 5/29 17.24% 

243 rule IT2FLS nPSO-tuned IT2FLS 19/29 65.52% 8/29 27.59% 2/29 6.90% 15/29 51.72% 10/29 34.48% 4/29 13.79% 
nPSO-tuned FCM nPSO-tuned FCM 15/29 51.72% 9/29 31.03% 5/29 17.24% 12/29 41.38% 12/29 41.38% 5/29 17.24% 

 

Table 4.10 SOPAVent ABG prediction errors for pH. 

  Error for initial predictions Error for post-setting-change predictions 

Kd Approach VCO2 Approach < 2%  2% to 5%  > 5% < 2%  2% to 5%  > 5% 
Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) Qty (%) 

ANFIS ANFIS 27/29 93.10% 2/29 6.90% 0/29 0% 27/29 93.10% 2/29 6.90% 0/29 0% 
nPSO-tuned IT2FLS nPSO-tuned IT2FLS 29/29 100% 0/29 0% 0/29 0% 29/29 100% 0/29 0% 0/29 0% 

243 rule IT2FLS nPSO-tuned IT2FLS 29/29 100% 0/29 0% 0/29 0% 29/29 100% 0/29 0% 0/29 0% 
nPSO-tuned FCM nPSO-tuned FCM 29/29 100% 0/29 0% 0/29 0% 29/29 100% 0/29 0% 0/29 0% 
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4.5 Summary  

 
 Several Fuzzy C-Means Clustering (FCM) models were developed for the 

estimation of the relative dead-space (Kd) and the carbon-dioxide production (VCO2). 

These models were further optimized using the proposed ‘new structure’ for Particle 

Swarm Optimization (nPSO). The FCM models and the models developed using 

interval type-2 fuzzy logic system (IT2FLS), as presented in Chapter 3, were 

integrated into the SOPAVent model, which is a non-invasive and automatic blood 

gas prediction system. The performance of the newly developed models were also 

compared with the previous models where the Kd and the VCO2 sub-components were 

developed using the ANFIS modelling structure. 

 

In order to validate the developed models, real ICU patient data were 

utilized. Both the IT2FLS and the FCM models led to satisfactory prediction 

performances with significant improvements in MSE, MAE and R2 particularly for the 

prediction of the initial PaCO2, the prediction of the initial pH and the prediction of 

the post-setting-change pH. Some improvements were also observed for the post-

setting-change prediction of PaCO2. These improvements were attributed to the new 

Kd and VCO2 sub-models. However, no significant improvements in accuracy were 

obtained for the post-setting-change prediction of PaO2. This is due to no new model 

was proposed for the improvement of cardiac output (CO), which currently is 

estimated using Body Surface Area (BSA).   

 

The SOPAVent version, where the Kd and the VCO2 model components were 

designed using the IT2FLS model outperformed the previous SOPAVent version 

where the Kd and the VCO2 sub-components were elicited via ANFIS. The SOPAVent 

model, where the Kd and the VCO2 sub-components were elicited using FCM, led to 

equal performance as compared to the SOPAVent version where the Kd and theVCO2 

model components were elicited via ANFIS. The new IT2FLS models showed better 

generalization capability as compared to the FCM models, as a result allowing them 

to be more robust and adaptive to uncertainties and inter/intra ICU patient parameter 

variability respectively. 
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Chapter 5  
 

Validation of Blood Gas Models for Patients 

with Faecal Peritonitis 

 
5.1 Introduction 

 

Faecal Peritonitis (FP) is a common cause for sepsis in patients who are 

admitted to the intensive care unit (ICU). Peritonitis is identified by the inflammation 

of the peritoneal cavity, a fluid filled space between two layers of the peritoneum 

membrane, often caused by an infection on the peritoneal cavity (Tridente et al., 2014). 

Peritoneum is the membrane that lines both the abdominal wall and the intra-

abdominal organs. Figure 5.1 shows the location of the peritoneum membrane and the 

peritoneal cavity on a cross sectional image of the human abdomen. A secondary 

peritonitis known as faecal peritonitis, occur when faecal matter spill from the large 

intestine into the peritoneal cavity, due to weakened bowel wall from ischemia, growth 

or inflammation (Tridente et al., 2014). FP often results in intensive antibiotic therapy 

and may involve emergency surgery if it became life-threatening.   

 

 
Figure 5.1 Cross section image of the human abdomen (BC Open Textbooks) 
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5.2 Validation of Relative Dead-Space and Carbon-dioxide 

Production Models on Faecal Peritonitis Patients  

 
A set of hourly data from 96 patients (51 females and 45 males) diagnosed 

with FP admitted to the ICU, was obtained from the Anaesthetics Department, at the 

Sheffield Royal Hallamshire Hospital, UK. The dataset consisted of ventilator 

settings, ventilator monitoring, blood gas analyses and physiological parameters of 

patients admitted and discharged between April 2008 and September 2012. Patients 

were supported by the artificial ventilator in various modes such as bi-level positive 

airway pressure, (BiPAP), continuous positive airway pressure, (CIPAP), low-flow 

face mask oxygen (LoFlo), high-flow face mask oxygen (HiFlo), nasal specs, hood 

CPAP, facial CPAP and non-invasive ventilation (NIV).  

 

BiPAP ventilation provided support for both chronic and acute conditions 

while CPAP-ASB were used for patients who have gone through the initial acute stage 

and so were progressing. LoFlo, HiFlo and nasal specs were provided for patients who 

were able to breathe on their own but required a little more oxygen. Hood CPAP and 

facial CPAP were also provided for patients who were able to breathe on their own 

but required some external pressures to expand their airways and lungs. Patient who 

were on NIV mode were those yet to be intubated for CPAP and so were ventilated 

through a face mask. 

 

The carbon-dioxide production (VCO2) models and the relative dead-

space (Kd) models discussed in Chapters 3 and 4 were used to validate the new FP 

patient data. After consulting with the anaesthetic clinician at the Sheffield Royal 

Hallamshire Hospital, parameters which satisfy the following conditions were selected 

for validating the VCO2 and the Kd models. 

 

i. Patients were ventilated under the BiPAP mode; 

ii. The total respiration rate (RR) must be equal or higher than set RR; 

iii. The end-tidal carbon-dioxide (EtCO2) should be lower than the 

partial arterial pressure of carbon-dioxide (PaCO2), but no less than 

3 kPa as this would suggest a calibration error; 
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iv. The tidal volume (VT) should be larger than 300ml as anything 

lower will affect oxygenation of the blood vessels in the brain; 

v. The EtCO2 should be larger than 3.5 kPa; 

vi. The carbon-dioxide production (VCO2) should be larger than 100ml; 

vii. The relative dead-space should be larger than 10. 

 

Of the 96 FP patients, 40 patents were ventilated under BiPAP mode. The 

remaining 56 patients were ventilated in various other modes and thus were not 

selected for validation. The conditions defined above produced a total of 340 data sets 

from 21 patients, consisting of 11 males and 10 females. The mean height of the 

selected FP patients was 168+10.00 cm and the mean weight was 70.22+14.91kg (see 

Table 5.1). However, there was no information on the age of the patients. Based on 

the height and weight of the patients it was assumed that the patients were adults. The 

summary of Kd and VCO2 data used for validation are shown in Table 5.2 (a) and 

Table 5.2 (b) respectively.  

 

Table 5.1 Demography of FP patients for VCO2 and Kd model validation 

Number of Patients Male Female Height (cm) Weight (kg) 
21 11 10 168 + 10.00 70.22 + 14.91 

 

Table 5.2 (a) Kd validation data for FP patients 

Parameter PaCO2 

(kPa) 
RR 

(breath/min) 
VT 
(l) 

Pinsp 
(cmH2O) 

PEEP 
(cmH2O) Kd 

Mean 5.85 15.78 0.55 22.28 7.11 28.71 
S.D. 1.21 3.08 0.14 5.90 1.96 7.59 

Minimum 3.68 8.00 0.31 10.00 5.00 12.00 
Maximum 9.73 24.00 1.30 36.00 12.00 50.00 

 

Table 5.2 (b) VCO2 validation data for FP patients 

Parameter MV (l/min) VT (l) EtCO2 (kPa) VCO2 (ml/min) 
Mean 8.60 0.55 5.00 229.73 
S.D. 2.68 0.14 0.97 50.87 

Minimum 3.76 0.31 3.50 109.00 
Maximum 17.94 1.30 7.70 379.00 
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Figures 5.2 (a) and 5.2 (b) show the data distribution for Kd in two-

dimensional (2D) and three-dimensional (3D) representations respectively. When 

compared with the retrospective data for Kd used in Chapter 3 (see Table 3.3), the 

respiration rate (RR) for FP patients has a slightly lower mean and standard deviation 

(15.78+3.08 compared to 16.96+3.27). The RR also has a lower minimum and 

maximum value (8 to 24 compared to 12 to 28). The positive end expiratory pressure 

(PEEP) showed a lower mean and standard deviation value (7.11+1.96 compared to 

10.62+3.88). The PEEP for FP data also showed a much lower maximum value (5 to 

12 compared to 5 to 20).  

 

The inspiratory pressure (Pinsp) for FP patients, however has a much 

higher mean and standard deviation value (22.28+5.90 compared to 13.93+3.64). The 

PEEP of the FP data has a higher minimum and maximum value (10 to 36) when 

compared to the previous data (6 to 30). The partial arterial pressure of carbon-dioxide 

(PaCO2), tidal volume (VT) and Kd for both the FP data and previous data showed no 

significant differences.  

 

 
Figure 5.2 (a) Two-dimensional data distribution for the Kd model. Top: increasing Kd, 

PaCO2 and RR. Bottom: VT, Pinsp and PEEP 
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Figure 5.2 (b) Three-dimensional data distribution for the Kd model 

 

Figures 5.3 (a) and 5.3 (b) shows the data distribution for VCO2 validation 

in 2D and 3D representations. When the new FP data for VCO2 was compared to the 

previous data in Chapter 3 (see Table 3.9), the minute volume (MV) has a slightly 

higher mean and standard deviation (8.6+2.68 compared to 7.89+1.79). The MV for 

FP data also has a slightly lower minimum value, but a slightly larger maximum value 

(3.76 to 17.94 compared to 4.09 to 15.55). The VT for FP data has an almost equal 

mean value, but a larger standard deviation compared to the old data (0.55+0.14 

compared to 0.54+0.09). VT also a larger maximum value (0.31 to 1.30) when 

compared to the old data (0.29 to 0.90). The end-tidal CO2 (EtCO2) of the FP data 

showed no significant differences when compared to the previous data.  
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The VCO2 of the FP data showed a larger mean value of 229.73+50.87 

compared to 217327+56.77. However, the new FP data has a lower minimum and 

maximum values of 109 to 379 as compared to 144 to 405.9 in the old data.  These 

variations in data characteristics for both Kd and VCO2 are expected to produce less 

accurate predictions especially in data dependant models such as ANFIS and FCM. 

 

 
Figure 5.3 (a) Two-dimensional data distribution for the VCO2 model (increasing VCO2, MV, 

VT and EtCO2) 

 
Figure 5.3 (b) Three-dimensional data distribution for the VCO2 model. 

 

5.2.1 Relative Dead-space and Carbon-dioxide Production 

Models Validation Results for Faecal Peritonitis Patients 
 

The models used to validate the Kd and the VCO2 parameters for the FP 

patients are the ANFIS model proposed by Wang et al. (2010a), the interval type-2 

(IT2FLS) models and the fuzzy c-means (FCM) models described in Chapters 3 and 

4. The validation results for both the Kd and the VCO2 parameters are shown in Table 

5.3. For the Kd predictions, all models did not produce satisfactory results. The highest 

prediction accuracy with a mean squared error (MSE) of 44.93 and a correlation 

coefficient (R2) of 0.54, and it was attributed to the interval IT2FLS (243) model. The 

same model produced an MSE of 21.76 and R2 of 0.74 when applied to the previous 

data. All the other models produced an MSE of more than 50.00 and R2 less than 0.35. 

This outcome is possibly due to FP patients having significantly larger Pinsp values 
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and much lower PEEP values when compared to the previous data, resulting the 

output, Kd to be cut-off at around 35.  

 

For the VCO2 prediction, the IT2FLS (nPSO) model produced the highest 

accuracy with an MSE of 1563 and R2 of 0.75. However, this was also considerably 

less accurate when compared with the previous data set using the same model, which 

produced an MSE of 476.47 and R2 of 0.92. All other models for FP patients apart 

from the ANFIS model showed similar performance with R2 ranging from 0.71 to 

0.73. The plot for predicted Kd versus real Kd is shown in Figure 5.4, while the plot 

for predicted VCO2 versus real VCO2 is shown in Figure 5.5. 

