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Abstract. Inside cells of living organisms, actin filaments and microtubules self-

assemble and dissemble dynamically by incorporating actin or tubulin from the cell

plasma or releasing it into their tips’ surroundings. Such reaction-diffusion systems

can show diffusion- or reaction-limited behaviour. However, neither limit explains the

experimental data: while the offset of the linear relation between growth speed and

bulk tubulin density contradicts the diffusion limit, the surprisingly large variance of

the growth speed rejects a pure reaction limit. In this article, we accommodate both

limits and use a Doi-Peliti field-theory model to estimate how diffusive transport is

perturbing the chemical reactions at the filament tip. Furthermore, a crossover bulk

density is predicted at which the limiting process changes from chemical reactions to

diffusive transport. In addition, we explain and estimate larger variances of the growth

speed.
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1. Introduction

Microtubules and actin filaments are structures that polymerise by incorporating

and releasing their diffusively moving building blocks, tubulin and actin. They are

responsible for growth, shape, movement, and transport processes, among others,

and can span the entire cell [1, 2, 3]. Their dynamics have been studied intensively

theoretically‡ and experimentally§. However, many questions about their dynamics

remain debated or completely unanswered. This includes: Is their growth limited by

diffusion to their tip [10, 18] or by the chemical reaction rates for incorporation [9, 18]?

How can the large variance of their growth be explained [14]?

In experiments, the filament growth speed 〈v〉 can be measured as a function of

the bulk density ζ of tubulin or actin§. An effective incorporation coefficient kon and

effective release rate koff are determined as parameters of a linear fit of growth speed

data over bulk concentration ζ

〈v〉 = h(konζ − koff), (1)

where h is the effective growth length per incorporated particle. There are two mean

field approaches for modeling the filament growth speed 〈v〉.
The first approach assumes that diffusive transport is quicker than the chemical

reactions [4, 6, 7, 8, 9] and that polymerisation is therefore reaction-limited. This

effectively infinite diffusivity D implies that particle concentration is homogeneous, and

in particular, that there is no significant depletion close to the filament tip. Thus,

filament growth is determined by two Poisson processes, incorporation with rate λζ

and release with rate τ , each of which is associated with a step of length h. The two

competing processes create a Skellam distribution [19] with expected growth speed 〈v〉R
and effective diffusion constant Deff

〈v〉R = h(λζ − τ) and Deff = h2(λζ + τ). (2)

If the system is at the reaction limit, the effective and reaction limit’s coefficients are

equal, i.e. kon = λ and koff = τ . However, in comparison with experiments [14, 11, 16],

Deff is too small. Furthermore, it implies an independence of the growth speed from the

viscosity of the medium, which was rejected experimentally for actin filaments [18] and

microtubules [20]. Thus, a purely reaction-limited behaviour is rejected.

The second approach assumes that transport by diffusion is slower than the

chemical reactions [18, 10] and that self-assembly is therefore diffusion-limited. The slow

transport is not referring to position in R3 only, but in general includes orientation of

the reactants in configuration space too [21]. This implies that, due to the incorporation

into the tip, the building blocks are depleted locally. The growth speed is determined

by the diffusive flux to the tip. If the protein concentration c(x, t) follows a steady state

‡ Theoretical work includes [4, 5, 6, 7, 8, 9, 10] for microtubules and [5, 11, 12, 13] for actin filaments.
§ See Table S1 in the Supplemental Information of [14] for measured microtubule assembly rates. For

actin filaments, assembly rates can be found in [15, 11, 16, 17]. In both cases, the rates are determined

by measuring the filament growth speed 〈v〉 for several bulk densities ζ.
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Figure 1. Filament growth speed 〈v〉 as function of the bulk density ζ of its building

blocks. The diffusion-limited 〈v〉D (red), the reaction-limited 〈v〉R (blue), and the real

growth speed 〈v〉 (black) are shown. A: The system is dominated by its reaction limit.

B: Reaction-limited growth changes to diffusion-limited growth at the crossover bulk

density ζ×, C: The system is dominated by its diffusion limit. There is no release of

building blocks from the tip, i.e. koff = 0 and τ = 0. Dotted lines in panels A and

C: local densities at the tip ζloc can be read off as the bulk density at which reaction-

limited growth leads to the same speed. This also holds in panel B, but is not depicted

for better readability.

diffusion equation 0 = D∆c(x, t), the particle flux J through the absorbent reaction

sphere of radius R and the growth length h determine the growth speed 〈v〉D,

〈v〉D = Jh = 4πDRhζ, (3)

which is equivalent to Smoluchowski coagulation [22] if the orientation of the reactants

does not matter. If the orientation is important, then a smaller, effective reaction

radius R leads to the same relation (3) [23]. If the system is at the diffusion limit,

the effective incorporation coefficient equals the volume flux, i.e. kon = 4πDR.

