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ABSTRACT

The object of this thesis is to consider the problem 
of determining the distribution of compressive stress in a 
reinforced or pre-stressed concrete beam subjected to a 
pure bending moment at loads approaching the ultimate.

The attainment of this object is desirable because 
the full development of an ultimate load theory for pre
stressed concrete appears to depend upon it. It is pointed 
out in the concluding chapter that this reason is debatable 
and indeed that the ultimate load theories themselves are 
at present the subject of controversy. These matters are 
deemed to be outside the scope of this thesis which concerns 
itself solely with the object stated above.

The thesis starts with a study of the normal, 
assumptions of concrete design. It then goes on to survey 
the possible methods of measuring directly the stresses in 
a concrete beam particularly under plastic conditions. A 
method developed by the author for determining these 
stresses indirectly is then introduced. After careful 
study of the validity of this method it is applied 
to results of tests on a number of beams.

Return is then made to one of the basic assumptions 
of ordinary (’elastic’) concrete design. An analysis is

made/



made of the effect of finite spacing of tensile cracks 
on the distribution of compressive stress (normally it is 
assumed to have no effect).

An investigation is also made of the effect of end 
friction on the stress distribution in a. cube. The 
object of this study is to see whether stress-strain 
readings taken in such a test have any significance for 
the same concrete used in a beam.
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PART I INTRODUCTION
Chapter 1 THE OBJECT AND SCOPE OP THIS THESIS.

The object of this thesis is to consider the problem, 
of determining the distribution of compressive stress in 
a reinforced or pre-stressed concrete beam subjected to a 
pure bending moment at loads approaching the ultimate.

The attainment of this object is desirable because 
the full development of an ultimate load theory* for 
pre-stressed concrete appears to depend upon it. It is 
pointed out in the concluding chapter that this reason is 
debatable and indeed that the ultimate load theories 
themselves are at present the subject of controversy.
These matters are deemed to be outside the scope of this 
thesis which concerns itself solely with the object 
stated above. Eaphasis is laid on the determination of 
the stress distribution under plastic conditions, but 
first it is desirable to give close study to the normal 
assumptions of concrete design. The latter half of this 
section (Part I) is devoted to this.

Part II starts by considering various possible ways 
of measuring directly the compressive stresses in concrete 
beams. A method of determining these stresses indirectly 
is then introduced. After careful study of the validity

of this method it is applied to results of tests on a 
number of beams.
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In Part III return is made to one of the basic 
assumptions of ordinary (*elastic*) concrete design. An 
analysis is made of the effect of finite spacing of tensile 
cracks on the distribution of compressive stress (normally 
it is assumed to have no effect).

Part IV gives an investigation of the effect of end 
friction on the stress distribution in a cube. Ihe object 
of this study is to see whether stress-strain readings 
taken in such a test have any significance for the same 
concrete used in a beam.
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I Chapter 2. GENERAL ANALYSIS OF REINFORCED AND

PRESTRESSED CONCRETE BEAMS.

The following as simp t ions are generally made:-

(a) The concrete stress is considered to be uniquely 
defined by the strain.

(b) It is assumed that the concrete below the neutral 
axis (i.e. the axis on which the longitudinal stress 
is zero) has no stiffness and carries no stress.

(c) Plane sections are assumed to remain plane.

Under elastic conditions (a) is simplified by taking 
the stress to be directly proportional to the strain.

As the detailed analysis of reinforced and pre-stressed 
concrete beams under elastic conditions is given elsewhere 
(1, 2)* only the general principles will be given.

0 c Cc

Strains Stresses
Figure 1.1

* Numbers refer to references listed in the bibliography 
at the end of the Thesis.
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Three requirements have to he met:-
(i) there must he compatability of strains in steel 
and concrete,
(ii) the elements of the body must he in equilibrium under 
the stresses acting upon them,
(iii) these two taken together must satisfy the stress- 
strain relationships,

Since plane sections remain plane the strain 
distribution is as in figure 1.1 (a)

so that ec^et ** ~ n ) (1*1)

With perfect bond (i) above requires
®t = ®s U*2)

where es is the increase in steel strain from the stage 
at which. e^ is zero. In the case of ordinary reinforced 
beams es = 0 when 6^ = 0 whilst in pre-stressed beams 
es has a stated value when ê. is zero.

If the bond is imperfect then it is necessary to 
introduce a factor I* (3) so that

es ss. I* x e^ (1.2 a)

(ii) requires equilibrium of the forces and moments 
acting on any vertical section of the beam so that

C e l

and I.d(l - Sn)
(1.3)
(1.4)
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where M is the external bending moment acting.

In order that equations (1*3) and (1.4) should be 
soluble for C and T use must be made of the stress-strain 
relationships of both the steel and the concrete. Use 
must also be made of the equations (1.1) and (1.2) and of 
the fact that the strain variation is linear down the beam.

Taken together these relationships enable c* and I
v

to be calculated for all values of M.

The general method given above is applicable to both 
reinforced and pre-stressed concrete beams at all stages 
of loading.

RECONSIDERATION OP THE ASSUMPTIONS.

Having given, very breifly, the outline of the main 
features of the theory of bending for concrete members the 
basic assumptions given above will now be studied in more 
detail. The assumption that the concrete stress is a 
unique function of the strain is not strictly justifiable 
because it takes no notice of creep phenomena. As, 
however, very little is known about creep at high stresses 
it is not feasible, as yet, to make any allowance for it.
At working stresses an allowance can be made and this is 
done in practice although it is in fact of consequence only 
in pre-stressed concrete (2).
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Ihe assumption of a unique stress-strain relationship 
implies that the concrete is homogeneous; otherwise the 
relationship would vary from point to point in the medium.
In fact the. elastic and plastic properties of concrete do 
vary in this manner. Variations in the properties will 
occur due to different curing of various sections of the 
concrete. For instance the outer layers of a concrete 
body dry out more rapidly than the inner parts, giving ■ 
rise to variation in the properties of the material.
Once more little is known about such phenomena and it is not 
practicable to make allowance for them. A more obvious 
violation of the homogeneity assumption lies in the 
variations in physical structure from point to point in 
the material which consists of a matrix of mortar in which 
are embedded individual particles of aggregate. Such lack 
of homogeneity is not peculiar to concrete as many materials 
are made up of analogous constituents although the scale 
on which the structural variations may be observed is 
generally very much smaller. However, provided that the 
elementary particles of the material are small compared with 
a ’significant dimension1 of the body which it makes up lack 
of homogeneity is of little consequence. In the case of 
concrete it is necessary that the significant dimensions 
should be large compared with the aggregate size.
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The term ’significant dimension1 is best explained by means 
of suitable examples:- if, for instance, one wished to 
determine the density of concrete by casting a prism of 
known dimensions and weighing it, then the 1 significant 
dimensions' are the lengths of the edges of the prism which 
should be long in comparison with the aggregate size in 
order to obtain a fair sample. The measurement of strains 
in concrete provides an example which is more relevant to 
the work in hand. Such strains must be measured by using 
an instrument with a gauge length long in comparison with 
the aggregate size. In the experimental work on which 
the writer has been engaged under Professor A.1.1. Baker 
at Imperial College an 8 inch gauge length has been used on 
concrete made with ■§• inch aggregate. In this case the 
ratio of gauge length to particle size is 21:1. Results 
obtained using such a gauge are quite satisfactory and 
measurements on beams subjected to circular bending where 
the strain distribution is known to be linear deviations 
from linearity are generally less than the 'reading error* 
of the gauge. Assumption (a) pre-supposes that a stress- 
strain relationship exists. It also implies that the 
form of the relationship is known or that it can be 
deteimined, otherwise the equations (1.1) to (1.4) can 
have no practical application.
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In fact it is difficult to obtain t3ie stress-strain 
relationship for concrete once the limit of proportionality 
has been passed. One of the main aims of this thesis is 
to consider this problem. A review of the difficulties of 
the problem and the various ways in which it may be tackled 
are given below.

Assumption (b) that the concrete below the neutral 
axis has no stiffness and carries no stress will now be * 
considered. The assumption that concrete has no tensile 
strength is admittedly false but in practice it is justified 
because value is small compared with the compressive 
strength. It is generally considered that under elastic

conditions the concrete stress 
is triangular as indicated in 
figure 1.2. This would be 
true if the concrete below the 
neutral axis disintegrated but 
in fact there is a finite

Figure 1.2. distance between the vertical
cracks. The blocks of concrete between those cracks have 
stiffness tending to retard the deformation of the concrete 
above the neutral axis. This action results in a stress 
distribution different from that indicated in the figure.
The actual distribution to be expected under elastic
conditions is derived in Part III.
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If pure flexure is postulated then the assumption that 

plane sections remain plane is redundant for this can be 
shown to be a fact as a result of the postulate. A proof 
of this is given in Appendix 1.1.

In practice concrete beams are not subject to pure flexure, 
since this implies zero shear. As the self weight of the 
beam is distributed this condition is obtained only at 
specific sections along the length of a beam. In this 
thesis we shall mainly be concerned with the analysis of 
results obtained from test beams which are, in general, 
light compared with the loads they carry so that for all 
practical purposes pure flexure will be attained. Even 
under these conditions there will be distortion of the planes 
in the immediate neighbourhood of the loading points.
In bending tests pure flexure is obtained by means of four- 
point loading (figure 2.10). It is noticeable that compressioz 
failure rarely occurs under one of the loads and that the 
crushed zone is generally a little way away from the loading 
plate. This may be ascribed to friction effects between 
the loading plate and the top of the beams which in 
preventing lateral expansion inhibit failure, the effect 
being similar to that operative between tha ends of a cube 
and the loading plates of a crushing machine.
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APPENDIX. 1.1
THEOREM. In a uniform beam subject to a pure bending: 

moment plane sections remain plane.

Consider a uniform weightless beam so loaded that 
over a section PC (figure 1.3) there is no resultant shear

i i

1------------------ !!--------
A A' i ,

' 1k

P
B B*

t

Q
, >

Figure 1.3
force (i.e* the bending moment is constant). If P and Q. 
are sufficiently far removed from the loads then by St. 
Tenant* s principle, the mode of application of these loads 
is of no consequence. Thus the actual loading system may 
be replaced by another system, exterior to PQ, so that PQ 
is subject to the same bending moment with no change in 
the behaviour. Make this second system symmetrical about 
section iB situated mid-way between P and Q.

Since iB is in a plane of symmetry it must remain 
plane. Consider now any other section A*B*. As this 
section is subjected to precisely the same loading as AB 
it will distort in the same manner. But section AB remains 
plane therefore A*B*, and all similar sections, also remain 
plane.
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U lus under tire action of a pure “bending moment plane 
sections sufficiently far removed from the points of 
application of loads, remain plane.



PART II. EXPERIMENTAL DETERMINATION OF THE STRESS 
DISTRIBUTION IN CONCRETE BEAMS IN

Chapter 1 REVIEW OP THE POSSIBLE METHODS.

The distribution of stresses in a concrete beam 
subjected to a bending moment can in theory be determined 
in a number of ways:-
(a) By obtaining the stress-strain curve for concrete 

tested in direct compression (e.g. in the form of 
a cube or cylinder) and assuming that the 
properties of the concrete in the beam and the 
specimen are the same.

(b) By embedding stress* gauges in a beam.

(c) Another approach is being made by Herr and 
Vandegrift at the Ohio State University who 
remove a section of the concrete in a beam and 
replace it by glass (3). The faces of the glass

p  gkss insert plate are then subjected to 
the stress distribution in
the concrete when the beam is
loaded. The distribution of

O ' stress in the glass is determined 
by photo-elastic methods.
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(d) By taking a short length of beam, applying compression
to the concrete above the 
neutral axis by means of a 
number of jacks, tensioning 
the reinforcement by external 
means, and adjusting all the 
forces until a linear strain 
distribution is obtained in 
the concrete. The stress

distribution is then given directly by the applied 
loads. This method has been suggested by BaJker 
who has constructed a special machine, the bending 
simulation machine, for this purpose (4).

(e) On the basis of the assumptions on page 4 the 
author has evolved a method of deducing the stress 
distribution from a straightforward bending test 
on a beam. The method Is given in detail on 
page 20 et se<i.

The difficulties and drawbacks of these methods will 
now be dealt with in turn.

Critisism of each of the above methods.

(a) In any compression test in which the specimen is 
loaded between parallel plates lateral expansion 
of/



-14-

of the concrete is restricted by 
friction between the specimen and 
the plates. In the case of concrete 
the effect is shown in the differences

1111
in strength obtained in comparative 
tests on 6 '* concrete cubes and

Fig. 2.3 12" x 6“ diam. cylinders. Concrete
in cube form always has an higher apparent strength than 
that in the 12" x 6" cylinder. This is due to the 
stress distribution in the specimens being complex 
instead uniaxial compression. Thus any attempt to relate 
the overall load to strains measured on the surface of the 
concrete must give false result. This problem is 
considered in part IV of this thesis where an analysis of 
the stress conditions is made.

(b) Any attempt to embed stress gauges in a material to 
determine the stresses therein is fundamentally wrong 
unless the deformation characteristics of the gauge are 
the same as those of the body in which they are embedded 
for the presence of such foreign bodies disturbs the very 
quantity which is being measured. It follows therefore 
that such a gauge cannot be used in order to determine 
the elasticity of a material for in order to construct
the gauge with properties such that it does not upset 
the/
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stress distribution it is necessary to know beforehand 
the quantity which is to be determined* Nevertheless 
stress gauges have been made and the errors involved by 
the use of gauges possessing different strain character
istics from the material in which they are embedded have 
been assessed (5). It has been shown that the errors 
are least if the gauge modulus is greater than the 
modulus of the material in which it is embedded and for 
a modular ratio of 4 the error is of the order of 10fo. 

This accuracy is not unreasonable but at high stresses 
the change in stress per unit strain for concrete becomes 
zero and according to Whitney (6) becomes negative.
It seems probable that under these conditions readings 
from the stress gauge will be of little value.

A. further difficulty in the use of such gauges is 
that they should be large compared with the aggregate 
of the concrete in accordance with the argument advanced 
on page 7. This means that in order to place a 
reasonable number of gauges in a beam the latter will 
have to be rather large. While this presents no 
fundamental difficulty it can give rise to severe 
practical difficulties in testing.

(c) The method of Herr and Yandefrift suffers from the 
same/
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same setback as the stress gauge method in that a foreign 
body is introduced which will upset the stress distribution. 
The disturbance is reduced by making the insert as thin 
as possible. Even so difficulties have been encountered 
in reconciling the total tensile force determined from 
strain gauge movements on the steel with the total 
compressive force measured photo elastically. This has 
been ascribed to the ’Poisson* s-ratio effect*. Under 
plastic conditions it seems likely that the glass will 
inhibit the lateral expansion of the concrete considerably. 
Various types of coating on the faces of the glass in 
contact with the concrete have been tried in an attempt 
to eliminate this difficulty. It does appear, however, 
that the method holds considerable promise. The published 
paper is in the nature of a preliminary report and a fuller 
account will presumably appear in due course.

(d) The bending simulation machine provides a fundamentally 
sounder method of determining the stress distribution in 
that it makes a direct measurement of the stress 
distribution without the introduction of disturbing elements. 
The method does, however, present some difficulties. 
Unfortunately the two main drawbacks require opposing 
remedies for their eradication.
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The specimen is compressed between plates in a manner 
similar to that described in reference to cubes and 
cylinders above, i.e. lateral expansion is prevented by 
friction between the plates and the specimen. In a 
beam no such restraint is present. The obvious remedy 
of this defect lies in the use of long specimens. Such 
a solution is not, however, practical as it gives rise to 
a further more serious difficulty found in a test on a

specimen as indicated in the 
figure that a linear strain 
distribution is given by gauges 
B independently of the load 
distribution applied at the ends. 
Thus as far as this gauge length 
is concerned the object of the 
test which is, to vary the load 
distribution until one is found

Pig. 2.4 to give a linear strain
distribution, is defeated because an infinity of solutions 
is possible. This demonstration of St. Tenant*s principle 
means that strain measurements must be confined to gauge 
lengths A and C. If this is done the method is feasible 
but it does mean that the strains are measured on that 
portion of the concrete where the stress distribution is 
disturbed/
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disturbed by friction between the ends of the specimen and 
the plates through which the loads are applied.

The preceding remarks on methods (a) to (d) are not 
intended as purely destructive critism. Each method 
considered is quite sound apart from the sources of error 
which have been pointed out and it may be that some of 
these will be of little significance in practice. The 
defects which have been noted are fundamental to the methods 
and it must be demonstrated that the errors introduced 
are negligible before any reliance can be placed on the 
results of such experiments. Basically all these methods 
have to modify the quantities which they seek so measure 
in order that they may be measured. It is in this respect 
that the 'direct measurement* methods are to be contrasted 
with the author's method (e) which, on the basis of 
specified assumptions, deduces the stress distribution 
from simple data obtained from bending tests on beams.
Simple experimental errors aside the validity of the 
results obtained by this method depends solely whether 
or not the assumptions are justified. Such an approach 
to the problem has the advantage that should the results 
of tests prove unsatisfactory attention is focused 
immediately on the possible deficiencies of the method.
The author's analysis is given in full in the following 
pages consideration of its difficulties are given later.
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AUTHOR* S METHOD.
Tiie author*s method of analysing beam test data to 

find the distribution of concrete stress has been published
(7) and is given below. (A slight difference in 
nomenclature occurs from that used previously as in the 
printed paper d refers to the overall depth of the beam 
whilst d* is the effective depth. Generally in this 
thesis, d is used for the effective depth).
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by J. M. Prentis, M .sc.(Eng.)

S U M M A R Y :
A method is given for utilizing experimental data 

derived from bending tests on reinforced and prestressed 
concrete beams to determine the stress-strain relationship 
for concrete. No initial assumption is made as to the 
shape o f this curve, and the result obtained is unique for 
the given test data, so that the factors which govern the 
validity of the final result are simply the basic assumptions 
o f the method o f analysis.

Introduction
A number of papers has been published in recent 

years giving theories of failure for reinforced concrete 
beams. The basic differences between each of the 
proposed methods lie in the varied assumptions made 
as to the shape of the stress-strain curve for concrete. 
The general method has been to assume a reasonable 
shape for this curve and then deduce an expression for 
the ultimate bending moment.

Consider a beam subjected to a bending moment 
which is increased until failure takes place by crushing 
of the concrete. The stress-strain conditions immediately 
prior to the failure are as indicated in Figure 1. The 
moment is resisted by a tensile force T in the reinforce
ment and a compressive force C in the concrete equal 
in magnitude to T. The moment is given by this force 
multiplied by the lever-arm, j .  Tensile stresses in the 
concrete are insignificant.

Among the suggestions made as to the distribution

of concrete stress which gives rise to the force C we 
have that of C. S. Whitney* who makes direct use of 
the- stress-strain curve obtained by measurements on a 
12 in. by 6 in. cylinder. Other distributions suggested 
include various conic sections and the cubic and fifth 
parabolas. Any one of these distributions can be made 
to fit a given case, since the problem is indeterminate 
if conditions at the ultimate load alone are considered.

It is, however, possible to arrive at a unique solution 
if the stress history is traced at all stages up to the 
ultimate.

The action of a uniform rectangular beam sub
jected to combined bending moment and end load

If a rectangular section of breadth b is subjected to 
forces as shown in Figure 2, then the extreme fibre 
stresses are given by the following equations :

-  M f e R )  M - M + P  0 - d ' ) ) ( e c- e , y }

f ' -  i f c b  k

+pd£}........ ( 2 >

These relationships are deduced in Appendix 1. 
Clearly it is of no consequence whether the force P 
is applied by an internal bar or wire, as in the cases of

*  W h i t n e y , C . S . Plastic theory of reiniorced concrete design. Proceedings o f  the American Society o f Civil Engineers. 1940. Vol. 66. 
No. 10. pp. 1749-1780.

SSr
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Figure 1.

reinforced and bonded prestressed beams, or whether 
it is applied externally as in an end-anchored prestressed 
beam or eccentrically loaded column.

To apply equations 1 and 2 it is necessary to measure 
the strains on the top and bottom of a beam, the force 
P, and the moment M at a series of loading stages. The 
values of f c and / t can then be calculated for each load 
stage, and since the corresponding strains have been 
measured the stress-strain curve for the concrete may 
be plotted for the whole range of the test.

Evaluation of equations 1 and 2 necessitates graphical 
differentiation. The author has found that the above 
form is somewhat inconvenient as the slopes to be 
measured increase very rapidly. This operation is 
rendered simpler by the use of the extended forms :

f zbd2 =  ( ,c- , t) f c { M  +  P ( d - d ' ) }

+I{M+p(^i}(i-g)+Na£

When prestressed concrete beams are considered the 
value of f t  is initially the prestress value. With the 
application of load this stress falls while / c increases. 
If both equations 1 and 2 are plotted against strain it 
will be found that the rising f c curve coincides with the 
falling f  curve. With further increases of bending 
moment / t falls to zero and becomes negative. It 
increases negatively until the concrete cracks, when it 
falls once more to zero. A check on the work is 
provided by the fact that the value of / t given by equation 
2 should be zero for all stages beyond the cracking 
moment.

«c L

Strain Stress

Figure 2.

When an ordinary reinforced concrete beam is loaded 
the cracking stage is reached very quickly, and since 
the cracking moment is a small percentage of the 
ultimate moment it is reasonable to assume, as in normal 
design, that / t is zero at all loads. Equating / t to zero 
and eliminating M from equation 1 we obtain :

f cb d * =  J - { p ( e c- e t) } .......................(3)

Basic assumptions
The basic assumptions upon which the analysis is 

based are given in Appendix 1 as they are applied, but 
it is desirable that they should be stressed here.

(a) It is assumed that plane sections remain plane 
where the bending moment is unaccompanied by shearing 
forces. There appears to be some controversy on this 
point, but there is much experimental data to support 
the assumption.

(b) It is assumed that no straining takes place 
without an increase in stress, that is, that there is no 
creep of the concrete during the period of the test. 
This is a somewhat severe approximation, as concrete 
creeps at all stresses, and as failure becomes imminent 
the creep rate is very high. However, the author’s 
experience leads him to believe that little error is intro
duced, except at very high loads, if the test is carried out 
speedily. It should be borne in mind that, although 
the rapid creep which occurs at say 95 per cent of the 
ultimate load renders the analysis somewhat dubious 
for higher loads, the stress-strain diagram which has 
already been deduced prior to that loading stage is 
quite valid.

(c) Lastly, it is assumed that a given strain may be 
identified with a specific stress irrespective of the position 
and history of the element considered.



Stresses in beams subjected to pure bending moment

Figure 3.

The particular significance of assumptions (<b) and (c) 
in this problem may be illustrated with reference to 
Figure 3. If at stage I we have a stress BC corresponding 
to strain ecl and at stage II an increase of moment 
increases the top fibre strain to ec2, the above assump
tions state that the stress in the fibres where the measured 
strain is now ec is B'C ' =  BC. The stress triangle ABC

A 'B'
is reduced in the vertical direction in the ratio —. _AB

== Similarly at stage III, B"C" — B 'C ' =  BC, andeC2
E 'F ' =  E F .

Conclusion
Thus within the framework of the above assumptions 

the analysis leads to a stress-strain curve which may be 
utilized to determine the stress distribution in a beam at 
all stages of load. By examining test data from a 
series of beam tests it should be possible to determine 
the influence, if any, of various factors such as age, mix, 
etc., upon the shape of this curve.

The basic differences between the various plastic 
theories of failure for reinforced concrete beams result 
mainly from differences of opinion as to the form of 
this curve, and it is hoped that application of the above 
analysis will help to resolve the problem.

APPENDIX 1
The derivation of equations 1 and 2

The quantities to be measured during the test are 
those given in Figure 4. The force P may be measured 
directly in the case of endianchored prestressed concrete 
beams, but in other cases it must be deduced from the 
strains measured on the concrete or from strain gauge 
measurements on the reinforcement.

In the present analysis it is assumed that no creep 
takes place during the test, so that the stress-strain 
relationship may be represented by :

/  =  <P 0)
Equating horizontal forces, 

d d
P =  b j f  dx =  b | <p (e) d x .......................................... (5)

J o J o
where x  is measured positive upwards from the bottom 
of the section. Assuming that plane sections remain 
plane we obtain by geometry,

e =  et -\-^{ec—et) ...............................................................(6)

Substituting from equation 6 in equation 5, and changing 
the variable,

P = bd
(ec— ed de (7)

S t r a i n .

Figure 4.
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Taking moments about the origin and equating internal 
and external moments we obtain

M +P(rf—d') — b f x f  dx 
o

bd2
(^c— f t )2 

or

| (e—et) 9 (e) de
<?t

b d2| m  +  P(</—d') jM +  P(d—d ’) ■) (ec— et)2 =  | (e—et) 9 (e) de
et

Differentiation with respect to ec gives

i f  [{wH-W-rf')} «•=-<•,)']
, .ec

=  (ec—ed 9 (^c) — ^  J 9 0?) r/t?
Substituting from equation 7 and re-arranging, we find 

1 d
fcbd2

(ec— et) dec
[  { m  +  P(<7-6T)} ( ,c- e t)2]

+  P d ^ . . { \ )aec
Similarly, it may be shown that 

1 d
Abd2 = ({,0_ et) ̂ 7 [ { } t-e-e,)2] +

(equation 2)

N O T E
If P is made zero in equations 1 and 2, we get

fcbd2 =
1 . d  I[ m  (ec—et)2]  . . . . ..............(la)(ec— <?t) dec 1

Abd2 =
1 _ d |_M (ec—et)2J  ------ ..............(2a)

(ec—ft) det 1
These equations, which may be utilized to deduce the 
stress-strain relationship for a material in the form of a 
rectangular homogeneous bar, may be re-arranged to 
give an equation published by Nadai.*

APPENDIX 2
Worked example

The data chosen to illustrate this method were ob
tained from test results on an end-anchored prestressed 
concrete beam tested recently in the Concrete Technology 
Department of the Imperial College, London, on behalf 
of the D.S.I.R. and under the supervision of Professor 
A. L. L. Baker. The beam section, detailed in Figure 5, 
was prestressed by four cables, each consisting of 
eight 2 mm diameter high-tensile steel wires. The cable 
loads were measured by using electrical strain gauges,

and the strain distribution in the concrete was measured 
by means of a mechanical strain gauge.

The entire calculation is set out in Table 1, where the 
bending moment and the steel force have been divided 
by bd2 and bd respectively to reduce them to the dimen
sions of stress. It may be noted also that m ,p  and et 
have been tabulated for regular intervals of ec. These 
values were obtained from the mean curves obtained by 
plotting experimental results. The full stress-strain 
curve which was obtained is given in Figure 6.

Figure 5.

Figure 6.

* N a d a i  A . Plasticity. 6th. impression. New York and London. McGraw-Hill Book Company Inc. 1931. Chapter 23. ,pp . 164-167.



Stresses in beams subjected to pure bending moment

_ 9  A

T A B L E  1.

-©II 0 38 106 173 220 242 253 273 297 323 345 363 376 382

p  =  P ib d 343 344 345 347 351 355 359 384 417 445 474 496 512 522

m + p  (1— d ' i d ) 71 109 177 244 292 315 327 352 383 415 443 465 482 489

m — p d  ’ jd —272 —235 — 168 — 103 —53 ^10 —32 —32 —34 —30 —31 —31 —30 —33

in./inch X 10'4 —0.6 0 +  1.0 2.0 3.0 4.0 5.0 10 15 20 25 30 35 38.3

gt in./inch X 1 O'4 +2.5 +  1.9 +  0.8 —0.2 —1.4 —3.3 —6.0 —30 —60 —92 —121 —149 — 176 — 194

ec—e i in./inch X 10"4 —3.1 —1.9 +  0.2 2.2 4.4 7.3 11.0 40 75 112 146 179 211 232

de t : dec — 1.07 — 1.07 — 1.07 — 1.07 — 1.43 —2.30 —3.00 —6.06 —6.06 —6.06 —5.77 —5.45 —5.40 —5.40

deC:de t —0.935 —0.935 —0.935 —0.935 —0.700 —0.435 —0.333 —0.165 —0.165 —0.165 —0.173 —0.184 —0.185 —0.185

1— de t dec 2.07 2.07 2.07 2.07 2.43 3.30 4.00 7.06 7.06 7.06 6.77 6.45 6.40 6.40

1— de  c de  t 1.935 1.935 1.935 1.935 1.700 1.435 1.333 1.165 1.165 1.165 1.173 1.184 1.185 1.185

d  (lec ̂ m  +  p (  1— d  i d  )̂ - 66.6 66.6 66.6 66.6 34.1 17.5 8.34 6.33 6.33 6.00 5.00 3.90 2.78 1.66

do. X (ec— ft) —206 — 126 +  13 147 150 128 92 260 470 610 730 700 590 390

l { i n + p { \ — d ' I d

X (1— d e t dec) 294 451 732 1010 1420 2080 2620 4970 5400 5860 6000 6000 6170 6260

p  det l dec —367 —368 —369 —371 —502 —820 —1078 —2330 —2530 —2700 —2740 —2700 —2760 —2820

J c lb per sq. in. —279 —43 +376 786 1070 1390 1630 2900 3340 3770 3990 4000 4000 3830

d jd e t [ n t — b d ' j d ^ —63.0 —63.0 —63.0 —63.0 — 18.2 —5.13 — 1.33 — — — — — — —

do. x  (e c— et ) 195 120 — 13 — 139 —80 —37 — 15 - - - - - - -

— l { n i — p d '  jd ^

x  (1—  d e c ;de t ) 1052 910 650 399 180 115 85 75 79 70 73 73 71 78

p  d e jd e t —320 —322 —323 —324 —246 — 154 — 120 —63 —69 —73 —82 —91 —95 —97

f t lb per sq. in. 927 708 314 —64 — 146 —76 —50 +  12 + 10 —3 —9 —18 —24 — 19
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CRITISISM OF THE AUTHOR* S METHOD.
The most obvious defect of the above method is that 

the author neglects the creep component of the overall 
strains from which the stress distribution in the beam 
is deduced. This means that, on theoretical grounds 
alone, the method cannot be used to derive the true 
distribution because it deliberately neglects a factor 
known to exist, unless, of course, the rate of loading is 
infinite. This defect is in direct contrast to the 
drawbacks of methods (a) to (d) which present practical 
problems making it difficult to attain the theoretically 
possible, and correct, end.

