
142 THE LEADING EDGE February 2018

G e o p h y s i c a l T u T o r i a l — c o o r d i n a T e d b y M a T T h a l l

Full-waveform inversion, Part 3: Optimization

Introduction
This tutorial is the third part of a full-waveform inversion

(FWI) tutorial series with a step-by-step walkthrough of setting
up forward and adjoint wave equations and building a basic FWI
inversion framework. For discretizing and solving wave equations,
we use Devito (http://www.opesci.org/devito-public), a Python-
based domain-specific language for automated generation of
finite-difference code (Lange et al., 2016). The first two parts of
this tutorial (Louboutin et al., 2017, 2018) demonstrated how to
solve the acoustic wave equation for modeling seismic shot records
and how to compute the gradient of the FWI objective function
using the adjoint-state method. With these two key ingredients,
we will now build an inversion framework that can be used to
minimize the FWI least-squares objective function.

FWI is a computationally and mathematically challenging
problem. The computational complexity comes from the fact that
an already expensive solution procedure for the wave equation
needs to be repeated for a large number of source positions for
each iteration of the optimization algorithm. The mathematical
complexity comes from the fact that the FWI objective is known
to have many local minima due to cycle skipping.

This tutorial demonstrates how we can set up a basic FWI
framework with two alternative gradient-based optimization
algorithms: stochastic gradient descent and the Gauss–Newton
method (Nocedal and Wright, 2009).

We implement our inversion framework with the Julia Devito
Inversion framework (JUDI) (https://github.com/slimgroup/
JUDI.jl), a parallel software package for seismic modeling and
inversion in the Julia programming language (Bezanson et al.,
2012). JUDI provides abstractions and function wrappers that
allow the implementation of wave-equation-based inversion
problems such as FWI using code that closely follows the math-
ematical notation while using Devito’s automatic code generation
for solving the underlying wave equations.

The code to run the algorithms and generate the figures in
this paper is available at http://github.com/seg/tutorials-2018.

Optimizing the FWI objective function
The goal of this tutorial series is to optimize the FWI objective

function with the 2 misfit:

minimize
m

f (m) = 1
2i=1

ns

∑ d i
pred (m,q i)−d i

obs
2

2
, (1)

where di
pred and di

obs are the predicted and observed seismic shot
records of the i th source location, and m is the velocity model
(expressed as squared slowness). In Part 1, we demonstrated how

Philipp Witte1, Mathias Louboutin1, Keegan Lensink1, Michael Lange2, Navjot Kukreja2, Fabio Luporini2, Gerard Gorman2, and Felix J.
Herrmann1,3

to implement a forward modeling operator to generate the predicted
shot records, which we will denote as di

pred = F(m; qi). In Part 2, we
showed how we can compute the gradient f (m) of the objective
function and update our initial model using gradient descent.

There is a snag, however. This first-order optimization algo-
rithm has a linear convergence rate at best and typically requires
many iterations to converge. Second-order optimization methods
converge considerably faster. To implement them, we first approxi-
mate the objective with a second-order Taylor expansion:

f(m) = f(m0) + f(m0)δm + δmT 2f (m0) δm + (δm3), (2)

where (δm3) represents the error term, f (m0) is the gradient
as implemented in Part 2, and 2f (m0) is the Hessian of the
objective function, which we will refer to as H. Rather than using
the negative gradient to incrementally update our model, as in
gradient descent, we directly calculate a model update δm that
leads us to the minimum. This is called Newton’s method:

δm = −H(m0)−1 f (m0). (3)

Although the method converges to the minimum of the FWI
objective function quickly, it comes at the cost of having to compute
and invert the Hessian matrix (Nocedal and Wright, 2009).
Fortunately, for least-squares problems, such as FWI, the Hessian
can be approximated by the Gauss-Newton (GN) Hessian J T J,
where J is the Jacobian matrix. This is the partial derivative of the
forward modeling operator F(m; q) with respect to m — something
we can easily compute. Furthermore, the Jacobian can also be
used to express the gradient of the FWI objective function as
f(m0)=JT (di

pred − di
obs), where JT is the adjoint (transposed) Jacobian.

