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Abstract

The forces acting on the tools when cutting rock are not only important for the
design of the cutters but also because they can be utilized to characterize the
rock being cut. To understand these forces, it is necessary to have a good insight

into the mechanisms that govern the failure of the rock.

This thesis reports on studies of the cutting process with blunt — Polycrys-
talline Diamond Compact (PDC) — cutters. It presents a critical review of
previous analytical, experimental and numerical models for the cutting mecha-
nisms of single cutters. Associated mining and tunnelling studies suggest that the
main rock cutting mechanism is tensile failure followed by fracture propagation.
The work here provides evidence that these mechanisms are not applicable when
drilling sedimentary rocks under pressure with PDC cutters — where it is more

likely that the mechanisms of failure is different in nature, being ductile.

A cutting bit response model(Detournay and Defourny, 1992), which is based
on ductile failure and considers the drilling process as a combination of a pure
cutting action at the cutter face and a frictional contact at the wear flat, was
selected for the present research. The model predicts that there is a linear re-
lation between specific energy, £, and the drilling strength, S, which are two
quantities with dimension of stress that are respectively defined as the horizontal
and vertical force divided by the cross-sectional area of the groove traced by the

cutter.

The two processes, the cutting and the friction at the interface, are then

studied by means of finite difference simulations with a computer programme



Fast Lagrangian Analysis of Continua (FLAC). The numerical simulations are
compared to the upper and lower bound plasticity solutions for this problem to
determine the validity of the code. This code allows one to model large deforma-
tions and also friction at the tool/rock interface. The simulations were performed

to determine:

e the validity of assuming that the two processes are independent; and

o to establish whether there is a linear relation between £ and S by modelling

different depths of cut.

An experimental programme of single cutter tests was undertaken to corrob-
orate the numerical and analytical models. Results of cutting tests on three
different sandstones using blunt PDC cutters are presented and analyzed. The
experimental data support the theoretical pfediction that there is a linear relation
between the specific energy £ and the drilling strength S. Various quantities such
as the cutting parameters (e and (), the friction coefficient (1) and the contact

strength (o) are estimated for each of the rocks tested.

The thesis also contains discussion on how these basic parameters of the
drilling process are related to the geomechanical characteristics of the rocks
tested. A discussion of the influence of small imperfections along the cutting
edge of a “sharp” cutter on the determination of € and ( is also presented.

The main contribution of this research therefore is the verification of the cut-

ting model, which in turn will enable the state of wear of PDC cutters to be

established form the forces measured on site.
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Chapter 1

Introduction

1.1 Industrial Background

The mining and petroleum industries have been interested for many years in the
mechanisms of rock drilling/cutting. Research in the subject started in mining,
in the early 1950s, to improve the performance of drilling/cutting equipment. It
has continued up to now, trying to establish the relevant geoparameters that will

provide an idea of how the rock will behave when drilling with different tools.

The investigation of the mechanisms of cutting has been concentrated on the
forces necessary to break the rock by mechanical means. However, the researchers
through the years have not reached a consensus on what the mechanisms are.
Moreover, the introduction of new materials and new designs of cutters have

stimulated continuing investigations.

In the late 1970s, the oil industry took an increasing interest in reducing costs
of drilling operations, as the drilling was performed in more difficult conditions
and the reservoirs became deeper and smaller. As the major part of the cost
linked to the exploitation of an oil field is due to drilling, it is very important to
optimize this operation. The introduction of Polycrystalline Diamond Compacts

(PDCs) came at this stage, creating a breakthrough in drilling technology.

When drilling for exploration and production of oil, the drill bit is at several

thousands of meters below the surface, where the process cannot be seen, as

15



opposed to the operations of tunnelling with mechanical excavators. It is thus
important to determine from the surface how the tool is behaving and in what
condition of wear it is. Changing a drill bit is a time consuming process, so if by
monitoring torque and weight on the bit one could determine the state of wear
of the tool, one could optimize the process by avoiding unnecessary stoppages.
However, the recordings of the torque and weight on the bit, have to be interpreted

— and that is why the processes have to be known.

The different tools, drag bité and indenters, have been tested in laboratories
all around the world. Despite this, there has not been a consensus of opinion
on what the mechanisms of cutting and failure are. This is probably because
different tools act differently on the rock being tested. The depth of cut with
relation to the microstructure of the material, the state of rock stress, and the

mud used are other factors that affect these processes.

1.2 Purpose of the Research

The mechanisms of cutting have been studied since the early 1950s, see for ex-
ample Fish[11, 12]. Since then, many models have been suggested for predicting
the forces on the cutter. They also suggest the failure mechanisms of the rock

when subjected to forces on its surface by indentation, dragging, or impact.

The purpose of this research is:

o to gain an understanding of the mechanisms of cutting rock with drag bits,

o to substantiate a model that considers the cutting process as two indepen-
dent processes: one of cutting and the other of friction at the tool/rock

interface, by means of numerical and experimental techniques, and

¢ to provide a new set of experiments carefully performed for the study of

wear on PDC cutters.

16



1.3 Content of the Thesis

In Chapter 2, the available knowledge on rock cutting is reviewed in order to
establish the models for the forces on a single tool, that could be applied to the
study of blunt PDC cutters. The correlations between the cutting forces and
the geomechanical characteristics of the tool are presented to show the different
opinions on the subject. The different mechanisms of failure observed on cutting

rock are discussed.

A model presented by Detournay and Defourny[6] is found to be promising, but
needs substantiation. This model is described and the concepts of specific energy,

drilling strength, £-S diagram, friction line, and cutting point are introduced.

Chapter 3 presents a numerical investigation of the model[6] utilizing an ex-
plicit finite difference code, FLAC[7]. The purpose is to verify the model’s predic-
tion that rock cutting is a combination of two independent processes, one of pure
cutting and the other of friction at the tool/rock interface. This is achieved by

modelling a sharp tool, the contact at tool/rock interface, and the blunt cutter.

Chapter 4 introduces the experimental programme for linear cutting tests in
three sandstones. It presents the laboratory equipment, the acquisition system
and the principal characteristics of the tools. A discussion on the criteria used
for the selection of the rocks to be tested is given. It also introduces the results
obtained by Chaput [10] with sharp PDC cutters, as well as the tests performed

for the present thesis with blunt PDCs under the same testing conditions.

Chapter 5 analyzes the results of the cutting tests with blunt PDCs following
the model presented in Chapter 2, and describes the characteristics of the £-S
diagram. In this Chapter, the friction line will be studied as a mean of char-
acterizing the rock for cuttability by attempting a correlation with the internal

friction angle of the rock.

The average resultant force applied to the tool will be decomposed in its two

components; “pure” cutting and friction at the contact, and a relation between

17



these forces with geomechanical parameters of the rock will be determined.

Chapter 6 concentrates on the final conclusions of the thesis. It discusses the

contribution to industry and proposes future research in the area of rock cutting.

