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ABSTRACT

High-Level Synthesis (HLS) tools automatically transform a high-
level specification of a circuit into a low-level RTL description.
Traditionally, HLS tools have operated on sequential code, however
in recent years there has been a drive to synthesize multi-threaded
code. A major challenge facing HLS tools in this context is how to
automatically partition memory amongst parallel threads to fully
exploit the bandwidth available on an FPGA device and avoid mem-
ory contention. Current automatic memory partitioning techniques
have inefficient arbitration due to conservative assumptions regard-
ing which threads may access a given memory bank. In this paper,
we address this problem through formal verification techniques,
permitting a less conservative, yet provably correct circuit to be
generated. We perform a static analysis on the code to determine
which memory banks are shared by which threads. This analysis
enables us to optimize the arbitration efficiency of the generated
circuit. We apply our approach to the LegUp HLS tool and show
that for a set of typical application benchmarks we can achieve up
to 87% area savings, and 39% execution time improvement, with
little additional compilation time.
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1 INTRODUCTION

FPGAs are beginning to achieve mainstream adoption for custom
computing, particularly as FPGAs are deployed in datacentres,
through, for example, the Microsoft Project Catapult [14] and the
Amazon EC2 F1 instances [3]. However, to use such FPGA devices,
familiarity with detailed digital design at a low abstraction level
is required, hindering their use by engineers without a hardware
background. High-level synthesis (HLS) aims to bring the benefits
of custom hardware to software engineers by translating a language
they are familiar with, such as C, into a hardware description. This
process can significantly reduce the design time compared to man-
ual RTL implementations. Various HLS tools have been developed
by both academia and industry, such as LegUp from University of
Toronto [1], Bambu from Politecnico di Milano [17], Xilinx Vivado
HLS [19] and Intel’s HLS Compiler [8].

The input to HLS for parallel hardware synthesis can be either
single-threaded sequential code or multi-threaded concurrent code.
Our work relates to multi-threaded input, which commonly in-
volves three challenges in HLS design. Firstly, while FPGA devices
provide large amounts of compute, its effective utilization is of-
ten limited by the memory bandwidth. Additionally, to increase
the memory bandwidth, partitioning schemes can be used to split
memory into smaller distributed memories or banks. This allows
for parallel accesses to data items, but to ensure correctness, arbitra-
tion logic needs to be used to serialize accesses to each individual
partition. Finally, as the number of memory partitions or compute
threads increases, so do the overheads of arbitration resulting in
challenge of the system scalability.

HLS tools, such as LegUp, often address the memory bandwidth
and correctness challenges by performing automated memory par-
titioning and using a crossbar arbiter to ensure global accessibility.
However, this approach has scalability challenges, as the fully con-
nected arbitration logic imposes excessive routing overheads and
lengthy critical paths. One solution to this problem is for users
to manually edit the software code to specify disjoint regions of
memory, which would enable the optimization of arbitration logic.
If a user specifies that a region of memory is only accessed by one
thread, then no arbitration logic is required. However, for complex
code it can often be challenging and error prone for the user to man-
ually determine memory bank exclusivity, and such an approach is
counter to the fully automated design philosophy of HLS tools.

In this paper, we propose an approach called Efficient Arbiter
SYnthesis (EASY) based on automated translation of a multi-threaded
program into a related sequential program in the formal verification
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void xassign(void xthreadarg) {
int arg = xthreadarg;

// assign element values
for (i = arg; i < arg+1024; i++)
ALi]l = BLf(i)1;
pthread_exit (NULL);
3

int main() {

// initialize arguments to pass into threads
for (i = 0; 1 < 2; i++)
datali] = i*x1024;

// create the threads
for (i = 0; 1 < 2; i++)

pthread_create(&threads[i], NULL, assign, datal[il);

Figure 1: Example of a simple multi-threaded C source using
pthreads.

language Boogie [12], together with assertions. We then apply the
Boogie tool-flow to automatically generate satisfiability modulo
theory (SMT) queries, the results of which our tool interprets as di-
rections to simplify arbitration logic in the original multi-threaded
program. Our work is able to address the scalability challenge by
extending the current LegUp tool flow with a fully automated static
analysis flow that supports arbitrary input code.

