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Abstract 

We present predictive multiscale models of the multiaxial strain-sensing response of 

conductive CNT-polymer composites. Detailed physically-based finite element (FE) models at 

the micron scale are used to produce training data for an artificial neural network; the latter is 

then used, at macroscopic scale, to predict the electro-mechanical response of components of 

arbitrary shape subject to a non-uniform, multiaxial strain field, allowing savings in 

computational time of six orders of magnitude. We apply this methodology to explore the 

application of CNT-polymer composites to the construction of different types of sensors and 

to damage detection. 
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1 INTRODUCTION  

The increasing amount of interest in using CNTs as a filler in multifunctional material systems 

is due to their great mechanical [1], electrical [2] and thermal [3] properties, allowing to 

enhance composites applications [4] and to develop multifunctional materials with sensor 

capabilities [5, 6]. In particular, the piezo-resistive response of CNT-polymer composites can 

be exploited in strain-sensing applications: upon loading, the applied deformation distorts the 

conductive paths that the CNTs form within the polymer matrix, resulting in a substantial 

change of the bulk conductivity of the material [7]. 

Several authors [8-17] have performed predictions of the strain-sensing response of these 

materials; however they have considered only the case of loading by uniform strain fields, in 

most cases in uniaxial stress scenarios. Previous modelling approaches were based on the 

analysis of micron-sized representative volume elements (RVEs) and as such they are too 

computationally demanding to be used in the case of real applications, which in general involve 

macroscopic-sized components subject to non-uniform, multiaxial strain fields. 

Tallman and Wang [18] proposed a phenomenological analytical model predicting the 

sensitivity of conductivity to imposed uniform multiaxial strain fields. This approach is based 

on percolation probability, which is valid only in the vicinity of the percolation threshold [9, 
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19], and requires several parameters to be determined from comparison to experiments; it was 

applied to reconstruct a strain field from electrical impedance tomography measurements [20]. 

The computational cost of physically-based models can be substantially reduced by 

applications of supervised machine learning [21]. Recently, deep learning has emerged as an 

attractive tool to reduce model complexity, and artificial neural networks (ANNs) have been 

successfully used for a variety of applications [22], from pattern recognition and classification 

[23] to event forecasting or even cancer predictions [24]. Several applications have been in 

structural analysis [25] and material science, ranging from studies of atomic properties [26] 

and interatomic potentials [27] to the mechanical properties of several materials [28-31], 

including those of individual CNTs [32]. 

This study builds on detailed physically-based models recently developed by the authors [17]. 

It applies machine learning to achieve model order reduction and to perform, for the first time, 

predictions of the strain-sensing response of macroscopic complex components made from 

CNT-polymer composites and subject to arbitrary, non-uniform multiaxial strain fields. The 

approach does not involve calibration parameters to be determined from complex experiments 

and it explicitly accounts for quantum tunnelling electron transport at the junction between 

CNTs [33]. The application of machine learning also allows portability of the electro-

mechanical constitutive model, which is of very low computational cost and can be 

immediately used by relatively inexperienced users. 

The structure of the paper is as follows: in Section 2, we summarise the FE models upon 

which the machine learning exercise builds. In Section 3, we detail the application of machine 

learning to the problem. In Section 4, we present several applications of the new modelling 

methodology, before concluding in section 5. 

 

2 MICRO-SCALE FINITE ELEMENT MODELS 

The proposed methodology is based on sequentially-coupled electro-mechanical FE 

simulations that analyse the response of micron-sized material RVEs, predicting the sensitivity 

of the conductivity tensor of CNT-polymer composites to applied uniform strain fields. These 

physically-based models, recently proposed by the authors [17], account explicitly for 

tunnelling conductivity at the junctions between CNTs and perform true predictions, in the 

sense that they do not necessitate of calibration parameters but only depend on the physical 

properties of the CNTs and the polymer matrix, as well as on the electron extraction potential 

at the CNT junctions and on the relative dielectric permittivity of the polymeric matrix. Here 

we summarise the main features of such models and we refer the reader to [17] for details. 

