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Medial knee joint osteoarthritis (OA) is a debilitating and

prevalent condition. Surgical treatment consists of redistributing

the forces from the medial to the lateral compartment through

osteotomy, or replacing the joint surfaces. As the mediolateral

load distribution is related to the action of the musculature

around the knee, the aim of this study was to devise a

technique to redistribute these forces non-surgically through

changes in muscle excitation. Eight healthy subjects participated

in the experiment, and neuromuscular electrical stimulation

was used to change the muscle forces around the knee. A

musculoskeletal model was used to quantify the loading on

the medial compartment of the knee, and a novel algorithm

devised and implemented to simulate neuromuscular electrical

stimulation. The forces and moments at the knee, ground

reaction forces, walking velocity and step length were

quantified before and after stimulation. Stimulation of the

biceps femoris resulted in a significant decrease in the second

peak of the medial knee joint loading by up to 0.17 body

weight ( p ¼ 0.016). Kinematic parameters were not significantly

affected. Neuromuscular electrical stimulation can decrease the

peak loads on the medial compartment of the knee, and thus

offers a promising therapy for medial knee joint OA.
1. Introduction
Osteoarthritis (OA) is a major degenerative disease, the prevalence

of which is predicted to increase significantly due to a growing
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ageing population [1]. The highest prevalence of OA is in the medial compartment of the knee [2], and

excessive contact force is known to be a risk factor for the onset and progression of medial knee OA [3].

Therefore, reducing the contact force on the medial compartment of the knee is a tantalizing opportunity

to treat medial knee OA.

It has been shown that gait modification by varying the external forces on the knee through valgus

bracing and lateral wedges can decrease the knee adduction moment (KAM) and/or shift the centre of

pressure of the ground reaction force (GRF) laterally [4–7]. These measures are surrogates of the medial

knee contact forces (KMF) and the efficacy of these approaches is highly dependent on the individual

subject [8,9].

As the forces acting upon the knee comprise external forces that are counterbalanced by the internal

forces (reaction forces between the bony segments, muscle forces and ligament forces) [10], and internal

forces are a redundant system with multiple different muscle contraction patterns able to provide this

counterbalance, so it is conceivable that by changing the internal muscle forces, the mediolateral load

distribution can be modified without changing the external forces. This distribution is highly related

to the action of the hamstrings, quadriceps and gastrocnemius muscles [11]. For example, it is known

that an elevated KAM is directly correlated with increased medial loading, and that quadriceps and

gastrocnemius offer the most resistance to KAM [12]. Therefore, an alternative to orthotic gait

modifications is to directly change the muscle forces during gait.

Muscles forces can be changed by altering the timing and strength of contraction through, for

example, physiotherapy. An alternative approach that is used for quadriceps muscle strengthening for

knee OA patients, when they present with chronic pain and joint stiffness [13,14], is neuromuscular

electrical stimulation (NMES). NMES is a non-invasive technology that induces a voltage gradient

along axons that can depolarize membranes that then induce action potential, which causes muscle

contraction. NMES of the quadriceps has been shown to modify knee moments [15] and could be

used to reduce KMF by selecting the appropriate muscles for stimulation. Muscles known to realign

the distribution of the medial and lateral knee forces are the long head of biceps femoris (loBF), lateral

gastrocnemius (latGAS) and vastus lateralis (VL) [11]. Therefore, in this study, it is hypothesized that

the selective excitation of these muscles will redistribute the joint loading from the medial to the

lateral side in healthy subjects, and thus, NMES may be used to ameliorate symptoms in sufferers of

medial knee joint OA.

KMF can be measured directly through the use of implanted prostheses [16], partially inferred

through the KAM [17–21], are indirectly related to knee flexion moment (KFM) [21,22], and can be

reliably estimated through the use of musculoskeletal modelling [23–26]. Of these, the only method

suitable for non-invasive direct quantification of KMF in those without arthroplasty is musculoskeletal

modelling. Some musculoskeletal models are driven by electromyography (EMG) measurements;

however, NMES stimulus contaminates EMG [27] meaning that this approach cannot be used. Other

methods are based on static optimization [28–31] that use cost functions that minimize muscle fatigue

[32], defined as the sum of cubed muscle stresses. However, when NMES is used to externally drive

muscle recruitment, the cost function is not representative. Therefore, in this study, a modified static

optimization cost function is proposed to estimate KMF in NMES-assisted gait.