The main contributions of this work are as follows:

1) A general technique that uses formal methods to prove memory
bank exclusivity for arbitrary multi-threaded input code.

2) A technique for translating generic LLVM intermediate repre-
sentation (IR) code for multi-threaded programs into the Microsoft
Boogie (single threaded) verification language, suitable for proving
the absence of memory bank contention.

3) A fully automated HLS pass that calls the Boogie verifier to
formally prove that arbitration is not required between certain
combinations of memory banks and program threads, enabling the
removal or radical simplification of arbitration logic in an auto-
mated fashion.

4) Analysis and results showing that the proposed approach can
achieve up to 87% area saving (geo. mean 48%) and 39% wall-clock
time improvement (geo. mean 21%) over a number of benchmarks.

2 MOTIVATION

Fig. 1 gives an example of multi-threaded C code using pthreads.
In each thread, a loop assigns elements of array A from data stored
in array B. The element of B that is selected for each assignment
uses the loop iterator, i, and the pure function int f(int 1i).
Each thread will use the function to decide which portions of
the shared memory they are going to access. If this function is
sufficiently complicated, it may be non-trivial for a developer to
know how the memory should be partitioned for parallel access.
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Figure 2: Examples of arbiter simplifications by the pro-
posed work.
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Figure 3: Evaluation on performance and chip area of origi-
nal arbiters.

For example, the simplest case is f(i) = 1i.In this case, it is clear
that the array indices accessed in each thread never overlap with
the other threads, by combining knowledge of f with Line 16. For
instance, thread 0 only ever accesses data at addresses 0 to 1023
of array B; while thread 1 only touches elements with addresses
from 1024 to 2047. As these threads are both accessing mutually
exclusive regions of B, a block partitioning strategy can be applied,
where the array B of size 2048 can be divided into two sub-arrays of
size 1024. Each thread accesses a unique partitioned memory bank
during execution, so that the bank selection representing memory
bank arbitration in hardware can be avoided.

In the architecture shown in Fig. 2(a), the LegUp HLS tool im-
plements arbiters for each partitioned memory bank connecting
to all threads. With many threads and banks, the size and delay
of the arbitration logic becomes quite considerable. Fig. 3 shows
how the arbitration logic hardware utilization and maximum clock
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Figure 4: A coarse overview of the LegUp multi-threaded tool-flow.

frequency scales as the number of memory banks and threads are
increased, where the number of threads is equal to the number
of banks. As expected, increasing the number of threads causes a
decrease in maximum clock frequency and increases hardware uti-
lization. Observe that the maximum clock frequency of the arbiter
drops sharply for a relatively small number of threads, eventually
approaching a low sub-50MHz frequency. The figure also shows
that both the logic utilization and number of registers used by the
arbiters increases dramatically with the number of threads, leading
to significant portion of total available resources. As the LegUp HLS
tool conservatively assumes that any thread can access any bank,
an arbiter port is needed for each thread. As the number of threads
increases, so do the number of arbiter ports in the arbitration logic,
resulting in a long propagation delay between memory banks and
threads, decreasing the maximum achievable frequency.

The main objective of this work is to simplify the memory ar-
bitration by statically proving (using the semantics of the input)
that some threads are incapable of accessing some memory parti-
tions, and optimizing the arbitration logic accordingly. With our
approach, we are able to analyze the input source and through
the use of formal methods, prove which thread never accesses a
memory bank. Often, only the red wires shown in Fig. 2(a) are ever
used during the whole execution, while the black wires are never
used, demonstrating the source of conservatism and the potential
benefits of arbiter simplification. After applying our approach, we
achieve the connectivity in Fig 2(b), where all arbitration logic can
be safely removed. A more general case is shown in Fig. 2(c), where
a memory bank may be accessed by more than one thread. In this
case the arbiters cannot be completely stripped out, but can still be
simplified resulting in a more area-efficient arbitration architecture
in Fig. 2(d).