However, this limit cannot accommodate a release rate koff as any released particle would

immediately be reabsorbed before diffusion can transport it away from the reaction

surface. Furthermore, using this approach with typical parameters of microtubule

assembly, only a small reduction of the bulk tubulin density to 89% is found at the

reaction surface [10]. It therefore is not completely absorbent, as is theoretically

suggested in [24]. According to the Stokes-Einstein equation [25] for small Reynolds

numbers, diffusion-limited growth implies that viscosity and incorporation rate are

inversely proportional [26] without offset. Tested in [18] and [20], small offsets for the

growth of microtubules and the barbed actin filament ends are found, while a significant

offset is found for the pointed ends of actin filaments. Thus, filament growth cannot

be perfectly diffusion-limited either. Furthermore, this model is not probabilistic and

therefore, it is not clear how to derive a variance of the growth speed.

Hence, experimental data suggests that microtubule and actin filament growth is

neither perfectly reaction-, nor perfectly diffusion-limited. The objective of this article is

to go beyond these two categories and understand their interplay better. The diffusion-
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Figure 2. Schematic of the filament self-assembly process. Its building blocks move

diffusively in R3. The filament tip is on a lattice with spacing h. Particles can be

incorporated in the filament (coefficient λ) and released by it (rate τ).

(Eq. (3)) and reaction-limited (Eq. (2)), as well as the measured growth speed are

schematically depicted in Fig. 1. Measured growth and shrinking speeds will always be

slower than both limits for the following reasons. 1) When the filament is shrinking,

the chemically possible, maximal shrinking speed is not attained because diffusion slows

down transport away from the tip, leading to a locally higher particle density. 2)

Analogously, when the filament is growing, the reaction-limited speed is not attained

either because diffusion fails to maintain the bulk particle density around the tip. In

both cases, the local density at the tip ζloc can be read off as the bulk density at which

the reaction-limited speed is equal to the measured speed (dotted line). In principle,

there are three cases: the reaction-limited case A, the mixed case B, where a crossover

from reaction-limited to diffusion-limited behaviour occurs at the crossover bulk density

ζ×, and case C, where shrinking does not occur and the growth is limited by diffusion

at all bulk particle densities.

2. Model

Theoretically, progress can be made by going beyond mean field theory which allows to

calculate how chemical reactions are perturbed by diffusive transport of the reactants.

Here, filament self-assembly is modelled on a three-dimensional lattice and described

by a master equation (Appendix, Eq. (C28)). Following work by Doi [27] and Peliti

[28], the probability generating function of this model can be found by transforming

the model into a field theory. The derivation of the field theory is outlined briefly

in Appendix B and Appendix C.

In our model, the building blocks and the filament tip are represented by fields,

which are interpreted as time-dependent probability distributions of their positions.

There is no field representing the filament as a whole, only its tip is modelled because

it is the only part interacting with the building blocks. Due to the field representation,
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they do not have a size. However, the finite size of the proteins is an important element

of the step-wise filament growth. Therefore, our model is set up on a hybrid, three

dimensional space: While particles move in continuous space R3, the filament tip is

restricted to a discrete line Z with lattice constant h, overlaying the z-axis in R3, see

Fig. 2. The persistence length P and flexural rigidity K of the filament we model are

thus effectively infinite. This is a good approximation for microtubules (P ≈ 5200µm,

K ≈ 2 · 10−23Nm2), while for actin filaments, this approximation is slightly worse

(P ≈ 18µm, K ≈ 7 ·10−26Nm2) [29]. As we are modelling only a single polymer instead

of the 13 microtubule protofilaments or the 2 actin filament strands, we interpret the

lattice spacing h as the effective growth step length.

Each of the fields exists as an annihilation field and a creation field: ϕ(x, t) and

ϕ†(x, t) for the building blocks, as well as ψj(t) and ψ†j(t) for the filament tip. The

creation field initiates a single particle or filament tip at the specified position and time,

whereas the annihilation field measures their number at the point stated. Creation

fields often appear as Doi-shifted fields [27], e.g. ϕ†(x, t) = ϕ̃(x, t) + 1‖. In addition,

the particle annihilation field is shifted to measure deviations from the bulk density ζ,

i.e. ϕ(x, t) = ϕ̌(x, t) + ζ. Between creation and annihilation, the system evolves by the

stochastic processes included in the model.

There are six microscopic processes in our model. The units of the corresponding

coefficients, denoted by [. . .], are written as monomials of T (time) and L (length). The

last three microscopic processes are needed only for technical reasons and are eliminated

at a later point.