 

Table 5.3 Validation results for Kd and VCO2 models 

Model 
Kd VCO2 

MSE MAE SD R2 MSE MAE SD R2 
ANFIS 58.96 20.29 7.51 0.29 2683.58 16.30 51.47 0.65 

IT2FLS (manual) 54.58 22.82 7.31 0.32 1781.83 14.91 42.18 0.73 
IT2FLS (nPSO) 59.68 22.99 7.73 0.30 1563.01 13.68 39.52 0.75 

IT2FLS 243 44.93 19.64 6.67 0.54 NA NA NA NA 
FCM 54.58 22.82 7.31 0.32 1832.99 13.96 42.26 0.72 

FCM (nPSO MSE) 66.00 19.04 7.36 0.30 1851.53 13.90 42.45 0.72 
FCM (nPSO R2) 67.62 18.94 7.25 0.34 2383.88 15.72 47.99 0.71 

NA: not available 

  
Figure 5.4 Kd prediction results for ANFIS, IT2FLS (243) and FCM (R2) models. Top: 

Predicted Kd vs real Kd. Botton: predicted Kd and target Kd  
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Figure 5.5 VCO2 prediction results for ANFIS, IT2FLS (243) and FCM (R2) models. Top: 

Predicted VCO2 vs real VCO2. Bottom: predicted VCO2 and target VCO2 

 

5.3 Validation of the SOPAVent Models on Faecal Peritonitis 

Patients  

 
As previously defined in Chapter 4, the arterial blood gases (ABG) which 

were selected for SOPAVent validation were taken between 30 and 60 minutes before 

ventilator setting changes were made, and between 30 and 180 minutes after ventilator 

setting changes were made. However, for this set of FP data, parameters were only 

recorded on an hourly basis instead of minute by minute intervals such as the previous 

data set used in Chapter 4. Due to the nature of this new FP data, there was no way to 

determine the exact time when each change in ventilator setting was made. Hence, it 

was decided that two ABGs which were separated between 60 minutes and 240 

minutes should be selected for SOPAVent validation. If there were noticeable 

differences in any one of the ventilator setting parameters at the start of the hour, it 

should happen at least 30 minutes after the first ABG, and at least 30 minutes prior the 

second ABG. If there was more than one change for a specific ventilator setting during 

the ABG intervals, the total sum of change will be considered. Figure 5.6 shows the 

ABG selection criteria for the new FP data.  
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Figure 5.6 ABG Selection 

 

A total of 28 datasets from 11 patients (7 males and 4 females) were 

obtained for the SOPAVent blood gas models validation. The patients have a mean 

height of 168 + 10.00cm and a mean weight of 72.27+18.07 kg (see Table 5.4). The 

summary of ABG validation data of FP patients for initial PaO2, initial PaCO2, initial 

pH, post-setting change PaO2, post setting change PaCO2 and post setting change pH 

is shown in Table 5.5. The summary of other input parameters used in the SOPAVent 

model is available in Appendix C1. The frailty index of each patient was also provided 

in the data set. One patient was noted as mildly frail, two patients were noted as 

vulnerable, two patients were noted as well, and one patient was noted as very fit. Five 

more patients had no records of their frailty index (see Table 5.6). 

 

Table 5.4 Demography of FP patients for SOPAVent validation 

Number of Patients Male Female Height (cm) Weight (Kg) 
11 7 4 168 + 10.00 72.27 + 18.07 

 

Table 5.5 Summary of validation ABG for FP patients 

ABG 
Parameter 

Initial Post-setting change 
Mean S.D. Minimum Maximum Mean S.D Minimum Maximum 

PaO2 15.62 4.06 9.01 26.10 14.68 3.56 9.53 24.80 
PaCO2 5.92 1.21 3.79 8.07 5.83 1.09 4.08 8.21 
pH 7.34 0.09 7.17 7.50 7.35 0.08 7.20 7.49 
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Table 5.6 Frailty index of FP patients for SOPAVent validation 

Patient ID Height Weight Gender Frailty Index 
1 1.81 80 Male Unrecorded 
2 1.74 67 Male Unrecorded 
3 1.63 72 Female Unrecorded 
4 1.63 55 Female Unrecorded 
5 1.68 120 Male Mildly frail 
6 1.83 83 Male Well  
7 1.65 55 Male Unrecorded 
8 1.84 90 Male Vulnerable 
9 1.51 67.5 Female Vulnerable 
10 1.69 63.5 Male Very fit 
11 1.57 50 Female Well  

 

5.3.1 SOPAVent Blood Gas Model Validation Results  
 

The FP patients’ record for ventilator settings, ventilator monitoring, 

previous blood gas analyses and physiological information were used to generate 

predictions of arterial blood gas (ABG), non-invasively using the SOPAVent model. 

The Kd and VCO2 subcomponents were predicted using the models described in 

Chapters 3 and 4, with their results shown in section 5.2.1 (Table 5.3). The shunt 

subcomponent was predicted using the secant tuning method described in a previous 

work by Wang et al., (2010a). Tables 5.7 and 5.8 show the prediction results of initial 

ABG and post-setting change ABG respectively. 

 

For the initial prediction of PaO2, all models showed a similar performance 

with a correlation coefficients (R2) equal to 1.00. This was also consistent with the 

previous patient data PaO2 prediction described in Chapter 4. For the initial prediction 

of PaCO2 the combination of interval type-2 fuzzy logic system (IT2FLS 243) and 

IT2FLS (nPSO) resulted in the highest accuracy with R2 of 0.83 (see Figure 5.7). The 

type-1 fuzzy c-means clustering (FCM nPSO) based models for Kd and VCO2 

provided satisfactory performances with R2 of 0.72. The IT2FLS (manual), IT2FLS 

(nPSO) and the type-1 FCM also provided similar performances with R2 equal to 0.67, 

although less accurate when compared to the previously mentioned models. The least 

accurate model was the ANFIS combination, with R2 equal to 0.60. In several models, 

the predictions which were outside of the confidence band were concentrated on the 

lower side of the -10% error line.  
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For the initial prediction of pH, all models showed good performances 

with R2 for all models exceeding 0.80. Most of the predictions were within the +1% 

confidence band, although slightly more concentrated on the upper side of the 0% 

error line. The best performing models were the IT2FLS (243) and IT2FLS (nPSO) 

combination, with R2 equal to 0.92 (see Figure 5.7), and the type-1 FCM (nPSO) for 

both Kd and VCO2 subcomponents, with R2 equal to 0.93. The IT2FLS (nPSO) 

combination and type-1 FCM combination, both produced R2 of 0.87, while the 

IT2FLS (manual) combination, produced an R2 of 0.83. The ANFIS combination 

produced an R2 of 0.84. The initial prediction of pH showed better accuracy for FP 

patients when compared to the previous patient data. The plots for initial PaO2, PaCO2 

and pH predictions for other SOPAVent models are available in Appendix C2. 

 

 

 

 
Figure 5.7 Initial ABG prediction for Kd (IT2FLS 243) and VCO2 (IT2FLS nPSO)   

 

For the post-setting change prediction of PaO2, all models showed similar 

performance with R2 of 0.54 to 0.55. This result is marginally better than the validation 

results of the previous patient data. However, for post-setting change PaCO2 
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prediction, most of the models for FP patient produced a lower prediction accuracy 

compared to the previous patient data.  The highest accuracy was produced by the 

combination of IT2FLS (243) model for the Kd subcomponent, and the IT2FLS 

(nPSO) model for the VCO2 subcomponent, with R2 equal to 0.65 (see Figure 5.8). 

The Kd subcomponent model was not able to predict Kd values with high accuracy 

due to deviation in data attributes of the FP patients when compared to the previous 

dataset.  

 

The performance of the post-setting change prediction of pH was 

consistent between the new FP data and the old patient data. The highest accuracy was 

produced by the IT2FLS (243) and IT2FLS (nPSO) model combination, with R2 equal 

to 0.82 (see Figure 5.8). All other models also produced R2 higher than 0.70, with most 

of the predictions within the +1% confidence band. The plot for post-setting change 

prediction PaO2, post-setting change prediction of PaCO2 and post-setting change 

prediction of pH for other SOPAVent models are available in Appendix C3. 
 

 

 

 
Figure 5.8 Post setting-change ABG prediction for Kd (IT2FLS 243) and VCO2 (IT2FLS 

nPSO)
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Table 5.7 SOPAVent results for initial ABG predictions for FP patients 

Sub-component Modelling Approach Initial PaO2 Initial PaCO2  Initial pH 
Kd VCO2 MSE MAE SD R2 MSE MAE SD R2 MSE MAE SD R2 

ANFIS ANFIS 2.02e-05 2.57e-02 4.48e-03 1.00 1.15 12.71 1.02 0.60 7.17e-02 1.06 5.58e-02 0.84 
IT2FLS  IT2FLS  1.13e-05 0.0165 3.31e-03 1.00 1.26 15.94 1.11 0.67 7.93 e-03 0.96 6.48e-02 0.83 

IT2FLS (nPSO) IT2FLS (nPSO) 7.13e-06 13.27e-02 2.72e-03 1.00 1.15 15.02 1.05 0.67 6.45 e-03 0.93 5.33e-03 0.87 
IT2FLS (243 rules) IT2FLS (nPSO) 1.25e-05 1.65e-02 3.57e-03 1.00 0.69 12.07 0.83 0.82 5.15e-03 0.80 4.82e-02 0.92 

T1 FCM T1 FCM 1.51e-05 1.90e-02 3.96e-03 1.00 0.99 13.04 0.98 0.67 5.28e-03 0.88 4.81e-02 0.87 
T1 FCM (MSE nPSO) T1 FCM (MSE nPSO) 1.55 2.04e-02 3.89e-03 1.00 0.95 11.36 0.84 0.72 6.46e-03 1.04 3.22e-02 0.93 

T1 FCM (R2 nPSO) T1 FCM (R2 nPSO) 1.52e-05 2.01e-02 3.84e-03 1.00 0.97 11.56 0.85 0.72 6.62e-03 1.05 3.21e-02 0.93 
 

Table 5.8 7 SOPAVent results for s post-setting change ABG predictions for FP patient 

Sub-component Modelling Approach Post-setting change PaO2 Post-setting change PaCO2 Post-setting change pH 
Kd VCO2 MSE MAE SD R2 MSE MAE SD R2 MSE MAE SD R2 

ANFIS ANFIS 10.4 16.05 3.07 0.54 1.42 15.78 1.2 R2 7.01e-03 1.02 7.67e-02 0.71 
IT2FLS  IT2FLS  10.25 15.85 3.06 0.55 1.33 16.76 1.17 0.33 6.47e-03 0.89 6.91e-02 0.74 

IT2FLS (nPSO) IT2FLS (nPSO) 10.29 15.84 3.07 0.54 1.20 15.81 1.11 0.50 5.05e-03 0.85 5.84e-02 0.78 
IT2FLS (243 rules) IT2FLS (nPSO) 10.34 15.96 3.07 0.54 0.95 14.56 0.99 0.51 4.76e-03 0.8 6.06e-02 0.82 

T1 FCM T1 FCM 10.23 15.81 3.06 0.55 1.22 15.22 1.13 0.65 4.34e-03 0.76 5.61e-02 0.77 
T1 FCM (MSE nPSO) T1 FCM (MSE nPSO) 10.27 15.92 3.05 0.55 1.32 14.74 1.13 0.43 6.37e-03 0.93 5.91e-02 0.75 

T1 FCM (R2 nPSO) T1 FCM (R2 nPSO) 10.24 15.9 3.05 0.55 1.32 14.74 1.13 0.40 6.40e-03 0.94 5.82 e-02 0.76 
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5.4 Modelling of Arterial Blood Gases using Ventilator Settings 

for Faecal Peritonitis Patients 
 

Predicting the arterial blood gases (ABG) using the SOPAVent model is 

non-invasive and automatic, however, it entails that all parameters associated with 

SOPAVent to be readily available, optimally with the data recorded on a minute-to-

minute basis. The parameters associated to SOPAVent included the initial blood gas 

analysis results, ventilator monitoring, ventilator settings and various other 

physiological information that may or may not be integrated in a universal data 

management system. The unavailability of one or more components can affect the 

prediction accuracy of the model. This was shown in the previous section; when data 

was only available on an hourly basis, there was a lack of information on when the 

actual ventilator settings-change happened, or, if there were more than one change 

happening within the same one-hour period. This resulted in the decline of prediction 

accuracy for some of the ABG parameters.  