In the context of the existing simulation-based approach [22], let
T be the set of threads, and S be the subset of those observed to be
accessing a given bank in simulation. Let F be the set of threads that
have been formally proven by our tool to not be accessing a given
block of memory. The original arbitration method for partitioned
memory using S observed by [22] is to build an arbiter with |T|
connections conservatively, while our work builds an arbiter with
|T —F| connections. We know that every simulation-observed access
pattern is possible, so S € T — F C T. Most of the time, we find
S =T — F, which can be interpreted as ‘it is safe to consider only
those banks touched in simulation’ (as in Fig. 2(c)). The ‘best case’
is |S| = |T — F| = 1 such as Fig. 2(a). The objective of our work is
to find F for each bank.

3 BACKGROUND

3.1 The LegUp HLS tool

For this work, we have chosen to use the LegUp HLS tool, as it is the
only tool that supports multi-threaded inputs, in the form of C style
pthreads, with all other HLS tools only supporting single-threaded
inputs [10, 19]. It is also a well known and open-source HLS tool
under active development. Support for multi-threading is essential
since our technique uses formal methods to optimize the generated
memory interface for concurrently executing hardware threads,
which is realized through the synthesis of multi-threaded code.
LegUp HLS allows spatial parallelism in hardware to be exploited
by software engineers, through the synthesis of concurrent threads
into parallel hardware modules.

LegUp is built upon the LLVM [4] compiler framework. LLVM
consists of a frontend, optimization stage, and backend. The fron-
tend converts the input program into LLVM-IR, which can then
be optimized using a collection of preexisting optimization passes,
and the backend receives the final optimized LLVM-IR and gen-
erates architecture-specific machine code. In the case of LegUp,
the backend performs HLS and produces a Verilog RTL circuit
implementation. We now summarize the key stages in LegUp’s
multi-threaded synthesis flow.

1) The input C is transformed into LLVM-IR via Clang [6].

2) Each thread function destined for hardware is extracted from the
rest of the source, creating a hardware LLVM-IR source for each
function, and a software (host-code) LLVM-IR source.

3) The split LLVM-IR sources are transformed multiple times by a
series of optimization passes: some LegUp specific, such as bitwidth
minimization, and others generic, such as dead-code elimination.
For the LLVM-IR host source, an additional transformation is made
to convert all the pthread_create calls into the appropriate hard-
ware function calls.

4) Each transformed LLVM-IR source is then turned into a Verilog
description of a circuit using the traditional scheduling, allocation,
and binding steps [15].

5) Interconnect logic and memory interfaces are generated to con-
nect each of the circuits to the host system and instantiate them
the appropriate number of times.

6) The software host code is compiled, and an FPGA hardware bit-

stream is generated by synthesizing the Verilog using FPGA vendor
tools.

Fig. 4 shows a labeled tool-flow diagram of the stages outlined
above, where stages 1-3 are often referred to as the frontend and
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stages 4-6 are referred to as the backend. In this work, the LLVM-
IR is analyzed directly after the frontend, and the output of our
analysis is used to optimize the RTL code generation in stages 4
and 5.

In LegUp, each hardware thread is synthesized into a hardware
circuit with an FSM and datapath. The hardware circuits corre-
sponding to threads operate independently. That is, there is no
global schedule requiring data-synchronization on memories be-
tween threads (which can instead be achieved by using locks and
synchronization barriers common in other HLS tools [18]).

One advantage of FPGA devices is the high-internal memory
bandwidth, as the numerous small distributed memories (BRAMs)
can be accessed concurrently. For any data shared between multi-
ple hardware threads, LegUp constructs a shared memory out of
BRAMs to provide fast local access to the data. LegUp also provides
an optimization pass to partition shared arrays automatically into
multiple smaller BRAM-based memories, enabling more data to be
accessed concurrently [22] (c.f. Section 3.2).