This is useful, because we now have a set of operators F, J and
HGN=JT J, through which we can express both first- and second-
order optimization algorithms for FWI.

Although forming these matrices explicitly is not possible,
since they can become extremely large, we only need the action
of these operators on vectors. This allows us to implement these
operators matrix-free. In the following section, we will demonstrate
how to set up these operators in our JUDI software framework
and to how to use them to implement FWI algorithms.

Implementing FWI in JUDI
We start our demonstration by reading our data set, which

consists of 16 shot records and was generated with an excerpt
from the SEG/EAGE Overthrust model (Aminzadeh et al.,
1997). We store it as a judiVector:

1The University of British Columbia, Seismic Laboratory for Imag-
ing and Modeling (SLIM).

2Imperial College London.
3Georgia Institute of Technology.

https://doi.org/10.1190/tle37020142.1.

D
ow

nl
oa

de
d

03
/2

2/
19

 to
 1

55
.1

98
.1

2.
56

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Ftle37020142.1&domain=pdf&date_stamp=2018-02-02

February 2018 THE LEADING EDGE 143

block = segy_read("overthrust_shot_records.segy")
d_obs = judiVector(block);

JUDI vectors such as d_obs can be used like regular Julia vectors, so we can compute
norms via norm(d_obs) or the inner product via dot(d_obs, d_obs), but they contain the
shot records in their original dimension. Shot records can be accessed via their respective
shot number with d_obs.data[shot_no], while the header information can be accessed
with d_obs.geometry. We extract the source geometry from our SEG-Y file and then
manually set up a source vector q with an 8 Hz Ricker wavelet:

f = 0.008 # kHz
src_geom = Geometry(block; key="source")
src_data = ricker_wavelet(src_geom.t[1], src_geom.dt[1], f)
q = judiVector(src_geom, src_data);

We will now set up the forward modeling operator F(m; q) as a matrix-free operator
for the inverse wave equation A(m)−1, where m is the current model, and source/receiver
injection and sampling operators Ps and Pr.

Since the dimensions of the inverse wave equation operator depend on the number of
computational time steps, we calculate this number using the get_computational_nt
function and set up an info object that contains some dimensionality information required
by all operators.

Then we can define Pr and Ps as matrix-free operators implementing Devito sparse
point injection and interpolation (Louboutin et al., 2017). Multiplications with Ps and Pr
represent sampling the wavefield at source/receiver locations, while their adjoints Ps', Pr'
denote injecting either source wavelets or shot records into the computational grid.

These projection and modeling operators are set up in Julia in the following way:

ntComp = get_computational_nt(q.geometry, d_obs.geometry, model0)
info = Info(prod(model0.n), d_obs.nsrc, ntComp)
Pr = judiProjection(info, d_obs.geometry)
Ps = judiProjection(info, q.geometry)
Ainv = judiModeling(info, model0);

The forward modeling step can be expressed mathematically as

F(m;q) = Pr A-1 (m)Ps
T q , (4)

which is expressed in Julia as

d_pred = Pr * Ainv * Ps' * q

This forward models all 16 pre-
dicted shot records in parallel. Notice
that, in instantiating Ainv, we made
the wave equation solver implicitly
dependent on model0.

