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ABSTRACT

The object of this thesis is to consider the problem
of determining the distribution of compressive stress in a
reinforced or pnre-stressed concrete beam subjected to a

pure bending moment at loads spproaching the ultimate.

The attaimment of this object is desirable because
the full development of an ultimate load theory for pre-
stressed concrete appesrs to depend upon it. It is pointed
out in the concluding chapter that this reason is debatable
and indeed that the uwltimate load theories themselves are
at nresent the subject of controversy. These matters are
deemed to be outside the scope of this thesis which concerns

itself solely with the object stated above.

The thesis starts with a study of the normal
assumptions of concrete design. It then goes on to survey
the possible methods of measuring directly the stresses in
a concrete beam particularly under plastic conditions. A
method developed by the author for determining these
stresses indirectly is then introduced. After coreful
study of the validity of this method it is apolied

to results of tests on a2 number of beams.

Return is then made to one of the basic assumptions

of ordinary (‘'elastic') concrete design. in analysis is

mad e/



made of the effect of finite spacing of tensile cracks
on the distribution of compressive stress (normally it is

assumed to have no effect).

An investigation is 2lso made of the effect of end
friction on the stress distribution in a cube. The
object of this study is to see whether stress-strain
readings taken in such a test have any significance for

the same concrete used in a beam,
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PART I INTRODUCTION

Chapter 1 THE OBJECT AND SCOPE OF THIS THESIS.

The object of this thesis is to consider the problem
of determining the distribution of compressive stress in
a reinforced or pre-stressed concrete beam subjected to a

pure bending moment at loads approaching the ultimate.

The attainment of this object is desirable bhecause
the full development of an ultimate load theory for
pre-stressed concrete appears to depend upon it. It is
pointed out in the concluding chapter that this reason is
debatable and indeed that the ultimate load theories
themselves are at present the subject of controversy.
These matters are deemed to he outside the scope of this
thesis which concerns itself solely with the object
stated above. BEmphasis is laid on the determination of
the stress distribution under plastic conditions, but
firgt it is desirable to give close study to the normal
assumptions of concrete design. The latter half of this

section (Part I) is devoted to this.

Part II starts by considering various possible ways
of measuring directly the compressive stresses in concrete
beanms. A method of determining these stresses indirectly

is then introduced. After careful study of the validity

of this method it is applied to results of tests on a

number of beams.
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In Part III return is made to one of the basic
assumptions of ordinary (‘'elastic') concrete design. An
analysis is made of the effect ofﬁfinite spacing of tensile
cracks on the distribution of compressive stress (normally

it is assumed to have no effect).

Part.IV gives an investigation of the effect of end
friction.on the stress distribution in a cube. The object
of this study is to see whether stress-strain readings
taken in such a test have any significance for the same

concrete used in a bean.
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GENERAL ANALYSIS OF REINFORCED AND

PRESTRESSED CONCRETE BEANMS.

The following assumptions are generally made:-—

(a) The concrete stress is considered to be uniquely

defined by the strain.

(b) It is assumed that the concrete below the neutral

axis (i.e. the axis on which the longitudinal stress

is zero) has no stiffness and carries no stress.

(e¢) Plane sections are assumed to remain plane.

Under elastic conditions (a) is simplified by taking

the stress to be directly proportional to the strain.

As the detailed analysis of reinforced and pre-stressed

concrete beams under elastic conditions is given elsewhere

(1L, 2)* only the general principles will be given.

ec Cc
— ‘ [y
R:su\tbnt :/ Bnd
nd C
4 _ . . N
(@) (b)
) S, | (concrete strain) Steel force T
s (steel strain)
Strains Stresses
Figure 1.1

- % Numbers refer to references listed in the bibliography
at the end of the Thesis.
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Three requirements have to be met:-

(i) there must be compatability of strains in steel

and concrete,

(ii) the elements of the body must be in equilibrium under
the stresses acting upon them,

(iii) these two taken together must satisfy the stress—

strain relationships,

Since plane sections remain plane the strain
distribution is as in figure 1.1 (a)

so that ec/et = n(l - n) (1.1)

With perfect bond (i) above reguires
ey = eg (1.2)
where eg is the increase in steel strain from the stage
at whichAet is zero. In the case of ordinary reinforced
beams eg = 0 when‘et = O whilst in pre-stressed beams

eg has a stated value when ey is zero.

If the bond is imperfect then it is necessary to
introduce a factor F (3) so that

eg = Fx ey (1.2a)

(ii) requires equilibrium of the forces and moments
acting on any vertical section of the beam so that
C = T (1.3)

and M = T.4(1 - ¥n) (1.4)
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where M is the external bending moment acting.

In order that equations (1.3) and (1.4) should be
soluble for C and T use must be made of the stress-strain
relationships of both the steel and the concrete. Use
must also be made of the equations (1.1) and (1.2) and of

the fact that the strain veriation is linear down the beamn.

Taken together these relationships enable Co and T

to be calculated for all wvalues of M.

The general method given above is applicable to both
reinforced and pre-stressed concrete beams at all stages

of loading.

RECONSIDERATION OF THE ASSUMPTIONS.

Having given, very breifly, the outline of the main
features of the theory of bending for concrete members the
basic assumptions given above will now be studied in more
detail. The assumption that the concrete stress is a
unique function of the strain is not strictly justifiable
because it takes no notice of creep phenomena. As,
however, very little is known about creep at high stresses
it is not feasible, as yet, to make any allowance for it.
At working stresses an allowance can be made and this is

done in practice although it is in fact of consequence only

in pre-stressed concrete (2).
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The assumption of a unique stress-strain relationship
implies that the concrete is homogeneous; otherwise the
relationship would vary from point to point in the medium.
In fact the. elastic and plastic properties of concrete do
vary in this manner. Variations in the properties will
occur due to different curing of various sections of the
concrete. For instance the outer layers of a concrete
body dry out more rapidly than the inner parts, giving .
rise to variation in the properties of the material.

Once more little is known about such phenomena and it is not
practicable to make allowance for them. A more obvious
violation of the homogeneity assumption lies in the
variations in physical structure from point to point in

the material which consists of a matrix of mortar in which
are embedded individual particles of aggregate. Such lack
of homogeneity is not peculiar to concrete as many materials
are made up of analogous constituents although the scale

on which the structural variations may be observed is
generally very much smaller. However, provided that the
elementary particles of the material are small compargd with
a'significant dimension' of the body which it makes up lack
of homogeneity is of li%tle conseguence, In the case of
concrete it is necessary that the significant dimensions

should be large compared with the aggregate size.
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The term 'significant dimension' is best explained by means
of sui‘t;a.bie examples:- if, forginstanee, one wished to
determine the density of concrete by casting a prism of
known dimensions and weighing it, then the 'significant
dimensions' are the lengths of the edges ofﬁthe prism which
should be iong in comparison with the aggregate size in
order to obtain a fair sample. The measurement of strains
in concrete provides an example which is more relevant to
the work in hand. Such strains must be measured by using
an instrument with a gauge length long in comparison with
the aggregate size. In the experimental work on which
the writer has been engaged under Professor A.L.L. Baker
at Imperial College an 8 inch gauge length has been used on
concrete made with § inch aggregate. In this case the
ratio of gauge length to particle size is 21:1. Results
obtained using such a gauge are quite satisfactory and
measurements on beams subjected to circular bending where
the strain distribution is known to be linear deviations
from linearity are generaliy less than the 'reading error!'
of the gauge. Assumption (a) pre-supposeé thet a stress—
strain relationship exists. It also implies that the
form of the relationship is known or that it can he
determined, otherwise the equations (I.l) to (I.4) can

have no practical application.
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In fact it is difficult to obtain the stress-strain
relationship for concrete once the limit of proportiocnality
has been passed. One of the main aims of this thesis is
to consider this problem. A review of the difficulties of
the problem and the various ways in which it may be tackled

are given below.

Assumption (b) that the concrete below the neutral
axis has no stiffness and carries no stress will now be
considered. The assumption that concrete has no tensile
strength is admittedly false but in practice it is justified
because value is small compared with the compressive
strength. It is generally considered that under elastic

conditions the concrete sStress

ctrese \;§§§§§?r is triangular as indicated in
A d‘sr"bitm | figwe 1.2. This would be
true if the concrete below the
neutral axis disintégrated.but
in fact there is a finite
Figure 1.2. | distance hetween the vertical

cracks. The blocks of concrete between those cracks have
stiffness tending to retard the deformation of the concrete
above the neutral axis. This action results in a stress
distribution different from that indicated in the figure.

The actual distribution to he expected under elastic

conditions is derived in Part III.
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If pure flexure is postulated then the assumption that
plane sections remain plane is redundant for this can be
shown to be a fact as z result of the postulate. A proof
of this is given in Appendix 1.1l.

In practice concrete beams are not subject to pure flexure.
since this implies zero shear. As the self weight of the
beam is distributed this condition is obtained only at
specific sections along the length of a bean. In this
thesis we shall mainly be concerned with the analysis of
results obtained from test beams which are, in general,
light compared with the loads they carry so that for all |
practical purposes pure flexure will be attained. Even
under these conditions there will be distortion of the planes
in the immediate neighbourhood of the loading points.

In bending tests pure flexure is obtained by means of four-
point loading (figure 2.10). It is noticeable that compressio:
failure rarely occurs under one of the loads and that the
crushed zone is generally a little way away from the loading
plate. This may be ascribed to friction effects between

the loading plate and the top of the beams which in

preventing lateral expansion inhibit failure, the effect

being similar to that operative hetween the ends of a cube

and the loading plates of a crushing machine.
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APPENDIX. 1.1

THEOREM. In a uniform beam subject to a pure bending
moment plane sections remain plane.

Consider a uniform weightless beam so loaded that

over a section PQ (figure I.3) there is no resultant shear

e
I .PBB‘QT

Figure 1.3
force (i.e. the bending moment is constent). If P and Q

are sufficiently far removed from the loads then by St.
Venant's principle, the mode of application of these loads
is of ixo consequence. Thus the actual loading system may
be replaced by another system, exterior to PQ, so that PQ
is subject to the same bending moment with no change in
the behaviour. Make this second system symmetrical about
section AB situated mid-way between P and Q.

Since AB is in a plane of symmetry it must remain
plane. Consgider now any other section A'B'. As this
section is subjected to precisely the sam‘e loading as AB
it will distort in the same manner. But section AB remains
plane therefore A'B', and all similar sections, also remain

plane.
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Thus under the action of a pure bending moment plane
sections sufficiently far removed from the points of

application of loads, remain plane.
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PART 1II. EXPERIMENTAL DETERMINATION OF THE STRESS

DISTRIBUTION IN CONCRETE BEAWMS IN
CIRCULAR BENDING

Chapter 1 REVIEW OF THE POSSIBLE METHODS.

The distribution of stresses in a concrete bean

subjected to a bending moment can in theory be determined

in a number of ways:-

(a)

(b)

(c)

By obtaining the stress-strain curve for concrete
tested in direct compression (e.g. in the form of
a cube or cylinder) and assuming that the
properties of the concrete in the beam and the

specimen are the same.

By embedding 'stress' gauges in a beam.

Another approach is being made by Herr and
Vandegrift at the Ohio State University who
remove a section of the concrete in a beam and
replace it by glass (3). The faces of the glass

o Joss insert plate are then subjected to

',°- the stress distribution in

e the concrete when the beam is
e loaded. The distribution of

stress in the glass is determined

by photo-elastic methods.
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(d) By taking a short length of beam, applying compression

to the concrete above the

neutral axis by means of a

number of jacks, tensioning

[T 10
NN

- . - . the reinforcement by external
means, and adjusting all the

T

- / j: forces until a linear strain

distribution is obtained in
Fig. 2.2. the concrete. The stress
distribution is then given directly by the applied
loads, This method has been suggested by Baker
who has constructed a special machine, the bending

simulation machine, for this purpose (4).

(e) On the basis of the assumptions on page 4 the
author has evolved a method of deducing the stress
distribution from a straightforward bending test
on a heanm. The method is given in detail on

page 20 et seq.

The difficulties and drawbacks of these methods will

now be dealt with in turn.

Critisism of each of the above methods.

(a) In any compression test in which the specimen is

loaded between parallel plates lateral expansion

of/
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l 1 | l of the concrete is restricted by
friction between the specimen and
the plates. In the case of concrete

the effect is shown in the differences

in strength obtained in comparative

o
t 1 t tests on 6" concrete cubes and
Fig. 2.3 12" x 6" diam, cylinders. Concrete

in cube form always has an higher apparent strength than
that in the 12" x 6" cylinder. This is due to the

stress distribution in the specimens being complex
instead uniaxial compression. Thus any attempt to relate
the overall load to strains measured on the surface of the
concrete must give false result. This problem is
considered in part IV of this thesis where an analysis of

the stress conditions is made.

(B) Any attempt to embed stress gauges in a material to
determine the stresses therein is fundamentally wrong
unless the deformation characteristics of the gauge are
the same as those of the body in which they are embedded
for the presence of such foreign bodies disturbs the very
quantity which is being measured. It follows therefore
that such a gauge cannot be used in order to determine

the elasticity'of a material for in order to construct
the gauge with properties such that it does not upset

the/
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gtress distribution it is necessary to know beforehand
the quantity which is to be determined. Nevertheless
stress gauges have been made and the errors involved by
the use of gauges possessing different strain character-
istics from the material in which they are embedded have
been assessed (5). It has been shown that the errors
are least if the gauge modulus is greater than the
modulus of the material in which it is embedded and for
a modular ratio of 4 the error is of the order of 10%.
This accuracy is not unreasonable but at high stresses
the change in stress per unit strain for concrete becomes
zero and according to Whitney (6) becomes negative.

It seems probable that under these conditions readings
from the stress gauge will be of little value.

A further difficulty in the use of such gauges is
that they should be large compared with the aggregate
of the concrete in accordance with the argument advanced
on page 7. This means that in order to place a
reasonable number of gauges in a beam the latter will
have to be rather large. While this presents no
fundamental difficulty it can give rise to severe

practical difficulties in testing.

(e¢) The method of Herr and Vandefrift suffers from the

same/
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same setback as the stress gauge method in that a foreign
body is introduced which will upset the stress distribution.
The disturbance is reduced by meking the insert as thin

as possible. Even so difficulties have been encountered
in reconciling the total tensile force determined from
strain gauge movements on the steel with the total
compressive force measured photoelastically. This has
been ascribed to the 'Poisson‘*s-ratic effect'. Under
plastic conditions it seems likely that the glass will
inhibit the lateral expansion of the concrete considerably.
Various types of coating on the faces of the glass in
contact with the concrete have been tried in an attempt

to eliminate this difficulty. It does appear, however,
that the method holds considerable promise. The published
paper is in the nature of a preliminary report and a fuller

account will presumably appear in due course.

(d) The bending simulation machine provides a fundamentally
sounder method of determining the stress distribution in
that it makes a direct measurement of the stress
distribution without the introduction of disturbing elements.
The method does, however, present some difficulties.
Unfortunately the two main drawbacks require opposing

remedies for their eradication.
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The specimen is compressed between plates in a manner
similar to that described in reference to cubes and
cylinders above, i.e. lateral expansion is prevented by
friction between the plates and the specimen. In a
beam no such restraint is present. The obvious remedy
of this defect lies in the use of long specimens. Such
a solution is not, however, practical as it gives rise to

a further more serious difficulty found in a test on a

12" specimen as indicated in the
1 l 1 1 figure that a linear strain
l J'I I?Joll distribution is given by gauges
< ¢ B independently of the load
b ¢ ¢ g distribution applied at the ends.
3& 0 3 Thus as far as this gauge length
! Y 13 1 is concerned the object of the
L |8 L ‘Lq '» test which is, to vary the load
tlrltlfjrl disfribution until one is found
Fig. 2.4 to give a linear strain

distribution, is defeated because an infinity of solutions
is possible. This demonstration of St. Venant's principle
means that strain measurements must be confined’to gauge
lengths A and C. If this is done the method is feasible
but it does mean that the strains are measured on that
portion of the concrete where the stress distribution is

digturbed/
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disturbed by friction between the ends of the specimen and
the plates through which the loads are applied.

The preceding remarks on methods (a) to (4) are not
intended as purely des‘l;mctive critism. Each method
considered is quite sound apart from the sources of error
which have been pointed out and it may be that some of
these will be of little significance in practice. The
defects which have been noted are fundamental to the methods
and it must be demonstrated that the errors introduced
are negligible before any reliance can be placed on the
results of such experiments. Basically all these methods
have to modify the quantities which they seek so measure
in order that they may be measured. It is in this respect
that the 'direct measurement' methods are to be contrasted
with the author's method (e)ﬂwhich., on the basis of |
specified assum}:)tions, deduces the stress distribution
from simple data obtained from bending testa on beams.
Simple experimental errors aside the validity of the
results obtained by this method depends solely whether
or not the assumptions é.re justified. Such an approach
to the problem has the advantage that should the results
of tests prove unsatisfactory attention is focused
immediately on the possible deficiencies of the method,

The author's analysis is given in full in the following

bages consideration of its difficulties are given later.
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AUTHOR'S METHOD.

Tﬁe author's method of analysing beam test data to
find the distriﬁution of concrete stress has been published
(7) and is given below. (A slight difference in
nomenclature occurs from that used previously as in the
printed paper d refers to the overall depth of the beanm
whilst d' is the effective depth. Generally in this
thesis, d is used for the effective depth).
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The distribution of concrete stress in reinforced and

prestressed concrete beams when tested to destruction

by a pure bending moment

by J. M. Prentis, M.Sc.(Eng)

SUMMARY :

A method is given for utilizing experimental data
derived from bending tests on reinforced and prestressed
concrete beams to determine the stress-strain relationship
for concrete. No initial assumption is made as to the
shape of this curve, and the result obtained is unique for
the given test data, so that the factors which govern the
validity of the final result are simply the basic assumptions
of the method of analysis.

Introduction

A number of papers has been published in recent
years giving theories of failure for reinforced concrete
beams. The basic differences between each of the
proposed methods lie in the varied assumptions made
as to the shape of the stress-strain curve for concrete.
The general method has been to assume a reasonable
shape for this curve and then deduce an expression for
the ultimate bending moment.

Consider a beam subjected to a bending moment
which is increased until failure takes place by crushing
of the concrete.  The stress-strain conditions immediately
prior to the failure are as indicated in Figure 1. The
moment is resisted by a tensile force T in the reinforce-
ment and a compressive force C in the concrete equal
in magnitude to T. The moment is given by this force
multiplied by the lever-arm, j. Tensile stiesses in the
concrete are insignificant.

Among the suggestions made as to the distribution

of concrete stress which gives rise to the force C we
have that of C. S. Whitney* who makes direct use of
the: stress-strain curve obtained by measurements on a
12 in. by 6 in. cylinder. Other distributions suggested
include various conic sections and the cubic and fifth
parabolas. Any one of these distributions can be made
to fit a given case, since the problem is indeterminate
if conditions at the ultimate load alone are considered.

It is, however, possible to arrive at a unique solution
if the stress history is traced at all stages up to the
ultimate.

The action of a uniform rectangular beam sub-
jected to combined bending moment and end load

If a rectangular section of breadth b is subjected to
forces as shown in Figure 2, then the extreme fibre
stresses are given by the following equations :

ba”[(ec—et) dec{(M-'_P (d—d )) (ec—ev) }

+Pd- d"‘ N0
f bdz[(ec—et) de; {(M"Pd ) (ee—e)? }
dec

+pafe]. @

These relationships are deduced in Appendix 1.
Clearly it is of no consequence whether the force P
is applied by an internal bar or wire, as in the cases of

* WHITNEY, C. S. Plastic theory of reinforced concrete design.
No. 10. pp. 1749-1780.

Proceedings of the American Society of Civil Engineers. 1940. Vol. 66.



Strain Stress

Figure 1,

reinforced and bonded prestressed beams, or whether
it is applied externally as in an end-anchored prestressed
beam or eccentrically loaded column.

To apply equations 1 and 2 it is necessary to measure
the strains on the top and bottom of a beam, the force
P, and the moment M at a series of loading stages. The
values of f. and f; can then be calculated for each load
stage, and since the corresponding strains have been
measured the stress-strain curve for the concrete may
be plotted for the whole range of the test.

Evaluation of equations 1 and 2 necessitates graphical
differentiation. The author has found that the above
form is somewhat inconvenient as the slopes ‘to be
measured increase very rapidly. This operation is
rendered simpler by the use of the extended forms :

Sebd? = (ec—ed G- { M-+P (d—d')}

, tf{; dftl
+2 {M+P (d—d )} (l_dec +Pd e
d , ( de, )
2 o)) — . — —Pd’ ¢
fibd? = (ec et)de!{M Pd} Z{M Pd} l e,
deg
+Pdm

When prestressed concrete beams are considered the
value of f; is initially the prestress value. With the
application of load this stress falls while f. increases.
If both equations 1 and 2 are plotted against strain it
will be found that the rising f. curve coincides with the
falling f; curve. With further increases of bending
moment f, falls to zero and becomes negative. It
increases negatively until the concrete cracks, when it
falls once more to zero. A check on the work is
provided by the fact that the value of f; given by equation
2 should be zero for all stages beyond the cracking
moment. ‘

Magazine of Concrete Research : January 1951
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When an ordinary reinforced concrete beam is loaded
the cracking stage is reached very quickly, and since
the cracking moment is a small percentage of the
ultimate moment it is reasonable to assume, as in normal
design, that f, is zero at all loads. Equating f; to zero
and eliminating M from equation 1 we obtain :

Basic assumptions

The basic assumptions upon which the analysis is
based are given in Appendix 1 as they are applied, but
it is desirable that they should be stressed here.

(@) It is assumed that plane sections remain plane
where the bending moment is unaccompanied by shearing
forces. There appears to be some controversy on this
point, but there is much experimental data to support
the assumption.

(b) 1t is assumed that no straining takes place
without an increase in stress, that is, that there is no
creep of the concrete during the period of the test.
This is a somewhat severe approximation, as concrete
creeps at all stresses, and as failure becomes imminent
the creep rate is very high. However, the author’s
experience leads him to believe that little error is intro-
duced, except at very high loads, if the test is carried out
speedily. It should be borne in mind that, although
the rapid creep which occurs at say 95 per cent of the
ultimate load renders the analysis somewhat dubious
for higher loads, the stress-strain diagram which has
already been deduced prior to that loading stage is
quite valid.

(¢) Lastly, it is assumed that a given strain may be
identified with a specific stress irrespective of the position
and history of the element considered.



Stresses in beams subjected to pure bending moment

€., B C €2 E F .3
A “ El Fl
€. B‘S cu Ces " c"
) _ A
A
Z - y
LT} LEFY [
(" D) ()

Figure 3.

The particular significance of assumptions (b) and (c)
in this problem may be illustrated with reference to
Figure 3. If at stage I we have a stress BC corresponding
to strain e;, and at stage II an increase of moment
increases the top fibre strain to ec,, the above assump-
tions state that the stress in the fibres where the measured
strain is now e. is B'C’ = BC. The stress triangle ABC

R’

is reduced in the vertical direction in the ratio I.XAB

= gc_‘-- Similarly at stage 111, B’"C” = B’C’ = BC, and

c2

E'F’ = EF.

Conclusion

Thus within the framework of the above assumptions
the analysis leads to a stress-strain curve which may be
utilized to determine the stress distribution in a beam at
all stages of load. By examining test data from a
seriés of beam tests it should be possible to determine
the influence, if any, of various factors such as age, mix,
etc., upon the shape of this curve.

The basic differences between the various plastic
theories of failure for reinforced concrete beams result
mainly from differences of opinion as to the form of
this curve, and it is hoped that application of the above
analysis will help to resolve the problem.

APPENDIX 1

The derivation of equations 1 and 2

The quantities to be measured during the test are
those given in Figure 4. The force P may be measured
directly in the case of end~anchored prestressed concrete
beams, but in other cases it must be deduced from the
strains measured on the concrete or from strain gauge
measurements on the reinforcement.