• particle diffusion with constant D, [D] = T−1L2

• actin or tubulin absorption by the filament tip with coefficient λ and subsequent

movement of the tip by distance h in the +z direction, [λ] = T−1L3

• particle release from the filament tip with rate τ and subsequent movement of the

tip by distance h in the −z direction, [τ ] = T−1

• actin/tubulin creation with coefficient γ, [γ] = T−1L−3

• extinction of actin/tubulin with rate r, [r] = T−1

• extinction of the filament tip with rate ε, [ε] = T−1

The two extinction processes are included in the field theory for the technical reason

of enforcing causality. After calculations, we take the limits γ, r, ε → 0 while keeping

the ratio γ/r = ζ constant. Thus, the spontaneous extinction and creation are removed

while a bulk density remains included.

All of the processes above are reflected in the action functional A of our model

which splits up into a bilinear part and an interaction part A = Alin + Aint. The

‖ The field theory represents a systematic Taylor expansion of the probability generating function of

the process. Without the Doi-shift, it is an expansion around 0, whereas with the Doi-shift, it is an

expansion around 1. Details of the mapping between the field theory and the probability generating

function can be found in [30]



Is Actin Filament and Microtubule Growth Reaction- or Diffusion-Limited? 6

diffusion and extinction of particles is represented in the particle bilinear part

Alin-P =

∫
R4

ϕ̃(x, t)(−∂t +D∆− r)ϕ̌(x, t)d3xdt, (4)

where ∆ is the spatial Laplace operator.

The filament tip is stationary without the processes of incorporation or release of

tubulin. It is described by

Alin-F-stat =

∫
R

∑
j∈Z

ψ̃j(t)(−∂t − ε)ψj(t)dt. (5)

However, due to incorporation and release, the bilinear part includes jumps in steps

of 1z

Alin-F-mov =

∫
R

∑
j∈Z

( growing︷ ︸︸ ︷
λζ(ψ̃j+1z − ψ̃j)ψj + τ(ψ̃j−1z − ψ̃j)ψj

)
︸ ︷︷ ︸

shrinking

dt, (6)

where we omitted the time dependence of the fields for better readability. The first

part corresponds to filament growth, while the second part describes shrinking of the

filament. Jumps on the lattice are indicated by ±1z.

All three bilinear actions together make up Alin = Alin-P +Alin-F-stat +Alin-F-mov.

The interaction part of A has the form

Aint =

∫
R

∑
j∈Z

[
λ
(

(ψ̃j+1z − ψ̃j)ψjϕ̌(hj)︸ ︷︷ ︸
(a)

− ψ̃jψjϕ̃(hj)ϕ̌(hj)︸ ︷︷ ︸
(b)

−ψjϕ̃(hj)ϕ̌(hj)︸ ︷︷ ︸
(c)

)
+ (τ ψ̃j−1z − λζψ̃j)ψjϕ̃(hj)︸ ︷︷ ︸

(d)

+ (τ − λζ)ϕ̃(hj)ψj︸ ︷︷ ︸
(e)

]
dt, (7)

where the time dependency is omitted for better readability.

The different parts of the interaction describe the following processes:

(a) the filament grows, i.e. the filament tip moves one step in the positive z direction

upon incorporating an actin/tubulin particle;

(b) as particles are incorporated into the tip, its density is reduced locally, resulting in

anticorrelations of the tip and the particle density;

(c) particle density is reduced by incorporation into the tip;

(d) in the presence of a tip, the particle density is increased by spontaneous release (τ)

and decreased by incorporation (λζ), leading to corresponding correlations of tip

and particle densities;

(e) τ : particle density is increased because the filament releases a particle; λζ: particle

density is decreased because the filament incorporates a particle.

Field-theoretic propagations and interactions are schematically represented by

Feynman diagrams. Particle propagation is drawn as a straight red line, filament
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propagation is depicted as a curly blue line, and interactions are illustrated as vertices,

see Fig. 3.

The interplay between propagation and interaction in a system governed by the

action A can be calculated using the path integral. The system may be initialised by

placing a filament tip at position hj0 = 0 at time t0 = 0. Then, the system evolves and

particle concentrations, the filament tip positions, or moments of their distributions can

be measured at a later point in time. In general, if the observable that we want to

measure is represented by a combination of fields O(t), then its time-dependent, spatial

probability distribution is given by the following path integral (see e.g. [31] for a detailed

review)

〈O(t)ψ†0(0)〉:=
∞∑
`=0

∫
D[ϕ, ψ]O(t)ψ†0(0)e−Alin

(−Aint)
`

`!
. (8)

Formally, this integral is summing all variations of all fields involved of all stochastic

processes possibly occurring. The path integral is normalised such that

〈1〉 =
∞∑
`=0

∫
D[ϕ, ψ]e−Aprop

(−Aint)
`

`!
= 1. (9)

The `-th term of the series is the contribution of all processes with ` interactions.¶
The distribution of the filament’s tip position j is given by 〈ψj(t)ψ†0(0)〉. The expected

growth speed and its variance are then determined by calculating the filament’s expected

position and its variance after time t.