Finally, we set up the matrix-free
Jacobian operator J and the Gauss–
Newton Hessian J' * J. As men-
tioned in the introduction, J is the
partial derivative of the forward
modeling operator F(m; q) with
respect to the model m and is there-
fore directly constructed from our
modeling operator Pr * Ainv * Ps'
and a specified source vector q:

op = Pr * Ainv * Ps'
J = judiJacobian(op, q);

In the context of seismic inver-
sion, the Jacobian is also called the
linearized modeling or demigration
operator, and its adjoint J' is the
migration operator. One drawback
of this notation is that the forward
wavefields for the gradient calcula-
tion have to be recomputed since
the forward modeling operator only
returns the shot records and not
the complete wavefields. For this
reason, JUDI has an additional
function for computing the gradi-
ents of the FWI objective function
f,g = fwi_objective(model0,q[i],
d_obs[i]), which takes the current
model, source and data vectors as
an input and computes the objective
value and gradient in parallel with-
out having to recompute the for-
ward wavefields.

FWI via gradient descent
With expressions for modeling

operators, Jacobians and gradients
of the FWI objective, we can now
implement different FWI algo-
rithms in a few lines of code. We
will start with a basic gradient
descent example with a line search.
To reduce the computational cost of
full gradient descent, we will use a
stochastic approach in which we
only compute the gradient and func-
tion value for a randomized subset
of source locations. In JUDI, this is
accomplished by choosing a random
vector of integers between 1 and 16

Figure 1. Observed shot record number 8.

D
ow

nl
oa

de
d

03
/2

2/
19

 to
 1

55
.1

98
.1

2.
56

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://library.seg.org/action/showImage?doi=10.1190/tle37020142.1&iName=master.img-000.jpg&w=344&h=156

144 THE LEADING EDGE February 2018

and indexing the data vectors as described earlier. Furthermore,
we will apply a projection operator proj(x), which prevent
velocities (or squared slownesses) becoming negative or too large
by clipping values outside the allowed range.

A few extra variables are defined in the notebook, but the full
algorithm for FWI with stochastic gradient descent and box
constraints is implemented as follows:

for j=1:maxiter
 # FWI objective function value and gradient.
 i = randperm(d_obs.nsrc)[1:batchsize]
 fval, grad = fwi_objective(model0, q[i], d_obs[i])

 # Line search and update model.
 update = backtracking_linesearch(model0,
 q[i],
 d_obs[i],
 fval,
 grad,
 proj;
 alpha=1f0)
 model0.m += reshape(update, model0.n)

 # Apply box constraints.
 model0.m = proj(model0.m)
end

JUDI’s backtracking_linesearch
function performs an approximate line
search and returns a model update that
leads to a decrease of the objective func-
tion value (Armijo condition; Nocedal
and Wright, 2009). The result after 10
iterations of SGD with box constraints
is shown in Figure 2. In practice, where
starting models are typically less accu-
rate than in our example, FWI is often
performed from low to high frequencies,
since the objective function has less local
minima for lower frequencies (Bunks
et al., 1995). In this multiscale FWI
approach, a low-pass-filtered version of
the data is used to invert for a low-
resolution velocity model first, and
higher frequencies are added in subse-
quent iterations.

FWI via the Gauss–Newton method
As discussed earlier, the convergence

rate of GD depends on the objective func-
tion, but requires many FWI iterations
necessary to reach an acceptable solution.
Using our matrix-free operator for the
Jacobian J, we can modify the above code
to implement the Gauss–Newton method
(equation 3) to improve the convergence
rate. In practice, directly inverting the

Gauss–Newton Hessian J' * J should be avoided, because the
matrix is badly conditioned and takes many iterations to invert.
Instead, we perform a few iterations of a least-squares solver, lsqr(),
to approximately solve J * p = d_pred - d_obs and obtain the
update direction p. lsqr, from the Julia IterativeSolvers package,
is a conjugate-gradient type algorithm for solving least-squares
problems and is mathematically equivalent to inverting J' * J, but
has better numerical properties (Paige and Saunders, 1982). We
implement the Gauss-Newton method as follows:

for j=1:maxiter
 # Model predicted data.
 d_pred = Pr * Ainv * Ps' * q

 # GN update direction.
 p = lsqr(J, d_pred - d_obs; maxiter=6)

 # update model and box constraints.
 model0.m = model0.m - reshape(p, model0.n)
end

In contrast to our SGD algorithm, we use all shot records in
every iteration, since stochastic methods for second-order algorithms
are less well understood, making this approach considerably more
expensive than our previous algorithm. However, as shown in Figures
2 and 3, it achieves a superior result, with a considerably lower misfit

