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Fluorescence lifetime imaging (FLI) is a popular method for extracting useful information that is otherwise unavail-
able from a conventional intensity image. Usually, however, it requires expensive equipment, is often limited to either
distinctly frequency- or time-domain modalities, and demands calibration measurements and precise knowledge of the
illumination signal. Here, we present a generalized time-based, cost-effective method for estimating lifetimes by repur-
posing a consumer-grade time-of-flight sensor. By developing mathematical theory that unifies time- and frequency-
domain approaches, we can interpret a time-based signal as a combination of multiple frequency measurements. We
show that we can estimate lifetimes without knowledge of the illumination signal and without any calibration. We
experimentally demonstrate this blind, reference-free method using a quantum dot solution and discuss the method’s
implementation in FLI applications. © 2015 Optical Society of America

OCIS codes: (110.1758) Computational imaging; (260.2510) Fluorescence; (100.3190) Inverse problems; (170.3650) Lifetime-based

sensing; (170.6920) Time-resolved imaging.
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1. INTRODUCTION

Fluorescence lifetime imaging (FLI) is a significant research area
that spans many engineering applications. Knowledge of a sam-
ple’s fluorescence lifetime allows, for example, DNA sequencing
[1], tumor detection [2,3], fluorescence tomography [4,5], in vivo
imaging [6], and high-resolution microscopy [7]. Typically, FLI is
categorized into two complementary modes [4,8]. In time-
domain FLI [7,9] (TD-FLI), an impulse-like excitation pulse
probes the fluorescent sample, and the time-resolved reflection is
used to calculate lifetimes. In frequency-domain FLI [10–12]
(FD-FLI), the sample is excited with (sinusoidal) intensity modu-
lated light, and the measured phase shift of the reflected signal at
the same modulation frequency encodes the lifetime. FD-FLI is
theoretically appealing in that phase measurements at one given
modulation frequency suffice to resolve the sample lifetime. From
a practical standpoint, model mismatch [10] and sample contami-
nation due to multiple lifetimes [13] often limit the accuracy of
single-frequency-based systems. Frequency diversity [13,14] may
be used for imaging multiple lifetimes. Since this approach requires
sweeping frequencies over a given bandwidth, a frequency diver-
sity method is not suitable for wide-field imaging of dynamic
samples. In either case (TD-FLI or FD-FLI), because of the costly
equipment, system constraints are often strict, so that precise
knowledge of the illumination signal and calibration measurements
(to compensate for path length delays) are required [15].

Alternatively, time-of-flight (ToF) sensors, which are far more
cost-effective and operate in real time, offer a great deal of flexibility

in design. ToF sensors, such as the Microsoft Kinect, are essen-
tially depth/range imaging devices and are at the heart of the en-
tertainment industry. Recently, ToF sensing has found prodigious
use in computer graphics, computer vision [16], and computa-
tional imaging [16–18], with applications in multipath imaging
[19–22], ultrafast imaging [22,23], and imaging through scatter-
ing media [17,24].

Here, we demonstrate an extension of ToF sensing to FLI that
is both blind and calibration-free. To do so, we generalize (from
the distinct time or frequency domains) the active illumination
signal, which is common to both modalities, to show that neither
calibration measurements nor knowledge of the signal are neces-
sary for estimation of fluorescent lifetimes. This blind, reference-
free method is implemented in a consumer-grade ToF sensor to
estimate simultaneously the range and lifetime of a CdSe–CdS
quantum dot sample. This method suggests a cost-effective alter-
native to the usual FLI methods.

This paper is organized as follows: starting from first princi-
ples, we propose a ToF-sensor-based image formation model
and discuss its role in depth/range estimation in Section 2. We
then discuss the two complementary modes of operation of ToF
sensors: time and frequency domains. Section 2.A deals with TD-
ToF-sensor-based depth imaging, while Section 2.B discusses
frequency-domain depth imaging. In Section 3, we provide a math-
ematical model for FLI with ToF sensors. We show that consumer
ToF sensors can be used to estimate the lifetime of a fluorescent
sample. We develop theoretical models for both time- and
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frequency-domain modes, and our theory is corroborated with
experiments for both. These complementary approaches are dis-
cussed in Sections 3.A and Section 3.B. Finally, we conclude this
work with possible future directions in Section 5.

2. TOF IMAGE FORMATION MODEL

ToF sensors operate using the lock-in principle [25]: active illumi-
nation probes a sample, and the reflected light is cross-correlated
electronically to calculate range and amplitude information. In
this way, each ToF sensor exposure results in two images: the
usual intensity image and a range image in which each pixel relates
to the depth of the scene. Usually, the signal is sinusoidal, essen-
tially classifying a ToF sensor as a homodyne detection system,
but the illumination signal can be far more general. Both ToF
sensors and current FLI technologies acquire scene information
in either the time or frequency domains, so the present analysis
for ToF sensing is compatible with both.