18



Chapter 2

Review of Current Knowledge
on Rock Cutting

2.1 Introduction

There are two main types of cutting tools used in rock cuttihg, the drag bits or
picks and the indenters (see Fig. 2.1). The drag bits apply a force to the rock
due to the relative parallel movement of the tool across the surface to be cut.
The indenters are tools that induce failure by the penetration of a wedge into
the rock: the force applied is predominantly perpendicular to the rock surface.
This chapter will review some of the research done earlier in the mining and the
petroleum industry with drag bits. The main purpose of the research by the
mining and tunnelling industries was to assess cuttability. For this reason the
research was directed to find correlations between rock properties and cutting
efficiency parameters. In petroleum, gas, and geothermal drilling, the purpose is
to achieve higher rates of penetrations and bit life, by improving the design of
the drilling tool. Drilling was performed mainly by roller cone bits, which are
indenters, until the introduction of PDCs in early 1970s. PDCs were a break
through in technology because of their wear resistance. PDC cutters are made
of a circular and fine layer of synthetic polycrystalline diamond supported by a

base of tungsten carbide.

In the following sections, a review of the research performed in rock cutting by
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Figure 2.1: Drag bit and indenter (after Roxborough and Rispin[1]).

the mining industry, the several investigations on attempted correlations with ge-
omechanical parameters, and then the research on PDCs will be presented. Some
important models for the forces on a single drag cutter will also be presented. A
detailed presentation of the cutting and friction model[6] will be given as it is the

model subject of this research.

2.2 Single Drag Bit Tests

Drag bits are used in rotary drills and in excavation machines such as road-headers

and coal ploughs.

Drag bits are produced in different shapes. When linear cutting tests are

performed, the total force can be decomposed in three orthogonal forces:

e normal force, I, the force acting perpendicular to the cutting surface (the

force directed to the rock mass is considered positive);

20



o cutting force, F,, the force acting parallel to the cutting surface and in the

direction of the cut; and,

¢ lateral force, F, the force that acts perpendicular to the cutting force but

in the plane of the rock surface.

The lateral force component in single groove cutting is normally discounted

from the analysis, due to symmetry.

Drilling research started around the 1950s; a good review of the early work

can be found in Fish[11, 12] and Fairhurst and Lacabanne[13].

Roxborough and Phillips[14] considered the main tool characteristics to be
analyzed when studying cutting with picks as: | pick shape and size, front rake
angle, and width. They did not consider for their study the effect of the wearflat,
so this parameter was not taken into account. The geometrical parameters to
describe a drag bit cutter are shown in Fig. 2.2. In the present work, front rake
angle will be considered positive if the tool’s cutting face is inclined forward.
They regarded depth of cut, rock strength, rock microstructure and geometry of
the tool as the parameters that affect the magnitude of the forces on the tool
when cutting rock at a prescribed depth. These variables have been studied in

several researches some of which will be reviewed below.

From observations of linear cutting tests, several researchers[2, 10, 14, 15]
have qualitatively described the process as a sequence of events which includes
crushing of material, chip formation and rework_ing of the groove cut to take the

shape of the tool.

From the same observations and measurements of the tool forces, Fairhurst
and Lacabanne[13] as well as others[16, 17, 18, 19] proposed that the forces on
the tool were due to the cutting action and to friction on the tool/rock interfaces.
These interfaces are located between the cutter face, the wearflat contact, and
the rock. Zijsling[17] also concluded that at the wearflat interface, a layer of rock

flour adheres to the tool. The friction coefficient used, for his thermal model at
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Rake angle @

S~y

Clearance angle

Figure 2.2: Geometrical parameters of a drag bit cutter.

this interface, is then assumed to be equal to the internal friction angle of the
rock. Whittaker[16] studied the effect of tool shape on the cutting forces. He
performed tests with different rake angles, clearance angles and blunt tools. From
his investigations, he proposed a model for the vertical and the horizontal force

on the tool considering a friction component.

Barker[20] presented results of cutting tests carried out with two types of drag
bits, a chisel and a point attack pick. He found that the forces depended on the
depth of cut, also that the forces induced on the chisel pick were larger than for
the pointed one. He concluded that the efficiency of the cutting process increases
to a maximum with depth of cut. The specific energy of cutting, i.e. the energy
input per unit volume, was less for the chisel pick even though the forces for this

tool were higher.

Several investigators[14, 21, 22, 23] have reached the conclusion that the speed

of cut does not influence the cutting performance, but the normal force increases
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considerably with speed as the tool wears out faster due to the heat generated

by abrasion[23, 24, 25]. At slower speeds less energy is dissipated as heat.
Additional cutting tests have been performed with this type of tool for mining

purposes, but most of the results presented are correlated with some geomechan-

ical parameter and will be introduced in the following section.

2.2.1 Geomechanical Tests and Cuttability

In trying to predict cuttability, several researchers have measured almost all the
parameters of rock strength and tried to relate them to cutting forces or efficiency
of cutting tools. Some have used a multiple curvi-linear regression, as at New-
castle University[26]. Others have found correlations following a chip formation

model.

Correlations between laboratory cutting tests and geomechanical properties
are a difficult task if the cutting mechanism is not well understood. Correlations
of laboratory experiments with field data are also complex as, in the field, many
variables are difficult to control or measure. For example, tunnelling machines
spend only a small percentage of the energy input to cut the rock, most of the
energy is to drive the machine, to clamp it, or to muck the waste out. The
other way of correlating drilling performance with rock properties is utilizing
penetration rates, but this approach has to take into account the wear on the

tool, as it will influence the cutting process and performance.

Misra[27], in his work, “drillability studies of rotary-percussive drills”, used a
large number of rock parameters to find a relation with machine performance. He
found many correlations between drillability and uniaxial compressive strength,
triaxial testing results, static Young’s modulus, Shore scleroscope hardness, im-
pact hardness, apparent density and apparent porosity. The most important of
these is the correlation between drillability and the rock impact hardness num-
ber. This is because the test is similar to the mode of failure during excavation.

The impact hardness test is a form of incremental crushing test. Misra’s work
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included a dimensional analysis in addition to single and multiple-variable curvi-
linear correlation analysis.

The U.S.B.M. covered a limited number of material properties and their ana-

lysis is based on a stepwise multiple linear regression.

The two U.S.B.M. groups involved in the research fundamentally disagree over

a specific parameter:

o Morrell et al.[28] sta.ted “simple compressxve strength of the rock is not
fundamentally related to the rock breaking mechanism and therefore cannot

be used as a reliable method of predicting machinability”.

e Rad and Olsson[29, 30] found that compressive strength could be used to

predict some of the cutting characteristics of independent grooves.

Many other correlations have been proposed in the literature between mea-
sured rock properties and cuttability. Some of these proposed correlations are

given below.

McFeat-Smith and Fowell[26] used a multiple curvilinear regression program to
analyze the data collected, in order to determine the properties of importance in
explaining the cutting and wear characteristics of different rocks. They measured
23 different rock parameters from mineralogic composition to hardness and com-
pressive strength. They also performed linear cuttihg tests obtaining the specific
energy of cut for each type of rock. Their analysis showed that the most relevant
parameters for the cutting process were cone indenter hardness and plastic de-
formation. For the case of wear on the tool, they concluded that quartz content,
cementation coefficient and the shore rebound hardness were the parameters that
gave the best correlations. The results were then used as prediction equations.

Morgan et al.[31] and O’Rourke and Priest[32] present a case history of tun-
nelling work for the Kielder Reservoir project. A good regression result is obtain

by taking the mean values of Schmidt hammer tests for various geological zones

against the field cutting rate.
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Jenni and Balissat[33] concluded that penetration rate can be predicted with
the use of a combined index including rebound hardness, point load strength,
abrasion hardness and content of minerals with equal or higher hardness than

quartz.