As mentioned above, LegUp is unable to determine conclusively
which thread will access which of the shared memories, forcing
it to take a conservative approach, where it assumes any thread
can access any shared memory. This assumption requires the con-
struction of expensive crossbar-based interconnects and arbitration
logic between all threads and every shared memory as illustrated
in Fig. 2(a). In the current generated hardware, whenever multiple
threads compete for a shared memory, only one can be granted
access. The rest of the threads are stalled, unable to make progress.

3.2 Memory Partitioning Schemes

To exploit the high internal memory bandwidth available on FPGA
devices, LegUp includes a partitioning optimization that can split a
shared memory into multiple smaller memories [22]. Memory parti-
tioning allows for multiple simultaneous accesses to a “shared”
memory between concurrently executing threads. With an ap-
propriately chosen partitioning scheme, simultaneous memory
port accesses, which would have previously resulted in contention
(i.e. stalled cycles) can now occur. By splitting memories into smaller
blocks, each of the constituent smaller memories can service dis-
joint regions of the overall address space independently. Provided
multiple threads are requesting access to portions of the address
space serviced by different memories, they can access them simul-
taneously. The capability to partition memories thereby increases
access parallelism, improving application performance.

Memory partitioning cannot be performed blindly and requires
care. If partitioning is well balanced, with threads accessing dis-
joint regions of the address space concurrently, then performance
is improved. However, if some of the partitions are very “hot” with
frequent accesses and others are very “cold” with infrequent ac-
cesses, then the overheads of the partitioning logic may outweigh
the benefit seen by the increased throughput. To carefully select
appropriate partitioning strategies, LegUp adopts an automated
simulation-trace-based approach using a light-weight memory sim-
ulator. Different partitioning schemes, complete, block, cyclic
and block-cyclic, are applied and simulated on the initial mem-
ory trace to experimentally identify the partitioning strategy with
the smallest memory contention frequency.

J. Cheng et al.

Table 1: Program analysis approaches for memory partition-
ing of HLS applications.

Approaches for memory partitioning

Polyhedral Simulations +
analysis Formal methods

(20], [2],

Single-threaded [9]

Input [21]

code | Multi-threaded [22]+our work

While this approach greatly improves the throughput for multi-
threaded shared memory applications, it cannot guarantee that
multiple threads never access the same partition. This exacerbates
the scalability challenge discussed in Section 3.1 and highlighted
in Fig. 3, as now the complexity of the arbitration logic scales not
just with the number of shared memories and threads, but also
with the number of partitions per shared memory. Our analysis
alleviates this scalability challenge, as it is able to prove which
threads can access which partitions of a shared memory through a
static analysis of the code. This enables us to safely optimize the
arbitration logic connecting memory partitions to threads, reducing
its complexity and increasing performance.

3.3 Program Analysis Tools

Program analysis has been an active research area for optimizing
circuit generation with HLS tools. Table 1 shows a comparison
between our work and the following related works. Polyhedral
techniques have been used in HLS since the work of Liu et al. [11].
Recent work such as Wang et al. [20] on polyhedral analysis for
memory partitioning has shown promising performance through
performing cyclic-like partitioning, exploring the translation be-
tween accesses to an original multi-dimensional array and to the
newly partitioned arrays. However, this approach is incompati-
ble with bank switching, where the data in one bank is shared
by multiple hardware units, prompting Gallo et al’s lattice-based
banking algorithm [2]. Winterstein et al. [7] propose a tool named
MATCHUP to identify the private and shared memory region for
a certain range of heap-manipulating programs using separation
logic, targeting off-chip memory, while we perform analysis ar-
bitrary code but currently only work with on-chip memory. The
most recent work by Escobedo and Lin [9] propose a graph-based
approach based on formal methods to compute minimally required
memory banks for any given pattern to avoid memory contention
for stencil-based computing kernels. In summary, these works are
not built based on multi-threaded input, but are rather directed to-
wards partitioning of arrays with multiple accesses in a loop body.
These techniques are not applicable in multi-threaded cases, and
often require code to have a particular structure (e.g. polyhedral
loop nests).