RVEs are constructed by randomly seeding CNTs with a random orientation within a cubic 

matrix volume of side 𝐿RVE, until the desired volume fraction 𝑣f is reached (see Fig. 1). CNTs 

are modelled as arrays of straight segments and have diameter 𝐷CNT and length 𝐿CNT. Geometric 

periodicity is enforced at the RVE boundaries and a minimum distance between adjacent CNTs 

is ensured by identifying all intersections and locally perturbing the CNT segments so that their 

initial separation distance 𝑠 is always equal or greater than the van der Waals equilibrium 

distance of 𝑑VDW = 0.34 nm. An example of an RVE is shown in Fig. 1. 
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Fig. 1. Example of the RVEs studied by Matos at al. [17] highlighting the contact locations. For visualization purposes, a 

smaller RVE and shorter CNTs than those described in this study are considered, with 1% volume fraction. 

 

2.1 Mechanical analysis 

In the mechanical analysis, the single-wall CNTs are modelled as continuum beams with a 

hollow circular cross section of wall thickness 0.34 nm [34] – the interlayer thickness of 

graphene – and discretized using the B31 beam elements of Abaqus Standard [35]. The material 

behaviour is taken as linear isotropic, with effective material properties obtained from 

published measurements or atomistic simulations. The polymeric matrix is discretized into a 

regular grid of 8-noded brick elements (C3D8 of Abaqus) in which the nanotubes are 

embedded, assuming perfect bonding with the matrix. Mechanical periodic boundary 

conditions are prescribed at the boundaries, via constraints to appropriate master nodes, whose 

degrees of freedom correspond to 6 homogenized strain components, while the corresponding 

reaction forces are related to 6 independent homogenized stress components. Simulations are 

conducted for different multiaxial homogenised strain cases; the average and spread of the 

homogenised elastic properties are obtained by a Monte Carlo analysis, by examining 20 

different realisations of the material’s microstructure. 

The mechanical analysis allows determining the change in the separation distance 𝑠 between 

each contacting pair of CNTs; this allows computing the sensitivity (𝑆𝑘
𝑙 ) of the separation 

distance (𝑠𝑘) of each contact junction (𝑘), and in each load case (𝑙), to the load case amplitude 

𝐴𝑙, 𝑆𝑘
𝑙 = 𝜕𝑠𝑘/𝜕𝐴𝑙. Each load case is defined as a linear combination of the homogenised 

principal strain components 𝜀�̅�
𝑙 = 𝑎𝑖𝜀p̅max

 (an overbar denotes homogenized strains; roman 

indices will refer to the principal strain directions 𝑖 = I, II, III); 𝑎𝑖 are randomly generated 

numbers in the range [−1, +1] and 𝜀p̅max
 the maximum considered principal strain. 

  

2.2 Electrical analysis 

The same RVEs are used for the electrical analysis, giving the bulk conductivity of the RVEs 

in different directions. The matrix is discretized by a regular mesh in which the nanotubes, 

meshed by one-dimensional conductive link elements (DC1D2 of Abaqus), are embedded. The 

embedding is done by constraining the CNT voltage degrees of freedom (DOFs) to the 
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corresponding DOFs of the matrix, via linear shape functions. The electrical analysis is 

performed using a steady-state heat-transfer analysis in Abaqus [35], since this type of analysis 

has a support for user-defined subroutines; the constitutive equations for electrical and thermal 

conductivity problems are analogous, as long as the adequate thermal properties are replaced 

by the electrical equivalents [36]. The polymeric matrix is modelled by DC3D8 8-noded brick 

elements. 

At all contact junctions, defined as minimum-distance segments between distinct nanotubes, 

of length inferior to 𝑑cut-off = 4 nm (as the junction conductivity is negligible at this distance), 

a user-defined element that models the quantum tunnelling transport is applied (referred to as 

“junction element”). This is integrated into a UEL subroutine in Abaqus [37] that reproduces 

the fluctuation-induced tunnelling electron transport between adjacent CNTs, modelled using 

Simmons's generalized formula [33] as described in [17]. The current that flows through these 

junction elements therefore depends on the CNT work fraction (extraction potential of one 

electron), on the permittivity 𝜖 of the polymeric matrix and on the separation distance between 

the adjacent CNTs. For each tunnelling element (𝑘), the separation distance 𝑠𝑘 is defined as 

the maximum value between the minimum separation 𝑠min = 0.25 nm (as determined in [38]) 

and the sum of the initial distance 𝑠𝑘0
 with the additional separation due to the imposed 

deformation: 

𝑠𝑘 = max{𝑠min, 𝑠𝑘0
+ 𝑆𝑘

𝑙 𝐴𝑙}. (1) 

 

The junction elements have 2 physical nodes and 3 DOFs: the electrical potential at the two 

physical nodes and a 3rd DOF corresponding to the load case amplitude 𝐴𝑙, which is prescribed 

as the DOF of an additional master node, shared by all the junctions. Fig. 2 illustrates this 

schematically. 