Regardless of the operating domain or physical implementa-
tion, the ToF imaging process can be understood as follows. A
scene is illuminated with a time-dependent Δ-periodic probing
intensity signal p�t�, such that p�t � Δ� � p�t�, Δ > 0. Similar
to FLI, TD-ToF [21,22] systems use a time-localized pulse p�t�
(not necessarily an impulse); the FD-ToF counterpart uses a
modulated probing function p�t� � 1� cos�ω0t�, where ω0

(usually in the megahertz range) is the modulation frequency.
Below, however, we do not use a specific form for p�t�.

This signal interacts with the scene, whose response is charac-
terized by a time-dependent scene response function (SRF) h�t; t 0�,
where t 0 is a time-domain variable which models the time-variant
SRF. This interaction results in the reflected signal r�t�:

r�t� �
Z

p�t 0�h�t; t 0�dt 0: (1)

A ToF sensor detects r�t� and electronically cross correlates it
with p�t�:

m�t� �
Z

p�t 0�r�t − t 0�dt 0; (2)

where p�t� � p�−t�. The K stored measurements are digital sam-
ples of this cross correlation, mk � m�kT s�, k � 0;…; K − 1
(T s > 0 is the sampling rate).

In many cases of interest, the SRF is shift-invariant, that is (see
[26], Sec. 2.2.4, p. 50),

h�t; t 0� � hSI�t − t 0�;
so that Eq. (1) represents the convolution operation defined by

r�t� � �p � hSI��t� �
Z

p�t 0�hSI�t − t 0�|fflfflfflfflffl{zfflfflfflfflffl}
h�t;t 0�

dt 0: (3)

In the case of shift-invariant SRFs, the measurements simplify
to

m�t� � �p � p � hSI��t� ≡ �ϕ � hSI��t�; (4)

implying linear filtering of cross-correlation function ϕ�t� with
the scene response filter hSI.

Conventional ToF sensors [16] are designed for range imaging
and depth estimation. For simple reflections from an object (with
reflection coefficient ρ) that is at a depth d from the sensor, the
SRF becomes

h�t; t 0� � ρδ�t − t 0 − 2d∕c�; (5)

where c is the speed of light, and δ is the Dirac distribution. The
reflected signal in this case is simply a delayed version of the prob-
ing function and the delay is proportional to the depth para-
meter d. More precisely, in view of the ToF sensor operation,
the reflected signal in Eq. (1) reads r�t� � ρp�t − t0�, where
the delay t0 � 2d∕c. In this case, the measurements amount to

m�t� � ρϕ�t��t − t0� ≡ ρ�p � p��t − t0�:
Estimation of the scene parameters fρ; dg by the ToF sensor

results in range and intensity images. The estimation process
depends on the choice of probing function p, which may be a
time-localized pulse or an amplitude-modulated continuous-wave
(AMCW) function leading to time-domain [Fig. 2(a)] and fre-
quency-domain [Fig. 2(b)] modes of operation, respectively.

A. TD-ToF Imaging

For TD-ToF imaging, the probing function is ideally well local-
ized in time, that is, a Dirac delta distribution. In this case,
p�t� ∼ δ�t�, and the measurements in Eq. (4) simplify to m�t� �
hSI�t�. In practice, maximum length sequences (MLSs) [27] pro-
vide an optimal time-localized probing function. Such sequences
are a function of the signal length or period Δ.

In view of the depth estimation problem, where h�t; t 0� �
ρδ�t − t 0 − 2d∕c�, the depth is estimated by the operation

t̃0 � max
t

m�t� � max
t

ϕ�t − t0�; t0 �
2d
c
:

More sophisticated methods have been developed for the case
of multiple reflections or multipath interference [21,22].

The exact characterization of the true TD-ToF probing func-
tion p�t� is challenging due to the electronics of the sensor and the
physical process involved. By using a Fourier series expansion [21]
to represent the probing function,

p�t� � 1

Δ

X∞
n�−∞

p̂ne
jnω0t ; ω0 � 2π∕Δ; (6)

where

p̂n �
Z

Δ

0

p�t�e−jnω0tdt;

we define the cross correlation of the probing function p by

ϕ�t� � �p � p��t� �
X∞
n�−∞

ϕ̂nejω0nt : (7)

The Fourier series coefficients of the cross-correlated signal
and the probing signal are related by

ϕ̂n � p̂np̂
�
n � jp̂nj2: (8)

Practically, a band-limited approximation, Cp;p̄�t�, suffices to
represent ϕ�t�:

Cp;p�t� ≈
1

Δ

X
jnj≤N 0

ϕ̂nejnω0t ; (9)

where we have retained the first N 0 Fourier coefficients of ϕ�t�.
Figure 1 shows an experimentally obtained ϕ�t� and its Fourier
approximation Cp;p, with their Fourier spectra with N 0 � 30, for
an impulsive probe function.
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B. FD-ToF Imaging

In FD-ToF imaging, the scene is probed with a continuous wave,
sinusoidal probing function with a modulation frequency ω:

p�t� � 1� p0 cos�ωt�;
where p0 is the modulation amplitude. For pure depth estimation,
with the SRF specified in Eq. (5), the reflected signal becomes

r�t� � ρp�t − t0� � ρ�1� p0 cos�ω�t − t0���:
The ToF lock-in sensor acts as a homodyne detector array:

each pixel cross correlates the reflected signal with the probing
signal to produce measurements:

m�t� � lim
B→∞

1

2B

Z �B

−B
p�t 0�r�t − t 0�dt 0 (10)

�ρ

�
1� p20

2
cos�ω�t � t0��

�
; (11)

where, in Eq. (10), we generalize the cross correlation in Eq. (2)
for sinusoids.