Satisfiability Modulo Theories (SMT) solver-based approaches
are relatively new to the HLS community, but have shown potential
strengths in hardware optimization. The closest piece of work to
this paper is by Zhou et al. [21], which proposes an SMT-based
checker for verification of memory access conflicts based on parallel
execution with banked memory, resulting in a highly area-efficient
memory architecture. We both use simulation traces as a starting
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point for formal analysis, an approach referred to as ‘'mining’ in [21].
However, they optimize a banking function with a model of area,
while our work proves the absence of conflict for a banking function
derived by [22]. Moreover, [21] does not take the whole program,
with its control structures into account and instead formulates an
SMT query on the banking functions themselves. Hence, it does not
support input-dependent memory traces, which can be analyzed
by our work.

Finally, [21] proves the existence of bank conflicts, allowing each
parallel hardware unit to access different memory banks concur-
rently. For instance, they allow that at clock cycle 0, instance 0
accesses bank 0 and instance 1 accesses bank 1, while at clock cycle
1, parallel instance 0 accesses bank 1 and parallel instance 1 accesses
bank 0. Conversely, we identify the memory banks never accessed
by certain threads over the whole execution, because we target
arbiter removal. For example, we can improve the arbitration logic
in an instance where thread 0 never accesses bank 0 and bank 1 at
any point, while thread 1 never accesses bank 2 and bank 3.

3.4 Microsoft Boogie

Boogie is an automatic program verifier from Microsoft Research,
built on top of SMT solvers [12]. Boogie uses its own intermediate
verification language (IVL) to represent the behavior of the program
being verified. Instead of executing the verification code, an SMT
solver is applied to reason about program behavior, including the
values that variables may take. Encoding of verifications as SMT
queries is automatically performed by Boogie ‘behind the scenes’,
hidden from the user. Other works have proposed the automated
translation of an original program to Boogie IVL, such as Smack [13],
a automated translator of LLVM-IR code into equivalent Boogie
code.

In addition to all the commands one would expect in a standard
programming language, Boogie contains a number of verification-
specific language constructs, which we use in our work, as detailed
below:

1) havoc x: The havoc command assigns an arbitrary value to
the variable x. This can be used to prove an assertion that is true for
any values of the variable, unlike simulation-based testing which
will only check assertions for particular test vectors.

2) assume c: The assume command adds tells the verifier that
the condition ¢ can be assumed to be true when trying to prove
subsequent assertions. For example {havoc x; assume (x>0);3}
together encode that the variable x can be any positive value.
3)if (*) {A} else {B}: The special (*) condition tells the
verifier that either branch might be taken. This construct is called
non-deterministic choice.

4) assert c: This instructs the verifier to try to prove the condi-
tion c. For example {havoc x; assume (x>1); assert (x>0);}
should pass, because every variable greater than one is also greater
than zero.

4 METHODOLOGY

We convert the multi-threaded HLS input code into single-threaded
Boogie code to verify the number of arbiter ports needed for the
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each partitioned bank. The Boogie code represents only those ex-
pressions from the original code that could impact on the memory
bank partition index accessed by each thread. Formal techniques
are applied to prove that certain arbiter ports are unnecessary. The
subsections below highlight the main steps in the process, includ-
ing how we translate the multi-threaded C into a Boogie program
with a proper specification of program states, the construction of
assertions that check whether arbitration is needed, and how we
handle loops.

4.1 Multi-Threaded C and Boogie Program

Using the Boogie primitive operations outlined in Section 3.4, we
can generate a single-threaded boogie program that can be used
to verify bank exclusivity in our multi-threaded input code. Our
approach is fully automated - an input LegUp multi-threaded source
is automatically transformed into a single-threaded Boogie program
as part of the compiler pass. This source translation consists of three
main steps:

Step 1 : We use non-deterministic choice to exhaustively explore
the state-space of all possible memory accesses.

Step 2 : For each hardware accelerated thread call in the main func-
tion we call a separate instance of the single-threaded Boogie
code with the same inputs.

Step 3 : Within each Boogie thread instance we generate Boogie
assert statements that are used to test for memory bank
exclusivity.