 

It is understood that ventilator settings were changed by clinicians 

following the results obtained from ABG analyses, interpretations of ventilator 

monitoring sensors and the patient’s overall condition. A new approach for predicting 

ABG for FP patients is proposed by using the available hourly ventilator settings data, 

and the ABG data during blood sampling times, which are recorded every two to four 

hours. The ventilator settings used for modelling the ABG were the inspiratory 

pressure (Pinsp), the positive end expiratory pressure (PEEP), assisted spontaneous 

breathing (ASB) plus PEEP, the fraction of inspired oxygen (FiO2), the respiration rate 

(RR), and the inspiration time (Tin). The ABG parameters used were the PaO2, PaCO2 

and pH at blood gas times. The same data selection criteria for FP patients defined in 

section 5.2 were used together with the following criteria to obtain the ventilator 

settings and ABG data for the new models: 

 

i. ABG sampling times should be after ventilator settings record 

time;  
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ii. The difference between ventilator settings record time and ABG 

sampling time should not be less than 30 minutes but not larger 

than 180 minutes.  

 

A total of 286 data from 24 patients were obtained with the data 

summarized in Table 5.9. The distribution of data is shown in Figure 5.9. An adaptive 

neural-fuzzy inference system (ANFIS) model, and a fuzzy c-means clustering (FCM) 

model with the ‘new structure’ particle swarm optimization (nPSO) were used to 

generate the predictions of the ABG (PaO2, PaCO2 and pH), from parameters of 

ventilator settings data. The ANFIS model used grid partitioning with three 

membership functions (MFs) for each input, and optimized using the hybrid algorithm 

available in Matlab’s neuro-fuzzy designer toolbox. The FCM nPSO model was 

previously described in Chapter 4.   
 

Table 5.9 Ventilator settings and ABG data for FP patients 
Parameter Pinsp PEEP ASB+PEEP FIO2 RR Tin PaO2 PaO2 pH 

Mean 22.04 6.96 21.49 39.97 15.57 1.38 14.85 5.64 7.35 
S.D 5.25 2.01 5.01 8.85 2.69 0.23 3.45 1.07 0.08 

Minimum 10 5.00 10.00 29.00 10.00 1.00 7.33 3.68 7.15 
Maximum 36.00 10.00 32.00 71.00 22.00 1.70 26.70 8.92 7.55 

 

 
Figure 5.9 Ventilator setting and ABG data distribution 
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Table 5.10 shows the FCM clustering result for modelling the ABG using 

ventilator settings for the FP patients. A cluster number of 26 was selected PaO2, with 

an MSE of 7.20 and R2 of 0.63. A cluster number of 30 was selected PaCO2, with an 

MSE of 0.63 and R2 of 0.67, while a cluster number of 32 was selected pH, with an 

MSE 3.86e-3 and R2 of 0.63. Figure 5.10 shows the objective functions for selecting 

the cluster number for each ABG parameter. The FCM models were further optimized 

using the nPSO algorithm to improve its prediction accuracy. 
 

Table 5.10 Result for FCM clustering of FP patients 

ABG Parameter Cluster number MSE MAE R2 
PaO2 26 7.20 14.70 0.63 

PaCO2 30 0.63 11.40 0.67 
pH 32 3.86e-3 0.64 0.63 

 

 
Figure 5.10 Objective function for FCM clustering of FP patients 

 

5.4.1 Results of ABG Predictions using Ventilator Settings for 

ANFIS and FCM nPSO Based Models  

 
The ventilator settings Pinsp, PEEP, ASB plus PEEP, RR, FiO2 and TI 

were used as input parameters to the ANFIS and FCM nPSO models to predict the 

arterial blood gases of PaO2, PaCO2 and pH of FP patients. Table 5.11 shows the result 
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obtained for both models. For the ANFIS model, the prediction of PaO2 produced an 

MSE of 3.76 and R2 of 0.83, with most of the predictions occurring within the +10% 

confidence band. However, a few predictions on the lower-end range produced higher 

values than the target PaO2, while a few other predictions on the higher-end range 

produced predictions which were lower than the target PaO2. The prediction of PaCO2 

produced an MSE of 0.24, with R2 of 0.89, and with most predictions happening within 

the +10% confidence band. A few predictions were lower than the target value, mostly 

those within the 7 kPa to 9kPa range. For the pH parameter, the ANFIS model 

produced an MSE of 1.28e-3 with R2 of 0.89. The majority of predictions were within 

the +1% confidence band, with only several predictions producing pH which were 

slightly higher than target values of pH between 7.2 and 7.3. The prediction plots for 

the ANFIS model are shown in Figure 5.11. 

 

The FCM nPSO model PaO2 predictions produced an MSE of 3.62 and R2 

of 0.84. However, the predictions were slightly less concentrated within the +10% 

confidence band when compared to the ANFIS model. The PaCO2 prediction 

produced an MSE of 0.33 and R2 of 0.59, with most predictions within the +10% 

confidence band. Some predictions of the higher-end range were slightly less than the 

target values, while some of the predictions of the lower-end range were slightly larger 

than the target values, although most predictions of both ranges were still within the 

tolerance band. This can also be seen with pH predictions in Figure 5.12, where some 

of the higher-end predictions were slightly lower than target values and some of the 

lower-end predictions were slightly larger than target values. The prediction plots for 

the FCM nPSO model are shown in Figure 5.12. Overall, the FCM nPSO based model 

for PaO2, PaCO2 and pH showed a marginally reduced prediction accuracy when 

compared to the ANFIS model. However, both models provided satisfactory 

performance in terms of error and correlation. 

 

Table 5.11. ANFIS and FCM nPSO ABG prediction results for FP patients 

ABG Parameter 
ANFIS  FCM nPSO  

MSE MAE S.D R2 MSE MAE S.D R2 
PaO2 3.76 8.97 1.94 0.83 3.62 10.14 1.91 0.84 

PaCO2 0.24 5.18 0.49 0.89 0.33 8.46 0.57 0.89 
pH 1.28e-3 0.29 3.58e-2 0.89 2.06e-3 0.45 4.55e-2 0.85 
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Figure 5.11 ANFIS prediction plots for FP data.  

 

            

 

 
Figure 5.12 FCM nPSO prediction plots for FP data 
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5.5 Summary 
 

The approaches detailed in Chapters 3 and 4 for modelling the relative 

dead-space (Kd) and carbon-dioxide production (VCO2), were used on newly obtained 

data for patients with faecal peritonitis (FP). The new FP data however, were only 

available on an hourly basis instead of minute-by-minute basis such in the previous 

dataset used in Chapters 3 and 4. The new FP patients also led to variations in data 

characteristics which caused the prediction of Kd to be less accurate when compared 

to the previous dataset.  

 

The Kd and VCO2 models were then integrated into the SOPAVent blood 

gas model to predict blood gas parameters PaO2, PaCO2 and pH for FP patients. The 

prediction results of the initial PaCO2, initial pH and post-setting change pH were 

satisfactory; either performing equal to the previous dataset or with improvements 

noted in accuracy and error. However, the post-setting change prediction of PaO2, and 

the post-setting change prediction of PaCO2 did not show improvements accuracies 

due to the Kd model not being able to provide satisfactory outcomes. SOPAVent 

provided the best performance when Kd was modelled IT2FLS (243) and VCO2 was 

modelled using IT2FLS (nPSO), which agrees with the findings obtained in Chapter 

4.  

 

An innovative approach for prediction of ABG using ventilator setting 

parameters was also proposed to model the arterial blood gases. It has the advantage 

of significantly reducing the number of parameters required for modelling the blood 

gases and provide increased simplicity when compared to the SOPAVent model.  The 

models developed using this approach were ANFIS and the FCM nPSO model.  Both 

models produced satisfactory predictions with good correlation and minimal error. 

However, the models were not validated by any additional data set, thus its 

performance was not verified on other patient groups.  
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Chapter 6 

 

Electrical Impedance Tomography for 

Monitoring of the Lungs 

 

6.1 The Sheffield MK3.5 Electrical Impedance Tomography 

System 

 
The Sheffield MK3.5 Electrical Impedance Tomography (EIT) is an 8-

electrode, 2D, EIT modular system, which is the final development of the Sheffield 

MK EIT series (see Table 6.1), first developed by Brown and Seagar (1987). The 

Sheffield MK3.5 EIT consists of a power supply module, a data acquisition module, 

and a computer set (see Figure 6.1). The user interface for the Sheffield MK3.5 EIT is 

shown in Figure 6.2. The data acquisition module consists of a central processor 

(motherboard) unit, 8 data acquisition (DAQ) cards, 8 drive-measure electrodes and 1 

ground electrode. Each DAQ consists of a digital signal processing (DSP) chip, a 12-

bit analogue to digital converter (ADC), a 12-bit digital to analogue converter (DAC) 

and signal conditioning circuitry (see Figure 6.3). The data acquisition software was 

developed in the C++ environment, while the data processing and the image 

reconstruction software were developed in Matlab (Wilson et. al, 2001). The MK3. 

EIT uses the four-electrode adjacent drive-and-measure configuration, which drives a 

282 μA peak-to-peak current, at 30 selectable frequencies ranging from 2 kHz to 1.6 

MHz. Since each DAQ card is a stand-alone unit, the system measures the voltage 

from five adjacent electrode pairs simultaneously. Eight successive current drives are 

required to complete one frame, producing 40 independent measurements. The system 

operates at a rate of 25 frames per second.  
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Table 6.1 The Sheffield MK EIT systems  

Model Number of electrodes Drive frequencies Year 
MK1 16 50 kHz 1987 
MK2 16 20 kHz 1990 
MK3 16 9.6 kHz to 1.2 MHz 1993 

MK3.5 8 2 kHz to 1.6 MHz 2000 
 

 
Figure 6.1. The Sheffield MK3.5 EIT system (Mohamad-Samuri et.al, 2011) 

 

 
Figure 6.2. User interface for the MK3.5 EIT system applied on a healthy volunteer. 

 

  
Figure 6.3. DAQ block diagram and schematics (Adapted from Wilson et. al, 2001) 
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6.2 Solving the Forward and Inverse Problems  

  
To find the conductivity distribution of a conducive object, the forward 

and inverse problem of EIT must be solved. The forward problem calculates the 

surface potential of the electrode (V), as a function of the drive current (I), and the 

conductivity distribution (σ). An elliptical partial differential equation (PDE) defines 

the mesh using Ohm’s law. The boundary dataset (I, V) determines the Neuman and 

Dirichlet boundary conditions (γ), creating a non-linear equation (Cheney et. al, 

1999): 

 

𝑉𝑉 = γ𝐹𝐹(𝜎𝜎)𝐼𝐼  (6.1) 

 With γ as the complex admittivity, 

 

The change in conductivity, x = σ2 − σ1, is the difference in conductivity 

distribution, between two data frames at two different time, t1 and t2. The change in 

conductivity, x corresponds to the change in surface potential, z = v2 – v1, between two 

intervals, t1 and t2. The Jacobian sensitivity matrix, H, linearizes the equation for minor 

changes in background conductivity, σ0. The element of H, Hij correlates a small 

change in the ith surface potential to a small change in the conductivity of the jth 

element (Graham and Adler, 2007).  

 

𝑧𝑧 = 𝐻𝐻𝐻𝐻 + 𝑛𝑛 , with n as the measurement system noise (6.2) 

Hij =  
δ𝑧𝑧𝑖𝑖
δx𝑗𝑗
�
𝜎𝜎0

  (6.3) 

 

The inverse problem leads to the change of conductivity, x from the real 

difference of measurements between data frames. Several solutions exist for solving 

the inverse problem, such as the back-projection method, the Landweber iteration, the 

linear Tikhonov regularized Gauss-Newton algorithm, the non-linear Tikhonov 

regularized Gauss-Newton algorithm, the linear conjugate gradient algorithm, the 

preconditioned conjugate gradient (PCG) solver, the gradient projection for sparse 

reconstruction (GPSR) solver and Barzilai–Borwein GPSR. Online applications for 
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generating the finite element mesh and solving the inverse problem are also available 

in the EIDORS and NETGEN platforms (Jahaverian et al., 2016).    