The two quantities of interest, ρ and d , are estimated with the
four digital measurements of the measured signal in Eq. (11), that
is, mk � m�πk∕2ωT s�, k � 0;…; 3. Based on these discrete
measurements, we define a complex number z ∈ C:

z � �m0 − m2� � j�m3 − m1�: (12)

The scene parameters are thus estimated by

ρ̃ � jzj
p20

and d̃ � c
2ω

∠z:

Note that this technique for extracting phase is identical to
conventional phase-shifting holography [28].

To summarize, object range is estimated via time delays in
TD-ToF [Fig. 2(a)], whereas FD-ToF [Fig. 2(b)] encodes range into
the signal phase. A quantitative summary of the ToF-sensor-based
depth estimation problem for the time-domain and frequency-
domain approaches is presented in Table 1 and Table 2,
respectively.

Fig. 2. ToF depth imaging and its link with FLI. For the SRF h�t ; t 0� � ρδ�t − t 0 − 2d∕c�, (a) and (b) compare TD- and FD-ToF principles.
(a) Probing and reflected signal for TD-ToF. The time delay is proportional to distance d . (b) Probing and reflected signal for FD-ToF. The phase
is proportional to distance d and modulation frequency ω0. For the SRF h�t; t 0� � hDepth�t ; t 0� � hSample�t; t 0� in Eq. (13), (c) and (d) compare the TD-
ToF and FD-ToF methods for FLI. (c) Probing and reflected signal for TD-ToF FLI. The time delay is proportional to distance d and the waveform shape
is linked with lifetime τ. (d) Probing and reflected signal for FD-ToF FLI. The phase is proportional to distance d , modulation frequency ω0, and lifetime
τ. (e) Experimental setup for FLI estimation via ToF.

Fig. 1. Experimental cross-correlated probing function [Eq. (8)] (blue
line) and its Fourier series approximation (red dashed–dotted line)
[Eq. (9)], with N 0 � 30. Since the time-domain signal Cp;p lasts for
Δ � 309.902 ns, the corresponding fundamental Fourier harmonic is
ω0∕2π � 3.2268 MHz. Consequently, Fourier coefficient N 0 � 30
corresponds to ∼96.80 MHz. Inset: Fourier series coefficients ϕ̂n;
n � −N 0;…; N 0.

Table 1. TD- and FD-ToF Depth Imaging

Probing Function Scene Response Function Reflected Function Measurements

TD-ToF p�t� � 1
Δ
P

jnj≤N 0
p̂ne

jω0nt

hSI�t���5�ρδ�t − 2d∕c� r�t���3�ρp�t − 2d
c �

ρ
Δ
P

jnj≤N 0
jp̂nj2ejω0n�t−2dc �

FD-ToF p�t� � 1� p0 cos�ωt� ρ�1� p20
2 cos�ω�t � 2d

c ���
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In most consumer ToF sensors, m�t� [Eq. (2)] is a set of mea-
surements that is used to estimate the scene parameters fρ; dg
[22,25]. The goal of this paper is to show that by using exactly
the same set of measurements but with a different SRF, one can
recover fluorescent lifetimes in context of the FLI.

3. FLI WITH TOF SENSORS

The experimental setup for FLI using a ToF sensor is depicted in
Fig. 2(e). A fluorescent sample is located in an x–y plane a distance
z � d from the ToF sensor. Pixels corresponding to a nonfluor-
escent background object �xb; yb� produce only a time delay pro-
portional to 2d∕c, precisely the case of conventional ToF imaging
with the SRF specified in Eq. (5).