3. Results

In the following, we consider three approximations of 〈ψj(t)ψ†0(0)〉: Firstly, 〈ψj(t)ψ†0(0)〉0
is the reaction-limited distribution, cutting the sum in Eq. (8) at ` = 0, which results

¶ These interactions are in the field-theoretic sense. In fact, the term for ` = 0 already includes an

arbitrary number of chemical interactions.

λ
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ϕϕ̃
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τ − λζ

ψψ̃
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Figure 3. The stochastic processes that appear in Aint, Eq. (7), are represented as

amputated vertices in Feynman diagrams. Curly blue lines represent filaments, while

straight red lines stand for their building blocks, actin or tubulin. In Doi-Peliti field

theory, the convention is that all Feynman diagrams are read from right to left.
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in only one Feynman diagram shown in Eq. (10). Secondly, 〈ψj(t)ψ†0(0)〉2 is terminating

the sum at ` = 2, resulting in two diagrams shown in Eq. (10) and (11). Thirdly,

〈ψj(t)ψ†0(0)〉Dy is the Dyson sum, which contains terms of all orders but selects only

those Feynman diagrams whose loops are arranged daisy-chain-like, shown in Eq. (10)

to Eq. (12):

〈ψj(t)ψ̃0(0)〉Dy =̂ (10)

+
(11)

+
+ . . . (12)

Not included in the Dyson sum approximation are terms whose Feynman diagrams

have overlapping loops, e.g.

(13)

The physical interpretation of this approximation is as follows: repeated

interactions between the filament tip and a building block are included, however, ignored

are the cases where the repeated interactions of two building blocks with the filament

overlap in time.

A priori, it is not clear which truncation of the path integral is a good approximation

of the observable. However, a good agreement of the approximate result with

experimental data indicates that the processes which were not included in the calculation

rarely occur under experimental conditions.

The second and third approximation for the average filament growth speed are

〈v〉2 = h(λζ − τ)
(

1− λ
( 1

4πDR
− h|λζ − τ |

8πD2

)
︸ ︷︷ ︸

Loop correction term

)
, (14)

〈v〉Dy =
h(λζ − τ)

1 + λ
(

1
4πDR

− h|λζ−τ |
8πD2

) . (15)

The approximation 〈v〉0 is given by 〈v〉2 without the loop correction term. The derivation

of Eq. (14) is outlined in Appendix E.

The loop correction term takes into account that, due to diffusive transport, the

reaction-limited speed is reduced further because the locally depleted particles have to

reach the effective reaction sphere of radius R. Considering the first term of the loop

correction, if the diffusion is strong, the chemical reactions are less hindered by slow

transport and the growth speed is closer to its reaction limit. This diffusion correction

is itself corrected in the second term of the loop correction which describes how quickly

the tip reaches regions that are less depleted. It predicts a non-linear dependence of
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the growth speed 〈v〉 on the bulk particle density ζ, which so far has not been observed

experimentally. Therefore, we assume 1
4πDR

� h|λζ−τ |
8πD2 and ignore the latter in the

following. Thus, given the diffusion-limited growth coefficient 4πDR and the observed

kon and koff, Eq. (1), we can calculate the reaction-limited λ as well as the offset τ

λ = kon
4πDR

4πDR− kon

and τ = koff
4πDR

4πDR− kon

, (16)

which is equivalent to the results in [32] for general reaction-diffusion systems. It follows,

that the observed growth coefficient kon is smaller than the reaction- and the diffusion-

limited growth coefficients, i.e. kon
λ
< 1 and kon

4πDR
< 1, as shown in Fig. 1.

Furthermore, there is a bulk particle density ζ× at which diffusion becomes the

defining limitation in comparison to reaction (Fig. 1, B):

ζ× =
koff

2kon − 4πDR
. (17)

For koff = 0, if 4πDR > 2kon, then growth is reaction-limited otherwise it is diffusion-

limited.

One of the open questions for microtubule and actin filament growth is the origin

of large fluctuations [14, 11]. In part, they can be explained as an overlap of the

fluctuations of the reaction and diffusion processes. This is quantified by the effective

diffusion constant (derived in Appendix F)

Deff,2 = h2(λζ + τ)

(
1− λ

4πDR

)
+ λ

h|λζ − τ |
2Dπ

(18)

≈ h2(konζ + koff) + λ
h|λζ − τ |

2Dπ
, (19)

which is larger than the reaction-limited effective diffusion in Eq. (2). The approximation

in the last line, Eq. (19), is good only if the system is close to the reaction-limit, i.e.

if λ � 4πDR. Eq. (19) includes a correction to Eq. (2): it incorporates additional

fluctuations of the filament length caused by the diffusion of the building blocks in

the vicinity of the filament tip. We use Eq. (19) for the following comparison with

experimental data.