In the present analysis it is assumed that no creep
takes place during the test, so that the stress-strain
relationship may be represented by :

f=0()
Equating horizontal forces,
d d
P=b[fdx=bf 0 (@ dX ool )
o o

where x is measured positive upwards from the bottom
of the section. Assuming that plane sections remain
plane we obtain by geometry,

e = et—i—%(ec—et) ............................ (6)

Substituting from equation 6 in equation 5, and changing
the variable,

e,
bd ¢
P=———) o9()de........cco..cooiinin. ©)
(ec—ey) e
€c
dl
¢ M d
Steel tforce vy _
< )
- ”
Strain.
Figure 4.



Taking moments about the origin and equating internal
and external moments we obtain

M+P(d—d’)=bf x f dx
‘o

~€c

2
e [ eeo@de
!,

T (ee—e)?
or
~Cc

1
bd* J

€t
Differentiation with respect to ¢, gives

:12 dew [ { M+ P(d—d’ )} (ec—e,)z]

“€c
@ (e) de

d.
= (e 7 (¢) — Jet

Substituting from equation 7 and re-arranging, we find

Y J AT
+Pdde‘

Sfobd? =

(D

Similarly, it may be shown that

i Len Y] o it

(equation 2)

fibd? =

NOTE
If P is made zero in equations 1 and 2, we get

1 [M (ec_et)z]

(ec—er) dec
1
Sbd® = e dey e [M ec—er]

These equations, which may be utilized to deduce the
stress-strain relationship for a material in the form of a
rectangular homogeneous bar, may be re-arranged to
give an equation published by Nadai.*

Sfebd? =

APPENDIX 2

Worked example

The data-chosen to illustrate this method were ob-
tained from test results on an end-anchored prestressed
concrete beam tested recently in the Concrete Technology
Department of the Imperial College, London, on behalf
of the D.S.LLR. and under the supervision of Professor
A. L. L. Baker. The beam section, detailed in Figure 5,
was prestressed by four cables, each consisting of
eight 2 mm diameter high-tensile steel wires. The cable
loads were measured by using electrical strain gauges,
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and the strain distribution in the concrete was measured
by means of a mechanical strain gauge.

The entire calculation is set out in Table 1, where the
bending moment and the steel force have been divided
by bd? and bd respectively to reduce them to the dimen-
sions of stress. It may be noted also that m,p and e;
have been tabulated for regular intervals of e;.. These
values were obtained from the mean curves obtained by
plotting experimental results. The full stress-strain
curve which was obtained is given in Figure 6.

s
d'=7-94"
d=10"
O @)
Figure 5.
4000 -
//
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< /
- /
~N
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"] ( o f.v.e.
3 .
- o
= / * by,
R 10001+
d
/
-0010 *~/ -00I0 ‘0020 -0030 0040

STRAIN (¢) inches/inch.

Figure 6.

* NADAI A. Plasticity. 6th. impression.

New York and London.

McGraw-Hill Book Company Inc.

1931, Chapter 23. .pp. 164-167.



Stresses in beams subjected to pure bending monient

TABLE 1.
m=M [bd? 0 33 106 173 220 242 253 273 297 323 345 363 376 382
p=Pibd 343 344 345 347 351 355 359 384 417 445 474 496  S512 522
m+p (1—d"id) 71109 177 244 292 315 327 352 383 415 443 465 482 489
m—pd’|d —272 —235 —168 —103 —53 —40 —32 32 34 30 —31 —31 —30 —33
e infinch X 10 | —0.6 0 +1.0 20 30 40 50 10 15 20 25 30 35 383
e in.jinchx 10°* | +25 +19 +08 —02 —14 —33 —60 —30 —60 —92 —121 —149 —176 —194
ec—e; in.finchx 10 | —3.1 —19 402 2.2 4.4 73 110 40 75 112 146 179 211 232
dey/de —1.07 —1.07 —1.07 —1.07 —1.43 —2.30 —3.00 —6.06 —6.06 —6.06 —5.77 —5.45 —5.40 —5.40
deg/de, —0.935 —0.935 —0.935 —0.935 —0.700 —0.435 —0.333 —0.165 —0.165 —0.165 —0.173 —0.184 —0.185 —0.185
L—dey dec 207 207 207 207 243 330 400 7.06 7.06 7.06 677 645 640 6.40
|—de. deg 1935 1935 1.935 1935 1.700 1.435 1333 1.165 1165 1.165 1.173 1184 1.I85 1.185
d deg {,,, +p(i—d’,d )} 66.6 66.6 666 66.6 341 175 834 633 633 600 500 390 278 166
do. X(ec—ey) | —206 —126 13 147 150 128 92 260 470 610 730 700 590 390

2 m—H)(l—d'/d)}

X (l—deg,dec) | 294 451 732 1010 1420 2080 2620 4970 5400 5860 6000 6000 6170 6260
p dey,dec —367 —368 —369 —371 —502 —820 —1078 —2330 —2530 —2700 —2740 —2700 —2760 —2820
fe 1b per sq. in. —279 —43 +376 786 1070 1390 1630 2900 3340 3770 3990 4000 4000 3830
d,’det{m—bd'/a'} —63.0 —63.0 —63.0 —63.0 —I182 —5.13 —1.33 — — o~ —  —  —

do. . X(ec—ey) 195 120 —13 —139 —80 —37 —I5 — — — —_ — — —

—2 {mﬁpd ’ /’d}

X (l—deg;dey) | 1052 910 650 399 180 115 8s 75 79 70 73 73 71 78
p dec/de, —320 —322 —323 —324 —246 —I154 —I120 63 —69 73 —82 91 95 97
fi 1b per sq. in. 927 708 314 —64 —146 —76 —50 +12 410 —3 —9 —I18 —24 —I9
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CRITISISM OF THE AUTHOR'S METHOD.

The most obvious defect of the above method is that
the author neglects the creep component of the overall
strains from which the stress distribution in the beanm
is d educed. This means that, on theoretical grounds
alone, the method cannot be used to derive the true
distribution because it deliberately neglects a factor
known to exist, unless, of course, the rate of loading is
infinite. This defect is in direct contrast to the
drawbacks of methods (a) to (d) which present practical
problems making it difficult to attain the theoretically

possible, and correct, end.

Before dealing with this point in detail it must
be pointed out that the author's method does entail
certain experimental difficulties. These do not come in
the same category as those inherent in methods (a) to (d)
since the sources of error are not characteristic of the
method and their eradicétion is simply a matter of
experimental technique. The technigue of testing concrete
beams has been studied by the author and a description of
this work with particular reference to the difficulties

hinted at above will be given in chapter 3 of this section.
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Chapter 2. THE INFLUENCE OF CREEP ON STRESS
DISTRIBUTION.

The physical nature of creep in various materials
has received much attention and many publications have
appeared on the subject. However, there appears to be
little evidence of the emergence of a general theory for
the behaviour of bodies under complex stress when the
material of which they are made is subject to creep
phenomena. That such a study of the phenomenological
aspects of creep presents considerable difficulties is
shown by the fact that little progress appears to have
been made since a claséic paper on the subject by Boltzman
in 1876 (8). This particular contribution will be

referred to later.

It would appear fortunate that, from the point of
view of the subject studied in this thesis, complex stress
systems need not be considered. This is indeed so, but
even when attention is confined to the case of material
subjected to a uni-axial stress, (i.e. as in the case of

simple bending) difficulties still arise.

Consideration will now be given to the gquantitative
aspect of creep in order to define the difficulties
mentioned above and to see if it is possible to assess the

effect, if any, on the gtress distribution in concrete

beams,



-27—

The following work will be restricted to a study of the

simple case of uni-axial stress.

THE GZNERAL CREEP EQUATION AT CONSTANT STRESS.

The creep eguation is generally given in the form:-

c = £.0(%) (2.1)

¢ being the creep strain, £ the stress and Q(t) a time
funection. A variety of forms have been suggested for
&ty but these are of no concern for the moment.
Bquation (2.1) will be referred to as the 'generai creep
equation'. This equation is strictly appiicable only
when the stress f is constant. It is thus of limited

value since in general, the stress varies with time.

CREEP UNDER VARYING STRESS.
This problem has been dealt with in a variety of ways:-
(a) Dby the use of an effective modulus. The concrete
Young's modulus is replaced by Ee = E/(1 + E.8(%)) (2.2)
and tﬁis value is used in the normal equations of
reinforced concrete. Basically the use of this
method assumes that all the creep has taken place
at the final concrete stress i.e. cp = £7.0(T).

(b) Dby assuming that the rate of creep is given by
BC de(t
De 2.3
ER i AI0 (2.3)
The author has argued elsewhere (9) that for a

continuously increasing stress assumptions
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assumptions (a) and (b) give upper and lower bounds

respectively for the total creep.

(¢) by using a principle of superposition. The suggestion
that such a principle may be applied to creep is due
to Boltzman (8). The application of the method to
concrete has been shown to be admissible by McHenry

(10) who expresses it mathematically in the form

.
_ af a4,
op = |_ o(+,7-%) a (2.4)

where T is the age at loading.

The effective modulus method is certainly the simplest
to apply and according to McHenry it is sufficiently
accurate for a large class of problems. The method is
fundamentally unsound in that it does not give a true
picture of the behaviour and if applied indiscriminately
it might lead to erroneous results. It gives most accurate
results if the variation in f is small over the period of
time considered. Method (b) does lead to results which
are more satisfying from the d escriptive viewpoint but
which are unsound because the basic assumption presumes
that the rate of creep is independent of the stress history
of the material. McHenry's method takes into account the
whole stress history and ié in consequence far superior

al though mathematical difficulties are met in its

application.
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It will be seen from the foregoing remarks that
creep problems can be divided broadly into two classes.
In the first class we have those systems in which the
stress variation is small, thus allowing the use of the
effective modulus. Secondly we have systems in which
the variation of stress is large and consequently require
the application of eguation (2.4) for their solution.
Fortunately the majority of cases met in normal practice
fall into the first class. The second case arises in
testing where the concrete stress ranges from zero up to
the crushing value. These two cases will be considered
with particular reference to concrete beams.

CREEP IN ORDINARY REINFORCED CONCRETE BEAMS WITH
SMALL VARIATIONS 1IN STRESS.

The effect of creep in the concrete and steel upon
the stress distribution in pre-stressed concrete beams

has been dealt with by Magnel (2).

The case of the redistribution of stress in ordinary
reinforced concrete beams due to creep will now be studied.
Before any analysis can be undertaken the assumptions upon
which it is to be based must be specified. It will be
assumed -

(a) that the concrete stress is uniquely»definea by

the instantaneous strain,
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(b) +that the concrete below the neutral axis has no

stiffness and carries no stress.

These are the assumptions specified on page 1 except
that (a2) has been modified to exclude creep strains.
It is now necessary to make a further assumption defining

the method by which the creep strains are to be assessed:-

(e) It will be assumed that creep may be allowed for by

the use of an 'effective modulus' (p.27).

The use of the effective modulus is known to be reasonable
provided that the stress vafiations are not large. If,
as a result of the analysis, it were shown that the
changes in stress are large then the result would be
incompatible with the assumption showing the latter to be

untenable.

Consider a rectangular reinforced concrete section
of breadth b and effective depth 4 having an area of
reinforcement Ag. The strain distribution with bending
moment M applied will be as in the diagram the geometry of

which gives
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£ E
= f 2 = ¢ . 8
nd Equating horizontal forces
1 £, = Gxfonfe 2.6
d Figure 2.5 ¢ it /b‘l (2.6)
Equating moments
1

(eee fs/;:— M/bo\R =zfn(i- 1)

(2.7)
From (2.5) and (2.6) we obtain
nz A.  E
n “C5d E (2.8)

If in this equation E, is replaced by the effective
modulus the variation of n with time is obtained.
Substitution of this relationship in equation (2.7) gives

the variation in concrete stress.

The variations in f, and n with modular ratio are

plotted in Fig. 2.6. The range of modular ratio given

is extreme as the lower limit of 4 would only be obtained
with very rapid loading of concrete having a cube strength
of about 8000 1lb. per sg. inch, whilst 64 is attained only
as limiting value (t—+ oo) for very low strength concrete
(cy = 2000 1b. per sg. inch). Nevertheless, the changes
in concrete stress and neutral axis position due to creep
appear to be substantial. The variations in the steel

gtress are, on the otherhand, negligible.



-2~

™M
{c‘-' Saz IS |
" VARIATIONS IN CONCRETE
STRESS WITH MODULAR |
o \ RATIO.
| \\\\\\f' m(Eg=30%10¢Ib/a")
D —
(@
n QB 64 p————
o4 P 8
/ . )
o-2 //jﬁ —=———1— MOVEMENT OF NEUTRAL
- | AR I -]
(e
.M
{'s"' bd2 \\
300 VARIATION N STEEL
STRESS WITH MODULAR
RATIO
200 & ll
Flaure 2.6
N&q
oor T~
\Q
o O-Ss 1-Q |5 20 25

STEEL RERCENTAGE.



-33-

The curves indicate the concrete stress to be 20%
to 30% below the calculated value based on the usual design
assumption of a modular ratioc of 15. This estimate is
slightly conservative as the use of the effective modulus
underestimates creep when, as in this case, the stress
decreases with time. This is a corollary to the remarks
in paragraph (b) on page 27. Professor A.D. Ross has
presented the case for using a high modular ratio in
design rather than the value of 15 (11) so that this aspect
need not be pursued further here. The analysis above

confirms the conclusions reached by Ross.

We must now refer back to assumption (c) on page 30
which pre~supposés small stress changes, and decide whether
or not it is Jjustified. One way to do this would be to
assume that %‘Ct = f ;%; © () and compare the results with
those obtained on the basis of the effective modulus
assumption. It is known that the true creep is intermediate
between that obtained as a result of each of these methods.
Unfortunately attempts to use this assumption result in
unmanageable eguations and a solution has not been found.
As an alternative approach %CTL = f -(%;- © (t) will be
integrated using the stress variations given in figure 2.6.

The creep strains so obtained are then compared with the

creep strains obtained on the basis of the effective

modulus calculations.
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dc ¢
S‘K‘fdte(t) cannot be integrated in general terms so a

specific example must be taken. In order to exaggerate
the effects the case of a low percentage of reinforcement
together with a low concrete strength is considered.

The values of the effective modulus for concrete having a
cube strength of 2000 1b., per sqg. inch are given in the
table below together with the variations in concrete stress
obtained from figure 2.6. The integrated values on the
fifth line of the table have been obtained graphically
from a more detailed plot of the values involved, the
actual curves are of little interest and have not been
included. Apart from this the first eight lines of the

table are gelf-explanatory.

. N sr—

1 Time 0O 1D 7D 1M 6M 12X
2 Effective modulus 10.0 22.0 27.5 37.5 50.0 56.5
3 o(t) x 10° 0  0.40 0.58 0.92 1.33 1.55
4 £, x "va? 8.2 6.2 5.9 5.1 4.8 4.7

c 6
doa M 2).10
b

6 Elastic strainaé‘-oxm 2.7 2.1 2.0 1.7 1.6 1.6

T Total strain »{Hx10° 2.7 4.9 5.9 8.0 9.9 11.0
8 fo/ B, x (Wra2)10® 27 4.5 5.4 6.4 8.0 8.8
9 Modified EFf. Mod. 10.0 23.6 29.8 46.8 62,1 T7.0

0 " fox-dy 8.2 6.0 5.6 4.7 4.5 4.3
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The seventh and eighth lines enable a comparison to be made
between the strains obtained by integration and those given
by direct application of the effective modulus. The two
methods do not, at first sight, appear to compare very well
but as it is the stress distribution which concerns us the
calculations are carried a little further in the last two
lines. In line nine the modified effective modulus is
calculated on the basis of the integrated strain (line T)
and the original f, values. The modified effective
modulus enables f, to be recalculated from equations 2.4

to 2.6 these values are tabulated in line 10, The new
Eorp, and £, could be taken and the integration repeated.
Inspection'shows that the process converges. However,
comparison of the two £, values shows good agreement
indicating that little change can be expected from further

interations.

The conclusion to be drawn from this is that the
stress changes are 'small' thereby justifying the use of

the effective modulus.

CREEP PHENOMENA 1IN BEAMS SUBJECTED TO LARGE
VARTATIONS IN BENDING MOMENT.

It has already been remarked that the use of the
‘effective modulus and equation (2.3) is inadmissible when
the material considered is subjected to severe variations

‘in stress,
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In such cases it is necessary to use MoHenry s equation:-
T
ep = l o(t,T - t)"' dt. (2.4)

where T 1s the age at loading.

When stated in the above form the equation can be

gpplied to allow for the effects of ageing. This

property is

toe
+

illustrated in

/,/—’”‘ fig. 2.7, which
]
///'

<«
v

-
/ is abstracted from

o
™~

McHenry's paper
(10). ‘It can be

//”" seen that 0(t) is

20 80 120 160 dependant on the
AGE AFTER CASTING - DAYS.

CREEP - MILLIONTHS /P.5.\.
Q
232

Q

age at which the
Figure 2.7 concrete is loaded.
If the material is subject to severe load variations and
the period of load is long then the phenomenon of ageing
nust be considered. The problem does not arise in testing,
for in such cases the time taken to load the specimen to
destruction is short so that the properties of the concrete
do not change appreciably during the period of testing.
In this case (2.4) can be amended to read

cp = JT (T - +) IF df at . (2.9)
0
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As it is very simple to deduce this eguation from first
principles its derivation is given below to illustrate

the use of superposition.

DERIVATION OF EQUATION (2.9)
cA Q\%.\), ~ Assuming that the creep
o’/
JJ&B@LQ equation is ¢ = £.9(t), £ being
T a constant stress, and applying
the principle of superposition,

the creep at time T due to an

- increment of stresséf applied at

14 T
time t is

therefore (T
Cp= Q(T - _'t).df

©)O

T

= o(T - +) &£ as.

0 dt

CREEP AT HIGH STRESSES.

Although equation (2.9) can be used to calculate the
creep in a material which is subject to severe stress
variations the stresses must not approach the ultimate
strength of the material. This is because equation (2.9)
is based on the fundamental creep equation which assumes
that at constant stress the creep is proportional to that
stress. It is known that the linear relationship does

not hold for high stresses for which the rate of creep is

higher than that given by equation (2.1).
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Tﬁe creep properties of concrete at high stresses do
not appear to have been studied. In a recent search through
the literature the author was able to find but one
publication dealing with this problem (12). This paper by
Shank (published 1949) shows that the problem is being
considered but that as yet very little information is

available,

It would be unprofitable at this stage, to speculate
upon the stress creep relationships at high stresses and
attempt to build up a theory of the behavious of beams upon

such a bagis.

Despite this assertion the author has given the problem
some consideration, but he has tackled it indirectly by
assuming a simple mode of behaviour and determining the
stress creep conditions which must occur to give the assumed
result. As the results are of some interest the work is

given below.

AUTHOR'S HYPOTHESIS FOR CREEP AT HIGH STRESSES.

I% is sometimes suggested (see for example reference
(11))that as the creep rate is relatively high at large
stresses there is a tendency in beams for the more highly
stressed outer fibres to throw some of their stress on to

the inner fibres.
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Thus it is suggested that the stress distribution indicated
in figure 2.8(a) degenerates as a result of creep into

that indicated in (b), where a homogeneous beam is considered

(2) (v)
Figure 2.8

for simplicity. It is evident that in general some such
action must occur but it is of interest to seek the

conditions under which there is no re-distribution of stress.
A C '

e.las\-ic./- Zi ;
strain. creep
slfrain

D B
strains stresses section

Figure 2.9

Consider a beam under a constant moment M. Assuming
that the bending moment is unaccompanied by shear plane
sections remain plane so that the distribution of total
strain across the section must remain linear as indicéted
by CD. If the distribution of 'elastic' strain is not
changed with time and is given b& AB,theﬁ.by similar

triangles we have at all positions in the depth of the beam
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c Xe
i030 CcC = koeoo(t) (2.10)
Hence if the creep is proportional to the ‘'instant-

aneous' strain no re-distribution of stress will occur.

Note that no assumption has been made regarding the
stress distribution so that the reasoning is not confined
to the case of a linear stress strain relationship and is
applicable to plastic conditions., If £ = ¢ (e), equation
(2.10) can be written in the form

¢ = k.d™I(£).8(%) (2.11)
under elastic conditions ¢~ () = £f/E and k = E 80
that (2.11) reduces to (2.1).

If the principle of superposition is assumed in
respect of strains equation (2.9) becomes

p

Cp = k.[ (T - t)gg dt (2.12)

at
(0]

and it can be shown that the stress distribution is

unaffected by creep for the case of a varying bending moment.
As this proof is slightly more complex it will not be

included in the text but is given in Appendix 2.1.

The above analysis raises the hope that the problem of
creep at high stresses may yield to rational analysis.
It is evident that if the stress distribution in a homogeneous
structure is dependent_upon creep then any resulting

analysis/
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e 4

analysis will be complex and probably impossible to apply
reasonably to reinforced concrete. If on the other hand
the desired condition of equation (2.10) is realised the

problem is very much simpler,

Professor Shank's work when it is published in full
will show if it is jﬁstifiable to consider the creep under
constant stress as proportional to the instantaneous strain.
Until some such evidence is available for consideration

further study of this particular aspect is not warranted.

CONCLUSION.
The conclusions to be drawn from this chapter ére:-

(i) Under normal working conditions the use of the
effective modulus gives reasonable accuracy in the
prediction of the redistribution of stress in
reinforced concrete beams. In this instance the
effective'modulus underestimates the creep effect but
even under very adverse conditions the error in
concrete stress is unlikely to be greater than about

5% (see page 34). ?

(ii) If the beam is subjected to large variations in
moment then lMcHenry's method using the principle of
superposition, should be used. The method is,

however, restricted in application to cases where the

concrete stress does not approach its ultimate value.
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(iii) The subject of creep of concrete under high stresses
appears as yet to be an almost completely un-explored
field and in the absence of a rational basis it is
impractical to digress on the behaviour of beams at

loads near failure.

It has been shown, however, that if the fundamental
creep equation can be written ¢ = k.e.9(t) for high
stresses, and if the principle of superposition can be

applied to strains then the problem is very much simplified.

Before concluding this chapter we will refer once
more to the author's method for determining the
digtribution of stiess in reinforced concrete beams. This
method is based on the assumption that creep is negligible,
It is clear from paragraph (iii) above that, as yet, this
assumption can not be replaced by a more fundamental one
allowing for the effects of creep. Even if the creep data
were available it would not be a simple matter to allow for
it. All the work in this chapter has been devoted to
evaluating creep strains under specified stresses and
adding the elastic strains to obtain the total. It is
very much more difficult to separate the two components
when, as in the author's analysis,lthe total s train is
given. If creep effeéts are to be eliminated it will be

necessary to compute the creep strains, subtract them from

the total and apply the analysis to the residue.
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But the elastic strains must be known before the creep

strains can be calculated!

The mode of attack appears to be:-

(i) TUsing the measured strains and knowing the creep
properties, which are supposed related to the
instantaneous strain, calculate the creep strains.

(ii) Subtract these values from the total strains.

(iii) Repeat step (i) using the residuel strains.  This
will give the second approximation for the creep
strains. |

(iv) Continue the iterations until the convergence is
satisfactory.

(v) Having subtracted the faccepted' creep strains from
the total strains appl& the autﬁor's analysis to

the residual strains.

NOTE, however, that the method will be valid only if the
creep laws are such as to allow of the superposition of
strains. Otherwise it will be found after step (ii) that
plane sections are no longer plane. This is known to be

physically impossible with circular bending.

The above suggestion is open to the objection that
it would be necessary to obtain the creep data from

uniaxial compression tests whilst this method is considered

undesirable/
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undesirable for the determination of the stress strain
curve. The disadvantages of measuring the stress strain
characteristic in a 'simple' compression test are given
on pagels;paragraph.(a). éhe same defects do not arise
in creep tests because there is but little lateral creep
due to a longitudinal stress so that the complications

due to lateral restraint do not apply.