The aim of this study was to test the hypothesis that extra excitation of the lateral leg muscles

(i.e. loBF, latGAS and VL) can reduce KMF during level walking, where KMF is quantified through

the use of the newly proposed cost function in a validated musculoskeletal model [23]. This is then

compared with the commonly used surrogate of KMF, the KAM, and finally, the input kinematic and

kinetic data are analysed to explain the results.
2. Methods
2.1. Experimental data
Eight healthy subjects (age, 27.3+2.4 years; mass, 62.7+14.4 kg; height, 1.69+ 0.11 m; three males and

five females) participated in this study which consisted of performing four gait tasks, three trials each of:

normal walking, and three walking tasks in which separate muscles were stimulated individually (loBF,

latGAS and VL).

The skin overlying the muscles was prepared with 70% isopropyl alcohol skin wipes, and the electrode

pads (PALSw Platinum, Axelgaard Manufacturing Co., Ltd, Fallbrook, CA, USA) were placed at the two

motor points of the relevant muscles (figure 1a). An asymmetrical biphasic waveform was used with
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Figure 1. (a) Electrode pad positions for stimulated walking. (b) Local coordinate systems.
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the maximum current of 60 mA (1 kV). The frequency of the pulse was set to 40 Hz as recommended by the

NMES manufacturer (Odstock 2 Channel Stimulator, Odstock Medical Ltd, UK). The pulse width was

adjusted from 132.5 to 306.5 ms to generate visible muscle contraction at the limit of the subjects’

tolerance. The stimulation was started manually by the subject by pressing a hand-held switch during

the left foot strike before stepping on the force plate. The stimulation lasted 2 s to cover the entire stance

phase of the right limb.

Right lower limb motion was recorded at 200 Hz using a nine-camera VICON motion analysis system

(Vicon Motion Systems Ltd, Oxford, UK). Eighteen reflective markers were used in this study: RASIS,

LASIS (right and left anterior superior iliac spine); RPSIS, LPSIS (right and left posterior superior iliac

spine); T1, T2, T3 (cluster markers on the thigh); FLE, FME (lateral and medial femoral epicondyle);

C1, C2, C3 (cluster markers on the shank); FAM, TAM (apex of the lateral and medial malleolus);

FCC (calcaneus); FMT (tuberosity of the fifth metatarsal); FM2 (head of the second metatarsal) and TF

(the centre of the acrotarsium). The system was calibrated using a 5 marker L frame.

GRFs were recorded at 1000 Hz from a force plate (Kistler Type 9286BA, Kistler Instrument AG,

Winterthur, Switzerland). During stimulated walking, only the right leg muscles were stimulated, and

the force plate recorded the force applied by the right foot only.

2.2. Modelling
The flowchart (figure 2) outlines the data flow and modelling process.

The open source musculoskeletal model Freebody 2.0, which is based on the original model of

Cleather & Bull [33], was used [23]. The validation of this original model has been described

previously [23,33–36] through comparison between the model calculations and in vivo measurements

of joint reaction forces or EMG. The revised model with NMES has been validated [36] through the

measurement of gluteus maximus activation using EMG pre- and post-application of NMES on loBF;
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the kinematics and kinetics input to the model were measured simultaneously with the EMG, and strong

positive correlations were found in early stance peak (R ¼ 0.78, p ¼ 0.002) and impulse (R ¼ 0.63, p ¼
0.021). The original anatomical model used is from Klein et al. [37] with 163 muscle elements.

However, in order to improve the relevance of the dataset to a clinical population, and improve on

the joint contact point data, the anatomical geometry were newly derived from MR imaging data of

one younger male (height: 1.83 m; mass: 96 kg; age: 43) selected from a database of anatomical

models [38]. The anatomical geometry included the muscle origins, via points, and insertion points,

along with joint centres of rotation, and contact points between the femur and tibial plateau.

In the local coordinate system of each segment (foot, shank, thigh and pelvis), the x-axis is in the

anterior–posterior direction with anterior being positive; the z-axis is in the medial–lateral direction

with lateral being positive and the y-axis is in the longitudinal direction of the segment (figure 1b).