Before dealing with this point in detail it must 
be pointed out that the author* s method does entail 
certain experimental difficulties. These do not come in 
the same category as those inherent in methods (a) to (d) 
since the sources of error are not characteristic of the 
method and their eradication is simply a matter of 
experimental technique. The technique of testing concrete 
beams has been studied by the author and a description of 
this work with particular reference to the difficulties 
hinted at above will be given in chapter 3 of this section.
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Chapter 2. THE INFLUENCE OF CREEP ON STRESS 

DISTRIBUTION.

The physical nature of creep in various materials 
has received much attention and many publications have 
appeared on the subject. However, there appears to be 
little evidence of the emergence of a general theory for 
the behaviour of bodies under complex stress when the 
material of which they are made is subject to creep 
phenomena. That such a study of the phenomenological 
aspects of creep presents considerable difficulties is 
shown by the fact that little progress appears to have 
been made since a classic paper on the subject by Boltzman 
in 1876 (8). This particular contribution will be 
referred to later.

It would appear fortunate that, from the point of 
view of the subject studied in this thesis, complex stress 
systems need not be considered. This is indeed so, but 
even when attention is confined to the case of material 
subjected to a uni-axial stress, (i.e. as in the case of 
simple bending) difficulties still arise.

Consideration will now be given to the quantitative 
aspect of creep in order to define the difficulties 
mentioned above and to see if it is possible to assess the 
effect, if any, on the stress distribution in concrete 
beams.
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The following work will be restricted to a study of the 
simple case of uni-axial stress.

THE GENERAL CREEP EQUATION AT CONSTANT STRESS.
The creep equation is generally given in the form: —

c = f.e(t) ( 2. 1 )

c being the creep strain, f the stress and 0(t) a time 
function. A variety of forms have been suggested for 

but these are of no concern for the moment.
Equation (2.1) will be referred to as the ’general creep 
equation*. This equation is strictly applicable only 
when the stress f is constant. It is thus of limited 
value since in general, the stress varies with time.

CREEP UNDER VARYING STRESS.
This problem has been dealt with in a variety of ways:-

(a) by the use of an effective modulus. The concrete
Young’s modulus is replaced by Ee = E/(l + E.0(t)) (2.2)
and this value is used in the normal equations of 
reinforced concrete. Basically the use of this 
method assumes that all the creep has taken place
at the final concrete stress i.e. eg; = f^.0(T).

(b) by assuming that the rate of creep is given by

The author has argued elsev/here (9) that for a 
continuously increasing stress assumptions

<2 -*>
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assumptions (a) and (b) give upper and lower “bounds 
respectively for the total creep.

(c) by using a principle of superposition. The suggestion 
that such a principle may he applied to creep is due 
to Boltzman (8). The application of the method to 
concrete has been shown to be admissible by McHenry 
(10) who expresses it mathematically in the foim

CQi =

where /r

'f df
•Ct.i-t) St at*

is the age at loading.
(2 .4 )

The effective modulus method is certainly the simplest 
to apply and according to McHenry it is sufficiently 
accurate for a large class of problems. The method is 
fundamentally unsound in that it does not give a true 
picture of the behaviour and if applied indiscriminately 
it might lead to erroneous results. It gives most accurate 
results if the variation in f is small over the period of 
time considered. Method (b) does lead to results which 
are more satisfying from the descriptive viewpoint but 
which are unsound because the basic assumption presumes 
that the rate of creep is independent of the stress history 
of the material. McHenry*s method takes into account the 
whole stress history and is in consequence far superior 
although mathematical difficulties are met in its
application.
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It will be seen from the foregoing remarks that 

creep problems can be divided broadly into two classes.
In the first class we have those systems in which the 
stress variation is small, thus allowing the use of the 
effective modulus. Secondly we have systems in which 
the variation of stress is large and consequently require 
the application of equation (2.4) for their solution. 
Fortunately the majority of cases met in normal practice 
fall into the first class. The second case arises in 
testing where the concrete stress ranges from zero up to 
the crushing value. These two cases will be considered 
with particular reference to concrete beams.

CREEP IN ORDINARY REINFORCED CONCRETE BEAMS WITH 
SMALL VARIATIONS IN STRESS.

The effect of creep in the concrete and steel upon 
the stress distribution in pre-stressed concrete beams 
has been dealt with by Magnel (2).

The case of the redistribution of stress in ordinary 
reinforced concrete beams due to creep will now be studied. 
Before any analysis can be undertaken the assumptions upon 
which it is to be based must be specified. It will be 
assumed -
(a) that the concrete stress is uniquely defined by 

the instantaneous strain,
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(t) that the concrete “below the neutral axis has no 
stiffness and carries no stress.

These are the assumptions specified on page 1 except 
that (a) has “been modified to exclude creep strains.
It is now necessary to make a further assumption defining 
the method by which the creep strains are to be assessed:-

(c) It will be assumed that creep may be allowed for by 
the use of an Effective modulus* (p.27).

The use of the effective modulus is known to be reasonable 
provided that the stress variations are not large. If, 
as a result of the analysis, it were shov/n that the 
changes in stress are large then the result would be 
incompatible with the assumption showing the latter to be 
untenable.

Consider a rectangular reinforced concrete section 
of breadth, b and effective d epth. d having an area of 
reinforcement As. The strain distribution with bending,
moment M applied will be as in the diagram the geometry of 
which, gives
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1  -  n
n

(2.5)
Equating horizontal forces

a (2.6)

Equating moments
1

^ e.s* f s ‘ bd?  £ (2.7)
Erom (2.5) and (2.6) we obtain

jff
l-n 2 ( 2 . 8 )

If in this equation Ec is replaced by the effective 
modulus the variation of n with time is obtained. 
Substitution of this relationship in equation (2.7) gives 
the variation in concrete stress.

The variations in f Q and n with modular ratio are 
plotted in Eig. 2.6. The range of modular ratio given 
is extreme as the lower limit of 4 would only be obtained 
with very rapid loading of concrete having a cube strength 
of about 8000 lb. per sq. inch, whilst 64 is attained only 
as limiting value (t-*-co) for very low strength concrete 
(cu = 2000 lb. per sq. inch). Nevertheless, the changes 
in concrete stress and neutral axis position due to creep 
appear to be substantial. The variations in the steel 
stress are, on the otherhand, negligible.



~ S 2 ~
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The curves Indicate the concrete stress to be 20$ 
to 30$ below the calculated value based on the usual design 
assumption of a modular ratio of 15. This estimate is 
slightly conservative as the use of the effective modulus 
underestimates creep when, as in this case, the stress 
decreases with time. This is a corollary to the remarks 
in paragraph (b) on page 27. Professor A.D. Ross has 
presented the case for using a high modular ratio in 
design rather than the value of 15 (11) so that this aspect 
need not be pursued further here. The analysis above 
confirms the conclusions reached by Ross.

We must now refer back to assumption (c) on page 30
which pre-supposes small stress changes, and decide whether
or not it is justified. One way to do this would be to

dassume that =t f 0(t) and compare the results with
those obtained on the basis of the effective modulus
assumption. It is known that the true creep is intermediate
between that obtained as a result of each of these methods.
Unfortunately attempts to use this assumption result in
unmanageable equations and a solution has not been found.

O o  dAs an alternative approach zr: s f —  ©  (t) will bedt
integrated using the stress variations given in figure 2.6. 
The creep strains so obtained are then compared v/ith the 
creep strains obtained on the basis of the effective 
modulus calculations.
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5t‘Idtwvw cannot be Integrated in general terms so a 
specific example must be taken. In order to exaggerate 
the effects the case of a low percentage of reinforcement 
together with a low concrete strength is considered.
The values of the effective modulus for concrete having a 
cube strength of 2000 lb. per sq.. inch are given in the 
table below together with the variations in concrete stress 
obtained from figure 2.6. The integrated values on the 
fifth line of the table have been obtained graphically 
from a more detailed plot of the values involved, the 
actual curves are of little interest and have not been 
included. Apart from this the first eight lines of the 
table are self-explanatory.

1 Time 0 1 D 7 D 1 iff 6 M 12 M
2 Effective modulus 10.0 22.0 27.5 37.5 50.0 56.5
3 e(t) x  io6 0 o • o 0.58 0.92 1.33 1.55
4 f x ̂ /bd^
5 J ° J «  4 KA * 2)-10

8.2 6.2 5.9 5.1 4.8 4.7
0 2.8 3.9 6.3 8.3 9.4

6 Elastic strain* t© 2.7 2.1 2.0 1.7 1.6 1.6
7 Total strain 2.7 4.9 5.9 8.0 9.9 11.0
8 fe/ Eq x (M/ba.2yi06 2.7 4.5 5.4 6.4 8.0 8.8
9 Modified Eff. Mod. 10.0 23.6 29.8 46.8 62.1 77.0

ooH 8.2 6.0 5.6 4.7 4.5 4.3
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The seventh, and eighth lines enable a comparison to be made 
between the strains obtained by integration and those given 
by direct application of the effective modulus. The two 
methods do not, at first sight, appear to compare very well 
but as it is the stress distribution which concerns us the 
calculations are carried a little further in the last two 
lines. In line nine the modified effective modulus is 
calculated on the basis of the integrated strain (line 7) 
and the original fc values. The modified effective 
modulus enables f Q to be recalculated from equations 2.4 
to 2.6 these values are tabulated in line 10. The new 
Eeff. ^  fc could be taken and the integration repeated. 
Inspection shows that the process converges. However, 
comparison of the two fc values shows good agreement 
indicating that little change can be expected from further 
interations.

The conclusion to be drawn from this is that the 
stress changes are * small* thereby justifying the use of 
the effective modulus.

CREEP PHENOMENA IN BEAMS SUBJECTED TO LARGE VARIATIONS IN BENDING MOMENT.
It has already been remarked that the use of the 

effective modulus and equation (2.3) is inadmissible when 
the material considered is subjected to severe variations 
in stress.
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In such, cases it is necessary to use McHenryfs equation:-
elf

x  ©(*»1 -  t ) a t  d t - (2.4 )

where X is the age at loading.

When stated in the above form the equation can be 
applied to allow for the effects of ageing. This

property is
illustrated in 
fig. 2.7, which 
is abstracted from 
McHenry’s paper 
(10). It can be 
seen that ©(t) is 
dependant on the 
age at which the 

Figure 2.7 concrete is loaded.
If the material is subject to severe load variations and 
the period of load is long then the phenomenon of ageing 
must be considered. The problem does not arise in testing, 
for in such cases the time taken to load the specimen to 
destruction is short so that the properties of the concrete 
do not change appreciably during the period of testing.
In this case (2.4) can be amended to read

© ( 2  - t) § §
0

Cfp = (2.9)
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As it is very simple to deduce this equation from first 
principles its derivation is given below to illustrate 
the use of superposition.

DERIVATION OE EQUATION (2.9)

c ~ &f.©(T - t)
therefore t*~fT

Cf£= I ©(T - t).df
t J 0

= I* q (t - t) || at.

CREEP AT HIGH STRESSES.

Although equation (2.9) can be used to calculate the 
creep in a material which is subject to severe stress 
variations the stresses must not approach the ultimate 
strength of the material. This is because equation (2.9) 
is based on the fundamental creep equation which assumes 
that at constant stress the creep is proportional to that 
stress. It is known that the linear relationship does 
not hold for high stresses for which the rate of creep is 
higher than that given by equation (2.1),
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The creep properties of concrete at high, stresses do 
not appear to have been studied. In a recent search through
the literature the author was able to find but one 
publication dealing with this problem (12). This paper by 
Shank (published 1949) shows that the problem is being 
considered but that as yet very little information is 
available.

It would be unprofitable at this stage, to speculate 
upon the stress creep relationships at high stresses and 
attempt to build up a theory of the behavious of beams upon 
such a basis.

Despite this assertion the author has given the problem 
some consideration, but he has tackled it indirectly by 
assuming a simple mode of behaviour and determining the 
stress creep conditions which must occur to give the assumed 
result. As the results are of some interest the work is 
given below.

AUTHOR * S HYPOTHESIS POR CREEP AT HIGH STRESSES.
It is sometimes suggested (see for example reference 

(11)} that as the creep rate is relatively high at large 
stresses there is a tendency in beams for the more highly 
stressed outer fibres to throw some of their stress on to 
the inner fibres.
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Thus it is suggested that the stress distribution indicated 
in figure 2.8(a) degenerates as a result of creep into 
that indicated in (b), where a homogeneous beam is considered

Figure 2.8
for simplicity. It is evident that in general some such
action must occur but it is of interest to seek the
conditions under which there is no re-distribution of stress.

A C

<al&sHc
strain. creejp

D B
strains stresses 

Figure 2.9
section

Consider a beam under a constant moment M. Assuming 
that the bending moment is unaccompanied by shear plane 
sections remain plane so that the distribution of total 
strain across the section must remain linear as indicated 
by CD. If the distribution of ‘elastic* strain is not 
changed with time and is given by AB then by similar 
triangles we have at all positions in the depth of the beam
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c <*■ e
i.e. c = k.e.©(t) (2.10)

Hence if the creep is proportional to the ’instant
aneous* strain no re-distribution of stress will occur.

Note that no assumption has been made regarding the
stress distribution so that the reasoning is not confined
to the case of a linear stress strain relationship and is
applicable to plastic conditions. If f s 4 (e), equation
(2.10) can be written in the form

c = k.4>-1(f).©(t) (2.11)
"1

under elastic conditions (f) = f/E and k = E so 
that (2.11) reduces to (2.1).

If the principle of superposition is assumed in 
respect of strains equation (2.9) becomes

Crp = k T© ( i  - at
o at

(2.12)

and it can be shown that the stress distribution is 
unaffected by creep for the case of a varying bending moment. 
As this proof is slightly more complex it will not be 
included in the text but is given in Appendix 2.1.

The above analysis raises the hope that the problem of 
creep at high stresses may yield to rational analysis.
It is evident that if the stress distribution in a homogeneous

structure is dependent upon creep then any resulting 
analysis/
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, analysis will be complex and probably impossible to apply 
reasonably to reinforced concrete. If on the other hand 
the desired condition of equation (2.10) is realised the 
problem is very much simpler.

Professor Shank* s work when it is published in full 
will show if it is justifiable to consider the creep under 
constant stress as proportional to the instantaneous strain. 
Until some such evidence is available for consideration 
further study of this particular aspect is not warranted.

CONCLUSION.
The conclusions to be drawn from this chapter are:-

(i) Under normal working conditions the use of the 
effective modulus gives reasonable accuracy in the 
prediction of the redistribution of stress in 
reinforced concrete beams. In this instance the 
effective modulus underestimates the creep effect but 
even under very adverse conditions the error in 
concrete stress is unlikely to be greater than about 
5fo (see page 34).

(ii) If the beam is subjected to large variations in 
moment then McHenry* s method using the principle of 
superposition, should be used. The method is, 
however, restricted in application to cases where the

concrete stress does not approach its ultimate value.
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(iii) The subject of creep of concrete under high stresses 

appears as yet to he an almost completely un-explored 
field and in the absence of a rational basis it is 
impractical to digress on the behaviour of beams at 
loads near failure.

It has been shown, however, that if the fundamental 
creep equation can be written c = k.e.Q(t) for high 
stresses, and if the principle of superposition can be 
applied to strains then the problem is very much simplified.

Before concluding this chapter we will refer once 
more to the author* s method for determining the 
distribution of stress in reinforced concrete beams. This 
method is based on the assumption that creep is negligible. 
It is clear from paragraph (iii) above that, as yet, this 
assumption can not be replaced by a more fundamental one 
allowing for the effects of creep. Even if the creep data 
were available it would not be a simple matter to allow for 
it. All the work in this chapter has been devoted to 
evaluating creep strains under specified stresses and 
adding the elastic strains to obtain the total. It is 
very much more difficult to separate the two components 
v/hen, as in the author*s analysis, the total s train is 
given. If creep effects are to be eliminated it will be 
necessary to compute the creep strains, subtract them from
the total and apply the analysis to the residue.
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But the elastic strains must be known before the creep 
strains can be calculated!

The mode of attack appears to be:-
(i) Using the measured strains and knowing the creep 

properties, which are supposed related to the 
instantaneous strain, calculate the creep strains.

(ii) Subtract these values from the total strains.
(iii) Repeat step (i) using the residual strains. This 

will give the second approximation for the creep 
strains.

(iv) Continue the iterations until the convergence is 
satisfactory.

(v) Having subtracted the raccepted* creep strains from 
the total strains apply the author* s analysis to 
the residual strains.

ROTE, however, that the method will be valid only-if the 
creep laws are such as to allow of the superposition of 
strains. Otherwise it will be found after step (ii) that 
plane sections are no longer plane. This is known to be 
physically impossible with circular bending.

The above suggestion is open to the objection that 
it would be necessary to obtain the creep data from 
uniaxial compression tests whilst this method is considered 
undesirable/
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undesirable for the determination of the stress strain 
curve. The disadvantages of measuring the stress strain 
characteristic in a ’simple* compression test are given 
on page 13 paragraph (a). The same defects do not arise 
in creep tests because there is but little lateral creep 
due to a longitudinal stress so that the complications 
due to lateral restraint do not apply.

There is an alternative method which whilst being 
theoretically attractive is, in the opinion of the author, 
impossible practically. The method would be to make a 
number of identical bemas and test them at different 
rates of loading. All the appropriate data plotted to a 
base of time would then be extrapolated to give the ’zero
time1 values. Employing the author’s analysis on the 
resulting data the stress strain curve would be obtained 
exclusive of creep strains. A similar method has been 
used by GELanville to determine the ’instantaneous* stress 
strain curve in a uniaxial compression test. (13).

The difficulty of applying this method would lie in 
producing sufficiently identical beams. It seems likely 
that the normal variation which one would expect between 
the strengths of similar beams (say 10$!$) would mask the 
effects of creep to such an extent as to make the method 
suggested impracticable.
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II Chapter 3. THE TESTING OE RECTANGULAR REINEORCED
AND PRE- STRESSED CONCRETE BEAMS TO 
DESTRUCTION.

Whatever method is used to determine the distribution 
of stress in concrete beams the results must eventually be 
considered in the light of tests on actual beams. Although 
the following work is concerned with determining the data 
required for the method of analysis given on pages 20-24, 
the observations made are applicable to beam tests 
generally, irrespective of the way in which the derived 
data are applied.

Recapitulating from page 21, the experimental 
quantities required for the author's analysis are:-

(a) The dimensions of the section.
(b) The bending moment.
(c) The steel force.
(d) The eccentricity of the steel.
(e) The longitudinal strains*

EXPERIMENTAL TECHNIQUE
The general arrangement of the testing apparatus 

used for beam tests is given in figure 2.10. The 
detemination of each of the above quantities will now 
be considered in detail.

(a) The dimensions of the beam s ection should be 
obtained by measurement of the actual specimen.
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It is undesirable that the nominal shuttering sizes should 
be taken, for granted as being correct. This is particularly 
so in the case of small beams.

(b) The dynamometers through which, the load is 
applied to the beam can be calibrated independently and 
provided that care is taken in placing them in position the 
bending moment can be computed accurately. In the course 
of the series of tests quoted later two types of dynamometer 
were used, firstly a mercury filled diaphragm type and 
secondly a proving-ring. The writer considers the later
to be the more suitable instrument in that its readings 
may be taken quickly without the element of personal error. 
For whereas the proving-ring gives a direct reading on a 
dial gauge, the diaphragm type requires the adjustment of 
a calibrated screw to bring the mercury to a specified 
level in a capilliary tube. The diaphragm type is at a 
further disadvantage in that changes in the room temperature 
can alter the zero reading of -the instrument.

(c) The determination of the steel force can present 
difficulties. In the case of ordinary reinforced concrete 
beams with large diameter bars the steel strain can be 
measured by the attachment of electrical resistance strain 
gauges or, by stripping some of the cover and affixing 
mechanical or optical strain gauges (14).
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Similar methods can he used in testing bonded pre-stressed 
beams having 5mm. or Tima* diameter wires. As the stresses 
are inferred from the total strain measurements, errors 
are introduced here if the creep is significant. In the 
case of bonded pre-stressed beams using 2mm. diameter wires 
(which are too thin to permit of the attachment of gauges) 
the only method of estimating the steel force appears to be 
by inference from the concrete strains on the assumption 
that there is no slip. With non-bonded wires the steel 
force can be obtained by the insertion of a dynamometer 
between the cable anchorage and the end of the beam. Two 
types of dynamometer, both on the same principle, have been 
in use in the Civil Engineering Department at Imperial

College. The first was 
devised by Lao (15). A
modified version used in 
the tests described here 
is indicated in figure 
2*11. It consists of a 

Figure 2*11 duralumin tube with
electrical resistance strain gauges stuck along two 
diametrically opposite generators. The two gauges, which 
are connected in series, give the mean strain which is 
independent of the eccentricity of loading. The instrument
is calibrated by measuring the change in resistance due to

a pre-determined load,
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(4) The actual position of the reinforcement in the 
heam should he checked at the section of failure after 
the heam has been broken as it is easy for the reinforcement 
to be displaced relative to the shuttering during casting. 
This check is particularly desirable when beams of small 
section are used.

(e) In the tests with which the writer has been 
associated the concrete strains have been measured with a 
Metzger gauge (see ref. 4 for description). This gauge 
is not fixed in one position but is demountable and is used 
for measuring strains over a number of independent gauge- 
lengths. It is in fact used for measuring strains at all 
the gauge stations indicated at the centre section of the 
beam in figure 2.10. The demountable gauge is certainly 
less accurate than a fixed gauge but it has the advantage 
that strains can be recorded at a far greater number of 
gauge stations than would otherwise be possible. It is 
much more satisfactory to have a large number of fairly 
accurate readings than to rely on a few readings of 
supposedly high accuracy. In any case the Metzger gauge 
is sufficiently accurate for the measurement of bending 
strains since an experienced operator can guarantee that 
95f° of his readings will be accurate to a strain of 
±  12.5 x 10 ~ or a stress of approximately + 50 lb. per
square inch



- 50-

We have left out of account the possibility of using 
electrical resistance strain gauges for the measurement of 
the concrete strains. It is the opinion of the author 
that this type of gauge should, if possible, be avoided for 
this purpose. Not only are they far more trouble to fix 
than the mechanical gauge but drift phenomena are particularly 
troublesome when electrical resistance gauges are attached 
to concrete. Claims have been made that drift can be 
eliminated, but from his own experience and from observation 
of other people's work it appears to the writer that the 
use of resistance gauges on concrete provides a continuous 
source of difficulty. Their use on concrete should, 
therefore, be restricted to places which are inaccessible 
to the Metzger (or similar) gauge or where stress variations 
are such that the use of a long gauge-length is not 
permissible. Sven so a very short gauge-length should not 
be used as strain variations due to local irregularities 
are recorded rather than the average strain condition (16).

Referring to figure 2.10 it will be seen that three 
gauge lengths are indicated in the centre span where the 
bending moment is nominally constant. It has been found 
that the provision of a single central length is inadequate 
as the failure is generally localised and it is necessary 
to provide gauges at a number of sections in order to
ensure that the crushing zone is covered.
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Figure 2,12 gives a typical example of the variation in 
strain obtained at the three sections.

THE CHECKING OF TEST DATA.
One of the major problems in testing pre-stressed 

concrete beams is in the making of an accurate assessment 
of the steel force. With grouted beams the difficulty 
arises because of the lapse of time which must take place 
between pre-stressing and testing. During this period 
there is a loss of steel stress due to creep and shrinkage 
Electrical resistance strain gauges attached to the steel 
cannot give a useful estimate of this loss for two reasons 
Firstly because resistance gauges are unreliable for long 
period tests and secondly because the strains even if 
accurately recorded would include the creep strains of the 
steel. Thus, whilst strain gauges attached to the steel 
may give the strain changes which take place during the 
course of a test the initial stress in the steel must be 
a doubtful quantity.

With non-bonded beams use of the lao type dynamometer 
gives a fair estimate of the cable force if the cable is 
straight. If there are bends in the cable friction can 
cause the steel force at the centre of the beam to be 
different from that recorded at the ends.
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In the light of these observations the author considers 
that it is vital to apply a cross-check to verify the steel 
force. He has used two simple checks which enable this to 
be done.

THE ASSESSMENT OP THE STEEL FORCE IN ERE-STRESSED 
BEAMS.
METHOD I.

The deflection readings are used to effect this check. 
Such readings are taken with dial gauges situated at the 
ends and centre of the beam, as indicated in figure 2.10, 
whilst the beam load is increased until the cracking load 
has been passed and the presence of the tensile cracks 
verified. The beam is then unloaded and reloaded. The 
load-deflection curves obtained from such a procedure during 
an actual test are given in figure 2.13 to which the reader 
is now referred. It will be seen that the curve obtained 
on the second loading follows the first curve until point 
f A* is reached where a discontinuity occurs in the second 
curve. This discontinuity is due to a change in the 
effective stiffness of the beam as the cracks, already 
formed during the previous loading, start to re-open. As 
the bending moment is increased the original, curve is 
rejoined when the load reaches the maximum value attained 
in the previous loading.
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The focus of interest is on point 'A1. At this stage 
when the cracks start to reopen the stress distribution can 
reasonably be assumed to be triangular as in figure 2.14 
(Assuming that there is no plasticity, and this will be the 
case if the design is a practical one).

The bending moment at stage rA* 
is read from figure 2.13. At 
Tills stage the centre of 
compression of the concrete 
stress is known to be D/3 from 
the top surface of the beam. 

Equating the moments acting on the concrete we obtain,
P = M.(d - D/3)-1 (2.10)

Hence the steel force P is determined.

If there is a lapse of time between pre-stressing and 
testing the elastic strains in the concrete are unknown at 
.zero load, due to creep, loss of pre-stress, etc., and 
these must be computed to enable the total strains in the 
concrete to be determined since strain readings will 
generally be taken relative to the * zero-load* values unless 
the pre-stressing and testing are done on the same day.
The initial concrete strains can only be calculated if the 
steel force and Young*s modulus are known. We have seen 
how the steel force may be obtained. The same load-
deflection curve can be used to determine the modulus of 
elasticity.
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1 .

For a symmetrically loaded beam the central deflection 
is given by

S * x k.

thus
XE = r~ Z  x(slope of moment deflection

curve) (2.11)
Knowing both P and E it is now a simple matter to 

compute the 1 zero-load1 strains due to self weight and 
pre-stress alone.

METHOD II.
The second method of checking the steel force is not 

so wide in application as the deflection method in that 
it can only be used if the elastic strains due to pre
stressing are known. That is to say its use is restricted 
to those tests in which the loading follows Immediately on 
pre-stressing so that the concrete strains are measured
relative to the unstressed state.
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In fact the member is nearly always stressed due to its 
own weight but for the purpose of this check these strains 
must be excluded. The second method is given because in 
the case where it is applicable it provides an independent 
check on the Young*s modulus in addition to giving the steel

The pre-stressing force, 
applies a bending moment to 
the beam by virtue of its 
eccentricity. This moment 
curves the member.

It is fundamental to 
pre-stressed concrete that 

this curvature is counter to that produced by the loads 
applied to the beam. Thus if the loading is applied 
gradually there is a stage when the beam is once again 
straight, at any section chosen for consideration. At 
this juncture the external bending moment M must equal the 
pre-stress moment P.C. Thus if this value of M. can be 
determined P is immediately calculable.

It is easy to show that the radius of curvature of 
the beam is given by D/(e0 - e^), where ec and e-fc are the 
concrete strains as indicated in figure 2.16. When the 
beam is straight (ec - e^) = 0.

—  <-cmcrefce_ strain

Pigure 2*16
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The external moment M plotted against (ec - e-fc) gives a 
straight line provided that the moment is not large. This 
line cats the moment axis such that the intercept gives the 
moment which is just sufficient to counteract the curvature 
due to pre-stressing. Hence the steel force, P, is 
determined. Results from an actual 'beam test are plotted 
in figure 2.17.

It is readily seen that the slope of the line,

-----------  , equals El/D. This determination of E is
—  ®t )

independent of the deflection method of obtaining this 
quantity and it is possible that the two methods may give 
differing values. The reason for this, assuming that 
no grave error is revealed, is probably due to the deflection 
method giving an average value of E for the whole beam 
whereas the strain method derives E at a specific section.

DERIVATION OP STEEL PORCE IN A BONDED BEAM UNDER 
ULTIMATE CONDITIONS.

The methods given in the preceding pages provide a 
check on the steel force at the cracking moment. In a 
non-bonded beam the steel force can be kept under constant 
observation by means of a dynamometer is inapplicable.
If the reinforcement is 5 mm. in diameter or larger electrical 
resistance strain gauges can be fixed to.the steel before
casting the beam.
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Such gauges frequently fail to operate properly and in the 
case of high tensile steel wire interpretation of the strains 
in terms of stress is difficult for it has heen shown that 
the stress-strain curve is very much dependent on the rate 
of loading. It is hardly possible to stick resistance 
gauges to 2 mm. diameter wire.

When it is impractical to attach gauges direct to the 
reinforcement of a bonded beam the steel force must be 
estimated by inference from the concrete strains on the 
assumption that there is no slip between the steel and 
concrete. Not only is it difficult to obtain a good 
estimate of the stress from the strains but there is almost 
certainly slip between the steel and the concrete as 
failure becomes imminent (Baker suggests an B of 0.85 for 
bonded beam) and frequently slip occurs at lower loads.
Thus in the case of bonded beams a correct assessment of 
the steel force is very difficult to obtain. Unfortunately, 
if the test is carried out with the object of determining 
the constants is, say, Baker1s theory (4) the value of 
these constants depends almost completely on knowing the 
actual steel force. Using Baker*s symbol*s:-

M
<*£.') (2.12)

and
B  = rv
bd.

(2.13)
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where Mu and Tu are the bending moment and steel force at 
failure. T$ and n which give the centre of compression 
and the position of neutral axis are as already used in 
figure 1.1. c' is the top fibre stress and oi is a shape 
factor for the stress-strain curve. ( oCc’) has the 
dimensions of stress and it is not necessary to separate 
the two components.

Assuming that the test has been carried out with the 
object of determining ( 'oL c*) and ^  it can be seen from 
the above equations that Mu , n and Tu are all required.
For small values of n, ^ can be guessed and ( °^ c*) can be 
calculated with fair accuracy from (2.12). If this is done 
(2.13) can be used to calculate Tu which can be compared 
with the value calculated from the strain measurements thus 
enabling the F factor to be computed. This process is 
clearly somewhat make-shift and it is far better to try to 
obtain the actual Tu by some other means. In any case for 
low position of the neutral axis i.e. large n, the value of 
( ct c* ) determined from (2.12) will depend upon the guessed 
value of J  to a significant extent.