McFeat-Smith and Tarkoy[34], in order to determine the relation between
rock material properties and penetration rates for two specific machine types,
correlated point load test data with penetration rates.

Tarkoy and Hendron{35] compared rock hardness indices, uniaxial compressive
strength and penetration rates for a variety of tunnel boring machine projects and

showed correlations between penetration rates and rock properties (from Nelson

and O’Rourke[36)).

Ingraffea et al.[37] introduced a new approach for cutting performance predic-
tions. They studied fracture toughness, K., as a property that will give a better
rock parameter to be used for sensitive predictions of tunnel boring machine per-
formance. They used the short rod technique to obtain their values and then

they related them to other rock properties, analyzing variability.

Nelson et al.[38], after an analysis had been made on the cutting mechanism,
reached the conclusion that rock fracture and chip formation is a process in
which energy is consumed in the creation of new surface area. They studied
the relation between K., Gy, (fracture energy) and the field penetration index
of two case history tunmnels. They arrived at the conclusion that for massive,
brittle materials, the critical energy release rate can be correlated with optimum
machine performance. That the correlation is consistent with the formation of
rock chips is because of the fracture process. The correlations were performed for
only four types of rock so the results were speculative but promising. They also
concluded that the critical energy release rate can be correlated with optimum
TBM performance and that this correlation is consistent with the formation of

chips by a fracture process.
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Nelson and Fong[39], in advancing the previous work, took the results from
linear cutting tests (disk) performed at the Transport and Road Research Labora-
tory, and correlated the non-interactive rolling and normal forces (force/penetra-
tion) with the crack driving fofce, Gre. The treﬁd seems to be linear. These
results need to be confirmed as suggested by these researchers. Continuing with
this new approach, they performed a series of fracture toughness tests and linear
cutting tests with discs in five different British rocks and studied the relation
between the normal forces and the crack driving force, Gr.. They arrived at the
conclusion that prediction of disc cutter forces and force penetration relations is

possible using fracture material properties.

Almenaral40)], in his M.Sc. dissertation, performing linear cutting tests with
picks in three different rocks, found an apparent linear relation between peak
cutting forces and fracture toughness values. The same trend was found also
between specific energy of cutting and energy release rate, Gj.. He agrees with
Nelson et al.[38] that the correlations are consistent with the formation of chips
in the cutting process, when the depths of cut are deep enough and the tools
are of the chisel type. Short rod specimens were used in this case to obtain the

fracture toughness values.

2.2.2 PDC Cutter Experiments

PDC cutters, are made of a circular and fine layer of synthetic polycrystalline

diamond supported by a base of tungsten carbide. This set is then bonded to a
matrix or to WC/Co studs that then are placed on a steel body.

Feenstra[41, 42] presents a good review on the development and application of
PDC bits in petroleum drilling. He presents the special characteristics of PDCs,
an overview on the temperature stability of the material, its impact resistance
and the main problems, which are bit-balling and bit cleaning. Varnado et al.[43]
carried out cutting tests in granites and Carthage Marble. They found that to
avoid PDC chipping and obtain a self sharpening effect, when drilling hard rocks,
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it is better to have cutters with high back-rake angle (they suggested greater than
30°).

Cheatham aﬁd Daniels[44] performed single cutter experiments to study the
mechanisms of cutting on Pierre and Mancos shales. They carried out experi-
ments with three different cutter shapes: a round, a rectangular and a 90° tri-
angular profile. Different rake angles were also studied (+20° to -20°) as well
as borehole pressure effects. They found that under elevated borehole pressures
the cuttings of shale were very similar to those obtained from lead and plasticine
clay cut at atmospheric pressure. The rectangular section cutter experiments
showed that the average horizontal and vertical forces increased almost linearly
with depth of cut. They also found that the cutting forces increased with in-
creasing rake angle and suggestéd that this could ‘be reasona;bly represented by
the Merchant metal cutting theory. When the rake angle decreased, the forces
did not decrease as predicted by the theory. They claimed that this was partially
due to clogging of the tool (bit-balling). Tool profile experiments showed that

the cutting force per unit area remains constant for all the tool shapes.

Glowka([18, 24, 45, 46] carried out an extensive investigation on wear of PDC
tools. He analyzed the effect of temperature on wear and also studied the effect
of wear on the efficiency of the cutting tool. From his investigations, he proposed

empirical relations for the cutting and the normal forces:

FuJA, = Cyém (2.1)

Fn = C26n2 (2,2)
F, .

K; = 7 (2.3)

where A, is the wearflat area, C1, ny, C; and n,, are determined by linear regres-
sion on data in log-log space of linear cutting tests. Eq. (2.1) is for blunt tools
and Eq. (2.2) for sharp tools. The data presented by Glowka have considerable

scatter, even though at least 5 replications were performed on each test.

Several tests have been performed with full scale PDC bits[43, 47, 48, 49].
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Their observations with respect to the effect of wear on the torque and thrust are
similar. As the tool wears out, the torque and the thrust need to be increased to

achieve the same rate of penetration.

2.2.3 Single Cutter Models

The oldest model to describe the process of cutting was developed for metals
by Merchant [50, 51, 8], and is defined by the material’s shear strength. By
giving a geometry for the chip formed, the components of the forces parallel
and perpendicular to the face of the tool are calculated and compared with the
strength of the metal, using the Mohr-Coulomb criterion. This model has served

as a basis for other models, such as thé ones described below.

Evans[52], based on early experimental work, showed that during the penetra-
tion of wedges normal to the surface in certain types of coal, cracks attributed
to tensile breakage radiate from the tip of the wedge. The mode of entry of the
wedge appears to be primarily through the crushing of the coal against the surface
of the wedge. This is because the force required is mainly related to the com-
pressive strength of the coal. However, since the fracture of an idealized buttock
is due to propagation of cracks from a wedge tip to a free surface, the breakage
mechanism proposed may be considered to be tensile. This model explains the

cutting mechanism with a tensile strength criterion.
Nishimatsu[2] gives a similar approach. He explains the rock cutting process

as a mechanism with three different stages (Fig. 2.3):

1. Formation of the Primary Crushed Zone. The tool edge is pushed into
the buttock, where a crushed zone is generated about the tool edge. The

material is recompacted and sticks to the tool edge.

2. Coarse Cutting Chip. A critical value of penetration generates a state of

stress which allows the propagation of a macroscopic failure crack.

3. Fine Cutting Chip. The remaining peak of rock is removed as the tool moves
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Rock Chip

Crushed Rock

Figure 2.3: Cutting process (after Nishimatsu[2)).

forward.

The only difference that he found was that failure is due to compressive stress
induced by cutting forces. This is based on his observations on the cutting pro-

Ccess.

Lebrun[53, 54], extending Nishimatsu’s theory, developed a three dimensional
model for the failure of rock subjected to the action of a cutting tool. It assumes
that the depth of cut to be much smaller than the width of the tool. He proposed
two principles that regulate the action of a single pick and two others for the
deepening and interaction between two cutters. The ones of interest for thijs

research are:
1. Linear relation between the cutting force, F, and the depth of cut, é:
F,= K6 (2.4)
where K is an experimental coefficient that increases with the width and
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wear of the cutter and decreases with the rake angle.