4. Comparison with Experimental Data

The experimental values of the parameters used above are not unique, as they depend

on additional aspects of the experimental setup: Is the experiment in vitro, with control

over microtubule-associated proteins (MAPs), or in vivo, where a variety of MAPs can

influence the dynamics?, Which type of tubulin (e.g. GTP or GMPSPP[14]) was used?,

Which polymerization buffers were used for actin?, Are the filaments fixed and only

one end has to be considered for growth, or is it free and can grow or shrink at both

ends simultaneously?, Microtubule and actin filaments are polarized. Which end is

measured?, Which method was used to determine the growth speed variation?, How

was the measurement noise taken into account?

For the following experimental validation of our model, we
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Reference kon koff ζ Deff-m Deff (Eq. (2)) R

µM−1s−1 s−1 µM nm2s−1 nm2s−1 nm

Fujiwara et al. [11] Ca 6.1 0.85 0.14 366 12.4 0.02

Mg 10 0.64 0.06 421 9.3 0.03

Kuhn, Pollard [16] Mg 7.4 0.8 0.16 226 14.5 0.02

Gardner et al. [14] GMPCPP 5.1 3.9 1.5 28.8 4.2 0.13

GTP 1.5? 0.5? 7.0 111 4 0.04

GTP 4.8† 15† 7.0 111 17.5 0.13

Table 1. Experimental results for the incorporation rates kon and release rates koff:

above dashed line: actin filament data, below dashed line: microtubule data. The

theoretical value of the effective diffusion constant Deff according to Eq. (2) depends

on the specific bulk density ζ chosen in the experiment. Given the independently

measured coefficients kon and koff, the expected effective diffusion constant is Deff

– using the uncorrected reaction-limited approach, Eq. (2); however, measured were

diffusion constants Deff-m. The two lines about the data from Fujiwara et al. [11]

concern actin(Ca) and actin(Mg). GTP and GMPCPP refer to different types of

tubulin. The data marked by ? is taken from Fig. 6C in [14] and is significantly

lower than typically measured values, which are marked by † and taken from table S1

in [14]. In all experiments, the expected effective diffusion coefficient Deff is smaller

than the measured one Deff-m. The last column shows the effective interaction radius

determined from Eqs. (16) and (19)

(i) use experimental data for the effective incorporation coefficient kon, effective release

rate koff, and effective diffusion constant (denoted by Deff-m) at a specified bulk

density ζ from references [11, 16, 14],

(ii) calculate effective diffusion constant Deff that is expected in the reaction limit

(setting kon = λ, koff = τ) using Eq. (2) and compare it to the actually measured

constant Deff-m

(iii) set the effective diffusion constant from our model, Eq. (19), to the measured one

Deff-m

(iv) infer the effective interaction radius R from our model using Eqs. (16) and (19) and

compare it two estimates of R based on [26] and [21]

The experimental data and the calculated Deff and R are shown in Table 1. Evaluating

Eqs. (16) and (19), the bulk diffusion constant D of individual individual building blocks

is chosen to be D = 5·107nm2s−1 for actin in water [33, 34, 35], and D = 5.9·106nm2s−1

for tubulin in sea urchin cytoplasm [36]. As tubulin has a length of 8nm and there are

typically 13 protofilaments in a microtubule [37], the effective growth step size h is

0.6nm for the purpose of our calculations. Actin filaments consist of only two strands

and the actin monomer length is approximately 7nm [38], however the monomers are

not aligned in the filament, hence, an effective growth step size h of about 2.7nm is

used [11].

Table 1 shows that for several experiments with actin filaments and microtubules,
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the expected effective diffusion constant Deff from Eq. (2) is smaller than the measured

one, Deff-m. One possible explanation for this higher variability of the growth length is

that the polymerization steps occur in trimers or even larger groups of monomers ([11]

for actin filaments, [39] for microtubles). However, more recent experiments challenge

this explanation ([16] for actin filaments, [40] for microtubules).

Our model accommodates the measured effective diffusion constants Deff without

introducing such oligomer incorporation by choosing a suitable value of the effective

reaction radius R. The values required (see Table 1) range from R ≈ 0.1nm to

R ≈ 0.01nm.

For comparison, we use the theoretical result in [26]: when two spheres whose sum

of radii is R, and whose circular reaction interface has opening angle θ react in a diffusive

environment, then the effective reaction radius is R sin(θ/2) (Eq. (5) in [26]). When the

reaction interface is small compared to the size of the particle, the effective reaction

radius is equal to the diameter of the interface. In [21], the interface size for typical

proteins (including actin monomers and tubulin) is estimated to be about 0.2nm.

While our estimates are smaller but around the same order of magnitude, the

discrepancy still asks for an explanation. Aside from the simplifications of the filament

structure and behaviour made to obtain our model, in deriving the effective diffusion

constant, it was assumed that a one-loop correction is sufficient, Eq. (19). While this

one-loop correction does account for a larger effective diffusion constant, higher order

corrections might be necessary to achieve a better agreement with the experimental data,

in particular when the system is far away from the reaction limit. That our estimate

of R is within a reasonable range suggests that our model suffices to capture the basic

higher order interactions.