 

Fig. 2. Illustration of the physical nodes and the master node of junction elements. 

 

Electric periodic boundary conditions are prescribed at the RVE boundaries, allowing 

imposing uniaxial homogenised electric fields (or potential differences) along each of the 3 

Cartesian directions, by adjusting the 3 DOFs of a master node. The reaction flux components 

at the same node represent the current that flows through the RVE in the 3 Cartesian directions, 

from which the conductivity tensor is computed. An electric field is applied, at each value of 

the imposed strain field, in each of the 3 Cartesian directions, allowing computation of the 

conductivity tensor as function of the imposed homogenized strain field. We note that since 

the RVEs are isotropic, the conductivity tensor is diagonal (i.e. 𝜅𝑖𝑗 = 0 for 𝑖 ≠ 𝑗). 
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3 APPLICATION OF MACHINE LEARNING 

The models described in Section 2 are used to produce extensive data for training of an artificial 

neural network able to predict the material conductivity tensor as a function of the applied 

multiaxial state of strain. An ANN consists of a set of sequentially-ordered layers, with each 

layer (𝑗) comprising a set of neurons; each neuron (𝑖) in layer (j) contains a variable storing a 

real value 𝑣𝑖
(𝑗)

, which is a linear combination of the values of the prior layer, activated by a 

non-linear function 𝑓A [22], that is 

𝑣𝑖
(𝑗)

= 𝑓A(𝑤𝑖𝑘
(𝑗)

𝑣𝑘
(𝑗−1)

+ 𝑏𝑖
(𝑗)

) (2) 

where 𝐰(𝑗) and 𝐛(𝑗) are the weight matrix and bias array of the j-th layer. Einstein convention 

on summation over repeated indices applies. 

The layer of inputs consists of the imposed homogenised principal strains {𝜀I̅, 𝜀I̅I, 𝜀I̅II}, while 

the layer of outputs contains the changes of resistance in the 3 principal directions, normalized 

by the initial value 𝑅0, {Δ𝑅I/𝑅0, Δ𝑅II/𝑅0, Δ𝑅III/𝑅0}; this vector allows calculating the 

homogenised conductivity tensor, written in principal strain space. For each principal 

component 𝑖, the relation between the local deformed 𝜅𝑖 and initial 𝜅0 conductivities is  

𝜅𝑖 =
𝜅0

Δ𝑅𝑖

𝑅0
+ 1 

 
(3) 

For the problem under investigation, dimensional analysis dictates that such non-dimensional 

changes in resistance depend on the principal strains {𝜀I, 𝜀II, 𝜀III} and on the following set of 

non-dimensional parameters Π𝑖: 

Π1 =
𝐸CNT

𝐸mat
;  Π2 = 𝜈mat;  Π3 =

𝜅CNT

𝜅mat
;  Π4 =

𝐿CNT

𝐷CNT
;  Π5 =

𝜅CNTℎ

𝜖𝜑0
, Π6 = 𝑣f (4) 

where the subscript CNT and mat correspond to the nanotube and matrix properties, 

respectively. 𝐸 represents the elastic modulus, 𝜈 the Poisson’s ratio, 𝜅 the electrical 

conductivity, 𝜑0 the tunnelling junction potential barrier (taken as the CNT work fraction), 𝜖 

the matrix permittivity, ℎ Plank’s constant and 𝑣f the nanotube volume fraction.  