The probing function that interacts with the pixels corre-
sponding to a fluorescent sample at location �xf ; yf � undergoes
two transformations. The first transformation is attributed to the
same depth contribution, d . The second transformation results
from fluorescence: a fraction of the incident light excites the sam-
ple, which fluoresces with a characteristic decay time τ. The
total SRF at �xf ; yf � is then

h�t; t 0� � hDepth�t; t 0� � hSample�t; t 0�; (13)

where the contributions due to respective components are

hDepth�t; t 0� � ρδ�t − t 0 − 2d∕c�; (14)

hSample�t; t 0� � μe−
�
t−t 0−2d∕c

τ

�
Π�t − t 0 − 2d∕c�: (15)

μ is the emission strength of the fluorescent sample, and Π�t� is
the unit step function. (Note that hDepth and hSample represent sig-
nals at the excitation and emission optical wavelengths, respec-
tively. The former can be eliminated experimentally via, e.g., a
dielectric interference filter.) Because Eq. (13) is linear and shift-
invariant, the resulting measurements are

m�t���4��p � p � hSI��t�≈
�9��Cp;p̄ � hSI��t�

≈ Cp;p̄ �
�
δ�t − 2d∕c� �

�
ρδ�t� � μe−

t
τΠ�t�

��
. (16)

We emphasize that our ToF system is completely compatible
with FLI. In TD-FLI, p�t� � δ�t�, whereas in FD-FLI, p�t� �
1� cos�ω0t�. Conventionally, separate calibration steps provide
explicit knowledge of d , which is used for subsequent measure-
ments. However, we make no such assumption. Instead, we simul-
taneously compute d and τ from our measurements [Eq. (16)].
We need not perform a separate measurement to obtain d explicitly.

A. TD-ToF FLI: Theory and Experiments

1. Theoretical Modeling

As in TD-ToF, we utilize the same truncated cross-correlation
function [Eq. (9)] for FLI. Importantly, explicit knowledge of
p�t� is not required. To show this, note that the eigenfunctions

of Eq. (16) are precisely the complex exponentials of Eq. (9). By
using the convolution theorem, we have

m�t� ≈ 1

Δ

X
jnj≤N 0

�ϕ̂nĥn�ejω0nt ; (17)

where ĥn � ĥ�ω0n� and ĥ�ω� is the Fourier transform of hSI�t�,

ĥ�ω� �
Z

h�t�e−jωtdt �Fourier Transform� (18)

�ρe−jω�
2d
c � � μτ

1� jωτ
e−jω�

2d
c �: (19)

From here onward and for all practical purposes, we assume
that Eq. (17) is an equality instead of an approximation. Express-
ing ĥ�ω� in polar form, we have ĥ�ω� � jĥ�ω�jej∠ĥ�ω�, where

jĥ�ω�j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ρ� μτ�2 � �ωρτ�2

1� �ωτ�2

s
;

∠ĥ�ω� � −tan−1
�

ωμτ2

ρ� μτ� ρ�ωτ�2
�
−
2d
c
ω:

Note that the phase of the spectrum encodes both the depth
and the lifetime parameters. We may write

∠ĥ�ω� � −θτ�ω� − θd �ω�; (20)

where

θτ�ω� � tan−1
�

ωτ2

τ� ρ�1� �ωτ�2�

�
and θd �ω� � 2dω∕c:

(21)
(Because we consider a single lifetime, we set μ � 1.)

In vector-matrix notation, the discretized system of equations
in Eq. (17) can be written as

m � VDϕ̂ĥ; (22)

where

• m is a K × 1 vector of discretized ToF sensor measurements
mk � m�kT s�, k ∈ �0; K − 1�;

• V is a Vandermonde matrix of size K × �2N 0 � 1� with
matrix element �V �k;n � ej�2π∕Δ�T snk, n ∈ �−N 0;�N 0�;

• Dϕ̂ is a �2N 0 � 1� × �2N 0 � 1� diagonal matrix with
diagonal entries �D�n;n � ϕ̂n; and

• ĥ is �2N 0 � 1� × 1 vector of the discretized spectrum
[Eq. (19)] with entries ĥ�2πn∕Δ�, n � −N 0;…; N 0.

The estimation problem is thus: given K measurements m,
estimate parameters d and τ.

Because ϕ�t� is a real, time-symmetric function by construc-
tion, the matrixDϕ̂ does not contribute to the phase of vector ĥ in
Eq. (22). Hence, we rely on only the measurements m. Thus, p
(or ϕ) need not be known, so that we eliminate the calibration
requirements that are central to both FLI and ToF imaging [22].

To see this, note that TD-FLI uses [8] p � δ�t� � ϕ, so the
corresponding measurements are

Table 2. TD- and FD-ToF FLI

Probing Function Scene Response Function Reflected Function Measurements

TD-ToF p�t� � 1
Δ
P

jnj≤N 0
p̂ne

jω0nt hSI�t� ��13�ρδ�t − 2d∕c�
�μe−

�
t−2d∕c

τ

�
Π�t − 2d∕c� r�t���3��p � hSI��t�

Eq. (17)

FD-ToF p�t� � 1� p0 cos�ωt� Eq. (32)
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mTD-FLI�t� � μe−
�
t−t0
τ

�
Π�t − t0�: (23)

Now because log�mTD-FLI�t�� is linear, a direct fit [8] can be
used to estimate τ, and, hence, calibration is implicitly avoided by
the choice of p � δ.