There is an alternative method which whilst being
theoretically attractive is, in the opinion of the author,
impossible practically. The method would be to make a
number of identical bemas and test them at different
rates of loading. All the appropriate data plotted to a
base of time would then be extrapolated to give the 'zero-
time' values. Imploying the author's analysis on.the
resuiting data the stress sitrain curée would be obtained
exclusive of creep strains. A similer method has been
used by Glanville to determine the 'instantaneous' stress

strain curve in a uniaxial compression test. (13).

The difficulty of applying this method would lie in
producing sufficiently identical beams. It seems likely
that the normal variation which one would expect between
the strengths of similar beams (say 10%) would mask the

effects of creep to such an extent as to make the method

suggested impracticable.
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IT Chapter 3. THE TESTING OF RECTANGULAR REINFORCED
AND DPRE-STRESSED CONCRETE BEANMS TO .
DESTRUCTION,

Whatever method is used to determine the distribution
of stress in concrete beams the results must eventually be
considered in the light of tests on actual beans. Although
the following work is concerned with determining the data
required for the method of analysis given on pages 20-24,
the observations made are applicable to beam tests
generally, irrespective of the way in which the derived

data are applied.

Recapitulating from page 21, the experimental
quantities required for the author's analysis are:-

(a) The dimensions of the section.

(b) The bending moment.

(e) The steel force.

(&) The eccentricity of the steel.

(e) The longitudinal strains.

EXPERIMENTAL TECHNIQUE

The general arrangement of the testing apparatus
used for beam tests is given in figure 2.10. The
determination of each of the above quantities will now

be considered in detail.

(2) The dimensions of the beam s ection should be

obtained by measurement of the actual specimen.
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It is undesirable that the nominal shuttering sizes should
be taken for granted as being correct. This is particularly

80 in the case of small beams.

(b) The dynamometers through which the load is
applied to the beam can be calibrated independently and
provided that care is taken in placing them in position the
bending moment can be computed accurately. In the course
of the series of tests q@oted later two types of dynamometer
were used, firstly a mercury filled diaphragm type and
~secondly a proving-ring. The writer considers the later
to be the more suitable instrument in that its readings
may be taken quickly without the element of personal error.
For whereas the proving-ring gives a direct readiﬁg on a
S dial gauge, the diaphragm type requires the adjustment of
a cealibrated screw to bring the mercury to a specified
level in a capilliary tube. The diesphragm type is at a
further disadvantage in that changes in the room temperature

can alter the zero reading of the instrument.

(¢) The determination of the steel force can present
difficulties. In the case of ordinary reinforced concrete
beams with large diameter bars the steel strain can be
measured by the attachment of electrical resistance strain
gauges or, by stripping some of the cover and affixing

mechanical or optical strain gauges (14).
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Similar methods can be used in testing bonded pre-stressed
beams having 5mm. or Tmm. diameter wires. As the stresses
are inferred from the total strain measurements, errors
are introduced here if the creep is significant. In the
case of bonded pre-stressed beams using 2mm. diameter wires
(which are too thin to permit of the attachment of gauges)
the only method of estimating the steel force appears to be
by inference from the concrete strains on the assumption
that there is no slip, With non-bonded wires the steel
force can be obtained by the insertion of a dynamometer
between the cabie anchorage and the end of the bean. Two
types of dynamometer, both on the same principle, have been
in use in the Civil Engineering Department at Imperial
College. The first was

E.R.STRAIN GAUGES
/ devised by Lao (15). 4
, modified version used in
*
7

the tests described here

is indicated in figure

2.11. It consists of a
Figure 2.11 duralumin tube with
electrical resistance strain gauges stuck along two
diemetrically opposite generators. The two géuges, which
are connected in series, give the mean strain which is

independent of the eccentricity of loading. The instrument
is calibrated by measuring the change in resistance due to

a pre-determined load.
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(d) The actual position of the reinforcement in the
beam should be checked at the section of failure after
the beam has been broken as it is easy for the reinforcement
to be displaced relative to the shuttering during casting.
This check is particularly desirable when beams of small

section are used.

(e) In the tests with which the writer has been
associated the concrete strains have been measured with a
Metzger gauge (see ref. 4 for description). This gauge
is not fixed in one position but is demountable and is used
for measuring strains over a number of independent gauge-
lengths. It is in fact used for measuring strains at all
the gauge stations indicated at the centre section of the
beam in figure 2.10, The demountable gauge is certainly
less accurate than a fixed gauge but it has the advantage
that strains can be recorded at a far greater number of
gauge stations than would otherwise be possible. It is
much more satisfactory to have a large number of fairly
accurate readings than to rely on a few readings of
supposedly high accuracy. In any case the Metzger gauge
is sufficiently accurate for the measurement of bending
strains since an eXperienéed.operator'can guarantee that
95% of his readings will be accurate to a strain of

+ 12.5 x 1070 or a stress of approximately + 50 1lb, per

Square inch.
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We have left out of account the possibility of using
electrical resistance strain gauges for the measurement of
the concrete strains. It is the opinion of the author
that this type of gauge should, if possible, be avoided for
this purpose. Not only are they far more trouble to fix
than the mechanical gauge but drift phenomena are particularly
troublesome when electrical resistance gauges are attached
to concrete. Claims have been made that drift can be
eliminated, but from his own experience and from observation
of other people's work it appears to the writer that the
use of resistanée gauges on concrete provides a continuous
source of difficulty. Their use on concrete should,
therefore, be restricted to places which are inaccessible
to the Metzger (or similar) gauge or where stress variations
are such that the use of a long gauge-length is not
permissible. Even so a véry short gauge-length should not
be used as strain variations due to local irregularities

are recorded rather than the average strain condition (16).

Referring to figure 2.10 it will be seen that three
gauge lengths are indicated in the centre span where the
bending moment is nominally constant. It has been found
that the provision of a single central length is inadequate
as the failure is generally localised and it is necessary

to provide gauges at a number of sections in order to

ensure that the crushing zone is covered.
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Figure 2.12 gives a typical example of the variation in

strain obtained at the three sections.

THE CHECKING OF TEST DATA.

One of the major problems in testing pre-stressed
concrete beams is in the making of an accurate assessment
of the steel force. With grouted beams the difficulty
arises because of the lapse of time which must take place
between pre-stressing and testing. During this period
there is a loss of steel stress due to éreep and shrinkage.
Electrical resistance strain gauges attached to the steel
cannot give a useful estimate of this loss for two reasons:
Firstly because resistance gauges are unreliable for long
period tests and secondly because the straiﬁs even if
accurately recorded would include the creep strains of the
steel. Thus, whilst strain gauges attached to the steel
may give the strain changes which take place during the
course of a test the initial stress in the steel must be

a doubtful quantity.

With non-bonded beams use of the Lao type dynamometer
gives a fair estimate of the cable force if the cable is
straight. If there are bends in the cable friction can
cause the steel force at the centre of the beam to be

different from that recorded at the ends.
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In the light of these observations the author considers
that it is vital to apply a cross—check to verify the steel
force. He has used two simple checks which enable this +to
be done.

THE ASSESSMENT OF THE STEEL FORCE IN PRE-STRESSED
BEAMS.
METHOD I.

The deflection readings are used to effect this check.
Such readings are taken with dial gauges situated at the
ends and centre of the beam, as indicated in figure 2.10,
whilst the beam load is increased until the cracking load
has been passed and the presence of the tensile cracks
verified. The beam is then unloaded and reloaded. The
load-deflection curves obtained from such a procedure during
an actual test are given in figure 2.13 to which the reader
is now referred, It will be seen that the curve obtained
on the second loading fbllows the first curve until point
'A' is reached where a discontinuity occurs in the second
éuﬁve. This discontinuity is due‘to a change in the
effective stiffness of the beam as the cracks, already
formed during the previous loading, start to re-open. As
the bending moment is increased the original curve is
rejoined when the load reaches the maximum value attained

in the previous loading.
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The focus of interest is on point 'A'. At this stage
when the cracks start to reopen the strésé distribution can
reasonably be assumed to be triangular as in figure 2.14
(Assuming that there is no plasticity, and this will be the

case if the design is a practical one).

) The bending moment at stage 'A!
——/ is read from figure 2.13. At-
a .
M |[D V‘\) - This stage the centre of
compression of the concrete
> P

stress is known to be D/3 from

Figure 2.14 the top surface of the beanm.

Equating the moments acting on the concrete we obtain,
P =NM.(d - D/3)°% (2.10)

Hence the steel force P is determined.

If there is a lapse of time between pre-stressing and
testing the elastic strains in the concrete are unknown at
zero load, due to creep, loss of pre-stress, ete, and
these must be computed to enable the total strains in the
concrete to be determined since strain readings will
generally be taken relative to the 'zero-load' values unless
the pre-stressing and testing are déne on theﬁsame day.

The initial concrete strains can only be calculated if the
steel force and Young's modulus are known. We have seen

how the steel force méy be obtained. The same load-

deflection curve can be used to determine the modulus of

elasticity.
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For a symmetrically loaded beam the central deflection

is given by

8= 53 % k. Mx
thus
I
E= —— x(slope of moment deflection
k.3 curve) (2.11)

Knowing both P and E it is now a simple matter to
compute the 'zero-load' strains due to self weight and

pre-stress alone.

METHOD IT.

The second method of checking the steel force is not
so wide in application as the deflection method in that
it can only be used if the elastic strains due to pre-
stressing are known. That is to say its use is restricted
to those tests in which the loading follows immediately on

pre-stressing so that the concrete strains are measured

relative to the unstressed state.
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In fact the member is nearly always stressed due to its

own weight but for the purpose of this check these strains
must be excluded. The second method is given because in
the case where it is applicable it provides an independent

check on the Young's modulus in addition to giving the steel

force.
. e. — woncrete %Tra‘m The pre-stressing force,

applies a bending moment to

D the beam by virtue of its
| ) X\ ) € ) eccentricity. This moment

\ 1P curves the member,
S It is fundemental to
Figure 2.16 pre-stressed concrete that

this curvature is counter to that produced by the loads
applied to the bean. Thus if the loading is applied
gradually there is a stage when the beam is once again
straight, at any section chosen for consideration. At
this Jjuncture the external bending moment M must equal the
pre-stress moment P.E. Thus if this value of M can be

determined P is immediately calculable.

It is easy to show that the radius of curvature of
the beam is given by D/(e; - et), where e, and e are the
concrete strains as indicated in figure 2.16. When the

beam is straight (ec - ey) = O.



58—

The external moment M plotted against (ep - et) gives a
straight line provided that the moment is not large. This
line cuts the moment axis such that the intercept gives the
moment which is just sufficient to counteract the curvature
due to pre-stressing. Hence the steel force, P, is
determined.  Results from an actual beam test are plotted

in figure 2.17.

It is readily seen that the slope of the line,

M
A(e, - e)

, equals EI/D. This determination of B is

independent of the deflection method of obtaining this
quantity and it is possible that the two methods may give
differing values. The reason for this, assuming that

no grave error is revealed, is probably due to the deflection
method giving an average value of E fbr the whole beanm
whereas the strain method derives E at a specific section.
DERIVATION OF STEEL FORCE IN A DBONDED BEAM UNDER
ULTIMATE CONDITIONS.

The methods given in the preceding pages provide a
check on the steel force at the cracking moment. In a
non-bonded beam the steel force can be kept under constant
observation by means of a dynamometer is inapplicable.

If the reinforcement is 5 mm. in diameter or larger electrical

resistance strain gauges can be fixed to the steel before

casting the bean,
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Such gauges frequently falil to operate properly and in the
case of high tensile steel wire interpretation of the strains
in terms of stress is difficult for it has been shown that
the stress-strain curve is very much dependent on the rate

of loading. It is hardly possible to stick resistance

gauges to 2 mm, diameter wire.

When it is impractical to attach gauges direct to the
reinforcement of a bonded beam the steel force must be
estimated by inference from the concrete strains on the
assumption that there is no slip between the steel and
concrete, Not only is it difficult to obtain a good
estimate of the stress from the strains but there is almost
certainly slip between the steel and the concrete as
failure becomes imminent (Baker suggests an F of 0.85 for
~ bonded beam) and freguently slip occurs at lower loads.
Thus in the case of bonded beams a correct assessment of
the steel force is very difficult to obtain. Unfortunately,
if the test is carried out with the object of determining
the constants is, say, Baker's theory (4) the value of
these constants depends almoét completely on knowing the

actual steel force. Using Baker's symbol's:-

g""izz R (1= oty (2.12)
e Looon(ae) o

bd
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where M;; and T,, are the bending moment and steel force at
failure. ]5 and N which give the centre of compression
and the position of neutral axis are as already used in
figure 1.1. c¢' is the top fibre stress and o is a shape
factor for the stress—strain curve. ( otec') has the
dimensions of stress and it is not necessar& to separate

the two components.

Assuming that the test has been carried out with the
object of determining ( Ne') and W it can be seen from
the above équations that Mu; n and T,; are all reguired.

For small values of n, ¥ can be guessed and ( X c') can be
calculated with fair accuracy from (2.12). If this is done
(2.13) can be used to calculate Ty which can be compared
with the value calculated from the strain measurements thus
enabling the F factor to be computed. This process is
clearly somewhat make-shift and it is far better to try to
obtain the actual T by some other means. In any case for
low position of the neutral axis i.e. large n, the value of
( A er) determined from (2.12) will depend upon the guessed
value of ¥ to a significant extent.

USE OF AUTHOR'S ANALYSIS TO DETERMINE STZEL FORCE.

~

The analysis given on pages 20 to 24 can be used as a

check on the steel force.
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The stresses in top and bottom fibres of a concrete

beam are given by the two equations:-—

f- ;ghéij-m C%&KH + P&'\_-I')(ec-e.t\l} + Pa %]

{:f 515\"[‘6%66 o%&-{(M"' Pa'Yec-a) } « Pa de.

It has been pointed out on p.l8 that the second
equation is really a check equation for once the beam has
cracked fi is obviously zero. If, as in the case of beam
II, this is not the case an error is present. On the
basis of the reasoning in the past few pages the steel force
is the most likely source of any significant error.
Provided that this is the case the above equations can be

used to calculate the actual steel force.

The method is best explained with the aid of an example:
On page 63 the author's analysis is applied to data obtained
from a test to destruétion on a pre-stressed concrete beam.
The beam was made as identical as possible to that described
on page 23 except that the pre-stressing cables were grouted
after tensioﬁing. 2 mm., diameter wires were used for thé
reinforcement so that direct measurement could be made of
neither the steel force nor strain. The steel force
tabulated in the second line of the table was obtained on

the assumption that there was no slip between the concrete

and steel.
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It can be seen from line 6 that some considerable error

nust be present as the numerical value of the calculated
tensile stress approaches 20% of the value of the compressive
stress when in fact it is known to be zero. If f.b is
assuned to be zero the first of the above equations can be

reduced to

{c = ‘E!R ig[?(ec-e@]

Integrating
jefF _ P (
etco\ec- b €.-ev)
or P _ €
4?" ;;L "Qg;ébgi}ie *

The integral term represents the area under the stress-
strain curves. Since f, has been obtained for a succession
of e.Js |, fecgde can be evaluated for the same els

€

All guantities have been plotted for regular intervals of
ec so that it is simple to evaluate the integral in a
table. This is done in lipes T-9 on page 63. p is given

in line 10. If this is compared with line 2 it can be
seen that there must have been a fair amount of slip, for
at failure p is 678 compared with 949 calculated on the
no-slip assumption.

¥ Note:- This expression can be derived guite simply

by saying that the tensile force in the steel

nust equal the total compressive fo i
concrete,. F Tee A the
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As P is now amended f, must be recalculated, line 11,

It is not necessary to recalculate fi at this stage; it
is simpler to evaluate the new p. This is used to obtain
a further value for f, and the process is repeated until
fo and p cease to vary with each iteration. In line 17
fo is deemed to have reached a sufficiently stable value.
As a check, fi is now calculated and it is seen in line

to be negligible.

One point requires a little elaboration: It will be
noticed that the area under the stress-—-strain curve is
evaluated between the limits e, and e4.  This means that
the whole of the shaded area A sTRESS
given in the adjacent figure _
must be summed algebraically. ///6
The first calculation of the /4/(
stress-strain curve leads to
curve ABCOD. We know that -000S

————

section AB is incorrect <

(there can hardly be com- A B o @. STRAW.

pressive stress in a region

cracked in tension) so that Figure 2.18

in evaluating the intregral the curve A'BCOD is used. That
means that we assume section BCO to be correct. No other

course is open for the method of checking the steel force

Just described is only legitimate as long as the concrete

is cracked,
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In any case the value of the steel force up to the cracking
stage should be known as bond failure is hardly likely to
occur before cracking. It is assumed that the checks
described previously (pp. 51-58) have been used to check
the steel force up to the cracking stage. If these checks
fail badly the results of the test are of little value.

The resultant stress-strain curve from this test is
plotted in figure 2.19 where it is compared with the

original curve obtained before correction of the steel force.



STRES> 4AQ

b/u“ / /. ‘
N CORRECCTCD
3 . N . C.UQV.E
RN
~
4 SR
30 / ( -
. UNCORRETED —~ — £
corve  (No
ALLOWANCE
2500 FOR Sw\e)
2000
\S0Q
AQA0
500 FIGURE 2.9 - ]
\Q s 20 25 29 25 49 45 n Q7

OSTRAIN

..Lg-



—-68—

IT Chapter 4. RESULTS OF TESTS ON A NUKBER OF
PRE-STRESSED CONCRETE BEAMS.
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direction of Professor A.L.L. Baker B.Sc.(Tech.), M.I.C.E.,
I.I. Struct.E. at the Imperial College of Science and
Technology, S. Kensington, London. The author, a member of
the group when the tests were made, wishes to thank

Professor Baker for permission to use the results.

GENERAL DESCRIPTION OF BEAMS TESTED

In this chapter the author uses his analysis to
determine the stress strain curve for the concretes used
to a series of six pre-stressed beams. The original object
of the tests was to provide a direct comparison of the
strength of beams having a normal, high, and very high pre-
stress (in terms of concrete stress) and between those
having the same pre-stress but which differ by their

being either grouted or non-bonded.

Beams I - IV were all nominally 5 inches wide and
10 inches deep having an effective depth of 8 inches.
Beams V and VI were 5 inches wide by 7 inches deep and had
an effective depth of 5 inches. A1l beams had an overall

length of 8 feet.
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Precise details of each bheam will be given as each one is

considered.

All beams were cast in the same timber shuttering.
Beams I-IV were hand rammed whilst beams V and VI were

vibrated externally.

The beams were all post-tensioned by cables consisting
of a number of 2 mm. diameter high tensile steel wires.

The general disposition of the cables
8'- o" .

3“ z‘.. 6“ 2-|~ 6“ A 2'- Q“ ‘3;

Y

S

I ~— A‘——f”’————--

| Jo3
$o
-

Figure 2.20

is given in figure 2.20. The holes through which the
straight cables were passed were formed by means of a
length of Bunsen tubing held rigid by a steel bar passing
through it. With the bent-up cables it was not possible

to use a steel bar so to prevent the tube being crushed

a rope core was used. The tubing was held in position

by binding wire.

The method of anchoring and prestressing the cables was

designed by members of the D.S.I.R. group and is indicated

in figure 2.21.
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EXPERIMENTAL TECHNIQUE
As a general rule the technique and checks described
in IT Chapter 3 have been applied in all the tests although

some of the methods were developed as the experiments

progressed.

Four-point loading was used as shown in figure 2.10.
In all beams strain readings were taken over the three gauge
lengths indicated in the figure. In the following pages

the author applies his method of analysis to each beam and
where the strain distribution varies with the position, the

stress-/
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stress-strain curve will be determined for all three
sections of each beam. Where circumstances warrant it
the steel stress figures are amended in the manner
suggested at the end of the last chapter. The original
experimental data from which the concrete stress-strain
curves have been deduced, is summarized in Appendix 2.2.

"

BEAM No. I. e 32°
Concrete 1:1:13 by weight. Vater 7
cement ratio 0.4. "

‘ T% STEEL
Average cube strength 6,900 1b/sq.in. 00" (Cﬁfﬁ-

Q o

Reinforcement - 4 cables each O O
consisting of 8 high tensile steel
wires 2 mm, diameter. Non-bonded. Figure 2.22

————— — o oo —— ————— —— —— ———— .

This beam has already been analysed to a certain extent
on pages 17 to 22, where the stress strain curve is evaluated

for the centre section.

The stress strain curves for the other two sections, L
and R, are plotted with the curve obtained at the centre
section in figure 2.23. In each case the fy values for the

cracked beam are 'zero' thereby verifying the steel force.

It will be seen that there is remarkable agreement between

the figures obtained for the left-hand and centre sections.
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Note that this is despite the fact that the strains recorded
were much higher in the latter section. It appears odd
that the meximum strain at the centre section should be 30%
greater than that in the left-hand section when both are
subjected to the same moment and when the concrete in the
two sections appear to be identical in deformation properties.
The reason is quite simple; the first crack opened in the
centre section and the neutral axis was always higher there
than in the other two sections, so that with the smaller
compression zone the compressive stress, and hence strain,

was also higher there.

Crushing actually occurred at the junction of the left-
hand and centre sections. The stress strain curves indicate
the reason for this: +the concrete in the right-hand section

is shown to be stronger.

BEAM No. II
Except that the cables were grouted after pre-stressing
and that the cube strength was 7,300 1lb/sg.in. beam II was

the same as beam I.
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The difficulty of obtaining the steel force in a grouted
beam has already been stressed. In analysing the results
obtained from this beam it was assumed in the first instance
that there was no slip between the steel and concrete and
was calculated on that basis. As is shown in the table on
page 63 this leads to impossible values for fy. In the
same table the method of correcting the steel force is
elaborated and figure 2.19 shows the effect of steel force

correction on the stress strain curve.

The same process has been effected with the data
obtained from the left-hand gauge length. In figure 2.24
the corrected stress strain curves obtained from both the

left-hand section and centre section are compared.

The figures for the right-hand section agree so well
with those obtained from the centre section that it is
impossible to distinguish the separate curves. For this

reason the results from this section have been omitted.

The results are interesting because failure appears to
have occurred in the region where the céoncrete is slightly
stronger although the difference between the two curves is
slight. Once again the neutral axis is higher at the
section of failure and the reason appears to be that slip

was slightly more severe at this section.
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This can be seen from figure 2.25 where the original and
- corrected steel force curves are plotted. At first sight
it appears strange that the corrected curve which is supposed

to correct for slip should give a steel force which is

VA initially higher than the
: ; uncorrected value. The reason
\
c B O for this is as follows:-
| |
. : The wire is not likely to slip
| :
' [\ ; throughout its length the
e
1/ ' L! moment that the first tensile
é¥§§f&l; : cracks appear. Refering to
FORCE ) |
3 figure 2.27, assume that the
Figure 2.27. crack has just formed.

At section A all the tensile load is correct in the steel.

At section C some of the tensile load will be in the steel
and some in the concrete. Thus the steel force will be
higher at A than at C. This means that between A and C

bond stresseS'must‘be operative. These stresses will be a
maximum at the crack and will diminish towards C and provided
that the ultimate bond stress is not reached slip will not
occur. It is clear that a certain amount of slip must occur,
(otherwise the steel in the gap would be strained infinitely)
say as far as B and B'. Over the length BB' the steel force

will be above the average value given by the strain measured

over the whole gauge length.
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This explains why the corrected steel force (calculated on
assumption that the concrete carries no tensile stress) is
greater than that calculated on the basis of the strains over
the whole gauge length. As the load is increased point B
moves towards C and the next crack and eventually slip
occurs right through from crack to crack. If the beam were
subjected to a uniform bending moment throughout the whole
of its length the corrected and uncorrected steel force
curves would coincide for all further increases of bending
moment. In the case of the beams analysed here the bending
moment tapers off outside points L, as in figure 2.28, and
slips into the centre section from the ends of the beam and
the actual steel force falls below that calculated on the

no slip assumption. Under these conditions there can be
but very little difference in steel force from point to
point over the length of beam subjected to the uniform
bending moment. This is verified by the data given in
figure 2.25 which shows that although the steel force in
two gauge lengths differs somewhat in the transifion stage
from initial cracking to full slip, there is little

difference oncevfull slip is established.