Relevant physical material properties are presented in Table I; in addition, the tunnelling 

junctions had a work fraction of 𝜑0 = 4.95 eV [39] and a permittivity of 3.98 × 𝜖0, where 𝜖0 

is the vacuum permittivity (representative of an epoxy matrix). A volume fraction of 𝑣f = 1.0% 

was chosen, driven by the fact that this is just above the percolation threshold, and in this region 

the materials are expected to display the most prominent strain-sensing response [17]. These 

properties are compatible with non-dimensional parameters with values: Π1 = 103, Π2 =
0.35, Π3 = 1010, Π4 = 102, Π5 = 0.2369, Π6 = 0.01, and results are valid only for this 

choice.  

 

 

 

 



6 

 

Material 
Elastic 

modulus (𝐸) 

Poisson’s 

ratio (𝜈) 

Electrical 

conductivity (𝜅) 

Diameter 

(𝐷CNT) 

Length 

(𝐿CNT) 

CNT 1.0 TPa − 104 S/m 50 nm 5 μm 

Epoxy 1.0 GPa 0.35 10−6 S/m − − 

Table I. Relevant material properties and CNT geometry [13].  

Following a preliminary RVE size and mesh convergence study, RVEs with 𝐿RVE =
2.0 × 𝐿CNT were simulated, resulting in models with approximately 650000 and 350000 DOFs 

for the mechanical and electrical simulations, respectively. For the chosen volume fraction, the 

homogenised conductivity of the undeformed composite was 2.187 S/m, the homogenised 

elastic modulus was 2.944 GPa and the homogenised Poisson’s ratio 0.3375. These 

homogenised elastic properties, independent of strain, were used in the coupled 

electromechanical simulations of the response of macroscopic components, to define the 

homogenised elastic isotropic mechanical behaviour of the material. 

The sequentially-coupled simulation technique illustrated in [17] was used to simulate the 

response of the RVEs to imposed uniform multiaxial strain states as well as potential 

differences, to generate training data for the machine learning application. The imposed strain 

amplitudes were as large as 1% and the loading cases consisted of pseudo-random 

combinations of the 3 imposed principal strains. An electric field of 0.01V/nm was imposed 

on opposite boundaries of the RVEs, along each of the 3 Cartesian directions. We note in 

passing that the tunnelling conductivity at the junctions between adjacent CNTs is, strictly, 

non-linear in potential difference [33]; however, a preliminary study showed that this non-

linearity is negligible in the range 0.01 − 0.1 V/nm and we therefore consider the conductivity 

tensor independent of applied voltage in this study. 

The choice of the number of hidden layers and of the number of neurons in each layer was 

the result of a trial and error procedure; the optimal network had 2 hidden layers, each with 3 

neurons, as sketched in Fig. 3. The training sets consisted of 15000 pairs of inputs and outputs 

vectors; 14500 pairs were used to train the ANN and the remaining 500 to determine the 

validation accuracy. The validation set is selected from distinct load cases, guaranteeing that 

the ratio between strain components is unseen by the network during training.  

Since the change in resistivity scales approximately exponentially with strain [17], training 

of the ANN was facilitated by redefining the 3 outputs as log10 (𝑐 +
Δ𝑅𝑖

𝑅0
), where 𝑐 is a positive 

real number larger than the maximum absolute negative value (set to 𝑐 = 0.15) which keeps 

the argument of the logarithm positive. A sigmoid function was chosen as the activation of the 

inner layers, 𝑓A(𝑥) = (1 + 𝑒−𝑥)−1, and identity function (i.e. no activation) was used for the 

output layer. 

The network was built and trained using TensorFlow [40], which allowed determining the 

optimal weight matrices and bias arrays 𝐰(𝑗) and 𝐛(𝑗) to minimise the mean square error 

between the predictions of FE simulations and those of the ANN; such optimisation was 

conducted via backpropagation, using the Adam algorithm [41]. A small L2 regularization, 

with a value of 𝜆 = 10−5, was used to avoid overfitting. The resulting optimized network 

reached training and validation accuracies of 99.72% and a 99.68%, respectively, after 1000 

epochs (forward and backward passes of all the data, shuffled and divided in batches of 8 pairs 

of training sets). Incidentally, we note that we repeated the training for an 80:20 ratio of training 

to validation dataset size (as such ratio is widely used in machine learning) and, for the same 

network and number of epochs, we obtained similar training and validation accuracies (of 

99.648% and 99.690%, respectively). 
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Fig. 3. Schematics of the optimized ANN and of respective weights. 