On the other hand, for our proposed TD-ToF method for
FLI, the illumination/probing function is composed of N 0 multi-
plexed frequencies, which yield measurements

mTD-ToF-FLI�t� �
�17� 1

Δ

X
jnj≤N 0

�ϕ̂nĥn�ejω0nt ; (24)

and because Cp;p is a band-limited approximation of ϕ [Eq. (9)], a
linear fit no longer suffices. However, because of the properties of
(the generalized) p�t�, we solve this more complex inverse prob-
lem to estimate fd ; τg without knowing ϕ.

2. Experimental Verification of TD-ToF FLI

The setup for the TD-ToF FLI method is shown in Fig. 2(e). A
405 nm laser diode illuminates the scene. We use a precomputed,
quantized p [Eq. (6)] based on a 31-bit MLS described by the
code

MLS → 0101110110001111100110100100001; (25)

with Δ � 309.9 ns and T s � 7.8120 ps. The sample consists of
a CdSe–CdS quantum dot sample prepared by dissolving it in
hexane and polymethyl methacrylate (PMMA) onto a glass slide.
This sample has a lifetime of τ � 32 ns, and it is located at
1.05 m from the sensor.

The reflected light is passed through a dielectric interference
filter with a cut-off wavelength of 450 nm, leading to ρ � 0
[Eq. (21)]. A 160 × 120 pixel PMD 19k-S3 lock-in sensor with
custom field programmable gate array (FPGA) programming
cross correlates the reflected signal to produce measurements m.
The sensor has an 80 MHz modulation bandwidth operating
within 90 frames per second [29]. The total cost of our system
is $1200.

With N 0 � 15, we compute

∠ĥobs � ∠V�m � −�θτ�2πn∕Δ� � θd �2πn∕Δ��; (26)

where V� denotes the pseudo-inverse of the matrix V and ∠ĥobs
is the experimentally observed phase. Since we know that the
observed phase is related to the theoretical phase in Eq. (20), we
estimate the parameters of interest by solving the nonlinear least
squares problem

arg min
d ;τ

Xn��N 0

n�−N 0

j∠ĥ�nω0� − ∠ĥobs�nω0 � β� � αj2; (27)

where α and β are offset parameters to ensure a solution that is
centered at origin. We use the trust-region-based [30] algorithm
with the least absolute residual criterion. The nonlinear parameter
estimation problem is solved using bounded constraints that are
accommodated within the trust-region optimization framework.
We require that the minimum and maximum lifetimes and dis-
tances are in ranges of 0 to 100 ns and 0 to 10 m, respectively.

Per-pixel fluorescent sample measurements are shown in
Fig. 3, which shows both the time-domain measurement [Fig. 3(a)]
and the raw phase measurement [Fig. 3(b)]. We also show the
fitted phase measurement in Fig. 3(b). We assign a confidence
level to each pixel to estimate the signal-to-noise ratio (SNR).
We use ToF measurements from 14 different pixels imaging
the same scene [Fig. 2(e)]. The results from our computation
are tabulated in Table 3. In addition to the estimated lifetimes
and distances, we tabulate two relevant metrics.

1. First, the mean squared error or MSE, a measure of distor-
tion, is defined as follows: let ν be the oracle estimate and fν̃ngN−1

n�0
be N estimated values of ν. The MSE is

MSEν �
1

N

XN−1

n�0

jν̃n − νj2: (28)

We compute log� ffiffiffiffiffiffiffiffiffiffi
MSE

p � for τ̃, d̃ , and ∠ ˜̂h in Table 3, where
the last term is due to fitted measurements

Fig. 3. TD-ToF FLI measurements. (a) Time profile of measurements mk � m�kT s� and T s � 7.8120 ps based on K � 3968 samples. These
measurements result from convolving cross correlation of the probing function with the SRF [Eq. (17)]. (b) Phase measurements computed using ∠ĥ �
∠V�m with N 0 � 15 and Δ � 309.9 ns. We estimate the distance d̃ and lifetime τ̃ parameters using nonlinear least squares fitting, which results in the
fitted curve. The fitted result is shown by the red solid line. The estimated phase contribution [Eq. (20)] due to distance θd̃ and lifetime θτ̃ is also plotted.
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∠ ˜̂h�nω0� �
�20�

− tan−1�nω0τ̃� − 2
nω0d̃
c

; (29)

which are synthesized after estimating fτ̃; d̃g.
2. We use the observed SNR to estimate measurement

fidelity. Including additive Gaussian noise εn, we have

∠ĥobs�nω0� � ∠ĥ�nω0� � εn: (30)

We define

SNR � 20�log ‖∠ĥ‖ − log ‖∠ĥobs − ∠ĥ‖�;
measured in decibels, and ‖∠ĥ‖2 � PN−1

n�0 j∠ĥ�nω0�j2. In
Table 3, we use ∠ĥ � ∠ ˜̂h, the fitted phase function computed
using estimates fτ̃; d̃g.

Based on the estimates in Table 3, the expected lifetime is
τ̃ � 31.3142 ns, and the estimated expected distance is d̃ �
1.0799 m, both consistent with the ground truth.