"y

Fheemeee ) a—
-4

=
Fl---—--

FIGURE 2.28
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It is interesting to oomparevthe steel force curves of
Tigure 2.25 with the deflection curve in figure 2.26.
There is a definite discontinuity in the latter curve where
m equals 375. This value compares well with the
discontinuities in corrected steel force curves at 340 and
360. There 1s an apparent anomaly in the deflection curve
as the beam appears to be stiffer after the steel has slipped!
The reason is not difficult to find. Comparison of the
steel force and deflection curves indicates that the
discontinuity in the latter marks the end of the serious
slip. This means that just before the discontinuity the
steel was slipping through the concrete as the load increased.
At an m of 375 the steel had slipped as far as was possible
and this relative movement between the steel and the
concrete stopped. The effect would have been just the same
if the stiffness of the steel and hence of the whole beam
had been suddenly‘increased as suggested by the deflection

curve,

BEAM No., III
This beam was of the same cross-section as beam I

insofar as the concrete is concerned. . The area of steel
wes greater then that in beam I each cable consisting of

12 high tensile steel wires 2 mm. diameter.
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The steel was not bonded to the concrete. Average cube

strength 7,500 1lb/sq.in.

It was considered inadvisable to pre-stress this beam
fully without any load on it because of the danger of
cracking the concrete in the top of the beam. The procedure
was to put half the desired pre-stress in the steel and to
load the beam until it cracked. The load was then
meintained whilst the steel force was increased to its full
value. Loading wes then continued. This results in a
discontinuous curve for the steel force, figure 2.29, and
the strains. This discontinuity does not cause any
difficulty in the determination of the stress strain curve
provided that no attempt is made to differentiate across
the discontinuity. Although this beam was non-bonded and
the steel force was measured by means of dynamometers
throughout the test the f4 values for the cracked beam were
found to be unsatisfactory. The steel force was corrected
as in beam II and the corrected curves are plotted in
figure 2.29. '~ There is a substantial difference between
these curves and the original one. There appears to be no
simple explanation for this. Possibly the steel force
measurements were correct and it is the strains or beam
dimensions which are in error. There is no way of checking
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Fortunately the correction to the steel force make little
difference to the corrected stress-strain curve in this
case. Figure 2.30 shows the stress-strain curve obtained
at the three gauge positions using the 'corrected' steel
force. For comparison the curve resulting from ﬁse of the
uncorrected steel force is superimposed. It can be seen

that the difference between the two curves is negligible.
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BEAM No. IV
This beam was the same as beam III except that the
prestressing cables were grouted after pre-stressing.

Average cube strength 7,500 1b/sqg.in.

The results of the test on this beam call for little
comment. The stress-strain curves for the concrete are
given in figure 2.31. The steel force was corrected in
deducing these curves although the corrections applied were

very small as the following figures show.

m 600 650 700 750 T80
p (R section uncorrected) 920 970 1030 1120 1190
p (R section corrected) 960 1020 1090 1150 1200
»p (¢ " " ) 970 1010 1070 1140 1190
p (L " ") 950 1100 1060 1130 1200

It can be seen that in all cases the corrected values
are higher than the uncorrected. This may be ascribed to
the phenomenon described on p.75. It appears that complete
slip did not take place in the beam until the failing moment
was reached (m = 788). It is to be expected that slip
should be or less account in the highly pre-stressed beam
for in this type of member the low neutral axis results in
comparatively small tensile strains (compare the e, velue

of the various beams in Appendix 2.2).
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BEAM No. V . s00"
This beam was of the same span as 3 ]

the preceeding beams discussed but of I

reduced depth. The section is sketched 4f13 STEEL

in figure 2.32. The average cube LG o(c. Q;G'

strength was 8,100 1b/sq.in. The rein- o 9o

forcement consisted of four cables each Y

containing twelve tensile steel wires

2 mm, in diameter. The steel was not

bonded to the concrete. Figure 2.32

A slight difficulty was experienced in analysing the
results of this beanm. As usual the steel force was at the
root of the trouble. During the test the 'measured' p value
increased from 1138 at zero moment to 1208 at failure
whereas the corrected p was found to be 1388 at failure.

The corrected p can be computed only for the cracked beam
and if the steel force is in error prior to cracking it is
difficult to effect a correction. In this case it was
noted that the corrected p was approximately proportional
to the measured value and it was assumed that this

proportionality was maintained throughout the whole range.

This correction, despite its magnitude made virtually

no difference to the positive branch of the stress-strain
curve, The fg values are radically altered in that they

are/
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are reduced to zero for the cracked beam and provide for
the uncracked beam compressive stress-strain values
coindident with the curve obtained from the f, values.

It is this latter fact which Jjustifies correction.

The corrected steel force which was obtained from
consideration of the central gauge length, was used to
calculate £, and fi for the L and R gauge lengths. In both
cases the fi values provided a satisfactory check. The

resultant curves are plotted in figure 2.34.

The reader may wonder why the checks described in the
last chapter did not reveal such a gross error in the steel
force. In fact these checks do reveal the error but they
can do no more i.e. they cannot suggest the correct value
for the steel force except at the particular load stages

at which they are applied.

The steel force may have been wrong due to faulty
dynanometers or due to friction between the curved cables
and the concrete. Assume that the cable was stretched

at end A and that the dynanometer

was at B. The steel force at
P S ]

T —a R_—" | B will be less then that at 4

due to friction as the cable

. FIC\UKF-253 passes each bend P, Q, R and S.
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The force in QR will be higher than that recorded at B.
For the same reason any increase in the steel force in PQ

will be greater than the increase recorded at B.

5'0“

BEAM No. VI

This beam is very similar in =Y STEEL

: . L) c.ofc
section to the preceding one but o o
in this case the prestressing o o
cables were grouted. The average ‘
cube strength was 7,200 1lb/sq.in. Figure 2.35

The results obtained from this test were of interest
as the strains recorded were substantially different in all
three gauge lengths. This has not been the case hitherto
where, as a general rule, there has been close agreement
between two of the three gauge lengths. Zven so there is
very close agreement between the stress-strain curves

obtained for the various gauge positions, see figure 2.36.

As in the case of the other grouted beams it was
necessary to correct the steel Iforce. Typical figures

showing the amount of correction involved are given below,
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m 650 700 750 796
p(L section, uncorrected) 1190 1260 1360 1660 .
p(L " , corrected) 1190 1250 1350 1490
p(& .o, " ) 1230 © 1300 1380 1470
p(R L " ) 1190 1240 1350 1450

GENERAL CONCLUSIONS TO II CHAPTERS 3 AND 4

In chapter 3 various ways of reducing the errors involved
in the testing of concrete beams were enumerated. This
study leads to the conclusion that of all the fundamental
gquantities involved viz., bending moment, concrete strains,
and steel force, it is the latter gquantity which is most
likely to be in error. Two methods of checking this
quantity were given. These are of restricted value because
they are azpplicable only at certain load stages which
approximate to the working load, and because they can suggest

no remedy if an error is found.

Chapter 3 ends by showing how the author's method of
analysing the stress distribution in a beam cén be adopted
to correct the steel force if it is found to be in error.
This method rests on the assumption that the bending moment

and concrete strains are correctly measured.

Chapter 4 is devoted to analysing the results of tests

on six pre-stressed beams.
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In three of these beams the steel was bonded to the concrete
and in three it was 'end-anchored' only. It is a strange
feature of the results that the sfeel force required most
drastic correction in the case of the end anchored beams,
No's I, III and V. With these beams the steel force was
reéorded at each load stage by means of dynamometers of the
type described on'page 42, The results were satisfactory
only in the case of beam T. With beams III and V it was
necessary to apply corrections of 10% or 12¢%, In both
these cases the effect of the correction on the shape of the

concrete stress-strain curve was negligible,.

With the bonded beams, No's II, IV and VI the steel
force was always estimated in %he first instance from the
concrete strains assuming no slip to have taken place.

In the case of beam IV this assumption appears to have been
justified. Beam II is interesting because it shows that
the steel force can be higher than that predicted from
measurement of average strains as a result of higher steel
strains in the immediate vicinity of a crack. This
phenomenon is also exhibited to a certain extent in beam VI.
The effect does not appear to obtain at failure where slip
causes the steel force to be lower than that predicted from
the average strains. This is not surprising in the case

of the beams described above for bond between the concrete

and steel was obtained by injecting grout after pre-stressing,
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In such circumstances it is more or less impossible to bond
every wire effectively unless spaces are used to separate
the wires. Although this is a general practice the small
size of the beams rendered the use of spacers impractical in
these tests. If steps are taken to ensure good bond either
by the use of spacers or by the use of pre-tensioned beams
it is possible that even at failure the steel stress will be
higher than that predicted from measurement of the average
strains (using Baker's terminology F > 1). Dr. K. Hajnal-
Konyi has recently pﬁblished a paper in which he suggests
that this effect can be considerable (17). Slip is more
severe in the beam with a comparatively low pre-stress;

this is explained on page 83. This suggests that possibly
a lower F factor should be adopted with beams of low pre-

stress,

The six beams tested are too few in number to permit
general conclusions to be drawn as to shape of the stress
distribution in concrete beams. They do provide sufficient
evidence to Jjustify the author's method of deriving this
distribution. The main suppoft for this contention is given
by the agreement obtained between the curves deduced from
different sections of the beam. Consider for example figure
2.36 giving the results obtained from beam VI. In this

case the compressive strains recorded during the last set of

readings/
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readings just prior to failure were .00370 in the left-

hend gauge length, .00225 in the central one, and .00326 in
the right-hand gauge length. Despite these differences the
stress-strain curves obtained from these three gauge lengths
are for practical purposes indistinguishable, This is fhe

best example but in all cases the differences are slight.

With the exception of beam II failure occurred in the
gauge length giving the lowest peak value for stress. Since
these differences between the curves are small it appears
that local cracking and slip are as powerful in determining
the actual point at which crushing occurs as the local
properties of the concrete. Indeed in the case of beam II

they are more powerful.

The stress-strain curve obtained for the concrete in
tension is sometimes of dubious value for although errors
in the steel force have little effect on the f; values
they can introduce errors in fi of the same order as the
tensile strength of the concrete. This portion of the
stress-strain curve is of little significance for practical
purposes so that one may be permitted to overlook this

defect in the analysis.

One would expect creep of the concrete to occur to a

greater extent in the gauge length which exhibits the greatest

strain and if creep were of significance this would result

in/
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in different stress-strain curves being deduced for the
gauge lengths in which the measured strains differ. It
has been pointed out above that there is generally good
agreement between the curves obtained for the different
gauge lengths, This indicates that the effect of creep
on the distribution of stress is not of great account in
short-term tests to destruction. In the tests described
the time taken from the start of loading to failure of the

beam was about four or five hours.
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APPENDIX 2.1

In the following it is proved that if the creep
eguation can be written in the form
c = k.e.o(t)
and if the principle of superposition may be applied in
respect of strains then; in a homogeneous beam subjected
to varying bending moment and end-load the distribution of
stress (be it elastic or plastic) is independent of the

creep effects.

If superposition may be applied

cp = kj (T - t) %% at. (1)

but for plane sections to remain plate

ep + cp = g(T).x (ii)
" where g(T) is some unspecified function of time dependant
upon the rate of application of end-load and bending moment.
From (i) and (ii)

T
ep + k o(r - t) $2 4% = x.g(T)
t 0

1l

Integrating

=T,
em + keOQ(T) + k [ OG(T - t).e dt = x.g(T)

Differentiating with respect to e
t=T

g2 A~ *
i + Q + kaeTL._Qe(‘“‘)e‘“ - 3(-")"%&1—
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. ¢x
|+ RO = g(’r\x vl

. Ae~

- = = 3(‘\‘){\-&- ké(o\}-\

o

On intezruting this we obtain epdx . di.2, th
digtribution of 'elastic' stroin is always linear across

the saction so that thz ctresz digtribution is not
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APPENDIX 2.2

The experimental results used in II chapter 4 are given
below. The figures have been reduced to a form in which
they are most convenlent for application of the author's
analysis i.e. the bending moment is expressed as m = (Actual

moment) = bd2 end the steel force = = (Total force) = bd.

For convenience all strains have been multiplied by 104.

The data is given in tabular rather than graphical form
in order to save space, This is Justified as the results
in themselves are not of immediate interest as far as this
work is concerned. Typical experimental curves are given
see for example figures 2.12, 2.13 and 2.25, in the text.
These may be taken as fair examples both as regards accuracy

and general shape.
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Low pre-stress.
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High pre-stress.
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BEAM No. V. Very high pre-stress. Non-bonded.

L om p | Strains 'L'|[Strains '&' |Strains 'R!
%lb/n" lb/u" ec et |l eo et | ec et‘
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PART III THE EFFSCT OF FINITE SPACING OF TENSILE

CRACKS ON THE DISTRIBUTION OF STRESS 1IN
CONCRETE BEANlS SUBJECIED 10 A PURE BINDING
IOMENT

Chapter I. INTRODUCTION

When considering the distribution of stress in concrete
beams it is usual to assume that the concrete is incapable
of sustaining any tensile stress and to consider the concrete
below the neutral exis to be of no account. This leads to

the assumption that the distribution of

stress in an ordinary reinforced concrete
beam, under elasgstic conditions is as

indicated in figure 3.1.

With bonded pre-stressed beams and

STEEL. FORCE
ﬂ . . .
ordinary reinforced beams these assumptions

Figure 3.1. are justified because the tensile cracks
do occur guite close together. With non-bonded beams there
isg a definite difference the cracks being quite widely spaced.
With beam No. I (described in part II) only one major tensile
crack appeared whereas beam No. II, which differed only by
being grouted, many tensile cracks appeared spaced 4" to 6"

apart. It appears unlikely that the stress distribution of

figure 3.1 will be rsalised in the case of beam No. I.

It is the object of this chapter to determine the effect

of crack spacing upon stress distribution.
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ITII Chapter II GENERAL REVIEW OF THE PROBLEL

The complexity of this problem, from the analytical
standpoint, is such that some severe restrictions must be

placed on the work

1ot RESULTANT ‘¢!
< ~

‘} P M)

N S |

|ﬁ--L -] ."_'_".'.}:_‘_';..‘-".".‘}:::'.‘i-'- - - ]=- %?TEZET’?ZCE
S — Tc.1Lc C l‘c.ﬁLc !‘C.~.

It will be assumed that the cracks in the beam are evenly
spaced and that the cleavage is in each case in a plane
perpendicular to the axis of the beam. The first of these
assumptions is realised approximately in practice. The
second is sometimes, but frequently the cracks fork.

Although the analysis to follow will indicate why this
happens gquantitative analysis of the phenomenon is hardly

possible.
The problem will be restricted to elastic deformations.

An idealised cracked beam is indicated in figure 3.2
Consider the broad statics of the problem. The steel

force P = resultant concrete compressive force C and the

external moment M = j.P = j.C.
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Since the steel and concrete are not bonded the concrete
stress distribution will be completely unaffected if both
P and M are removed to leave only the eccentric compressive
force C. That is to say, the concrete beam has become an

eccentrically loaded column.

<

\S

2

Figure 3.3

The beam can now be regarded as a number of identical
blocks, éach of length c, placed end to end and subjected
to an eccentric end load C. The interface between two
~Plocks ¢ is considered to be incapable of sustaining a
tensile stress so that if the compressive force is outside
the middle third the cracks will open until the direct
stress on the interface is entirely compressive,. There
may be tensile stresses present within the blocks but no

new cracks will be initiated until these stresses exceed

the ultimate tensile strength of the material.
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We will consider that the beam is fairly thin i.e.
in the language of the theory of elasticity the problem is
one of plane stress, The presence of the holes through

wnich the reinforcement is passed will be ignored.

MATHEMATICAL STATEIENT OF PROBLEM
Consider the block TQRU in figure 3.3. The equation
to be satisfied within these boundaries is the biharmonic

equation (18).

4
v
where . (3.1)
4 = 2o~ g DY
Y% ¥ - '23“‘)\‘ * ‘334

and ¢ 1s the Airy Stress function.  The stresses are

obtained from this function as follows-—

D' . =
D ?‘83 ) '\a""‘ ) 3,(.) T '\’3-;

The choice of the co-ordinate axes is arbitrary but

that given in figure 3.3. i1s a convenient one.

On boundary TU we have two known stress conditions

namely pyy = Pyy = 0

Hence 2 4> ar
‘B wr dwd. 3&3\3 =0

Integrate with respect to x

29*?’“(3&) s E‘h=‘?‘n\x)
Since x is constant along TU both fl and fo are constants
so that

B‘¢‘=k\ La S zi=h1
2%

s



=105~

Integrating the first of these with respect to x
Q = k"JL-\'- g;n&ﬂ
or §=Rkx+ K, where ¥, is 2 constant.
Since the stresses are obtained by differentiating ¢ twice
the values of these siresses will be independent of kj, ko
and we can assign arbitrary values to these quantities.

For convenisnce we will set them 2ll to be zero.

The above process will now be repeated for the other
boundaries but the constants of integration which appear will
no longer be arbitrary. Such constants will be dependent

on the values which have been assigned to kj, ko and K. .

Consider boundaries PT and SU. Here pyy and Dxy are
zero so that 1 +
3¢ _ 5 e
5—{)" = Q 2 , '5%3‘3 = O
Integrate with respect to Y

2—;—3 = ’g’h (%) = comsbaul and ?a-%’—' Constawnk.
The points T and U lie on TU where z%“k and %% are both
U\)

zero hence on PT and SU

2¢ . ¢ | o
3\0 RS

Integrating the first of these it is found that ¢ = 0.

R 2.5 at

On boundaries RS and PQ 313‘3:&3 and since 7y *

P and S it is zero 211 z2long both RS and PQ.
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A second boundary condition is reguired and i1t is given by
observing that the stresses must be symmetrical about each
of RS and PQ. This is so because all the blocks in the
beam are subjected to the same conditions and hence the
stresses in them are the same. This only implies that the
second derivatures of ¢ must be symmetrical about the
interfaces between the blocks. However we have so selected
the arbitrary constants on boundary TU that @ is

symmetrical about the interfaces.

Analysis of the conditions on QR is precisely the same

ag that for TU and it is found that
¢ = h“l + K| D ’B_Q = k‘
- ¥

The values of these constants ié found by further

asiderat: - p
consideration of boundary RS, on which py, = Ewvet
\3

By restricting attention to this line this can be

rewritten
o b

b A 2 AN

Integrating Ad ~9:€ ¢ ,
[ 0\‘3}\355= fﬁ?‘l d“ﬁ
= C, the total compression.
. . R-)
2¢ S zero 3% D . & :a:b = C

i.e. h; ‘=C
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Consider now ‘0\‘“‘!> _
1o = b .
Integrate

4@ R & £
[\ﬁ%)xmzs - S:S ‘Sﬁ ™ gs Py,
C(a +B) -—‘5\31‘2 Ca
@)-0 o @), - CBA

"

(QA is used to preserﬁe uniformity with the preceeding

sections of this thesis)

This 2nalysis applies equally to boundary PQ and

- @P)e - CBA

Hence k' = O ama \(,‘ = CBA.
The above statement of the problem is summarised in figure

3.4 below.

{ ¢ = a'C-
Q ya %’%= ot R
Py ‘d=
d N —L—?"a - N
SYMMEfrRICAL t—'" P (@4

SYMMET RICAL

P S
3= -
22, Z ]"’ ’{g%:,
T \{a¢=0 ¥
aé!=c>
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Unfortunately figure 3.4 does not give a complete
statement of the problem for the positions of S and P depend
upon the position of the resultant C. An arbitrary
selection of point S when Y is specified will result in
| Pxx having some velue other than zero at S. It cannot be
tensile becuase the S would shift up and the crack would
open more. On the other hand a positive value would close
the crack. The required solution is given when pxyx at S

is Jjust zero.

ANALYTICAL SOLUTION OF THE PROBLEM.

- — - — — — —
T e -~ - - - - —— —— e — — .

Figure 3.5

An explicit solution of the problem reguires the determination

of the funciion

¢ - 9Ly

where &) satisfies the biharmonic eguation and all the
boundary conditions. Heving obtained such a solution it

would be possible to plot eqydrwk lines which might appear

as in figure 3.5.
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The function -¢;= O would give the bottom boundary
including cracks z2nd as ¢ is increased to 9C the curves
would degenerate into a straight line. It appears that a
solution in the form qf a harmonic series could be found

but the z2uthor has been unable to discover one.

The above paragraphs were written before the author
obtained the relaxation solutions given below. As will
be seen in figure 3.9 the equi-d¢ lines do not altogether
follow the pattern suggested in figure 3.5. The proper
solution is modified by the zppearance of negative § contours.
Figure 3.5 is, however, left in its original form as it is a
part of the seguence of reasoning which led to the final
solution of the problem and as there is nothing to indicate
that one should assume a-priori the existence §f the

negative & values.

RELAXATION SOLUTION

As 1t appeared unlikely that an explicit solution to
the problem could be found readily the author decided to use
relaxation methods. As relaxation is now a standard
method of solving field problems details of technique need
not be considered here. The general method of dealing
with the biharmonic eguation has been given in a paper by

Fox and Southwell (19).



-110-

In solving the problem above difficulty arises as a
result of the undefined dependence of the crack depth on

the position of the resultant force C.

This difficulty is solved by splitting the solution into
two parts. The author 1s indebted to Mr. D.N. de G. Allen
fér suggesting that the problem might be tackled in this way.
Instead of solving the complete problem as stated in Tfigure
3.4 the two independent components given in figure 3.6 are

each solved separately.

{ ¢= 3& = 1000 {a¢=o
(Qa_cgzo g ( :gadzqooo R

- - o -]
- - - - ——
- e o e e wm -
- wn - - = -

A S B S
-—o‘ { =O} =0
AP Lt b [~ {
%O =0 X0

il

(o)
Q

n

(j -0 (f o
g Figure 3.6 E

The final solution is then of the form A + NB Aso

chosen that the resultant py, is zero at point S.

In the case of a square block with the crack extending
to half the depth of the beam the distribution of pxx along

SR is as given in figure 3.7. It will be seen that in this

case N = - %%-g- = - 0,75,
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It is not necessary to evaluate the stresses in this way as
the value of AN can be obtained directly by consideration

) : N4
of the <\>5 . It is stated above that "&ﬁ Dy . At some
point such as M in figure 3.8 this equation, when written
in finite difference form, becomes ('\>”. ,,\=Q\>‘.~2¢n+ ¢~3‘7"\1
For simplicity the mesh length h can be made unity (this is

done without loss of generality) so that we can write

(JP"“‘\M = %ﬁ - 24~ Q.

At S, ?aﬁig' = 0 because ¢ is constant along SU. At
the imaginary mesh point 2 we have Q; which must = ¢,
Thus at S where &= 0, Pxn= S« $:29, .  So that A is

found simply by dividing (¢,)p into (,) .

In figure 3.9 the two components A and B are plotted
alongside the resultant A + A B for the case of a square
block with a crack extending half-way up the section. The

solution is of little value in this form so that only this

one example will be given, It is, however, quite typical.
R ‘ R
L ¢h ¢|
A B M|bn S
N ¢N ‘ba
/é <k
486 Qa8

FIGURE 3.7 FIGURE 3.8
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RANGE OF SOLUTIONS

The general purpose of this section of the work is to
investigate the effect of crack spacing and crack depth on
the stress distribution in a beanm. It was necessary,
therefore, to solve a whole series of problems. In all
cases the side of the mesh length of the relaxation pattern
was unity with a beam depth of 8 units. The total of cases

considered are given in the table below.