USE OF AUTHOR*S ANALYSIS TO DETERMINE STEEL FORCE.
The analysis given on pages 20 to 24 can be used as a 

check on the steel force.
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The stresses in top and bottom fibres of a concrete 
beam are given by the two equations:—

i = 4 P S ^ O U c - ^ }  +  v.<*.

•ft = < * £ » . - }  •* ' P a

It has been pointed out on p.18 that the second 
equation is really a check equation for once the beam has 
cracked f^ is obviously zero. If, as in the case of beam 
II, this is not the case an error is present. On the 
basis of the reasoning in the past few pages the steel force 
is the most likely source of any significant error.
Provided that this is the case the above equations can be 
used to calculate the actual steel force.

The method is best explained with the aid of an example 
On page 63 the author*s analysis is applied to data obtained 
from a test to destruction on a pre-stressed concrete beam. 
The beam was made as identical as possible to that described 
on page 23 except that, the pre-stressing cables were grouted 
after tensioning. 2 mm, diameter wires were used for the 
reinforcement so that direct measurement could be made of 
neither the steel force nor strain. The steel force 
tabulated in the second line of the table was obtained on 
the assumption that there was no slip between the concrete 
and steel.
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It can be seen from line 6 that some considerable error 
must be present as the numerical value of the calculated 
tensile stress approaches 20^ of the value of the compressive 
stress when in fact it is known to be zero. If f^ is 
assumed to be zero the first of the above equations can be 
reduced to

t, d  
b d  de,

Integrating
(Cc p
J Tc <*-ec.= ^ C e . - e k>

or
• ~ f e d  ^  *

The integral term represents the area under the stress- 
strain curves. Since fc has been obtained for a succession

pof e ^ s  , 1 {.de can be evaluated for the same

All quantities have been plotted for regular intervals of 
so that it is simple to evaluate the integral in a 

table. This is done in lines 7-9 on page 63. p is given
in line 10 . If this is compared with line 2 it can be
seen that there must have been a fair amount of slip, for 
at failure p is 678 compared with 949 calculated on the 
no-slip assumption.

Note:- This expression can be derived quite simply
by saying that the tensile force in the steel
must equal the total compressive force in the concrete.
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As P is now amended fc must be recalculated, line 11.
It is not necessary to recalculate f^ at this stage; it 
is simpler to evaluate the new p. This is used to obtain 
a further value for fc and the process is repeated until 
fc and p cease to vary with each iteration. In line 17 
fc is deemed to have reached a sufficiently stable value.
As a check, is now calculated and it is seen in line 
to be negligible.

One point requires a little elaboration: It will be
noticed that the area under the stress-strain curve is 
evaluated between the limits ec and e-̂ . This means that 
the whole of the shaded area 
given in the adjacent figure 
must be summed algebraically.
The first calculation of the 
stress-strain curve leads to 
curve ABCOD. We know that 
section AB is incorrect 
(there can hardly be com
pressive stress in a region 
cracked in tension) so that 
in evaluating the intregral the curve A'BCOD is used. That 
means that we assume section BCO to be correct. No other 
course is open for the method of checking the steel force

just described is only legitimate as long as the concrete 
is cracked.

Figure 2.18
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In any case the value of the steel force up to the cracking 
stage should he known as bond failure is hardly likely to 
occur before cracking. It is assumed that the checks 
described previously (pp. 51-58) have been used to check 
the steel force up to the cracking stage. If these checks 
fail badly the results of the test are of little value.

The resultant stress-strain curve from this test is 
plotted in figure 2.19 where it is compared with the 
original curve obtained before correction of the steel force.
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II Chapter 4. RESULTS OP TESTS ON A NUMBER OP
PRE-STRESSED CONCRETE BEAMS.

ACKN OWLED (MEN T
The tests considered in this chapter were carried out 

by the D.S.I.R. group in Concrete Technology under the 
direction of Professor A.L.L. Baker B.Sc.(Tech.), M.I.C.E., 
M.I. Struct. E. at the Imperial College of Science and 
Technology, S. Kensington, London. The author, a member of 
the group when the tests were made, wishes to thank 
Professor Baker for permission to use the results.

GENERAL DESCRIPTION OP BEAMS TESTED
In this chapter the author uses his analysis to 

determine the stress strain curve for the concretes used 
to a series of six pre-stressed beams. The original object 
of the tests was to provide a direct comparison of the 
strength of beams having a normal, high, and very high pre
stress (in terms of concrete stress) and between those 
having the same pre-stress but which differ by their 
being either grouted or non-bonded.

Beams I - IV were all nominally 5 inches wide and 
10 inches deep having an effective depth of 8 inches.
Beams V and VI were 5 inches v/ide by 7 inches deep and had 
an effective depth of 5 inches. All beams had an overall 
length of 8 feet.
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Precise details of each, beam will be given as each one is 
considered.

All beams were cast in the same timber shuttering. 
Beams I-IV were hand rammed whilst beams V and VI were 
vibrated externally.

The beams were all post-tensioned by cables consisting 
of a number of 2 mm. diameter high tensile steel wires.
The general disposition of the cables

Figure 2.20

is given in figure 2.20. The holes through which the 
straight cables were passed were formed by means of a 
length of Bunsen tubing held rigid by a steel bar passing 
through it. With the bent—up cables it was not possible 
to use a steel bar so to prevent the tube being crushed 
a rope core was used. The tubing was held in position 
by binding wire.

The method of anchoring and prestressing the cables was 
designed by members of the D.S.I.R. group and is indicated 
in figure 2.21.
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Figure 2,21

EKPERH€ENTAL TECHNIQUE
As a general rule the technique and checks described 

in II Chapter 3 have been applied in all the tests although 
some of the methods were developed as the experiments 
progressed.

Four-point loading; was used as shown in figure 2.10.
In all beams strain readings were taken over the three gauge 
lengths indicated in the figure. In the following pages 
the author applies his method of analysis to each beam and

where the strain distribution varies with the position, the 
stress-/
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stress-strain curve will be determined for all three 
sections of each beam. Where circumstances warrant it 
the steel stress figures are amended in the manner 
suggested at the end of the last chapter. The original 
experimental data from which the concrete stress-strain 
curves have been deduced, is summarized in Appendix 2.2.

B E m  No. I.
Concrete 1:1:1-J by weight. Water 
cement ratio 0.4.
Average cube strength 6,900 Ib/sq^.in.
Reinforcement - 4 cables each 
consisting of 8 high tensile steel 
wires 2 mm. diameter. Non-bonded.
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Figure 2.22

This beam has already been analysed to a certain extent 
on pages IT to 22, where the stress strain curve is evaluated 
for the centre section.

The stress strain curves for the other two sections, L 
and R, are plotted with the curve, obtained at the centre 
section in figure 2.23. In each case the f^ values for the 
cracked beam are *zerof thereby verifying the steel force.

It will be seen that there is remarkable agreement between 
the figures obtained for the left-hand and centre sections.
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Note that this is despite the fact that the strains recorded 
were much higher in the latter section. It appears odd 
that the maximum strain at the centre section should he 30fo 

greater than that in the left-hand section when hoth are 
subjected to the same moment and when the concrete in the 
two sections appear to he identical in deformation properties. 
The reason is quite simple; the first crack opened in the 
centre section and the neutral axis was always higher there 
than in the other two sections, so that with the smaller 
compression zone the compressive stress, and hence strain, 
was also higher there.

Crushing actually occurred at the junction of the left- 
hand and centre sections. The stress strain curves indicate 
the reason for this: the concrete in the right-hand section
is shown to he stronger.

BEAM No. II
Except that the cables were grouted after pre-stressing 

and that the cube strength was 7,300 lh/sq^.in. beam II was
the same as beam I
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The difficulty of obtaining the steel force in a grouted 
beam has already been stressed. In analysing the results 
obtained from this beam it was assumed in the first instance 
that there was no slip between the steel and concrete and 
was calculated on that basis. As is shown in the table on 
page 63 this leads to impossible values for f^. In the 
same table the method of correcting the steel force is 
elaborated and figure 2.19 shows the effect of steel force 
correction on the stress strain curve.

The same process has been effected with the data 
obtained from the left-hand gauge length. In figure 2.24 
the corrected stress strain curves obtained from both the 
left-hand section and centre section are compared.

The figures for the right-hand section agree so well 
with those obtained from the centre section that it is 
impossible to distinguish the separate curves. For this 
reason the results from this section have been omitted.

The results are interesting because failure appears to 
have occurred in the region where the concrete is slightly 
stronger although the difference between the two curves is 
slight. Once again the neutral axis is higher at the 
section of failure and the reason appears to be that slip 
was slightly more severe at this section.
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This can be seen from figure 2.25 where the original and 
corrected steel force curves are plotted. At first sight
it appears strange that the corrected curve which is supposed 
to correct for slip should give a steel force which is

initially higher than the 
uncorrected value. The reason 
for this is as follows 
The wire is not likely to slip 
throughout its length the 
moment that the first tensile 
cracks appear. Hefering to 
figure 2.27> assume that the 

Figure 2.27. crack has just formed.
At section A all the tensile load is correct in the steel.
At section C some of the tensile load will he in the steel 
and some in the concrete. Thus the steel force will he 
higher at A than at C. This means that between A and C 
bond stresses must he operative. These stresses will he a 
maximum at the crack and will diminish towards 0 and provided 
that the ultimate bond stress is not reached slip will not 
occur. It is clear that a certain amount of slip must occur, 
(otherwise the steel in the gap would he strained infinitely) 
say as far as 3 and B'. Over the length BB* the steel force 
will he above the average value given by the strain measured
over the whole gauge length.
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This explains why the corrected steel force (calculated on 
assumption that the concrete carries no tensile stress) is 
greater than that calculated on the basis of the strains over 
the whole gauge length* As the load is increased point B 
moves towards G and the next crack and eventually slip 
occurs right through from crack to crack. If the beam were 
subjected to a uniform bending moment throughout the whole 
of its length the corrected and uncorrected steel force 
curves would coincide for all further increases of bending 
moment. In the case of the beams analysed here the bending 
moment tapers off outside points L, as in figure 2.28, and 
slips into the centre section from the ends of the beam and 
the actual steel force falls below that calculated on the 
no slip assumption. Under these conditions there can' be 
but very little difference in steel force from point to 
point over the length of beam subjected to the uniform 
bending moment. This is verified by the data given in 
figure 2.25 which shows that although the steel force in 
two gauge lengths differs somewhat in the transition stage 
from initial cracking to full slip, there is little 
difference once full slip is established.
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It is interesting to oompare the steel force curves of 
figure 2.25 with the deflection'curve in figure 2.26.
There is a definite discontinuity in the latter curve where 
m equals 375. This value compares well with the 
discontinuities in corrected steel force curves at 340 and 
360. There is an apparent anomaly in the deflection curve 
as the beam appears to be stiffer after the steel has slipped* 
The reason is not difficult to find. Comparison of the 
steel force and deflection curves indicates that the 
discontinuity in the latter marks the end of the serious 
slip. This means that just before the discontinuity the 
steel was slipping through the concrete as the load increased. 
At an m of 375 the steel had slipped as far as was possible 
and this relative movement between the steel and the 
concrete stopped. The effect would have been just the same 
if the stiffness of the steel and hence of the whole beam 
had been suddenly increased as suggested by the deflection 
curve.

BEM  No. Ill
This beam was of the same cross-section as beam I 

insofar as the concrete is concerned. The area of steel
was greater than that in beam I each cable consisting of 

12 high tensile steel wires 2 mm. diameter.
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The steel was not bonded to the concrete. Average cube 
strength 7,500 lb/sq,.in.

It was considered inadvisable to pre-stress this beam 
fully without any load on it because of the danger of 
cracking the concrete in the top of the beam. The procedure 
was to put half the desired pre-stress in the steel and to 
load the beam until it cracked. The load was then 
maintained whilst the steel force was increased to its full 
value. Loading was then continued. This results in a 
discontinuous curve for the steel force, figure 2.29, and 
the strains. This discontinuity does not cause any 
difficulty in the determination of the stress strain curve 
provided that no attempt is made to differentiate across 
the discontinuity. Although this beam was non-bonded and 
the steel force was measured by means of dynamometers 
throughout the test the f-fc values for the cracked beam were 
found to be unsatisfactory. The steel force was corrected 
as in beam II and the corrected curves are plotted in 
figure 2.29. There is a substantial difference between 
these curves and the original one. There appears to be no 
simple explanation for this. Possibly the steel force 
measurements were correct and it is the strains or beam 
dimensions which are in error. There is no way of checking
on this.



- 8 1 -

Fortunately the correction to the steel force make little 
difference to the corrected stress-strain curve in this 
case. Figure 2.30 shows the stress-strain curve obtained 
at the three gauge positions using the 'corrected1 steel 
force. For comparison the curve resulting from use of the 
uncorrected steel force is superimposed. It can he seen 
that the difference between the two curves is negligible.
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B M  ITo. IV
This "beam was the same as beam III except that the 

prestressing cables were grouted after pre-stressing. 
Average cube strength 7,500 lb/sq_.in.

The results of the test on this beam call for little 
comment. The stress-strain curves for the concrete are 
given in figure 2.31. The steel force was corrected in 
deducing these curves although the corrections applied were 
very small as the following figures show.

m 600 650 700 750 780

P (E section uncorrected) 920 970 1030 1120 1190

P (R section. corrected.) 960 1020 1090 1150 1200

P Ct " " ) 970 1010 1070 1140 1190

P (L " " ) 950 1100 1060 1130 1200

It can be seen that in all cases the corrected values 
are higher than the uncorrected. This may be ascribed to 
the phenomenon described onp.75. It appears that complete 
slip did not take place in the beam until the failing moment 
was reached (m = 788). It is to be expected that slip 
should be or less account in the highly pre-stressed beam 
for in this type of member the low neutral axis results in 
comparatively small tensile strains (compare the ec value 
of the various beams in Appendix 2.2).
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BEiE No. V
This beam was of the same span as 

the proceeding beams discussed but of 
reduced depth. The section is sketched 
in figure 2.32. The average cube 
strength was 8,100 lb/sq..in. The rein
forcement consisted of four cables each 
containing twelve tensile steel wires 
2 mm. in diameter. The steel was not 
bonded to the concrete.

u
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Figure 2.32

A slight difficulty was experienced in analysing the 
results of this beam. As usual the steel force was at the 
root of the trouble. During the test the ’measured* p value 
increased from 1138 at zero moment to 1208 at failure 
whereas the corrected p was found to be 1388 at failure.
The corrected p can be computed only for the cracked beam 
and if the steel force is in error prior to cracking it is 
difficult to effect a correction. In this case it was 
noted that the corrected p was approximately proportional 
to the measured value and it was assumed that this 
proportionality was maintained throughout the whole range.

This correction, despite its magnitude made virtually 
no difference to the positive branch of the stress-strain

curve. The f-fc values are radically altered in that they 

are/
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are reduced to zero for the cracked beam and provide for 
the uncracked beam compressive stress-strain values 
coindident with the curve obtained from the fc values.
It is this latter fact which justifies correction.

The corrected steel force which was obtained from 
consideration of the central gauge length, was used to 
calculate fc and f^ for the L and R gauge lengths. In both
cases the values provided a satisfactory check. The
resultant curves are plotted in figure 2.34.

The reader may wonder why the checks described in the 
last chapter did not reveal such a gross error in the steel 
force. In fact these checks do reveal the error but they 
can do no more i.e. they cannot suggest the correct value 
for the steel force except at the particular load stages 
at which they are applied.

The steel force may have been wrong due to faulty 
dynamometers or due to friction between the curved cables 
and the concrete. Assume that the cable was stretched

at end A and that the dynanometer
was at B. The steel force at
B will be less than that at A
due to friction as the cable

F I G U R E  a/2>3 passes each bend P, Q, R and S
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The force In QR will be higher than that recorded at B. 
Bor the same reason any increase in the steel force in PQ 
will he greater than the increase recorded at B.

B E M  Ho. V I

This he am is very similar in 
section to the preceding one hut 
in this case the prestressing 
cables were grouted. The average 
cube strength was 7,200 lh/sq..in.

s o"k------------------ <&«■

Rigure 2.35

The results obtained from this test were of interest 
as the strains recorded were substantially different in all 
three gauge lengths. This has not been the case hitherto 
where, as a general rule, there has been close agreement 
between two of the three gauge lengths. Bven so there is 
very close agreement between the stress-strain curves 
obtained for the various gauge positions, see figure 2.36.

As in the case of the other grouted beams it was 
necessary to correct the steel force. Typical figures
showing the amount of correction involved are given below
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m 650 700 750 796
p(L section, uncorrected) 1190 1260 1360 1660
p ( L It 9 corrected) 1190 1250 1350 1490
p(L It 9 ■ ) 1230 • 1300 1380 1470
p ( R II 9 " ) 1190 1240 1350 1450

GrSNERAI COHCLtTSIOITS TO II CHAPTERS 3 AND 4

In chapter 3 various ways of reducing the errors involved 
in the testing of concrete beams were enumerated. This 
study leads to the conclusion that of all the fundamental 
quantities involved viz., bending moment, concrete strains, 
and steel force, it is the latter quantity which is most 
likely to be in error. Two methods of checking this 
qjxantity were given. These are of restricted value because 
they are applicable only at certain load stages which 
approximate to the working load, and because they can suggest 
no remedy if an error is found.

Chapter 3 ends by showing how the author* s method of 
analysing the stress distribution in a beam can be adopted 
to correct the steel force if it is found to be in error.
This method rests on the assumption that the bending moment 
and concrete strains are correctly measured.

Chapter 4 is devoted to analysing the results of tests

on six pre-stressed beams.
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In three of these beams the steel was bonded to the concrete 
and in three it was * end-anchored1 only. It is a strange 
feature of the results that the steel force required most 
drastic correction in the case of the end anchored beams,
No's I, III and V. With these beams the steel force was 
recorded at each load stage by means of dynamometers of the 
type described on page 42. The results were satisfactory 
only in the case of beam I. With beams III and V it was 
necessary to apply corrections of 10ft or 12$* In both 
these cases the effect of the correction on the shape of the 
concrete stress-strain curve was negligible.

With the bonded beams, No's II, IV and VI the steel 
force was always estimated in the first instance from the 
concrete strains assuming no slip to have taken place.
In the case of beam IV this assumption appears to have been 
justified. Beam II is interesting because it shows that 
the steel force can be higher than that predicted from 
measurement of average strains as a result of higher steel 
strains in the immediate vicinity of a crack. This 
phenomenon is also exhibited to a certain extent in beam VI. 
The effect does not appear to obtain at failure where slip 
causes the steel force to be lower than that predicted from 
the average strains. This is not surprising in the case 
of the beams described above for bond between the concrete

and steel was obtained by injecting grout after pre-stressing.
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In such circumstances it is more or less impossible to bond 
every wire effectively unless spaces are used to separate 
the wires. Although this is a general practice the small 
size of the beams rendered the use of spacers impractical in 
these tests. If steps are taken to ensure good bond either 
by the use of spacers or by the use of pre—tensioned beams 
it is possible that even at failure the steel stress will be 
higher than that predicted from measurement of the average 
strains (using Baker’s terminology F > 1). Dr. K. Hajnal- 
Konyi has recently published a paper in which he suggests 
that this effect can be considerable (17). Slip is more 
severe in the beam with a comparatively low pre-stress; 
this is explained on page 83. This suggests that possibly 
a lower F factor should be adopted with beams of low pre
stress .

The six beams tested are too few in number to permit 
general conclusions to be drawn as to shape of the stress 
distribution in concrete beams. They do provide sufficient 
evidence to justify the author’s method of deriving this 
distribution. The main support for this contention is given 
by the agreement obtained between the curves deduced from 
different sections of the beam. Consider for example figure 
2.36 giving the results obtained from beam YI. In this 
case the compressive strains recorded during the last set of

readings/
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readings just prior to failure were .00370 in the left- 
hand gauge length, .00225 in the central one, and .00326 in 
the right-hand gauge length. Despite these differences the 
stress-strain curves obtained from these three gauge lengths 
are for practical purposes indistinguishable. This is the 
best example but in all cases the differences are slight.

With the exception of beam II failure occurred in the 
gauge length giving the lowest peak value for stress. Since 
these differences betv/een the curves are small it appears 
that local cracking and slip are as powerful in determining 
the actual point at which crushing occurs as the local 
properties of the concrete. Indeed in the case of beam II 
they are more powerful.

The stress-strain curve obtained for the concrete in 
tension is sometimes of dubious value for although errors 
in the steel force have little effect on the fc values 
they can introduce errors in of the same order as the 
tensile strength of the concrete. This portion of the 
stress-strain curve is of little significance for practical 
purposes so that one may be permitted to overlook this 
defect in the analysis.

One would expect creep of the concrete to occur to a 
greater extent in the gauge length which exhibits the greatest

strain and if creep were of significance this would result

in/
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in different stress-strain curves being deduced for the 
gauge lengths in which the measured strains differ. It 
has been pointed out above that there is generally good 
agreement between the curves obtained for the different 
gauge lengths. This indicates that the effect of creep 
on the distribution of stress is not of great account in 
short-term tests to destruction. In the tests described 
the time taken from the start of loading to failure of the 
beam was about four or five hours.
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APPEWDIX 2.1

In the following it is proved that if the creep 
equation can he written in the form, 

c = k.e.O(t)
and if the principle of superposition may he applied in 
respect of strains then; in a homogeneous beam subjected 
to varying bending moment and end-load the distribution of 
stress (be it elastic or plastic) is independent of the 
creep effects.

If superposition may be applied 
f t  — T A

Crjn =  k Q(T -  t)
. t = 0

(i)

but for plane sections to remain plate
eT + cT = g(T).x (ii)

where g(T) is some unspecified function of time dependant 
upon the rate of application of end-load and bending moment. 
From (i) and (ii)

i t  =  I  A
0 ( 1  -  * )  § f  d t  =  x * s ( T )

Integrating
e^ + ke0$(T) + k

ft = T. 
J t = 0

0(T - t).e dt = x.g(T)

Differentiating with respect to e™
. ^  e  t - T

\
0  *
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APPENDIX 2.2

The experimental results used in II chapter 4 are given 
"below. The figures have "been reduced to a form in which 
they are most convenient for application of the author’s 
analysis i.e, the bending moment is expressed as m = (Actual 
moment) 4 b&^ and the steel force = =. (Total force) ^ bd.
Por convenience all strains have been multiplied by lO^.

The data is given in tabular rather than graphical' form 
in order to save space. This is justified as the results 
in themselves are not of immediate interest as far as this 
work is concerned. Typical experimental curves are given 
see for example figures 2.12, 2.13 and 2.25, in the text. 
These may be taken as fair examples both as regards accuracy 
and general shape.
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B3M No. I. Low pre-stress. Non-bonded

m
1 V o "

p .
IVn "

| St rail 
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is ’L* 
®t

Strains ’
et
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ec

.ns * R1
et

i
8 350 !

! -0.5 2.4
69 350 i -0.5 1.5

132 352 1.3 0.4
1 175 354 l 2.0 -0.2

201 355 • 2.4 -0.6
! 237 360 2.8 -2.0 3.5 -2.5 2.7 -1.1

263 370 ' 4.9 -7.9 5.9 -8.5 4.0 -3.2
276 386 7.4 -25.1 9.4 -27.6 4.9 -5.8
288 404 10.3 -38.7 11.9 -40.4 6.5 -13.4
302 416 12.5 -47.0 14.0 -55.7 7.1 -16.4
314 437 15.4 -65.7 i17.2 -74.0 8.4 -23.4
326 451 16.7 -74.7 19.1 -86.2 9.6 -26.6
338 4 66 18.7 -85.2 22.7 -109.8 11.8 -40.5
351 482 20.7 -97.8 24.4 -118.5 : 13.1 -45.1
364 499 : 24.2 -114.1 129.3 -143.5 : 14.7 -50.8
377 511 : 26.i -123.0 32.0 -161.0 ■ 15.5 -58.3
390 532 i-A0!-1- - j-142.0 .28.3 -194.0 ; 16.5 -56.8

BEAM No. II. Grouted.
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BEilvl No, I I I .  High pre-stress. Non—'bonded.

* Top cable released
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BSM No. V. Yery high pre-stress. Non-bonded.
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PART III THE EFFECT OF FINITE SPACING OF TENSILE
m i c r s ...w ’ " ! E a E " T i E ^
Co n c r e t e  b e 3m S ~ s u bJe c t e d  to  I  p u r e  '” £ M d in g  
I M F  ' ' " "

Chapter I. INTRODUCTION

When considering the distribution of stress in concrete 
beams it is usual to assume that the concrete is incapable 
of sustaining any tensile stress and to consider the concrete 
below the neutral axis to be of no account. This leads to

the assumption that the distribution of 
stress in an ordinary reinforced concrete 
beam, under elastic conditions is as 
indicated in figure 3.1.

With bonded pre-stressed beams and 
ordinary reinforced beams these assumptions 

Figure 3,1. are justified because the tensile cracks 
do occur quite close together. With non-bonded beams there 
is a definite difference the cracks being quite widely spaced. 
With beam No. I (described in part II) only one major tensile 
crack appeared whereas beam No. II, which differed only by 
being grouted, many tensile cracks appeared spaced 4” to 6” 
apart. It appears unlikely that the stress distribution of 
figure 3.1 will be realised in the case of beam No. I.

It is the object of this chapter to determine the effect 

of crack spacing upon stress distribution.
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The complexity of this problem, from the analytical 
standpoint, is such that some severe restrictions must be 
placed on the work •

I l l  C h a p te r  I I  GENERAL REV IEW  OF TH E PROBLEM

' cJ _RES>ULTM4T

C m

— L  .  J ---------J

1i

i  r

■ P ’ |___ ----------- f  - - - S T E E L  r
j ' p '

c.-4— ----* „ c + — C-... c L c c . c c. _

Figure 3.2

It will be assumed that the cracks in the beam are evenly 
spaced and that the cleavage is in each case in a plane 
perpendicular to the axis of the beam. The first of these 
assumptions is realised approximately in practice. The 
second is sometimes, but frequently the cracks fork.
Although the analysis to follow will indicate why this 
happens quantitative analysis of the phenomenon is hardly 
possible.

The problem will be restricted to elastic deformations.

An idealised cracked beam is indicated in figure 3*2 
Consider the broad statics of the problem. The steel 
force P = resultant concrete compressive force C and the

external moment M. = j.P = j.C.
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Since the steel and concrete are not bonded the concrete 
stress distribution will be completely unaffected if both 
P and M are removed to leave only the eccentric compressive 
force C. That is to say, the concrete beam has become an 
eccentrically loaded column.

Figure 3.3

The beam can no?/ be regarded as a number of identical 
blocks, each of length c, placed end to end and subjected 
to an eccentric end load 0. The interface betv/een two 
blocks c is considered to be incapable of sustaining a 
tensile stress so that if the compressive force is outside 
the middle third the cracks will open until the direct 
stress on the interface is entirely compressive. There 
may be tensile stresses present within the blocks but no 
new cracks v/ill be initiated until these stresses exceed

the ultimate tensile strength of the material.
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We will consider that the beam is fairly thin i.e. 
in the language of the theory of elasticity the problem is 
one of plane stress. The presence of the holes through 
which the reinforcement is passed will be ignored.

MATHEMATICAL STATEMENT OF PROBLEM
Consider the block IQRU in figure 3.3. The equation 

to be satisfied within these boundaries is the biharmonic 
equation (18).

where
.  o

«■  S  ^  + 2 ^
■ 3 * *  V V

and § is the Airy Stress function, 
obtained from this function as follows:-

^  .  i .  . ,

(3.1)

The stresses are

) V - t
1

- - - V

The choice of the co-ordinate axes is arbitrary but 
that given in figure 3.3. is a convenient one.

On boundary TU we have two known stress conditions 
namely pyy = pxy = 0
Hence

O

Integrate with respect to x
M  ■  f , ’ - W

^  * 0  

^  -  I h W
Since x is constant along TU both f^ and fg are constants 
so that

=  f e ,



-105-

Integrating the first of these with respect to x 
§ ~ +

or § - •* where Vs is a constant.
Since the stresses are obtained by differentiating twice 
the values of these stresses will be independent of kq_, k2 
and we can assign arbitrary values to these quantities.
For convenience we will set them all to be zero.

The above process will now be repeated for the other 
boundaries but the constants of integration which appear will 
no longer be arbitrary. Such constants will be dependent 
on the values which have been assigned to k^, k2 and K, .

Consider boundaries PT and SIT. Here p ^  and pXy are 
zero so that , .

- o  ^ °3 * J ‘

Integrate with respect to

c C O  -  C o w s = C o w s t  •

The points T and U lie on TU where and are both
zero hence on PT and SU

,  o

Integrating the first of these it is found that § = 0.

V - *  M  ^On boundaries RS and PQ - O and since 3% ' ° at
P and S it is zero all along both RS and PQ.
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A second boundary condition is required and it is given by- 
observing that the stresses must be symmetrical about each 
of RS and PQ. This is so because all the blocks in the 
beam are subjected to the same conditions and hence the 
stresses in them are the same. This only implies that the 
second derivatures of ^ must be symmetrical about the 
interfaces between the blocks. However we have so selected 
the arbitrary constants on boundary TU that ^ is 
symmetrical about the interfaces•

Analysis of the conditions on QR is precisely the same 
as that for TU and it is found that

By restricting attention to this line this can be 
rewritten

$  = vt,' ^  +  k  , ^

The values of these constants is found by further
consideration of boundary RS, on which pxx =

Integrating

=■ C, the total compression.

c

i . e ^  =C
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Oonsider now 

Integrate

dCNp _

c  ( « .  +  ■ «  * 3  - W

*3?

‘ i- t *

^ 5  T \ "1- )PX*

C . c v

( 4 \ >  -  o ( $ ) < >  «■  C .T S A .

("6(X>is used to preserve uniformity with the preceeding 
sections of this thesis)

This analysis applies equally to boundary PQ and

( 4 %  -  C T S < k

Hence W - O  ^  K,’« CTSdi.
The above statement of the problem is summarised in figure 
3.4 below.

Q

= cyC

U - c R .

