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G e o p h y s i c a l  T u T o r i a l  —  c o o r d i n a T e d  b y  M a T T  h a l l

Full-waveform inversion, Part 3: Optimization

Introduction
This tutorial is the third part of a full-waveform inversion 

(FWI) tutorial series with a step-by-step walkthrough of setting 
up forward and adjoint wave equations and building a basic FWI 
inversion framework. For discretizing and solving wave equations, 
we use Devito (http://www.opesci.org/devito-public), a Python-
based domain-specific language for automated generation of 
finite-difference code (Lange et al., 2016). The first two parts of 
this tutorial (Louboutin et al., 2017, 2018) demonstrated how to 
solve the acoustic wave equation for modeling seismic shot records 
and how to compute the gradient of the FWI objective function 
using the adjoint-state method. With these two key ingredients, 
we will now build an inversion framework that can be used to 
minimize the FWI least-squares objective function.

FWI is a computationally and mathematically challenging 
problem. The computational complexity comes from the fact that 
an already expensive solution procedure for the wave equation 
needs to be repeated for a large number of source positions for 
each iteration of the optimization algorithm. The mathematical 
complexity comes from the fact that the FWI objective is known 
to have many local minima due to cycle skipping.

This tutorial demonstrates how we can set up a basic FWI 
framework with two alternative gradient-based optimization 
algorithms: stochastic gradient descent and the Gauss–Newton 
method (Nocedal and Wright, 2009).

We implement our inversion framework with the Julia Devito 
Inversion framework (JUDI) (https://github.com/slimgroup/
JUDI.jl), a parallel software package for seismic modeling and 
inversion in the Julia programming language (Bezanson et al., 
2012). JUDI provides abstractions and function wrappers that 
allow the implementation of wave-equation-based inversion 
problems such as FWI using code that closely follows the math-
ematical notation while using Devito’s automatic code generation 
for solving the underlying wave equations.

The code to run the algorithms and generate the figures in 
this paper is available at http://github.com/seg/tutorials-2018.

Optimizing the FWI objective function
The goal of this tutorial series is to optimize the FWI objective 

function with the 2 misfit:

minimize
m

f (m) = 1
2i=1

ns

∑ d i
pred (m,q i )−d i

obs
2

2
,            (1)

where di
pred and di

obs are the predicted and observed seismic shot 
records of the i th source location, and m is the velocity model 
(expressed as squared slowness). In Part 1, we demonstrated how 
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to implement a forward modeling operator to generate the predicted 
shot records, which we will denote as di

pred = F(m; qi).  In Part 2, we 
showed how we can compute the gradient f (m) of the objective 
function and update our initial model using gradient descent.

There is a snag, however. This first-order optimization algo-
rithm has a linear convergence rate at best and typically requires 
many iterations to converge. Second-order optimization methods 
converge considerably faster. To implement them, we first approxi-
mate the objective with a second-order Taylor expansion:

f(m) = f(m0) + f(m0)δm + δmT 2f (m0) δm + (δm3),     (2)

where (δm3) represents the error term, f (m0) is the gradient 
as implemented in Part 2, and 2f (m0) is the Hessian of the 
objective function, which we will refer to as H. Rather than using 
the negative gradient to incrementally update our model, as in 
gradient descent, we directly calculate a model update δm that 
leads us to the minimum. This is called Newton’s method:

δm = −H(m0)−1 f (m0).                            (3)

Although the method converges to the minimum of the FWI 
objective function quickly, it comes at the cost of having to compute 
and invert the Hessian matrix (Nocedal and Wright, 2009). 
Fortunately, for least-squares problems, such as FWI, the Hessian 
can be approximated by the Gauss-Newton (GN) Hessian J T J, 
where J is the Jacobian matrix. This is the partial derivative of the 
forward modeling operator F(m; q) with respect to m — something 
we can easily compute. Furthermore, the Jacobian can also be 
used to express the gradient of the FWI objective function as 
f(m0)=JT (di

pred − di
obs), where JT is the adjoint (transposed) Jacobian. 

This is useful, because we now have a set of operators F, J and 
HGN=JT J, through which we can express both first- and second-
order optimization algorithms for FWI.

Although forming these matrices explicitly is not possible, 
since they can become extremely large, we only need the action 
of these operators on vectors. This allows us to implement these 
operators matrix-free. In the following section, we will demonstrate 
how to set up these operators in our JUDI software framework 
and to how to use them to implement FWI algorithms.