9. Linear relation between the cutting force, F,, and the normal force, F,:
F,=K,F, | (2.5)
where K, depends mainly on the degree of wear.

Warren and Sinor[19, 55] developed a model for predicting the performance
of PDC bits. They considered the cross-sectional area of the cut as constant
and the groove cut to have the geometry of the cutter, and also that the load
applied by the tool was approximately static and the failed rock did not contribute
to the cutter forces. They develop empirical equations for the normal and the
horizontal forces on the cutter based on the principles of the Merchant solution.
Their horizontal force component consisted of two parts: a chip generation force
and a frictional (non-productive) component.

A new model for the forces on the cutting tool, based on the suggestions
of Fairhurst and Lacabanne[13], has been recently pu‘blishedv by Detournay and
Defourny[6]. It considers the basic cutting process as combination of cutting and
friction. It assumes a constant cross-sectional area of cut and friction at the
tool/rock interface. They used their model to analyze Glowka’s extensive work
with blunt cutters in Berea sandstone and concluded that the scatter of the data
was due to the geometry of the wearflat on the tools that Glowka used. Because
the wearflat was parallel to the direction of motion of the cutter, the wearflat
area was not the same as the contact area. This model will be presented in detail

in Section 2.3, as it will be the subject of the present research.

An alternative approach to rock cutting analysis is obtained by using finite

element methods.

Wang and Lehnhoff [3] attempted several computations with indentation mod-
els for different bit geometries. A typical result is presented in Fig. 2.4. Their

analysis considered that the tool/rock interface was very rough, not allowing rel-
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Figure 2.4: Sharp wedge bit penetration (after Wang and Lehnhoff[3]).

ative displacement of the material with respect of the tool. They had relative

success in representing failure under indentation conditions.

Sellami and Deliac[4] carried out a finite element model (FEM) simulation
of pick penetration up to a condition of rock failure-penetration and subsequent
shearing of a chip. Fig. 2.5, shows concentrations of stresses under the action of

a pick on a buttock.

Swenson[56] studied drag bit cutting using a finite element code that allowed
large deformations. A maximum tensile strength together with Mohr-Coulomb
shear failure criterion were used. Post-failure behaviour was set to follow the
shear failure criteria if the surface crack was subjected to compression; if not,
the code assigns zero to the shear stresses along this surface. The friction at the
contact between the tool and the rock was taken to be zero. A few experiments
were performed under atmospheric conditions for comparison with the numerical

predictions. He could simulate the predominant characteristics of the cutting
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Figure 2.5: FEM simulation of pick penetration (after Sellami and Deliac[4]).

process but not all of it. A combination of crushing underneath the tool and
a tensile chip formation could be modelled in atmospheric conditions. When a
high borehole pressure was imposed, tensile failure changed to plastic shear. A
wearflat of length equal to the depth of cut was also modelled. The vertical
force required to maintain the depth of cut was enough to create indentation
type fractures on the rock, even when the cutter was moving parallel to the rock
surface.

These studies used the Mohr-Coulomb failure criterion and considered the

stress conditions set up within the represented rock mass.

A different approach was proposed by Saouma and Kleinosky[57]. Rather
than shear or compressive failure, a continual re-meshing during the simulation

allowed them to produce a model with tensile cracks and a linear elastic fracture
mechanics solution.

Ingraffea et al.[37] studied crack propagation with a fracture mechanics ap-
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Figure 2.6: Final deflected shape and crack trajectory (from Ingraffea[5]).

proach, using finite element methods to model fracture propagation in rock. In
1987 he[5] presented an example problem (Fig. 2.6) that simulates “in a very

simplified manner” a plane strain analysis of chip formation under a cutter.

2.3 Cutting and Friction Model

A model has recently been introduced by Detournay and Defourny[6], based on
the assumption that rock cutting is actually a combination of two processes,
“pure” cutting and frictional contact underneath the cutter. The basic equations

of the cutting response model are summarized in the following.

2.3.1 Perfectly Sharp Cutter

The model considers first a perfectly sharp cutter which creates a groove of con-
stant cross-sectional area, A, when it is moved across a horizontal rock surface

at a constant depth of cut. This cutter can only transmit a force through the
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contact of its cutting face with the rock. Let F© denote this force and F¢ and F¢
its components in the parallel and normal directions to the rock surface respec-
tively (see Fig. 2.7). Motivated by self similarity, they assumed that the ‘forces in
the horizontal and vertical directions (averaged over 5, distaﬁce large compared

to the depth of cut) are proportional to the cross-section area, A:

F; = eA (2.6)
F: = (eA (2.7)

where the constant e is the intrinsic specific energy, and { is the ratio of the
vertical to horizontal force acting on the cutting face. If the failed rock flows
upwards along the cutting face, there is no transverse component of the cutting

force, and the ratio { takes the particular maximum value (.

¢, = tan(0 + ¢) | (2.8)

where 1 denotes the interfacial friction angle and 6§ the back rake angle of the

cutter.

2.3.2 Blunt Cutter

Force Decomposition. For a blunt cutter, the model is extended by assuming
that two force vectors F< and F/ act on the tool during cutting. The first forée
vector, F¢ is transmitted by the cutting face, while the second one, F! , acts across
the wearflat area of the blunt cutter (see Fig. 2.8). This second force vector can
be decomposed into a horizontal and normal components, F; and FJ, that are
related by the friction law:

F{ = uF} (2.9)
where p is a coefficient of friction.

From these basic equations, a linear relation between F,, F,, and A can be

written:

F,=(1-p()eA+ pF, (2.10)
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Figure 2.7: Forces acting on a sharp cutter (after Detournay and Defourny[6]).

Figure 2.8: Forces acting on a blunt cutter (after Detournay and Defourny|6]).
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€-S Diagram. They then introduce two quantities: the specific energy, £,
defined as,

E=PF,/A (2.11)

and the drilling strength, S,
S=F,[/A (2.12)

Note that £ is the energy spent for drilling, irrespective of the state of the cutter
(sharp or blunt), while € is meaningful only for the cutting action. This means

that for a perfectly sharp cutter:

S = (e (2.13)

For a blunt cutter, there exists a linear relation between £ and S, which is

obtained by dividing Eq. (2.10) by A:
E=& +pS (2.14)

where the quantity &, is defined as

& =(1-p()e (2.15)

Actually, Eq. (2.14) represents a constraint on the response of a cutter. Three
parameters appear in this equation: two for the cutting € and ¢, and one for
the frictional contact, p. Analysis of previous experiments[24] lead them[6} to
the suggestion that p actually reflects the internal friction angle, ¢, of the rock.
Equation 2.14 is represented graphically in the £-S diagram (see Fig. 2.9) by a
line with slope p, intercepting the £-axis at £,. This line is defined as the friction
line. All the admissible states of the response of a PDC bit lie on the friction line
above and to the right of the cutting point. The cutting point is the point at the
intersection of the friction line with the cutting locus, the line that goes through

the origin with a slope of 1.
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Figure 2.9: £-§ Diagram (after Detournay and Defourny[6]).