B. FD-ToF FLI: Theory and Experiments

As described in Section 2.B, in the FD-ToF mode of operation,
the ToF sensor probes the scene with an AMCW of form
p�t� � 1� p0 cos�ωt�. Following Eq. (3), the reflected signal is

r�t���3��p � hSI� � jĥ�0�j � jĥ�ω�jp0 cos
�
ωt � ∠ĥ�ω��: (31)

The reflected signal is cross correlated [Eq. (10)] at the ToF
sensor to produce measurements

m�t� ��10�jĥ�0�j � jĥ�ω�j p
2
0

2
cos

�
ωt − ∠ĥ�ω��: (32)

To estimate the phase and amplitude, we utilize the method
from Section 2.B. Noting, however, that the scene transfer func-
tion is not constant, we express z explicitly as a function of the
modulation frequency ω0: z � z�ω0�. The amplitude and phase
estimates are

jĥ�ω0�j ≈ jz�ω0�j∕p20|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Amplitude Estimate

and ∠ĥ�ω0� ≈
�20�

∠z�ω0�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Phase Estimate

; (33)

respectively. Note that the estimation of amplitude jĥ�ω0�j re-
quires the knowledge of p0. However, this is not the case for phase
estimation, which is prescribed by ∠ĥ�ω0� and is devoid of p0.
Again, our method is blind in that we can directly estimate
∠ĥ�ω0� from z�ω0� even if we do not know anything about p0.

Note in passing that multiple frequency measurements can be
used to estimate multiple depths [16,20,21,31], for which

h�t� �
XK −1

k�0

ρkδ�t − 2dk∕c� ↔
Fourier

ĥ�ω� �
XK −1

k�0

ρke
jω
�
2dk
c

�
:

Based on the image formation model for the SRF in Eq. (13),
we will next show how multiple frequency measurements of the
form fz�kω0�gKk�1 can be used alternately to estimate the param-
eters of interest, that is, fd ; τg in the context of FLI.

1. Experimental Verification of FD-ToF FLI

Using the same physical setup as that in Section 3.A.2, we move
the sample to d � 2.5 m, and we set ω0∕2π ≡ f 0 � 1 MHz and
acquire equispaced ToF measurements

fz�kf 0�gKk�1; k � 1; 2;…; 40: (34)
The amplitudes and phases of z for k � 20, 30, and 40 are

shown in Fig. 4(a). The effects of fluorescence are clearly visible
in both amplitude and phase. The dielectric filter eliminates all
nonfluorescent emission, leading to a noisy background signal.
The fluorescing quantum dot causes an increase in the measured
phase. The increased phase measurement at the sample location is
due to the presence of θτ term in Eq. (20). In context of the ex-
perimental setup described in Fig. 2(e), we mark the background
pixel �xb; yb� as well as the fluorescent pixel �xf ; yf � in Fig. 4(a).
The average phase of the background pixel is noted to be
∠z�xb;yb��40f 0� � 4.1625 rad. This amounts to a depth of
2.4843 m, which is consistent with the experimental setup where
d � 2.5 m. On the other hand, the average phase at the location of
the quantum dot is observed to be ∠z�xf ;yf ��40f 0� � 5.5822 rad.
This relates to an erroneous depth of 3.3316 m, which is a result
of multipath interference [20].

By using ToF phase measurements [Eq. (34)] for 10 different
pixel locations corresponding to �xf ; yf �, we solve for the non-
linear least squares problem:

arg min
d ;τ

XK�40

k�1

j∠z�kω0� � θτ�kω0� � θd �kω0�j2: (35)

As before in Section 3.A.2, we use the trust-region-based
algorithm with the least absolute residual criterion. As a result
of fitting, we estimate d̃ and τ̃ for each pixel. The estimated dis-
tance and lifetime values together with log� ffiffiffiffiffiffiffiffiffiffi

MSE
p � for τ̃, d̃ , and

∠ ˜̂h for all the pixels are tabulated in Table 4. The average lifetime
and distance is estimated to be

fd̃ ; τ̃g � f2.4961 m; 31.024 nsg:
Both the measured phase f∠z�kf 0�gK�40

k�1 and the fit obtained
by Eq. (35) for four pixels are plotted in Fig. 4(b).

4. DISCUSSION

A. ToF Sensors for Microscopy

The method generalizes to microscopy modes. A salient feature
about the technique is that it is a local, per-pixel calculation,
so that the lateral scale of the problem does not influence the
technique. Thus, our proof-of-principle demonstration can be ex-
tended to integration with microscopy, both wide-field and point-
scanning techniques, provided there is no pixel crosstalk. In fact,
our current system is not aberration-corrected, and the resulting
model mismatch makes reconstruction more challenging. A well-
calibrated microscopy setup should alleviate this mismatch and
improve results.