5. Conclusion

In conclusion, we found that in real systems with reaction and diffusion processes, there

always is a superposition of their stochastic behaviour. This superposition will likely

influence all observables, of which in this article we picked two: steady state filament

growth speed 〈v〉 and its effective diffusion Deff, quantifying the growth length variance.

We used a field theoretic model to calculate how the reaction limit of microtubule

and actin filament growth is undermined due to imperfect diffusive supply of tubulin or

actin, Eq. (15). The chemical reaction rates were deduced from the measured effective

rates, the diffusivity and the effective reaction radius, Eq. (16). While the superposition

of reactions and diffusion reduces the growth speed, it increases its fluctuations, Eq. (19).

Therefore, we provide a partial explanation for the experimentally observed, large

fluctuations in filament growth speed, Table 1. For the comparison, we assumed that

the system is close to the reaction limit. Although our estimate of the reaction radius is

somewhat smaller than expected, it has the correct magnitude, which suggests that the

basic model is justified but may require further refinement. Other processes, such as

hydrolysis in the filament cap, are also likely to contribute the anomalous fluctuations.
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While our model captures stochastic aspects of reaction-diffusion systems

accurately, it drastically simplifies the real filaments. Among other aspects, the model

neither includes the cylinder structure of microtubules with its thirteen protofilaments,

nor does it model the strand structure of actin filaments. In addition, hydrolysis in the

cap of the filaments is ignored. Despite these simplifications, our model advances the

understanding of the stochasticity of the real self-assembly by using an idealized filament.

Expanding our model by replacing some idealization with more realistic features is left

for future research.

Given the overlap of fluctuations due to chemical reactions and diffusive transport,

it is likely for the filament growth speed to exhibit correlations in time, the study of

which would be compelling for future research.
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Appendix A. Conventions

In the following sections, many details of the calculations whose results are shown in the

main text are presented. The field-theoretic calculations use the following conventions

for the Fourier transformations:

ϕ(ω, k) := F [ϕ(t, x)](ω, k) =

∫
R4

ϕ(t, x)eiωt−ikxd3xdt, (A20)

F−1[ϕ(ω, k)](t, x) =

∫
R4

ϕ(ω, k)e−iωt+ikxd̄3kd̄ω, (A21)

ψ(ω, k) := F [ψj(t)](ω, k) =

∫
R

∑
j∈Z3

ψj(t)e
iωt−ikhjdt, (A22)

F−1[ψ(ω, k)](ω, k) = h3

∫
R

∫
[0, 2π

h
]3

ψ(ω, k)e−iωt+ikhjd̄3kd̄ω, (A23)

with d̄ω = dω/(2π) and d̄3k = d3k/(2π)3. Also used are the shorthands δ̄(ω − ω′) =

2πδ(ω−ω′), δ̄3(k−k′) = (2π)3δ3(k−k′) and δ̄3
c(k−k′) =

∑
j∈Z3 δ3(k−k′+j2π/h), where

δ(·) is the Dirac δ-function in one dimension and δ3(·) in three dimensions. Furthermore,

Θ(t) denotes the Heaviside function.

Appendix B. Master equation

In order to model filament growth as a field theory, we follow the approach by Doi [27]

and Peliti [28]. Our model for filament growth is described by a master equation. It

includes six processes:
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(1) diffusion of actin or tubulin particles (diffusion constant D),

(2) tubulin or actin absorption by the filament tip (incorporation constant λ) and

subsequent movement of the tip in z direction by one step on the lattice,

(3) tubulin or actin release (rate τ) and subsequent movement of the tip in −z direction

by one step on the lattice,

(4) creation of tubulin or actin (constant γ),

(5) extinction of tubulin or actin (rate r),

(6) extinction of the filament tip (rate ε).

The master equation describes in continuous time and on a discrete spatial lattice

hZ3 how many microtubule or actin filament tips (mj ∈ N0) and how many tubulin or

actin particles (nj ∈ N0) are at position j ∈ Z3. Let {m} denote the entire filament

tip occupation configuration in hZ3, and {n} denote the respective tubulin/actin

population. Then, we denote by P({m}, {n}, t) the probability for the system to be

in this configurations at time t. Furthermore, we use the shorthand 1j for occupation

of one filament tip / particle at position j, and we use the shorthand ez for a unit step

on the lattice in z direction. The master equation is:

∂tP({m}, {n}, t) =
∑
j∈Z3

[
(B24)

(1) D
∑
|i−j|=1

(
(nj + 1)P({m}, {n+ 1j − 1i}, t)− njP({m}, {n}, t)

)
(2) + λ

(
(mj + 1)(nj + 1)P({m+ 1j − 1j+ez}, {n+ 1j}, t)

−mjnjP({m}, {n}, t)
)

(3) + τ
(

(mj + 1)P({mj + 1j − 1j−ez}, {n− 1j}, t)

−mjP({m}, {n}, t)
)

(4) + γ
(
P({m}, {n− 1j}, t)− P({m}, {n}, t)

)
(5) + r

(
(nj + 1)P({m}, {n+ 1j}, t)− njP({m}, {n}, t)

)
(6) + ε

(
(mj + 1)P({m+ 1j}, {n}, t)−mjP({m}, {n}, t)

)]
.