The anatomical model consists of the muscle insertion points of 163 muscle elements. These are scaled

to each subject using scaling factors, where a muscle point in the anatomical model has coordinates

(x0, y0, z0); this is multiplied by a scaling factor to obtain the coordinates of the muscle point in the

subject (x, y, z) (equation (2.1)). Scaling factors, sf, of the segments (pelvis, thigh, shank and foot)

were determined from segmental ratios as in equation (2.2)

(x, y, z) ¼ (x0, y0, z0) � sf ð2:1Þ

and

sfPelvis ¼
Pelvis width of subject

Pelvis width in anatomical model

sfThigh ¼
Thigh length of subject

Thigh length in anatomical model

sfShank ¼
Shank length of subject

Shank length in anatomical model

sfFoot ¼
Foot length of subject

Foot length in anatomical model
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð2:2Þ

The model has five segments in total: foot, shank, thigh, pelvis and patella. A segment-based inverse

dynamics calculation was conducted to quantify the intersegmental forces and moments [33], and an

optimization-based approach was used to quantify the muscle forces [28,34]. The inverse dynamics

method of Dumas et al. [39] was used to formulate the Newton–Euler equations of motion that

include the segmental weight, external forces, muscle forces and joint reaction forces. The muscle

forces were constrained to be between 0 and a maximal force, which was calculated by multiplying

the physiological cross-sectional area (PCSA) from Klein’s research by an assumed maximum muscle

stress of 3.139 � 105 N m22 [37]. Muscle forces of 163 muscle elements, one patella ligament force and

five joint reaction forces (ankle, medial knee, lateral knee, hip and patellofemoral) were considered.

The cost function of the static optimization is the sum of the cubic relative muscle forces, which was

proposed based on the force–endurance relationship [32] (below equation)

X163

j¼1

Fj

F j max

� �3

, ð2:3Þ

where Fj is the muscle force of muscle element j, and Fjmax is the maximal muscle force of muscle

element j.
The joint reaction forces except the tibiofemoral forces were considered to act through the centres of

rotation of the joints taken from MR imaging data: the hip joint centre was defined as the centre of the

femoral head, which was determined by fitting a sphere to the femoral head; the knee joint centre was

defined at the midpoint of the central axis of a cylinder that was fitted to the boundaries of the femoral

condyles; and the ankle joint centre was defined at the centre of a sphere that was fitted to the talar dome.

The centres of rotation were fixed to the distal segment once determined. However, as the tibiofemoral

joint reaction force is compartmentalized into a medial and a lateral component, the contact points of

these two compartments are different from the knee joint centre of rotation, and they were located

according to the MR imaging data of the subject mentioned above. The contact points were fixed to

the shank segment and defined as the points of action of the medial and lateral knee joint forces;

these were the middle of the most distal ends of the femoral condyles in the axial slice. These

positions will change on the thigh segment according to the translations between two adjacent

segments. The subjects’ contact points were obtained by scaling these two points in the MR imaging

data to the subject’s shank using the shank scaling factor.
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The outputs of the optimization are: magnitude of 163 muscle forces, one patella ligament force and

five vectors of joint reaction forces for the ankle, lateral knee, medial knee, hip and patellofemoral joints.

2.3. NMES simulation
The optimization described above quantifies muscle forces according to an endurance function [32].

However, stimulated muscles are expected to have larger forces than in the normal case. In order to

adapt this model to NMES-assisted walking, a new parameter c was added to obtain the new cost

function as in the below equation [40]

X163

j¼1

c �
Fj

F j max

� �3

, ð2:4Þ

where

c ¼ cs for stimulated muscles
1 others:

�
ð2:5Þ

The adjustable weighting factor, cs, enables the stimulated muscle force to increase relative to

standard simulation for a value of cs of less than 1. Conversely, increasing cs to greater than 1 will

result in under-activation of the muscle. As electrical stimulation recruits muscles directly, the

combination of voluntary contractions with electrical stimulation produces stronger contraction [41]

and so, clinically, cs is related to stimulation intensity and it is used to produce changes in muscle

forces. In order to explore the sensitivity of cs on the muscle and joint forces, varying values of cs

(1, 0.75, 0.5, 0.25, 0.1 and 0) were implemented. Finally, cs ¼ 0.1 for BF and cs ¼ 0.25 for latGAS and

VL were selected to produce a significant increase in muscle force during the NMES simulation.

The new cost function (NMESsim) drives the optimization to produce larger forces for the stimulated

muscles, and thus allows the simulation of NMES-assisted walking.