A-8
Figure 3.10
“““F‘
vl
v \
- = >
TARLE 3.1
c v(: 0 1 2 3 4 5 6 7 8
2 X X X X
4 X X X X
8 X X X X X X X X X
16 1 X X X X

The square block was considered in much detail because
the author has observed the crack spacing in non-bonded
beams to be very approximately egual to the beam depth.

The other values of c were chosen to give a fairly wide

range.
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IIT Chapter III DISCUSSION OF RISULTS OBTAINED
FOR A PARTICULAR CASE

In giving the solution of a problem in stress analysis
it is not easy to decide how to make the most comprehensible
and useful presentation. One way is to plot an orthogonal
set of trajectories directed in the directions of principal
stress together with contours giving the local intensity
of the two principal stresses. The advantage of this
metnod in so far as concrete is concerned is that it
indicates immediately the value =nd direction of the tensile
stresses which tend to cause cracking. Alternatively
contours giving the intensity of the component stresses
Pxx» Pxy, Pyy con be plotted. This latter method is much
the simpler as the stresses are calculable directly from
the ¢ 's whilst the principal stresses can only be determined
by further calculation, As interest is centred on pxyx, the
px& and ny contours can be omitted. Local values can be

given at the nodes of the relaxation network.

Both methods of presentation are given in figures 3.1l
end 3.12. The example chosen is that of the sguare Dblock

with a crack running to one half beam depth.

Consider first figure 3.11 which gives the principal
stresses. There are three mein arezs of interest:-

(2) The general area above the cracked zone.
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In this region the numerically largest principal stress is

comprassiv

0}

in a direction which is, for 2ll practical
purposes, parcllel to the axis of the beam (b) The area
of tensile stress at the bottom of the centre line midway
between two cracks. Thig stress acts parallsl to the axis
of the bean. (¢) The large tensile stress at the top of
the crack acting parallel to the crack. All stresses not
mentioned in these three categories are small and of little

conseguence.

It can now be seen that figure 3.12 shows zll the
important informaticn enumerated above. The stress contours
in the compression zone of the beam are almost identical to
the principal stress contours of figure 3,11 whilst the
latter shows the directions of the principal stress deviates
but slightly from the xx,direction. The tensile stress in
region (b) is pyy for as this stress is on a boundary it
must be a principal stress. The tensile stress at the top
of the crack is not indicated by any contours in figure 3.12.
The value is given by the figures printed at the nodal points
and since the stress is on a boundary and a line of symmetry

it must be a principal stress.,

This particular case has been discussed in order to

demonstrate that, as far as the object of this section is

concerned,/
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concerned, it is not necessary to consider the distribution
of the principal stresses in detail but that all relevant

informztion can be put on diagrams of the type 3.12.
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III Chapter IV  DISCUSSION OF SOME OF THE G3INERAL
RESULTS

It will now be more convenient to consider specific

points which emerge from all the cases considered rather

than to dezal with each complete case by itself.
DISTRIBUTION OF py, ABOVE A CRACK

Figure 3.13 illustrates the effect of crack spacing
on the distribution of stress on the plane containing the
crack. This figure gives the rassults for the crack.
éxtending to one half beam depth whilst the remaining results

are given in table 3.2.

It can be seen that as the crack spacing is increased
the stress distribution ceases to follow the triangular
distribution normally assumed and which can be realised
only when the distance between cracks becomes zero. The
deviations are small and are practically negligible. The
maximum difference recorded amounting to only 7% of its
corresponding top fibre stress. The general effect of the
wide crack spacing is a slight decrease in the top fibre
stress and an increase in stress nearer the neutral axis,

This means a slight lowering of the centre of compression.
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In table 3.2 the stress values for finite crack spacing
are all obtained by relaxation. The stresses for zero
distance between cracks have been obtained by calculation
from the known triangular distribution. In making the
comparison between the 'completely' cracked case and the
cases where the crack sﬁacing is finite the errors inherent
in the relaxation process must be borne in mind. These
errors are small if the mesh dimensions are small compared
with the main dimensions of the body i.e. where the cracks
are spaced 8 and 16 mesh lengths part. They become more
significant where ¢ = 4 whilst ¢ = 2 can only be regarded
as a rather crude approximation. A better solution would
be obtained by taking a smaller mesh size but in view of
these practical limitations on the velue of this analysis the
author feels that the extra labour involved in doing this
would be unjustified. The purpose of this analysis is to
‘determine general effects rather than mathematically precise
guantities Which are obviously of dubious practical value.
These remarks apply also as the crack depth becomes very
deep e.g. 7 = 6, Then the depth of the compression zone
is comparable with the mesh sigze. In this case the effect
of replacing the differential equation by a finite difference
egquation can be investigated quite easily. Teble 3.3

compares the exact stress values with those obtained by

relaxation for ¢ = 0.
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TABLE 3.3
'Exact' Dyy 0 31.25 62.5 93.75 125 156.25 187.5 218.75 250
’ (8 meshes 0 32 63 95 124 153 185 217 251
Relax-(4 ™ 0O 62 123 188 250
ation
Values(2 " 0 125 250

Table 3.3.shows that in this particular example the
errors introduced by reiaxating on a coarse mesh are negligible
Such close agreement between the 'precise'! and relaxation
values could hardly be expected for casesﬁwhere ¢ ¥ O but
there is indication that a reasonable picture is obtained
even with a coarse network.
DISTRIBUTION OF pyy ON SECTION MIDWAY BETWEEN TWO
CRACKS

One of the qguestions that the author hoped to decide by
this analysis was - What are the main factors influencing

crack spacing in a non-bonded beam?

Close to a crack the stress in the bottom fibres of a
beam is zero. As the point considered is moved away from
the crack a tensile stress builds up. This stress is a
meximum midway between two adjacent cracks. All other
things being egual, the greater the distance between these
cracks the greater will be the tensile stfess and the more

likely it becomes that a new crack will be initiated there.
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Figure 3.14 shows the distribution of pyy on the plane
midway between two cracks for e variety of crack spacings and
crack depths. It shows that there is practically no build-
up of tensile stress in the bottom fibres for crack spacings
of % and % beam depth (¢ = 2 and 4). At the other extreme
where the crack spacing is tﬁice the beam depth (c = 16)
the tensile stress builds up practically to the maximum
possible. This is shown by comparing these curves with
those for infinite crack spacing. The top diagram in figure
3.14 shows the effect of the crack extending to full depth.
This is included because it shows the maximum possible effect
of increasing crack depth. It is of little practical
interest because it implies infinite stresses in the

inTinitely small compression zone above the crack,

In figure 3.15 the bottom fibre tensile stress is

plotted to show the effect of crack depth and crack spacing.

Tigure 3.15 shows that the bottom fibre tensile stress
only increases with crack depth for the wider crack spacings.
For example when ¢ = 4 the tensile stress increases with
for i less than 2 and that it decreases as the crack gets
deeper. This is assuming that the steel force remains
constant. Thus zrovided that the increase in steel force
is not too great and the crack spacing is smzll the tendency

to Torm more cracks betiieen those a2lrealdy established

decreases as the original cracks become deeper
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w

The upper limit to the crack spacing is obtained by sketching
in the curves for ¢ = 6, and 7 in figure 3.15. The method
of plottinz used enables this to be done with fair accurzcy
(ref. 20). The result gives ¢ = 7 (i.e. as & = 8 this

means o crack spacing of & beam depth) as the limiting value.
For c )‘ 7T the bottom fibre tensile stress increases with

wz , and for ¢ < 7 the strecs decreases once \Z is greater

than 4 beam depth.

This can be summed up by saying that if the craclks are
spaced closer than §d then further cracking will not take
place unless (a) thé steel force increases substantially or
(b) the crack depth is less than Zd. It can be seen that
neither of these exceptions is liéely. In non-bonded beams
the steel force does not increase very nmuch. This is
verified by reference to the experimental results given on
pages 89-91. In beam No.l p.89 increases from 360 at
cracking to 532 at failure, in beam No, 111 the increase is
from 825 to 924 and in beam No.V from 1167 to 1207. At
first ;lance the increase in beam I appears to be substantial,
484, There is a corresponding increase in the tensile
stress, but as we shall see below the increase is not
sufficient to increase the tensile stress to the value which

originally caused cracking.

It is suggested in the preceeding paragraph that crack

depth/
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depth is not likely to be less than one guarter of the beam
depth. This is demonstrated by considering the stress
distribution immediately before and after cracking. The

two conditions are indicated in figure 3.16.

. : f.
A ﬂs
d d .
i Y P \1 P+ AP
e (@) (b

Figure 3.16

Just before cracking we have compressive and tensile
stresses fo and fy. On cracking f, increases to f,' and
the steel force incrsases from P to P + A P.  Let this

take place at moment II.

Take moments about the bottom fibre for the uncracked

1 1

M =3 £,bD% - & £4bD? — P(D-d)
equating forces

P =%(f, - £4) D

After cracking

i

| 1
(P+ AR)(@-3 T

i
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Eliminate M and f, from these eguations and we get

2P+ 6.AP(d-'l§ m=ftbb2.
Experience shows that A P is only about 1% P and so may be
neglected in the above eguation. This gives

M _ fyD

2P

The results of II chapter 4 give fy = 1/20 to 1/10
the cube strength (C. ). |

In practice the top fibre stress for zero bottom stress
vill be 1/6 to 1/3 of the Cu so that 2B/bd = (1/6 to 1/3)Cw.
Substituting for fy and P we find ‘%_ = 3/20 to 3/5. The
higher value occurs‘with the lower pre-stress. The initial
crack depth is seen to vary over a fairly wide range but will
be at least 0.15 D and that it will only be so small for
concrete with rather low tensile strength. Experiments
show that the crack deepens very rapidly at first so that

the critical value of 2D will soon be passed even if the

crack is not initially so deep.

In the table below f is calculated for P(=C) of 1000
with b = 1 and D = 8 whilst V] is varied.

7:12345678
fy = 16 31 47 63 78 94 110 125
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This table together with figure 3.15 mekes it possible

to say whether or not there is a possibility of the creation

of new cracks between those already developed. Two examples

will illustrate this:-—-

(1)

(i1)

Suppose that two cracks eppear 7 units apart and
that the depth of the cracks, v , is 4 units.
The above table shows that for ¢ = 1000, fj

(that is the tensile stress just before cracking)
= 63 units. Referring now to figure 3.15 we see
that no matter how deep the cracks become the
bottom fibre stress cannot reach the original
cracking velue unless the steel force increases,
In fact the tensile stress will have its maximum
at the instant of cracking for as the crack depth
increases the tensile stress d ecreases slightly.
The maximum value of the stress is 28 units so
that the steel force must more than double itself
before the original cracking stress is exceeded,
Suppose that the critical crack depth is 3 units
whilst the spacing is 8 units. The table gives
the cracking value of fi = 47. Referring to
figure 3.15 we see tnat this stress will be

reached when W~ 43.

Before concluding the observations on the likelihood

of new cracks being formed between those elready established

it/
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it is necessary to define the limits of the arguments used
above. The calculated values of the bottom fibre stresses
apply only as long a2s the basic assumptions are true. The
most important of these is the assumption that the cracks
rise vertically. This is approximately true until the
cracks become deep when there is a tendency to bifurcate.
Sometimes the two branches continue to rise as the bending
moment is increcsed and sometimes they run practically
parallel with the axis of the beam and new vertical cracks

rise from the main branch.

The shepe of the cracks is

indicated in figure 3.17.

Figure 3,17

The reason why the cracks split into two branches is
indicated in figure 3.11. At the top of the crack there is
a large tensile stress parzallel to the crack, When this
stress exceeds the tensile strength of the concrete the

material urptures at right angles to the original crack.

The author has stated already that he considers any
attempt to trace the subsequent course of the cracking to
be beset by great computational difficulties. It is also
his opinion that the expenditure of effort would not be

justified.
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However, having demonstrated the existence of the stress
which causes the cracks to fork it is possible to explain

the subseguent behaviour in general terms.

)

Figure 3.18

Imagine the block contained between two vertical cracks
to be sliced away from the upper section of the beam.
The latter will bend s indicatea in figure 3.18(a) whilst
the lower section will be stress-free and underformed. In
order to rejoin the two peices the lower section must be
bent round the upper section and the Jjoint must be capable
of sustaining the tensile stress indicated in 3.18(Db).
At the same {time tensile bending stresses are introduced
into the lower fibres of the completed beam. The bottom
fibre stress has been examined in detail. If it exceeds
the tensile strength a crack forms at X, we shzall see that
this has the effect of lowering the tensile stress at ¥
and thus reducing the tendency for the craclzs to fork.

If, on the other nand, the stress a2t Y exceeds that at X

then/
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then it is more likely that the existing cracks will fork
rather than that a new crack will be formed at X. Once

the existing cracks do forlk the effect is +to lower the stress
at X for the material between two cracks tends to straighten
out as indicated in figure 3.18(a). VWhen this happens the
material below the cracks is effectively no longer part of

the beam and the author has seen cases where two horizontal
cracks have joined, and but for the fact that the reinforcement
nassed through the isolated block the‘latter would have fallen
out. The 'new'! beom is much shallower than the original

cne so that fhe ﬁew vertical cracks which are formed are

much closer together than the original ones. This is

indicated in figure 3.17 and is borne out by experience.

Values for the tensile sitress a2t ¥ for C=1000 are

tabulated below.

TINSILE STRESS AT THE TOP OF A CRACK

\Y = o 1 2 3 4 5 6 T 8
c = 2 0 - 8 - 18 - 62 - -
4 O - 24 - 52 - 115 - -

8 0 9 41 58 104 169 288 - -

16 O - 33 - 112 | - 302 - -



-133-

These values can be compared with the stresses at X
given in figure 3.15. It is found that the stress at Y
exceeds that a2t X in 21l cases to the right and above the
heavy zig-zag line. It is evident that when the crack
spacing is less than the beam depth the existing cracks will
fork rather than permit the formation of intermediate cracks.
The reverse is the case Zor wider crack spacing except when
the existing cracks become deep 2nd extend more than half-way

up the side of the beam.

The general conclusion to be drawn is that the average
crack spacing in non-bonded beams will be approximately

equal to the bezm denth. Experience shows this to be so.
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IIT Chapter V  THE BEARING OF THE ABOVE ANALYSIS

ON THE INTERPRETATION OF STRAIN

GAUGE RZ4DINGS

The distribution of strain in concrete beams is

generally determined as described in Part II Chapter III,
that is by attaching & series of strain zauges down the
depth of the beam. Reference has already been made to the
work of liyzind and Binns (16) who showed that short gauge
lengths are undesirable because of the tendency to record
abberations caused by local lack of homogeneity. Below
we shall study the effect of varying the gauge length upon
the strain recorded when the material is 'perfect! buﬁ in
which the stress distribution is not the idezcl triangular

one usually zssumed,

DERIVATION OF ©STRAIN TROIM RELAZATION SOLUTIONS

A strain gzuge records the average strain over the
gauge length. Thus iF we wish to czlculate the reading
which would be obtained from & strain gauge we must
rate the total movement over the gauge length to obtain

inte;

B
<

the average value, This is done guite siumply Irom the

e

relaxation solutions already obteined.

—s
a2

A YIBI h C

Figure 3.19
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The strain in the x direction 2t point A4 (figure 3.19)

{'PM“ C’P‘n}/\:—

o being Poizson's ra2tio and E Young's modulus. The chance

18

in the length- AC is

hi e'ﬁu(A) -+ hext(S) “+ %_ exn(C)

The averegze strain over length AC is this latter

guantity divided by AC so that

en (AC) = 3{ 1 6n(R) ¢ s (@) + 4 emta)

If the sauge length extends over n mesh lengths then
\ |
€+ (AN) = ?l{iem(‘“* €ax @) 4. - .. b eaa(M) 4 %_e“(m‘

The stress which will be interpreted from such a gouge

reeding is exx (AN) % E= b, (AN), and

Puc (AN = G L@ P - )

"

two cracks., It ié the noeximum stresses which are of
greatest significance and correspondence between th
and the mecsursd straine will be poorest when the latter
are taken symmetrically about a line midway between two

cracks,
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It is this worst case which will be considered in the
following work, The effect of varying the gauge length on
the correspondence between pxx and pxx (at crack) will be

demonstrated.

It has been shown by Jones (21) that Poisson's ratio
for concrete varies between 0.2 and 0.3. An average

value of 0.25 will be used here.

The work of the last chapter has shown that the cracks
are unlikely to rise vertically if the crack spacing is
greater than the beam depth so that in the following work
there is little point in considering the case where ¢ { 4.
We will study two crack spacings, one with ¢ = 4 and the

other ¢ = 2d.

Figure 3.20 gives the stress distribution deduced from
strain gauge readings when the crack depth is three-quarters
of the beam depth. When the crack spacing is equal to the
beam depth the discrepancy between the measured and ‘'actual’
stresses is considerable even when the gauge length equals
the crack spacing. When the crack spacing is halved the
discrepancy becomes quite small. When the cracks are
widely spaced the gauge length has a large effect upon the
value of the measured stress whilst with the smaller spacing

the effect is small.
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The best basis for comparison is to express the difference
between the measured and ‘actual' stress at any level as a
percentage of the maximum (i.e. %op fibre) stress. This

has been done in figure 3.21.

The following can be inferred from this diagram:-

(2) The errors in stresses deduced from strain gauge
readings can be very much in error if the crack
spacing is wide and the cracks afe deep. With a
crack depth of 24 a gauge length equal to the
crack spacing the error is less but still

considerable at 22%.

(b) With a crack depth not greater than one half the
beam depth the error in the top fibre stress is

less than 10% whatever the gauge length.

(¢) There is always a fair error at the neutral axis.
This is because the measured neutral axis is

always lower than the top of the crack.

This latter point deserves of a little elaboration.
When the strains are plotted for a gauge length equal to
the crack spacing it is found the distribution is linear
above the top of the crack. This can be seen in figure
3.20 where the stresses deduced from readings on the lbng

dashes above the top of the crack.
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Over the length between the two heavy dots the distribution
is quite linear. This result is implicit in the basic
assumptions and so provides a check on the work. 1t is
assumed that an infinity of blocks are loaded by an eccentric
compressive force. On this bagis the interface between
two blocks must remain plane. This is accounted for in the
boundary conditions by making the shear stress at the
interface zero. The neutral axis fails to coincide with
the top of the crack because in translating strains into
stresses we have assumed that pyxy = E exx. This has been
done tacitly as it usually is when analysing the results

of tests. Pxx 1s zero at the top of a crack but exx ¥ O
because of the stresses parallel to the crack. When the
position of the neutral axis is determined by plotting the
horizontal strainsthe depth of the compression zone will
always appear greater than the actual depth. This is
illustrated in figure 3.22.

It can be seen that with the wider crack sPaging the
depth of the neutral axis as given by strain readings over
a long gauge length may be appreciably in error. With the
closer spacing the error is not great. If a smaller gauge
length is used on the line midway between two cracks the

errors will be worse.
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n
n n' = depth of neutral axis
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FIGURE 3.22
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III Chapter VI THE EFFECT OF THE PHENOMENA
DESCRIBED ABOVE ON THE STRESS
STRAIN CURVE DEDUCED FROM READINGS
ON A BEAM.

It was stated on p.18 that the author's method of
determining the stress strain curve from méasurements on a
test beam depends solely upon the validity of the assumptions
on which it is based. These assumptions are given on p.21l
A further assumption is also generally made in practice.

It is that the strains can be measured directly by a strain
gauge. We have seen that the strains so measured contain a
component due to the stresses induced at right angles to the
axis of the bean. Strictly speaking this component should
be deducted from the measured strains before applying the
analysis to determine the stress-strain curve. It would be
very difficult to do this and in practice the analysis must
be applied to the uncorrected readings. This means that
the neutral axis will appear to be rather low giving a
deeper compression zone which in turn will tend to cause
the analysis to give a low value for the top fibre stress,
This is counteracted by the shorter lever arm tending to
increase the stress. If a long gauge length is used this
stress will be related to a strain which will also be lower
than the peak value above the crack. It is found in

practice that measurement of the strains below the neutral

axis does not give results of any value and the bottom

fibre/
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fibre strain has to be determined by extrapolation from the
strains above the neutral axis. This procedure will(be
followed using the strains calculated in the last chapter.
Figure 3.23 shows the depth of the neutral axis plotted

against measured top fibre stress for C = 1000.

n'd
4]
Z8o @
Z \ C=1000
e ‘
Yeo Q*
‘oo N\
T Y
£ 4o N
& o
g>e =
gz o o . \+

) ez

’ OGE LENCTH= ¢
) . < ndy, ] SRVS QT
%\4:

o 00 200 300 400 500 o0 PO 800 9O (oo

MEASURED TOP FIBRE STRESS
FIGURE 2.23

This data has been plotted for two crack spacings one
equal to beam depth and one equal to one half beam depth.
In each case the gauge length equals the crack spacing.
It will be noticed that the two curves are indistinguishable

and so will lead to the same stress strain curve.
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On page 21 the following relationship is given for a

cracked bean

{; bd. = i’eﬂ?(e‘-eu\}

In a non-bonded beam P does not increase very much
as the results on pages 98-100 show and if it is taken to be
a constant the conditions will approximate to these in a

non-bonded beam. The above eguation then becomes

[ ba- PQ— §2)

Using this equation and the data given in figure 3.23
we can compute the stress strain curve which would be
deduced from the strain readings and compare it with the
actual stress strain curve. €&, 18 obtained by using

the equation

Since dﬁ%;kis dimensionless it is not necessary to
convert the measured top fibre stress to strain in this
expression. The calculation is conveniently tabulated

as below.
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300 350 400 450 500 550
6.68 5.78 5.10 4,57 4.15 3.80 3.45 3.16 2.90 2.69
-59 -135 -228 -337 -464 -607 -791 -994 -1230-1480
1.35 1.69 2.02 2.36 2.70 3.27 3.87 4.39 4.86 5.30
2.35 2.69 3.02 3.36 3.70 4.27 4.87 5.39 5.86 6.30
294 337 378 420 463 535

600 650 T0O0 750

610 674 1732 1788

bottom line have to be compared with

The latter is labelled ey but it

is actually the stress corresponding to eg, e; being the

measured strain in the top fibre.

If the figures in this

line were divided by E and then used as a base for the

bottom line of figures we should get the stress strain curve

for the material as obtained by the author's method of

analysis, The curve has been plotted in figure 3.24 without

the introduction of E.
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It seems that the agreement is very good and that the
method of analysis will give a fair interpretation of
stress-strain curve despite the inaccuracies in measuring
the top fibre strain and the position of the neutral axis.
It appears that these two discrepancies just counteract
each other. The low neutral axis results in a low stress
being computed but as this is compared with the low strain
resulting from the measurement of the mean rather than the
peak value the resultant point lies very close to the proper

stress-strain curve.

It seems likely that if the analysis were extended into

the plastic range the discrepancy would worsen.

It is interesting to compare the computed top fibre
stress in figure 3.24 with the actual peak stress above a
crack. This is done in figure 3.25. All quantities are

plotted to the base e, Xk i.e. the measured strain XxE.

TFor the smaller crack spacing (one half beam depth)
the discrepancies are very small, and it is fair to say
that the measured top fibre strain is a fair measure of the

peak top fibre strain.

Furthermore the author's analysis also gives reasonable

agreement with the actual stress,
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With the wider crack spacing (¢ = d) agreement is not
80 good especially where the cracks become deep. Provided
that the cracks do not extend beyond one half beam depth
there is little variation between the measured, computed and
actual stresses agreement is still reasonable when the
cracks extend to § beam depth but beyond that accuracy will

be poor.
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We have already seen that in non-bonded beams the
crack spacing is likely to be approxiﬁately equal to the
beam depth and the general conclusion to be drawn from the
above is that the author's analysis cannot be expected 1o
glve a very precise streés strain curve once the cracks
extend more than half-way up the bean. Matters are
complicated because of the tendency for the cracks to fork.
If this happens it is very difficult to assess the accuracy
of the deduced stress-strain curve and it cannot be assumed

that the result is more than a rough approximation.