Appendix C. Second Quantized Model

As outlined by Doi [27], the classical many particle equation (B24) can be transformed

into a second quantized version. For this, time-independent occupation states |{m}, {n}〉
are introduced, which represent the particle configuration, i.e. they tell us where how

many filament tips ({m}) and tubulin or actin particles ({n}) are found. Furthermore,

ladder operators aj, a
†
j for filament tips and bj, b

†
j for tubulin or actin are introduced.

Their commutation rules are [aj, a
†
i ] = [bj, b

†
i ] = δij. All other commutators are zero.
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Their action on occupation states is defined as

aj|{m}, {n}〉 = mj|{m− 1j}, {n}〉, (C25)

a†j|{m}, {n}〉 = |{m+ 1j}, {n}〉, (C26)

bj|{m}, {n}〉 = nj|{m}, {n− 1j}〉, (C27)

b†j|{m}, {n}〉 = |{m}, {n+ 1j}〉. (C28)

The state of the system is defined as

|φ(t)〉 =
∑
{m},{n}

P({m}, {n}, t)|{m}, {n}〉. (C29)

Using Eq. (B24), the time derivative of |φ(t)〉 can be written as

∂t|φ(t)〉 =
∑
j∈Z3

[
D
∑
|i−j|=1

(
b†ibj − b

†
jbj

)
(C30)

+ λ
(
a†j+ezajbj − a

†
jajb

†
jbj

)
+ τ
(
a†j−ezajbj − a

†
jaj

)
+ γ
(
b†j − 1

)
+ r
(
bj − b†jbj

)
+ ε
(
aj − a†jaj

)]
|φ(t)〉.

As described by Peliti [28], the second quantized state equation (C30) can be

transformed into a field theory in path integral formulation. The result is presented in

the main text of the article, Eqs. (4), (5), (6), and (7).

Appendix D. Propagators

In order to calculate moments of observables, the action in Eqs. (4), (5), (6), and (7)

is Fourier transformed, using the convention from Eq. (A20). In Fourier-space, the

propagators from Eqs. (4), (5), (6) are represented by lines in Feynman diagrams:

=̂
δ̄(ω + ω0)δ̄3(k + k0)

−iω +Dk2 + r
, (D31)

=̂
δ̄(ω + ω0)δ̄3

c(k + k0)

−iω + λζ(1− e−ihkz) + τ(1− eihkz) + ε
, (D32)

where incoming frequencies and momenta carry the subscript 0, while outgoing

frequencies and moment do not have a subscript.

As the observables are probability distributions, after the Fourier transformation,

the observables becomes their moment generating functions. Thus, moments and

variances can be calculated as derivatives of the moment generating functions, evaluated

at zero. This connection is used to calculated the expected filament growth speed and

variance in the following sections.
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Appendix E. Expected microtubule growth length

In a first approximation, truncating the sum in Eq. (8) at ` = 0, we calculate the

expected filament tip position without any loop corrections:

〈hjz〉0 = i∂kz

∫
R

〈ψ(ω, k)ψ̃(ω′, k′)〉0d̄ω
∣∣∣
kz=0

(E33)

= i∂kz

∫
R

e−iωtd̄ω

−iω + λζ(1− e−ihkz) + τ(1− eihkz) + ε

∣∣∣
kz=0

(E34)

= h(λζ − τ)te−εtΘ(t). (E35)

If we now let the creation and extinction coefficients tend to zero while keeping

their ratio ζ = γ/r constant, we find

lim
ε→0
〈hjz〉0 = h(λζ − τ)tΘ(t). (E36)

Hence, in this approximation, the filament growth speed is 〈v〉0 = 〈hj〉0/t = h(λζ − τ),

which is the reaction-limited growth speed, shown in Eq. (2) in the main article.