*
SYM M ETRICA L

4 > = o  ^

» . o rd x

□ i - f .
*

SYMHETRIC/M-

oc

T

V V o

V /  < t > * 0

\ M = o
a a

Figure 3.4

J 4 > = o  

l ^ - o3 x '

u
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Unfortunately figure 3.4 does not give a complete 
statement of the problem for the positions of S and P depend 
upon the position of the resultant C. An arbitrary 
selection of point S when is specified will result in 
Pxx having some value other than aero at S. It cannot be 
tensile becuase the S would shift up and the crack would 
open more. On the other hand a positive value would close 
the crack. The required solution is given when p ^  at S 
is just zero.

ANALYTICAL SOLUTION OP THE PROBLEM.

< M C

'  -N V
' ' '  V-  

1 l 
I V
\

<$ =  o

/ / : v »
— '  / '  ’ ' _ / /

'  '  v

* v 
\

f
/ /• 

/  / .

7 :

Pigure 3.5

An explicit solution of the problem requires the determination 
of the function

where satisfies the biharmonic equation and all the 
boundary conditions. Having obtained such a solution it 
would be possible to plot equi-<^ lines which might appear

as in figure 3.5.
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The function $ = 0 would give the. bottom, boundary 
including cracks and as § is increased to <\C the curves 
would degenerate into a straight line. It appears that a 
solution in the form of a harmonic series could be found 
but the author has been unable to discover one.

The above paragraphs were written before the author 
obtained the relaxation solutions given below. As will 
be seen in figure 3.9 the equi— <$> lines do not altogether 
follow the pattern suggested in figure 3.5. The proper 
solution is modified by the appearance of negative $ contours. 
Figure 3.5 is, however, left in its original form as it is a 
part of the sequence of reasoning which led to the final 
solution of the problem and as there is nothing to indicate 
that one should assume a-priori the existence of the 
negative $ values.

RELAXATION SOLUTION
As it appeared unlikely that an explicit solution to 

the problem could be found readily the author decided to use 
relaxation methods. As relaxation is now a standard 
method of solving field problems details of technique need 
not be considered here. The general method of dealing 
with the biharmonic equation has been given in a paper by 
Fox and Southwell (19).
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In solving the problem above difficulty arises as a 
result of the undefined dependence of the crack depth on 
the position of the resultant force C.

This difficulty is solved by splitting the solution into
two parts. The author is indebted to Mr. D.N. de G. Allen
for suggesting that the problem might be tackled in this way.
Instead of solving the complete problem as stated in figure
3.4 the two independent components given in figure 3.6 are
each solved separately.

= i o o o

( W ^ ° &

4 > = o

\

A s

102*

f  < $ = o

" ) ■

U  * - o

B

l 2 * . o

U  <*> =  o

Figure 3.6
The final solution is then of the form i + X B >s so 

chosen that the resultant is zero at point S.

In the case of a square block with the crack extending 
to half the depth of the beam the distribution of Pxx along 
SR is as given in figure 3.7. It will be seen that in this

case \  = - = - 0.75.
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It is not necessary to evaluate the stresses in this way as 
the value of X  can be obtained directly by consideration 
of the . It is stated above that . At some
point such as M in figure 3-8 this equation, when written 
in finite difference form, becomes
Por simplicity the mesh length h can be made unity (this is 
done without loss of generality) so that we can write

At S, ^  ' = 0 because is constant along SU. At
the imaginary mesh point 2 we have which must =
Thus at S where = 0, ~ . So that X  is
found simply by dividing into (<̂ ,)a *

In figure 3.9 the two components A and B are plotted 
alongside the resultant A + B for the case of a square 
block v/ith a crack extending half-way up the section. The 
solution is of little value in this form so that only this 
one example will be given. It is, hov/ever, quite typical.

F I G U R E  3 . 8
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RANGE OP SOLUTIONS

The general purpose of this section of the work is to 
investigate the effect of crack spacing and crack depth on 
the stress distribution in a beam. It was necessary, 
therefore, to solve a whole series of problems. In all 
cases the side of the mesh length of the relaxation pattern 
was unity with a beam depth of 8 units. The total of cases 
considered are given in the table below.

Figure 3.10

TABLE 3.1

c ii ) 1 2 3 4 5 6 7 8
2 Z Z Z Z

4i Z Z Z Z
t
8 Z Z Z z z Z Z z z

16
i

Z z Z z

The square block was considered in much detail because
the author has observed the crack spacing in non-bonded
beams to be very approximately equal to the beam depth. 

The other values of c were chosen to give a fairly wide
range.
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III Chapter III DISCUSSION ON RESULTS OBTAINED
NOR A PARTICULAR CASE

In giving the solution of a problem in stress analysis 
it is not easy to decide how to make the most comprehensible 
and useful presentation. One way is to plot an orthogonal 
set of trajectories directed in the directions of principal 
stress together with contours giving the local intensity 
of the two principal stresses. The advantage of this 
method in so far as concrete is concerned is that it 
indicates immediately the value and direction of the tensile 
stresses which tend to cause cracking. Alternatively 
contours giving the intensity of the component stresses 
Pxx> Pxy> Pyy oan 1° e plo^c^. This latter method is much 
the simpler as the stresses are calculable directly from 
the <J> ' s whilst the principal stresses can only be determined 
by further calculation. As interest is centred on Pxx>
Pxy an(̂  PXy  contours can be omitted. Local values can be 
given at the nodes of the relaxation network.

Both methods of presentation are given in figures 3.11 
and 3.12. The example chosen is that of the square block 
with a crack running to one half beam depth.

Consider first figure 3.11 which gives the principal 
stresses. There are three main areas of interest

(a) The general area above the cracked zone.
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In this region the numerically largest principal stress is 
compressive in a direction which is, for all practical 
purposes, parallel to the axis of the "beam (h) The area 
of tensile stress at the "bottom of the centre line midway 
between two cracks. This stress acts parallel to the axis 
of the beam.. (c) The large tensile stress at the top of 
the crack acting parallel to the crack. ill stresses not 
mentioned in these three categories are small and of little 
consequence.

It can now be seen that figure 3.12 shows all the 
important information enumerated above. The stress contours 
in the compression zone of the beam are almost identical to 
the principal stress contours of figure 3.11 whilst the 
latter shows the directions of the principal stress deviates 
but slightly from the xx direction. The tensile stress in 
region (b) is p ^  for as this stress is on a boundary it 
must be a principal stress. The tensile stress at the top 
of the crack is not indicated by any contours in figure 3.12. 
The value is given by the figures printed at the nodal points 
and since the stress is on a boundary and a line of symmetry 
it must be a principal stress.

This particular case has been discussed in order to 
demonstrate that, as far as the object of this section is

concerned,/
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concerned, it is not necessary to consider the distribution 
of the principal stresses in detail but that all relevant 
information can be put on diagrams of the t3rpe 3.12.
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III Chapter 17 DISCUSSION OP SOME OP THE GENERAL
RESULTS

It will now be more convenient to consider specific 
points which emerge from eil the cases considered rather 
than to deal with each complete case by itself.

DISTRIBUTION OP p ^  ABOVE A CRACK

Pigure 3.13 illustrates the effect of crack spacing 
on the distribution of stress on the plane containing the 
crack. This figure gives the results for the crack 
extending to one half beam depth whilst the remaining results 
are given in table 3.2.

It can be seen that as the crack spacing is increased 
the stress distribution ceases to follow the triangular 
distribution normally assumed and which can be realised 
only when the distance between cracks becomes zero. The 
deviations are small and are practically negligible. The 
maximum difference recorded amounting to only 7fo of its 
corresponding top fibre stress. The general effect of the 
wide crack spacing is a slight decrease in the top fibre 
stress and an increase in stress nearer the neutral axis.
This means a slight lowering of the centre of compression.
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In table 3.2 the stress values for finite crack spacing 
are all obtained by relaxation. The stresses for zero 
distance between cracks have been obtained by calculation 
from the known triangular distribution. In making the 
comparison between the ’completely* cracked case and the 
cases where the crack spacing is finite the errors inherent 
in the relaxation process must be borne in mind. These 
errors are small if the mesh dimensions are small compared 
with the main dimensions of the body i.e. where the cracks 
are spaced 8 and 16 mesh lengths part. They become more 
significant where c = 4 whilst c = 2 can only be regarded 
as a rather crude approximation. A better solution would 
be obtained by taking a smaller mesh size but in view of 
these practical limitations on the value of this analysis the 
author feels that the extra labour involved in doing this 
would be unjustified. The purpose of this analysis is to 
determine general effects rather than mathematically precise 
quantities which are obviously of dubious practical value. 
These remarks apply also as the crack depth becomes very 
deep e.g. = 6. Then the depth of the compression zone 
is comparable with the mesh size. In this case the effect 
of replacing the differential equation by a finite difference 
equation can be investigated quite easily. Table 3.3 
compares the exact stress values with those obtained by 

relaxation for c = 0.
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TABLE 3.3

' Exact1 p-^ 0 31.25 62.5 93.75 125 156.25 187.5 218.75 250
(8 meshes 0

•
32 63 95 124 153 185 217 251

Relax-(4 " 0 62 123 188 250
ation ( 
Values(2 " 0 125 250

Table 3.3. shows -that in this particular example the 
errors introduced by relaxating on a coarse mesh are negligible 
Such close agreement between the 'precise* and relaxation 
values could hardly be expected for cases where c ̂  0 but 
there is indication that a reasonable picture is obtained 
even with a coarse network.

DISTRIBUTION OB p _  ON SECTION MIDWAY BETWEEN TWO 
CRACKS

One of the questions that the author hoped to decide by 
this analysis was - What are the main factors influencing 
crack spacing in a non-bonded beam?

Close to a crack the stress in the bottom fibres of a 
beam is zero. As the point considered is moved a?/ay from 
the crack a tensile stress builds up. This stress is a 
maximum midway between two adjacent cracks. All other 
things being equal, the greater the distance between these 
cracks the greater will be the tensile stress and the more 
likely it becomes that a new crack will be initiated there.
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Figure 3.14 shows the distribution of on the plane 
midway between two cracks for a variety of crack spacings and 
crack depths. It shows that there is practically no build
up of tensile stress in the bottom fibres for crack spacings 
of J and J- beam depth (c = 2 and 4). At the other extreme 
where the crack spacing is twice the beam depth (c = 16) 
the tensile stress builds up practically to the maximum 
possible. This is shown by comparing these curves with 
those for infinite crack spacing. The top diagram in figure 
3.14 shows the effect of the crack extending to full depth. 
This is included because it shows the maximum possible effect 
of increasing crack depth. It is of little practical 
interest because it implies infinite stresses in the 
infinitely small compression zone above the crack.

In figure 3.15 the bottom fibre tensile stress is 
plotted to show the effect of crack depth and crack spacing.

Figure 3.15 shows that the bottom fibre tensile stress 
only increases with crack depth for the wider crack spacings. 
For example when c = 4 the tensile stress increases with 
for ^ less than 2 and that it decreases as the crack gets 
deeper. This is assuming that the steel force remains 
constant. Thus provided that the increase in steel force 
is not; too great and the crack spacing is small the tendency 

to form more cracks between those already established 

decreases as the original cracks become deeper.
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The upper limit to the crack spacing is obtained by sketching 
in the curves for c = 6, and 7 in figure 3.15. The method
of plotting used enables this to be done with fair accuracy 
(ref. 20). The result gives c = 7 (i.e. as d = 8 this 
means a crack spacing of beam depth) as the limiting value. 
For c > 7 the bottom fibre tensile stress increases with

» and for o <  7 the stress decreases once ^  is greater
than i  beam depth.

This can be summed up by saying that if the cracks are 
spaced closer than -J-d then further cracking will not take 
place unless (a) the steel force increases substantially or
(b) the crack depth is less than £d. It can be seen that 
neither of these exceptions is likely. In non—bonded beams 
the steel force does not increase very much. This is 
verified by reference to the experimental results given on 
pages 89-91. In beam No.l p.89 increases from 360 at 
cracking to 532 at failure, in beam No. Ill the increase is 
from 825 to 924 and in beam No.V from 1167 to 1207. It 
first glance the increase in beam I appears to be substantial, 
48^. There is a corresponding increase in the tensile 
stress, but as we shall see below the increase is not 
sufficient to increase the tensile stress to the value which 
originally caused cracking.

It is suggested in the preceeding paragraph that crack 

depth/
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depth is not likely to he less than one quarter of the beam 
depth. This is demonstrated by considering the stress 
distribution immediately before and after cracking. The 
two conditions are indicated in figure 3.16.

Just before cracking we have compressive and tensile 
stresses fc and f̂ .. On cracking fc increases to fc* and 
the steel force increases from P to P + A  P. Let this 
take place at moment M.

Take moments about the bottom fibre for the uncracked
case

( b )

Figure 3.16

M = 3  fcbD2 - 3 ftbD2 - P(D-d)
equating forces

P = -|-(fc - ft) bD
After cracking

1
m  = (p + a  p) (a - 3
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Sliminate LI and fc from these equations and we get
1

2  vjr p  + 6  A P ( a  -  3  I T -  ^  ) =  f t ™ 2 -

Experience shows that A  E is only about l c/  P and so may be 
neglected in the above equation. This gives

^  _ ftbD
D  2P

The results of II chapter 4 give f^ = 1/20 to l/lO 
the cube strength (c„).

In practice the top fibre stress for zero bottom stress 
will be 1/6 to l/3 of the 0^ so that 2P/bd = (1/6 to l/3)C^ . 
Substituting for f^ and P we find = 3/20 to 3/5. The
higher value occurs with the lower pre-stress. The initial 
crack depth is seen to vary over a fairly wide range but will 
be at least 0.15 D and that it will only be so small for 
concrete with rather low tensile strength. Experiments 
shov; that the crack deepens very rapidly at first so that 
the critical value of JD will soon be passed even if the 
crack is not initially so deep.

In the table below f^ is calculated for P(=C) of 1000 
with b = 1 and D  = 8 whilst is varied.

> ^ = 1 2 3 4 5 6 7 8  

ft = 16 31 47 63 78 9 4 110 125
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This table together with figure 3.15 makes it possible 
to say whether or not there is a possibility of the creation 
of new cracks between those already developed. Two examples 
will illustrate this:—
(i) Suppose that two cracks appear 7 units apart and 

that the depth of the cracks, vj , is 4 units.
The above table shows that for c = 1000, f-̂
(that is the tensile stress Just before cracking)
= 63 units. Referring now to figure 3.15 we see 
that no matter how deep the cracks become the 
bottom fibre stress cannot reach the original 
cracking value unless the steel force increases.
In fact the tensile stress will have its maximum 
at the instant of cracking for as the crack depth 
increases the tensile stress d ecreases slightly.
The maximum value of the stress is 28 units so 
that the steel force must more than double itself 
before the original cracking stress is exceeded.

(ii) Suppose that the critical crack depth is 3 units
whilst the spacing is 8 units. The table gives
the cracking value of f-̂ — 47. Referring to
figure 3 . 1 5  we see that this stress will be 
reached when ^  ̂  4g •

Before concluding the observations on the likelihood

of new cracks being formed between those already established 
it/
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it is necessary to define the limits of the arguments used 
above. The calculated values of the bottom fibre stresses 
appljr only as long as the basic assumptions are true. The 
most important of these is the assumption that the cracks 
rise vertically. This is approximately true until the 
cracks become deep when there is a tendency to bifurcate. 
Sometimes the two branches continue to rise as the bending 
moment is increased and sometimes they run practically 
parallel with the axis of the beam and new vertical cracks 
rise from the main branch.

The sharje of the cracks is 
indicated in figure 3.IT.

The reason why the cracks split into two branches is 
indicated in figure 3.11. At the top of the crack there is 
a large tensile stress parallel to the crack. When this 
stress exceeds the tensile strength of the concrete the 
material urptures at right angles to the original crack.

The author has stated already that he considers any 
attempt to trace the subsequent course of the cracking to 
be beset by great computational difficulties. It is also 

his opinion that the expenditure of effort would not be 
justified.
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However, having demonstrated the existence of the stress 
which causes the cracks to fork it is possible to explain 
the subsequent behaviour in general terms.

Figure 3.18

Imagine the block contained between two vertical cracks 
to be sliced away from the upper section of the beam.
The latter will bend as indicated in figure 3.18(a) whilst 
the lower section will be stress-free and underformed. In 
order to rejoin the two peices the lower section must be 
bent round the upper section and the j*oint must be capable 
of sustaining the tensile stress indicated in 3.18(b).
At the same time tensile bending stresses are introduced 
into the lower fibres of the completed beam. The bottom 
fibre stress has been examined in detail. If it exceeds 
the tensile strength a crack forms at X, we shall see that 
this has the effect of lowering the tensile stress at Y 
and thus reducing the tendency for the cracks to fork.
If, on the other hand, the stress at Y exceeds that at X 

then/
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then it is more likely that the existing cracks will fork 
rather than that a new crack will he formed at X. Once 
the existing cracks do fork the effect is to lower the stress 
at X for the material between two cracks tends to straighten 
out as indicated in figure 3.18(a). When this happens the 
material below the cracks is effectively no longer part of 
the beam and the author has seen cases where two horizontal 
cracks have joined, and but for the fact that the reinforcement 
passed through the isolated block the latter would have fallen 
out. The 'new* beam is much shallower than the original 
one so that the new vertical cracks which are formed are 
much closer together than the original ones. This is 
indicated in figure 3-17 and is borne out by experience.

Values for the tensile stress at Y for C=1000 are
tabulated below.

T3NSILE STRESS AT THE TOP OP A CRACK

= 0 1 2 3 4 5 6 7 8
c = 2 0 - 8 - 18 62 - —

4 0 — 24 - 52 115 - -
8 0 9 41 58 104 169 288 - -

16 0 33 112 1 302 — —
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These values can be compared y/ith the stresses at X 
given in figure 3*15. It is found that the stress at Y 
exceeds that at X in all cases to the right and above the 
heavy zig-zag line. It is evident that when the crack 
spacing is less than the beam depth the existing cracks will 
fork rather than permit the formation of intermediate cracks. 
The reverse is the case for wider crack spacing except when 
the existing cracks become deep and extend more than half-way 
up the side of the beam.

The general conclusion to be drawn is that the average 
crack spacing in non-bonded beams will be approximately 
equal to the beam depth. Experience shows this to be so.
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III Chapter V THE BEARING OP THE ABOVE ANALYSIS
ON THE INTERPRETATION OP STRAIN 
GAUGE READINGS

The distribution of strain in concrete beams is 
generally determined as described in Part II Chapter III, 
that is by attaching a series of strain gauges down the 
depth of the beam. Reference has already been made to the 
work of Mygind and Binns (16) who showed that short gauge 
lengths are undesirable because of the tendency to record 
abberations caused by local lack of homogeneity. Below 
we shall study the effect of varying the gauge length upon 
the strain recorded when the material is 'perfect* but in 
which the stress distribution is not the ideal triangular 
one usually assumed.

DERIVATION OP STRAIN PROM RELAXATION SOLUTIONS

A strain gauge records the average strain over the 
gauge length. Thus if we wish to calculate the reading 
which would be obtained from a strain gauge we must 
integrate the total movement over the gauge length to obtain 
the average value. This is done cgiite simply from the 
relaxation solutions already obtained.

Pigure 3.19
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fhe strain in the x direction at point A (figure 3.19) 
is .

s \ - C" \ It-

Or being Poisson’s ratio and E Young’s modulus. The change 
in the length-AC is

^  6 - iwkCM +  H e o c i t C s ^  -v \

The average strain over length AC is this latter 
quantity divided by AC so that

If the gauge length extends over n mesh lengths then

C & N ) - ^  |  ^  4 ............ -4 6 ichC ^I) ^

The stress which will be interpreted from such a gauwe
reading is 6 x k (/\n ) * £  = £>VKCAN>y and

where
K *  •-

figure 3.12 shows that the most severely stressed
transv ers e section of a beam is that c ontaining a crack
whilst the least severe section is that midwa2’p hetween
two cracks. It is the maximum str e s s es whi ch are of
greatest significance and correspondence between these 
and the measured strains will be poorest when the latter 
are taken symmetrically about a line midway between two

cracks
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X t  i s  t h i s  w o r s t  c a s e  w h i c h  w i l l  h e  c o n s i d e r e d  i n  t h e  

f o l l o w i n g  w o r k ,  T h e  e f f e c t  o f  v a r y i n g  t h e  g a u g e  l e n g t h  o n  

t h e  c o r r e s p o n d e n c e  b e t w e e n  p x x  &&& P x x  ( a t  c r a c k )  w i l l  b e  

d e m o n s t r a t e d .

I t  h a s  b e e n  s h o w n  b y  J o n e s  ( 2 1 )  t h a t  P o i s s o n ' s  r a t i o  

f o r  c o n c r e t e  v a r i e s  b e t w e e n  0 , 2  a n d  0 . 3 .  An a v e r a g e  

v a l u e  o f  0 . 2 5  w i l l  b e  u s e d  h e r e .

T h e  w o r k  o f  t h e  l a s t  c h a p t e r  h a s  sh o w n  t h a t  t h e  c r a c k s  

a r e  u n l i k e l y  t o  r i s e  v e r t i c a l l y  i f  t h e  c r a c k  s p a c i n g  i s  

g r e a t e r  t h a n  t h e  b e a m  d e p t h  s o  t h a t  i n  t h e  f o l l o w i n g  w o r k  

t h e r e  i s  l i t t l e  p o i n t  i n  c o n s i d e r i n g  t h e  c a s e  w h e r e  c  <  d .  

We w i l l  s t u d y  tw o  c r a c k  s p a c i n g s ,  o n e  w i t h  c  =  d  a n d  t h e  

o t h e r  c  =  - J d .

P i g u r e  3 . 2 0  g i v e s  t h e  s t r e s s  d i s t r i b u t i o n  d e d u c e d  f r o m  

s t r a i n  g a u g e  r e a d i n g s  w h e n  t h e  c r a c k  d e p t h  i s  t h r e e - q u a r t e r s  

o f  t h e  b e a m  d e p t h .  W hen t h e  c r a c k  s p a c i n g  i s  e q u a l  t o  t h e  

b e a m  d e p t h  t h e  d i s c r e p a n c y  b e t w e e n  t h e  m e a s u r e d  a n d  ' a c t u a l '  

s t r e s s e s  i s  c o n s i d e r a b l e  e v e n  w h e n  t h e  g a u g e  l e n g t h  e q u a l s  

t h e  c r a c k  s p a c i n g .  W hen t h e  c r a c k  s p a c i n g  i s  h a l v e d  t h e  

d i s c r e p a n c y  b e c o m e s  q u i t e  s m a l l .  W hen t h e  c r a c k s  a r e  

w i d e l y  s p a c e d  t h e  g a u g e  l e n g t h  h a s  a  l a r g e  e f f e c t  u p o n  t h e  

v a l u e  o f  t h e  m e a s u r e d  s t r e s s  w h i l s t  w i t h  t h e  s m a l l e r  s p a c i n g  

t h e  e f f e c t  i s  s m a l l .
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T h e  b e s t  b a s i s  f o r  c o m p a r i s o n  i s  t o  e x p r e s s  t h e  d i f f e r e n c e  

b e t w e e n  t h e  m e a s u r e d  a n d  ' a c t u a l '  s t r e s s  a t  a n y  l e v e l  a s  a  

p e r c e n t a g e  o f  t h e  m axim u m  ( i . e .  t o p  f i b r e )  s t r e s s .  T h i s  

h a s  b e e n  d o n e  i n  f i g u r e  3 . 2 1 .

T h e  f o l l o w i n g  c a n  b e  i n f e r r e d  f r o m  t h i s  d ia g r a m

( a )  T h e  e r r o r s  i n  s t r e s s e s  d e d u c e d  f r o m  s t r a i n  g a u g e  

r e a d i n g s  c a n  b e  v e r y  m u c h  i n  e r r o r  i f  t h e  c r a c k  

s p a c i n g  i s  w id e  a n d  t h e  c r a c k s  a r e  d e e p .  W it h  a  

c r a c k  d e p t h  o f  *fd  a  g a u g e  l e n g t h  e q u a l  t o  t h e  

c r a c k  s p a c i n g  t h e  e r r o r  i s  l e s s  b u t  s t i l l  

c o n s i d e r a b l e  a t  2 2 $ .

( b )  W i t h  a  c r a c k  d e p t h  n o t  g r e a t e r  t h a n  o n e  h a l f  t h e  

b e a m  d e p t h  t h e  e r r o r  i n  t h e  t o p  f i b r e  s t r e s s  i s  

l e s s  t h a n  1 0 $  w h a t e v e r  t h e  g a u g e  l e n g t h .

( c )  T h e r e  i s  a l w a y s  a  f a i r  e r r o r  a t  t h e  n e u t r a l  a x i s .

T h i s  i s  b e c a u s e  t h e  m e a s u r e d  n e u t r a l  a x i s  i s  

a l w a y s  l o w e r  t h a n  t h e  t o p  o f  t h e  c r a c k .

T h i s  l a t t e r  p o i n t  d e s e r v e s  o f  a  l i t t l e  e l a b o r a t i o n .  

W hen t h e  s t r a i n s  a r e  p l o t t e d  f o r  a  g a u g e  l e n g t h  e q u a l  t o  

t h e  c r a c k  s p a c i n g  i t  i s  f o u n d  t h e  d i s t r i b u t i o n  i s  l i n e a r  

a b o v e  t h e  t o p  o f  t h e  c r a c k .  T h i s  c a n  b e  s e e n  i n  f i g u r e

3 . 2 0  w h e r e  t h e  s t r e s s e s  d e d u c e d  f r o m  r e a d i n g s  o n  t h e  l o n g  

d a s h e s  a b o v e  t h e  t o p  o f  t h e  c r a c k .
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O v e r  t h e  l e n g t h  b e t w e e n  t h e  tw o  h e a v y  d o t s  t h e  d i s t r i b u t i o n  

i s  q u i t e  l i n e a r .  T h i s  r e s u l t  i s  i m p l i c i t  i n  t h e  b a s i c  

a s s u m p t i o n s  a n d  s o  p r o v i d e s  a  c h e c k  o n  t h e  w o r k .  I t  i s  

a s s u m e d  t h a t  a n  i n f i n i t y  o f  b l o c k s  a r e  l o a d e d  b y  a n  e c c e n t r i c  

c o m p r e s s i v e  f o r c e .  On t h i s  b a s i s  t h e  i n t e r f a c e  b e t w e e n  

tw o  b l o c k s  m u s t  r e m a i n  p l a n e .  T h i s  i s  a c c o u n t e d  f o r  i n  t h e  

b o u n d a r y  c o n d i t i o n s  b y  m a k i n g  t h e  s h e a r  s t r e s s  a t  t h e  

i n t e r f a c e  z e r o .  T h e  n e u t r a l  a x i s  f a i l s  t o  c o i n c i d e  w i t h  

t h e  t o p  o f  t h e  c r a c k  b e c a u s e  i n  t r a n s l a t i n g  s t r a i n s  i n t o  

s t r e s s e s  w e h a v e  a s s u m e d  t h a t  p r y  =  E  e ^ .  T h i s  h a s  b e e n  

d o n e  t a c i t l y  a s  i t  u s u a l l y  i s  w h e n  a n a l y s i n g  t h e  r e s u l t s  

o f  t e s t s .  p y y  i s  z e r o  a t  t h e  t o p  o f  a  c r a c k  b u t  e x x  ¥• Q 

b e c a u s e  o f  t h e  s t r e s s e s  p a r a l l e l  t o  t h e  c r a c k .  W hen t h e  

p o s i t i o n  o f  t h e  n e u t r a l  a x i s  i s  d e t e r m i n e d  b y  p l o t t i n g  t h e  

h o r i z o n t a l  s t r a i n s  t h e  d e p t h  o f  t h e  c o m p r e s s i o n  z o n e  w i l l  

a l w a y s  a p p e a r  g r e a t e r  t h a n  t h e  a c t u a l  d e p t h .  T h i s  i s  

i l l u s t r a t e d  i n  f i g u r e  3 . 2 2 .

I t  c a n  b e  s e e n  t h a t  w i t h  t h e  w i d e r  c r a c k  s p a c i n g  t h e  

d e p t h  o f  t h e  n e u t r a l  a x i s  a s  g i v e n  b y  s t r a i n  r e a d i n g s  o v e r  

a  l o n g  g a u g e  l e n g t h  m a y  b e  a p p r e c i a b l y  i n  e r r o r .  W it h  t h e  

c l o s e r  s p a c i n g  t h e  e r r o r  i s  n o t  g r e a t .  I f  a  s m a l l e r  g a u g e  

l e n g t h  i s  u s e d  o n  t h e  l i n e  m id w a y  b e t w e e n  tw o  c r a c k s  t h e  

e r r o r s  w i l l  b e  w o r s e .
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I I I  C h a p t e r  V I  THE E F F E C T  OF TH E PHENOMENA
D E S C R IB E D  ABOVE ON THE S T R E S S  
ST R A IN  CURVE DEDUCED FROM REA D IN G S 
ON A  BEAM.

I t  w a s  s t a t e d  o n  p . 1 8  t h a t  t h e  a u t h o r * s  m e th o d  o f  

d e t e r m i n i n g  t h e  s t r e s s  s t r a i n  c u r v e  f r o m  m e a s u r e m e n t s  o n  a  

t e s t  b e a m  d e p e n d s  s o l e l y  u p o n  t h e  v a l i d i t y  o f  t h e  a s s u m p t i o n s  

o n  w h ic h  i t  i s  b a s e d .  T h e s e  a s s u m p t i o n s  a r e  g i v e n  o n  p . 2 1  

A f u r t h e r  a s s u m p t i o n  i s  a l s o  g e n e r a l l y  m a d e  i n  p r a c t i c e .