 

6.2.1 Absolute Resistivity of the Lungs using Electrical 

Impedance Tomography  

 
The absolute EIT represents the lung impedance as the absolute resistivity 

instead of the difference in resistivity at two separate times. Absolute EIT is achieved 

by comparing the measured EIT data to a set of computed data. The set of computed 

data can be generated using a 3D finite element analysis from Computed Tomography 

(CT) scans or Magnetic Resonance Imaging (MRI) scans of the thorax, where each 

type of tissue is assigned a specific resistivity value ranging from 1Ωm to 80Ωm.  The 

model is scaled to include the eccentricity value, ‘e’, which is the ratio of the 

measurements of the circumference of the chest to the measurement of the depth of 

the chest of subjects (Brown et. al, 2007). The density of the lung (𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) is defined 

as follows:   

𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

(6.4) 

 

With 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 as the lung weight, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 is the volume of air, and 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the volume of 

lung tissue. By substituting  𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 with filling factor (FF), and substituting 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 with 

the density of lung tissue (𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), equation 6.4 becomes: 

 

𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐹𝐹𝐹𝐹+1

 , and (6.5) 

𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 1
 (6.6) 

 

The lung weight, 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 can be calculated using the subject’s height as follows (Samuri 

et. al, 2011): 
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Male lung weight = 800 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡3

15000
 (6.7) 

Female lung weight = 850 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡3

20000
 (6.8) 

 

A model of the human lungs to calculate the absolute lung resistivity (AbR) was 

developed by Nopp et al., (1997).  

 

𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3.12 − (3.24)[ln(𝐴𝐴𝐴𝐴𝐴𝐴)]0.3 + (0.81)[ln(𝐴𝐴𝐴𝐴𝐴𝐴)]0.6 (6.9) 

𝐴𝐴𝐴𝐴𝐴𝐴 = 1.74 + (194.3)𝑒𝑒−24.69𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 40.04    (6.10) 

𝜎𝜎𝐿𝐿 = 𝐴𝐴𝐴𝐴𝐴𝐴−1𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (6.11) 

With 𝜎𝜎𝐿𝐿 being the lung conductivity. 

 

6.3 Development of an Electrical Impedance Tomography 

Systems Hardware  

 
This section of the chapter will focus on the design and development of a 

compact EIT measurement system. The EIT system comes with an array of 16 

electrodes to be used either as an 8-electrode 2D EIT system or a two-layer 3D EIT 

system, where each layer consists of 8 electrodes, based on the system developed by 

Khaligi et al., (2014). The system drives the electrical current and measures the surface 

potentials using a combination of analogue and digital circuitry. The current drive 

circuitry comprises of a voltage-controlled oscillator (VCO), filters, and a voltage to 

current converter (VCC). The voltage measurement circuitry consists of a pulse 

generator, a voltage demodulator and an analogue to digital converter (ADC). The 

switching mechanism for the drive-and-measure operation is done via a 

microcontroller and a multiplexing circuitry.  A computer is connected to the 

microcontroller for signalling purpose, handling and processing of measured data (see 

Figure 6.4). The EIT system should be able to drive a small alternating current with a 

frequency ranging between anywhere 10k Hz and 50 kHz.  
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As the EIT system will be used for pulmonary application, the drive-and-

measure mechanism must have adequate frame rate to accurately represent the 

dynamic process of inspiration and expiration. The respiratory rate during normal 

breathing for a healthy adult can be anywhere from 12 to 18 breaths per minute, while 

it can be much higher for children (see Table 6.2).  

 

A complete cycle of the EIT data acquisition will represent a single frame. 

In the single layer, 8-electrode MK3.5 EIT system, 25 frames of data are taken for 

each second. With 40 data measured in each frame, this produced 25x40 or 1000 

measurements for each second. A normal adult with a respiratory rate of 15 breaths 

per minute, will take 4 seconds to complete each breath. Using the MK3.5 EIT system, 

this will produce 4x25 or 100 frames per breath. For the new 3D EIT system, a 

sampling rate of 25 frames per second is proposed to match the specification of the 

MK3.5 EIT system. The new system will have 16 electrodes (in two 8-electrode 

layers), thus producing 208 measurements for each frame. For a 25-frames per second 

measurement, the system should be able to sample 5200 data per second, or 192.31μs 

per measurement. Times delays and conversion times from analogue and digital 

devices are accounted for calculating the intervals required for the switching 

mechanism to ensure the sampling width meets the criteria defined. Table 6.3 shows 

the amount of data measured for each breath for different respiration rates. 

 
Table 6.2 Normal respiratory rate for healthy individuals. (Fleming et al., 2013 and Rodriguez-

Molinero et.al, 2013) 
Age Breath per minute 

Infants 30-60 
Toddlers and pre-schoolers 20-40 

School age 17-22 
Adults 12-18 
Elderly 15-25 

 
Table 6.3 Number of data measured for each breath for different respiration rate 

 

Breath per minute Breath length (s) Frames per breath  Data per breath 
10 6 150 31200 
20 3 75 15600 
30 2 50 10400 
40 1.5 37.5 7800 
50 1.2 30 6240 
60 1 25 5200 
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Figure 6.4. Block diagram of the EIT system (adapted from Khaligi et. al, 2014) 

 

Figure 6.5 shows the overall schematics of the proposed 3D EIT system. 

The current source for the EIT is a sinusoidal waveform generated from the voltage-

controlled oscillator (VCO), which is then amplified and filtered through a 

Butterworth band-pass filter. The resulting voltage is converted into current using a 

voltage to current converter (VCC). The generated alternating current will be used to 

drive the electrodes pairs, with the drive-and-measure sequencing performed by 

switching the channels of several multiplexers. The control signals for the switching 

of multiplexers are sent from the microcontroller. The surface potentials are then 

measured by the adjacent pairs of electrodes and are converted from analogue to digital 

values using the analogue to digital converter (ADC). The digitised measurements are 

then sent to the microcontroller to be transmitted to the computer for processing.   
 

Figure 6.6 shows the VCO with the XR-2206 chip used to generate the 

waveform which is amplified by the AD844 operational amplifier. The output of the 

VCO, point A on the circuit is connected to the input of the band-pass filter in Figure 

6.7. The Butterworth band-pass filter removes noise and limits the frequency of the 

EIT to between 10 kHz and 250 kHz. A sample output of the band-pass filter is shown 

in Figure 6.8  

 

VCO Filters VCC 

Pulse generator 

Demodulator 

ADC 

Multiplexer circuitry 

Microcontroller 

Measured 
voltage 

 
 
 

12 bits 

Control signal 

Measured EIT data 

Computer 
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Figure 6.5. The overall schematics for the EIT System 
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Figure 6.6. Schematic for the voltage controlled oscillator (VCO) 

 

 
Figure 6.7. Schematic for the Butterworth band-pass filter 
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Figure 6.8. Sample output of the band-pass filter  

 

The output of the band-pass filter, point B, on the circuit in Figure 6.7 is 

connected to the input of the voltage to current converter (VCC) (see Figure 6.9). VCC 

converts the filtered voltage signal to current, using the triple-operational amplifier 

form. The system has a maximum allowable load of 12 kΩ at 10 kHz and a maximum 

allowable load of 8 kΩ at 250 Hz (Khaligi et. al, 2014). The load current, IL is used to 

drive the electrode pairs and are calculated as follows: 

 

𝐼𝐼𝐿𝐿 =  
� 𝑅𝑅4
𝑅𝑅3 + 𝑅𝑅4

� 𝑉𝑉𝑖𝑖

� 𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

− 𝑅𝑅3
𝑅𝑅3 + 𝑅𝑅4

�𝑅𝑅𝐿𝐿 + 𝑅𝑅1.𝑅𝑅5
𝑅𝑅1 + 𝑅𝑅2

 
 

(6.12) 

 

𝑖𝑖𝑖𝑖 
𝑅𝑅11

𝑅𝑅1 + 𝑅𝑅2
−

𝑅𝑅3
𝑅𝑅3 + 𝑅𝑅4

= 0, 𝑜𝑜𝑜𝑜   𝑅𝑅1.𝑅𝑅4 = 𝑅𝑅2.𝑅𝑅3 
(6.13) 

 

𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐼𝐼𝐿𝐿 =
𝑅𝑅4

𝑅𝑅3.𝑅𝑅5
.𝑉𝑉𝑖𝑖 

(6.14) 

 

The output of the band-pass filter is also connected to the input of a pulse 

generator (see Figure 6.10), to produce two train pulses. The first train pulse is 

generated by detecting the positive part of the drive current. The signal can be viewed 

from point DB on the circuit in Figure 6.10. The second train pulse is generated by 

detecting the zero point of the drive current, and the signal can be observed from point 

E on the circuit. The pulse trains are used to demodulate the surface potentials 

measured from the electrode pairs. The train pulses are shown in Figure 6.11. 
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Figure 6.9. Schematic for the voltage to current converter (VCC) 

 

 
Figure 6.10. Schematic for the pulse generator 

Vi 
IL 
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Figure 6.11. Positive peak detection and zero detection train pulses at 50 Hz 

 

The pulse trains from the pulse generator circuit are connected to the 

inputs of the demodulator circuit (see Figure 6.12). The positive-detector pulse train, 

point DB, is connected to the input of the first opto-coupler, U21.  The zero-detector 

pulse train, point E, is connected to the input of the second opto-coupler, U22. The 

transistor in the opto-coupler acts as a switch that turns on whenever a pulse is present. 

The output of the opto-couplers is inverted and connected to an AND gate, U15 and 

the signal is sent to the microcontroller. The demodulator circuit also receives signals 

from the electrode pairs at points EL1 and EL2 on the circuit. The inputs to the 

instrumentation amplifier AD625, U14, are the demodulated electrode voltages, and 

the output of U14 represents the difference of those potentials.   

 

 
Figure 6.12 Schematic for the demodulator 
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The demodulated voltages are then converted from analogue values to 

digital values using the analogue to digital converter (ADC) chip, which generates 12 

bits of digital signal (DB0 to DB11) (see Figure 6.13). The resulting digital voltages 

are the EIT measurements and these measurements are sent to the microcontroller for 

processing. The ADC has a conversion time of 10µs (100k samples per second). One 

bit is used for the sign, and the remaining 11 bits of the ADC can detect a change of 

2.44mV for a +5V reference voltage or a 4.88mV for a +10V reference voltage.  

 

 
Figure 6.13 Schematic of the analogue to digital converter (ADC) 

 

The switching of electrode pairs for both drive current and voltage 

measurements are performed by a multiplexing circuit shown in Figure 6.14. The 

control signals for the switching process are sent from the microcontroller. Four units 

of 16-channels analogue multiplexers are used, with two of the multiplexers used for 

selecting the electrodes for drive current and sink (U24 and U25), and two multiplexers 

used for selecting the measurement electrodes (U26 and U27).  Channels 1 to 8 on the 

multiplexers U24 and U26 are connected to the electrodes 1 to 8 (E11 to E18) on the 

first plane of two planes, and channels 9 to 16 on the multiplexers are connected to 

electrodes 9 to 16 (E21 to E28) on the second plane. The connection of electrodes to 
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the multiplexer U25 and multiplexer U27 are shifted by 1 bit, i.e. the first electrode is 

connected to the 2nd channel on the multiplexers. For a 16-electrode system, 4 address 

lines are needed to select the channels on the multiplexers.  

 

 
Figure 6.14 Schematic for the multiplexing circuit 

 

The address lines, D0 to D3, are connected from the microcontroller to the 

inputs of the edge-triggered flip flops (U28 and U29 in Figure 6.14). On the positive 

transition of the clock signal, the outputs of the edge-triggered flip flops are set to the 

logic states of the inputs of the flip flops. When the clock signal, CLK1 is ‘low’, the 

outputs of the flip flops are latched to the previous logic state. So, while the flip flop 

that is used for the drive current, U28, is latched at logic 0001, current will be injected 

through electrode 1 and electrode 2 will act ask sink. The clock signal on U28 remains 

‘low’, while the clock signal on U29, CLK2 switches between ‘high’ and ‘low’ until 

all voltage measurements from adjacent electrode pairs are completed. Next, the clock 

signal for CLK1 is latched to the next logic state, and the process is repeated until all 

the drive electrodes pairs have been utilised.  

 

CB 

CA 



109 
 

Figure 6.15 shows the switching sequence of the current drive electrode 

pairs and voltage measurement electrode pairs. The switching function on the 

multiplexer circuit is controlled by an Arduino Mega 2560 microcontroller. The 

microcontroller also receives signals from the demodulator circuit and the 12-bit 

digital output voltages from the analogue to digital converter. Table 6.4 shows the pins 

assignment of the microcontroller.  