Contact Forces. Nothing has been said so far on the magnitude the frictional
contact forces. It is expected that there is an upper bound on these forces due

to failure of the rock underneath the cutter wear flat.
There are different ways (requiring different assumptions) to estimate the con-
tact forces (this is further discussed in Section 5.4). One approach is to remove

the cutting contribution from the cutter force; this assumes that both the cutting

parameters € and ( are known:

F)

F,—cA
F! = F,—(eA (2.16)

Another approach is to decompose the cutter force directly into its cutting and

frictional contact components, assuming ¢ and y known:

el Fa_ﬂFn

o disie S1Pic

F,—(F

el T )
Fn 1_/[( (2.17)
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Then, F¢ = (F¢ and Ff = uF}.

2.4 Summary

Rock cutting problems have been investigated for almost 40 years. Much research
has been conducted trying to correlate penetration rates with rock properties.
This is only possible when the tools used in laboratory experiments are of the
same type as those to be use in the field and the failure criteri?;tudied imitates
that of cutting rock with the specific tool. Mining experimental research has been
concentrated g’n sharp cutters with very little experimental work done on the effect
of wear on the tool forces. The most common conclusions from observations of

the cutting process with drag bits are:

e the forces are proportional to the depth of cut;
e forces increase with rake angle;

e two failure mechanisms are observed for different conditions, tensile and

shear failure;
e the horizontal and vertical forces increase with wear on the tool;

o the force acting on the tool is due to the load needed to cut the rock and a

non-productive component mainly due to friction at the interface tool/rock;

e the cross-sectional area of the groove cut can be approximated to the cross-
sectional area of the cutting face in contact with the rock for shallow depths

of cut;

o the Merchant theory for cutting metals has been the basis for the develop-

ment of several models for the forces on the tool; and

¢ when drilling under high borehole pressures the rock behaves as a ductile

material.
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From these observations, a new model for sharp and blunt cutter forces has
been presented|[6]. It takes into account friction at the tool/rock interfaces. This
model was tested against Glowka’s comprehensilve series of tests on Berea sand-
stone but due to the uncertainty encountered in determining the real contact
area, it could not be concluded that the cutting and the friction forces were two

independent processes.

Following this new idea, a numerical simulation, that will attempt to verify
that cutting and friction at the tool/rock interface are two independent processes

will be investigated in the following chapter.
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Chapter 3

Numerical Analysis of the
Cutting Process

3.1 Objectives and Philosophy of the Numeri-
cal Investigation

Previous numerical investigations of the drilling mechanisms have been reported
in Section 2.2.3. In this chapter of the thesis, the purpose is to validate, by using
a numerical model, the assumption that the drilling process with PDC bits can
be fegarded as two independent mechanisms: i.e. pure cutting and friction at the
tool/rock interface[6]. The numerical model is based on the assumption that the
material is characterized by a cohesion frictional yield condition of the material in
front and underneath the tool’s wearflat with friction on both tool/rock interfaces.

The objectives and methods to achieve this purpose are presented below:

e test the validity of the numerical code for the investigation of the cutting

and the frictional components of the drilling process;

e validate the cutting model by decomposing the cutting forces into two parts,

pure cutting and frictional contact underneath the cutter;
¢ determine the intrinsic specific energy € and the contact strength o; and

e gain an insight on the mechanisms of failure.
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This numerical investigation will start with an assessment of the validity of
the numerical code by modelling a retaining wall with zero friction angle at
the interface wall/soil(because the Merchant cutting solution and retaining wall
solutions are similar). The numerical modelling will continue by studying two
processes, one that simulates cutting with a sharp tool and the other that models
the wearflat of the tool alone. Then it will pré;ceéd with the validation of the
phenomenological drilling model. The last task will be achieved by modelling the
blunt tool. For all the models studied, an example of the sequence of the FLAC
instructions used in the simulations is presented in Appendix A. Tables with the

numerical values of the results plotted are presented in Appendix B.

3.2 FLACGC: Description and Capabilities

The numerical code used FLAC (Fast Lagrangian Analysis of Continua), is a two
dimensional explicit finite difference code developed by Cundall[58]. This code
is capable of simulating the behaviour of structures built of soil, rock or other

material that may undergo plastic flow when their yield limit is reached.

The code was chosen for this investigatién because:
¢ it allows the material to undergo large deformations; and

e it can model interfaces between two portions of the grid, taking friction into

account.

Large displacements are possible due to the Lagrangian calculation scheme on
which FLAC is based. It enables the grid coordinates to be updated at each time

step in large strain mode[7].

The advantages over finite element methods that the code claims to have are:

e mixed discretization, as described by Marti and Cundall[59]. The term arises
from the different discretization for the isotropic and the deviatoric parts of

the stress and strain tensors;
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e the use of full dynamic equations of motion, even when modelling static

problems;

o explicit solution that can follow arbitrary non-linearity in stress and strain

laws in almost the same computer time as for linear laws;.

e no need to store any matrices, allowing to model large models; and

e easy numbering of elements, by row and column.
The disadvantages of this code are not very serious:

e linear simulations may take more time than with a finite element code; and

¢ when modelling elements with large disparities in Young’s moduli, the model
will take longer to converge as the solution time is determined by the ratio

of the longest to the shortest natural period in the system being modelled.

The explicit calculation on which FLAC is based can be represented as in
Fig. 3.1. Applying a velocity to a zone, the ca,lqulation is performed in box 2 of
Fig. 3.1 were the velocities are ‘frozen’ during the cAlculation of the new stresses.
The new stresses in an element do not modify the velocities of the one next to
it. Once all the stresses have been calculated on the grid, the information passes
to box 1 where the forces are derived from the new stresses, and by using the
equations of motion the new velocities and the displacements are computed. In
large strain logic the coordinates of the grid are updated. There is a maximum
speed at which information can propagate across the material and the timesteps
are calculated to be small enough so that information cannot physically pass from

one element to the next.

The other great advantage of this code is the ability to model interfaces. This
capability will allow us to model the contact between the cutting face and/or the

wearflat of the tool and the rock (see Appendix C).
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Figure 3.1: Basic explicit calculation cycle (after Itasca[7]).

The code is capable of modelling materials with the following constitutive

laws:
1. null;
2. elastic, isotropic;
3. elastic, transversely isotropic;
4. Mohr-Coulomb plasticity;
5. ubiquitoﬁs'joint;
6. strain-hardening/softening; and

7. double-yield (experimental).

A short discussion on the null and the Mohr-Coulomb plasticity models follows.

The reader should refer to the user manual for descriptions of the other models.
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Null Model. This model is used to represent material that has been excavated
or removed from the model. The stresses in this zone are set to zero, automati-

cally. It can be change back to any other type of model later in the simulation.

Mohr-Coulomb Plasticity This model only represents a material which is

yielding in shear. The yield function, f,, is given by:

1+sing
l1-sing

The friction angle is ¢, and cohesion is c. Plastic flow takes place when f, = 0.

1+4sin¢
1-—sin¢

fo=01—03( )+2¢ (3.1)

The flow rule is given by:
0y,
30’;

The plastic potential, g,, for shear yielding is:

Ael’ =),

(3.2)

_ | 1+sinT T+snr
9= oo t 2 Ty (33)

where 7 is the dilation angle.

A perfectly plastic material was used for the modelling, with an associated

flow rule, i.e. 7= ¢.