I t  i s  t h a t  t h e  s t r a i n s  c a n  b e  m e a s u r e d  d i r e c t l y  b y  a  s t r a i n  

g a u g e .  We h a v e  s e e n  t h a t  t h e  s t r a i n s  s o  m e a s u r e d  c o n t a i n  a  

c o m p o n e n t  d u e  t o  t h e  s t r e s s e s  i n d u c e d  a t  r i g h t  a n g l e s  t o  t h e  

a x i s  o f  t h e  b e a m . S t r i c t l y  s p e a k i n g  t h i s  c o m p o n e n t  s h o u l d  

b e  d e d u c t e d  f r o m  t h e  m e a s u r e d  s t r a i n s  b e f o r e  a p p l y i n g  t h e  

a n a l y s i s  t o  d e t e r m i n e  t h e  s t r e s s - s t r a i n  c u r v e .  I t  w o u ld  b e  

v e r y  d i f f i c u l t  t o  d o  t h i s  a n d  i n  p r a c t i c e  t h e  a n a l y s i s  m u s t  

b e  a p p l i e d  t o  t h e  u n c o r r e c t e d  r e a d i n g s .  T h i s  m e a n s  t h a t  

t h e  n e u t r a l  a x i s  w i l l  a p p e a r  t o  b e  r a t h e r  l o w  g i v i n g  a  

d e e p e r  c o m p r e s s i o n  z o n e  w h ic h  i n  t u r n  w i l l  t e n d  t o  c a u s e  

t h e  a n a l y s i s  t o  g i v e  a  l o w  v a l u e  f o r  t h e  t o p  f i b r e  s t r e s s .  

T h i s  i s  c o u n t e r a c t e d  b y  t h e  s h o r t e r  l e v e r  a rm  t e n d i n g  t o  

i n c r e a s e  t h e  s t r e s s .  I f  a  l o n g  g a u g e  l e n g t h  i s  u s e d  t h i s  

s t r e s s  w i l l  b e  r e l a t e d  t o  a  s t r a i n  w h ic h  w i l l  a l s o  b e  l o w e r  

t h a n  t h e  p e a k  v a l u e  a b o v e  t h e  c r a c k *  I t  i s  f o u n d  i n  

p r a c t i c e  t h a t  m e a s u r e m e n t  o f  t h e  s t r a i n s  b e l o w  t h e  n e u t r a l  

a x i s  d o e s  n o t  g i v e  r e s u l t s  o f  a n y  v a l u e  a n d  t h e  b o t t o m  

f i b r e /
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f i b r e  s t r a i n  l i a s  t o  b e  d e t e r m i n e d  b y  e x t r a p o l a t i o n  f r o m  t h e  

s t r a i n s  a b o v e  t h e  n e u t r a l  a x i s .  T h i s  p r o c e d u r e  w i l l  b e  

f o l l o w e d  u s i n g  t h e  s t r a i n s  c a l c u l a t e d  i n  t h e  l a s t  c h a p t e r .  

F i g u r e  3 . 2 3  s h o w s  t h e  d e p t h  o f  t h e  n e u t r a l  a x i s  p l o t t e d  

a g a i n s t  m e a s u r e d  t o p  f i b r e  s t r e s s  f o r  G =  1 0 0 0 .

rVdL

FIGURE

T h i s  d a t a  h a s  b e e n  p l o t t e d  f o r  tw o  c r a c k  s p a c i n g s  o n e  

e q u a l  t o  b e a m  d e p t h  a n d  o n e  e q u a l  t o  o n e  h a l f  b e a m  d e p t h .

I n  e a c h  c a s e  t h e  g a u g e  l e n g t h  e q u a l s  t h e  c r a c k  s p a c i n g .

I t  w i l l  b e  n o t i c e d  t h a t  t h e  tw o  c u r v e s  a r e  i n d i s t i n g u i s h a b l e  

a n d  s o  w i l l  l e a d  t o  t h e  s a m e  s t r e s s  s t r a i n  c u r v e .



-144—

On p a g e  2 1  t h e  f o l l o w i n g  r e l a t i o n s h i p  i s  g i v e n  f o r  a  

c r a c k e d  b e a m

I n  a  n o n - b o n d e d  b e a m  P  d o e s  n o t  i n c r e a s e  v e r y  m u ch  

a s  t h e  r e s u l t s  o n  p a g e s  9 & -1 0 0  sh o w  a n d  i f  i t  i s  t a k e n  t o  b e  

a  c o n s t a n t  t h e  c o n d i t i o n s  w i l l  a p p r o x i m a t e  t o  t h e s e  i n  a  

n o n - b o n d e d  b e a m . T h e  a b o v e  e q u a t i o n  t h e n  b e c o m e s

p 0 -  £ . )

U s i n g  t h i s  e q u a t i o n  a n d  t h e  d a t a  g i v e n  i n  f i g u r e  3 . 2 3  

w e c a n  c o m p u t e  t h e  s t r e s s  s t r a i n  c u r v e  w h ic h  w o u ld  b e  

d e d u c e d  f r o m  t h e  s t r a i n  r e a d i n g s  a n d  c o m p a r e  i t  w i t h  t h e  

a c t u a l  s t r e s s  s t r a i n  c u r v e .  i s  o b t a i n e d  b y  u s i n g

t h e  e q u a t i o n

e *  ■
n<K

x e c

S i n c e  ^ j ^ i s  d i m e n s i o n l e s s  i t  i s  n o t  n e c e s s a r y  t o  

c o n v e r t  t h e  m e a s u r e d  t o p  f i b r e  s t r e s s  t o  s t r a i n  i n  t h i s  

e x p r e s s i o n .  T h e  c a l c u l a t i o n  i s  c o n v e n i e n t l y  t a b u l a t e d  

a s  b e l o w .
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©c.E 250 300 350 400 450 500 550 600 650 700 750
nd 8.0 6.68 5.78 5.10 4.57 4.15 3.80 3.45 3.16 2.90 2.69
et.E 0 -59 -135 -228 -337 -464 -607 -791 -994 -1230 -1480
- c*"e'/dec 1.35 1.69 2.02 2.36 2.70 3.27 3.87 4.39 4.86 5.30
1- Aet/dec 2.35 2.69 3.02 3.36 3.70 4.27 4.87 5.39 5.86 6.30
Ic 250 294 337 378 420 463 535 610 674 732 788

The figures in the bottom line have to be compared with 
those in the top line. The latter is labelled ec but it 
is actually the stress corresponding to eC) ec being the 
measured strain in the top fibre. If the figures in this 
line were divided by E and then used as a base for the 
bottom line of figures we should get the stress strain curve 
for the material as obtained by the author’s method of 
analysis. The curve has been plotted in figure 3.24 without 
the introduction of E.

o
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I t  seems t h a t  th e  agreem ent i s  v e r y  good and t h a t  th e  

m ethod o f  a n a ly s is  w i l l  g iv e  a  f a i r  i n t e r p r e t a t i o n  o f  

s t r e s s - s t r a i n  c u rv e  d e s p ite  th e  in a c c u r a c ie s  i n  m e a s u rin g  

th e  to p  f i b r e  s t r a i n  and th e  p o s i t io n  o f  th e  n e u t r a l  a x is .

I t  ap p e a rs  t h a t  th e s e  two d is c r e p a n c ie s  ju s t  c o u n te ra c t  

each  o th e r .  fh e  lo w  n e u t r a l  a x is  r e s u l t s  i n  a  lo w  s t r e s s  

b e in g  com puted b u t  as t h i s  i s  com pared w i th  th e  lo w  s t r a i n  

r e s u l t i n g  fro m  th e  m easurem ent o f  th e  mean r a t h e r  th a n  th e  

p e a k  v a lu e  th e  r e s u l t a n t  p o in t  l i e s  v e r y  c lo s e  to  th e  p ro p e r  

s t r e s s - s t r a i n  c u rv e .

I t  seems l i k e l y  t h a t  i f  th e  a n a ly s is  w ere  ex ten ded  in t o  

th e  p l a s t i c  ra n g e  th e  d is c re p a n c y  w o u ld  w o rsen .

I t  i s  i n t e r e s t i n g  to  compare th e  com puted to p  f i b r e  

s t r e s s  i n  f ig u r e  3 .2 4  w i t h  th e  a c t u a l  p e a k  s t r e s s  above a  

c r a c k . T h is  i s  done i n  f ig u r e  3 -2 5 .  A l l  q u a n t i t ie s  a re  

p l o t t e d  to  th e  b a s e  ecxE  i . e *  th e  m easured s t r a i n  xE .

F o r th e  s m a l le r  c ra c k  s p a c in g  (one  h a l f  beam d e p th )  

th e  d is c r e p a n c ie s  a re  v e ry  s m a l l ,  and i t  i s  f a i r  to  say  

t h a t  th e  m easured to p  f i b r e  s t r a i n  i s  a  f a i r  m easure o f  th e  

p e a k  to p  f i b r e  s t r a i n .

F u rth e rm o re  th e  a u th o r 's  a n a ly s is  a ls o  g iv e s  re a s o n a b le  

ag reem en t w i t h  th e  a c t u a l  s t r e s s .
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ST<Uss

W ith  t i ie  w id e r  c ra c k  s p a c in g  (c  =  d )  ag reem en t i s  n o t  

so good e s p e c ia l ly  w here th e  c ra c k s  "become d eep . P ro v id e d  

t h a t  th e  c ra c k s  do n o t  e x te n d  beyond one h a l f  beam d e p th  

t h e r e  i s  l i t t l e  v a r i a t i o n  b e tw e e n  th e  m easu red , computed and 

a c t u a l  s t re s s e s  ag reem en t i s  s t i l l  re a s o n a b le  when th e  

c ra c k s  e x te n d  to  %  beam d e p th  b u t beyond t h a t  a c c u ra c y  w i l l  

be p o o r .
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We have a lr e a d y  seen t h a t  i n  non-bonded beams th e  

c ra c k  s p a c in g  i s  l i k e l y  to  be a p p ro x im a te ly  e q u a l to  th e  

beam d e p th  and th e  g e n e ra l c o n c lu s io n  to  be draw n fro m  th e  

above i s  t h a t  th e  a u th o r 's  a n a ly s is  cannot be e x p e c te d  to  

g iv e  a  v e r y  p r e c is e  s t r e s s  s t r a i n  c u rv e  once th e  c ra c k s  

e x te n d  m ore th a n  h a l f -w a y  up th e  beam. M a t te r s  a r e  

c o m p lic a te d  b ecau se  o f  th e  te n d e n c y  f o r  th e  c ra c k s  to  f o r k .

I f  t h i s  happens i t  i s  v e r y  d i f f i c u l t  to  assess  th e  a c c u ra c y  

o f  th e  deduced s t r e s s - s t r a i n  c u rv e  and i t  c a n n o t be assumed 

t h a t  th e  r e s u l t  i s  m ore th a n  a  ro u g h  a p p ro x im a tio n .

W ith  bonded beams th e  c ra c k s  a re  much m ore c lo s e ly  

spaced and i t  seems t h a t  th e  a u t h o r 's  a n a ly s is  w i l l  g iv e  f a i r  

r e s u l t s  how ever deep th e  c ra c k s  becom e.

*■
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PART I V  THE DISTRIBUTIO N OP STRESS IN  A CUBE 
WHEN COMPRESSED BETWEEN R IG ID  ROUGH 
PLATES.

C h a p te r  I  INTRODUCTION.

I t  i s  w e l l  known t h a t  th e  s t r e n g th  o f  c o n c re te  depends  

v e r y  much on th e  shape o f  th e  specim en t e s t e d .  The  

Handbook on th e  B .S . Code o f  P r a c t ic e  f o r  R e in fo rc e d  C o n c re te  

(CP 114) l o r  in s ta n c e  p o in ts  o u t t h a t  th e  c o n c re te  s t r e n g th  

r e a l i s e d  i n  colum ns i s  a b o u t t w o - t h i r d s  o f  t h a t  o b ta in e d  

b y  c ru s h in g  a  6" cube o f  th e  same ty p e  o f  c o n c re te .

Mr. C.S. Whitney gives the ratio of column to cylinder 
(i.e. 12'* x 6,f dia.) strength as 0.85 (6). This variation 
in strength is due to varied degrees of end restraint.
I n  a  colum n w i t h  no b in d in g  r e in fo r c e m e n t  th e  l a t e r a l  

e x p a n s io n  o f  th e  c o n c re te  i s  u n r e s t r a in e d  w h i ls t  i n  cube 

and c y l in d e r  t e s t s  l a t e r a l  r e s t r a i n t  i s  e f f e c t e d  b y  f r i c t i o n  

b e tw e e n  th e  specim en and th e  p la t e s  b e tw een  w h ic h  i t  i s  

com pressed. T h is  l a t e r a l  s u p p o r t  e n a b le s  th e  c o n c re te  to  

s u s ta in  a  g r e a t e r  s t r e s s  th a n  i s  p o s s ib le  i n  th e  u n s u p p o rte d  

c a s e . The r e s t r a in i n g  e f f e c t  i s  g r e a t e r  w i t h  th e  cube th a n  

w i t h  th e  c y l in d e r  because o f  th e  d e c re a s e d  h e ig h t  to  b r e a d th  

r a t i o .

The a im  o f  th e  w o rk  i n  th e  f o l lo w in g  pages i s  to  

d e te rm in e  th e  n a tu r e  o f  th e  s tre s s e s  s e t  up by t h i s  f r i c t i o n a l  

r e s t r a i n t /
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r e s t r a i n t  and  to  a t te m p t  to  as se s s  th e  v a lu e  o f  th e  s t r e s s  

s t r a i n  c u rv e s  o b ta in e d  i n  1 s im p le 1 com press ion  t e s t s .

The a n a ly s is  i s  c o n f in e d  to  c o n s id e r a t io n  o f  th e  e l a s t i c  

b e h a v io u r  o f  th e  m a t e r ia l .  Any c o n c lu s io n s  draw n fro m  t h i s  

w o rk  as to  th e  p l a s t i c  b e h a v io u r  o f  t e s t  specim ens will 
t h e r e f o r e  be somewhat t e n t a t i v e .  T h is  r e s t r i c t i o n  i s  

irk s o m e  b u t  as  y e t  u n a v o id a b le  as p r e s e n t -d a y  m ethods o f  

a n a ly s is  a r e  in a d e q u a te  f o r  e x te n d in g  th e  in v e s t ig a t io n  in t o  

th e  p l a s t i c  ra n g e . I t  w i l l  be seen  t h a t  even  w i t h  e l a s t i c  

b e h a v io u r  th e  a n a ly s is  i s  v e r y  com plex .

HISTORICAL REFERENCES.

The p ro b le m  o f  d e te r m in in g  th e  d i s t r i b u t i o n  o f  th e  

s t r e s s  i n  a  c i r c u l a r  c y l in d e r  com pressed b e tw een  r i g i d  ro u g h  

p la t e s  was a t ta c k e d  by F i lo n  i n  1 9 0 2  ( 2 2 ) .  The g e n e r a l  

s o lu t io n  i s  g iv e n  f o r  th e  s t r e s s  d i s t r i b u t i o n  i n  a  c i r c u l a r  

c y l in d e r  s u b je c t  to  th e  f o l lo w in g  b o u n d ary  c o n d i t io n s : -

( i )  The t o t a l  fo r c e  o v e r  th e  p la n e  ends i s  K 'a ^ Q , th e  

a c t u a l  d i s t r i b u t i o n  o f  n o rm a l p re s s u re  b e in g  unknown.

( i i )  The ends a re  c o n s tr a in e d  to  re m a in  p la n e .

( i i i )  The ends do n o t  expand a lo n g  th e  p e r im e te r .  T h is  

c o n d it io n  i s  s a t i s f i e d  by a l lo w in g  a s h e a r  s t r e s s  

o f  unknown d i s t r i b u t i o n  o v e r  th e  p la n e  ends.



- 1 5 1 -

O f th e s e  c o n d it io n s  o n ly  ( i i i )  c a l l s  f o r  comment.

T h is  a s su m p tio n  im p l ie s  t h a t  a lth o u g h  no o v e r a l l  e x p a n s io n  

i s  p e r m it te d  a t  th e  ends s l i p  i s  p e r m it te d  p ro v id e d  t h a t  

i t  does n o t  o c c u r a t  th e  p e r im e te r .  The i d e a l  s o lu t io n  

w o u ld  he o b ta in e d  i f  no) s l i p  a t  a l l  w ere  p e r m it te d .  F i lo n  

r e g a r d s  th e  p o s s i b i l i t y  o f  a t t a i n i n g  t h i s  end i n  th e  f o l lo w in g  

w o r d s : -  ‘’The a n a l y t i c a l  c o m p le x ity  o f  such a  c o m p le te  

s o lu t io n  w o u ld  be v e r y  g r e a t  and w ould  re n d e r  i t  q u i t e  

beyond th e  r e a c h  o f  a r i t h m e t ic a l  e x p r e s s io n , and c o n s e q u e n tly  

v a lu e le s s  f o r  th e  p u rp o s e s  o f  th e  e n g in e e r  and p h y s ic i s t ” .

T h is  was w r i t t e n  b e fo r e  th e  a d v e n t o f  e le c t r o n ic  com puters  

and F i l o n ’ s p e s s im is m  may no lo n g e r  be j u s t i f i e d .  How ever, 

as we s h a l l  see m o d em  m ethods o f  a t t a c k  w h ic h  c o n c e n tra te  

on o b ta in in g  a  n u m e r ic a l s o lu t io n  to  a  p a r t i c u l a r  p ro b le m  

e n a b le  F i l o n 's  d i f f i c u l t y  to  be  a v o id e d . F i lo n  e v a lu a te s  

h is  g e n e r a l  s o lu t io n  f o r  th e  case  w here  th e  r a t i o  o f  th e  

h e ig h t  to  d ia m e te r  i s  ■>~h  and P o is s o n ’ s r a t i o  i s

The same p ro b le m  has  been in v e s t ig a t e d  by  Edelm an  

(23) u s in g  an a p p ro x im a te  m ethod d e v e lo p e d  by P r a g e r  and  

Synge (24). T h is  m ethod e n a b le s  Edelm an to  assume co m p le te  

f i x i t y  a t  th e  ends b u t  as th e  s o lu t io n  i s  an a p p ro x im a te  

one i t  i s  n o t  p o s s ib le  to  say  w ith o u t  s u p p le m e n ta ry  e v id e n c e  

w h e th e r  o r  n o t  i t  g iv e s  a  b e t t e r  p ic t u r e  th a n  F i l o n 's

s o lu t io n .
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Edelm an* s a n a ly s is  i s  f o r  a  c y l in d e r  o f  f re ig h t  e q u a l to  

i t s  d ia m e te r  and o f  a  m a t e r ia l  h a v in g  a  P o is s o n * s r a t i o  

O f 1 / 3 .  The s t r e s s  d i s t r i b u t i o n  w h ich  he o b ta in s  i s  n o t  

p u b lis h e d .

R e c e n t ly  a s o lu t io n  has been foun d  f o r  a  c y l in d e r  o f  

h e ig h t  to  d ia m e te r  r a t i o  o f  u n i t y  and P o iss o n * s r a t i o  o f  J  

b y  use o f  r e la x a t i o n  m ethods ( 2 5 ) .  The a u th o r  (M a rk la n d )  

r e f e r s  to  two o th e r  p a p e rs  by P ic k e t t  ( 2 6 )  and d *A p p o lo n ia  

and Rewmark ( 2 7 ) .  M a rk la n d  a d e q u a te ly  sums up th e s e  

two p a p e rs  as fo l lo w s

“P i c k e t t  a d o p ts  F o u r ie r -B e s s e l  s e r ie s  exp an s io n s  

f o r  vl and w and u ses  th e  b o u n d ary  c o n d it io n s  to  o b ta in  th e  

c o e f f i c i e n t s  i n  th e  s e r ie s .  Two s e ts  o f  c o e f f i c ie n t s  a re  

in v o lv e d ,  and th e  e x p re s s io n  f o r  a  s in g le  c o e f f i c i e n t  o f  

one s e r ie s  in v o lv e s  a l l  th e  c o e f f ic ie n t s  o f  th e  o th e r ,  so 

t h a t  th e  s e r ie s  a re  te r m in a te d  a t  th e  f o u r t h  te rm s  i n  o rd e r  

to  c a lc u la t e  n u m e r ic a l r e s u l t s .  A t th e  p la n e  ends th e  

e x p re s s io n s  f o r  s t r e s s e s  a r e  fo u n d  to  co n verg e  v e ry  s lo w ly ,  

and a lth o u g h  m ethods a p p r o p r ia te  to  s lo w ly  c o n v e rg in g  

o s c i l l a t i n g  s e r ie s  w ere  u s e d , th e r e  i s  some d o u b t as to  

th e  d i s t r i b u t i o n  o f  s t r e s s  o v e r th e  ends.

D *A p p o lo n ia  and Rewmark h ave  used a l a t t i c e  a n a lo g y ,  

i n  w h ic h  th e  c y l in d e r  i s  r e p la c e d  by  a l a t t i c e  o f  e l a s t i c  

b a r s /
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b a rs  o f  c e r t a i n  p r o p e r t ie s .  C o n s id e ra t io n  o f  th e  

e q u i l ib r iu m  o f  e v e ry  node o f  th e  l a t t i c e  u n d er th e  a c t io n  

o f  b a r  fo r c e s  and o f  e x tre m e ly  a p p l ie d  lo a d s  lo a d  to  a  

s u f f i c i e n t  number o f  s im u lta n e o u s  l i n e a r  e q u a tio n s  f o r  th e  

com ponents o f  d is p la c e m e n t a t  each node to  be c a lc u la t e d ” .

The a u th o r  has used th e . P ra g e r-S y n g e  te c h n iq u e  to  a t t a c k  

th e  p ro b le m  o f  d e te r m in in g  th e  s t r e s s  d i s t r i b u t i o n  i n  a cube 

( 2 8 ) .  I n  th e  p u b lis h e d  p a p e r  th e  a u th o r  g iv e s  P o isso n * s 

r a t i o  th e  v a lu e  l / 3 .  T h is  v a lu e  was chosen i n  o rd e r  t h a t  

th e  s o lu t io n  m ig h t be com pared w i t h  E d e lm a n 's  ( th e  a u th o r  

was n o t  th e n  aw are  o f  P i c k e t t 's  p a p e r  and M a rk la n d 's  p a p e r  

h ad  s t i l l  to  be w r i t t e n ) .  1 /3  i s ,  h o w ever, to o  h ig h  f o r  

c o n c re te  and th e  a n a ly s is  has been r e p e a te d  f o r  P o is s o n 's  

r a t i o  o f  -J- and l / 6 .  I n  th e  w ork to  f o l lo w  a  d e t a i le d  

c o m p ress io n  i s  made b e tw e e n  P i lo n 's  s o lu t io n ,  M a rk la n d 's  

and th e  a u t h o r 's  due a t t e n t io n  b e in g  g iv e n  to  th e  f a c t  

t h a t  th e  l a t t e r  i s  f o r  a  cube w h i ls t  th e  o th e r  two a re  f o r  

a  c y l in d e r .

As f a r  as he i s  aw are th e  a u th o r  a lo n e  has p u b lis h e d  

a  s o lu t io n  f o r  th e  cube p ro b le m  a lth o u g h  th e r e  a r e  s o lu t io n s  

to  two a l l i e d  p ro b le m s . A . and L . P o p p l (2 9 )  have  

c o n s id e re d  th e  case  o f  a s q u a re —p r is m  com pressed a t  th e  

ends w h ic h  a re  ta k e n  to  be s u f f i c i e n t l y  f a r  a p a r t  to  e n a b le  

th e m /
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them  to  be c o n s id e re d  s e p a r a te ly  i . e .  f r i c t i o n  a t  one end 

i s  c o n s id e re d  to  have no e f f e c t  a t  th e  o th e r  end. One 

w o uld  c l e a r l y  he u n j u s t i f i e d  i n  u s in g  t h i s  m ethod f o r  a  

c u b ic  specim en i n  w h ich  th e  h e ig h t  e q u a ls  th e  b r e a d th .

The a l l i e d  p ro b le m  o f  an i n f i n i t e  b a r  o f  sq u are  c ro ss  

s e c t io n  com pressed th ro u g h  a p a i r  o f  l a t e r a l  fa c e s  b etw een  

r i g i d  ro u g h  p la t e s  has b e e n  s o lv e d  b y  G reen b erg  and T r u e l l
3o
(29). Here the Prager-Synge method was used with Poisson* s 
ratio equal to 1/3.
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I V  C h a p te r  2 . THE D ISTR IB U TIO N  OP STRESS IN  AN
ELASTIC CUBE COMPRESSED BETWEEN H IG H ) 
ROUGH PLATES.

The a u th o r  has a lr e a d y  p u b lis h e d  a s o lu t io n  o f  t h is  

p ro b le m  and a copy o f  t h i s  p a p e r  i s  g iv e n  b e lo w . The 

m ethod i s  one o f  s u c c e s s iv e  a p p ro x im a tio n  e m p lo y in g  two  

b a s ic  th e o re m s , one th e  th eo rem  o f  minimum s t r a i n  e n erg y  

and th e  o th e r  a  com plem entary  theorem  o f  maximum s t r a i n  

e n e rg y .

The fu n d a m e n ta l q u a n t i t y  c a lc u la te d  i s  th e  s t r a i n  

e n e rg y  o f  th e  body. I f  a  s t r e s s  system  can  be fo u n d  w hich  

s a t i s f i e s  a l l  th e  f o l lo w in g

( 1 )  th e  e q u i l ib r iu m  e q u a tio n s

( 2 )  th e  c o m p a ta b i l i t y  e q u a tio n s

( 3 )  th e  bo undary  c o n d it io n s  on s t r e s s

( 4 )  th e  b o undary  c o n d it io n s  on d is p la c e m e n t

th e n  th e  s o lu t io n  w i l l  be e x a c t and th e  t r u e  v a lu e  o f  th e  

s t r a i n  e n e rg y  i s  fo u n d . I f ,  b ecause o f  th e  c o m p le x ity  o f  

th e  p ro b le m  such a  s o lu t io n  can n o t be fo u n d  th e n  we have  

to  be c o n te n t  w i th  one w h ic h  s a t i s f i e s  o n ly  some o f  th e s e  

c o n d it io n s .  P o r exam ple i n  th e  cube p ro b le m  we can  ig n o re  

( 1 )  and ( 3 )  above and s e le c t  a  s t r e s s  s t r a i n  system  w h ich  

s a t i s f i e s  ( 2 )  and ( 4 ) .  The th eo rem  o f  minimum s t r a i n  

e n e rg y  t e l l s  us t h a t  th e  s t r a i n  e n e rg y  o f  t h i s  s t r e s s  system  

w i l l  be i n  excess  o f  th e  t r u e  v a lu e .
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I t  i s  a  f a i r l y  s im p le  m a t te r  to  s e le c t  a  number o f  s t r e s s  

system s which, w i l l  s a t i s f y  th e  s im p l i f ie d  p ro b le m . The 

P ra g e r-S y n g e  m ethod com bines any number o f  th e s e  s im p le  

system s so t h a t  th e y  a re  used to  th e  g r e a te s t  a d v a n ta g e , 

t h a t  i s  so t h a t  th e  s t r a i n  en erg y  o f  th e  com bined system  

has i t s  lo w e s t  p o s s ib le  v a lu e .  By a d d in g  f u r t h e r  system s  

th e  s t r a i n  e n e rg y  i s  re d u c e d  so t h a t  ap p ro ach es  th e  t r u e  

s t r a i n  e n e rg y .

The maximum s t r a i n  en erg y  th eo rem  i s  a p p l ie d  s i m i l a r ly  

e x c e p t t h a t  w i th  s u c c e s s iv e  a p p ro x im a tio n  th e  s t r a i n  en erg y  

ap p ro ach es  th e  t r u e  s t r a i n  e n erg y  fro m  b e lo w .

I n  t h i s  way i t  i s  p o s s ib le  to  b r a c k e t  th e  t r u e  s t r a i n  

e n e rg y  betw een  u p p e r  and lo w e r  l i m i t s .  The c lo s e r  t h a t  

th e s e  a r e ,  th e  m ore e x a c t i s  th e  s o lu t io n .  U l t im a t e ly  th e  

s t r a i n  e n e rg y  o f  th e  body can be s ta te d  as th e  mean o f  th e  

two l i m i t s  p lu s  o r  m inus one h a l f  th e  d i f f e r e n c e  exp ressed  

as a  p e r c e n ta g e . U n fo r tu n a te ly  t h i s  does n o t  mean t h a t  th e  

s tr e s s e s  o r  th e  d is p la c e m e n ts  a re  c a lc u la te d  to  th e  same 

a c c u ra c y .

The m ethod o f  s o lu t io n  i s  g iv e n  i n  th e  p r in t e d  p a p e r  

f o r  a  p r o o f  o f  w h ic h  th e  r e a d e r  i s  r e f e r r e d  to  th e  o r ig in a l  

p a p e rs  by P ra g e r  and Synge. A b r i e f  resum e o f  th e  

c a lc u la t io n s  i s  g iv e n  i n  th e  A p p en d ix .
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NUMERICAL RESULTS

The p r in t e d  s o lu t io n  i s  n o t c o r r e c t .  An a r i t h m e t ic a l  

e r r o r  was made i n  c a lc u la t in g  th e  u p p e r l i m i t .  The 

a p p r o p r ia te  f ig u r e s  h ave  been a l t e r e d  i n  th e  o r ig in a l  p a p e r  

and c o r r e c te d  ones a r e  g iv e n  b e lo w .

The e r r o r  was an u n fo r tu n a te  one i n  t h a t  i t  sug g ested  

th e  s o lu t io n  to  be v e r y  much b e t t e r  th a n  i t  i s .  One o f  

th e  draw backs o f  th e  P ra g e r-S y n g e  m ethod l i e s  i n  th e  f a c t  

t h a t  th e r e  i s  g r e a t  d i f f i c u l t y  i n  c h e c k in g  th e  r e s u l t s  when 

a n  is o la t e d  exam ple i s  c o n s id e re d . As H a r t r e e  has p o in te d  

o u t r e c e n t ly :  "One k in d  o f  'c h e c k ' i s  so in a d e q u a te  as to

be a lm o s t w o r th le s s ,  n a m e ly , r e p e t i t i o n  o f  a  c a lc u la t io n  

b y  th e  same in d iv id u a l  t h a t  d id  i t  o r i g i n a l l y .  I t  i s  much 

to o  easy to  make th e  same m is ta k e  tw ic e  . . . " .  (3 1 )  

U n fo r t u n a t e ly  t h i s  seems to  be th e  o n ly  p o s s ib le  ch eck  on 

th e  e v a lu a t io n  o f  th e  s c a la r  p ro d u c ts  S^.S^*. The o r ig in a l  

e r r o r  was d is c o v e re d  o n ly  when new c a lc u la t io n s  w ere made 

f o r  a  d i f f e r e n t  v a lu e  o f  P o is s o n 's  r a t i o ,  i t  was th e n  

p o s s ib le  to  e f f e c t  a  m o d e ra te ly  in d e p e n d e n t c ro s s -c h e c k .