 

 
Figure 6.15. Switching of the current drive electrode pairs and the voltage measurement 

electrode pairs 

 

The printed circuit board (PCB) of the 3D EIT system was designed using 

the Proteus Design Suite. Figure 6.16 shows the bottom copper and top silk for the 

PCB, and Figure 6.17 shows the completed PCB. Most of the integrated circuits and 

analogue/digital devices were available in the library of Proteus. However, some 

devices which were not available were manually created. The following design rules 

were applied to the PCB: 

 

• Decoupling capacitors were included for all analogue and digital ICs. 

• The trace for 5V power supply should be at least 0.02” or 0.51mm wide, 

and trace for 12V power supply should be at least 0.04” or 1.27mm wide. 

• Sharp angles for traces were avoided wherever possible. 

• Ensure that all junctions have no more than 3 nodes. 

 

CLK1 

CLK2 

D3 

D2 

D1 

D0 

Drive 
electrodes 

Measurement 
electrodes 1,2      2,3       3,4        4,5        5,6        6,7      7,8        8,9       9,10    10,1 1   11,12   12,13   13,14    14,15   15,16     16,1 

1,2 
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Table 6.4. Pin assignment for the Arduino microcontroller 

Circuit Assigned 
function 

Pin on PCB 
board connecter 

Microcontroller pin assignment 

Port name  Digital I/O Pin number  

ADC 

DB0 3 PA0 22 78 
DB1 4 PA1 23 77 
DB2 5 PA2 24 76 
DB3 6 PA3 25 75 
DB4 7 PA4 26 74 
DB5 8 PA5 27 73 
DB6 9 PA6 28 72 
DB7 10 PA7 29 71 
DB8 18 PC0 37 53 
DB9 17 PC1 36 54 

DB10 16 PC2 35 55 
DB11 15 PC3 34 56 
R/C 14 PC4 33 57 
STS 13 PC5 32 58 

Demodulator AND gate 12 PC6 31 59 

Multiplexer 

D0 30 PL0 49 35 
D1 29 PL1 48 36 
D2 28 PL2 47 37 
D3 27 PL3 46 38 
EN 26 PL4 45 39 

CLK1 25 PL5 44 40 
CLK2 24 PL6 43 41 

 

        
Figure 6.16. Bottom copper of printed circuit board and top silk for printed circuit 

board  

 

 

 

‘The author would like to acknowledge Mr Paul Eastwood for his help in developing 

the EIT system hardware’  
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Figure 6.17. Printed circuit board of the 3D EIT system 

 

6.4  Simulation of Three-dimensional Images of the Lungs from 

Magnetic Resonance and Computed Tomography Images  

 

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) 

are medical imaging technique commonly used in hospitals to view tissues in a two-

dimensional (2D), cross sectional plane. Digital Imaging and Communications in 

Medicine (DICOM) is the standardized protocol for handling medical images such 

MRI and CT. This Section will discuss an approach to generate 3D images of the lung 

from 2D DICOM images of the thorax using Matlab®. A set of 15 MRI slices of the 

human thorax is shown in Figure 6.19. This set of images is in DICOM format with a 

256x256 pixel resolution. Other resolutions are also available, depending on 

specifications of the MRI equipment.  

 

Due to the porosity of the lung, the tissues of the lung are lower in density 

compared to the bones, muscles or skin. This difference in density causes the image 

of the lung to have a distinctive contrast from surrounding tissues in the MRI or CT 
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image. To generate a 3D representation of the lung, firstly the lung tissues are isolated 

from other tissues by selecting an appropriate threshold range in the greyscale images. 

Once a threshold range is selected, the greyscale images are converted into a binary 

image to create a pure ‘black and white’ image. Noise is filtered by selecting only the 

largest areas in the image and omitting the rest. Finally, 3D rendering is performed by 

stacking the DICOM slices using Matlab® iso-surface function.  

 

The flow of the 3D rendering process is shown in Figure 6.18. Two sets 

of DICOM images are examined. The first set of DICOM images consist of 15 MRI 

slices of 256x256 pixel images (Figure 6.19.). The second set of DICOM images 

consist of 26 CT slices of 512x512 pixel images (see Figure 6.20.). The DICOM 

images are retrospective from the Sheffield Royal Hallamshire Hospital and were 

taken from healthy volunteers. 

 

 
Figure 6.18. Simulation of 3D pulmonary image from MRI slices 

 

Set the threshold for lung tissue 

 

Convert greyscale image to binary image 

 

Generate 3D surface 

 

End 

Determine the greyscale data range for lung tissue 

Start 
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Figure 6.19 15 MRI slices of the thorax 

 

 

Figure 6.20. 26 CT slices of the thorax 
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The threshold range for lung tissue is then determined by selecting the 

minimum and maximum values from the greyscale images which represents lung 

tissues. Table 6.5 shows the data range in greyscale, the minimum and the maximum 

values used to identify lung tissues. Images with updated threshold values are then 

converted into binary images. Pixel areas of the images which are contained within 

the greyscale threshold range are converted to ‘1’ (white), while pixel areas which 

were outside of the threshold range are converted to ‘0’ (black). The largest areas are 

selected to remove unrelated tissues and the final images are converted back to 

greyscale to retain original features of the images (see Figures 6.21 and 6.22). 

Connecting points on 2D slices are then merged to create a 3D surface image as seen 

in Figures 6.23 and 6.24. 
 

Table 6.5. Lung tissue threshold ranges 

DICOM type Number of 
images 

Image 
resolution 

Greyscale 
range 

Lung tissue 
Minimum Maximum 

MRI 15 256x256 0-4575 25 630 
CT 26 512x512 0-2895 13 959 

         

      

             
Figure 6.21 MRI sample image. (With applied threshold (top left), image after binary 

conversion (top right), binary image for selection of largest area (bottom left) and filtered 

image in greyscale (bottom right)) 
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Figure 6.22 CT sample image.  (CT original image (top left), with applied threshold 

(top right), image after binary conversion, (bottom left), and binary image for selection 

of largest area (bottom right)). 

 

 
Figure 6.23. Generated 3D lung image from MRI slices 

  

 
Figure 6.24. Generated 3D lung image from CT slices 



116 
 

As seen from Figures 6.23 and 6.24, the integrity of 3D images is 

dependent on the resolution of the original DICOM slices and the number of slices 

available. The set of 15 images with a resolution of 256x256 produced a less precise 

3D representation of the lungs when compared to the set of 26 images with a resolution 

of 512x512. The lower pixel quantity also produced larger artefacts as the greyscale 

data of lungs were undistinguishable from some surrounding tissues since the pixels 

values for lungs and some surrounding tissues had similar greyscale values. 

 

6.4.1 Lung Volume Estimation from Magnetic Resonance and 

Computed Tomography Images 

 
From the DICOM metadata file, useful information was extracted to 

estimate the lung volume. Both sets of MRI and CT images were used to estimate the 

total lung volume. Table 6.6 shows the information obtained from the metadata for set 

1 (15 MRI slices) and set 2 (26 CT slices). Lung volume was estimated based on the 

area of lungs obtained from the binary images, denoted as the region of interest (ROI), 

multiplied by the number of slices and slice thickness. Figure 6.25 shows the flowchart 

for the lung volume estimation. It is also worth noting that the respiration phase 

(inspiration or expiration), the volume at the end of inspiration (maximum inspiration 

or tidal breathing), or if the volunteers were holding their breath when these images 

were taken were unknown, and the resulting volume can only be verified with a 

volume measuring instrument such as a spirometer (Mohamad-Samuri et al., 2011). 

An estimation of the area of ROI in the binary image of the ith MRI or CT slice, Yi, can 

be determined by its pixel equivalent area Xi, multiplied by the calibration factor, Q, 

which is the ratio of reconstruction area (mm2) to reconstruction area in pixels. The 

estimated ith slice volume, Vi is determined by the area of slice, Yi multiplied by the 

slice thickness, W. The estimated total volume, VT is the sum of all slice volumes, n 

 

Yn = X*Q,  (6.15) 

Q = reconstruction area in mm2/reconstruction area in pixel,  (6.16) 

Vi = Yi * W  (6.17) 

VT =  ∑ 𝑉𝑉𝑖𝑖𝑛𝑛
𝑖𝑖=1  (6.18) 
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Table 6.6. Information on image metadata 

Information Set 1 (MRI Images) Set 2 (CT Images) 
Slice thickness, H  6mm 6mm 
Reconstructed image diameter 465mm 465mm 
Reconstruction area in mm2 169,822.7mm2 169,822.7mm2 
Reconstruction in pixel 256x256 = 65536 512x512 = 262,144 
Calibration factor, Q 2.591 0.6478 
Length of thorax on MRI 6mm x 15 slices = 90mm 6mm x 26 slices = 156mm 

 

 
Figure 6.25. Flowchart for lung volume estimation from metadata information 
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The ROI in pixel area, X was determined by finding the amount of ‘on’ 

pixels in a binary image. The binary image shown in Figure 6.21, is the 7th slice taken 

from the MRI set, and has a total of 13907 ‘on’ pixels representing the lung tissue, 

seen as white portions in the image. The estimated area, Y is determined by multiplying 

X with the calibration factor, Q = 2.591. This calibration factor will vary depending 

on the resolution of the image and the actual reconstruction diameter of the MRI 

machine. By multiplying the pixel area with the calibration factor, this image has an 

estimated area, Y of 36033mm2.  The estimated slice volume is Y multiplied by the 

slice thickness, H = 6mm, therefore producing the slice volume, VS equivalent to 

216198mm3. By finding the sum of all slice volumes, an estimate of the total lung 

volume, VT was made. The estimated total lung volume, VT for the images contained 

in the MRI set was therefore 2579880mm3 or 2579.88ml. The total estimated lung 

length shown in the MRI was 90mm. Figure 6.26 shows the relationship between the 

estimated lung area in mm2 and slice number. The lung area appears to increase with 

the number of slices and shows a reduction in the estimated area between the 7th and 

10th slice.  

 

     
Figure 6.26 Estimated lung area and MRI slice number 

 

It is worth noting that the estimated total volume is dependent on whether 

the MRI imaging captured the entire region of the thorax. If this is not the case, an 

extrapolation of the estimated lung was made to ensure all areas of the lung were 

accounted for. Linear regression was performed (see Figure 6.27) to determine the 

relationship between the lung area of each slice and the distance of each slice from the 

first MRI slice. The first equation included all areas up to the largest lung area, i.e. 

positive slope (slices 1 to 6), and the second equation included the areas starting from 

the largest lung area to the last slice, i.e. negative slope (slices 6 to 15).  
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A = 761.2x + 15381, (R² = 0.98) (6.19) 

A = -334.7x + 39674, (R² = 0.69)  (6.20) 

 

  
Figure 6.27. Linear Regression. (Slice 1 to 6 (left), and slice 6 to 15 (right)). 

 

Equations 6.19 and 6.20 were used to extrapolate the lung area outside the 

MRI region until the area produced approaches zero or starts to become a negative 

value. The total lung volume can now be determined by adding the lung volume from 

15 MRI slices and the extrapolated lung volume, which equals 3,273.43ml. This 

approach produced a total lung length of 168mm. A 2nd order polynomial regression 

analysis was also done resulting in the following equation (refer Figure 6.28): 

 

A=-12.10x2 + 1034x, (R2 = 0.93) (6.21) 

  

Equation 6.21 was used to extrapolate the lung area outside the 15 MRI 

slice with an estimated total lung volume of 3,150.18ml and a lung length of 132mm. 

Table 6.7 shows the comparison of lung volumes for 15 MRI slices from metadata 

information, linear regression and 2nd order regression. 

 

 
Figure 6.28. 2nd order polynomial regression for set of MRI images 
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Table 6.7 Comparison of lung volume estimation for MRI set images 

Lung volume estimation method Lung length (mm) Lung volume (ml) 

15 MRI slices only 90 2588 

15 MRI slices + linear regression 168 3273.43 

15 MRI slices + 2nd order regression 132 3150.18 

 

The estimated total lung volume from 26 CT slices was 2220.97ml and the 

estimated lung length is 156mm. Figure 6.29 shows the relationship between the slice 

area in mm2 and the slice number. The lung area increased from the first slice until the 

7th slice before dipping slowly until the last slice. Linear regression analyses were 

carried out for the positive and for the negative slopes (see Figure 6.30) producing the 

following equations: 

 

A= 451.2x + 1404.2, (R2=0.78) (6.22) 

A = -88.93x + 15899, (R2 = 0.97)  (6.23) 

       
Figure 6.29 Estimated lung area of CT image. (Slice number (left) and distance (right)) 

 

 
Figure 6.30. Linear regression of CT images. (Positive slope (left), negative slope (right)) 
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Extrapolation of equation 6.23 produced a value that is less than zero 

(negative value), and thus was not accounted for. The extrapolated lung volume was 

added to the estimated lung volume from the CT images. This produced a total lung 

volume of 2223.84ml and total lung length of 180mm. A second order polynomial 

regression analysis was also done to estimate the total lung volume (see Figure 6.31).  