The joint reaction forces in normal gait were calculated with the original cost function in equation

(2.3). As the imposition of muscle contraction using NMES could potentially alter the gait kinematics

and kinetics, the effect of NMES on these variables only was assessed first using the original cost

function. To investigate the effect of increasing muscle activation of the stimulated muscles, NMESsim

in equations (2.4) and (2.5) was also used to quantify NMES-assisted walking. Joint kinematics were

calculated as Euler angles based on the local coordinate systems of the adjacent segments [39]. The

angles were referenced to the standing posture at which the joint angles were defined to be zero.

The sequence of angle calculation is first flexion/extension (plantar flexion/dorsiflexion for the ankle),

then external/internal rotation and lastly abduction/adduction.

2.4. Statistical analysis
The Wilcoxon signed-rank test (Matlab, R2014a, The Mathworks, Inc., 2014) was used to determine if there

was a significant difference between normal walking and NMES-assisted walking. Muscle forces were

compared to validate the effectiveness of NMESsim. As two different cost functions were used, and three

muscles were stimulated, the loBF, latGAS and VL muscle forces in normal gait were compared with

those forces during stimulated walking using both the original cost function and NMESsim.

The magnitude (in body weight—BW) of KMF and KAM were compared between cases. The ankle,

knee and hip joint angles were calculated and compared for normal and NMES-stimulated walking tasks.

The two peak values of GRF and KFM, mean walking velocity and step length during the stance

phase were compared between normal gait and NMES-stimulated walking. In all analyses, each of the

three trials per subject were analysed, and then mean parameters are presented.

Anonymized data files from the physical experiments and the computational simulations are

available on request from the corresponding author.
3. Results
3.1. Sensitivity analysis
The muscle forces and KMFs with varying cs for eight subjects are plotted in figure 3. The stimulated

muscle forces (including loBF, latGAS and VL forces) increase from the turquoise line (cs ¼ 1) to the
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blue line (cs ¼ 0) as cs decreases (figure 3a). The first peak of KMF decreases as the loBF force increases,

and the second peak of KMF decreases as the latGAS force increases, from the turquoise line to the blue

line. The VL has a similar effect as loBF on the first peak, but the decrease in KMF only became clearly

apparent with cs ¼ 0.
3.2. Muscle forces
Figure 4 depicts the mean forces of the main lower limb muscles of eight subjects using NMESsim during

four tasks. The nine muscles are loBF, latGAS, VL, medial head of GAS (medGAS), soleus (SL), tibialis

anterior (TA), rectus femoris (RF), gluteus maximus (GlutMax) and gluteus medius (GlutMed).

There was no significant difference between maximal muscle force values in normal gait and

stimulated walking when using the original cost function. However, maximal muscle forces in the

stimulated tasks were significantly larger than the maximal muscle forces in normal gait when using

NEMSsim for stimulated walking (loBF: 0.27 BW versus 0.20 BW, p ¼ 0.039; latGAS: 0.61 BW versus

0.34 BW, p ¼ 0.008; VL: 1.18 BW versus 0.78 BW, p ¼ 0.008; table 1).
3.3. Knee forces and moments
The mean KMFs are shown in figure 5. Generally, the KMF has two peaks during the stance phase

occurring at the mean values of 28 and 78% of the stance phase. However, two subjects do not have

two explicit peaks. Therefore, the mean KMFs of 20–35 and 70–85% of the stance phase are

calculated to represent the two peak values. The second peak KMF in loBF-stimulated walking is

decreased significantly using the original cost function (stimulated versus normal: 2.26 BW versus 2.32

BW, p ¼ 0.039) and NMESsim (stimulated versus normal: 2.15 BW versus 2.32 BW, p ¼ 0.016) in

table 2. The peak KMFs of each subject are shown in table 3.