THE APPARENT YOUNG* S MODULUS

One e f f e c t  o f  th e  f r i c t i o n a l  r e s t r a i n t  o f  th e  lo a d in g  

p la t e s  i s  to  in c r e a s e  th e  v a lu e  o f  Y o u n g 's  m odulus computed  

b y  d iv id in g  th e  a v e ra g e  co m p ress ive  s t r e s s  by th e  o v e r a l l  

lo n g i t u d in a l  s t r a i n .
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The r a t i o  o f  th e  a p p a re n t to  th e  t r u e  Young1 s m odulus is  

g iv e n  f o r  v a r y in g  P o is s o n 's  r a t i o  i n  th e  t a b le  b e lo w .

P o is s o n 's  R a t io T ru e  Young1 s M odu lus

A p p a re n t M odulus

1/3 92.9$ ± 1.5$
1/4 96.1$ + 0.7$
1/6 98.3$ + 0.3$

100$.

The above f ig u r e s  show t h a t  f r i c t i o n a l  r e s t r a i n t  has  

l i t t l e  e f f e c t  upon th e  o v e r a l l  s t r a i n  o f  a  cu b e . T h is  

does n o t mean t h a t  th e  s t r e s s  d i s t r i b u t i o n  i s  m o d if ie d  

o n ly  to  a  s m a ll d e g re e  as th e  w ork to  f o l lo w  shows. One 

c o n c lu s io n  o f  m o d era te  im p o rta n c e  can  how ever be deduced  

fro m  th e  above f ig u r e s .  I t  i s  t h a t  f o r  m ost p r a c t i c a l  

p u rp o s e s  th e  s t r e s s  s t r a i n  c u rv e  can be d e r iv e d  by  s im p le  

o v e r a l l  movement o f  th e  p la t e s  o f  th e  t e s t i n g  m ach ine  and  

t h a t  th e r e  i s  l i t t l e  p o in t  i n  a t ta c h in g  s t r a i n  gauge to  th e  

s u r fa c e  o f  a cube,

PRICTIQ N STRESSES A !  ENDS

The s e t  o f  s t r e s s e s  w h ich  f i r s t  c la im  th e  i n t e r e s t  

a r e  th o s e  a t  th e  ends. H ere  th e  l o c a l  s h e a r  ( f r i c t i o n )  

s t r e s s  m ust be le s s  th a n  th e  l o c a l  c o m p re ss ive  (p z z ) s t r e s s  

m u l t i p l i e d  b y  th e  c o e f f i c i e n t  o f  f r i c t i o n  o r  th e r e  w i l l  be 

s l i p .



ON TH E COMPRESSION OF A CUBE BETWEEN 
R IG ID  ROUGH PLATES

B y  J. M. PRENTIS (Imperial College, L o n d o n )
[Received 13 March 1951]

S U M M A R Y
The problem is to determine approximately the mode of deformation of a cube 

of elastic material compressed between rigid plates sufficiently rough to prevent any 
relative movement between the plates and the ends of the specimen. A  method of 
solving this type of problem has been given by Prager and Synge (1) and is applied 
here to determine the relationship between the true Young’s modulus and the 
apparent modulus obtained by a test of the type described above. As two other 
papers have recently been published (2, 3) applying the same method to similar 
problems, the work is given in outline only.
1. Introduction
T h e  method of analysis evolved by Prager and Synge for the approximate 
solution of elastic boundary solution problems requires the selection of 
a number of comparatively simple stress states which, in the aggregate, 
approximate to the natural stress conditions. The method of selecting the 
artificial states separates them into two classes, called the associated and 
the complementary. In one class the restrictions imposed by the equili
brium equations and the boundary conditions on stress are relaxed, whilst 
in the other class the compatibility equations and the imposed boundary 
conditions on displacements are ignored. Consideration of these two 
classes enables upper and lower bounds to be placed upon the total strain 
energy of the body. If a sufficient number of approximate states are taken 
in each class these bounds can be narrowed, allowing the total strain 
energy to be calculated to any desired degree of accuracy.
2. Following the method used by Edelman (3), the problem P0 (see 

Fig. 1 for details) may be resolved into two components. We shall con
sider P c in which the cube is subjected to a uni-axial compression, the 
lateral expansion being unrestricted, and P  such that P A r P c =  P0.
3. Symmetry allows us to confine our attention to one-eighth of the 

body, 0 ̂  x, y  ̂  6, and 0 ̂  z ̂  h, b and h being the breadth and height 
of the specimen, respectively.
The boundary conditions of P are:

u x(0,y,z) =  0 u x(x,y,z =  h) =  — o a x  \

u y(x,0,z) =  0 u y(x,y,z =  h) =  — o a y > for displacements, (1)
u z{x, y, 0) =  0 n a{x, y,z =  h) =  0 j

[Quart. Journ. Mech. and Applied Math., Vol. V, Pt. 2 (1952)]
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a being Poisson’s ratio, and

Pxy> Pxz =  0 for X b or

Pxy, Pyz =  0 for y =  b or 0
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4. This is a displacement boundary condition problem and for its 
solution Prager and Synge require a series of states:

(a) The completely associated state S*, the deformations of which must 
satisfy equations (1) and the strains must satisfy the compatibility
equations, (3)2ci j ,

where u itj stands for 8 u i/duj.
(b) A sequence of states Ŝ , S'2,..., S^, called the homogeneous associated 

states which must also satisfy equations (3) whilst the u' are required 
to vanish wherever they are prescribed on the boundary by equa
tions (1).

(c) A sequence of states SJ, S2,..., S", called the complementary states 
selected to satisfy equations (2) and the equilibrium equations,

Pij,i = 0. (4)
Except that they must satisfy the required conditions given above, the 

states are all quite arbitrary.
5. Defining the scalar product of two states as

(S.S') =  J e^p'ijdv,
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O N  COMPRESSION OF A  CUBE B E T W E E N  RIGID R O U G H  PLATES 25# 
Prager and Synge show that

n m2 (s*. ra)2 < s 2 < (s*. s*)- 2 (s*. i;)2, (5)
q = 1 p = 1

where I' (and I") are orthonormal sequences =  cr SJ. and the cr are
r  =  1chosen to satisfy the conditions,

(i;.i;) = ssr,
hqr being the Kronecker delta, and where S 2 —  (S. S) =  2 x the total 
strain energy of the state P.
6. Selection of the states
It is necessary to specify Poisson’s ratio and the relative dimensions of 

the specimen. We have taken cr =  ̂  and b =  h =  1.
The associated states selected are given in Table I, where for convenience 

in computation E  and a are temporarily put equal to unity. The strains
T a b l e  I

T h e  associated states

ux Uy uz
Si 0 0 — z(l —z4)S' —xz2( 1 —z4) -i/z2(l-z4) 0
S'9 0 0 -z(l—z4)(x + y)S' —a;2z2(l —z4) —  i / 2Z 2 ( 1 —z 4 ) 0
S'5 0 0 — z(l — z4)(a;2 + !/2)
s* —xz4/3 —yzi! 3 0

corresponding to each state are obtained from equations (3) and the 
stresses from v . . =  s.(e 4-e 4-e IS 4 - H

l J i ]  $AK' x x \ K' y y \ ' :/zz)u %i\ 4c' i j ’

The complementary states are most easily selected by use of Maxwell’s 
stress functions ijji (i =  x, y, z), the stresses being obtained from these
functions as follows: „„ , .

, d lPz 8z2 dy2Pa etc.,

and 82ifj

d x d y’ etc.
Thus defined, the stresses automatically satisfy the equilibrium equations. 
The only restrictions placed on the choice of the j/r’s is that equations (2) 
must be satisfied. The strains are obtained from the stresses by using

tPij %(Pocx~̂ Pyy~{~Pzz)̂ ij’
In selecting the complementary states, deformations are not considered, 
so that the compatibility equations are not, in general satisfied, and
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no corresponding displacements exist. The functions used are given in 
Table II.

T a b l e  II
T h e  complementary states

'Aa- 'Pv '/'z
S" U4(l-2/2)2 pj4(l — X2)2 0
S" -y2l 4 — X2/4: 0
s; -yll 1 2 -xi/12 0
S4 0 0 — J(1 —x2)2(l —2/2)2(l —z4)

7. Computation of the apparent E
Using the selected functions it is found that

4
J  (S* . I ")2 =  0-060697a2̂  =  L, say

3 =  1
5 0 * 0 9 3 0 3 9

and (S*.S*)— (S*. I^)2 =  W Q a 2E  =  U, say.
p=i

The strain energies of P c and P  may be superimposed by simple addition 
so that S 2 =  S 2-\-S2. It is easily seen that =  \ F a  and that 8 2 =  a 2E. 
Substitution in equation (5) gives

L-\-a2E  ̂  SI ̂  TJ-\-a2E.
Putting JF , the average stress, equal to/ and, since A =  1, a (== a/h) =  e, 

the mean e„„, we obtain _ _ _ __
0-94278fie >  E  >  9-04070//g, . _0*9m m l  _or, averaging, E  =  0 04& r § f/e with a maximum possible error of di®1*

per cent. 92*3
Thus, in a test of this type the true Young’s modulus is •94 %  per cent, 

of the apparent modulus as given by the overall relative movement of the 
plates.
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The distribution of the resultant shear stress and of 
the direct stress are shown in figure 4.2 for a Poisson1 s 
ratio of 0.25. It can be seen that the tendency to slip 
is greatest along the diagonal of the quadrant shown.
The necessary values for the coefficient of friction are 
tabulated below.

COEFFICIENT OF 
DIAGONAL.

FRICTIO N NEEDED TO PRESENT SLIP

-  / P x z 2 *  P yz 2 / p z z

cr x=y= 0 0.2 0.4 0.6 0.8 1.0

1/3 0 0.217 0.343 0.344 0.220 0

o>

0.152 0.251 0.256 0.169 0
1/6 0 ; 0.095 0.159 0.170 0.116 0

As a  ro u g h  a p p ro x im a tio n  i t  can b e  s a id  t h a t  th e  

c o e f f i c i e n t  o f  f r i c t i o n  needed i s  a p p ro x im a te ly  e q u a l to  

th e  v a lu e  o f  P o is s o n 's  r a t i o .  The a u th o r  has c a r r ie d  o u t  

some s im p le  t e s t s  to  d e te rm in e  th e  v a lu e  o f  th e  c o e f f i c i e n t  

o f  f r i c t i o n  f o r  c o n c re te  on s t e e l .  fre ig h ts  w ere  p i l e d  on  

to  th e  to p  o f  a  c o n c re te  cube s ta n d in g  on a  s t e e l  p l a t e  and 

th e  l a t e r a l  fo r c e  n e c e s s a ry  to  move th e  cube was d e te rm in e d  

b y  means o f  a  s p r in g  b a la n c e .

The results of these tests are given in figure 4.3*

The c o e f f i c i e n t  o f  f r i c t i o n  f o r  c o n c re te  on s t e e l  i s  seen  

to  v a r y  b e tw e e n  0.36 and 0.79.
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These results were obtained for a very low contact pressure 
but there seems to be no reason why the coefficients should 
not apply to the higher stresses encountered in a practical 
cube test. It seems likely that the coefficient at higher 
contact pressures will be increased for it was found that 
grit particles between the forces in contact lowered the 
friction force. The cube tended to roll over these particles 
With greatly increased contact pressure such particles would 
become embedded in the surface of the cube or plate tending 
to increase the friction force.

The tests lead to the conclusion that there is little 
liklihood of slip for even a very high Poisson's ratio.

This observation is true provided that the stress 
distribution derived by the above analysis is reasonably 
correct. This point is dealt with in more detail later 
in the chapter.

Figure 4.2 shows that the stress functions assumed 
lead to a distribution of pzz such that it is proportional 
to the radial distance from the axis of the cube. The 
maximum stress is accordingly at the outer corner. The 
effect of varying Poisson's ratio is seen frpm the results 
plotted in figure 4.4.
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STRESSES ON PLATE y = 0. The ixial Plane.

The stress distribution on the central plane parallel 
to the load is of interest because it provides a fairly 
complete picture of the effects of frictional restraint.

Figure 4*5 shows the distribution of the maximum 
principle stress parallel to the plane, this stress is 
everywhere compressive as is the minor principal stress.
It is interesting to observe that at the ends the largest 
stress occurs at the outer surfaces of the cube whilst the 
reverse is true on the central plane, z = 0. The 
variations from the average value of unity are nowhere very 
large, the greatest increase in stress being a little over 
5^. The last value of the stress occurs at the central 
point of the end plane.

The corresponding distribution published by Filon is 
reproduced for comparison. A humber of points must be 
borne in mind in comparing the two figures: Firstly,
Filon's solution is for a cylinder whilst the author*s is 
for a cube: Secondly, Filon has solved precisely the case
for a cylinder which is prevented from lateral movement 
at the outer surface on the plane ends, whilst the author's 
solution is an approximate one for a cube which is prevented 
from moving laterally all over the end planes.
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DISTRIBUTION of MAXIMUM PRINCIPAL S T R E S S  o n  an 

A X I A L  P L A N E  o f  a  C Y L I N D E R  a n d  A  C U B E .

AVERAGE |p2 i = | P O I S S O N 'S  RATIO 0.2.5

C Y L I N D E R  -  F I L O N ' s  S O L U T I O N .

C U B E  -  A U T H O R ' S  S O L U T I O N
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D e s p ite  th e s e  r e s e r v a t io n s  th e  two s e ts  o f  c u rv e s  a re  

s t r i k i n g l y  s i m i l a r ,  The m a in  d i f f e r e n c e  i s  t h a t  i n  P i lo n f s 

s o lu t io n  th e  v a r ia t io n s  a re  more p ro n o u n ced . T h is  i s  to  b e  

e x p e c te d  because th e  r a t i o  o f  c ro s s  s e c t io n a l  a r e a  o f  cube 

to  i t s  le n g t h  i s  g r e a t e r  th a n  i t  i s  f o r  a  c y l in d e r .  As 

t h i s  r a t i o  i s  in c r e a s e d  th e  s t r e s s  a t  th e  c e n t r a l  p o in t  on  

th e  u p p e r s u r fa c e  w i l l  a p p ro a c h  u n i t y ,  th e  v a lu e  i t  w i l l  have  

i f  th e  l a t e r a l  d im e n s io n s  a re  made la r g e  com pared w ith  th e  

le n g t h .

In using relaxation methods to solve the problem of 
the cylinder (25) Markland is able to consider lateral 
restraint to be effected over the whole of the plane ends.
I n  th e  t a b le s  b e lo w  a l l  th r e e  s o lu t io n s  a r e  com pared.

p r r  ( C y l in d e r )  o r  p x x  (C u b e ).

£ r=x=0 1/6
.

1/3
. ...
i 2/3 5/6 : 11.0 i

. i
1.0 ! s 0.897 0.659 0.100 1 1I 0 i!M 0.302 0.301 0.300 0 ,.302 0.310 0.341 j 0.477 j

1 A1 0.358 0.338 0.283 0- 201 0.111
_______j 0.033 ; 0 !- ~i

2/3 1 F 0.253 0.205 0.092 0 !
i M 0.134 0.127 0.112 0 ,.094 0.058 0.007 0 !
! A 0.173 0.163 | 0.136 0,.097 0.053.......... - - - i

0.016 ’
. .l 0 !

1/3 i F 0.051 10.042 0.176 1
i 0 1! M 0.034 0.034 ! 0.029 0,,018 0.008 0.002 ; 0 i

i Ai ... 0.056 0.053 | 0.044 o,.031 0.017 0.005 j 0 !
6 ! 3? “O'. 003 0.002 ’ 0.001 : °1M 0.016 0.011 ! 0.007 0,,004 0.001 0.002 ; 0 !

A 0.016 :0.015 j 0.013 0 ,,009 0.005 !0.002 ; 0 i
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P ©e> or Pyy (Brackets indicate tension).

r~! 1.0 P 0.686 0.750 0.928 1.082 1.686
M ! 0.907 ; 0.903 ! 0.900; 0.903! 0.931 1.022 1.430 ;| A 0.835 0.842 j 0.863| 0.897| 0.945 1.007 | 1.082 i

2/3 P 1.080 j !1.054! I 1.006 0.985 ' 0.882Ii M 1.00511.004! 1.004 1.008 1.010 1.007 ^ 0.954
\ A 1.027,1.026 11.022!1.017 1.009 0.999 :j 0.987 j
1/3 P 1.133 f 11 .1 0 0I 1.013 0.951 ! 0.872 1> M 1.054 11.05411.05011.0401 1.020 0.984 j 0.924

A 1.071 11.068 1.059!1.044 1.024 0.970 | 0.964 |
0 P 1.134 1.100! 1.007 0.948 s O.894

M 1.072;1.064' 1.056 s1.036 1.001 0.975 0.944
i A 1.074:1.071 1.061: 1.0461 1.025 0.997 0-963.
Pzx or Prz
1.0 P 0 0.354 0.442 0

M 0 0 .035; 0.072 0.112 0.161 0.228 ; 0.354
A 0 0.078 0.14H 0.179 0.176 0.122 | 0 1

~27s P 0 0.059 0.086 1 0
M 0 0.022 0.045 0.062 0.070 0.056 s 0
A 0 0.023 0.042 0.05^ 0.052 0.036 ; 0

1/3 P 0 0.004 0.002 0 s
lii 0 0.014 0.024; 0.030 0.027 0.012 0

___ A 0 0.003 0.005, 0.007 0.007 0.004 ; 0
0 P 0 0 0 0 0 0 0 1

M 0 0 0 0 0 0 0
A 0 0 0 i 0 0 0 ___ 0_____,
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Before considering the details of these tables it is 
as well to stress the fundamental difference between Maryland's 
and Pilon's solution. The latter allows slip at the ends 
except on the perimeter whereas Markland is able to solve 
for no slip everywhere. This is the only significant 
difference between the assumptions upon which the two solutions 
are based but its effect appears to be appreciable. It comes 
as a surprise to note that there is generally better agreement 
between the author’s solution (for a cube) and Markland’s 
solution (for a cylinder) than there is between the two 
solutions for the cylinder. Consider for example the 
distribution of the stress pzz on the end plane (see figure 
4.6). The author's distribution agrees quite well with 
Maryland's except at the outer corner (r = 1) whilst Filon's 
values are very different. The difference between Markland's 
and the author's value for pzz when r =. 1 exists for two 
possible reasons; firstly, it may be due simply to the 
different shape of the two specimens, it is to be expected 
that differences should be accentuated at the corners; 
secondly the assumed functions which are used to determine 
the stresses are such that it is not possible for the curve 
to take the sudden bend that Markland's does. If terms 
including higher power of x were included better agreement 
would probably result. Furthermore Maryland's values may 
not be very precise as the finite difference approximations

made tend to cause errors where the function changes its 

value rapidly.
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This difficulty can "be overcome by using a finer mesh. For 
values of z other than 1.0 the agreement between the author's 
and Maryland's values for pzz is remarkably good.

Turning now to the shear stress it can be seen that there 
is complete disagreement between all three solutions. Matters 
are complicated because Markland gets prz double valued for 
z =• r = 1.0. This point will be considered in detail below. 
Much the same can be said for prr (or Pxx) except that here 
the author and Markland compare quite well for values of z 
other than 1.0,

On the whole there is quite good agreement between p ^  
and pyy in Maryland's and the author's solutions respectively. 
Again Filon's solution does not compare very well.

Why is there such disagreement between Filon's solution 
and Maryland's solution? Superficially it appears that by 
preventing movement at the perimeter of the plane end Filon 
has a very good approximation. This point requires further 
investigation. Let us compute the actual movement of the 
plane ends for values of r other than 1.0. The radial strain 

err =  l^Prr - CT (pzz + P ©-© ) j >  this equation and the 
tabulated values of the stresses enable err x E to be 
calculated. The results are plotted in figured. Since 
err = the integral of this curve gives u x E, also

plotted on figure 4.7.
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It will be seen that the maximum slip occurs at half radius
to the value 0.163/E. Compare this with the movement in the
Z direction. Pilon's computation gives the apparent
modulus as 1,0498s so that the movement of the loading plate
relative to the central plane (z = 0) will be 1 x 5

1,04981 3
(the total height of Pilon's prism is ^  x diameter), which 
equals 0.998/E. Thus the maximum slip is over 16fo of the 

compressive movement.
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This is far from "being negligible and it can readily then be 
accepted as the difference between Filon’s stresses and 
Mar hiand’ s stresses.

In determining the approximate stress distribution by 
the Prager-Synge method the equations of compatability are 
ignored so that any movements calculated from the author’s 
stresses would be meaningless. Different values would be 
obtained for different paths of integration! The final 
solution was selected on the basis of total strain energy 
and there is no guarantee that the stress distribution presents 
an accurate picture. The close agreement with Maryland’s 
solution is therefore to a certain extent fortuitous. We 
would expect the actual stress distribution on the central 
plane of a cube to be practically the same as that on an 
axial plane of a cylinder of the same dimensions. The fact 
that Maryland’s and the author’s solution do agree enables 
it to be said with confidence that the latter’s solution 
provide a tolerable picture of the stresses throughout the 
cube.

One further point calls for comment: The relaxation
solution gives finite values to prr Prz 't*ie perimeter 
of the plane end (r = z = 1). This arises because, as 
Markland points out, the conditions

and prr =. prz = 0 on the cylindrical surface are incompatible.

on plane z = 1*0,
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This point can be illustrated quite simply as follows:

All the solutions agree that pzz tends to increase the 
point r = z = 1 so that pzz is not zero there. However on 
the upper surface there is no radial straining and err = ee @ =:0. 
This gives prr = 2 ^ =  ) Pzz. As Pzz is not zero prr
cannot he. Hence the incomp at ability. This means that in 
fact some slip must occur at the perimeter or else plastic 
yield of the material must take place. The latter 
invalidates the analysis in the immediate locality of the 
perimeter.

This difficulty does not arise with either Pilon's 
solution or with the author1 s solution. Pilon’s solution, 
as we have seen, does not permit slip right on the perimeter 
but does allow it elsewhere. This means that err need not 
be zero so that prr ) pzz. 2?ra€©r-Synge method
used by the author deliberately ignores the compatability 
equations in determining the stress system and is able to 
impose the condition that prr be zero at any desired point.

STRESSES OH PLAHE y = 1. The Outer Surface
It is to be expected that failure will be initiated on 

the outer surface of the cube so that the stress distribution 
there is very interesting. The stresses referred to 
Cartesian co-ordinates are given in the table below for

Poisson’s ratio of 0.25.
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P xx  (B ra c k e ts  in d ic a t e  te n s io n )

z x =0 0 . 2  0 . 4  0 . 6  0 . 8  1 . 0

1 . 0 0 .3 5 8 0 .3 3 0 0 .2 5 3 0 .1 4 7 0 .0 4 6 0

0 . 8 0 . 2 1 0 ’ 0 .1 9 4 0 .1 4 8 0 .0 8 6 0 .0 2 7 0

0 . 6 0 . 1 0 1 0 .0 9 3 0 .0 7 1 0 .0 4 1 0 .0 1 3 0

0.4- 0 .0 2 6 0 .0 2 4 0 .0 1 8 0 . 0 1 1 0 .0 0 3 0

0 . 2 ( 0 . 0 1 8 ) (0 .0 1 6 ) (0 .0 1 3 ) (0 .0 0 7 ) ( 0 . 0 0 2 ) 0

0 ( 0 . 0 3 2 ) ( 0 . 0 3 0 ) (0 .0 2 3 ) (0 .0 1 3 ) (0 .0 0 4 ) 0

&ZZ

z x =0 0 . 2 0 .4 0 . 6 0 . 8 1 . 0

o•H

1 .0 8 2 1 . 0 9 2 1 . 1 2 2 1 .1 7 1 1 . 2 4 0 1 .3 2 9

0 . 8 1 . 0 1 2 1 .0 1 3 1 .0 1 8 1 .0 2 5 1 .0 3 5 1 .0 4 8

0 . 6 0 .9 7 9 0 .9 7 6 0 . 9 6 8 0 .9 5 5 0 .9 3 7 0 .9 1 4

0 .4 0 . 9 6 6 0 . 9 6 2 0 .9 5 0 0 .9 3 0 0 . 9 0 1 0 .8 6 5

0 . 2 0 .9 6 3 0 .9 5 9 0 .9 4 5 0 .9 2 4 0 .8 9 3 0 .8 5 3

0 0 .9 6 3 0 .9 5 9 0 .9 4 5 0 .9 2 3 0 . 8 9 2 0 . 8 5 2

£ z x

z x =0 0 . 2 0 .4 ! 0 . 6ij

r
0 . 8 1 . 0

1 . 0 0 0 .0 9 2 0 .1 6 0 0 .1 8 3 '[ 0 .1 3 7 0

0 . 8 0 0 .0 4 7 0 .0 8 2 j 0 .0 9 4 0 . 0 7 0 0

0 . 6 0 0 . 0 2 0 0 .0 3 4 | 0 .0 4 0 0 .0 3 0  j 0

0 .4 0 0 .0 0 6 0 . 0 1 0 ! 0 . 0 1 2 I 0 .0 0 9  1 0

0 . 2 0 0 . 0 0 1 0 . 0 0 1 ! 0 . 0 0 1 1 0 . 0 0 1  | 0

0 0 0 0 0 : 0 : 0
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F ig u re  4 . 8  shows th e  p r in c i p a l  s t re s s e s  a t  th e  s u r fa c e .  

A t th e  c o rn e rs  o f  th e  cube th e  m a jo r  p r in c ip a l  s t r e s s  re a c h e s  

a v a lu e  33  p e r  c e n t i n  excess o f  th e  a ve ra g e  c o m p re s s iv e  

s t r e s s .  As th e  o th e r  p r in c i p a l  s t re s s e s  a t  t h i s  p o in t  

a re  z e ro  th e  maximum s h e a r s t r e s s  i s  33  p e r  c e n t g r e a te r  

i n  a  cube s u b je c te d  to  f r i c t i o n a l  r e s t r a i n t  th a n  i n  one 

w he re  f r i c t i o n  i s  a b s e n t.  D r .  H .J .  Cowan s u g g e s ts  th e  

p r i n c i p a l  s h e a r s t r e s s  to  be th e  c r i t e r i o n  g o v e rn in g  a 

c r u s h in g  f a i l u r e  ( 3 2 ) w h ic h  im p l ie s  t h a t  f r i c t i o n  s h o u ld  

re d u c e  th e  lo a d  b e a r in g  c a p a c i ty  o f  a cub e . T h is  i s  q u i te  

c o n t r a r y  to  e x p e r ie n c e .  D r .  Cowanf s th e o r y  i s  n o t  

n e c e s s a r i ly  in v a l id a t e d  by  t h i s  a rg u m e n t: F i r s t l y ,  we

c a n n o t be s u re  t h a t  th e  c o m p re s s iv e  s t r e s s  a t  th e  c o rn e r  

i s  a n y th in g  l i k e  as h ig h  as th e  c a lc u la t io n s  s u g g e s t because  

o f  th e  in c o m p a t a b i l i t y  be tw een  th e  s t r a in s  and th e  s t re s s e s  

a t  t h i s  p o in t .  S e c o n d ly , even i f  th e  s t re s s e s  a re  h ig h  

a t  th e  c o rn e r  u n d e r e l a s t i c  c o n d i t io n s  i t  may be t h a t  lo c a l  

p l a s t i c i t y  i s  s u f f i c i e n t  to  r e d i s t r i b u t e  th e  s t re s s e s  so 

t h a t  no v i s i b l e  f a i l u r e  o c c u rs  u n t i l  th e  lo a d  on th e  cube 

has been  in c re a s e d  c o n s id e r a b ly .

D r . Cowan q u o te s  N a d a i as s a y in g  t h a t  th e  maximum 

s t r a i n  th e o r y  i s  one w h ic h  has e x p e r im e n ta l s u p p o r t  when 

a p p l ie d  to  b r i t t l e  m a t e r ia ls  such  as c o n c re te ,  b u t  he 

a p p e a rs  to  c o n s id e r  a c o m b in a t io n  o f  R a n k in e *s  maximum 

s t r e s s /
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s t r e s s  th e o r y  and C o u lo m b 's  maximum sh e a r th e o r y  to  be m ore 

s u i t a b le .  N e v e r th e le s s  th e  way i n  w h ic h  a cube f a i l s  

s u g g e s ts  t h a t  i t  i s  p o s s ib le  t h a t  th e  t e n s i l e  s t r a i n  i s  th e  

g o v e rn in g  f a c t o r .  I t  o f t e n  happens when a cube i s  te s te d

to  d e s t r u c t io n  t h a t  c ra c k s  su ch  

as *A ' fo rm  p e r p e n d ic u la r  to  

th e  fa c e s  o f  th e  cube te n d in g  to  

cause th e  c o rn e rs  t o  b re a k  away 

w h i l s t  i n  th e  shaded r e g io n  th e  

s u r fa c e  o f  th e  cube f la k e s  o f f .  

The f la k e s  a re  o f t e n  q u i te  t h i n .  

T h is  may be due to  th e  s u r fa c e  

la y e r  o f  m o r ta r  com in g  away fro m  

th e  a g g re g a te  b u t  i t  may a ls o  be 

e x p la in e d  b y  s a y in g  t h a t  c ra c k s  

a re  fo rm e d  i n  p la n e s  p a r a l l e l  to  th e  s u r fa c e  due to  th e  

t e n s i l e  s t r a i n  p e r p e n d ic u la r  to  i t .  I t  i s  i n s t r u c t i v e  

t h e r e f o r e  t o  e v a lu a te  th e  s u r fa c e  s t r a in s  i n  th e  cube and 

to  see i f  th e y  can a c c o u n t f o r  o b se rve d  f a i l u r e  o f  th e  above

ty p e .