3.3 Validation of the Code

The program FLAC will be validated for the problem circumstances required here
against an exact analytical solution for a frictionless retaining wall. Then it will be
compared with two solutions of the cutting problem. These solutions constitute
lower and upper bounds for the true load on the cutter which are provided by
the limit theorems of plasticity. The theorems of Plasticity are defined below,

according to Craig[60].

Upper bound theorem. If a mechanism of plastic failure is postulated and

if, in an increment of displacement, the rate of work done by a system of external
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loads is equal to the rate of dissipation of energy by the internal stresses, then
failure must occur: the external load system thus constitutes an upper bound to

the true collapse load.

Lower bound theorem. If a state of stress can be found which at no point
reaches the failure criterion for the material and which is in equilibrium with a
system of external loads, then failure cannot occur: the external load system thus

constitutes a lower bound to the true failure load.

An upper and a lower bound solution can be found in literature for the me-

chanisms of cutting and will be presented later.

Coulomb’s Retaining Wall

To validate the program, the analytical solution for a retaining wall with no
friction at the wall/soil interface and a horizontal soil surface will be used. The

solution for this case is exact because the upper (Coulomb, 1776) and the lower

bound (Rankine, 1857) coincide.

Considering Rankine’s theory for the case of a wall moving towards the soil
mass, there will be lateral compression of the soil and the value of o, will increase
until a state of plastic equilibrium is reached. For this condition o> becomes a
maximum value and is the major principal stress o;. The stress 0z, equal to the

overburden pressure, is then the minor principal stress, i.e.

03 = pgz (3.4)

where p is the density of the material, ¢ grawty and z depth In this case the

horizontal stress is defined by:

+s1n¢) 96 1 +sing

a= 03( ~sin ¢ 1 —sing

(3.5)

The Rankine solution predicts the failure plane to be inclined relative to the
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Figure 3.2: Shear plane predicted by Coulomb for a retaining wall.

axis of o3 from the following equation:

ol

R

]
Ll

|

(3.6)

The geometry of the numerical model of the retaining wall is presented in
Fig. 3.3. The vertical wall/soil contact is modelled without friction and three of

the domain boundaries are fixed. The top surface is free.
The properties used for the simulations are presented in Table 3.1.

After 1500 steps of simulation, the numerical model has converged as shown
in Fig. 3.5. When plotting the velocity vectors of the grid, an idea of the shear
plane location and shape can be determined. As can be seen in Fig. 3.6, the
velocity vectors next to the wall have an orientation of about 30° with respect to
the horizontal, as predicted by Coulomb’s and Rankine’s solutions. The failure

surface appears to be a straight line.
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Figure 3.3: Grid for the modelling of the retaining wall.
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Figure 3.4: Plastic zones developed in Coulomb’s retaining wall simulation.
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Parameter Numerical | Analytical
¢ 30° 30°
c 10 10
Young’s moduli | 100,000 —
Poisson’s ratio 0.2 —
Y 0° 0°
0 0° 0°
p (g/m®) 0o 0
g (m/s?) 0 0

Table 3.1: Parameters used for simulating a retaining wall with no friction be-
tween the wall surface and the soil.

In Fig. 3.4, the yield zones of the material predicted by the simulation are
presented. As assumed in the Coulomb theory, the material has yielded behind
the wall. In this figure, it can also be noticed that a tensile crack develops
from the foot of the wall downwards. This feature can be explained because
the material model had very little tensile strength and, as the wall moved, the
element underneath the wall is stretched in an opening mode, failing in tension.

In Fig. 3.7, the initial boundary for the simulation and the boundary with the
displacements of the elements magnified (~ 65 times larger) after 1500 steps is
presented. A plane of failure at an inclination’ of 30° from the horizontal was
superimposed. It shows that the extent of the failed material on the surface
coincides with the intersection of the shear plane (calculated using Eq. (3.6)) and
the boundary. |

Let o1 be the average stress (F./1), where, F. is the horizontal force, 1 is the
height of the wall, in the two dimension FLAC model. Then the value of o1/c
for the analytical solution is compared with the simulations with FLAC in Table
3.2. The results obtained by the simulations are within 15% error. This can be

improved by modifying the density of the grid. This validation suggests that the

code is accurate enough for the simulations required in this research.
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Figure 3.5: Unbalance force history of the retaining wall simulation (every 5
steps).

Figure 3.6: Velocity vectors retaining wall model (after 1500 steps).
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Figure 3.7: Initial boundary and magnified displacements at the boundary. Shear
failure plane at 30° superimposed.

Grid | Numerical | Analytical
81X21 3.96 3.46
81X41 3.92 3.46

Table 3.2: Comparison of o;/c for two different grid densities.



Figure 3.8: Simple flow mechanism (after Merchant[8§]).

3.4 Sharp Cutter Model

In order to validate the numerical simulation of the sharp cutter mechanism, the
upper and lower bound solutions for the true load on the cutter will be compared

with the results obtained by numerical experiments.

A solution derived by Merchant[8] for the machining of metals, which assumes
that the material is rigid perfectly plastic with a cohesion ¢ and internal friction
angle ¢, will be taken as the upper bound. Fig. 3.8 illustrates the simple flow
mechanism considered by Merchant[8]. It shows a cutter moving at a constant
velocity v and constant depth of cut §. The specific energy of cutting € from

Merchant (8] can be expressed as[61]:

€ 2 cos¢ cos(0 + )
¢ T—sm(0+ 9+ ¢) (3.7)

where ¢ is the specific energy of cutting as described in Section 2.3, 0 the rake

angle (taken as positive if the cutter is inclined forward) and % the interface
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friction angle.

The inclination of the shear plane with respect to the direction of motion,

corresponding to Eq. (3.7), is given by

T 0+P+¢
=2 TETE (3.8)

Equations 3.7 and 3.8 indicate that the Merchant failure mechanism can only be

constructed for:
' T
0<5-(6+9) (3.9)

This constraint is usually met since the rake angle for PDC cutters is typically
between 15° and 20°[61].

The lower bound solution for the limit force on a single PDC cutter working
at atmospheric pressure conditions was reported by Drescher[62]. It assumes the
cutter to be working in plane strain conditions and moving horizontally with a
constant speed. The rock is modelled as a weightless rigid-perfectly plastic solid

whose flow rule is associated with the Mohr-Coulomb yield criterion.

The two solutions of the upper bound (Merchant[8]) and the lower bound

(Drescher[62]) will be used to validate the numerical experiments.

3.4.1 Model Description
Grid

The grid dimensions for the cutting model is taken to be 5 times greater than the
depth of cut in the direction of motion of the cutter and approximately 3 times the
depth of cut in the direction perpendicular to the motion of the tool. This ensures
that the failure zones are inside the grid boundaries. Fig. 3.9 presents the grid
geometry and density used for the validation of the code. The optimum number
of elements (41x21 at the start of the grid generation process) was determined
by using various mesh densitis; this number of elements provides accurate results

in a reasonable time.
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Figure 3.9: Grid geometry for the sharp cutter problem.

Material Properties

The model simulates a weightless rigid-perfectly plastic material with a Mohr-
Coulomb yield function. It is assumed to be deforming in plane strain conditions.

The tool is modelled as a linear elastic material.

The material properties assigned to the model were chosen considering that
the behaviour should approach that of a rigid plastic material (i.e. the ratio of
c/E very small). Table 3.3 presents these properties. The tool is 10 times stiffer
than the rock and for the rock E/c=10,000. This ratio is very large compared
to the real values for rocks (~600). These properties were chosen to approach
the condition pertaining to a rigid-perfectly plastic material. The density assigned
to the rock and to the tool is only used for numerical simulation, as there is no

gravity force.