With bonded beams the cracks are much more closely
spaced and it seems that the author's analysis will give fair

results however deep the cracks hecome.
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PART IV THE DISIRIBUTION OF STRESS IN A CUBE
WHEN COMPRESSED BETWEEN RIGID ROUGH
PLATES.

Chapter I  INTRODUCLION.

It is well known that the strength of concrete depends
very much on the shape of the specimen tested. The
Handbook on the B.S. Code of Practice for Reinforced Concrete
(CP 114) for instance points out that the concrete strength
realised in columns is about two-thirds of that obtained
by crushing a 6" cube of the same type of concrete.

Mr. C.S. Whitney gives the ratio of column to cylinder

(i.e. 12" x 6" dia.) strength as 0.85 (6). This variation
in strength is due to varied degrees of end restraint.

In a column with no binding reinforcement the lateral
expansion of the concrete is unrestrained whilst in cube

and cylinder tests lateral restraint is effected by friction
between the specimen and the plates between which it is
compressed., This lateral support enables the concrete to
sustain a greater stress than is possible in the unsupported
case. The restraining effect is greater with the cube than
with the cylinder because of the decreased height to breadth

ratio.

The aim of the work in the following pages is to

determine the nature of the stresses set up by this frictional

restraint/
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restraint and to attempt to assess the value of the stress

strain curves obtained in 'simple' compression tests.

The analysis is confined to consideration of the elastic
behavioui of the material. Any conclusions drawn from this
work as to the plastic behaviour of test specimens will
therefore be somewhat tentative. This restriction is
irksome but as yet unavoidable as present-day methods of
analysis are inadequate for extending the investigation into
the plastic range. It will be seen that even with elastic

behaviour the analysis is very complex.

HISTORICAL REFZRENCES.

The problem of determining the distribution of the
stress in a circular cylinder compressed between rigid rough
plates was attacked by Filon in 1902 (22). The general
solution is given for the stress distribution in a circular

cylinder subject to the following boundary conditions:-

(i) The total force over the plane ends is ¥ a2qQ, the

actual distribution of normal pressure being unknown.
(ii) The ends are constrained to remain plane.

(iii) The ends do not expand along the perimeter.  This

condition is satisfied by allowing a shear stress

of unknown distribution over the plane ends.
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Of these conditions only (iii) calls for comment.
This assumption implies that although no overall expansion
is permitted at the ends slip is permitted provided that
it does not occur at the perimeter. The ideal solution
would be obtained if no slip at all were permitted. Filon
regards the possibility of attaining this end in the following
words:— "The analytical complexity of such a complete
soluiion would be very great and would render it quite
beyond the reach of arithmetical expression, and consequently
valueless for the purposes of the engineer and physicist".
This was written before the advent of electronic computers
and Filon's pessimism may no longer be justified. However,
as we shall see modern methods of attack which concentrate
on obtaining a numerical solution to a particular problem
enable Filon's difficulty to be avoided. Filon evaluates
his general éolution for the case where the ratio of the

height to diameter is */3 and Poisson's ratio is %.

The same problem has been investigated by Edelman
(23) using an approximate method devéloped_by Prager and
Synge (24). This method enables Edelman to assume complete
fixity at the ends but as the solution is an approximate
one it is not possible to say without supplementary evidence
whether or not it gives a better picture than Filon's

solution.
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Edelman's analysis is for a cylinder of height equal to
its diameter and of a material having a Poisson's ratio
of 1/3. The stress distribution which he obtains is not

published.

Recently a solution has been found for a cylinder of
height to diameter‘ratio of unity and Poisson's ratio of %
by use of relaxation methods (25). The author (Markland)
refers to two other papers by Pickett (26) and 4'Appolonia
and Newmark (27). Markland adequately sums up these

two papers as follows:-—

"Pickett adopts Fourier-Bessel series expansions
for u and w and uses the boundary conditions to obtain the
coefficients in the series. Two sets of coeffieients are
involved, and the expression for a single coefficient of
one series involves all the coefficients of the other, so
that the series are terminated at the fourth terms in order
to calculate numerical results. At the plane ends the
expressions for stresses are found to converge very slowly,
and although methods appropriate to slowly converging
oscillating series were used, there is some doubt as to

the distribution of stress over the ends.

Dt Appolonia and Newmark have used a lattice analogy,
in which the cylinder is replaced by a lattice of elastic

bars/
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bars of certain properties. Consideration of the
equilibrium of every node of the lattice under the action
of bar forces and of extremely applied loads load to a
sufficient number of simultaneous linear equations for the

components of displacement at each node to be calculated”.

The author has used the. Prager-Synge technique to attack
the problem of determining the stress distribution in a cube
(28). In the published paper the author gives Poisson's
ratio the value 1/3. This value was chosen in order that
the solution might be compared with Edelman's (the author
was not then aware of Pickett's paper and Markland's paper
had still to be written). 1/3 is, however, too high for
concrete and the analysis has been repeated for Poisson's
ratio of Z and 1/6. In the work to follow a detailed

compression is made between Filon's solution, Markland's
and the author's due attention being given to the fact.
that the lattef is for a cube whilst the other two are for

a cylinder.

As far as he is aware the author alone has published
a solution for the cube problem although there are solutions
to two allied problems. A. and L. Foppl (29) have
considered the case of a square-prism compressed at the

ends which are taken to be sufficiently far apart to enable

thag/
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them to be considered separately i.e. friction at one end
is considered to have no effect at the other end. One
would clearly be unjustified in using this method for a

cubic specimen in which the height equals the breadth.

The allied problem of an infinite bar of square cross
section compressed through a pair of lateral faces between
‘rigid rough plates has been solved by Greenberg and Truell
(é@). Here the Prager-Synge method was used with Poissoﬁ's

ratio equal to 1/3.
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IV Chapter 2. THE DISTRIBUTION OF STRESS IN AN
ELASTIC CUBE COMPRESSED BETWEEN RIGID
ROUGH PLATES.

The author has already published a solution of this
problem and a copy of this paper is given below. The
method is one of successive approximation employing two
basic theorems, one the theorem of minimum strain energy

and the other a complementary theorem of maximum strain

energy.

The fundamental quantity calculated is the strain
energy of the body. If a stress system can be found which
satisfies all the following

(1) the equilibrium equations

(2) +the compatability equations

(3) the boundary conditions on stress

(4) +the boundary conditions on displacement
then the solution will be exact and the true value of the
strain energy is found. If, because of the complexity of
the problem such a solution cannot be found then we have
to be content with one which satisfies only some of these
conditions. For example in the cube problem we can ignore
(1) and (3) above and select a stress strain system which
satisfies (2) and (4). The theorem of minimum strain
energy tells us that the strain energy of this stress system

will be in excess of the true value.
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It is a fairly simple matter to select a number of stress
systems which will satisfy the simplified problem. The
Prager-Synge method combines any number of these simple
systems so that they are used to the greatest advantage,
that is so that the strain energy of the combined system
has its lowest possible value. By adding further systems
the strain energy is reduced so that approaches the true

strain energy.

The maximum strain energy theorem is applied similarly
except that with successive approximation the strain energy

approaches the true strain energy from below.

In this way it is possible to bracket the true strain
energy between upper and lower limits. The closer that
these are, the more exact is the solution. Ultimately the
strain energy of the body can be stated as the mean of the
two limits plus or minus one half the difference expressed
as a percentage. Unfortunately this does not mean that the
stresses or the displacements are calculated to the same

accuracy.

The method of solution is given in the printed paper
for a proof of which the reader is referred to the original
papers by Prager and Synge. A brief resume of the

calculations is given in the Appendix.
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NUMERICAL RESULTS

The printed solution is not correct. An arithmetical
error was made in calculating the upper limit. The
appropriate figures have been altered in the original paper

and corrected ones are given below.

The error was an unfortunate one in that it suggested
the solution to be very much better than it is. One of
the drawbacks of the Prager-Synge method lies in the fact
that there is great difficulty in checking the results when
an isolated example is considéred. As Hartree has pointed
out recently: "One kind of 'check' is so inadegquate as %o
be almost worthless, namely,‘repetition of a calculation
by the same individual that did it originally. It is much
t00 easy to make the same mistake twice ...". (31)
Unfortunately this seems to be the only possible check on
the evaluation of the scalar products Si.Sj. The original
error was discovered only when new calculations were made
for a different value of Poisson's ratio, it was then

possible to effect a moderately independent cross-check.

THE APPARENT YOUNG'S MODULUS

One effect of the frictional restraint of the loading
plates is to increase the value of Young's modulus computed

by dividing the average compressive stress by the overall

longitudinal strain.
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The ratioc of the apparent to the true Young's modulus is
given for varying Poisson's ratio in the table below.

Poisson's Ratio True Young's Modulus

. Apparent Modulus
1/3 92.9% + 1.5%

1/4 96.1% + 0.7%
1/6 98.3% + 0.3%
100%.

The above figures show that frictional reétraint has
little effect upon the overall strain of a cube. This
does not mean that the stress distribution is modified
only to a small degree as the work to follow shows. One
conclusion of moderate importance can however be deduced
from the above figures. It is that for most practical
purposes the stress strain curve can be derived>by simple
overall movement of the plates of the testing machine and
that there is little point in attaching strain gauge to the

surface of a cube.

FRICTIQON STRESSES AT ENDS

The set 6f stresses which first claim the interest
are those at the ends. Here the local shear (friction)
gtress must be less than the local compressive (pzz) stress
multiplied by the coefficient of friction or there will be
siip.
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ON THE COMPRESSION OF A CUBE BETWEEN
RIGID ROUGH PLATES

By J. M. PRENTIS (Imperial College, London)
[Received 13 March 1951]

SUMMARY

The problem is to determine approximately the mode of deformation of a cube
of elastic material compressed between rigid plates sufficiently rough to prevent any
relative movement between the plates and the ends of the specimen. A method of
solving this type of problem has been given by Prager and Synge (1) and is applied
here to determine the relationship between the true Young’s modulus and the
apparent modulus obtained by a test of the type described above. As two other
papers have recently been published (2, 3) applying the same method to similar
problems, the work is given in outline only.

1. Introduction

THE method of analysis evolved by Prager and Synge for the approximate
solution of elastic boundary solution problems requires the selection of
a number of comparatively simple stress states which, in the aggregate,
approximate to the natural stress conditions. The method of selecting the
artificial states separates them into two classes, called the associated and
the complementary. In one class the restrictions imposed by the equili-
brium equations and the boundary conditions on stress are relaxed, whilst
in the other class the compatibility equations and the imposed boundary
conditions on displacements are ignored. Consideration of these two
classes enables upper and lower bounds to be placed upon the total strain
energy of the body. If a sufficient number of approximate states are taken
in each class these bounds can be narrowed, allowing the total strain
energy to be calculated to any desired degree of accuracy.

2. Following the method used by Edelman (3), the problem F, (see
Fig. 1 for details) may be resolved into two components. We shall con-
sider P, in which the cube is subjected to a uni-axial compression, the
lateral expansion being unrestricted, and P such that P+ P, = F,.

3. Symmetry allows us to confine our attention to one-eighth of the
body, 0 < x, y < b, and 0 << z < h, b and A being the breadth and height
of the specimen, respectively.

The boundary conditions of P are:

u,(0,4,2) = 0 u (%, y,2 = h) = —oax
u,(x,0,2) = 0 u,(®,y,2 = h) = —oay ) for displacements, (1)
uz(x> Y, 0) =0 uz(x’ Y,z = h) =0

[Quart. Journ. Mech. and Applied Math., Vol. V, Pt. 2 (1952)]
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4. This is a displacement boundary condition problem and for its
solution Prager and Synge require a series of states:
(@) The completely associated state S*, the deformations of which must
satisfy equations (1) and the strains must satisfy the compatibility
equations, w1, = 2y, (3)

where wu, ; stands for ou,/ou,.

(b) A sequence of states S, S;,..., S,,, called the homogeneous associated
states which must also satisfy equations (3) whilst the «’ are required
to vanish wherever they are prescribed on the boundary by equa-
tions (1).

(¢) A sequence of states Sj, S;,..., S;, called the complementary states
selected to satisfy equations (2) and the equilibrium equations,

pi]',’l: = 0. (4)

Except that they must satisfy the required conditions given above, the
states are all quite arbitrary.

5. Defining the scalar product of two states as

(8.8 = [ e;; piy dv,
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ON COMPRESSION OF A CUBE BETWEEN RIGID ROUGH PLATES 25%

Prager and Synge show that
S (S*.I)2 < 82 < (S*.8%)— 3 s (5)

q=1 p=

§

where I’ (and I”) are orthonormal sequences = Zc, S, and the ¢, are
r=1
chosen to satisfy the conditions,
(X,.I,) = 3,
3, being the Kronecker delta, and where 82 = (S.S) = 2 the total
strain energy of the state P.

6. Selection of the states

It is necessary to specify Poisson’s ratio and the relative dimensions of
the specimen. We have taken o = L and b = A = 1.

The associated states selected are given in Table I, where for convenience
in computation £ and a are temporarily put equal to unity. The strains

Tasie I

The associated states

Uy %y, u,
S 0 0 —2z(1—2%)
N4 —x22(1—z%) | —y=2(1—2%) 0
s 0 0 — 21—z ty)
S —x22(1—2%) | —y2?(1—2z%) 0
S; Y Y —z(l—2*) @2+ y?)
S* — 243 —y3 0

corresponding to each state are obtained from equations (3) and the

stresses from

568 pi]’ = %(exz+eyy+ezz)8ij+%eij'
The complementary states are most easily selected by use of Maxwell’s
stress functions i, (¢ = x, y, z), the stresses being obtained from these

functions as follows: o, o lﬁz .
p(l‘w - 6z2 + € C"
&b,
and Poy = — oxdy’ ete.

Thus defined, the stresses automatically satisfy the equilibrium equations.
The only restrictions placed on the choice of the s is that equations (2)
must be satisfied. The strains are obtained from the stresses by using

eij: 3% s(pxm+pyy+pzz) g
In selecting the complementary states, deformations are not considered,
so that the compatibility equations are not, in general satisfied, and
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no corresponding displacements exist. The functions used are given in
Table II.

TaBLE II
The complementary states
Yo by | e
87 1281 —y2)2 | 1241 —a2)? I 0
S? — 24 —a?j4 0
S5 —y*12 —az?t12 0
S” 0 0 —H1—2?)2(1 —y?)3(1—2*%)

7. Computation of the apparent £
Using the selected functions it is found that

4
gl(s*.l;')2 = 0-060697a2E = L, say

5 0.09302>
and (S*.8%)— > (S*.I,,)* = 6~068880a2F — U, say.
p=1
The strain energies of P, and P may be superimposed by simple addition
so that S3 = S2+82. It is easily seen that S = }Fa and that 8% = a?E.
Substitution in equation (5) gives
L4-a?2E < 8 < U+-a?E.
Putting L F, the average stress, equal to f and, since h = 1,a (= a/h) = ¢,
the mean e, we obtain

q

02 48g
090-94278f/e = E > 9-946%3f/c, vS
or, averaging, £ = /e with a maximum possible error of 4-6=%
per cent. on.9

Thus, in a test of this type the true Young’s modulus is 942 per cent.
of the apparent modulus as given by the overall relative movement of the
plates.
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The distribution of the resultant shéar stress and of
the direct stress are shown in figure 4.2 for a Poisson's
ratio of 0.25. It can be seen that the tendency to slip
is greatest along the diagonal of the gquadrant shown.

The necessary values for the coefficient of friction are

tabulated below.

COEFFICIENT OF ZFRICTION NEEDED TO PRESENT SLIP ON

DIAGONAT.
= [PXZZ + Pyzz /Pzz
o~ x=y=0 0.2 0.4 . 0.6 0.8 1.0
/3 o 0.217 0.343 0.344 0.220 0
'1/4 0  0.152 0.251 0.256 0.169 0

/6 0  0.095 0,159 0.170 0.116 0

As a rough approximation it can be said that the
coefficient of friction needed is approximately equal to
the value of Poisson's ratio. The author has carried out
some simple tests to determine the value of the coefficient
of friction for concrete on steel. Weights were piled on
to the top of a concrete cube standing on a steel plate and
the lateral fofce necessary to move the cube was determined

by means of a spring balance.

The results of these tests are given in figure 4.3.
The coefficient of friction for concrete on steel is seen

to vary between 0.36 and 0.79.
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These results were obtained for a very low contact pressure
but there seems to be no reason why the coefficients should
not apply to the higher stresses encountered in a practical
cube test. It seems likely that the coefficient at higher
contact pressures will be increased for it was found that
grit particles between the forces in contact lowered the
friction force. The cube tended to roll over these'particles
With greatly increased contact pressure such particles would
become embedded in the surface of the cube or plate tending

to increase the friction force.

The tests lead to the conclusion that there is little

liklihood of slip for even a very high Poisson's ratio.

This observation is true provided that the stress
distribution derived by the above analysis is reasonably
correct. This point is dealt with in more detail later

in the chapter.

Figure 4.2 shows that the stress functions assumed
lead to a distribution of py, such that it is proportional
to the radial distance from the axis of the cube. The
maximum stress is accordingly at the outer corner. The
effect of varying Poisson's ratio is seen from the results

plotted in figure 4.4.
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STRESSES ON PLATE y = 0. The Axial Plane.

The stress distribution on the central plane parallel
to the load is of interest because it provides a fairly

complete picture of the effects of frictional restraint.

Figure 4.5 shows the distribution of the maximum
principle stress parallel to the plane, this\stress is
everywhere compressive as is the minor principal stress,

It is interesting to observe that at the ends the largest
stress occurs at the outer surfaces of the cube whilst the
reverse is true on the central plane, z = 0. The
variations from the average value of unity are nowhere very
large, the greatest increase in stress being a little over
5%. The last value of the stress occurs at the central

point of the end plane.

The corresponding distribution published by Filon is
reproduced for comparison. A humber of points must be
borne in mind in comparing the two figures: Firstly,
Filon's solution is for a cylinder whilst the author's is
for a cube: Secondly, Filon has solved precisely the case
for a cylinder which is prevented from lateral movement
at the outer surface on the plane ends, whilst the author's
solution is an approximate one for a cube which is prevenfed

from moving laterally all over the end planes.



DISTRIBUTION oF MAXIMUM PRINCIPAL STRESS oN AN

AXIAL PLANE oF A CYLINDER anp A CUBE .

AVERAGE P, = |

POISSON'S RATIO 0.25

CYLINDER - FILON'S SOLUTION.

o8 L ©
o090 jojp! ©19

o85S
Q.95

- Z S~ ——T—Lio
%%'5‘ / e \ R N \
::);o{ J <-—~:‘=='F§Ft‘\~-s\-> =
\\Q/*\.- . ey T —/o/—

Q Gt / ' | P& :
AN \\ 9
\% <) } / 10 \\ ' i' 9 j?

777NN
. : / , |
L |
| .
: e R
| < |
[ 1| |
' |
' ' |
) : ] . M\D--PLAN-E | X" .
) I
L
CUBE — AUTHOR'S SOLUTION
| _ 1~ 80
T390 '
LI == )&
v\“—____’.——-
N ‘ . Q0 —
‘OO ) l‘OC/
V. OST !
T TN
FICURE4.S



~170-

Despite these reservations the two sets of curves are
strikingly similar. The main difference is that in Filon's
solution the variations are more pronounced. This is to be
expected because the ratio of cross sectional area of cube
to its length is greater than it is for a cylinder. As
this ratio is increased the stress at the central point on
the upper surface will approach unity, the value it will hawve
if the lateral dimensions are made large compared with the

length.

In using relaxation methods to solve the problem of
the cylinder (25) Markland is able to consider lateral
restraint to be effected over the whole of the plane ends.

In the tables below all three solutions are compared.

prr (Cylinder) or pxx (Cube).

7
¢

/6 | 1/3 . 3 2/3  5/6 1.0

0.897 0.659 0.100 ? )
0.302 | 0,301 | 0.300 0.302 | 0.310 0.341 : 0.477
0.358 | 0.338 | 0.283 | 0,201 ' 0.111 ; 0.033 | 0

0.253 © 0,205 ' 0. o92§
1 0.134 | 0,127 0.112 © 0.094 : 0.058 : 0-007;
. 0.173 ] 0,163 0.136 ; O. 0971 0. 0531 0,016 ;

o]
o

n
o

T

©0.042 - 0.176 ¢ I
10,034 0.034f 0.029 : 0,018  0.008 : . 0,002
50.0565 0.053  0.044 O, 031 0.017 . 0.005 |
0.003 ! 0.002 0. OOl, :
0.016 0.0ll| 0.007 0.004 0.001' 0.002
0.0l6f 0.0lSE 0.013 . 0.009 0.005§ 0.002 ;

S TCREE [ TR

:>E'=i :«»—Ew bEE| B
o
(@]
(o}
-

COOCOO0}JO00OO0

i
l
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Pee OF Dyy (Brackets indicate tension).
yA r x=o§ /6 | 1/3 é i i 2/3 ? 5/6 *} 1.0
1.0] F{0.897: 10.TTT 10.482 | 0.438
M | 0.302{0.301/0.300i0,302/0,310 | 0.341 | 0.477
A | 0.3580.3580.358;0.358!0.358 | 0.358 | 0.358
2/3| F|0.253 0.223, 10,152 0.063
M | 0.140(0.132 o.122go.112;o .095 | 0.068 | 0.039
A|0.172/0.171/0.168,0.1620.155 | 0.140 | 0.133
1/3] F | 0.051 0.041] 10.015 éo ozo;
| 0.034]0.034/0.03110.023{0.013 | 0.002 | (0.013
| A | 0,056 0.054,0.050| 0,044/ 0,035 | 0.016 , 0.009
"0 | F|0.003 6.0031 (0.017 7(0.033
: M| 0.016:0.013 0.007|0,001{0.006 50.012§; 0.014
A| 0.016/0.015 0.011:0,004(0,005) (0.024) (0.032
Dzz
'1.0| P 0.686 10.750° 10.928 | 1.082 1.686
| M| 0,907,0.903/0.900 0,903 0,931 | 1.022  1.430 |
| A 0.835 0.842]0.863/0.897 0.945 | 1.007 | 1.082
' 2/3] F| 1.080] 11.054 1.006 | 0.985 0.882
| M| 1.0051.004 1,004 1.008/1.010! 1.007: 0.954 |
5 Al 1.027;1.026{1.022/1.017/1.009 | 0.999 ' 0.987 |
' 1/3] Fl 1,133 T.700 1.013| 0,951 0.872 |
* M| 1,054/1.054:1.050{1.040/ 1,020 | 0.984 ; 0.924
| Ai1.071'1,068 1.059!1,044/ 1,024 | 0.970 | 0.964 |
0 | F. 1.134] 1.100 T.007 | 0.948 0.894
| M| 1.072 1.064'1.056' 1,036/ 1,001 | 0.975 0.944
| A 1.0741.071 1,061 1.046/1.025! 0.997 0.963
' pzx or Prz
"T.0 F 0 1 0.354. 0.442 0 :
; (M| 0 0.0350.072 0.112 0,161} 0.228 | 0.354 |
| | A| O 10.078/0.141,0.179/ 0.176] 0.122! O |
' 2/3] F 0 0.059 0.086 N 0 E
M| O [0.022 0.045 0,062 0.070| 0.056 O
Al 0 ]0.0230.042 0.053 0.052| 0.036 O
/3] F| O 0.004 0.002 .0
| O |0.014 0.024 0,030 0,027| 0.012 O
| A| 0 10.003 0.005 0.00T 0.007| 0.004 O
O | F 0 0 O 0 o | 0 0
‘M| O | © 0 0 0 0 0 |
l Al o 0 0 0 0 0 0 3
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Before considering the details of these tables it is
as well to stress the fundamental difference between Markland's
and Filon's solution. The latter allows slip at the ends ﬂ
except on the perimeter whereas Markland is able to solve
for no slip everywhere. This is the only significant
difference between the assumptions upon which the two solutions
are based but its effect appears to be appreciable. It comes
as a surprise to note that there is generally better agreement
between the author's solution (for a cube) and Markland's
solution (for a cyiinder) than there is between the two
solutions for the cylinder. Consider for example the
distribution of the stress py, on the end plane (see figure
4,6). The author's distribution agrees gquite well with
Markland's except at the outer corner (r = 1) whilst Filon's
values afe very different. The difference between NMarkland's
and the author's value for pgzzy When r = 1 exists for two ’
possible reasoﬁs; firstly, it may be due simply to the
different shape of the two specimens, it is to be expected
that differences should be accentuated at the corners;
secondly the assumed functions which are used to determine
the stresses are such that it is not possible for the curve
to take the sudden bend that Markland's does. If terms
including higher power of x were included better agreement
would probably result. Furfhermore Markland's values may

not be very precise as the finite difference approximations

made tend to cause errors where the function changes its

value rapidly.