 

To illustrate explicitly the accuracy of the optimized ANN, in Fig. 4 we present predictions 

of strain-sensing for loading in uniform uniaxial stress and uniform uniaxial strain, examined 

in detail in [17]. The curves show the change in non-dimensional resistance in direction 1 as a 

function of the imposed strain in the same direction. Such predictions correspond to an applied 

potential difference in direction 1, and two sets of predictions are shown: the first set is obtained 

from a detailed sequentially-coupled analysis of the mechanical and electrical FE models 

described above, while the second set represents predictions of the optimised ANN. Good 

agreement between the two sets is clear, for both tensile and compressive imposed macroscopic 

strain. We note that none of these 2 load cases was part of the training dataset for the ANN. 

Each FE simulation required around 3.5h of CPU time (and 20 simulations were necessary for 

the Monte Carlo analysis), while the ANN allowed to reproduce the same predictions in less 

than 0.2s of CPU time; this corresponds to a saving in computational time of more than 6 orders 

of magnitude. 

 

Fig. 4. Change in resistance as a function of strain, as predicted by the FE simulations and the ANN, showing the 

validation of the ANN for uniaxial strain and stress load cases. 

 

The optimized network was used to construct a FORTRAN function to be used in simulations 

of macroscopic components in Abaqus [35]; such function provides the vector 𝐘 containing 

the 3 outputs as a function of the vector 𝐗 containing the 3 inputs, as follows 
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𝐘 = 𝐛(𝟑) + 𝐰(𝟑) × 𝑓A (𝐛(𝟐) + 𝐰(𝟐) × 𝑓A(𝐛(𝟏) + 𝐰(𝟏)𝐗)) (5) 

𝐰(𝟏) = [
−1.0858 × 10−1 −1.8058 −1.0533 × 10−1

−1.9124 −1.0525 × 10−1 −8.7031 × 10−2

−7.9171 × 10−2 −7.9752 × 10−2 −1.7554

] , 𝐛(𝟏) = {
3.6989
3.7150
3.5303

} (6) 

𝐰(𝟐) = [
−1.4643 1.1072 7.1857 × 10−1

2.5401 1.9233 2.4055 × 10−1

−9.6173 × 10−3 −1.1108 −2.8318

] , 𝐛(𝟐) = {
−1.6504
−3.3004
 2.5294

} (7) 

𝐰(𝟑) = [
1.4034 −1.4799 1.9688

6.5250 × 10−2 −1.7152 1.7605
4.4283 × 10−1 −1.9572 1.4402

] , 𝐛(𝟑) = {
−3.9414
1.1168
 2.9051

} × 10−1 (8) 

where the input vector is related to the normalized (considering the average and standard 

deviation of training data) principal strain components 𝜀𝑖 : (𝑖 = I, II, III) by  

𝐗 = {
𝜀𝑖 − (−2.5868 × 10−5)

3.4109 × 10−3 
} (9) 

and the final resistance along each of the principal directions given by 

Δ𝑅𝑖

𝑅0
= −0.15 + 10Y𝑖 (10) 

 

The simulations on macroscopic components were steady-state coupled 

temperature-displacement analyses, where the analogy of the thermal and electrical physical 

problems was exploited via appropriate substitutions of variables. The CNT-polymer 

composite material was modelled by 8-noded thermally-coupled brick elements, with trilinear 

displacement and temperature (C3D8T). A user-defined field (USDFLD subroutine of Abaqus 

[37]) was used to read and store the Cartesian strain components at each integration point, at 

the start of each solution increment. The electrical constitutive behaviour was specified through 

a user defined material (UMATHT subroutine of Abaqus [37]), which contained the 

FORTRAN function constructed by the ANN (eq. (5)), providing the conductivity tensor (in a 

principal strain reference system) as a function of the imposed principal strain. This tensor was 

then appropriately rotated to obtain the conductivity in a global Cartesian reference system. 

In the following section, we present different applications of the proposed modelling 

methodology to problems of practical interest. 
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4 APPLICATIONS  

4.1 Measurements of the strain-sensing response of materials 

As a first application we consider the tensile loading of the flat dog bone specimen in Fig. 5, 

dimensioned according to ASTM D638-02 [42]. A specimen of this geometry, or similar, may 

be used to conduct measurements of the strain-sensing response of a CNT-polymer composite. 