 

A= -1.65x2 + 229.04x +5707.4, (R2 = 0.60) (6.24) 

  

 
Figure 6.31. 2nd order polynomial regression analysis for set of CT images 

 

By adding the extrapolated lung volumes from equation (6.24) to the lung 

volume calculated using CT slices only, the total lung volume was estimated at 

1891.55ml and the total lung length of 216mm. Table 6.8 shows the comparison for 

the estimation of the total lung volume for the 26 CT slices from the metadata 

information, the linear regression equation and the 2nd order regression equation. 

 

Table 6.8 Comparison of lung volume estimation for CT set images 

Lung Volume Estimation Lung Length (mm) Lung volume (ml) 

26 MRI Slices Only 156 2220.97 

26 MRI slices & linear regression 216 2223.84 

26 MRI slices & 2nd order regression 216 1891.55 
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6.5 Summary 

 

The hardware for a 16-electrode Electrical Impedance Tomography (EIT) 

system was proposed in this chapter. The system was able to generate a small 

oscillating signal with a frequency range between 10 kHz and 250 kHz which will be 

sufficient for EIT measurement of the lungs. Once measurements on the human subject 

are completed, the resulting measured voltages and resistivity can then be compared 

to the MK3.5 EIT system for validation. A suitable image reconstruction algorithm 

must also be decided to represent the EIT data into 2D and 3D images of the lungs 

during the respiration process. Also presented in this chapter is a simple 3D imaging 

of the lungs using image processing from MRI and CT images of the thorax. An 

approach to calculate the lung volume from the MRI and CT images was also 

proposed. The images used were retrospective and should in future be validated with 

actual volume measurements. 
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Chapter 7  
 

Conclusions and Recommendations for Future 

Work 

   
A new SOPAVent blood gas model was proposed in the previous chapters 

through the modelling of Kd and VCO2 and shunt sub-components. A simplified blood 

gas prediction system was also proposed to model PaO2, PaCO2 and pH using 

ventilator settings as system inputs. An EIT measurement system was developed for 

monitoring of pulmonary functions. Finally, 3D images of the lungs were produced 

from 2D MRI and CT medical images, and an estimation of lung volume was also 

made from 2D MRI and CT images. In this chapter, the summary of achievements of 

this project will be presented first, followed by recommendations for future work to 

be potentially undertaken. 

   

7.1 Summary And Achievements 

 

7.1.1 Improvements of the SOPAVent Model and Validation with 

Real Patient Data 

 
The SOPAVent is a mathematical approach towards modelling of 

ventilated patients, which was developed by the Sheffield Biomedical Research 

Group. However, certain sub-components of SOPAVent are not available through 

routine ICU measurements. These sub-components were either estimated or modelled 

using data driven approach. In this thesis, the models for relative dead-space (Kd), 

carbon-dioxide production (VCO2) and shunt were improved to increase the prediction 

accuracy of SOPAVent.  
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The Interval Type-2 Fuzzy Logic System (IT2FLS) was used to design the 

Kd, VCO2 and shunt model of artificially ventilated patients in the ICU. The type-1 

Fuzzy C-means (FCM) clustering algorithm was also used to design the Kd model and 

the VCO2 model. The IT2FLS and type-1 FCM models were optimized using the ‘new 

structure’ particle swarm optimization (nPSO) to improve prediction accuracy. The 

Kd, VCO2 and shunt models were then validated using real minute-by-minute ICU 

data. Prediction results show significant improvements in accuracy for the Kd and the 

VCO2 sub-components when compared to previously develop models.  

 

The Kd, VCO2 and shunt models were integrated into the SOPAVent 

blood gas model for predicting the arterial blood gases (ABG), using real minute-by-

minute ICU patient data for validation. Validated results show significant 

improvements in accuracy for the initial prediction of PaCO2, the initial prediction of 

pH and the post-setting-change prediction of pH. The SOPAVent model with the Kd 

and the VCO2 sub-components designed using IT2FLS showed better generalization 

property and robustness when compared to the previous model, while the SOPAVent 

model with the Kd and the VCO2 sub-components design using type-1 FCM showed 

equal performances when compared to the previous model. 

 

The SOPAVent model was applied to newly obtained ICU patient data, 

where patients were diagnosed with Faecal Peritonitis (FP), and data was available on 

an hourly basis.  The initial prediction of PaO2, the post-setting change prediction of 

PaO2, the initial prediction of pH and the post-setting-change predication of pH 

produced some improvements in accuracy and reduced error when compared to the 

previously developed model. 

 

7.1.2 Blood Gas Modelling using Ventilator Settings 

 
The ICU data for patients with Faecal Peritonitis (FP) were also used to 

model the ABG parameters of PaO2, PaCO2 and pH using the relationship of ventilator 

settings to blood gas sampling results. The type-1 fuzzy FCM nPSO-optimised model 

and the adaptive neuro-fuzzy inference system (ANFIS) were proposed to model the 

ABG from ventilator settings.  These two models were successful in reducing the 
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number of variables needed to model the blood gases when compared to the original 

SOPAVent model. Both models produced good predictions with minimal errors.  

 

7.1.3 Hardware Development for Electrical Impedance 

Tomography Measurement System 

 
An integrated and compact 16-electrode EIT measurement system was 

developed with the aim of measuring the electrical surface potentials of the thorax 

during respiration process. The proposed EIT system was able to produce a small 

alternating current with a frequency range suitable for pulmonary applications. The 

EIT system comprises of a voltage controlled oscillator (VCO) to generate the initial 

alternating voltage signal, a band-pass filter to remove noise, a voltage to current 

converter (VCC) to convert the filtered voltage into current, a multiplexing circuit to 

drive current and to measure the surface voltages, a demodulator and an analogue to 

digital converter (ADC) to convert the analogue voltages into digital values. The EIT 

system is integrated with a microcontroller which performs the signalling functions 

for the multiplexing circuitry and also performs transmission of the EIT data to a 

computer for further processing. The EIT system is smaller in size and lighter 

compared to existing modular EIT systems, thus it has the potential to be a portable, 

non-invasive bedside monitoring tool for ICU patients.   

 

 

7.1.4 Three-dimensional Images of the Lungs and Lung Volume 

Estimation From Two-dimensional Medical Images   
 

A simple rendering method for producing three dimensional (3D) lung 

images from retrospective two-dimensional (2D) MRI and CT medical images of the 

human thorax was proposed. The tissues representing the lungs were identified by 

selecting a suitable greyscale range from the MRI and CT images. Simulation results 

show that the quality and the integrity of the 3D images produced were dependent on 

the resolution and the number of slices of the original 2D MRI and CT images.  An 

approach to calculating the lung volume from the MRI and the CT images was also 
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discussed. Simulations performed showed that the lung volumes generated by medical 

images were similar to the lung volumes generated by the combination of medical 

images and regressions lines when the number of medical images were higher. 

However, the images were retrospective and were not validated with standard lung 

volume measurements techniques. 

 

7.2 Recommendation for Future Work 
 

The cardiac output (CO) in the SOPAVent model was estimated using the 

Body Surface Area (BSA), which was derived from the patient’s height and weight.  

This approach provided a more patient-specific estimation of CO when compared to 

using the population mean CO. However, it is highly possible that patients with similar 

BSA will produce contrasting CO values due to factors such as age, existing physical 

conditions and the severity of illnesses. In future, a data-driven model can also be 

elicited for CO estimations. By improving the CO sub-component, the prediction 

accuracy for SOPAVent can further be enhanced. 

 

The newly obtained ICU data for FP patients were recorded on an hourly 

basis instead of minute-by-minute basis such as in the previous ICU patient data. This 

data was slightly problematic as there was no way to determine when the exact change 

in ventilator setting was made, and if more than a single change was made during the 

one hour period for a particular ventilator setting. Currently, efforts are being 

undertaken by the consultants at the Sheffield Royal Hallamshire Hospital to extract 

the minute-by-minute data from the same group of patients, which can later be used to 

validate the SOPAVent model.    

 

The EIT system should first be tested on phantom experiments and later 

measurements from human subjects should be completed. The resulting voltages can 

then be compared to existing EIT systems such as the MK3.5 EIT system for 

validation. The estimation of lung impedance, the lung volume and the lung density 

can then be derived from the EIT measurements. A suitable image reconstruction 

approach should also be proposed to display the EIT measurements into 2D and 3D 

images of the lungs.   



147 
 

References 

 
Adler A, Arnold JH, Bayford R, Borsic A, Brown B, Dixon P, Faes TJC, Frerichs I, 

Gagnon H, Gärber Y, Grychtol B, Hahn G, Lionheart WRB, Malik A, 

Patterson RP, Stocks J, Tizzard A, Weiler N and Wolf GK, (2009). 

GREIT: a unified approach to 2D linear EIT reconstruction of lung 

images. Physiol Meas. Vol. 30(6):35–55 

 

Allerød C, Rees SE, Rasmussena BS, Karbing DS, Kjærgaard S, Thorgaard P and 

Andreassen SA, (2008). Decision support system for suggesting 

ventilator settings: Retrospective evaluation in cardiac surgery patients 

ventilated in the ICU. Computer Methods and Programs in Biomedicine. 

Vol. 92: 205-212 

 

Al-Otaibi HM and Hardman JG, (2011), Prediction of arterial oxygen partial 

pressure after changes in FIO2: validation and clinical application of a 

novel formula. British Journal of Anaesthesia. Vol. 107(5):806–12  

 

Annual quality report 2013/14 for adult, general (ICU, ICU/HDU) critical care, 

https://onlinereports.icnarc.org/Home, last accessed 2017/11/17  

 

Brown BH, (2003), Electrical impedance tomography (EIT): a review, J. Med. Eng. 

Technol. Vol. 27(3):97-108 

 

Brown BH and Seagar AD, (1987), The Sheffield data collection system, Clin. Phys. 

Physiol. Meas. Suppl. A:91-7 

 

Brown BH, Barber DC and Seagar AD, (1985), Applied potential tomography: 

possible clinical applications. Clin. Phys. Physiol. Meas. Vol. 6(2):109-

121 

 

https://onlinereports.icnarc.org/Home
https://onlinereports.icnarc.org/Home


148 
 

Brown BH, Milnes P, and Mills GH, (2007), Indirect measurement of lung density 

and air volume from Electrical Impedance Tomography (EIT) data. 

World Congress on Medical Physics and Biomedical Engineering 

IFMBE Proceedings. Vol. 14 

 

Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ and Jackson MJ, 

(2002), Neonatal lungs – can absolute lung resistivity be determined non-

invasively? Medical and Biological Engineering & Computation. Vol. 

40:338-394 

 

Brown BH, Wilson AJ, and Bertemes-Filho P, (2000), Bipolar and tetropolar 

transfer impedance measurements from volume conductor. Electronics 

Letter. Vol. 36(25):2060-2062 

 

Brown B.H., 2003, Electrical impedance tomography (EIT): a review,  J Med. Eng. 

Technol., vol.27, no.3, pp.97-108, 2003. 

 

Cheney M, Isaacson D and Newell JC, (1999), Electrical impedance tomography. 

SIAM Rev 41:85–101 

 

Chiu, SL (1994), Fuzzy Model Identification Based on Cluster Information. Journal 

of Intelligent and Fuzzy Systems. Vol. 2:267-278.  

 

Denaı̈ M, Mahfouf M and Mills GH, (2008), Modelling and simulation of electrical 

impedance tomography (EIT) on ventilated patients with ARDS lungs. 

Proceeding for the 8th IEEE International Conference on Bioinformatics 

and Bioengineering.  

 

Denaı̈ M, Mahfouf M, Mohamad-Samuri S, Panoutsos G, Brown BH, and Mills GH, 

(2010), Absolute electrical impedance tomography (aEIT) guided 

ventilation therapy in critical care patients: Simulations and future trends. 

IEEE Transactions on Information Technology in Biomedicine. Vol. 