The upper bound and the lower bound solutions are defined for weightless

material in which the only parameters relevant for the determination of ¢ are



Property Tool | Rock

Young’s modulus(MPa) | 1,000,000 | 100,000
Poisson’s ratio 0.2 0.2
density(g/m?) - le-3 le-3

| cohesion(MPa) — 10
tensile strength(MPa) — 10

Table 3.3: Properties used in the numerical simulation of a sharp cutter.

those represented in Eq. (3.7). In the case of the PDC cutting face, experimental
evidence[24] shows that the interface friction angle is around 10° to 18°. The

friction angles selected for the simulations were 10° and 20°.

Boundary Conditions

The grid was fixed on three sides as shown in Flg 3.9. The top surface was
left free, simulating atmospheric conditions. No initial confining stresses were
imposed to the boundary. The tool had a rake angle of 16.7° and a constant
velocity in the horizontal direction of 8E-6 mm/step.

‘Time Steps’

The simulations were performed to a prescribed number of time steps. In this
way, all the simulations will stop when the cutter had moved a specific distance.
For this investigation the number of steps was 1500, giving a displacement of
1500x8E-6= 0.012 mm. The size of the element on the grid closest to the tool
interface was of 0.011 mm, which means that the tool will displace more than
one length of the element, but this is possible with FLAC when using large strain
logic. |

The history of the maximum unbalanced force (Fig. 3.10) showed in all the

cases that the simulation had converged.
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Figure 3.10: Example of maximum unbalance force history for the sharp cutter
problem.

3.4.2 Parametric Investigation
In order to validate the numerical model, a number of experiments wer performed

by varying the parameters relevant to the determination of the specific energy.

These are:
e internal friction angle of the material;
e tool/rock interface friction angle; and
e tool rake angle.

The depth of cut was also varied for the model of the sharp cutter even though
it is not specified as a parameter in the calculation of €. It was done to assess
the quality of the numerical code, by checking if € is modified by a change in

discretization, and to obtain data for further analysis of the blunt cutter problem.

The parametric study program can be summarized in Table 3.4.
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Modell ¢ | ¢ 6 | é (mm)
1 10° | 10° | 16.7° 1.00
2 10° | 15° | 16.7° 1.00
3 10° { 20° | 16.7° 1.00
4 10° 1 25° | 16.7° 1.00
5 10° | 30° | 16.7° 1.00
6
7
8
9

10° | 35° | 16.7° | 1.00
20° | 10° | 16.7° | 1.00
20° | 15° | 16.7°| '1.00
20° | 20° | 16.7° | 1.00
10 |20°}25°}16.7°| 1.00
11 |20°}30°}16.7°| 1.00
12 | 20°]35°|16.7°| 1.00
13 [10°{30°]| 20° | 1.00
14 |[10°]30°]| 10° | 1.00
15 |[10°]30°]16.7°] 0.25
16 |10°]30°]16.7°| 0.50
17 |10°]30°]|16.7°| 0.75
18 |10°]30°|16.7°| 1.00
19 }10°]30°]16.7°| 1.25
20 |10°{30°]16.7°| 1.50

Table 3.4: Summary of parametric investigations on sharp cutter.
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Figure 3.11: Sequence of failure zones for the sharp cutter model.

3.4.3 Analysis of the Results
Failure Mechanism

The observed failure mechanisms in the sharp cutting simulations can be illus-
trated with the sequence in Fig. 3.11. The figure shows the material in contact
with the tool yieldsvery quickly (after only 6 ‘time’ steps) due to the rigid-plastic
behaviour of the model, then it starts to develop a yield zone in front of the cutter.
The boundary of the yield zone forms an arc from the tip of the cutter upwards,
touching the surface at a point that can be estimated from the Merchant’s[8]
solution (Eq. (3.8)). In Fig. 3.11 a tension crack can be seen developing from the
corner below the tip of the cutter. This can be explained, as in the modelling
of the retaining wall, by the fact that the elements in front of the tool and the
elements behind the tool have opposite relative displacement, creating a fracture

in opening mode. A confining pressure applied to the lateral boundaries could



/ Displacement magnified

\ Shear plane (Merchant)

Figure 3.12: Displacements of the boundary magnified with Merchant’s shear
plane prediction superimposed.
eliminate this tensile crack, but in this investigation this crack does not affect

the results, as the interest lies in the shear failure in front of the cutter.

Internal Friction Angle

After 1500 steps of simulation, the tool has moved a distance of 0.012 mm.
Fig. 3.12 shows the original boundary and the boundary after the simulation
with the displacements magnified. A shear plane with an inclination a=30° has
been superimposed, where the boundary displaced approximately intersects the
shear plane predicted by Eq. (3.6). In Fig. 3.14, the velocity of the tool has been
set to 0, to emphasize the velocity in the material. These vectors can give an idea
of the shear plane location. The friction at the interface causes the failure surface
to be curved near the bottom of the cutter, but then it can be approximated to

a line until it reaches the surface.
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Figure 3.13: Plastic zones after 1500 steps in the sharp cutter problem.

Figure 3.14: Velocity vectors after the sharp cutter has moved 0.012 mm.
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Figure 3.15: Specific energy e versus friction angle ¢ for ¥=10°.

The values of €/c from the results of the simulations performed varying the
internal friction angle of the material are plotted against ¢, in Fig. 3.15 and
Fig. 3.16, for tool/rock interface friction angles of 10° and 20° respectively. The
graphs show that the numerical predictions are in between the upper and the
lower bound solutions having the same trend as the lower bound, which starts

flattening after 35° friction angle. The upper bound tends to go steadily upwards.

Rake Angle

Two numerical experiments were performed by varying the rake angle of the tool.
The first was with a rake angle of 10° and the second of 20°. They were designed
to corroborate Eq. (3.8) as being an approximation of the shear plane location.
The results, for 20° rake angle, can be shown in Fig. 3.17, where the boundary
displacement has been magnified. A line representing the shear plane at an angle

of inclination calculated by Eq. (3.8) has been superimposed. As for the previous
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Figure 3.16: Specific energy e versus friction angle ¢ for ¥=20°,

rake angle (16.7°), the intersection of the shear plane with the boundary marks
the length of surface deformation. In Fig. 3.18, the velocity vectors are plotted.
In this case, due to a greater rake angle, the velocity vectors near the tool have
near horizontal direction, but then they change direction towards the surface.
The results for the 10° rake angle are as expected. The displacement (Fig. 3.19)
and the velocity vectors (Fig. 3.20) plots shovs} a,.snia,ller zc.me of failure, with
a steeper shear plane. For rake angles higher than 20°, the Merchant solution
starts to deviate as the material sticks to the cutting face and no slip occurs at

the interface.

Depth of Cut

The simulations changing the depth of cut were conducted mainly to check the
quality of the simulations, as for different discretization the values of € obtained

should be the same. As predicted, the results did not show significant deviations
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Figure 3.17: Boundary displacement magnified for a tool rake angle of 20°.

Figure 3.18: Velocity vectors for a tool rake angle of 20°.
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/ Displacement magnified
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Figure 3.19: Boundary displacement magnified for a tool rake angle of 10°.