Figure 2. (a) Initial model. (b) Recovered velocity model after 10 iterations of stochastic gradient descent with box
constraints and a batch size of eight shots. (c) Recovered velocity model after 10 iterations of the Gauss–Newton
method, with six iterations of LSQR for the Gauss–Newton subproblem, and using all shots in every iteration. The
resulting misfit is substantially lower than what was achieved with gradient descent.

D
ow

nl
oa

de
d

03
/2

2/
19

 to
 1

55
.1

98
.1

2.
56

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://library.seg.org/action/showImage?doi=10.1190/tle37020142.1&iName=master.img-001.jpg&w=344&h=296

February 2018 THE LEADING EDGE 145

compared to the known model. Furthermore, Figure 3 shows that
it achieves the improved result in relatively few iterations.

An alternative to (Gauss–)Newton methods are quasi-Newton
methods, which build up an approximation of the Hessian from
previous gradients only and require no additional PDE solves or
matrix inversions. Implementing an efficient and correct version of
this method, such as the L-BFGS algorithm, exceeds a few lines of
code, and we therefore leave this exercise to the reader. Instead of
implementing more complicated algorithms by hand, it is also possible
to interface third-party Julia optimization libraries; an example for
this is given in the notebook fwi_example_NLopt.ipynb.

Even though all examples shown here are two-dimensional,
to make them reproducible on a laptop or desktop PC, JUDI can
be used for 3D modeling and inversion without having to change
the code, since the number of dimensions are automatically inferred
from the velocity model and data dimensions.

Conclusions
In this final part of our FWI tutorial series, we demonstrated

how to set up basic optimization algorithms for waveform inversion
using JUDI. The methods shown here are all gradient based and
differ in the way update directions for the velocity model are
computed. Our numerical examples can serve for the reader as a
basis for developing more advanced FWI workflows, which usually
include additional data preprocessing, frequency continuation
techniques, or further model constraints.

Acknowledgments
This research was carried out as part of the SINBAD II project

with the support of the member organizations of the SINBAD

Consortium. This work was financially supported in part by
EPSRC grant EP/L000407/1 and the Imperial College London
Intel Parallel Computing Centre.

Corresponding author: pwitte@eoas.ubc.ca

References
Aminzadeh, F., J. Brac, and T. Kunz, 1997, 3D salt and overthrust

models, SEG/EAGE Modeling Series No. 1: SEG.
Bezanson, J., S. Karpinski, V. B. Shah, and A. Edelman, 2012, Julia:

A fast dynamic language for technical computing: CoRR.
Retrieved from http://arxiv.org/abs/1209.5145.

Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale
seismic waveform inversion: Geophysics, 60, no. 5, 1457–1473,
https://doi.org/10.1190/1.1443880.

Lange, M., N. Kukreja, M. Louboutin, F. Luporini, F. V. Zacarias,
V. Pandolfo, V. Paulius, K. Paulius, and G. Gorman, 2016,
Devito: Towards a generic finite difference DSL using symbolic
python: 6th Workshop on Python for High-performance and
Scientific Computing, https://doi.org/10.1109/PyHPC.2016.013.

Louboutin, M., P. Witte, M. Lange, N. Kukreja, F. Luporini, G.
Gorman, and F. J. Herrmann, Full-waveform inversion, Part 1:
Forward modeling, The Leading Edge, 36, no. 12, 1033–1036,
https://doi.org/10.1190/tle36121033.1.

Louboutin, M., P. Witte, M. Lange, N. Kukreja, F. Luporini, G.
Gorman, and F. J. Herrmann, 2018, Full-waveform inversion,
Part 2: Adjoint modeling, The Leading Edge, 37, no. 1, 69–72,
https://doi.org/10.1190/tle37010069.1.