14(3): 641-649 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4690849
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4690849
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4690849
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4690849


149 
 

Fan W, Wang H, Chen X and, Lv Z, (2009), Three dimensional EIT models for 

human lung reconstruction based on Schur CG algorithm. Proceedings 

for the International Conference on Complex Medical Engineering 

(ICME) 

 

Fleming S, Thompson M, Stevens R, Heneghan C, Pluddemann A, Maconochie I, 

Tarassenko L and Mant D, (2013), Normal ranges of heart rate and 

respiratory rate in children from birth to 18 years, a systematic review of 

observational studies. The Lancet. Vol. 337(9970):1011-1018  

 

Goode KM (2000), Model based development of a fuzzy logic advisor for artificially 

ventilated patients, PhD thesis, the University of Sheffield 

 

Gore JC (2003), Principles and practice of functional MRI of the human brain, The 

Journal of Clinical Investigation, the American Society for Clinical 

Investigation. 112(1): 4-9 

 

Graham BM and Adler A (2007), Electrode placement configurations for 3D EIT, 

Physiological Measurement. Vol. 28:29–44   

 

Holder DS, (2004), Electrical impedance tomography: Methods, history and 

applications. Institute of Physics Publishing. ISBN: 0750309520 

 

hopentextbc.ca/anatomyandphysiology/chapter/23-1-overview-of-the-digestive-

system/ (accessed at 1600hrs on 03/03/2018) 

 

Hospital adult critical care activity 2015-2016. (NHS Website address:  

https://digital.nhs.uk/catalogue/PUB23426), last accessed 2017/11/17. 

 

Hwang C, and Hung-Hoon F (2007), Uncertain fuzzy clustering: interval type-2 

fuzzy approach to C-means. IEEE Transaction on Fuzzy Systems. Vol. 

15(1):107-120.  

 

https://opentextbc.ca/anatomyandphysiology/chapter/23-1-overview-of-the-digestive-system/
https://opentextbc.ca/anatomyandphysiology/chapter/23-1-overview-of-the-digestive-system/
https://digital.nhs.uk/catalogue/PUB23426
https://digital.nhs.uk/catalogue/PUB23426


150 
 

Indera-Putera SH and Mahfouf M, (2017), Evolutionary type-2 fuzzy blood gas 

models for artificially ventilated patients in ICU. 14th International 

Conference on Informatic in Control, Automation and Robotics  

 

Indera-Putera SH, Mahfouf M, and Mills GH (2016), Blood-gas modelling for 

artificially ventilated patients using interval type-2 fuzzy logic system, 

XIV Mediterranean Conference on Medical and Biological Engineering 

and Computing  

 

Javaherian A, Soleimani M and Moeller K, (2016), A fast time-difference inverse 

solver for 3D EIT with application to lung imaging. Med. Biol. Eng. 

Comput. Vol. 54:1243–1255 

 

Khalighi M, Vosoughi Vahdat B, Mortazavi M And Mikaeili M, (2014), Design and 

implementation of precise hardware for electrical impedance tomography 

(EIT). IJST Transactions of Electrical Engineering. Vol. 38(E1):1-20 

 

Kretschmer J, Riedlinger A, Schranz C and Möller K (2014), Medical decision 

support in mechanical ventilation employing combined model 

information of gas exchange and respiratory mechanics. 19th World 

Congress, the International Federation of Automatic Control (IFAC) 

 

Kwok HF, Linkens DA, Mahfouf M and Mills GH (2004a), SIVA: A hybrid 

knowledge-and-model-based advisory system for intensive care 

ventilators. IEEE Transactions on Information Technology in 

Biomedicine. Vol. 8(2): 161-172. 

 

Kwok HF, Linkens DA, Mahfouf M, and Mills GH (2004b), Adaptive ventilator 

FiO2 advisor: use of non-invasive estimations of shunt. Artificial 

Intelligence in Medicine. Vol. 32: 157-169. 

 



151 
 

Kwok HF, Mills GH, Mahfouf M, and Linkens DA (2001), Model-based neuro-

fuzzy control of FiO2 for intensive care mechanical ventilation. Critical 

Care. Vol. 5(supp1):P002-S1. 

 

Mendel JM (2001), Uncertain Rule-Based Fuzzy Logic Systems: Introduction and 

New Directions, Prentice-Hall. 

 

Mendel JM, Hagras H, Tan W, Melek WW and Ying H (2014), Introduction to fuzzy 

type-2. IEEE Press Series on Computational Intelligence.  

 

Mohammad-Samuri S, Mahfouf M, Denaı̈ M, Ross JJ and Mills GH (2011), 

Absolute EIT coupled to a blood gas physiological model for the 

assessment of lung ventilation in critical care patients, Journal of Clinical 

Monitoring and Computing. Vol. 25(1):27-28. 

 

Nopp P, Harris ND, Zhao TX, Brown BH, (1997), Model for the dielectric properties 

of human lung tissue against frequency and air content. Med. Biol. Eng. 

Comput. Vol. 35(6):695-702 

 

Pulletz S, Matthias K, Elke G, Schadler D, Vogt B, Weiler N, and Frerichs I, (2012), 

Dynamics of regional lung aeration determined by electrical impedance 

tomography in patients with acute respiratory distress syndrome. 

Multidisciplinary Respiratory Medicine 7:44 

 

Rees SE, Allerød C, Murley D, Zhao Y, Smith BW, Kjærgaard S, Thorgaard P, and 

Andreassen S, (2006), Using physiological models and decision theory 

for selecting appropriate ventilator settings. Journal of Clinical 

Monitoring and Computing. Vol. 20:421–429  

 

Riedel T, Richards T and Schibler A, (2005), The value of electrical impedance 

tomography in assessing the effect of body position and positive airway 

pressure on regional lung ventilation in spontaneously breathing subjects. 

Intensive Care Med. Vol. 31: 522-1528. 



152 
 

Rodriguez-Molinero A, Narvaiza L, Ruiz J and Galvez-Barron C, (2013), Normal 

respiratory rate and peripheral blood oxygen saturation in the elderly 

population. Journal of the American Geriatric Society. Vol. 61(12):2238-

40 

 

Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H and Tang PC, 

(2001), Clinical decision support systems for the practice of evidence-

based medicine. Journal of the American Medical Informatics 

Association. Vol. 8(6):527-534. 

 

Stephenson DR, Davidson JL, Lionheart WRB, Grieve BD and York TA, (2005), 

Comparison of 3D image reconstruction techniques using real electrical 

impedance measurement data. 4th World Congress on Industrial Process 

Tomography 

 

Tehrani FT and Roum JH (2208), Intelligent decision support systems for 

mechanical ventilation. Artificial Intelligence in Medicine. Vol. 

44:171—182 

 

Tridente A, Clarke GM, Walden A, McKenchnie S, Hutton P, Mills GH, Gordon 

AC, Holloway PA, Chiche JD, Bion J, Stuber F, Garrad C and Hinds CJ, 

(2014), Patients with faecal peritonitis admitted to European intensive 

care units: an epidemiological survey on the GenOSept cohort. Intensive 

Care Med. Vol. 40(20):201-10 

 

Wang A, Panoutsos G, Mahfouf M and Mills GH, (2008), Goal-directed therapy for 

general ICU patients using aggregated multi-objective optimization. 17th 

World Congress, The International Federation of Automatic Control 

 

 

 

 



153 
 

Wang A, Mahfouf M, Mills GH, Panoutsos G, Linkens DA, Goode K, Kwok HF, 

and Denaï M, (2010a), Intelligent model-based advisory system for the 

management of ventilated intensive care patients: Part I: Hybrid blood 

gas patient model. Computer Methods and Program in Engineering. Vol. 

99(2): 195-207.  

 

Wang A, Mahfouf M, Mills GH, Panoutsos G, Linkens DA, Goode K, Kwok HF, 

and Denaï M, (2010b), Intelligent model-based advisory system for the 

management of ventilated intensive care patients: Part II: Advisory 

system design and evaluation. Computer Methods and Program in 

Engineering (2010). Vol. 99(2): 208-217.  

 

Wilson AJ, Milnes P, Waterworth AR, Smallwood RH, and Brown BH, (2001),  

Mk3.5: a modular, multi frequency successor to the Mk3a EIS/EIT 

system, Physiological Measurement, Institute of Physics Publishing. Vol. 

22(2001):49-54 

 

Wu D, (2012), On the fundamental differences between interval type-2 and type-1 

fuzzy logic controllers. IEEE Transaction on Fuzzy Systems. Vol. 20(5): 

832-848.  

 

Wu D, (2017) “A brief tutorial on interval type- 2 fuzzy sets and systems.” 

https://sites.google.com/site/drwu09/publications/completepubs, 

accessed on 2017/12/04 

 

Wu D and Mendel JM, (2009), Enhanced Karnik-Mendel algorithms. IEEE 

Transaction on Fuzzy Systems. Vol. 17(4):923-934.  

 

Wu D and Mendel JM, (2014), Designing practical interval type-2 fuzzy logic 

system made simple, IEEE World Congress on Computational 

Intelligence, Beijing, China. 

 

https://sites.google.com/site/drwu09/publications/completepubs
https://sites.google.com/site/drwu09/publications/completepubs
https://sites.google.com/site/drwu09/publications/completepubs


154 
 

Wu D and Nie M, (2011), Comparison practical implementation of type-reduction 

algorithms for type-2 fuzzy sets and systems. IEEE International 

Conference on Fuzzy Systems 

 

Yang F, Zhang J and Patterson R, (2013), Development of an anatomically realistic 

forward solver for thoracic electrical impedance tomography. Journal of 

Medical Engineering. Vol. 2013 article ID: 983938 

 

Zhang Q and Mahfouf M, (2006), A new structure for particle swarm optimization 

(nPSO) applicable to single objective and multi-objective problems. 3rd 

International IEEE Conference Intelligent Systems  

 

 



127 
 

Appendix A 
Fuzzy Rules for the IT2FLS Kd Model with 243 Rules 

 
Y UMF LMF Y UMF LMF Y UMF LMF Y UMF LMF 

Y1 0 25 Y41 10.72 35.61 Y81 8 41 Y121 22.11 42.20 
Y2 0.1 25.2 Y42 4.1 33.2 Y82 18.34 54.16 Y122 3.70 44.68 
Y3 0.2 25.4 Y43 4.2 33.4 Y83 8.2 41.4 Y123 15.33 41.18 
Y4 0.3 25.6 Y44 4.3 33.6 Y84 8.3 41.6 Y124 12.3 49.6 
Y5 0.4 25.8 Y45 4.4 33.8 Y85 8.25 41.41 Y125 12.4 49.8 
Y6 0.5 26 Y46 4.5 34 Y86 17.69 53.48 Y126 12.5 50 
Y7 0.6 26.2 Y47 4.6 34.2 Y87 8.6 42.2 Y127 10.43 51.14 
Y8 0.7 26.4 Y48 4.7 34.4 Y88 8.7 42.4 Y128 12.7 50.4 
Y9 11.95 26.76 Y49 3.76 39.68 Y89 8.8 42.6 Y129 12.8 50.6 