First, a procedure named thread_func represents the memory
behavior of the original thread function (named assign in the
example code). From the example, it is intuitive that one thread
accesses the array index range from datali] to data[i]+1023 in
a for loop when f (i) = i.In the equivalent loop in thread_func,
the partition index - determined using [22] - is required for verifica-
tion instead of the exact data value or array index. For simplicity of
demonstration, we assume here that the partition index is bit 10 of
the 11-bit array index under the block partitioning scheme, but the
expression can be arbitrary in general. A non-deterministic choice
if(*) is used to model the fact that we need to capture the partition
index accessed by any loop iteration; taking the if branch causes
the verifier to flag that a read has happened with index index - if
the branch is not taken, this corresponds to skipping this particular
memory access in the original code. For this example, thread 0 can
only return 0 as the set of all possible partition index is {0} with
accessed array index ranging from 0 to 1023. Similarly thread 1
only returns 1.

The arbitrary partition index returning in Boogie is transformed
from the extracted multi-threaded memory behavior, which con-
sists of a number of sliced partitioned memory accesses. A sliced
partitioned memory access is defined as a list of LLVM-IR instruc-
tions relating to the partition index, disregarding all other irrelevant
instructions in the thread function [16]. We must translate these
instructions for analysis of the partition index of accessed memory
bank. When the data in an array is accessed such as A[i] in Fig. 1,
the corresponding instruction in LLVM-IR code is represented as
“index = partition_index; if (*) {read = true; return;}”
in Boogie.
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1| void *assign(void =*threadarg) { 1| procedure {:inline 1} thread_func(arg: bv32)

2| // Thread function of the input 2| returns (read: bool, index: bv32) { // Summarized partition index expression
3 3 // transformed for loop:

4 int arg = xthreadarg; 4 assert i >= arg && i <= arg+1024;

5 . Loop Interpretationsflhavoc 1 .

6 // assign element values 6 assume i >= arg && i <= arg+1024;

7 for (i = arg; 1 < arg+1024; i++)< 7 // inside the equivalent for loop in Boogie code

8 A[i] = BLf(i)1; 8 index = i >> 10; // for the case f(i) = i

9 % 9 if(x){ // non-deterministic bank address returning

10 pthread_exit (NULL); 0 read = true;

11| } return;

12 12 3}

13| int main() { 13\iassert i >= arg && i <= arg+1024;

14 14 assume false; // end of for loop

15 15 read = false;

16 // initialize arguments 16 return; // if no global memory accessed, read = false

17 // to pass into threads 17| 3}

18 for (i = 0; i < 2; i++) 18

19 datal[i] = ix1024; 19| procedure main() {// Memory bank exclusivity assertions in main function
20 20’|call to_read, t@_index = thread_func(9);

21 // create the threads /1— call ti_read, til_index = thread_func(1024);

22 for (i = @; i < 2; i++) Step 2 22 Step 3
23 pthread_create (&threads[i], 23 assert !to_read || to_index != @; // Thread @ never access bank 0 - x
24 NULL, assign, datal[il); 24 assert !to_read || to_index != 1; // Thread @ never access bank 1 - V/
25 25 assert !tl_read || tl_index != @; // Thread 1 never access bank 0 - /
26 26 assert !tl_read || tl_index != 1; // Thread 1 never access bank 1 - x
27| %} 271}

(a) Input multi-threaded C code.

(b) Output Boogie program.

Figure 5: Example of a 4-partition 4-thread case for bank exclusivity verifications.

Two further parts of the Boogie model appear in the main pro-
cedure. Instead of executing threads concurrently, the generated
Boogie program calls each thread procedure in a sequential manner.
These call instructions are considered as separate and independent
modules for memory access analysis. Each call instruction returns
aread state and an arbitrary partition index among accessed banks.
Thus, the called procedure has either accessed the partitioned mem-
ory with a valid partition index, or does not access any partitioned
memory, i.e. all none of the if (x) blocks have been executed.