Table 3. TD-ToF FLI (τ � 32 ns and d � 1.05 m)

τ�ns� d �m�

�����������

MSE
p

τ

�log scale�

�����������

MSE
p

d

�log scale�

�����������

MSE
p

∠h

�log scale�
SNR
(dB)

35.24 1.09 −8.49 −1.40 −1.5 38.14
31.29 1.12 −9.15 −1.15 −1.96 47.42
33.20 1.05 −8.92 — −1.11 30.31
36.12 1.03 −8.39 −1.70 −1.08 29.60
31.17 1.07 −9.08 −1.70 −1.39 35.76
33.46 1.04 −8.84 −2.00 −1.13 30.61
35.65 1.11 −8.44 −1.22 −1.71 42.46
32.50 1.08 −9.30 −1.52 −1.47 37.47
30.25 1.12 −8.76 −1.15 −1.76 43.49
28.61 1.12 −8.47 −1.15 −1.72 42.55
32.66 1.04 −9.18 −2.00 −1.07 29.31
29.48 1.10 −8.60 −1.30 −1.78 43.70
31.27 1.11 −9.14 −1.22 −1.70 42.21
31.50 1.03 −9.30 −1.70 −1.07 29.31
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B. Nanosecond Range Lifetime Sensing

For biological imaging, lifetimes are of the order of nanoseconds.
Recent work suggests that current ToF sensors (with bandwidths
of tens of megahertz) are optimal for recovering lifetimes under
5 ns [32]. For example, a 3 ns lifetime is optimally estimated by a
30 MHz signal ([32], p. 378). Further, a similar ToF setup esti-
mated lifetimes of the order of 4 ns [12] (though it did not
simultaneously estimate distance).

The important difference here is that the present approach si-
multaneously estimates lifetime and distance based on the same

measurement. Numerical simulations in Fig. 5 indicate that our
method is suitable for recovering a 4 ns lifetime. We simulate a
system bandwidth of 40 MHz (half the experimental bandwidth
[29]). Numerically, we compare the estimation accuracy of τ1 �
4 ns and τ2 � 32 ns with d � 2.5 m. We do so by studying the
upper bounds on the

ffiffiffiffiffiffiffiffiffiffi
MSE

p
linked with estimation of the set of

parameters of interest, fτ1; dg and fτ2; dg. For a fixed ToF sensor
bandwidth, we vary the number of measurements [Eq. (33)] by
sampling with equispaced frequencies from 0 to 40 MHz. We use
four different step sizes, f �k�

0 (corresponding to N �k� samples),
specified by

f �1�
0 � 0.10 ⇒ N �1� � 401; f �2�

0 � 0.25 ⇒ N �2� � 161;
f �3�
0 � 0.50 ⇒ N �3� � 81; f �4�

0 � 1.00 ⇒ N �4� � 41:

f �k�
0 is measured in megahertz. For example, the step size in

experiments in Section 3.B.1 was f 0 � 1 MHz. For each f �k�
0 ,

we generate the measurement vector,

∠ĥ�k�obs�nω0� �
�30�∠ĥ�nω0� � εn; n � 0;…; N �k� − 1;

where εn represents additive white Gaussian noise for a SNR rang-
ing from 0 to 60 dB. Each SNR value is averaged over 2000 real-
izations. In Fig. 5(a) we plot the 2000 estimated values of the
lifetime parameters for each value of SNR. Intuitively, as the

Fig. 4. FD-ToF FLI measurements of a 61 × 66 pixel patch of a 120 × 160 pixel sensor image. The size of the scene is approximately 2.3 in2.
(a) Multifrequency measurements of τ � 32 ns quantum-dot-based fluorescent sample. We show phase and amplitude images, that is,
f∠z�10f 0�;∠z�20f 0�;∠z�30f 0�;∠z�40f 0�g (in radians, �0; 2π�) and fjz�10f 0�j; jz�20f 0�j; jz�30f 0�j; jz�40f 0�jg (in decibels), respectively. The base
modulation frequency for the experiment is f 0 � ω0∕2π � 1 MHz. The phase at the background pixel is recorded to be ∠z�xb;yb��40f 0� � 4.1625 rad,
which amounts to a depth of 2.48 m, which is consistent with the experimental setup. At the location of the fluorescent sample, we recorded a higher
phase value ∠z�xf ;yf ��40f 0� � 5.5822, which is attributed to the fluorescence phenomenon. (b) Multifrequency raw phase measurements
f∠z�x;y��kf 0�gK�40

k�1
for four pixels. The measurements confirm with the theoretical hypothesis of Eq. (20), as well as the fitted phase obtained by

Eq. (35). The estimated phase contribution [Eq. (20)] due to distance θd̃ and lifetime θτ̃ is also plotted.