Such measurement would typically occur by placing 2 electrodes at opposite ends of the 

specimen’s end tabs, injecting a known current into the specimen by connection to a constant 

current source; a potential difference can then be measured by the same electrodes (2-probe 

set-up) or by an additional pair of electrodes at different locations along the specimen (4-probe 

set-up). Placing voltage-measuring electrodes at the end of the specimen, in a 2-probe 

configuration, may be convenient as this allows sampling the average electrical potential across 

the specimen thickness; a 4-probe set-up however is expected to be more accurate, as the 

electrodes measuring the potential difference may be placed at the ends of the gauge section, 

in which the strain field is uniform. For the 2 types of measurements to coincide, the material 

conductivity should change uniformly along the specimen; however, this is not the case, due 

to the gradients in strain field outside the gauge portion. The models presented in this paper 

allow quantifying this, assessing whether the effects of strain gradients are negligible in this 

type of measurements.   

 

Fig. 5. Geometry of the tensile specimen and sketch of the prescribed boundary conditions, including locations of the 

voltage probes. 

The electro-mechanical response of the specimen was simulated, imposing an axial strain of 

up to 1% in the gauge section; this was achieved by fully constraining one of the end-tabs while 

imposing an axial displacement on the opposite tab. The electrical constitutive model of each 

finite element was provided by the ANN (eq. (5)), as described above. Fig. 6 shows the axial 

strain and axial conductivity fields at an imposed gauge strain of 1%. Clearly, the conductivity 

along the specimen is non-uniform and its value in the gauge portion is approximately 50% of 

the value at the undeformed end tabs, suggesting that a 4-probe set-up should yield much more 

accurate measurements than a 2-probe set-up. 

 

Fig. 6. Contours of the a) axial strain and b) axial conductivity fields when a strain of 1% acts in the gauge portion.  

 



10 

 

Fig. 7 shows the measured changes in resistance for the 2-probe and 4-probe set-ups, 

compared with the expected resistance versus strain history predicted in the case of uniaxial 

stress (by the ANN). Clearly the 4-probe method, with voltage electrodes placed at the ends of 

the gauge portion, can capture the correct response, while the 2-probe set-up underestimates 

the sensitivity of conductivity to strain. On the other hand, the electrodes measuring voltage in 

a 4-probe set-up can only contact the specimen’s surface, and if a boundary layer of low CNT 

concentration exists at the surface, this can affect the measurements substantially. Our 

simulations show that the electrical potential and current density at the ends of the gauge 

portion are, to a very good approximation, uniform in the cross-section (considering a perfect 

CNT dispersion); this ensures that the use of surface electrodes is appropriate. These 

considerations, and the high variability of the measurements reported in the literature on similar 

materials, suggest that extreme care must be taken in interpreting this type of measurements.  

 

Fig. 7. Relative change in resistance as a function of axial strain in the gauge portion of the tensile specimen. 

 

4.2 Damage detection 

The second application explores the suitability of CNT-polymer composites for damage 

detection applications; thin layers of these materials may be adhered to safety critical 

structures, e.g. in aeronautical applications, to monitor strain and simultaneously detect 

possible damage. Suppose that a strip of CNT-polymer composite is adhered to a structure of 

similar Poisson’s ratio and mainly loaded in uniaxial tension, and that this structure is subject 

to (e.g.) impact damage. Damage may remove some material, which we idealise as the presence 

of a hole in the strip and structure. 

To investigate this scenario, we simulate the electro-mechanical response of a material strip 

with a central hole, loaded in uniaxial tension. The strip has a length to width ratio 𝐿/𝑊 = 4 

and a central hole of diameter 0.2 𝑊, as shown in Fig. 8 together with the prescribed boundary 

conditions (constrained displacement at the left boundary and prescribed longitudinal 

displacement on the opposite side). The length and width of the strip represents the spacing of 

the probes at which the electrical resistance is sampled in the application considered. The axial 

strain and axial conductivity fields at an imposed displacement of 0.006 × 𝐿 are shown in Fig. 

8. 
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Fig. 8. Geometry and boundary conditions for a rectangular material strip with a central hole.  