STRAINS ON PLANES y=0 and y = l

I n  e v a lu a t in g  th e  s t re s s e s  we have m ore o r  le s s  

ig n o re d  th e  f a c t  t h a t  th e  P ra g e r-S y n g e  m e thod  le a d s  to  two 

s t r e s s  s y s te m s ; one due to  th e  a s s o c ia te d  s ta t e s ,  th e

o t h e r /
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o th e r  due to  th e  co m p le m e n ta ry  s ta t e s .  When s t re s s e s  a re  

c o n s id e re d  i t  i s  n a tu r a l  to  use th e  com p lem e n ta ry  s ta te s  

because  th e s e  a re  chosen  to  s a t i s f y  th e  b o u n d a ry  c o n d i t io n s  

on s t r e s s .  Were th e  d is p la c e m e n ts  r e q u ir e d  i t  w o u ld  be 

n a t u r a l  t o  use th e  a s s o c ia te d  s ta t e s .  The s t r a in s  a re ,  

as i t  w e re , one c a lc u la t io n  rem oved fro m  b o th  th e  s t re s s e s  

and th e  d is p la c e m e n ts  and one c a n n o t say c a t e g o r ic a l l y  t h a t  

e i t h e r  one o f  th e  a s s o c ia te d  o r  th e  com p lem e n ta ry  s ta te s  

s h o u ld  be used i n  p r e fe r e n c e  to  th e  o th e r  f o r  d e te rm in in g  

them . F ig u re s  4 . 1 0  and 4 . 1 1  com pare th e  s t r a in s  as g iv e n  

b y  b o th  s t r e s s  s y s te m s .

F ig u re  4 .1 0  shows th e  s t r a in s  o n  th e  a x ia l  p la n e  y  = 0 . 

I t  w i l l  be seen t h a t  th e  ag reem en t be tw een  th e  s t r a i n  v a lu e s  

f o r  th e  two system s i s  re m a rk a b le  in s o f a r  as th e  d i r e c t  

s t r a in s  a re  co n ce rn e d  e x c e p t a t  th e  i n t e r s e c t io n  o f  th e  

o u te r  s u r fa c e  and th e  end p la n e .  The incom p a t  a b i l i t y  o f  

s t r e s s e s  and s t r a in s  a t  t h i s  p o in t  n a t u r a l l y  le a d s  to  

d i f f i c u l t i e s  h e re . A n o th e r  d is c re p a n c y  may be n o t ic e d  

i n  th e  d i s t r i b u t i o n  o f  th e  s t r a in s  i s  th e  x  d i r e c t io n .

On th e  p la n e  z = l  th e  l a t e r a l  s t r a in s  exx. and eyy  a re  z e ro ,  

as g iv e n  b y  th e  a s s o c ia te d  s ta te s  w h i l s t  th e  com p lem e n ta ry  

s t a t e s ,  w h ic h  ta k e  no a c c o u n t o f  th e  d is p la c e m e n ts ,  g iv e  

them  non—z e ro  v a lu e s .  H ow ever, th e  c o n to u rs  o f  th e  

co m p le m e n ta ry  s ta te s  w h ic h  pass  th ro u g h  th e  p la n e  z = 1

v e r y  q u ic k ly  a l ig n  th e m s e lv e s  w i t h  t h e i r  f e l lo w s  o f  th e

a s s o c ia te d  s t a t e s .
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The s h e a r s t r a in s  e ^  do n o t  show such good ag ree m en t.

T h is  i s  because  th e  in c o m p a t a b i l i t y  a t  th e  c o rn e r  has v e ry  

g r e a t  in f lu e n c e .  A ls o  on th e  o u te r  s u r fa c e  th e  sh e a r 

s t r e s s e s  and hence th e  s t r a in s  a re  z e ro  i n  th e  sys tem  o f  

co m p le m e n ta ry  s ta te s  b u t  th e  a s s o c ia te d  s ta te s  a re  n o t  

s u b je c t  to  t h i s  c o n d i t io n .  I t  i s  i n t e r e s t in g  to  n o te ,  

h o w e ve r, t h a t  th e re  i s  good agreem ent be tw een  th e  s h e a r 

s t r a in s  o f  th e  a s s o c ia te d  s ta te s  and th e  s t r a in s  o f  M a rk la n d ’ s 

s o lu t i o n  on th e  u p p e r s u r fa c e ,  see f ig u r e  4 . 1 2 .

DISTRIBUTION of SVIEKR. S T K N N  o n  U N £  x m

The p r e c e d in g  re m a rk s  on f ig u r e  4 .1 0  a p p ly  a ls o  to  

f i g u r e  4 . 1 1  d e p ic t in g  th e  s t r a in s  on th e  o u te r  s u r fa c e .  

C o n s id e r  th e  two s e ts  o f  t e n s i l e  s t r a in s  e^x  and e y y . As 

b e fo r e  th e r e  i s  good ag ree m en t be tw een  th e  two m ethods o f  

c a lc u la t i o n  e x c e p t i n  th e  p la n e  z = 1 . H ere  we m ust 

b e l ie v e  th e  s t r a in s  due to  th e  a s s o c ia te d  s ta te s  r a t h e r  th a n

th o s e  due to  th e  c o m p le m e n ta ry  s ta te s  because  th e  fo rm e r  

s e x /
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s e t  c o n fo rm s  w i t h  th e  no s l i p  c o n d i t io n  w h i l s t  th e  l a t t e r  

does n o t .  T h is  b e in g  so i t  a p p e a rs  t h a t  th e  maximum 

t e n s i l e  s t r a i n  f o r  an a ve ra g e  end lo a d  o f  u n i t y  i s  

a p p ro x im a te ly  0 . 2 5 / E  w h ic h  i s  th e  v a lu e  o b ta in e d  when th e r e  

i s  no f r i c t i o n  p r e s e n t .  Thus on th e  b a s is  o f  th e  maximum 

t e n s i l e  s t r a i n  th e o ry  we w o u ld  e x p e c t th e  end f r i c t i o n  to  

have no e f f e c t !  I n  t h i s  case th e  p o in t s  a t  w h ic h  we 

w o u ld  e x p e c t f a i l u r e  to  o c c u r  a re  re m o te  fro m  th e  ends and 

fu r th e rm o r e  th e  tw o m ethods o f  c a lc u la t io n  a re  s u b s t a n t ia l l y  

i n  ag re e m e n t as to  th e  m a g n itu d e  and p o s i t i o n  o f  th e s e  

‘ h ig h  s p o ts * .  I t  m us t be t h a t  on p a s s in g  th e  e la s t i c  l i m i t  

th e  s t r e s s  i s  r e d is t r i b u t e d  t o  such an e x te n t  t h a t  f a i l u r e  

i s  d e la y e d  c o n s id e r a b ly  when th e re  i s  end f r i c t i o n .  I f  

f a i l u r e  can  be a s c r ib e d  to  th e  t e n s i l e  s t r a in  th e n  th e  c u rv e  

o f  e xx  and e yy  e x p la in  th e  ty p e  o f  f a i l u r e  s k e tc h e d  i n  

f ig u re 4 -9 .  The t e n s i l e  s t r a i n  n o rm a l to  th e  s u r fa c e  in c re a s e s  

as th e  s u r fa c e  i s  moved e x p la in e d  th e  te n d e n c y  to  f la k e  o f f  

(s e e  e^x  i n  f ig u r e s  4 . 1 0  and 4 . 1 1 ) .  Now a f l a k i n g  te n d e n c y  

on one s u r fa c e  becomes a  c r a c k in g  te n d e n c y  on a p la n e  a t  

r i g h t  a n g le s  to  i t .  T h is ^ e x p la in s  th e  fo r m a t io n  o f  c ra c k s  

f A ‘ ( f i g u r e  4 . 9 ) a t  th e  c o r n e r s .

CONCLUSION

Prom th e  academ ic v ie w p o in t  th e  a n a ly s is  g iv e n  i n  t h i s  

c h a p te r  i s  v e r y  i n t e r e s t i n g .  T h is  w o rk  i s ,  as f a r  as th e

a u th o r  i s  a w a re , th e  f i r s t  a p p l ic a t io n  o f  th e  P ra g e r-S y n g e  

t e c h n iq u e /



- 1 8 7 -

te c h n iq u e  to  th e  s o lu t io n  o f  a th r e e  d im e n s io n a l s t r e s s  

p ro b le m . The c o m p a r is o n  be tw een  th e  s t r e s s  d i s t r i b u t i o n  

on th e  a x ia l  p la n e  o f  th e  cube w i t h  t h a t  d e r iv e d  by  

M a rk la n d  f o r  th e  a x ia l  p la n e  o f  a c y l in d e r  i s  v e r y  i n s t r u c t i v e  

e s p e c ia l ly  as M a rl-e land 's  s o lu t io n  i s  o b ta in e d  by  an e n t i r e l y  

d i f f e r e n t  a p p ro a c h . N e v e r th e le s s ,  t o  an e x te n t  th e  w o rk  

o f  t h i s  s e c t io n  has f a i l e d  to  a c h ie v e  i t s  o b je c t .  I t  

a p p e a rs  fro m  th e  above t h a t  th e  in c re a s e  i n  s t r e n g th  w h ic h  

r e s u l t s  fro m  p la t e  f r i c t i o n  c a n n o t be e x p la in e d  b y  s tu d y  

o f  th e  e la s t i c  d i s t r i b u t i o n  o f  s t re s s e s  and any o f  th e  

re c o g n is e d  th e o r ie s  o f  f a i l u r e  f o r  a b r i t t l e  m a t e r ia l .

P o s s ib ly  i n  a cube o r  c y l in d e r  t e s t  p l a s t i c  y i e l d  s t a r t s  

a t  a lo w e r  mean s t r e s s  th a n  i t  does i n  a beam o r  a co lum n 

o f  th e  same m a t e r ia l ,  th e r e  may even be a fo r m a t io n  o f  

m in u te  h a i r  c ra c k s  a t  a c o m p a r a t iv e ly  lo w  lo a d ,  b u t  th e  

d i s t r i b u t i o n  o f  s t re s s e s  and s t r a in s  beyond t h i s  s ta g e  m ust 

be su ch  t h a t  th e  f r i c t i o n a l  r e s t r a i n t  a t  th e  ends i s  a b le  

to  g iv e  e f f e c t i v e  s u p p o r t to  th e  m a t e r ia l .  T h is  s u p p o r t  

e n a b le s  th e  m a t e r ia l  o f  th e  r e s t r a in e d  spec im en  to  w ith s ta n d  

a g r e a te r  s t r e s s  th a n  i t  can i n  beam o r  co lum n fo rm  w here 

such  r e s t r a i n t  i s  a b s e n t.  So much c o u ld  have been s a id  

w i th o u t  u n d e r ta k in g  th e  w o rk  o f  t h i s  s e c t io n .  T h is  does 

n o t ,  h o w e ve r, mean t h a t  th e  la b o u r  has been i n  v a in .  I t  

had to  be done i n  o rd e r  to  see i f  a n y th in g  c o u ld  be l e a r n t .  

F u rth e rm o re  th e r e  i s  one p o s i t i v e  r e s u l t :
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\7e have seen t h a t  i f  Y oung*s m odulus i s  r e q u ir e d  u n d e r 

e l a s t i c  c o n d i t io n s  th e n  i t  i s  s u f f i c i e n t  i n  p r a c t ic e  to  meas

u re  th e  o v e r a l l  movement o f  th e  two ends i n  o rd e r  to  

d e te rm in e  th e  s t r a in s .  T h is  i s  d e s p ite  th e  f a c t  t h a t  th e  

s t r e s s  d i s t r i b u t i o n  i s  v e r y  com p lex  and t h a t  th e  m a in  s t r e s s  

(P zz  ) v a r ie s  c o n s id e r a b ly  fro m  th e  mean v a lu e .  The f i x i n g  

o f  s t r a i n  gauge to  a s m a ll gauge le n g th  a t  th e  c e n t r e  o f  a 

c y l in d e r  ( th e  u s u a l m e th o d ) i s  an u n n e c e s s a ry  r e f in e m e n t .

The r e s u l t s  a ls o  show t h a t  any a t te m p t to  s u g g e s t t h a t  

th e  d i s t r i b u t i o n  o f  s t r e s s  i n  a beam a t  f a i l u r e  may be 

o b ta in e d  b y  ‘ s c a l in g  down* a s t r e s s - s t r a in  c u rv e  fro m  a cube 

t e s t  to  be q u i t e  u n j u s t i f i e d .  By 1 s c a l in g  down' i s  m eant 

th e  re d u c in g  o f  th e  s t r e s s  o r d in a te s  i n  o r d e r  to  o b ta in  th e  

r i g h t  v a lu e  f o r  th e  t o t a l  c o m p re s s iv e  fo r c e  i n  a beam.

I f  t h i s  i s  done th e  s lo p e  i n  th e  e la s t i c  ra n g e  w i l l  be w ron g  

because  i t  was s u b s t a n t ia l l y  c o r r e c t  b e fo re  s c a l in g  down. 

S e c o n d ly  th e  s t r e s s  sys tem  i s  so co m p le x , even u n d e r e la s t i c  

c o n d i t io n s ,  t h a t  th e  m a t e r ia l  w i l l  be s u b je c te d  to  s t re s s e s  

q u i t e  d i f f e r e n t  to  th o s e  e x is t in g  i n  a beam.
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APPEHDIX 4 .1

The o b je c t  o f  t h i s  a p p e n d ix  i s  t o  a m p l i f y  a l i t t l e  th e  

d e s c r ip t io n  o f  th e  c a lc u la t io n s  as g iv e n  i n  th e  p r in t e d  

p a p e r .  A p p e n d ix  4 .2  p la c e s  on re c o rd  th e  b a s ic  n u m e r ic a l 

q u a n t i t ie s  in v o lv e d .  I t  w i l l  be r e c a l le d  t h a t  th e  p ro b le m  

i s  s p l i t  i n t o  two com ponen ts . The f i r s t  o f  th e s e  re p re s e n ts  

a s ta t e  o f  s im p le  c o m p re s s io n  i n  w h ic h  l a t e r a l  e x p a n s io n  

i s  u n h in d e re d . I n  th e  second s ta t e  a s h e a r movement i s  

a p p l ie d  a t  th e  ends o f  th e  spec im en j u s t  s u f f i c i e n t  to  

c o u n te ra c t  th e  e x p a n s io n  due to  th e  f i r s t  com ponent o f  th e  

p ro b le m .

The b o u n d a ry  c o n d i t io n s  on th e  second com ponent a re ;  

u x  =  — CT ax  and Uy = -  cr  ay  a t  th e  ends u z b e in g  ze ro  

t h e r e ,  w h i ls e  th e  s u r fa c e  t r a c t io n s  a re  z e ro  on th e  s id e s  o f  

th e  sp e c im e n .

The s t r e s s  s ta te s  a re  now s e le c te d .  'He w i l l  d e a l f i r s t  

w i t h  th e  a s s o c ia te d  s ta t e s .  S* m ust s a t i s f y  th e  b o u n d a ry  

c o n d i t io n s  on d is p la c e m e n t and a ls o  th e  c o m p u ta b i l i t y  

e q u a t io n s
P _ fearex x  -  a x e tc .

and ex y  -  i~ ( •frU. *3 NT
a * ) e tc .

Sl ' .  S2 ' e t c .  m ust a ls o  s a t i s f y  th e  c o m p u ta b i l i t y  e q u a t io n s

b u t  t h e i r  d is p la c e m e n ts  m u s t v a n is h  a t  a l l  p o in t s  on th e

b o u n d a ry /



-1 9 0 -

b o u n d a ry  w he re  th e y  a re  p r e s c r ib e d ,  i n  t h i s  exam ple th e  

d is p la c e m e n ts  m ust v a n is h  a t  th e  ends o f  th e  spe c jjn en .

The e a s ie s t  way to  s e le c t  th e  above s ta te s  i s  to  choose 

f u n c t io n s  f o r  ux , Uy and u z w h ic h  a c c o rd  w i t h  th e  b o u n d a ry  

c o n d i t io n s  i n  th e  r e q u ir e d  m anne r. The s t r a in s  a re  th e n  

o b ta in e d  fro m  th e  c o m p a ta b i l i t y  e q u a t io n s  and th e s e  

s t re s s e s  fo rm  th e  s t r a in s  b y  a p p ly in g

P xx =  E / >
(1 + cr ) (i_ 2.0 -) t 1- cr )ex x + cr (eyy-ez z ) | etc.

ana pxy  = _ L _  etc.
i+ c r  7

H a te  t h a t  th e  d is p la c e m e n ts  o f  S* depend on th e  v a lu e  

o f  P o is s o n r s r a t i o ,  c r  9 b u t  th o s e  o f  Sp* e tc .  do n o t .

These c a lc u la t io n s  a re  b e s t  s e t  o u t  i n  th e  t a b le  d ra w n  up 

b e lo w .

The e n t r ie s  i n  th e  co lum ns ux> Uy and u z a re  as i n  

T a b le  I  o f  th e  p r in t e d  p a p e r  ( p .  1 4 6 ) e x c e p t t h a t  th e  S* 

e n t r ie s  a re  v a r ie d  w i t h  c r  .
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T h is  b e in g  done a t a b le  o f  s c a la r  p ro d u c ts  i s  made. 

The s c a la r  p r o d u c t  o f  tw o s ta te s  i s  d e f in e d  as

( s . s - )  =  ( e y j p ^ A v

o n  b e in g  expanded i n  C a r te s ia n  c o - o r d in a te s  t h i s  becomes

(s.s*) (e x x P x x 1+ey y P y y '+ ez z P z z '

(+2eX yPX y ' + 2ey2P y Z '+2 ezxp zx
)
Jtadyaz

T a b le s  o f  s c a la r  p ro d u c ts  a re  g iv e n  i n  A p p e n d ix  4 .2

The n e x t  s te p  i s  to  o r th o n o rm a lis e  th e  s e r ie s  o f  s ta t e s .  

The re a s o n  f o r  t h i s  s te p  may be i l l u s t r a t e d  as f o l lo w s :

L e t  us suppose t h a t  o n ly  a c ru d e  a p p ro x im a t io n  i s  

r e q u ir e d  so t h a t  S ^ ' a lo n e  i s  c o n s id e re d . The r e s u l t a n t  

s t r e s s  sys te m  w i l l  be

S* + Ai .& l *

w he re  Aq_ has to  be d e te rm in e d . The r e s u l t a n t  s t r a i n  e n e rg y  

w i l l  be

so t h a t

tr =  i  ( s *  + A1 .S 1 ' ) 2

au
S i x
Ai

C&L* .S ^ + A i CSl ' .&L* ) .  = 0  f o r  m in . 

-  (Sx ' . S ^ J A & l '.S x ').

Thus th e  b e s t  s t r e s s  sys te m  w h ic h  can be o b ta in e d  u s in g  

o n ly  S* and S* i s
S*

= , -  { ( S i ' . S * ) / ( S i > . S x ' ) }  Sx' 

W h ich  can he w r i t t e n

S* -  (lx'.S*)Ix'

I i '  = s x / ( S x ' . S x ' ) iw he re
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I t  i s  im m e d ia te ly  c le a r  t h a t  ( I i ' . I i 1) = 1  so t h a t  

l i ’ i s  s a id  to  he n o rm a lis e d .  The s t r a i n  e n e rg y  i s  g iv e n  

b y

20 = (S *  -  ( i ! 1 . S * ) l ! ' ) 2

= ( S * .S * )  -  2 ( I i ' . S * )  ( l i ' . S * )  + ( I 1 ' . S * ) 2 ( I 1 ' . I 1 - )  

=  ( S * .S * )  -  ( l x 1 .S * ) 2

L e t  us now se e k  to  im p ro v e  th e  r e s u l t  b y  a d d in g  S2 * 

t o  th e  s y s te m . L e t  i t  be assumed t h a t  we can  fo rm  

a . S ^  + b .S 2 * «  1 2 ’

s u c h  t h a t  ( I 2 , . l 2 ' )  = 1

and  ( I i ' . I 2 * ) = 0

T h is  b e in g  done I 2 ' w i l l  be n o rm a lis e d  and o r th o g o n a l to  

I I *  . I n  g e n e ra l i f  we have n  in d e p e n d e n t s ta te s  S we can  

fo r m  n  o r th o n o rm a l s ta te s  I  such  t h a t  

I f l ^  = 1  f o r  i  = k

and = 0 f o r  i  ^  k

V a r io u s  m ethods f o r  d o in g  t h i s  e x is t  th e  one used b y  

th e  a u th o r  i s  due to  Peach (33).

The r e s u l t a n t  s t r e s s  sys tem  w i l l  now be 

S* + B ]_ I i ’ + B2 I 21 •

20 =  (S *  + B i l l '  + B 2 l 2 ' ) 2 

H  =  (S *  + B i l i '  + B2X2 > ) I i '

= + B i  = 0 f o r  m inim um
o u

-  S * . l 2 ' + B 2 = o f o r  m inim um .and
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Thus B i  = -  ( S *. I ]_ ’ ) and B2 = -  ( 2 * 1 2 ' ) .  g iv in g  th e  

s t r e s s  sys tem  f o r  m in im um  s t r a i n  e n e rg y  to  he 

S* -  ( S ^ . l ! * )  I 3/  -  ( S * , I 2 I ) I 2 '

and 2U = ( S * .S * )  -  ( S * . l ! ' ) 2 -  ( S * . l 2 ' ) 2

Thus i n  o rd e r  to  a l lo w  f o r  th e  e f f e c t  o f  S2 we add 

-  (S 2 . l 2 ' ) l 2 "to th e  s t r e s s  sys tem  a lre a d y  fo u n d  

and -  ( S * . l 2 ) ^  t o  th e  s t r a i n  e n e rg y  a lr e a d y  d e r iv e d .

I n  g e n e ra l

S = S* -  £  ( S * Ip ' ) I p 1

and 2U= (S * .S * )  ^  ( S * . I n ' ) 2

The in te r m e d ia te  s te p  o f  o r th o n o r m a l is a t io n  i s  n o t 

e s s e n t ia l  hu j^  i t  i s  a  v e r y  c o n v e n ie n t one w h ic h  g iv e s  S 

and U r e l a t i v e l y  s im p le  fo rm s  w here  th e y  w o u ld  o th e rw is e  

he v e r y  u n w ie d ly .  I t  a ls o  e n a b le s  th e  n u m e r ic a l w o rk  to  

he done i n  a v e r y  com pact fo rm .

The p r e c e d in g  w o rk  shows how th e  u p p e r hound to  th e  

s t r a i n  e n e rg y  i s  f i x e d .  The lo w e r  hound  i s  d e te rm in e d  h y  

th e  co m p le m e n ta ry  s ta te s  w h ic h  a re  s e le c te d  as f o l lo w s

The s ta te s  S ''^ , Su2 e tc .  m ust s a t i s f y  th e  e q u i l ib r iu m

e q u a t io n s

and th e  b o u n d a ry  c o n d i t io n s  on s t r e s s .  I n  t h i s  case  th e s e  

s im p ly /



-1 9 4 -

s im p ly  s ta t e  t h a t  th e  s u r fa c e  t r a c t i o n s  m ust he z e ro  on 

th e  s id e s  o f  th e  cu b e . C a lc u la t io n s  r e la t i v e  to  th e s e  

s ta te s  a re  q u i te  in d e p e n d e n t o f  th o s e  a lre a d y  d e s c r ib e d  f o r  

th e  a s s o c ia te d  s ta te s  e x c e p t t h a t  th e  same S* i s  used f o r  

c o n v e n ie n c e . The c a lc u la t io n s  a r e ,  h o w e ve r, p a r a l l e l  to  

th o s e  o f  th e  a s s o c ia te d  s ta te s  as i s  th e  d e r iv a t io n  o f  th e  

a p p r o p r ia te  s t r e s s  sys tem  and s t r a i n  e n e rg y . I n  t h i s  

case how ever th e  a im  i s  to  m a x im ise  th e  s t r a i n  e n e rg y  

w he reas b e fo re  i t  was m in im is e d .
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APPENDIX 4 .2 .  — C a lc u la t io n s  f o r  th e  cube p ro b le m .

o '  = i. A s s o c ia te d  S ta te s .

S c a la r  p r o d u c ts  ( S l ' - S j c ' ) -

S i ’ S2 ' ' V V
!

Sc« I s *  
^ |

v 2 .1 3 3 3 3 -0 .0 5 5 4 1 2 .1 33 33 - 0 . 0 5 5 4 1 1 . 4 2 2 2 2  j-o .  0 7 1 1 1

S2 f 0 .4 8 9 0 4 -0 .0 2 7 T 1 0 . 4 1 0 5 4 0 j- 0 . 02955

s3 ’ 2 .5 9 9 7 1 -0 .0 4 6 1 8 1 .8 8 8 6 0  1-0.03556
1

s4 r 0 .4 0 7 2 0 -0 .0 1 8 4 7  1-0.01178

S5 1 .4 7 5 1 7  0[
s * i 0 .0 60 32

i ‘
C o e f f i c ie n t  o f  S j * , S2 * e tc .  i n  1 ^ ’ , 12* e tc .

S i» x S2 ' x s3 'z S4 * x

I I ’ 0 .6 8 4 6 5

V 0 .0 3 7 2 0 1 .4 3 2 0 8

I 3 ' -1 .4 6 8 9 4 -0 .0 8 3 3 4 1 .4 6 6 7 8

V -0 .1 0 4 3 6 -3 .3 7 3 6 8 0 .1 2 0 9 6 4 .0 1 2 8 4

I 5* 1 . 3 5 1 8 8 0 .0 0 3 7 5 —4.06622 -0 .0 9 6 4 1 4.067*

S t r a in  e n e rg y . C o e f f ic ie n t s  o f  S ^ ' i n  r e s u l t a n t  sys tem

d i ' . s * ] S x ’ x S2 ' x  j S3 'x S4 'x S5 *x

S i ’ -0 .0 4 8 6 9 0 . 0 5 7 9 5 0 .0 3 3 3
I!

s2 ’ -0 .0 4 4 9 7 0 .0 5 5 9 3 0 .0 3 5 0 0 . 0 6 4 4 I

s3 ' 0 .05477 0 .0 5 2 9 3 0 .1 1 5 5 0 . 0 6 9 0 U 0 .0 8 0 3

s4 f 0 .0 5 5 5 7 0 .0 4 9 8 4 0 .1 2 1 3 0 .2 5 6 4 1 -0 .0 8 7 1 -0 .2 2 3 0

s 5 f 0 .0 4 9 4 7 0 .04739 0 .0 5 4 4 0 .2 5 6 3 ! 0 .1 1 4 1ij
-0 .2 1 8 2 -0 .2 0 1 2

N o te  t h a t  th e  e n t r ie s  i n  an y  ro w  r e p r e s e n t  th e  f i n a l  s ta te  
a t  t h a t  s ta g e .  F o r exam p le  i f  o n ly  s ta te s  S i,  S2 and S3 
a re  used  th e n  th e  s t r a i n  e n e rg y  i s  re p re s e n te d  b y  0 . 0 5 2 9 3  
and th e  s t r e s s  s y s te m  i s  S*+0 . 1 1 5 5 Si + 0 . 0 6 9 0 S2- 0 . 0 8 0 3 S3 .
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0 ~ =s C om p lem en ta ry  Sta-fees. 

S c a la r  P ro d u c ts  (Sj_,,.S^,f)

S i" <s ft b2
:

s3 » : V s*

S i" 2 . 3 8 6 0 0 ’ 0 .2 6 6 6 7 0 .0 2 0 3 2  j --0 .02748 -0 .2 6 6 6 7

q tib2 | 1 . 0 0 0 0 0  j 0 .6 6 6 6 7  j 0 0

S3 "
: ii! 1 i '

0 .6 2 2 2 2  ! --0 .05689  ii 0

V 1

j j 
i

0 .5 9 4 4 3 0

C o e f f ic ie n t s o f  s1M, s2 " e t c . i n T 11 T - 11 
X1  » 1 2 e tc .

!
S iMx ! s2"x 1 s 3 "x  I S^«»x

V 0.64739
T It 12 -0.11347 ! 1.01524 j
I3" 0.16642 -1.67540 2.44654
x4- 0.04727 -0.32223 j 0.46444
S t r a in  e n e rg y  C o e f f ic ie n t s  o f  S ^" i n  r e s u l t a n t  sys tem

(Ii".s*i IC i'VST s2"x : s3"x s4"x
Si" -0.17264 0 .0 2 9 8 0 -0.1118

j , ,
1i

S2" 0 . 0 3 0 2 6 0 . 0 3 0 7 2 -0 . 1 1 5 2 0.0307
S3 ' 1 -0.04438 0.03269 -0.1226 0.1051 -0.1086
S4 " -0.01260 0.03285 -0.1232 0 . 1 0 9 1 -0.1144 -0.0166
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<J~ = 1 / 3 .  Associated States. 

Scalar Products ( S ^ * . S^-*)

S i-  ! S2 - 55 *
b3 !i ..

s4 > s5- S* '

sl ' 2 .6 6 6 6 7  1 -0 .10 39 0 2 .66667 -0 .1 0 3 9 0  ; 1 .7 7 7 7 8 -0 .1 7 7 7 8 i1
s2 r ] 0 .5 4 0 5 3 -0 .0 7 7 9 2 0 .4 6 6 9 3  1-0 .03463 -0 .0 1 0 9 7

S '
3

i\ii 3 .2 1 5 0 1  | -0 .1 0 3 9 0  1 2 .3 26 12 -0 .1 3 3 3 3

V
!
1i

j
0 .4 77 48  i - 0 . 06061 0.011261i

s 5 ' : j 1 1 .7 9 7 7 9 -0 .0 5 9 2 6 i
S* i

i ■
0 .11905

C o e f f i c ie n t s  o f  S i * , S2 ' e t c .  i n  1^ ' ,  I 2 ' e tc .

S ^ 'x  , S2 'x S3 - x  ; S4 *x  S5 *x

i i * ! 0 .6 1 2 3 7 \i
------------------ ------------------1

i; \

1 2 ' ! 0 . 0 5 3 1 9 1 .3 6 5 2 9 | I
1 |

x 3 ' -1 -3 5 4 5 4 1 -0 .0 6 5 4 61 1 .3 5 1 9 9  j > j

x 4 ' ! - 0 . 1 3 2 0 1 -3 .1 9 8 0 6 0 .1 51 49 3 .6 9 8 0 1

x 5 ' 1 . 3 1 3 3 0 -0 .0 0 9 2 2 -3 .9 4 9 2 4 -0 .0 6 3 2 2  3 .9 4 9 6 7

S train En e r g y  
i ( l i ' . S * )

S i*  -0 .1 0 8 8 7 0 . 1 0 7 2 0

S2 ' -0 .0 2 4 4 3 0 .1 0 6 6 0

S3 * 0 .0 6 1 2 6 0 .1 0 2 8 5

S4 *‘ : 0 .0 7 9 9 6 0 .0 9 6 4 5

S5 * : 0 .0 5 8 4 2 0 .0 9 3 0 4  1
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= l / 3 .  C om p lem enta ry  S ta te s .