The mean KAMs and KFMs are shown in figure 6. The second peak of KAM during loBF-stimulated

walking is significantly smaller than that during normal walking (1.69% BW �Ht versus 1.85% BW �
Ht, p ¼ 0.016, table 4). However, peak KFM does not change with NMES.
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Table 1. Maximal muscle forces in BW of stimulated (NMESsim) and normal (original cost function) walking (mean+ standard
deviation). The maximal muscle force in italics indicates that it is significantly different from the maximal force of the same
muscle in normal walking.

muscle normal walking loBF-stimulated case latGAS-stimulated case VL-stimulated case

loBF 0.20+ 0.11 0.27+ 0.16* 0.15+ 0.08 0.20+ 0.12

latGAS 0.34+ 0.08 0.45+ 0.10** 0.61+ 0.14*** 0.39+ 0.09

VL 0.78+ 0.20 0.72+ 0.28 0.81+ 0.23 1.18+ 0.38***

*p ¼ 0.039, **p ¼ 0.016, ***p ¼ 0.008.
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3.4. Ground reaction forces, walking velocity and step length
GRF is presented in figure 7. There was no statistical difference in peak GRFs, walking velocity and step

length between NMES stimulated and normal walking (table 5). The peak GRFs were defined as those at

the same timing as the peak KMFs. Specifically, these were calculated as the mean values across 20–35

and 70–85% of the stance phase.
4. Discussion
This study has shown that the musculoskeletal system can be tuned by increasing muscle forces to reduce

medial knee joint contact forces (decreased peak values of KMF) in healthy subjects through the

excitation of loBF, and has tested this using NMES. This opens up the possibilities of using NMES to

treat knee OA, a major clinical condition causing disability and pain.

This study is not in agreement with previous computational studies that found that no muscles that

cross the knee could reduce the KMF [24,42]. A key difference between these studies and the present

study is that they assumed that the muscle activations were calculated without kinematic

compensations, i.e. the kinematic and kinetic datasets remained the same for normal and stimulated



0

0
1.4

1.5

1.6

1.4

2.4

2.2

2.1

2.2

2.3

2.4

1.5

1.6

1

2

3

0

1

2

3

50

20

60 80 100 60 80 100

40 0 20 40

100 50 100

normal loBF Stim latGAS Stim VL Stim

stance phase (%) stance phase (%)

fi
rs

t
pe

ak
 K

M
F 

(B
W

)
K

M
F 

(B
W

)
se

co
nd

pe
ak

 K
M

F 
(B

W
)

(a) (b)

Figure 5. Mean KMF obtained using the original cost function (a) and NMESsim (b).

Table 2. Peak KMFs in BW (mean+ standard deviation). The peak knee medial force in italics indicates that it is significantly
different from that of normal gait.

task parameter

method

original cost function NMESsim

normal first peak 1.51+ 0.14 —

second peak 2.32+ 0.39 —

loBF Stim first peak 1.48+ 0.17 1.45+ 0.16

second peak 2.26+ 0.41* 2.15+ 0.43**

latGAS Stim first peak 1.50+ 0.17 1.50+ 0.17

second peak 2.24+ 0.31 2.22+ 0.32

VL Stim first peak 1.53+ 0.18 1.55+ 0.20

second peak 2.27+ 0.33 2.38+ 0.32

*p ¼ 0.039, **p ¼ 0.016.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181545
8

walking. They did not stimulate the muscles, and did not incorporate the changing kinematics and

kinetics due to NMES. One of the advantages of the present study is that the kinematics and kinetics

caused by increased muscle activations were used in the calculations. The different results of these

studies highlight the importance of quantifying the effect of stimulation on kinematics and kinetics.

4.1. The use of cs

Voluntary contractions preferentially recruit type I fibres, and then type II fibres. This asynchronous

activation of varied motor units is a physiological mechanism that decreases muscle fatigue [41].

However, electrically elicited contractions recruit motor units synchronously, and recruit motor units
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parameter subject normal loBF Stim latGAS Stim VL Stim

first peak 1 1.42 1.29 1.37 1.36
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4 1.39 1.27 1.32 1.37

5 1.50 1.39 1.41 1.39

6 1.75 1.67 1.80 1.84

7 1.53 1.62 1.58 1.64
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that are not activated by voluntary contractions [41]. It is deduced that stimulated muscles produce larger

forces than voluntary conditions, and the other muscles contract in a way to decrease muscle fatigue. In

view of this, NMESsim was used with a parameter c to realize a reasonable muscle force distribution: the

stimulated muscle force was increased, and all the muscle and joint forces satisfied the motor function

constraints. The cs values were chosen between 0 and 1 (0, 0.1, 0.25, 0.5, 0.75 and 1), where cs ¼ 1

represents the original cost function. Where the muscles are not saturated (i.e. limited by their PCSA),

assigning a value of cs of less than 1 enforces a greater muscle force than when using the original cost

function; a value of cs ¼ 0 assigns the greatest activation to the muscle as this removes the muscle

from the cost function.