PLANE 4=0

8

'S -

JiFlLoN

‘i

1.3

1*~-MARKLAND

\2

-\

(X

Q9

o8

o7

o6

Qs

Qa

S 2

Q2

/
Z NAUTHOR

FIGURE 4.6

O X



~174-

This difficulty can be overcome by using a finer mesh. For
values of z other than 1.0 the agreement between the author's

and Markland's values for pgzy is remarkably good.

Turning now to the shear stress it can be seen that there
is complete disagreement between all three solutions. Matters
are complicated because Markland gets ppy double valued for
z =7 = 1.0, This point will be considered in detail below.
Much the same can be said for prpy (or pxx) except that here
the author and Markland compare guite well for values of z

other than 1.0.

On the whole there is quite good agreement between Peo
and Pyy in Markland's and the author's solutions respectively.

Again Filon's solution does not compare very well.

Why is there such disagreement between Filon's solution
and Markland's solution? Superficially it appears that by
preventing mévement at the perimeter of the plane end Filon
has a very good approximation. This point requires further
investigation. Let us compute the actual movement of the
plane ends for values of r other than 1.0. The radial strain
err = %{Prr - 0 (Pgz + Peo )}, and this equation and the
tabulated values of the stresses enable err x E to he
calculated, The results are plotted in figure4l. Since

err = 2%  the integral of this curve gives u x E, also

DY
plotted on figure 4.7.
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It will be seen that the maximum slip occurs at half radius
to the value 0.163/E. Compare this with the movement in the
Z direction. Filon's computation gives the apparent

modulus as 1,0498E so that the movement of the loading plate

relative to the central plane (z = 0) will be 1 x =
P T.0498% ~ 3

Y
(the total height of Filon's prism is 3 x diameter), which

equals 0.998/E. Thus the maximum slip is over 16% of the

compressive movement.
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This is far from being negligible and it can readily then be
accepted as the difference between Filon's stresses and

Markland's stresses.

In determining the approximate stress distribution by
the Prager-Synge method the egquations of compatability are
ignored so that any movements calculated from the author's
stresses would be meaningless. Different values would be
 obtained for different paths of integration! The final
solution was selected on the basis of total strain energy
- and there is no guarantee that the stress distribution presents
an accurate picture. The close agreement with Markland's
solution is therefore to a certain exfent fortuitous. We
would expect the actual stress distribution on the central
plane‘of a cube to be practically the same as that on an
axial plane of a cylinder of the same dimensions. The fact
that Markland's and the author's solution do agree enables
it to be said'with confidence that the latterts solution
provide a tolerable picture of the stresses throughout the

cube.

One further point calls for comment: The relaxation
solution gives finite values to prr and pry at the perimeter
of the plane end (r = z = 1). This arises because, as
Markland points out, the conditions

u=20

} on plane z = 1.0.
W = constant )

and prr = Pprz = O on the cylindricel surface are incompatible.
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This point can be illustrated guite simply as follows:

All the solutions agree that py, tends to increase the
point r = 2 = 1 so that pyy is not zero there. However on
the upper surface there is no radial straining and epp =€qg =0,
This gives Prp = Dye = (‘—-;-?a-) Pgge As pgy is not zero pry
cannot be. Hence the incompatability. This means that in
fact some slip must occur at the perimeter or else plastic
yield of the material must take place. The latter
invalidates the analysis in the immediate locality of the

perimeter.

This difficulty does not arise with either Filon's
solution or With the author's solution. Filon's solution,
as we have seen, does not pérmit slip right on fhe perimeter
but does allow it elsewhere. This means that eprr need not
be zero so that Py, F ( %?I) Pgpy- The Prager-Synge method
used by the author deliberately ignores the compatability
equations in determining the stress system and is able to

impose the condition that prp be zero at any desired point.

STRESSES ON PLANE y = 1. The Quter Surface

It is to be expected that failure will be initiated on
the outer surface of the cube so that the stress distribution
there is very interesting. The stresses referred to

Cartesian co-ordinates are given in the table below for

Poissont's ratio of 0.25.
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pxx (Brackets indicate tension)

z x=0 0.2 0.4 0.6 0.8 1.0

1.0 0.358  0.330  0.253  0.147  0.046 0
0.8 0.2100  0.194 0,148  0.086  0.027 0
0.6 0.101 0,093  0.07L . 0.041  0.013 0
0.4 0.026  0.024 0,018 0.011 0,003 0
0.2 (0.018) (0.016) (0.013) (0.007) (0.002) O
io (0.032)  (0.030) (0.023) (0.013) (0.004) O

Pzz

z x=0 0.2 0.4 0.6 0.8 1.0
1.0 1.082 1,092  1.122  1.171  1.240 1.329
0.8  1.012  1.013  1.018 1.025  1.035 1.048
0.6 0.979  0.976  0.968  0.955 0,937 0.914

0.4 0.966  0.962  0.950  0.930  0.90L . 0.865
0.2 0.963  0.959 0.945  0.924  0.893 0.853
0 0.963  0.959  0.945  0.923  0.892 0,852
DPzx

f T f i :

z x=0 - 0.2 0.4 | 0.6 0.8 1.0
1.0 0 0.092 | 0.160 | 0.183 | 0.137 | 0
0.8 | o | 0.047 ' 0.082 | 0.094  0.070 0
0.6 | © | 0.020 | 0.034 | 0.040  0.030 | 0
0.4 0  0.006 ; 0.010 | 0.012 % 0.009 i 0
0.2 0 0.001 | 0.001 | o0.001 § 0.001 | 0
0 0 0 e } 0 E 0 E 0
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Figure 4.8 shows the principal stresses at the surface.
At the corners of the cube the major principal stress reaches
a value 33 per cent in excess of the average compressive
stress, As the other principal stresses at this point
are zero the maximum shear stress is 33 per cent greater
in 2 cube subjected to frictional restraint than in one
where friction is absent. Dr. H.J. Cowan suggests the
principal shear stress to be the criterion governing a
crushing failure (32) which implies that friction should
reduce the load bearing capacity of a cube. This is quite
contrary to experience. Dr. Cowan's theory is not
necessarily invalidated Dby this argﬁment: Firstly, we
cannot be sure that the compressive stress at the corner
is anything like as high as the calculations suggest because
of the incompatability between the strains and the stresses
at this point. Secondly, even if the stresses are high
at the corner under elastic conditions it may be that local
plasticity is sufficient to redistribute the stresses so
that no visible failure occurs until the load on the cube

has been increased considerably.

Dr. Cowan quotes Nadai as saying that the maximum
strain theory is one which has experimental support when
applied to brittle materials such as concrete, but he

appears to consider a combination of Rankine's meximum

stress/
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stress theory and Coulomb's meximum shear theory to be more
suitable. Nevertheless %he way in which a cube fails
suggests that it is possible that the tensile strain is the
governing factor. It often happens when a cube is tested
to destruction that cracks such

1 l 1 1 ‘ as 'A' form perpendicular to
\

the faces of the cube tending to

cause the corners to break away

whilst in the shaded region the
surface of the cube flakes off.

//i;/, The flakes are often quite thin.
/

e o

This may be due 1o the surface

r I T T | | layer of mortar coming away from
the aggregate but it may also be

Figure 4.9 explained by saying that cracks
are formed in planes parallel to the surface due to the
tensile strain perpendicular to it. It is instructive
therefore to evaluate the surface strains in the cube and

to see if they can account for observed failure of the above

type.

STRAINS ON ZPLANES y=0 and y=1
In evaluating the stresses we have more or less
ignored the fact that the Prager-Synge method leads to two

stress systems; one due to the assgciated states, the

other/
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other due to the complementary states. When stresses are
considered it is natural to use the complementary states
because these are chosen to satisfy the boundary conditions
on stress. Were the displacements required it would be
natural to use the associated states. The strains are,

as it were, one calculation removed from both the stresses
and the displacements and one cannot say categorically that
either one of the associéted or the complementary states
should be used in preference to the other for determining
them. Figures 4.10 and 4.1l compare the strains as given

by both stress systems,

Figure 4.10 shows the strains on the axial plane y = O,
It will be seen that the agreement between the strain values
for the two systems is remarkable insofar as the direct
strains are concerned except at the intersection of the
outer surface and the end plane. The incompatability of‘
stresses and strains at this point naturally leads to
difficulties here. Another discrepancy may be noticed
in the distribution of the strains is the x direction.
On the plane z=l the lateral strains exx and eyy are zero,
as given by the associated states whilst the complementary
states, which take no account of the displacements, give
them non-zero values. However, the contours of the

complementary states which pass through the plane z =1

very quickly align themselves with their fellows of the

associated states.
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The shear strains ejzy do not show such good agreement.

This is because the incompatability at the corner has very
great influence. Also on the outer surface the shear
stresses and hence the strains are zero in the system of
complementary states but the associated states are not
subject to this condition. It is interesting to note,
however, that there is good agreement between the shear
strains of the associated states and the strains of Markland's

solution on the upper surface, see figure 4.12.

DISTRIBUTION of SHEAR STRAIN on LINE z-=\ wzo

Ea2x -
COMPLEMENTARY STATES //
1 Q.m ‘ N
MARKLAND ! //
Q3a - : 7
ADSOCIATED STATES !2¢¢
Q 20 # = = Lr y"" ~ o
. / P \
P -~ .
Q.o - —
—// -t - /
e
Q o2 Oy Q.6 Q.8 e XY
FICURE 4.\2

The preceding remarks on figure 4.10 apply also to
figure 4.11 depicting the strains on the outer surface.
Consider the two sets of tensile strains exy and eyye As
before there is good agreement between the two methods of
calculation except in the plane z = 1. Here we nmust

believe the strains due to the associated states rather than

those due to the complementary states because the former

set/
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set conforms with the no slip condition whilst the latter
does not. This being so it appears that the maximum
tensile strain for an average end load of unity is
approximately 0.25/E which is the value obtained when there
is no friction present. Thus on the basis of the maximum
tensile strain theory we would expect the end friction to
have no effect! In this case the points at which we

would expect failure to occur are remote from the ends and
furthermore the two methods of calculation are substantially
in agreement as to the magnitude and posifion of these

'high sPots'; It must be that on passing the elastic limit
%he stress is redistributed to such an extent that failure
is delayed considerably when there is end friction. If
failure can be ascribed to the tensile strain then the curve
of exx and eyy explain the type of failure sketched in
figure4g. The tensile strain normal to the surface increases
as the surface is moved explained the tendency to flake off
(see exx in figures 4.10 and 4.11). Now a flaking tendency
on one surface becomes a cracking tendency on a plane at
right angles to it. This-explains the formation of cracks

v4' (figure 4.9) at the corners.

CORCLUSION

From the academic viewpoint the analysis given in this

chapter is very interesting. This work is, as far as the

author is aware, the first application of the Prager-Synge

technique/
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technique to the solution of a three dimensional stress
problen. The comparison between the stress distribution
on the exial plane of the cube with that derived by
Markland for the axial plane of a cylinder is very instructive
especially as Markland's solution is obtained by an entirely
different approach. Nevertheless, to an extent the work

of this section has failed to achieve its object. It
appears from the above that the increase in strength which
'results from plate friction cannot be explained by study

of the elastic distribution of stresses and any of the
recognised theories of failure for a brittle material.
Possibly in a cube or cylinder test plastic yield starts

at a lower mean stress than 1t does in a beam or a column

of the same material, there may even be a formation of
minute hair cracks at a comparatively low load, but the
distribution of stresses and strains beyond this stage must
be such that the frictional restraint at the ends is able

to give effective support to the material. This support
enables the material of the restrained specimen to withstand

a greater stress than it can in beam or column form where

such recstraint is absent. So much could have been said
without undertaking the work of this section. This does

not, however, mean that the labour has been in vain. It
had to be done in order to see if anything could be learnt.

Furthermore there is one positive result:
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Ve have seen that if Young's modulus is required under
elastic conditions then it is sﬁfficient in practice to meas-
ure the overall movement of the two ends in order to
determine the strains. This is despite the fact that the
stress distribution is very complex and that the main stress
(pggy) varies considerably from the mean value. The fixing
of strain gauge to a small gauge length at the centre of a

cylinder (the usual method) is an unnecessary refinement.

The results also show that any attempt to suggest that
the distribution of stress in a beam at failure may be
obtained by 'scaling down' a stress-strain curve from a cube
test to be guite unjustified. By 'scaling down' is meant
the reducing of the stress ordinateé in order to‘obtain the
right value for the total compressive force in a beam.

If this is done the slope in the elastic range will be wrong
because it was substantially correct before scaling down.
Secondly the stress system is so complex, even under elastic
conditions, that the material will be subjected to stresses

quite different to those existing in a bean.
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APPENDIX 4.1

The object of this appendix is to amplify =2 little the
description of the calculations as given in the printed
paper. Appendix 4.2 places on record the basic numerical
quantities involved. It will be rec=lled that the problem
is split into two components. The first of these fepresents
a state of simple compression in which lateral expansion
is unhindered. In the second state a shear movement is
applied at the ends of the specimen just sufficient to
counteract the expansion due to the first component of the

problem.

The boundary conditions on the second component are;
ux = - G ax and uy = - ay at the ends uy being zero
there, whilse the surface tractions are zero on the sides of

the specimen.

The stress states are now selected. We will deal first
with the associated states. S* must satisfy the boundary
conditions on displacement and also the compatability

egquations

yx = %ﬁa etc.
and exy = & ( ‘9-"-;... %‘-’-; ) etc.

S1', Sp' etc. must also satisfy the compatability equations
but their displacements must vanish at all points on the

boundary/
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boundary where they are prescribed, in this example the

displacements must vanish at the ends of the specimen.

The easiest way to select the above states is to choose
functions for uz, uy and uy which accord with the boundary
conditions in the reguired manner. The strains are then
obtained from the compatability equations and these

stresses form the strains by applying

Pxx = B
(1+ o ) (1-20) {(l‘ o Jexxt o (eyy—ezz)} etc.
and p E
Xy = .exv ete.
1+ & Xy

Note that the displacements of S* depend on the value
of Poisson's ratio, & , but those of S;' etc. do not.
These calcﬁlations are best set out in the table drawn up
below.
uxiuy;uz%exxﬁeyyfezzlexygeyz;ezxipxjpyyépzz;ny!Pyszzx

! | : ! H !
S1t | : e
: : . : ; , .

?

! A
S2! o o
5 |

-

——

The entries in the columns ux, uy and uz are as in
Table I of the printed paper (p. 146) except that the S*

entries are varied with <
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This being done a table of scalar products is made.
The scalar product of two states is defined as
i \
(S-S') = | egj P.‘_s dv

on being expanded in Cartesian co-ordinates this becomes

(s.s') = [ (exxPxx'+eyyDyy'+e ! )
_ TeyyRyy tCzzPzz ;ﬁigdy,dz
J (+2exyDxy' +2eyzPyz' +2€5xPzx "

Tables of scalar products are given in Appendix 4.2

The next step is to orthonormalise the series of states.

The reason for this step may be illustrated as follows:

Let us suppose that only a crude approximation is
required so that S;' alone is considered. The resultant
stress system will be

S¥ + &1.5"

where Ay has to be determined. The resultant strain energy

will be
U=2 (S*+ A.5")2
au _ 1,8% i 1.S). = in.
v (Sl_ S )+A1(Slﬂ Sl') 0 for min
SO -that Al = - (Sl'os*)/(sl_'tsl')o

Thus the best stress system which can be obtained using
only S* and S!' is
- g
=-{(s1r.5%)/(s1'.81")}) s
Which can be written
S* — (Ip'.S*)Iy!

Where Ill —_ Sl/(sl'osl' ).%_
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It is immediately clear that (I7'.I7') = 1 so that

I;' is said to be normalised. The strain energy is given

2U = (S* - (I7'.S*)I')2
= (S%.5%) - 2(I1'.5%) (I7'.5%) + (I1'.S5*)2(I1'.I7")
(S¥.S%¥) - (I7'.S%)2 | -

Let us now seek to improve the result by adding So'

to the system. Let it be assumed that we can form

a.57' + b.Sy! = Io!
such that (Ip'.Ip') =1
and (I1'.I,") =0

This being done I' will be normelised and orthogonal to
Iyt In general if we have n independent states S we can
form n orthonormal states I such that

Ijdy =1 fori=%k

and

]

0O for i # k

Various methods for doing this exist the one used by

the author is due to Peach (33).

The resultant stress system will now be

S*¥ + B1I7' + 3212'.

N
c
i

(8% + BqI1' + Bng')2
'—é‘= (S* + B1Ip' + BoIo')Iy!
= 5%, I7' + Bl = O for minimum

and — = S¥.,I2' + Bo = o for minimum,
20,
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Thus By = - (S*.I1') and By = - (2%Io'). giving the
stress system for minimum strain energy to be

S* - (S%.I7') Iy' - (S*.In') Io!
and 2U = (S%.S%) - (S*.I7')2 - (5*.Ip')2

Thus in order to allow for the effect of So we add
- (S2.I2')Io to the stress system already found
and - (S*.Ig)2 to the strain energy already derived.

In general

Per
S= 8%~ D (s*I,")Ip
P=t b ' 2
and 2U= (S%.5%) - T  (s*x.In')
Pt

The intermediate step of orthonormalisation is not
essential bmk it is a very convenient one which gives S
and U relativély simple forms where they would otherwise
be very unwiedly. It also enables the numerical work to

be done in a very compact form.

The preceding work shows how the upper bound to the
strain energy is fixed. The lower bound is determined by

the complementary states which are selected as follows:-

The states S"l’ S"s etc. must satisfy the equilibrium

equations DE"‘ N bpl‘s ; Ban -0 ek,
dx dYy o=

and the boundary conditions on stress. In this case these

simply/
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simply state that the surface tractions must be zero on
the sides of the cube. Calculations relative to these
states are guite independent of those already described for
the associated states except that the same S¥* is used for
convenience. The calculations are, however, parallel to
those of the associated states as is the derivation of the
appropriate stress system and strain energy. In this

case however the aim is to maximise the strain energy

whereas before it was minimised.
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Calculations for the cube problemn.

o~ = %. Associated States.
Scalar-pro&ucts (Si'.SK'). _

5! ' | 8y 5, é S5 S*
51| 2.13333-0.05541] 2.13333 |~0,05541 | 1.42222 -0.07111
St 0.48904/-0,02771 o.41054§ 0  -0.02955
53! 2.59971 |-0.04618 | 1.88860 -0.03556
Sy 0.40720|-0.01847 [-0.01178
S5 1.47517 i 0
S* | 0.06032
Coefficient of S3', Sp' ete. in Iz', Ip! etcﬁ

si'x | Sp'z| Sy'x | S’z | Sg'x |
I'| 0.68465 ‘ﬁi
Iof| 0.03720| 1.43208 %
T3'|-1.46894|-0.08334 1.46678 |
I,'|-0.10436 |-3.37368| 0.12096 | 4.01284 '
I5'| 1.35188| 0.00375-406622|-0.09641| 4.06789 |
Stéain energy. Coefficients of Si' in resultant system

(Ii'.s*]S#-EhvyT S1'z | So'x | Sy'x Sp'x | Sg'x

S1'/-0.04869| 0.05795| 0.0333 ] |
Sp'|-0.04497| 0.05593| 0.0350(0.0644. |
S3'| 0.05477| 0.05293| 0.1155(0.0690;-0.0803 |
S4'| 0.05557| 0.04984] 0.1213|0.2564 ~0,0871|-0.2230
S5'| 0.04947| 0.04739| 0.0544|0.2563| 0.1141|-0,2182 -0.2012

Note that the entries in any row represent the final state

at that stage.

For example if only states S1, S2 and S3

are used then the strain energy is represented by 0.05293
and the stress system is S*+0.115551+0.069082-0.080383.




~-196-

O = %. Complementary States.

Scalar Products (Si".S")
‘ | : l
sl" 52 ] 33 [} 34" . S*

5 ; | _ s _
51" | 2.38600 0.26667 | 0.02032 | -0.02748 '-0.26667
S," gl.ooooog 0.66667 | O 0
S3" ; i 0.62222 5-0.05689 o
Sy" | ! 0.59443 0

Coefficients of Sl"’ 52" ete. in Il", I," ete.

! Sq "x ‘ s 2"X g 33 e S 4"x

4

I," o.64739§ ; |
I, ~0.11347 | 1.01524 j
T3" | 0.16642 -1.67540 | 2.44654 |
14ﬁj 0.04727 -0.32223 0.46444  1.32055

!

Strain energy Coefficients of S;" in resultant system

| (Ii"'s*]i Z(I-“i,‘gq)’.: slnx ‘ SZ"X : S3"X S4_"X |
S |-0.17264 0.02980[{-0.1118 ‘ |
Sp"| 0.03026| 0.03072[}-0.1152 | 0.0307

{ :
S3"|-0.04438| 0.03269-0.1226 | 0.1051 -0.1086

|
|

Sy —0.01260l 0.03285|-0.1232 0.1091 -0.1144 -0,0166
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Associated States.

5 S sy s sy s
S,' | 2.66667 ;-o 110390 | 2.66667 -0.10390 1.77778] -0.17778,
Sy | 0.54053 1 -0.07792 | 0.46693 -0.03463| -0.01097
s, f | 3.21501 | -0.10390 2.32612 -0.13333
5, f 0.47748 1-0.06061 0,01126
S5' i | 1.797793-0.0592ﬁ
s ‘ " 0.11905

|

Coefficients of S1', So!

etc. in Il" I2' etc.

S51'x 82'x S3'x: j Sp'x S5'x

I' | 0.61237 | | § |
Ip' | 0.05319 | 1.36529 _ | g
I3'  -1.35454 [-0.06546 & 1.35199 | |
I;'  -0.13201 1-3 19806 | 0.15149 3. 69801 |
Is'  1.31330 -0.00922 i-3.94924 -0. 06322 3.94967
Stfain Energy

(I35 -3 s**)z
'  -0.10887 | 0.10720 |
So' . -0.02443 | 0,10660
S3'  0.06126 | 0.10285
S, 0.07996 | 0.09645
S5' | 0.05842 | 0.09304
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O =1/3. Complementary States.

Scalar Products

sl 14 82 " 83 " ig 84 " § S*
1" | 2.40225 | 0.35556 | 0.06265 ! -0.03664 | -0.35556
Son 1.00000 | 0.66667 | o | o0
53" | 0.62222 -0.07585| O
Sy | | . 0.59443| 0
Coefficients of 5;", Spo" ete. in Iq", Ip" ete.
Sl "X j SZ "X i 83 ﬂx ’ S4 llx
t ~ & ‘
In" | 0.64520 { ; !
! i
Ip" [-0.15206 | 1.02740 | |
I," | 0.18898 | -1.71133 | 2.46621.
I," | 0.07074  -0.45281 | 0.64149. 1.34085 |
. { 1
Strain Energy Coefficients of S;" in resultant
(7.9 SV mE o S s sy
S | -0.22940 = 0.05263 | -0.1480 - |

i

Sp" | 0.05407  0.05555 [-0.1562 | 0.0555
S3" | =0.06719 E 0.06006 |-0.1689 = 0.1705 -0.1657
| 0.1819 -0.1818 -0.0337

Sg" | -0.02515 : 0.06070 |-0.1707

PR,
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o~ =1/6. Associated States
Scalar Products (S;'.Sg').