 

The resistance is computed as the electric potential difference across the specimen’s ends, 

divided by the current that flows through it. The presence of the hole induces an increase in the 

resistance of the unstrained (𝑅0) strip of 1.65%, suggesting that the material under 

investigation could comfortably detect the occurrence of damage. We note however that the 

hole diameter chosen here corresponds to a relatively very large damage, and that smaller 

damage will be harder to detect. In a real damage detection application, length and width should 

be optimised to maximise the sensitivity to damage, considering the range of damage sizes that 

are possible or expected. The normalized change in resistance as a function of the applied strain 

is plotted in Fig. 10 and compared to the case of an identical strip with the hole absent. Clearly, 

the normalized change in resistance with strain is not significantly affected by the presence of 

the hole, suggesting that the material strip would continue to act effectively as a strain sensor, 

even in the case that damage occurs, noting that the undeformed resistance value 𝑅0 is different. 

 

 

Fig. 9. Contours of the axial strain (a) and axial conductivity (b) fields at an imposed displacement of 𝟎. 𝟎𝟎𝟔 × 𝑳. 
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Fig. 10. Normalised change in resistance of the strip as a function of the applied strain, revealing the minor effect of 

the hole on the strain-sensing response.  

4.3 Strain-sensing in bending  

We now use the capabilities of the proposed multiscale model to explore the possibility of 

using bending-governed structures in strain-sensing application, e.g. for the construction of 

low-cost sensors. Since bending deformation induces a normal strain field which is 

antisymmetric with respect to the neutral plane, it can be logical to conjecture that strain-

sensing capabilities of CNT-polymer composites may be reduced in bending, compared to the 

case of uniform tension or compression, as the reduction in resistivity in zones of compressive 

strain may be compensated by an increase in zones of tensile strain. However, the strain-

sensing response of these materials is asymmetric (as shown for example in Fig. 4) and 

therefore a quantitative analysis is needed. 

 

Fig. 11. Initial and deformed shapes of the a) circular and b) square cantilever beams. 
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Fig. 12. Change in resistance of the square and circular cantilever beams as a function of the normalised tip deflection. 

 

Here we analyse the change in axial resistance of two prismatic cantilevers loaded at the tip 

by a transverse displacement. The beams have identical length 𝐿 and flexural rigidity 𝐸𝐼 (𝐼 

represents the second moment of area of the cross-section) and two different cross-sectional 

shapes, as shown in Fig. 11: circular and square. The aspect ratio of the circular beam was 

chosen as 𝐿 𝐷⁄  = 6. The beams are built-in at one end and a transverse displacement is applied 

at the opposite end, such to impose a maximum absolute principal strain of 1% for both cases 

(as this is the limit of the training range of the ANN). Beams are modelled by 3D brick thermo-

elastic elements. An electric voltage is applied at the 2 ends and the resistance is calculated by 

measurements of flowing current. 

Fig. 12 shows the predicted variation of resistance with the applied tip deflection. Both 

cantilevers display a similar response, with the square section displaying a slightly superior 

sensitivity of the resistance to deformation (with a maximum difference of 2%). As expected, 

the relative change of resistance is considerably smaller than that observed in the applications 

considered previously; however, this is still substantial, even for these relatively slender 

structures, and this suggests that short, stiff cantilevers of optimal cross-sectional shapes could 

be designed to maximise the sensitivity of their resistance to bending deflection. Alternatives 

may include having two separate strips of this material on the superior and inferior parts of the 

beam with two distinct measurement channels. This design is not pursued here for the sake of 

brevity; however, the interested reader may make direct use of eq.  (5) and simple analytical 

models to pursue this. 

4.4 Plates as touch sensors  

Finally, we use the new model to analyse the strain-sensing response of plates loaded 

transversally, to assess their contact-detection capability. We consider a square plate as in Fig. 

13, with a prescribed voltage difference applied at two opposite sides of the square. The 

thickness is 1/10 of the width, and the plate is transversely loaded by a non-conductive rigid, 

hemispherical indenter of radius equal to the thickness. Two different sets of boundary 

conditions are considered: (i) the plate is fully clamped at its periphery, corresponding to a 

bending response (Fig. 13a), and (ii) the plate is supported by a rigid substrate, resulting in an 

indentation loading (Fig. 13b). Contact between plate and indenter is modelled as frictionless, 

using a surface-to-surface discretization.   
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Fig. 13. FE model for transverse plate loading. (a) Plate bending and (b) Plate indentation. 