The last part of the verification code is the list of final assertions.
The final assertions are automatically generated by enumerating
connections between each partitioned banks and each threads. Each
single assertion states that a specific thread does not touch a spe-
cific partitioned bank. If the assertion holds, the corresponding
arbitration logic can be removed in the hardware, otherwise, it is
necessary to maintain this arbiter port in hardware. With Boogie
code containing a list of final assertions, the Boogie verifier is auto-
matically called to filter all failed assertions. Based on the successful
assertions left in Boogie code, it formally proves that arbitration is
not required between certain combinations of memory banks and
program threads, stripping out or radically simplifying the arbiters
as a result. This approach supports any memory access pattern, and
the verification results can correctly identify where arbitration is
required in the HLS-generated hardware.

4.2 Loop Interpretation

Memory accesses in loops are a primary source of memory bottle-
necks, as they often correspond to the overwhelming majority of
accesses. In our analysis, we aim to support loops without having
to unroll them in the Boogie code, in order to be able to support
general while loops and also to keep the size of the verification

assert ¢; //(base case)
havoc modset (B);

while (c) assume ¢;

invariant ¢; //inductive hypothesis

{ if (o) {

B; B;
} assert ¢; // (step case)
assume false;
3
(a) (b)

Figure 6: Loop summary in verification language using loop-
cutting transformation [5].

code small. A loop in Boogie code typically requires the program-
mer to specify a loop invariant to formally abstract the program
state. An invariant is a property describing the program state that
always holds on entry to the loop and after every iteration of the
loop. Automated generation of loop invariants is an active research
area in program verification. Here we adopt the approach described
by Chong [5].

Fig. 6 shows the general case of our loop transformation process:
in Fig. 6(a) a general structure of a while loop is described, while
Fig. 6(b) shows the equivalent transformed loop in Boogie. In Fig.
6(a), a while loop contains a conditional check on variable ¢ and
a loop body B. Additionally, ¢ represents the loop invariant. In
Fig. 6(b), the invariants for the loop are established inductively.
At the entry point of loop, also known as the base case, the first
assertion asks Boogie to verify that the loop invariant holds. The
next few lines skip through an arbitrary number of loop iterations,
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Table 2: Reference table for invariants of for loops of the
form for( i=start; cond; st )

st
i++ i--
i < end . .
start <=1 start >= 1
or . .
cond . i < end i > end
i > end
i <= end . .
start <=1 start >= 1
or . .
. i <= end i >= end
i >= end

havocing the variables that might be changed by the loop body
(modset (B)), and only assuming the induction hypothesis of the
loop invariant in order to prove that the invariant still holds. We
note that using this transformation, we can guess any loop invariant
¢ without being concerned about the correctness of the resulting
memory structure, because we place an obligation on Boogie to
verify that a guessed invariant actually does hold.

The selection of an appropriate invariant ¢ is key to verification
success. However, for the HLS benchmarks we have considered, the
loops have a simple structure of increasing or decreasing single-
strided for loops with strict or non-strict inequalities as loop exit
conditions. We therefore implement a simple table lookup of pro-
posed loop invariant, following Table 2. For instance, if the loop
index is incrementing with an exit condition of the index being
equal to the end bound, the loop invariant would be that the loop
index is greater or equal to start index value, and also less than
the exit bound value. For the case of an inequality check as the
exit condition, the loop index is less or equal to end-bound value.
Similar results can be found with inversed signs in the cases where
the loop index shows decrementing behaviors.