Using cs ¼ 0.1 for BF and cs ¼ 0.25 for latGAS and VL increased the activation of the stimulated

muscles (table 1), but did not, in this study, saturate the muscle (one of the constraints requires the

muscle force to be less than the maximal muscle force). Therefore, theoretically, the simulated muscle

force with cs ¼ 0.1 and cs ¼ 0.25 is expected to be practically achievable. The physical experiment used

NMES to contract the muscles at the maximum comfortable level for each subject.
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Figure 7. Components of GRF in the forward/backward direction (GRFx, a); upward/downward direction (GRFy, b) and right/left
direction (GRFz, c).

Table 5. GRF, walking velocity and step length (mean+ standard deviation).

normal loBF Stim latGAS Stim VL Stim

GRFx (BW) first peak 20.09+ 0.02 20.09+ 0.02 20.09+ 0.02 20.09+ 0.03

second peak 0.12+ 0.02 0.12+ 0.03 0.12+ 0.03 0.12+ 0.02

GRFy (BW) first peak 0.97+ 0.02 0.98+ 0.04 0.98+ 0.03 0.98+ 0.04

second peak 1.08+ 0.06 1.06+ 0.06 1.08+ 0.05 1.08+ 0.06

GRFz (BW) first peak 20.05+ 0.01 20.05+ 0.01 20.05+ 0.01 20.05+ 0.01

second peak 20.06+ 0.02 20.06+ 0.02 20.06+ 0.02 20.06+ 0.02

walking velocity (m s21) 0.78+ 0.08 0.71+ 0.13 0.75+ 0.13 0.77+ 0.14

step length (m) 0.58+ 0.05 0.57+ 0.06 0.57+ 0.06 0.58+ 0.06

Table 4. KAM and KFM in % BW � HT (mean+ standard deviation). The moment in italics indicates that it is significantly
different from that of normal gait.

task first peak second peak

KAM normal 2.07+ 0.24 1.85+ 0.60

loBF Stim 1.96+ 0.20 1.69+ 0.59*

latGAS Stim 2.08+ 0.25 1.64+ 0.68

VL Stim 2.04+ 0.31 1.67+ 0.67

KFM normal 2.42+ 0.97 0.09+ 0.62

loBF Stim 2.62+ 0.91 0.24+ 0.68

latGAS Stim 2.74+ 0.84 0.00+ 0.77

VL Stim 2.80+ 1.00 0.25+ 0.89

*p ¼ 0.016.
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The new algorithm, NMESsim, succeeded in simulating the stimulated condition, because the model-

predicted muscle forces under stimulation were significantly larger than those of normal cases and all the

muscle forces and joint reaction forces satisfied the equations of motion.

EMG signals are affected by the stimulation artefacts caused by the stimulation current when NMES

is used. This has been partially addressed in the literature with, for example, use of an EMG-amplifier

with shut-down control [43], advanced filtering procedures [44] and optimizing the positioning of the

EMG electrodes in relation to the stimulation electrodes [45]. However, these approaches do not fully
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eliminate the stimulation artefacts and we, therefore, were unable to use EMG as a validation of

the method.

4.2. KMF and KAM
The shape of the KMF in stance phase has an expected double hump pattern with slightly higher peak

than measured in vivo [19–21,26,46,47]. The literature has much information on the reasons for higher

joint force predictions using musculoskeletal modelling; in this case, we hypothesize that such forces

are appropriate due to our subjects being younger and more active than those subjects in the literature

who had total joint replacements.

The decrease in KMF due to NMES is not substantial compared to the reduction caused by other

methods. Kinney et al. [47] quantified KMF reduction through gait modification using long hiking

poles with wide pole placement, and found that KMF at 75% stance decreased significantly from 1.35

BW to 0.89 BW. Other modifications in Kinney’s study, such as mild crouch and medial thrust, did

not show any significant KMF reduction. Orthotic interventions using a lateral foot wedge and valgus

knee brace resulted in a decrease in model-estimated peak tibiofemoral load with increasing wedge

size and applied valgus brace moment [7]. A higher level of activation using NMES might be

required to create a greater reduction in KMF.