The measured change in resistance is plotted in Fig. 14a as a function of the normalised 

indenter displacement. The range of indentation depth in this figure extends to / 0.01t = , 

where t is the plate thickness and   the indentation depth. At this value of indentation the 

local maximum absolute principal strain is inferior to 1% for both plate bending and plate 

indentation. In both cases, the localized compressive deformation under the indenter initially 

decreases the measured resistance. With increased indenter displacement, the reduction in 

resistance caused by this compressive through-thickness deformation is balanced by the 

relatively large in-plane tensile strains; the net result is a non-monotonic strain-sensing 

response. This type of response, indeed, was measured in the experiments on tactile sensors 

made from carbon nanofibers and a polyurethane matrix, presented in [43]. We note that the 

magnitude of the change in resistance is quite small, corresponding to a small gauge factor, in 

this range of displacement, for potential sensors exploiting this type of loading (Fig. 14a). 

 

a) 

 
 

b) 

 
Fig. 14. Normalized change in resistance with the deflection of the contact point 𝜹, normalized by the plate thickness 𝒕, 

until a deflection value of 𝟏% (a) and 10% (b).  
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If the maximum displacement of the indenter is increased by an order of magnitude, 

/ 0.1t = , as shown in Fig. 14b, in both loading conditions the plates display a high change 

in resistance for indenter displacements greater than approximately 2% of the plate thickness. 

Fig. 14b also shows that the resulting sensor would be more effective in the case of plate 

indentation. We note however that these predictions correspond to local strain components 

higher than 1% and therefore outside the range of training of the ANN used in the simulations; 

consequently the ANN is extrapolating the material behaviour and for this reason our 

confidence in these specific predictions is low, and the simulations should be repeated after 

training of the ANN in a wider strain range, which is not pursued here. We note that for 

/ 0.01t =  the local maximum absolute principal strains are of order -13% and 3% for the case 

of plate indentation and plate bending, respectively. However this large strains are affecting 

only a very small volume of the material, compared to the volume of the plates, and therefore 

the error in the predictions is probably also small. 

5 CONCLUSIONS  

We have presented a physically-based multiscale simulation methodology to predict the strain-

sensing response of CNT-polymer composites subject to a non-uniform, multiaxial strain field. 

The approach involved using detailed FE simulations of RVEs at the micron scale to train an 

artificial neural network to reproduce, at low computational cost, the electro-mechanical 

constitutive response at macroscopic scale, in presence of non-uniform multiaxial strain fields. 

This modelling methodology was implemented in Abaqus and allowed savings in 

computational time of more than 6 orders of magnitude. Analysis of an RVE of size 1 m to 

predict each pair of conductivity-strain takes approximately 3.5h of CPU time (to be multiplied 

by 20 realizations); the optimised neural network provides the same predictions in less than 

0.25s. Clearly this approach enables simulations at the macro-scale which cannot be pursued 

by explicit modelling of the microstructure. The application of machine learning allows 

effective packaging of the constitutive information, which is provided to the interested reader 

via eq. (5), valid for a maximum principal strain not exceeding 1%.  

The modelling approach enabled simulations never appeared in the published literature and 

allowed us to explore realistic applications of CNT-polymer composites. The main practical 

conclusions drawn from these application studies are:  

• Measurements of the strain-sensing response of CNT-polymer composites should be 

conducted via a 4-probe set-up; if a standard tensile specimen is used, the use of 

surface electrodes in the experiments is sufficiently adequate. 

• The materials under investigation are suitable for applications in structural health 

monitoring and damage detection; they can be simultaneously used for strain 

monitoring and their sensitivity to strain is only mildly affected by the occurrence of 

damage. 

• CNT-polymer composites can be used to construct low-cost sensors operating in 

bending mode, as well as touch sensors operating in indentation mode. 

The model developed in this paper enables optimisation of the geometry of sensors to pursue 

designs of low cost and maximum sensitivity. We leave this as a topic for future studies.  
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