Y10 1.94 56.02 Y50 7.69 38.45 Y90 8.9 42.8 Y130 12.9 50.8 
Y11 1 56 Y51 5 35 Y91 2.78 27.29 Y131 33.12 28.20 
Y12 1.1 27.2 Y52 5.1 35.2 Y92 12.17 36.73 Y132 13.1 51.2 
Y13 6.30 31.59 Y53 5.2 35.4 Y93 2.29 23.13 Y133 13.2 51.4 
Y14 5.42 30.37 Y54 5.3 35.6 Y94 16.54 34.90 Y134 13.3 51.6 
Y15 1.4 27.8 Y55 5.4 35.8 Y95 9.4 43.8 Y135 13.4 51.8 
Y16 1.5 28 Y56 5.5 36 Y96 9.5 44 Y136 13.5 52 
Y17 1.6 28.2 Y57 5.6 36.2 Y97 9.6 44.2 Y137 13.6 52.2 
Y18 1.7 28.4 Y58 5.7 36.4 Y98 9.7 44.4 Y138 13.7 52.4 
Y19 1.8 28.6 Y59 5.8 36.6 Y99 9.8 44.6 Y139 13.8 52.6 
Y20 10.69 41.88 Y60 5.9 36.8 Y100 9.9 44.8 Y140 9.10 48.95 
Y21 2 29 Y61 6 37 Y101 10 45 Y141 14 53 
Y22 2.1 29.2 Y62 6.1 37.2 Y102 10.1 45.2 Y142 14.1 53.2 
Y23 1.21 20.79 Y63 6.2 37.4 Y103 10.2 45.4 Y143 14.2 53.4 
Y24 4.49 34.15 Y64 6.3 37.6 Y104 10.3 45.6 Y144 14.3 53.6 
Y25 2.4 29.8 Y65 32.82 62.29 Y105 10.4 45.8 Y145 14.4 53.8 
Y26 2.5 30 Y66 6.5 38 Y106 10.5 46 Y146 14.5 54 
Y27 2.6 30.2 Y67 6.6 38.2 Y107 10.6 46.2 Y147 14.6 54.2 
Y28 2.7 30.4 Y68 20.45 57.78 Y108 10.7 46.4 Y148 14.7 54.4 
Y29 2.8 30.6 Y69 6.8 38.6 Y109 31.71 36.85 Y149 14.28 62.15 
Y30 2.9 30.8 Y70 6.9 38.8 Y110 10.9 46.8 Y150 14.9 54.8 
Y31 27.24 47.87 Y71 7 39 Y111 11 47 Y151 15 55 
Y32 3.1 31.2 Y72 7.1 39.2 Y112 5.27 60.15 Y152 15.1 55.2 
Y33 3.2 31.4 Y73 7.2 39.4 Y113 7.55 43.93 Y153 15.2 55.4 
Y34 3.3 31.6 Y74 7.3 39.6 Y114 11.3 47.6 Y154 15.3 55.6 
Y35 3.4 31.8 Y75 7.4 39.8 Y115 11.4 47.8 Y155 15.4 55.8 
Y36 3.5 32 Y76 7.5 40 Y116 11.5 48 Y156 15.5 56 
Y37 8.39 34.18 Y77 7.6 40.2 Y117 11.6 48.2 Y157 15.6 56.2 
Y38 6.76 41.18 Y78 7.7 40.4 Y118 18.45 21.67 Y158 15.7 56.4 
Y39 3.8 32.6 Y79 7.8 40.6 Y119 22.83 52.56 Y159 15.8 56.6 
Y40 25 36.49 Y80 7.9 40.8 Y120 14.50 56.95 Y160 15.9 56.8 
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Y UMF LMF Y UMF LMF Y UMF LMF 
Y161 16 57 Y201 20 65 Y241 24 73 
Y162 16.1 57.2 Y202 20.1 65.2 Y242 24.1 73.2 
Y163 20.07 24.57 Y203 27.91 47.64 Y243 24.2 73.4 
Y164 16.3 57.6 Y204 23.86 49.22    
Y165 16.4 57.8 Y205 20.4 65.8    
Y166 16.5 58 Y206 20.5 66    
Y167 16.6 58.2 Y207 20.6 66.2    
Y168 16.7 58.4 Y208 20.7 66.4    
Y169 16.8 58.6 Y209 20.8 66.6    
Y170 16.9 58.8 Y210 20.9 66.8    
Y171 17 59 Y211 21 67    
Y172 17.1 59.2 Y212 21.1 67.2    
Y173 17.2 59.4 Y213 21.2 67.4    
Y174 14.96 40.86 Y214 21.3 67.6    
Y175 17.4 59.8 Y215 21.4 67.8    
Y176 17.5 60 Y216 21.5 68    
Y177 17.6 60.2 Y217 21.6 68.2    
Y178 17.7 60.4 Y218 21.7 68.4    
Y179 17.8 60.6 Y219 21.8 68.6    
Y180 17.9 60.8 Y220 21.9 68.8    
Y181 18 61 Y221 22 69    
Y182 18.1 61.2 Y222 22.1 69.2    
Y183 18.2 61.4 Y223 22.2 69.4    
Y184 18.3 61.6 Y224 22.3 69.6    
Y185 18.4 61.8 Y225 22.4 69.8    
Y186 18.5 62 Y226 22.5 70    
Y187 18.6 62.2 Y227 28.57 62.56    
Y188 18.7 62.4 Y228 22.7 70.4    
Y189 18.8 62.6 Y229 22.8 70.6    
Y190 18.9 62.8 Y230 22.9 70.8    
Y191 36.52 58.41 Y231 23 71    
Y192 19.1 63.2 Y232 23.1 71.2    
Y193 19.2 63.4 Y233 23.2 71.4    
Y194 19.3 63.6 Y234 23.3 71.6    
Y195 19.4 63.8 Y235 23.4 71.8    
Y196 19.5 64 Y236 23.5 72    
Y197 19.6 64.2 Y237 23.6 72.2    
Y198 19.7 64.4 Y238 23.7 72.4    
Y199 4.99 41.85 Y239 23.8 72.6    
Y200 34.64 47.68 Y240 23.9 72.8    
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Appendix B1 
FCM Generated Fuzzy Sets and Surface Plots for the Kd and the VCO2 

Sub-components 

 

 
FCM generated fuzzy sets for the Kd model. Top: input parameters PaCO2 and RR and VT. Bottom: 

input parameters Pinsp, PEEP and output parameter Kd. 

 

   
nPSO FCM generated fuzzy sets for the Kd model, based on least MSE. Top: input parameters PaCO2, 

RR and VT. Bottom: input parameters Pinsp, PEEP and output parameter Kd. 
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nPSO FCM generated fuzzy sets for the Kd model, based on largest R2. Top: input parameters PaCO2, 

RR and VT. Bottom: input parameters Pinsp, PEEP and output parameter Kd. 

 

 
FCM generated fuzzy sets for the VCO2 model. Top: input parameters MV and Vt. Bottom:  input 

parameter EtCO2 and output parameter VCO2. 
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nPSO FCM generated fuzzy sets for the VCO2 model based on least MSE. Top: input parameters MV 

and Vt. Bottom:  input parameter EtCO2 and output parameter VCO2. 

 

 
nPSO FCM generated fuzzy sets for the VCO2 model, based on largest R2. Top: input parameters MV 

and Vt. Bottom:  input parameter EtCO2 and output parameter VCO2. 
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FCM generated fuzzy surface plot for the Kd model. Left: PaCO2 and Vt against Kd. Right: PaCO2 and 

Pinsp against Kd 

 

              

nPSO FCM generated fuzzy surface plot for the Kd model, based on least MSE. Left: PaCO2 and Vt 

against Kd. Right: PaCO2 and Pinsp against Kd. 

 

              

nPSO FCM generated fuzzy surface plot for the Kd, model based on largest R2. Left: PaCO2 and Vt 

against Kd. Right: PaCO2 and Pinsp against Kd 
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FCM generated fuzzy surface plot for the VCO2 model. Left: MV and Vt against VCO2. Right: MV and 

EtCO2 against VCO2. 

 

              

nPSO FCM generated fuzzy surface plot for the VCO2 model based on least MSE. Left: MV and VT 

against VCO2. Right: MV and EtCO2 against VCO2. 

 

              

nPSO FCM generated fuzzy surface plot for the VCO2 model, based on the largest R2. Left: MV and 

VT against VCO2. Right: MV and EtCO2 against VCO2. 
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Appendix B2 
Prediction Results for Initial and Post-Setting Change Predictions of PaO2, 

PaCO2 and pH for SOPAVent Models  

 

 
SOPAVent validation result: Kd (ANFIS), VCO2 (ANFIS), shunt (secant tuning) 

 

 
SOPAVent validation result: Kd (manually-tuned IT2FLS), VCO2 (manually-tuned IT2FLS), shunt 

(manually-tuned IT2FLS) 
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SOPAVent validation result: Kd (manually-tuned IT2FLS), VCO2 (manually-tuned IT2FLS), shunt 

(nPSO-tuned IT2FLS) 

 

 
SOPAVent validation result: Kd (manually-tuned IT2FLS), VCO2 (manually-tuned IT2FLS), shunt 

(secant tuning) 
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SOPAVent validation result: Kd (nPSO-tuned IT2FLS), VCO2 (nPSO-tuned IT2FLS), shunt 

(manually-tuned IT2FLS) 

 

 
SOPAVent validation result: Kd (nPSO-tuned IT2FLS), VCO2 (nPSO-tuned IT2FLS), shunt (nPSO-

tuned IT2FLS) 
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SOPAVent validation result: Kd (nPSO-tuned IT2FLS), VCO2 (nPSO-tuned IT2FLS), shunt (secant 

tuning) 

 

 
SOPAVent validation result: Kd (manually-tuned IT2FLS 243 rules), VCO2 (nPSO-tuned IT2FLS), 

shunt (secant tuning) 
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SOPAVent validation result: Kd (FCM), VCO2 (FCM), shunt (secant tuning) 

 

 
SOPAVent validation result: Kd (nPSo-MSE-tuned FCM), VCO2 (nPSO-MSE-tuned FCM), shunt 

(secant tuning) 
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SOPAVent validation result: Kd (nPSo-R2-tuned FCM), VCO2 (nPSO- R2-tuned FCM), shunt (secant 

tuning) 
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Appendix C1 
Summary of SOPAVent of other Input Parameters for FP Patients 

 
SOPAVent Input Parameter Mean S.D. Minimum Maximum 

BPd (mmHg) 57.03 9.09 37.5 73.5 
BPm 76.04 12.12 50 98 
BPs  114.05 18.18 75 147 

IE exp 1.81 0.39 1.2 2.9 
IE inp 1 0 1 1 
Res 47.7 23.71 18.29 128.21 

Tot RR 16.29 2.8 12 22 
MV 8.96 2.96 4.68 16.4 
VT 0.54 0.13 0.36 0.96 

EtCO2 5.03 0.9 3.5 6.6 
PEEP 6.39 1.79 5 10 

RR 16.18 2.8 12 22 
FIO2 40.89 9.46 29 68 
PIP 28.5 7.56 19 44 

SpO2 97.19 4.5 77 100 
Tinsp 1.37 0.24 1 1.7 
Hba 87.36 13.02 66 123 

HCO3 2.63 0.48 1.79 3.9 
SaO2 98.24 1.42 93.5 99.8 

new PEEP 6.39 1.79 5 10 
new RR  16.07 2.69 12 22 

new FIO2 38.14 7.34 29 57 
new PIP 28.29 7.9 16 44 

new Tinsp 1.36 0.25 1 1.7 
post VT 0.57 0.18 0.34 1.14 
post Res 45.19 17.56 18.8 112.78 

post EtCO2 4.9 0.84 3.6 7 
post MV 9.23 3.02 4.76 15.96 

BodyTemp 36.53 1.04 34.6 38.8 

(BPd: diastolic blood pressure, BPm: mean blood pressure, BPs: systolic blood pressure, IE exp:  

expiration IE ratio, IE insp: inspiration IE ratio, Res: airway resistance, Tot RR: total respiration rate,  

MV: minute volume, VT: tidal volume, EtCO2: end-tidal carbon-dioxide, PEEP: positive end expiratory 

pressure, RR: respiration rate, FiO2: fraction of inspired oxygen, PIP: peak inspiratory pressure, SpO2: 

oxygen saturation (indirect measurement), Tinsp: inspiration time, Hba: haemoglobin, HCO3: bicarb, 

SaO2: oxygen saturation (blood gas), new/post: values after settings change, BodyTemp: body 

temperature.) 
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Appendix C2 
Prediction Results for Initial Predictions of PaO2, PaCO2 and pH for 

SOPAVent Models for Patients with Faecal Peritonitis 

 

 

 
SOPAVent initial ABG prediction for Kd (ANFIS) and VCO2 (ANFIS) 

 

 

 
SOPAVent initial ABG prediction for Kd (IT2FLS) and VCO2 (IT2FLS)  
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SOPAVent initial ABG prediction for Kd (IT2FLS nPSO) and VCO2 (IT2FLS nPSO)   

 

 

 
SOPAVent initial ABG prediction for Kd (FCM) and VCO2 (FCM)   
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SOPAVent initial ABG prediction for Kd (FCM nPSO MSE) and VCO2 (FCM nPSO MSE)  

 

 
    

SOPAVent initial ABG prediction for Kd (FCM nPSO R2) and VCO2 (FCM nPSO R2) 
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Appendix C3 
Prediction Results for Post-Setting Change Predictions of PaO2, 

PaCO2 and of pH for SOPAVent Models for Patients with Faecal 

Peritonitis 

 

 

 
SOPAVent post setting-change ABG prediction for Kd (ANFIS) and VCO2 (ANFIS) 

 

 

 
SOPAVent post setting-change ABG prediction for Kd (IT2FLS) and VCO2 (IT2FLS) 
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SOPAVent post setting-change ABG prediction for Kd (IT2FLS nPSO) and VCO2 (IT2FLS 

nPSO) 

 

 

 
SOPAVent post setting-change ABG prediction for Kd (FCM) and VCO2 (FCM) 
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SOPAVent post setting-change ABG prediction for Kd (FCM nPSO MSE) and VCO2 (FCM 

nPSO MSE) 

 

 

 
SOPAVent post setting-change ABG prediction for Kd (FCM nPSO R2) and VCO2 (FCM 

nPSO R2) 
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