Implementing FWI in JUDI
We start our demonstration by reading our data set, which 

consists of 16 shot records and was generated with an excerpt 
from the SEG/EAGE Overthrust model (Aminzadeh et al., 
1997). We store it as a judiVector:
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block = segy_read("overthrust_shot_records.segy")
d_obs = judiVector(block);

JUDI vectors such as d_obs can be used like regular Julia vectors, so we can compute 
norms via norm(d_obs) or the inner product via dot(d_obs, d_obs), but they contain the 
shot records in their original dimension. Shot records can be accessed via their respective 
shot number with d_obs.data[shot_no], while the header information can be accessed 
with d_obs.geometry. We extract the source geometry from our SEG-Y file and then 
manually set up a source vector q with an 8 Hz Ricker wavelet:

f = 0.008  # kHz
src_geom = Geometry(block; key="source")
src_data = ricker_wavelet(src_geom.t[1], src_geom.dt[1], f)
q = judiVector(src_geom, src_data);

We will now set up the forward modeling operator F(m; q) as a matrix-free operator 
for the inverse wave equation A(m)−1, where m is the current model, and source/receiver 
injection and sampling operators Ps and Pr.

Since the dimensions of the inverse wave equation operator depend on the number of 
computational time steps, we calculate this number using the get_computational_nt 
function and set up an info object that contains some dimensionality information required 
by all operators.

Then we can define Pr and Ps as matrix-free operators implementing Devito sparse 
point injection and interpolation (Louboutin et al., 2017). Multiplications with Ps and Pr 
represent sampling the wavefield at source/receiver locations, while their adjoints Ps', Pr' 
denote injecting either source wavelets or shot records into the computational grid.

These projection and modeling operators are set up in Julia in the following way:

ntComp = get_computational_nt(q.geometry, d_obs.geometry, model0)
info = Info(prod(model0.n), d_obs.nsrc, ntComp)
Pr = judiProjection(info, d_obs.geometry)
Ps = judiProjection(info, q.geometry)
Ainv = judiModeling(info, model0);

The forward modeling step can be expressed mathematically as

F(m;q) = Pr A-1 (m)Ps
T q ,                                             (4)

which is expressed in Julia as

d_pred = Pr * Ainv * Ps' * q

This forward models all 16 pre-
dicted shot records in parallel. Notice 
that, in instantiating Ainv, we made 
the wave equation solver implicitly 
dependent on model0.

Finally, we set up the matrix-free 
Jacobian operator J and the Gauss–
Newton Hessian J' * J. As men-
tioned in the introduction, J is the 
partial derivative of the forward 
modeling operator F(m; q) with 
respect to the model m and is there-
fore directly constructed from our 
modeling operator Pr * Ainv * Ps' 
and a specified source vector q:

op = Pr * Ainv * Ps'
J = judiJacobian(op, q);

In the context of seismic inver-
sion, the Jacobian is also called the 
linearized modeling or demigration 
operator, and its adjoint J' is the 
migration operator. One drawback 
of this notation is that the forward 
wavefields for the gradient calcula-
tion have to be recomputed since 
the forward modeling operator only 
returns the shot records and not 
the complete wavefields. For this 
reason, JUDI has an additional 
function for computing the gradi-
ents of the FWI objective function 
f,g = fwi_objective(model0,q[i], 
d_obs[i]), which takes the current 
model, source and data vectors as 
an input and computes the objective 
value and gradient in parallel with-
out having to recompute the for-
ward wavefields.

FWI via gradient descent
With expressions for modeling 

operators, Jacobians and gradients 
of the FWI objective, we can now 
implement different FWI algo-
rithms in a few lines of code. We 
will start with a basic gradient 
descent example with a line search. 
To reduce the computational cost of 
full gradient descent, we will use a 
stochastic approach in which we 
only compute the gradient and func-
tion value for a randomized subset 
of source locations. In JUDI, this is 
accomplished by choosing a random 
vector of integers between 1 and 16 

Figure 1. Observed shot record number 8.
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and indexing the data vectors as described earlier. Furthermore, 
we will apply a projection operator proj(x), which prevent 
velocities (or squared slownesses) becoming negative or too large 
by clipping values outside the allowed range.