For the first correction 〈v〉2, the process which is represented by the one-loop

Feynman diagram, Eq. (11), has to be considered also:

〈hjz〉2 = 〈hjz〉0 + i∂kz

∫
R5

〈ψ(ω, k)ψ̃(ω′, k′)〉2d̄ωd̄ωbd̄kb

∣∣∣
kz=0

(E37)

= 〈hjz〉0 + i∂kz

∫
R5

λ(e−ihkz − 1)(τeihkz − λζ)e−iωt

(−iω + λζ(1− e−ihkz) + τ(1− eihkz) + ε)2
(E38)

d̄3kbd̄ωd̄ωb
(i(ωb − ω) + λζ(1− e−ih(k−kb)z) + τ(1− eih(k−kb)z) + ε)(−iωb +Dk2

b + r)

∣∣∣
kz=0

≈〈hjz〉0 +−h(λζ − τ)t λ
( Λ

2π2D
− h|λζ − τ |

8πD2

)
︸ ︷︷ ︸

Loop correction term

Θ(t), (E39)

where ωb and kb are the loop’s free frequency and momentum:

Loop(ω, k) =

∫
R4

d̄3kbd̄ωb
(i(ωb − ω) + λζ(1− e−ih(k−kb)z) + τ(1− eih(k−kb)z) + ε)(−iωb +Dk2

b + r)

Here, we approximated (1 − e±ih(kb−k)z) by ∓ih(kb − k)z, as well as (1 − e±ihkz) by

∓ihkz. Then, a new variable k̃b is introduced, for which the z-component is shifted by

ih(λζ − τ)/(2D) = kbz − k̃bz . Furthermore, we let r, ε tend to zero and we introduced a

cutoff for the k̃b integral such that |k̃b| < Λ. This cutoff Λ is identified as Λ = π/(2R),

where R is the effective radius of the reaction sphere.

Then, the calculation splits into a steady state part (shown here) and a relaxation

part, where the latter tends to zero for large times t. Here, we focus on steady state

solutions and omit the relaxation part. The average expected first correction to the

growth speed is 〈v〉2 = 〈hjz〉2/t, see Eq. (14) of the main article. Both corrections are

graphically represented by Feynman diagrams in Eq. (10) and (11) of the main article.
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The Dyson sum is a geometric sum over loop corrections where all the loops are

daisy-chain-like, see Eq. (10) for the first three diagrams in the series. The associated

expected position is

〈hjz〉Dy = 〈hjz〉0 + i∂kz

∫
R5

λ(e−ihkz − 1)(τeihkz − λζ)e−iωt

(−iω + λζ(1− e−ihkz) + τ(1− eihkz) + ε)2
(E40)

· Loop(ω, k)

1− λLoop(ω, k)
d̄ω

∣∣∣∣
kz=0

≈ h(λζ − τ)t

1 + λ
(

Λ
2π2D

− h|λζ−τ |
8πD2

) (E41)

where Loop(ω, k) is the loop integral, i.e. the ωb and k̃b integral over the second line of

Eq. (E38). The speed is identified as 〈v〉Dy = 〈hjz〉Dy/t.

Appendix F. Variance of microtubule growth length

First, we calculate the mean square displacement of the filament growth in the

approximation without loops, i.e. the sum in Eq. (8) is truncated at ` = 0:

〈(hjz)2〉0 = − ∂2
kz

∫
R

〈ψ(ω, k)ψ̃(ω′, k′)〉0d̄ω
∣∣∣
kz=0

(F42)

= h2Θ(t)e−εt
(

(λζ + τ)t+ (λζ − τ)2t2
)
. (F43)

The variance is equal to

Var0(hjz) = 〈(hjz)2〉0 − 〈hjz〉20 (F44)

= h2Θ(t)(λζ + τ)t, (F45)

where we took the limit ε→ 0. Hence, the variance of the average speed 〈v〉0 decreases

as 1/t.

Var0(v) =
Var0(hjz)

t2
=
h2(λζ + τ)

t
. (F46)

These results represent the reaction-limited behaviour. As the variance of the growth

length is linear in time, an effective diffusion constant D0,eff = h2(λζ + τ) can be

associated. This observable is often considered as a sign for the fluctuations of the

growth process. However, it characterises the reaction-limited fluctuations. In order

to estimate the influence of additional, diffusive fluctuations, at least the first loop

correction has to be calculated:

〈(hjz)2〉2 = 〈(hjz)2〉0 − ∂2
kz

∫
R

λ(e−ihkz − 1)(τeihkz − λζ)e−iωtLoop(ω, k)d̄ω

(−iω + λζ(1− e−ihkz) + τ(1− eihkz) + ε)2

∣∣∣
kz=0

≈ 〈(hjz)2〉0 + λ
h|λζ − τ |2

2Dπ
t︸ ︷︷ ︸

anomalous term

(F47)
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−Θ(t)
(
h2(λζ + τ)t+ 2h2(λζ − τ)2t2

)
λ

(
Λ

2π2D
− h|λζ − τ |

8πD2

)
︸ ︷︷ ︸

Loop correction term

,

where the same approximation as for Eq. (E37) where used, and the extinction rates ε

and r were set to zero. The extra ’anomalous term’ describes the additional fluctuations

that go beyond the mean field calculations, which are described by a Skellam distribution

[19].

In order to calculate the variance, the expected growth length squared has to be

subtracted. However, as we are only considering the first correction, we omit all terms

in which the ’Loop correction term’ appears in a higher than linear order and find the

result shown in Eq. (19) of the main article.
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