Figure 3.20: Velocity vectors for a tool rake angle of 10°.
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Depth (mm) | € (MPa)
0.25 8.16
0.50 . 1.78

0.75 .77
1.00 7.36
1.25 7.86
1.50 8.16

Average - 1.85
St.Dev. 0.29

Table 3.5: Values of € obtained for different depths of cut.

in e. Table 3.5 present the values of ¢ for each depth of cut, their average and
standard deviation. As the table shows, all the values of € are within 3.5% of the

average.

3.5 Wearflat Contact

As for the sharp cutter problem, the main purpdse'of the numerical modelling of
the wearflat contact is to validate the code for the simulation of the blunt cutter

tool.

The wearflat contact problem has an upper and a lower bound solution. The
lower bound is the same one described by Drescher[62] and used in the sharp
cutter problem, but the upper bound is different, as the value of ¢ does not

comply with the restriction given by Eq. (3.9).
There are two possible states at the interface between the cutter face and the

rock:

1. the material flows forwards;

2. the material flows backwards.

When modelling the wearflat, the rake angle of the tool is much greater than 20°,

at which the material sticks to the tool breaking the flow rule for the Merchant
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Figure 3.21: Upper bound plot for the wearflat contact (after Detournayl[9)).

solution (case 1). In the second case, the material sticks to the wearflat of the
tool creating a layer of material in between the tool and the rock, creating what

is called bit balling.

An upper bound solution was derived by Detournay[9] in which the flow of
the material is backwards. This upper bound is plotted in Fig. 3.21, where F/lc

is the total stress normalized by the cohesion, c.

3.5.1 Model Description
Grid Geometry

The geometry for modelling the wearflat contact problem is simpler than that of
the sharp cutter. The grid size used for the investigation of the wearflat problem
was 21x21 elements. Some of the elements have been eliminated (assigning to
them the null model), to separate the grid in two. In Fig. 3.22, the geometry,

dimensions and discretization of the grid are shown. The lengths for the wearflat
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Figure 3.22: Geometry and dimensions of the model of wearflat contact.

(represented by a plate) were taken as 0.5 mm and 0.25 mm. These dimensions
gave a good discretization without needing to add more elements to the grid,

which will increase the calculation time.

Material Properties

The simulations approximate a weightless rigid-perfectly plastic material with
a Mohr-Coulomb yield function. It is assumed to be deforming in plane strain
conditions. The plate representing the wearflat is modelled as a linear elastic

material.

The same material properties as for the sharp cutter are used in this investiga-
tion (Table 3.3). For this case, the values of the parameters of E and ¢ are most

important, as for a small E/c ratio, the material will not yield under the wearflat.
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Boundary Conditions

The grid was fixed on three sides as shown in Fig. 3.22. The top surface was
left free, simulating atmospheric conditions. No i.nit.ia,l conﬁning stresses were
imposed on the boundary. The plate that represents the wearflat contact had a
prescribed velocity in the horizontal direction of 8E-6 mm/step. This velocity
is the same as for the sharp cutter problem since the two problems have to be

combined later.

‘Time Steps’

The number of steps required for the problem to converge (about 600) is much
less than for the sharp cutter, but more steps were required to achieve failure
along the total length of the plate and also to obtain the same displacement as
in the previous model. A typical history plot for the maximum unbalance force

is presented in Fig. 3.23.

3.5.2 Parametric Investigation

The parametric investigation for the wearﬁat‘ contact will include the study of the
variation of the total average stress (normalized by cohesion) when ¢ = 4, the
effect on the total force due to wearflat contact length and the effect of the wearflat
contact angle. The parametric study for the wearflat contact is summarized in

Table 3.6.

3.5.3 Analysis of Results
Failure Mechanism

Failure was observed after a few timesteps due to the rigid-plastic characteristics
given to the model material. Then some elements on the material in the area
near the centre of the contact, started compacting surrounded by yielded material.

The compacted zone under the wearflat is confined by the surrounding plastic

67



a 0+01

4.000
3.500
8 3.000
o
S g
® 2500
[&]
[=
S
S 2.000
[
-}
E 1500
=
>
[4+1
=  1.000
.500

Step +02

Figure 3.23: History of the maximum unbalanced force for the wearflat problem
(every 5 steps).

¢ Y | Wearflat length (mm) [ Inclination )
10 10 | 10 0.50 3
15 15 0.50 3
20 |20 0.50 3
25 |25 0.50 3
30 |30 0.50 3
35 |35 0.50 3
10 |10 0.25 3
1571115 0.25 3
20 |20 0.25 3
25 |25 0.25 3
30 |30 0.25 3
35 |35 0.25 3
30 |30 0.25 0
30 |30 0.25 1
30 30 0.25 2
30 |30 0.25 5

Table 3.6: Summary of the parameters studied for the wearflat contact.
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Figure 3.24: Predicted sequence of failure for the wearflat contact problem.

zone, increasing its yield strength. After a large displacement of the wearflat
(depending on grid discretization), this zone yields again giving the maximum
values for the shear stress at the interface. Fig. 3.24 presents a sequence of the

failure process as predicted by the simulation.

Friction Angle

The numerical experiments performed to analyze the effect of the friction angle
on the contact stress were considered for the cases where ¢ = 1, as it is assumed
that the friction at this interface is the friction angle of the material. This is
true for the cases when the material sticks to the rough surface of the wearflat,

creating an interface layer.

To verify the quality of the code, the length of the wearflat was changed for

different models 1.00 mm, 0.50 mm and 0.25 mm (different discretization).

The numerical experiments varying the friction angle (¢ = #) and the length of

69



10000
upper
1000 +
A wearflat=.25
L wearflat=.5
o wearflat=1
K3)
= 100 T lower
10 4 4 8
A o] °
e
1 t t t 1 t t
5 10 15 20 25 30 35 40
=y

Figure 3.25: Normalized contact stress against variation of ¢ = 1, for different
lengths of wearflat.

the wearflat show that the total normalized contact stress, F'//Ic, falls in between
the upper and lower bound plasticity solutions, as shown in Fig. 3.25 for the two
different lengths of wearflat. The graph also proves that the discretization for the

models was adequate.

Inclination of the Wearflat Contact

The inclination of the wearflat with respect to the horizontal has to be modelled
to determine the influence of this parameter on the contact stress. Four different
angles (0°, 1°, 2° and 5°) were simulated in addition to the 3° used in previous
simulations. In Fig. 3.26, the results of these experiments are plotted. For an
inclination of 0°, the contact stress is equal to 0 as expected, the tool only moves
horizontally at a constant depth of cut, which means that there is no normal force

applied. As the angle increases, the contact stress also increases with a linear
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Figure 3.26: Normalized contact stress against inclination of the wearflat.

trend. From Fig. 3.27, it can be seem that, under the wearflat, the material yields

in larger areas as the angle of the wearflat increases.

3.6 Blunt Cutter Model

The blunt cutter model experiments will provide with an insight on the cutter
mechanisms and will complete the data needed for the validation of the model.

The validation can be achieved by:

1. by comparing the cutting and frictional components of the blunt cutter sim-
ulations with the results of the sharp cutter and the wearflat models respec-

tively; and

2. by comparing the slope of the friction line with the friction angle of the

material.
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