S5 Sp' | sy Sy ! S 5%
S' | 1.90476|-0.02969 | 1.90476|-0.02969 | 1.26984 |-0.02540
So! 0.47709 0 0.39298 | 0.01979 |-0.02553
S3' 2.34096 [-0.01484 | 1.70604| O
Sy 0.38159 | 0.00495 |-0.01583
SPY 1.34350| 0.01693
S* 0.02608
Coefficients of Sy', Sp' etc. in I7', Ip' etc

5! So'x | S3'x Sp'x Sg'x
I | 0.72457 ”
Io'| 0.02257| 1.44848
I3'| -1.51880|-0.09450| 1.51733
I4'| -0.08073[-3.43529| 0.09209| 4.16443
Is5'| 1.35057| 0.01605 |-4.06287|-0.12222| 4.06592
Strain Energy

(Ii'.5% SYST sy
S3'| -0.01840| 0.025T4
Sp' | =0.04190| 0.02398
S3'| 0.04127| 0.02229
S4'| 0.03413| 0.02112
S5'| 0.03602] 0.01982
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= 1/6. Complementary States.
Scalar Products  (Si".Sk")
Sl " S2 " S3 1] S4 1 s*
S;" | 2.36974| 0.17778|-0.02201| -0.01832 [-0.17778
S, 1.00000 | 0.66667 0 0
Sy 0.62222| -0.03793 0
|
Sy " 0.59443 0
Coefficients of 5", Sp" ete. in Iy", Ip" ete.
S1"x ; 32"X 33"}{ 54"X
} T
I;n | o. 64961‘ |
I | -0, 07553 1. 00674
I3" O. 14606 -1, 64606 2.43014
Ig" 0. 02835 -0. 20588 0.30126;, 1.30712

Strain energy.

i
i

Coefficients of S " in resultant

| system ‘ [

(Ii".5%) F(I.S* V| Si"= | s, § 83" Sp"x

5," | -0.11549 0.01334/1-0.0750 | |
Sp" | 0.01343! 0.01352/1-0.0755 |0.0135 - |
§3" | -0.02597| 0.01419/[-0.0798 | 0.0563 :-0.0631 |
54" | -0.00504| 0.01422]|-0.0800 ' 0.0573 '-0.0646 | -0.0066 |

i
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PART V  GENERAL SUNMARY

In part II of this thesis the author introduced his
method of determining the distribution of stress in a
concrete beam when it is tested to destruction under a

‘pure bending moment. This method is based upon an approach
fundamentally different to others which attempt to measure
the stresses directly. In contrast the author states
certain assumptions and from these derives a way of
inferring the stresses from strain readings. It is
assumned that creep has no influence on the stress
distribution and that the formation of tensile cracks also

has no effect.

These two assumptions are considered in detail. It
seems that for a test completed in a few hours creep will
not invalidate the author's analysis except at very high
stresses, Since the calculations are calculated step by
step the lower stress portion of the resultant stress strain
curve is unaffected by any inaccuracies in the higher
stress part. It appears that due allowance may be made
for creep at higher stresses when more information is
available on this phenomenon but that this will be possible
only if the creep laws conform with the possibility

envisaged by the author of creep rate being proportional

to the instantaneous strain. If this is not the case

the problem will be exceedingly complex.
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The assumptions that the distribution of stress is
waffected by the finite spacing of tensile cracks is
investigated in Part III. It is shown that provided the
cracks are spaced closer than one half the beam depth the
errors in the stiffness of uncracked blocks below the
neutral axis will be very small. With wider crack spacing,
up to full beam depth, the errors will still be small
provided that the cracking does not penetrate more than
60% of the depth and provided that the cracks do not
bifurcate. In practice this means that no doubts need be
felt on this score if the author's analysis 1s used for
reinforced or pre—stressed beams»using properly bonded
reinforcement but that errors will be introduced if it is
applied to non-bonded besms which generally find with deep

widely spaced cracks.

The results of tests on a number of pre-stressed beams
are analysed in Part II. Here a few interesting points
emerged. ~ It was shown that apart from determining the
distribution of stress in the compressed zone of a beam the
author's anelysis provides a very useful means of determining
the steel force and hence of deducing the amount of slip
between steel and concrete. It is demonstrated with a
number of examples that the stress strain curve obtained is

often independent of the positioning of the strain gauges

along the zone of constant bending moment.
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That is to say resultant stress strain curve is the same

for sections A, B and C.

!
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This is not very surprising since they are all of the same
concrete. Nevertheless it is very rare for failure to
occur right the way along the top of a beam. It is almost
invariably localised as shown in figures 2.23, 2.24 etc.

If the same stress-strain curve is obtained for sections

A, B and C whilst failure is in section A it means not

that there is local weakness at A but that the cracking and
local slip of the steel have conspired to cause A to be
more severely stressed, This point leads us back to
consider again the effect of creep. If the material of
section A is more highly stressed than that of B or C then
one would expect higher creep in section A. This should
cause the stress-strain curve recorded for A to differ from
those recorded for B and C. It does not differ thus

demonstrating that creep does not have a very great effect.

These tests also show that it i1s possible for local
steel strains in a crack to be higher than the average concrete

strains whereas it is natural to assume that they should

egqual or, as a result of slip, be less than the concrete

strains,
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Part IV analysés the stresses in a cube compressed
between rough plates. This work shows that although the
distribution of stress is very complex the overall strain
is affected but little. This means that in a cube or
cylinder test carried out for the purpose of determining
Young's modulus it is sufficient to take the overall
movement of the loading plates as a measure of the strains
and that to attach a strain gauge is an unnecessary
refinement. The fact that the stress distribution is so
complex shows that it would be unjustifiable to attempt to
determine the full 'plastic' stress strain curve by this
method. VWe saw that it does not appear possible to
reconcile this stress distribution and any of the accepted
criteria of failure with the fact that concrete in a cube

is stronger than concrete in a column or beam.

The general purpose of this thesis has been to examine
the means of determining the stress distribution in the
compression zone of a concrete beam under a bending moment.
A method of doing this has been evolved and the limits
within which the method can be expected to give valuable

results have been defined.

It has been teken as axiomatic that it is desirable to
know this stress distribution. That the problem is an

interesting one from the academic viewpoint need not be

argued,
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That its solution provides information of value to the
practicing engineer can be debated. It can be pointed out
that Whitney has evolved a satisfactory plastic theory for
the determination of the ultimate bending moment of an
ordinary reinforced concrete beam using simply the stress-
strain curve derived from z cylinder test. At the time of
writing some authorities believe that VWhitney's theory covers
2lso the failure of pre-stressed concrete. If this is so
is it necessary to go to all this trouble to determine the
actual distribution of stress in a concrete beam? The
author believes that it is because he does not agree with
these authorities but finds the theory of A.L.L. Baker more
acceptable, If this theory is to be fully developed for
the use of the designer then many beams will have to Dbe
tested in order to determine the factors used in the theory.
These factors depend on the shape of the concrete stress-
strain curve, Professor Baker himself believes that it is
desirable to know the true stress distribution and, as
mentioned earlier has designed the bending simulation

machine with the object of solving this problem.

A full discussion of this controversy is outside the
scope of this thesis and it is mentioned here only to
indicate how the information gained as a result of
application of the author's method of analysis is applied in

the realm of practical engineering.
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The method may with profit be applied in the analysis
of test data even when the main objective is not the
derivation of the stress-strain curve. For example it may
be suspected in a given case that the discontinuity in the
slope of a deflection curve is due to slip of the steel;
application of the author's method will show whether or not
this explanation is accepfable. It must be emphasized that
at present many beams are tested to destruction and sufficient
information is booked to enable this analysis to be applied.
The only data required are the strains in the concrete and
these must be noted if the depth of the neutral axis is to

be determined.

That no additional preparations need be made over and
above those already made greatly commends the method as
does the fact that beams commercially made can be tested
as supplied by the maker without the need to make special
modifications for the purpose of test. Extra time 1is,
of course, taken up in making the necessary calculations
but this labour is small compared with that which must be

spent in any case in the testing of a beam.
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Slender Reinforced Concrete Columns.
By J. M. PRENTIS, M.Sc., and Professor A. D. ROSS, Ph.D., A.M.Inst.C.E.

INSUFFICIENT is known about the strength of slender reinforced concrete columns,
although codes give coefficients by which the safe load on a short column should
be multiplied to determine the reduced working load on a slender column of the
same lateral dimensions. The instability of slender columns and the effect of
creep of the concrete are considered in this article.
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A straight concentrically-loaded homogeneous column fails in compression
if the length is short compared with the lateral dimensions, and by instability
if the column is slender. The load at failure of an ideal slender column hinged
at both ends is given by Euler’s formula,

Pe=n2EA<§>2 N TS

where E is the modulus of elasticity of the material, 4 is the cross-sectional area
of the column, % is the radius of gyration of the section, and [ is the distance
between the hinges. In practice the conditions of an ideal column are not
attained, but it is possible to allow for variations by assuming either an eccentricity
of the load or a curvature of the centre-line of the column. An analysis ) based
on an assumed cosine curve shows that the load at failure depends on the yield
stress p, of the material, and for a column hinged at both ends the load at failure is

p_ DA+ EF0P J [puA + @P] _5AP. . (@)
2
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where 7 is a coefficient depending on the curvature of the centre-line. For
a material like concrete having no definite yield point, it is not correct to assume
an equivalent yield stress, because the continual change of slope of the stress-
“strain curve is due to creep during the test. If a correction is made for creep @
the relation between stress and elastic strain is linear within the range of working
stresses. In the absence of corrected stress-strain curves for instantaneous
loading up to the limit of proportionality and.thence to failure, the yield stress
must be given an arbitrary value, such as 0-8 of the crushing stress, as is assumed
in the following. The numerical value assumed does not affect the theoretical
deductions. If the strength of concrete in a column is assumed to be two-thirds
of the crushing strength # of 6-in. cubes the assumed yield stress p, is 0-533u.

Since concrete deforms continually under sustained load, it is evident that
strain due to bending increases with time. If an initially curved member is
subjected to an end load, the stresses are a combination of the direct stress and
the bending stress caused by the eccentricity of the load due to curvature. The
bending moment increases the curvature and the bending stress is therefore
increased. Unless the column is overloaded equilibrium is reached, and the
resultant distribution of stress is as shown in Fig. 1(a). If the material creeps
under the stress and if, as is the case with concrete, the rate of creep increases
with increase in stress, the curvature and the bending stress also increase. The
stress is greatest on the concave side where the creep is greater than on the convex
side, that is the curvature increases.

If the effect of creep is too great the material becomes overstressed and
collapses. In all cases the conditions of stress deteriorate and a reduction of the
original load-factor results. These effects are assessed in the following.

Calculation of the Effects of Creep.
Fig. 1(b) shows a column of uniform cross-section with a centre-line con-
forming to the equation y, = a cos ? It can be shown () that on the applica-
tion of an end load P the equation to the centre-line becomes

__ ab, cos X 3)
wa——e——P T . . . . 3

Consider an elementary length of a member [Fig. 1(c)] bent to a radius R and
subtending to an angle 0. From the geometry of the figure,
AB —A'B =z )
~ 3 5 . . . . (4

If it is assumed that the rate of creep is proportional to the instantaneous stress,

that is, %: f@ where ¢(¢) is the creep in time ¢ under unit stress, and if

P
= —, th
P i en

1 9(AB) (1) 1 9
ﬁ.——at——-—— —a‘—"l—E-ﬁ‘- . . . (5)



Also,

1 0A'B _ op(t) , 1 AP+ )
ArBr‘ at - (p +f)_aT' +"E"———at . . . (6)
by
h -
where f Akzz
By differentiating (4) with respect to ¢ and assuming AB = A'B’ for a large
radius of curvature, and substituting from (5) and (6),

r af (;S() z OR
o Py a3y 1 OR
Substituting f = A_k22’ and W a R A
Py Py ), Oy
Ek*'0t ' k¥ ot ' ox%ot
P, k\ 2 . . L.
If p,= /T' n?E 7 the solution of this equation is
E4(t)
y = P Bp?e_?’ . cos X . . . . (8
pe - P l
Comparison of (8) and (3) shows that the effect of creep is to multiply the

PES()
lateral deflection (and hence the bending stresses) by the factor 0 = ¢?~?. To
determine the load which causes failure in any time ¢, it is therefore necessary to
replace # in (2) by o7. The resultant equation is not easy to solve because o is
a function of p, the stress to be determined, but the solution can be obtained by
successive approximations.

Effective Modulus.

In the foregoing it is assumed that the rate of creep is proportional to the
instantaneous stress, but a simpler method is to replace E by an effective modulus,
g E

I+ Eg(t)
it is assumed that all the creep has occurred under a stress equal to the final
stress in the material, since it is assumed that the final strain in any fibre is

when calculating P,. This gives a smaller failing load because

F=F —|— fé@). In a column the stress in the concave side increases to f during
[

the perlod of loading ; hence at any given moment the stress is less than f.
Therefore the total strain obtained is too high. On the other hand, if the stress

. . ot
is increasing, the rate of creep %must be greater than the assumed rate f ai;

Therefore the deflection given by (8) is slightly too low and the failing load
is slightly too high. Thus the true result is expected to lie between the results
obtained by the two theories.

Fig. 2 shows a comparison between the loads required to cause failure as
calculated by the two theories when the load has been applied for an infinite time,
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To demonstrate the effect of creep the loads calculated from (2) to produce
immediate failure are also given. The ratio of P to P, is plotted against %, the
curves being therefore applicable to all columns. A discontinuity in the curves
occurs at g = 05 due to the stress on the convex side [Fig. 1(a)] becoming

Y
tensile. If the concrete is assumed to possess no tensile strength, failure of a plain
column must occur when the tensile stress due to bending exceeds the direct
compressive stress.

1-0 T T —T T T T T

[s30y 1 of

ove

(%4
o
S

T

Il L i

\ . A -
20 40 €0 80 100 1
Slenderness: 5 . 2o 40

Fig. 2.

There is little experimental verification of the preceding theories for homo-
geneous columns. When the analytical results are compared with the results
obtained on a phenolic plastic material,®® which exhibits characteristics of creep
very similar to those of concrete but on a greatly reduced time-scale, close agree-
ment is shown, the results of tests being between those of the two theories.

Short Reinforced Concrete Columns.

If a short reinforced concrete column is loaded concentrically so rapidly that
creep does not occur, it behaves elastically when subjected to small loads, If
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the load is increased the steel is eventually stressed beyond the limit of pro-
portionality and thereafter the concrete takes a greater share of the increased
load. When eventually the steel yields it can only sustain its yield stress, so
that further increase of load is borne entirely by the concrete. When the concrete
becomes overstressed there is total collapse. Thus, disregarding the effects of
lateral reinforcement, the strength of a short reinforced concrete column is

Py = 0'67uAc + pysAs . . . . (9)
where A, and A, are the areas of the reinforcement and concrete respectively
and p,, is the yield stress of the steel.
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Fig. 3.

When the load is applied eccentrically, or when a concentric load is combined
with a bending moment, it is common to permit a higher compressive stress in
the concrete than for direct load alone. There is no reason to suppose that
concrete is capable of withstanding a greater stress due to bending than due to
direct load, but this assumption allows a linear variation of strain to be assumed
when in reality the variation is otherwise.

One plastic theory ) shows that the load P applied at an eccentricity e causing
failure due to compression of a member of breadth & and effective depth 4 is

Aspys n bdu,
e 3de ’
—+1 —= 41178
BT osdprp Y
where 2%, is the distance between the compressive and tensile reinforcement and
u, is the strength of concrete cylinders. If P is plotted to a base of Pe (or M)
the result is a straight line passing through P = P, for M = o, and through

My = M = b(o'5d + &, 2 % + p A4k for P = 0. The relation of the load to
0 3 v

the moment to cause failure due to compression is, therefore, given by
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M,

M = (P, — P)5°

(r0)
Y
An expression relating P and M for failure due to insufficient tensile strength
can be derived by considering the section in Fig. 3 when tensile failure is imminent.
Replace the forces on the compression side by F. By equating the internal and
external forces and the moments of these forces about the centre-line, and by
combining the resultant expressions,

M

—=P+aP, . . . . . (11)
ks

in which «P, = p,A,, and %, is assumed to be approximately equal toj. Com-

paring this equation with the results of tests, there is so close an agreement that

the use of this simple equation in place of more elaborate expressions seems to

be justified.

Slender Reinforced Concrete Columns.

Tests over short periods ®) show that (2) is applicable to slender reinforced
concrete columns if p,4 = P, is the load at failure in compression of a short
column of the same cross-section as the slender column and if 5 = 0-003%.
Formula (2) can be obtained from the elastic theory, but an inconsistency is
thereby introduced because P, is calculated from a plastic theory of failure.
The formula can, however, be obtained by using a plastic theory of failure as
expressed in (10) and (II).

If the failure is by tension

p—_—a—nP +J[ v ] +aP,P,. . (12)

in the derivation of wh1ch the elastic theory is used to determine the lateral
deflections and the plastic theory is used as a criterion of failure. The justification
for this anomaly is that there is, as yet, no satisfactory theory for the distribution
of moments and forces in a reinforced concrete member when the deformations
cease to be elastic.

The Strength of Slender Reinforced Concrete Columns when
Loaded Instantaneously to Failure.

In Fig. 4 formula (2) is applied to four representative columns assuming
7 = 0-003%. The selected limiting values for the strength of the concrete and the

percentage of reinforcement are also given. Values of P, are obtained from (1) in
which E is the value for concrete and 4 = 4, + mA,, the modular ratio » being
applicable to zero time ; P, is calculated from (9). Curves published elsewhere (5)
are also plotted and give lower reduction-factors than those given by the writers.

.. . 0,000 .
This is because the curves are based on a modular ratio of 49, which corre-
u k]

sponds approximately to the effective modulus at one day, an allowance therefore
being made for the creep that occurs during the first day under load. By using
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the modulus at zero time the effect of creep at this stage is excluded. Formula (12)
is not applicable to the values of % in Fig. 4; thus the curves exhibit no dis-

continuity. This does not imply that slender reinforced concrete columns of
these dimensions collapse without tensile cracks appearing, but that a state of
instability is attained before the cracks occur.

The Effect of Creep in a Slender Reinforced Concrete Column.

The analysis of the effects of creep on the deformation of a slender homo-
geneous column can be extended to a reinforced concrete column [Fig. 3(8)].
If the stress in the concrete at a distance z from the centre-line is f,,, then (7) is
true if f is replaced by f,,. The derivation of (7) is unaffected by the presence of
reinforcement. If the extreme fibre stress is f, and the variation of strain is
linear [Fig. 3(c)], substitution gives

2 afc 2f, 0p() _ 1 OR

Ea dw  mmo o o

The strains on the concrete and steel at any point at distance z from the centre-line
. Oe oe
1, that = ¢, Thus %= "%

are equal, that is ¢, = ¢, us — o

1 of, I af
H i cz

ence E ot E ot +fcz $(0),

1 o, of, 2
or Eskﬁ—{E Terjasols .
where f; is the stress in the steel at a distance %, from the centre-line. From
(13) and (14) L 9% + l 6_15 = 0. By integration, the constant being deter-

Ek, ot ' R o
mined from f, and R at zero time,

- (%_%) ;);; cos (?) . . . . (15)

where @, =1, + SI s; I, and I, are the second moments of the area of the steel

and concrete. The bending moment to which the section is subjected is

2 1
==z —fI, . . . . . (16
M =2+ I, (x6)
. . P ¢ 0%y .
Combining (15) and (16) and substltutmg— =35 gives
2 I 0%  a.P, X
Zf =_1P ETI [ | O . .
dfc Ic{ y + § b< + QDCEC Cos l )} (17)

Substituting (17) and the differential of (17) in (13), the resultant expression can
be integrated to give

y = a.pP, gﬁ I;ﬁ'Eci(t)I_%_%Pe—P _ Py PPl T
,Pe_P Pe.P‘Pes Pe'P—P‘? l'

S,
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As in a slender plain-concrete column, the effect of creep upon the lateral deflection
is to multiply the deflection by a factor ¢ which for a slender reinforced concrete
column is given by

P—Pespp P, P,—P p, P,—P
Pg‘P Es¢(t) g. e i _ _ef. e . 8
{3 <I+PeP_Pes) Pe ~~-Pes} ' (I)
2
where P, = %
l2

To be able to apply this analysis to an actual column, the proportion con-
tributed by the reinforcement to the total Euler-load, and the characteristics of
the creep of the concrete as defined by #(f), must be known. As the ultimate
strength of a column is the strength when the full effect of creep takes place, it
is the strain due to creep when ¢ is infinite that is required. The appropriate
constants for the columns previously considered are given in the table in Fig. 4.

By assuming a value for 3, o can be obtained from (18). By replacing
y

P . . .
n by o, (2) can be solved for — ; comparison of this value with the assumed
value shows the validity of the assumption. A more accurate value can be

obtained by continued approximations. If the results of calculations carried out
in this manner are plotted, curves are obtained similar to those in Fig. 2, giving
the theoretical load causing failure after the passage of infinite time. Such
curves cannot be used in design since a load-factor is not introduced, but by
a slight modification of the calculation a load can be obtained such that the
load-factor never falls below a specified value. As an example, suppose that the

load-factor required is 2-5. Solve (18) for ZLS X ; instead of for 3 With
Y Y

the value of ¢ so obtained, ZTP is determined from (2). In this way the ultimate

load at infinite time is obtai%ed for a column which has been maintained con-
tinuously under a load equal to 40 per cent. of that ultimate load, and with this
load the load-factor approaches 2-5 but is never less. In Fig. 5 the curves are
plotted for the four columns given in Fig. 4 for a load-factor of 2-5. The curves
are so close together that the diagram is more clearly shown as an envelope
within which it is expected that columns of the more common designs will lie.
Because the envelope is so narrow, which is remarkable when the wide range of
columns represented is considered, it is possible to plot a mean curve which may
be used in practice without serious error. The ordinates of the mean curve have
been reduced to 40 per cent. of their value to give, in the lower part of Fig. 6,
a curve of reduction-coefficients for permissible loads. For comparison the
reduction factors recommended in the D.S.I.LR. Code (1934) and the British
Standard Code CPrr4 (1948) are also given. The most important difference

occurs for the more common values of é, that is up to 8o, and this is due to

the assumption in the code that no buckling factor need be applied for columns
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for which % is less than 50. Experiments seem to show, however, that the

bending effects are sensible in all columns except those that are very squat.

Conclusions.

Creep has an adverse effect upon the strength of slender reinforced concrete
columns and current methods of design make little allowance for this fact. The
strength of a slender column subject to creep is a function of time. Only pin-
ended columns are considered, but it is convenient and justifiable to consider
the simplest case when attempting to solve the complex problem of the instability
of a non-homogeneous column one of the components of which is subject to creep.

No distinction between dead and live loads has been made, it being assumed
that the load is continuously applied. To allow for transient loads it is necessary
to predict the value of ¢ for the dead load only; the combined dead and live
loads are considered in the determination of the load-factor. When the ratio
of live load to dead load is small it is probable that little economy is lost by
considering the total load as dead load thereby enabling a curve such as that in
Fig. 5 to be used, although verification by tests on actual columns is desirable.
For such tests it is necessary to maintain many columns under load for long
periods before testing them to destruction. Although a load cannot be maintained
for an infinite time, the load-factor at any time can be estimated so that if actual
failing loads at that time agree with the calculated loads it is possible to estimate
by extrapolation for longer periods.
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