A few extra variables are defined in the notebook, but the full 
algorithm for FWI with stochastic gradient descent and box 
constraints is implemented as follows:

for j=1:maxiter
    # FWI objective function value and gradient.
    i = randperm(d_obs.nsrc)[1:batchsize]
    fval, grad = fwi_objective(model0, q[i], d_obs[i])

    # Line search and update model.
    update = backtracking_linesearch(model0,
                                     q[i],
                                     d_obs[i],
                                     fval,
                                     grad,
                                     proj;
                                     alpha=1f0)
    model0.m += reshape(update, model0.n)

    # Apply box constraints.
    model0.m = proj(model0.m)
end

JUDI’s backtracking_linesearch 
function performs an approximate line 
search and returns a model update that 
leads to a decrease of the objective func-
tion value (Armijo condition; Nocedal 
and Wright, 2009). The result after 10 
iterations of SGD with box constraints 
is shown in Figure 2. In practice, where 
starting models are typically less accu-
rate than in our example, FWI is often 
performed from low to high frequencies, 
since the objective function has less local 
minima for lower frequencies (Bunks 
et al., 1995). In this multiscale FWI 
approach, a low-pass-filtered version of 
the data is used to invert for a low-
resolution velocity model first, and 
higher frequencies are added in subse-
quent iterations.

FWI via the Gauss–Newton method
As discussed earlier, the convergence 

rate of GD depends on the objective func-
tion, but requires many FWI iterations 
necessary to reach an acceptable solution. 
Using our matrix-free operator for the 
Jacobian J, we can modify the above code 
to implement the Gauss–Newton method 
(equation 3) to improve the convergence 
rate. In practice, directly inverting the 

Gauss–Newton Hessian J' * J should be avoided, because the 
matrix is badly conditioned and takes many iterations to invert. 
Instead, we perform a few iterations of a least-squares solver, lsqr(), 
to approximately solve J * p = d_pred - d_obs and obtain the 
update direction p. lsqr, from the Julia IterativeSolvers package, 
is a conjugate-gradient type algorithm for solving least-squares 
problems and is mathematically equivalent to inverting J' * J, but 
has better numerical properties (Paige and Saunders, 1982). We 
implement the Gauss-Newton method as follows:

for j=1:maxiter
    # Model predicted data.
    d_pred = Pr * Ainv * Ps' * q

    # GN update direction.
    p = lsqr(J, d_pred - d_obs; maxiter=6)

    # update model and box constraints.
    model0.m = model0.m - reshape(p, model0.n)
end

In contrast to our SGD algorithm, we use all shot records in 
every iteration, since stochastic methods for second-order algorithms 
are less well understood, making this approach considerably more 
expensive than our previous algorithm. However, as shown in Figures 
2 and 3, it achieves a superior result, with a considerably lower misfit 

Figure 2. (a) Initial model. (b) Recovered velocity model after 10 iterations of stochastic gradient descent with box 
constraints and a batch size of eight shots. (c) Recovered velocity model after 10 iterations of the Gauss–Newton 
method, with six iterations of LSQR for the Gauss–Newton subproblem, and using all shots in every iteration. The 
resulting misfit is substantially lower than what was achieved with gradient descent.
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compared to the known model. Furthermore, Figure 3 shows that 
it achieves the improved result in relatively few iterations.

An alternative to (Gauss–)Newton methods are quasi-Newton 
methods, which build up an approximation of the Hessian from 
previous gradients only and require no additional PDE solves or 
matrix inversions. Implementing an efficient and correct version of 
this method, such as the L-BFGS algorithm, exceeds a few lines of 
code, and we therefore leave this exercise to the reader. Instead of 
implementing more complicated algorithms by hand, it is also possible 
to interface third-party Julia optimization libraries; an example for 
this is given in the notebook fwi_example_NLopt.ipynb.

Even though all examples shown here are two-dimensional, 
to make them reproducible on a laptop or desktop PC, JUDI can 
be used for 3D modeling and inversion without having to change 
the code, since the number of dimensions are automatically inferred 
from the velocity model and data dimensions.

Conclusions
In this final part of our FWI tutorial series, we demonstrated 

how to set up basic optimization algorithms for waveform inversion 
using JUDI. The methods shown here are all gradient based and 
differ in the way update directions for the velocity model are 
computed. Our numerical examples can serve for the reader as a 
basis for developing more advanced FWI workflows, which usually 
include additional data preprocessing, frequency continuation 
techniques, or further model constraints. 
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