Table 4. FD-ToF FLI (τ � 32 ns and d � 2.5 m)

τ�ns� d �m�

�����������

MSE
p

τ

�log scale�

�����������

MSE
p

d

�log scale�

�����������

MSE
p

∠h

�log scale�
SNR
(dB)

29.79 2.49 −8.66 −2.00 −1.71 45.55
30.34 2.49 −8.78 −2.00 −1.69 45.04
30.72 2.50 −8.89 — −1.69 45.07
30.72 2.50 −8.89 — −1.73 45.80
30.79 2.50 −8.92 — −1.71 45.51
31.28 2.50 −9.14 — −1.73 46.00
31.51 2.50 −9.31 — −1.72 45.80
31.62 2.50 −9.42 — −1.59 43.10
31.62 2.50 −9.42 — −1.71 45.58
31.86 2.50 −9.85 — −1.63 43.88
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SNR increases, the estimates cluster around the oracle estimate of
τ1 � 4 ns and τ2 � 32 ns, respectively.

In Fig. 5(b), we plot the
ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ on log scale as a function of

SNR. Note that the MSEτ [Eq. (28)] is the average over all 2000
trials. After 15 dB, we note a consistent linear relationship of the
form

log�
ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ� ∝ log K 0 − λ log�SNR�: (36)

As the number of measurements N increases, the log� ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ�

drops consistently. This observation is consistent throughout all of
our experiments. In fact, we note that

ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ1 <

ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ2 , im-

plying that the 4 ns sample may be estimated with higher accuracy
when compared to the 32 ns sample. As noted in Table 4, the
operational SNR of our system is around 45 dB, implying that
the lifetime parameter can be estimated with sufficient accuracy,
as plotted in Fig. 5(b).

Thus, although our demonstration here operates at a lower time
scale (Fig. 1) than is typical in practice, this is not a fundamental
limitation of the method. The reason is that we compensate for
lower time resolution by utilizing a computationally different
method of inversion. Indeed, appropriate modeling and prior in-
formation lend themselves naturally to ToF sensing and offer a
path toward superresolution [21,33].

Of course, calculation of the theoretical lower bounds (on life-
times and distances) requires calculation of the Cramer–Rao
bound. Though beyond the scope of the present work, this limit
is ultimately dictated by noise. For instance, the Cramer–Rao lower
bound for distance estimation is derived in [21] and obeys a version
of the law in Eq. (36). For typical systems, we expect from Fig. 5
that the method is suitable for current application needs.

C. Experimental and Computational Precision

The current optical ToF technology allows for range estimation in
millimeter precision. The variation in estimated lifetime is due to
sample inhomogeneity, nonuniform lighting [34], and potential
model mismatch from lens aberration.

The measurement precision here is indicated in Fig. 6, which
shows cross sections of the four phase plots in Fig. 4(a). The phase
contribution the first 50 pixels is due to the background. We
mark the average phase value on the y axis. Using θd �f � �
4πf d∕c, we estimate the distance d given θd �f � and f �
f10; 20; 30; 40g MHz. At each modulation frequency, the esti-
mated distance is d � f2.56; 2.52; 2.47; 2.48g m, whereas the
actual distance is 2.5 m. The variability in the distance estimates
is mainly because, across modulation frequencies, the phase-
frequency relation θd �f � � 4πf d∕c may not be strictly linear
due to distortions.

5. CONCLUSIONS

In conclusion, we have demonstrated a FLI alternative that is
based on cost-effective ToF sensors. We simultaneously estimate
the lifetime and the distance of the sample from the sensor. Unlike
existing methods [8,12], our approach is calibration-free and

Fig. 5. Estimation accuracy of τ1 � 4 ns and τ2 � 32 ns. (a) We plot 2000 estimated values of lifetime as a function of SNR ranging from 0 to 60 dB.
As the SNR increases, the estimates cluster around the oracle estimates of τ � 4 ns and τ � 32 ns, respectively. (b) We plot the

ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ on log scale as a

function of SNR. After 15 dB, we note a consistent linear relationship [Eq. (36)] between SNR and the log� ffiffiffiffiffiffiffiffiffiffi
MSE

p
τ�.
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Fig. 6. Measured phase as a function of the modulation frequency.
We plot the measured phase corresponding to a 120 pixel cross section
of the 160 × 120 ToF sensor image for modulation frequencies
f � f10; 20; 30; 40g MHz. The first 50 phase measurements are due
to the background pixel, which is at a depth d � 2.5 m. The dashed
line marks the average phase value over the first 50 pixels. The average
phase value for each modulation frequency leads to a distance estimate:
d � f2.56; 2.52; 2.47; 2.48g in meters.
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requires no prior information on the experimental path length
and, thus, allows for faster acquisition time. Furthermore, our
technique is blind in that we do not assume the knowledge of
the illumination waveform. Overall, our system shows promise
for two-dimensional imaging, and can be generalized to volumes
[35]. Because the technique is modular, it can be implemented
with other computational imaging techniques to create a new
platform for wide-field FLI.

The method offers new possibilities for open questions. The
case of multiple lifetime imaging [10,13] is interesting and is yet
to be explored in the context of ToF sensors, both theoretically as
well as experimentally. Comparison with other FLI techniques [36]
and fundamental resolution limits for simultaneous estimation of
lifetime and depth information will allow for better understand-
ing of the applicability of ToF sensors for bio-imaging tasks such
as tumor detection [2,3] and fluorescence tomography [4,5].
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