Nocedal, J., and S. Wright, 2006, Numerical optimization, 2nd
edition: Springer, https://doi.org/10.1007/978-0-387-40065-5.

Paige, C. C., and M. A. Saunders, 1982, LSQR: An algorithm for
sparse linear equations and sparse least squares: ACM Transactions
on Mathematical Software, 8, no. 1, 43–71, https://doi.org/
10.1145/355984.355989.

Figure 3. Normalized function values for the FWI inversion example with stochastic
gradient descent and the Gauss-Newton method.

© The Author(s). Published by the Society of Exploration Geophysicists. All
article content, except where otherwise noted (including republished material), is
licensed under a Creative Commons Attribution 3.0 Unported License (CC BY-SA).
See https://creativecommons.org/licenses/by-sa/3.0/. Distribution or reproduc-
tion of this work in whole or in part commercially or noncommercially requires full
attribution of the original publication, including its digital object identifier (DOI).
Derivatives of this work must carry the same license.

D
ow

nl
oa

de
d

03
/2

2/
19

 to
 1

55
.1

98
.1

2.
56

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://library.seg.org/action/showImage?doi=10.1190/tle37020142.1&iName=master.img-003.jpg&w=246&h=105
https://library.seg.org/action/showLinks?doi=10.1190%2Ftle37020142.1&system=10.1190%2Ftle37010069.1&citationId=p_6
https://library.seg.org/action/showLinks?doi=10.1190%2Ftle37020142.1&system=10.1190%2F1.1443880&isi=A1995RR66900016&citationId=p_3
https://library.seg.org/action/showLinks?doi=10.1190%2Ftle37020142.1&crossref=10.1145%2F355984.355989&isi=A1982NH42200005&citationId=p_8
https://library.seg.org/action/showLinks?doi=10.1190%2Ftle37020142.1&crossref=10.1145%2F355984.355989&isi=A1982NH42200005&citationId=p_8

This article has been cited by:

1. Philipp A. Witte, Mathias Louboutin, Navjot Kukreja, Fabio Luporini, Michael Lange, Gerard J. Gorman, Felix J. Herrmann.
2019. A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. GEOPHYSICS 84:3,
F57-F71. [Abstract] [Full Text] [PDF] [PDF w/Links]

2. Ali M. Alfaraj, Rajiv Kumar, Felix J. Herrmann. Seismic waveform inversion using decomposed one-way wavefields
1379-1383. [Abstract] [Enhanced Abstract] [PDF] [PDF w/Links] [Supplementary Material]

3. Karl Schleicher. 2018. The conjugate gradient method. The Leading Edge 37:4, 296-298. [Abstract] [Full Text] [PDF] [PDF
w/Links]

D
ow

nl
oa

de
d

03
/2

2/
19

 to
 1

55
.1

98
.1

2.
56

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SE

G
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

https://doi.org/10.1190/geo2018-0174.1
https://library.seg.org/doi/full/10.1190/geo2018-0174.1
https://library.seg.org/doi/pdf/10.1190/geo2018-0174.1
https://library.seg.org/doi/pdfplus/10.1190/geo2018-0174.1
https://doi.org/10.1190/segam2018-2998162.1
https://library.seg.org/doi/ref/10.1190/segam2018-2998162.1
https://library.seg.org/doi/pdf/10.1190/segam2018-2998162.1
https://library.seg.org/doi/pdfplus/10.1190/segam2018-2998162.1
https://library.seg.org/doi/suppl/10.1190/segam2018-2998162.1
https://doi.org/10.1190/tle37040296.1
https://library.seg.org/doi/full/10.1190/tle37040296.1
https://library.seg.org/doi/pdf/10.1190/tle37040296.1
https://library.seg.org/doi/pdfplus/10.1190/tle37040296.1
https://library.seg.org/doi/pdfplus/10.1190/tle37040296.1