Scalar Products
S l" s «*

b 2 S3 " 1 s4 - S*
............ _

S l" 2 . 4 0 2 2 5 0 .3 5 5 5 6 0 .0 6 2 6 5  ■ -0 .0 3 6 6 4i | -0 .3 5 5 5 6

s 2 " 1 . 0 0 0 0 0 0 . 6 6 6 6 7 ! 0 ! 0

S3 " 0 .6 2 2 2 2  -0 .0 7 5 8 5i °

S4 " \ 0 .5 94 43 0

C o e f f i c ie n t s  o f  S ^n , S2 n e tc .  i n  I i " ,  I 2U e tc .
1

S2 «x S3 " x  ; S4 »x
....................  1

H H 0 .6 4 5 2 0  !
|

! j

12" -0 .1 5 2 0 6  i» 1 .0 2 7 4 0
}

I  ”  
x 3

0 . 1 8 8 9 8  ; -1 .7 1 1 3 3 2 .4 66 21 :

i 4 » 0 .0 7 0 7 4 - 0 . 4 5 2 8 1  |
1

0 .64149 1 .3 4 0 8 5

Strain E n e r g y  Coefficients of S^ 11 i n  resultant
! I system.

Si"x . S2"x s3-x; s4-x
sift -0 . 2 2 9 4 0 ; 0.05263 1-0.1480 ;i
s2" 0 . 0 5 4 0 7 :f 0.05555 :-0.1562 ! 0.0555
S3 " -0.06719 | 0.06006 -0.1689 ' 0.1705 -0.1657 ;
S4 ” -0.02515 0 . 0 6 0 7 0 -0.1707 'i 0 . 1 8 1 9 -0.1818 -0.0337;
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< r  =  1 / 6 . A s s o c ia te d  S ta te s

S c a la r  P ro d u c ts  (S j,1 . S^* ) .

Si' S2 ' s3' S4 ' s5' S*

V 1.90476 -0.02969 1.90476 -0.02969 1.26984 -0 .0 2 5 4 0

s2* 0.47709 0 0.39298 0.01979 -0.02553
S3' 2.34096 -0.01484 1.70604 0

s4: 0.38159 0.00495 -0.01583
s5' 1.34350 0.01693
s* 0.02608

C o e f f i c ie n t s  o f  S ^1, S2* e tc .  i n  I ^ 1 , I 2 * e tc .

SL' S2'x S3'x S4fx S5'x
II' 0.72457
V 0.02257 1.44848
l3' -1 . 5 1 8 8 0 -0.09450 1.51733
I4' -0.08073 -3.43529 0.09209 4.16443
15' 1.35057 0.01605 -4.06287 -0 . 1 2 2 2 2 4.06592

S t r a in  E n e rg y

Si' -0.018 40; 0.02574
s2 '- -0.04190[ 0 .0 2 3 9 8

S3 ' 0 . 0 4 1 2 T 0.02229

S4 ' 0.03413 0 .0 2 1 1 2

S 5 ’ 0 .0 3 6 0 2 0 .0 1 9 8 2
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CT — l / 6 . Complementary States. 

Sc alar Products ( S^ *'. ”)

3 l " s2 " 45 If
s3 s4 " s*

S l" 2 .3 6 9 7 4 0 .1 7 7 7 8 -0 .0 2 2 0 1 -0 .0 1 8 3 2 -0 .1 7 7 7 8

S2 " 1 .0 0 0 0 0 0 .6 6 6 6 7 0 0

S3 " 0 .6 2 2 2 2 - 0 . 0 3 7 9 3 0

S4 " 0 .5 9 4 4 3 0

C o e f f i c ie n t s  o f  S ^H, S2 H e tc .  i n  I ^ M, I 2 " e tc .

& L " ! s2 "x. . .
S3 "X S4 " x

i i " 0 .6 4 9 6 1

1 2 " -0 .0 7 5 5 3 1 .0 0 6 7 4 .*

I 3 " 0 .1 4 6 0 6 -1 .6 4 6 0 6 2 . 4 3 0 1 4

x 4 » 0 .0 2 8 3 5 -0 .2 0 5 8 8 ;
,

0 .3 0 1 2 6 !
;

1 .3 0 7 1 2

S t r a in  e n e rg y . C o e f f ic ie n t s  o f  i n  r e s u l t a n t
system

I ...
s2 '*x ; s3 «x

V
S2 "

- O . I I 5 4 9 ! 0.01334{1
0.0 1 3 4 3 ' 0 .0 1 3 5 2j i

-0.0750

-0.0755

ii

0 .0 1 3 5  ;

S3 " -0 .0 2 5 9 7I 0 .0 1 4 1 9 !
) *

-0.0798 0.0563 i-0.0631

s4 n -0 .0 0 5 0 4! 0 .0 1 4 2 2 !
i i

-0.0800 0.0573 :-0.0646 -0.0066
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P A R T  Y  GENERAL SUMMARY

I n  part II of this thesis the author introduced his 

m e t h o d  of d e t ermining the distribution of stress in a 

concrete b e a m  w h e n  it is tested to destruction under a 

p u r e  bending moment. This me t h o d  is based upon an approach 

fundamentally different to others which attempt to measure 

the stresses directly. I n  contrast the author states 

certain assumptions and from these derives a way of 

inferring the stresses from strain readings. It is 

assumed that creep has no influence on the stress 

d i s t r i b u t i o n  and that the formation of tensile cracks also 

has no effect.

These two assumptions are considered in detail. It 

seems that, for a test completed in a few hours creep will 

not invalidate the author's analysis except at very high 

stresses. Since the calculations are calculated step by  

step the lower stress p o r t i o n  of the resultant stress strain 

curve is unaffected by any inaccuracies in the higher 

stress part. It appears that due allowance m a y  be made 

for creep at h igher stresses w h e n  mor e  information is 

available on this phen o m e n o n  but that this will be possible 

only if the creep laws conform with the possibility 

envisaged by the author of creep rate b e i n g  proportional

to the instantaneous strain. If this is not the case 

the p r o b l e m  will be exceedingly complex.
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The assumptions that the distribution of stress is 

unaffected by the finite spacing of tensile cracks is 

investigated in Part III. It is shown that provided the 

cracks are spaced closer than one half the b e a m  depth the 

errors in the stiffness of uncracked blocks b e l o w  the 

neutral axis will be v e r y  small. With wider crack spacing, 

up to full b e a m  depth, the errors will still be small 

p r o v i d e d  that the cracking does not penetrate more than 

60<fo of the depth and provi d e d  that the cracks do not 

bifurcate. In practice this means that no doubts need be 

felt on this score if the author's analysis is used for 

reinf o r c e d  or pre-stressed beams using prope r l y  bonded 

reinforcement but that errors will be introduced if it is 

applied to non-bonded beams which generally find with deep 

w i d e l y  spaced cracks.

The results of tests o n  a number of p r e-stressed beams 

are analysed in Part II. Here a few interesting points 

emerged. ' It was shown that apart from determining the 

distrib u t i o n  of stress in the compressed zone of a beam the 

author's analysis provides a very useful m e a n s  of determining 

the steel force and hence of deducing the amount of slip 

b e t w e e n  steel and concrete. It is demonstrated with a 

n u mber of examples that the stress strain curve obtained is 

often independent of the posit i o n i n g  of the strain gauges

a l o n g  the zone of constant bending moment.
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T h a t i s  t o  say  r e s u l t a n t  s t r e s s  s t r a i n  c u rv e  i s  th e  same 

f o r  s e c t io n s  A, 33 and C.

I.

i _ i i

T h is  i s  n o t  v e ry  s u r p r i s in g  s in c e  th e y  a re  a l l  o f  th e  same 

c o n c re te .  N e v e r th e le s s  i t  i s  v e r y  r a r e  f o r  f a i l u r e  to  

o c c u r  r i g h t  th e  way a lo n g  th e  to p  o f  a beam. I t  i s  a lm o s t 

i n v a r ia b ly  lo c a l i s e d  as shown i n  f ig u r e s  2 .2 3 , 2 .2 4  e tc .

I f  th e  same s t r e s s - s t r a in  c u rv e  i s  o b ta in e d  f o r  s e c t io n s  

A, B and C w h i l s t  f a i l u r e  i s  i n  s e c t io n  A i t  means n o t  

t h a t  th e r e  i s  l o c a l  w eakness a t  A b u t  t h a t  th e  c r a c k in g  and 

l o c a l  s l i p  o f  th e  s t e e l  have  c o n s p ire d  to  cause A to  be 

m ore s e v e r e ly  s t r e s s e d .  T h is  p o in t  le a d s  us back  to  

c o n s id e r  a g a in  th e  e f f e c t  o f  c re e p . I f  th e  m a t e r ia l  o f  

s e c t io n  A i s  m ore h ig h ly  s t r e s s e d  th a n  t h a t  o f  B o r  C th e n  

one w o u ld  e x p e c t h ig h e r  c re e p  i n  s e c t io n  A. T h is  s h o u ld  

cause th e  s t r e s s - s t r a i n  c u rv e  re c o rd e d  f o r  A to  d i f f e r  fro m  

th o s e  re c o rd e d  f o r  B and C. I t  does n o t d i f f e r  th u s  

d e m o n s tra t in g  t h a t  c re e p  does n o t  have a v e r y  g r e a t  e f f e c t .

These t e s t s  a ls o  show t h a t  i t  i s  p o s s ib le  f o r  l o c a l  

s t e e l  s t r a in s  i n  a c ra c k  to  be h ig h e r  th a n  th e  a ve ra g e  concret< 

s t r a in s  w he reas i t  i s  n a t u r a l  to  assume t h a t  th e y  s h o u ld

e q u a l o r ,  as a r e s u l t  o f  s l i p ,  be le s s  th a n  th e  c o n c re te  

s t r a in s .
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Part IV analyses the stresses in a cube compressed 

b e t w e e n  r ough plates. This work shows that although the 

d i s t r i b u t i o n  of stress is very complex the overall strain 

is affected but little. This means that in a cube or 

cylinder test carried out for the purpose of determining 

Y o u n g ’s modulus it is sufficient to take the overall 

m o v e m e n t  of the load i n g  plates as a measure of the strains 

and that to attach a strain gauge is an unnecessary 

refinement. The fact that the stress distribution is so 

complex shows that it would be unjustifiable to attempt to 

determine the full ’plastic' stress strain curve b y  this 

method. vie saw that it does not appear possible to 

reconcile this stress d i s tribution and a n y  of the accepted 

criteria of failure wit h  the fact that concrete in a cube 

is stronger than concrete in a column or beam.

The general p urpose of this thesis has bee n  to examine 

the means of determining the stress distribution in the 

compre s s i o n  zone of a concrete b e a m  under a ben d i n g  moment. 

A  m e t h o d  of doing this has been evolved and the limits 

w i t h i n  w h i c h  the m e t h o d  can be expected to give valuable 

r esults have bee n  defined.

It has been taken as axiomatic that it is desirable to 

k n o w  this stress distribution. That the p r o b l e m  is an 

i n t e r e s t i n g  one from the academic viewpoint need not be

argued.
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That its solut i o n  p r o v i d e s  information of value to the 

p r a c t i c i n g  engineer can he delated. It can be p ointed out 

that Y/hitney has evolved a  satisfactory plastic theory for 

the d e t e r mination of the ultimate bending m o m e n t  of an  

ordinary reinforced concrete beam using simply the stress- 

s train curve derived from a cylinder test. At the time of 

w r i t i n g  some authorities believe that Y/hitney* s theory covers 

also the failure of p r e - s t r e s s e d  concrete. If this is so 

is it n e c essary to go to all this trouble to determine the 

actual distribution of stress in a concrete b e a m ?  The 

author believes that it is because he does not agree with 

these authorities but finds the theory of A.L.L. B a k e r  more 

acceptable. If this theory is to be fully developed for 

the use of the designer then m a n y  beams will have to be 

t ested in order to determine the factors used in the theory. 

These factors depend on the shape of the concrete stress- 

strain curve. P r o f e s s o r  B a k e r  himself believes that it is 

desirable to k n o w  the true stress distrib u t i o n  and, as 

men t i o n e d  earlier has designed the b e n d i n g  simulation 

mach i n e  with the object of solving this problem.

A  full discu s s i o n  of this controversy is outside the 

scope of this thesis and it is mentioned here onl y  to 

indicate how the i n f o r m a t i o n  gained as a result of 

application of the author*s method of analysis is applied in 

the r e a l m  of practiced, engineering.
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The m ethod may w i t h  p r o f i t  he a p p l ie d  i n  th e  a n a ly s is  

o f  t e s t  d a ta  even when th e  m a in  o b je c t iv e  i s  n o t  th e  

d e r iv a t io n  o f  th e  s t r e s s - s t r a in  c u rv e . F o r exam ple i t  may 

be s u s p e c te d  i n  a g iv e n  case  t h a t  th e  d is c o n t in u i t y  i n  th e  

s lo p e  o f  a d e f le c t io n  c u rv e  i s  due to  s l i p  o f  th e  s t e e l ;  

a p p l i c a t io n  o f  th e  a u th o r ’ s m ethod w i l l  show w h e th e r o r  n o t  

t h i s  e x p la n a t io n  i s  a c c e p ta b le .  I t  m ust be em phasized t h a t  

a t  p r e s e n t  many beams a re  te s te d  to  d e s t r u c t io n  and s u f f i c i e n t  

in f o r m a t io n  i s  booked to  e n a b le  t h i s  a n a ly s is  to  be a p p l ie d .  

The o n ly  d a ta  r e q u ir e d  a re  th e  s t r a in s  i n  th e  c o n c re te  and 

th e s e  m ust be n o te d  i f  th e  d e p th  o f  th e  n e u t r a l  a x is  i s  to  

be d e te rm in e d .

T h a t no a d d i t io n a l  p r e p a r a t io n s  need be made o v e r and 

above th o s e  a lr e a d y  made g r e a t l y  commends th e  m ethod as 

does th e  f a c t  t h a t  beams c o m m e rc ia lly  made can  be te s te d  

as s u p p l ie d  by  th e  m aker w i th o u t  th e  need to  make s p e c ia l  

m o d i f ic a t io n s  f o r  th e  p u rp o s e  o f  t e s t .  E x t ra  t im e  i s ,  

o f  c o u rs e , ta k e n  up i n  m a k in g  th e  n e c e s s a ry  c a lc u la t io n s  

b u t  t h i s  la b o u r  i s  s m a ll com pared w i t h  t h a t  w h ic h  m ust be 

s p e n t i n  any case i n  th e  t e s t in g  o f  a beam.
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S l e n d e r  R e i n f o r c e d  C o n c r e t e  C o l u m n s .

B y J .  M . P R E N T IS , M .S c ., and P ro fesso r A . D. R O S S, P h .D ., A .M .In st.C .E .

Insufficient is known about the strength of slender reinforced concrete columns, 
although codes give coefficients by which the safe load on a short column should 
be multiplied to determine the reduced working load on a slender column of the 
same lateral dimensions. The instability of slender columns and the effect of 
creep of the concrete are considered in this article.

F ig . 1.

A straight concentrically-loaded homogeneous column fails in compression 
if the length is short compared with the lateral dimensions, and by instability 
if the column is slender. The load at failure of an ideal slender column hinged 
at both ends is given by Euler’s formula,

P' =  n * E A f c y ..........................................(i)

where E  is the modulus of elasticity of the material, A  is the cross-sectional area 
of the column, k is the radius of gyration of the section, and l is the distance 
between the hinges. In practice the conditions of an ideal column are not 
attained, but it is possible to allow for variations by assuming either an eccentricity 
of the load or a curvature of the centre-line of the column. An analysis (1) based 
on an assumed cosine curve shows that the load at failure depends on the yield 
stress fiy of the material, and for a column hinged at both ends the load at failure is

- p yA P e . . (2)p  _  P \ A + i1 + _
2

P y A + (i +  rfjP  e 
2

3 *



where r\ is a coefficient depending on the curvature of the centre-line. For 
a material like concrete having no definite yield point, it is not correct to assume 
an equivalent yield stress, because the continual change of slope of the stress- 
strain curve is due to creep during the test. If a correction is made for creep <2) 
the relation between stress and elastic strain is linear within the range of working 
stresses. In the absence of corrected stress-strain curves for instantaneous 
loading up to the limit of proportionality and thence to failure, the yield stress 
must be given an arbitrary value, such as o-8 of the crushing stress, as is assumed 
in the following. The numerical value assumed does not affect the theoretical 
deductions. If the strength of concrete in a column is assumed to be two-thirds 
of the crushing strength u of 6-in. cubes the assumed yield stress p y is 0-533 .̂

Since concrete deforms continually under sustained load, it is evident that 
strain due to bending increases with time. If an initially curved member is 
subjected to an end load, the stresses are a combination of the direct stress and 
the bending stress caused by the eccentricity of the load due to curvature. The 
bending moment increases the curvature and the bending stress is therefore 
increased. Unless the column is overloaded equilibrium is reached, and the 
resultant distribution of stress is as shown in Fig. i(a). If the material creeps 
under the stress and if, as is the case with concrete, the rate of creep increases 
with increase in stress, the curvature and the bending stress also increase. The 
stress is greatest on the concave side where the creep is greater than on the convex 
side, that is the curvature increases.

If the effect of creep is too great the material becomes overstressed and 
collapses. In all cases the conditions of stress deteriorate and a reduction of the 
original load-factor results. These effects are assessed in the following.

Calculation of the Effects of Creep.

Fig. i (b) shows a column of uniform cross-section with a centre-line con-
7ZXforming to the equation y 0 =  a cos — . It can be shown (1) that on the applica

tion of an end load P  the equation to the centre-line becomes

y = a P e

P e ~ P
cos 7tX

(3)

Consider an elementary length of a member [Fig. i(c)] bent to a radius R  and 
subtending to an angle 6. From the geometry of the figure,

AB -  A'B' _  z 
AB R

(4)

If it is assumed that the rate of creep is proportional to the instantaneous stress,
that is, ^  = /-^, where <f>(t) is the creep in time t under unit stress, and if 

at at
P

p = — , then 
A

_i_ g(AB) _  Mify- i  dp 
AB' Jt P ~dt~ +  E'dt

(5)
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Also,

i dA'B' _  d<f>(t) i d(p +/)
A'B'’ dt W - r j )  m  t- E - m

where f =  4 -̂2.
J A k 2

(6)

By differentiating (4) with respect to t and assuming AB = A'B' for a large 
radius of curvature, and substituting from (5) and (6),

Substituting / = P y  
—  z, 
A k 2

1 3/ d<f>{t) __ _  z d R

E ’d t ^ J dt R 2’ dt

, d3y  1 
and dx2 dt ~~ W 2’~dt‘
P  dy p y  dpify d 3y  =

E k 2' dt k2 dt dx2 dt

(7)

the solution of this equation is
ap. vEMl 7ix 

y = — t-— e Pe~p . cos —
Pe — p  l

(8)

Comparison of (8) and (3) shows that the effect of creep is to multiply the
pEm

lateral deflection (and hence the bending stresses) by the factor a —  e Ve~ p . To 
determine the load which causes failure in any time t, it is therefore necessary to 
replace i] in (2) by atj. The resultant equation is not easy to solve because a is 
a function of p, the stress to be determined, but the solution can be obtained by 
successive approximations.

Effective Modulus.

In the foregoing it is assumed that the rate of creep is proportional to the 
instantaneous stress, but a simpler method is to replace E  by an effective modulus, 

E
E e = ------ , when calculating P  . This gives a smaller failing load because

1 T" Ep(t)
it is assumed that all the creep has occurred under a stress equal to the final 
stress in the material, since it is assumed that the final strain in any fibre is
f f ' •— = A 4. fp(t). In a column the stress in the concave side increases to / during 
E e E
the period of loading ; hence at any given moment the stress is less than /. 
Therefore the total strain obtained is too high. On the other hand, if the stress

3(j)tis increasing, the rate of creep —  must be greater than the assumed rate / — .
Therefore the deflection given by (8) is slightly too low and the failing load 
is slightly too high. Thus the true result is expected to lie between the results 
obtained by the two theories.

Fig. 2 shows a comparison between the loads required to cause failure as 
calculated by the two theories when the load has been applied for an infinite time.

5



immediate failure are also given. The ratio of P  to P y is plotted against -, the
curves being therefore applicable to all columns. A discontinuity in the curves

poccurs at — ■ = 0-5 due to the stress on the convex side [Fig. i{a)] becoming
Pytensile. If the concrete is assumed to possess no tensile strength, failure of a plain 

column must occur when the tensile stress due to bending exceeds the direct 
compressive stress.

To demonstrate the effect of creep the loads calculated from (2) to produce

There is little experimental verification of the preceding theories for homo
geneous columns. When the analytical results are compared with the results 
obtained on a phenolic plastic material/3) which exhibits characteristics of creep 
very similar to those of concrete but on a greatly reduced time-scale, close agree
ment is shown, the results of tests being between those of the two theories.

Short Reinforced Concrete Columns.
If a short reinforced concrete column is loaded concentrically so rapidly that 

creep does not occur, it behaves elastically when subjected to small loads, If
0



the load is increased the steel is eventually stressed beyond the limit of pro
portionality and thereafter the concrete takes a greater share of the increased 
load. When eventually the steel yields it can only sustain its yield stress, so 
that further increase of load is borne entirely by the concrete. When the concrete 
becomes overstressed there is total collapse. Thus, disregarding the effects of 
lateral reinforcement, the strength of a short reinforced concrete column is

P y =  o-fyuAe +  p ygA t . . . . (9)
where A s and A e are the areas of the reinforcement and concrete respectively 
and p ys is the yield stress of the steel.
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When the load is applied eccentrically, or when a concentric load is combined 
with a bending moment, it is common to permit a higher compressive stress in 
the concrete than for direct load alone. There is no reason to suppose that 
concrete is capable of withstanding a greater stress due to bending than due to 
direct load, but this assumption allows a linear variation of strain to be assumed 
when in reality the variation is otherwise.

One plastic theory (4) shows that the load P  applied at an eccentricity e causing 
failure due to compression of a member of breadth b and effective depth d is

A sPy

^  +  I
+

bdu„

3 de
(°'5 d +  ks +  i-i78

where 2ks is the distance between the compressive and tensile reinforcement and 
u c is the strength of concrete cylinders. If P  is plotted to a base of P e (or M )  
the result is a straight line passing through P  = P y for M  —  o, and through

/u
M 0 =  M  =  b(o-$d -f k s) 2. A  -j- p ygAskg for P  =  o. The relation of the load to 
the moment to cause failure due to compression is, therefore, given by

7
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• (io)M =  ( P , - P ) ^  ■ 
■*-1!

An expression relating P  and M  for failure due to insufficient tensile strength 
can be derived by considering the section in Fig. 3 when tensile failure is imminent. 
Replace the forces on the compression side by F. By equating the internal and 
external forces and the moments of these forces about the centre-line, and by 
combining the resultant expressions,

M
-- =  P  + o P „ ................ (11)
Rs

in which aP y —  p ysA s, and ks is assumed to be approximately equal toy. Com
paring this equation with the results of tests, there is so close an agreement that 
the use of this simple equation in place of more elaborate expressions seems to 
be justified.

Slender Reinforced Concrete Columns.
Tests over short periods (5) show that (2) is applicable to slender reinforced 

concrete columns if p yA  =  P y is the load at failure in compression of a short
lcolumn of the same cross-section as the slender column and if n =  0-003-.
k

Formula (2) can be obtained from the elastic theory, but an inconsistency is 
thereby introduced because P y is calculated from a plastic theory of failure. 
The formula can, however, be obtained by using a plastic theory of failure as 
expressed in (10) and (11).

If the failure is by tension
p _  _  oPy -  (1 -  v)p e +  J  ~qPy — (1 — rj)Pe

in the derivation of which the elastic theory is used to determine the lateral 
deflections and the plastic theory is used as a criterion of failure. The justification 
for this anomaly is that there is, as yet, no satisfactory theory for the distribution 
of moments and forces in a reinforced concrete member when the deformations 
cease to be elastic.

+  ttPvP e (12)

The Strength of Slender Reinforced Concrete Columns when 
Loaded Instantaneously to Failure.

In Fig. 4 formula (2) is applied to four representative columns assuming
7) = 0-003-. The selected limiting values for the strength of the concrete and the 

k
percentage of reinforcement are also given. Values of P e are obtained from (1) in 
which E  is the value for concrete and A  = A c + m A s, the modular ratio m  being 
applicable to zero time ; P y is calculated from (9). Curves published elsewhere (5) 
are also plotted and give lower reduction-factors than those given by the writers.
This is because the curves are based on a modular ratio of which corre-

u

sponds approximately to the effective modulus at one day, an allowance therefore 
being made for the creep that occurs during the first day under load. By using
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is not applicable to the values of \ in Fig. 4 ; thus the curves exhibit no dis-
k

continuity. This does not imply that slender reinforced concrete columns of 
these dimensions collapse without tensile cracks appearing, but that a state of 
instability is attained before the cracks occur.

the modulus at zero time the effect of creep at this stage is excluded. Formula (12)

The Effect of Creep in a Slender Reinforced Concrete Column.
The analysis of the effects of creep on the deformation of a slender homo

geneous column can be extended to a reinforced concrete column [Fig. 3(6)]. 
If the stress in the concrete at a distance z from the centre-line is fcz, then (7) is 
true if / is replaced by fcz. The derivation of (7) is unaffected by the presence of 
reinforcement. If the extreme fibre stress is fc and the variation of strain is 
linear [Fig. 3(c)], substitution gives

2 df„ , 2/■„ d4>(t) 1 d Rdfc 2fe dcf>(t)

dE„ dt d dt R 2 dt

The strains on the concrete and steel at any point at distance z from the centre-line
Thus ^

dt dt
are equal, that is ec

Hence

or

L - L df“ 4- f
e s' dt e c' dt 

J _ dj * =  fjL
E A  dt \E„ d t ^ JcdtP U [d

(14)

where fs is the stress in the steel at a distance ks from the centre-line. From 
(13) and (14) 1 = o. By integration, the constant being deter-

E sk Q dt R 2 dt
mined from fs and R  at zero time,

( fs _i \ _ a . P e 
\ E sks R J  0 cFc — \ l

In and I Q are the second moments of the area of the steel

cos 15)

where & e =  Ic + -s/
Ec

and concrete. The bending moment to which the section is subjected is

M =  +  i f,1‘ ......................................... (l6)
d2y givesCombining (15) and (16) and substituting — =

R  dx2

2 f — 1 Jpy  _L E I 4- a'^e COS ^
/  i cr y +  t ‘1>W + <peEe cosi (17)

Substituting (17) and the differential of (17) in (13), the resultant expression can 
be integrated to give

a'Pe 1 4 ^ !  Pe ~  P\ _  Pe ~  P\ cos 7Tx
Pe~P\ V Pe'P-Pes) Pe'P~Pes] l ’y =
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As in a slender plain-concrete column, the effect of creep upon the lateral deflection 
is to multiply the deflection by a factor a which for a slender reinforced concrete 
column is given by

Pes Pe _ Pes Pe ~  P
Pe ' P-  Pe‘P~ Pes.

• (1 8)
where

To be able to apply this analysis to an actual column, the proportion con
tributed by the reinforcement to the total Euler-load, and the characteristics of 
the creep of the concrete as defined by must be known. As the ultimate 
strength of a column is the strength when the full effect of creep takes place, it 
is the strain due to creep when t is infinite that is required. The appropriate 
constants for the columns previously considered are given in the table in Fig. 4.

pBy assuming a value for — , a can be obtained from (18). By replacing
Py

P
r\ by ar\, (2) can be solved for —  ; comparison of this value with the assumed

Pyvalue shows the validity of the assumption. A more accurate value can be 
obtained by continued approximations. If the results of calculations carried out 
in this manner are plotted, curves are obtained similar to those in Fig. 2, giving 
the theoretical load causing failure after the passage of infinite time. Such 
curves cannot be used in design since a load-factor is not introduced, but by 
a slight modification of the calculation a load can be obtained such that the 
load-factor never falls below a specified value. As an example, suppose that the

1 p  pload-factor required is 2-5. Solve (18) for —  x —  instead of for — . With
2'5 Py Py

p  .the value of a so obtained, —  is determined from (2). In this way the ultimate
Pyload at infinite time is obtained for a column which has been maintained con

tinuously under a load equal to 40 per cent, of that ultimate load, and with this 
load the load-factor approaches 2-5 but is never less. In Fig. 5 the curves are 
plotted for the four columns given in Fig. 4 for a load-factor of 2-5. The curves 
are so close together that the diagram is more clearly shown as an envelope 
within which it is expected that columns of the more common designs will lie. 
Because the envelope is so narrow, which is remarkable when the wide range of 
columns represented is considered, it is possible to plot a mean curve which may 
be used in practice without serious error. The ordinates of the mean curve have 
been reduced to 40 per cent, of their value to give, in the lower part of Fig. 6, 
a curve of reduction-coefficients for permissible loads. For comparison the 
reduction factors recommended in the D.S.I.R. Code (1934) and the British 
Standard Code CP114 (1948) are also given. The most important difference
occurs for the more common values of -, that is up to 80, and this is due to

k
the assumption in the code that no buckling factor need be applied for columns



for which - is less than 50. Experiments seem to show, however, that the 
k

bending effects are sensible in all columns except those that are very squat.

Conclusions.
Creep has an adverse effect upon the strength of slender reinforced concrete 

columns and current methods of design make little allowance for this fact. The 
strength of a slender column subject to creep is a function of time. Only pin- 
ended columns are considered, but it is convenient and justifiable to consider 
the simplest case when attempting to solve the complex problem of the instability 
of a non-homogeneous column one of the components of which is subject to creep.

No distinction between dead and live loads has been made, it being assumed 
that the load is continuously applied. To allow for transient loads it is necessary 
to predict the value of a for the dead load only ; the combined dead and live 
loads are considered in the determination of the load-factor. When the ratio 
of live load to dead load is small it is probable that little economy is lost by 
considering the total load as dead load thereby enabling a curve such as that in 
Fig. 5 to be used, although verification by tests on actual columns is desirable. 
For such tests it is necessary to maintain many columns under load for long 
periods before testing them to destruction. Although a load cannot be maintained 
for an infinite time, the load-factor at any time can be estimated so that if actual 
failing loads at that time agree with the calculated loads it is possible to estimate 
by extrapolation for longer periods.
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