Although some of variables were not significantly different between groups, this does not negate the

fact that changes can be significant for an individual. Table 3 lists how peak KMF varies for eight subjects

and although the KMF decrease for the group is not substantial, the simulation could be used to identify

which patient is well suited to this intervention.

The KAM curves shown in figure 6 are similar to those of Manal et al. [21]. The KAM is reported to be

highly correlated with the medial contact force for different gait patterns, and is thus often used as a

surrogate measure [19]. The significant decrease in KAM by loBF stimulation was consistent with that

of KMF. A study of 62 OA patients verified the clinical importance of KAM in that peak KAM and

KAM impulse explained variance in knee cartilage thickness [48]. However, whether the change of

KAM could contribute to the alleviation of OA symptoms needs clinical validation.

4.3. GRF, walking velocity and step length
Changes in walking velocity and step length have been found to affect knee joint contact forces [49]. The

GRF, as the external force on the whole body, is related to the overall kinematics and kinetics. Here, there

is no significant difference in GRF, velocity and step length, so although the NMES changed the

subtle kinematics of the lower limb, the lack of overall changes in pace could explain the lack of

variation in GRF.

Although normal gait is not perfectly symmetrical, stimulation of one side alone makes the gait even

more asymmetrical. However, the results here show that these changes were small and not large enough

to obviously disturb normal walking as the GRF, walking velocity and step length of stimulated walking

are similar to that of normal walking.

4.4. Limitations and future work
This study simulated the situations where only one muscle was stimulated. However, it is possible that

the stimulation of combined muscles will not change the net joint moment, but together have a greater

impact on KMF than stimulating each muscle independently. This case should be considered further.

The muscle forces of loBF, latGAS and VL generate movement of the lower limb mainly through

changing the flexion–extension moments of the knee and ankle. The extra muscle activation by NMES

may influence the periodic characteristics of normal gait. In this way, different timing of NMES leads to

different gait characteristics, and will affect the reduction in KMF. Therefore, NMES timing is an

important parameter for precise control of NMES. This study used a very crude manually implemented

timing mechanism that should be tuned for optimal outcome.

The decrease in the KMF was limited by the increase in the muscle force, which was determined by

the cs value in the model. Lower cs values than were applied in this study could be used to generate

a greater reduction in KMF. However, the clinical feasibility of including such high muscle forces is

not known.

This study is a pilot study on the effect of NMES on the KMF, and only healthy subjects were

considered. The study verified that the stimulation of loBF will redistribute the knee loading by
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decreasing the KMF. The result provides a new way to control the knee loading distribution. These

results suggest that it may also be possible to decrease the medial knee joint loading of OA patients

using NMES. Therefore, the next steps in this work should involve the recruitment of OA patients in

order to verify the effect of NMES on a pathological group.
ietypublishing.org/journal/rsos
R.Soc.open

sci.6:181545
5. Conclusion
A new cost function for use in musculoskeletal models, NMESsim, has been proposed to allow the

quantification of muscle forces when they are stimulated by external means. This was tested in living

subjects, and our results show that the stimulated muscle forces are significantly increased (loBF: D ¼ 0.07

BW, p ¼ 0.039; latGAS: D ¼ 0.27 BW, p ¼ 0.008; VL: D ¼ 0.40 BW, p ¼ 0.008) and the peak values of

knee joint medial loading are significantly decreased by applying NMES to loBF (NMESsim: D ¼ 0.17

BW, p ¼ 0.016). This study demonstrates that it is possible to redistribute the knee loading and reduce the

loading on the medial compartment by activating selected muscles across the healthy knee and this opens

the door for prevention and alternative non-surgical interventions for knee OA.
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Appendix A
The normalized force–endurance relationship formula is

log T ¼ � log
f

fmax

� �n

þc, ðA 1Þ

where T is the endurance time, c is a constant, f is the muscle force, fmax is the maximal muscle force and n
usually ranges from 2.54 to 3.14. The equation illustrates that the endurance time increases as the relative

muscle force ( f =fmax)n decreases.

The muscle selection to maximize activity endurance is physiologically reasonable during many

normal activities. Therefore, the musculoskeletal model to mimic muscle contraction for normal

activities has to maximize muscle endurance, which is realized by minimizing Sðfi=fimaxÞ3, i.e. the sum

of ( fi=fimax)3 for all muscles.
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