On the other hand, for loops with dependencies, more specific
invariants are required to precisely describe the loop behavior to
achieve precise results. For instance, the loop bounds can be dy-
namic, or the code following the loop could make use of knowledge
of program variables at loop exit not captured in by the loop exit
condition alone. We solve this by loop peeling typically for for
loops, which is fully automated in our tool-flow; inferring invari-
ants for general while loops still needs human guidance. Fig. 7
shows an example of code transformation applied by loop peeling
typically to perform a for loop with exit condition of i < N. Dif-
ferent from Fig. 6(b), this code performs two iterations for one loop.
The iterations except final iteration are represented using identical
arbitrary teleporting method, which also results in invalidation of
loop body summary. After that, loop iterator is set to N-1 repre-
senting end of (N-1)th iteration following by the final iteration
of the loop. The final iteration is presented as the second iteration
which simulates the loop behavior of last iteration maintaining
the loop body information in the last iteration valid for further
assertions after the loop. Therefore, this can solve the case when
the information in the loop body is required for further verification.
However, it is only compatible for for loops at current stage. Since
the number of the iterations in more general loop is unknown,
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i=0;
assert i <= N-1 && 1 >= 0;
havoc i, b;
assume i <= N-1 && i >= 0;
for(i=0;i<N;i++) if (i<N-1) {
{ b = i*2;
1++;
assert i<=N-1 && i>=0;
assume false;
} }
i =N-1;
if(i < N) {
b = ix2;
i++;

’

b = ix2;

assert b==2x(N-1);
t
assert b==2x(N-1);

(b) Loop peeling to maintain informa-

(a) Original C source. tion of b.

Figure 7: Example of loop peeling in Boogie.

Pass 1
Pass 2

Array partitioning
FT:EEUPA pass Arbiter LegUp
| [TovM | [T Tovm | optimization g backend [
C code | | IR code0 [ R | Rcodel [ | IRcode2 | | RIL code
transformations ﬁ
LLVM-Boogie Asbiter

1 I
' '
1 Instruction i S H
I interpretation - 1
» Extracted - simplification
| extraction " Verification H
\— partitioned code |
H MEMOry access H
' '

Figure 8: LegUp tool flow with proposed work integrated.

the generation of modified set configurations of loops before final
iteration is challenging and to be solved.

5 INTEGRATION INTO LLVM FRAMEWORK

The automated arbitration optimization process is implemented
as a series of LLVM passes. Fig. 8 shows the LegUp HLS design
flow with the work of arbiter optimization integrated. One of the
LegUp frontend passes performs memory partitioning [22]. This
pass divides selected arrays into a number of sub-arrays, where each
array is also assigned with a unique partition index. Our work is
carried out after the execution of this pass. Our work can be divided
into three parts. Firstly, the multi-threaded memory behavior is
extracted and formulated into a mathematical expression for bank
mapping. Secondly, code transformation is carried out resulting in
Boogie code for memory conflict verification. Finally, we remove
the unused memory ports of arbiters in all threads based on the
verification results given by the Boogie code. This results in a newly
optimized LLVM-IR code with efficient memory arbitration.
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5.1 Partitioned Memory Access Extraction

The slicing tool [16] allows us to extract only those pieces of the
code that could affect the memory banks accessed by each thread.
It radically simplifies the code, so that only those operations af-
fecting memory access patterns are retained. For example, in the
motivational example of Fig. 1, all instructions that may modify the
value of f(i) are retained, while other instructions in the thread
function are removed. This avoids wasted runtime in analysis of
instructions that are not relevant to memory access behavior.

5.2 Compilation into Boogie

In this step, the sliced LLVM-IR code is mapped into a Boogie
program. The translation of individual instructions from LLVM-IR
code to Boogie code is straightforward. Since the original integer
type in C is 32-bit, the equivalent data type in Boogie is a 32-bit bit-
vector (Boogie integers are unbounded). First, we iterate through
the LLVM-IR instructions to extract variable names, which are
declared at the beginning of the Boogie function. Then, the variables
assigned arbitrary values are configured with havoc commands
after the variable declarations. Then, LLVM-IR instructions can be
directly replaced by available operators in Boogie or translated into
a small number of equivalent instructions. The non-deterministic
choice if (*) returning the partition index is inserted at the location
where the pointer to the element in partition array is obtained. In
other words, instead of accessing the requested data, the Boogie
code returns the partition index of the requested bank. During
interpretation, the assertions and assumptions for the transformed
loops are inserted in Boogie code locations that correspond to the
beginning of the entry block and the exit block of the loops in
LLVM-IR code. The summarization of invariants for complex loops
is achieved by recognizing phi instructions in the LLVM-IR code
that are used for data reuse, where the necessary modified set for
the current loop can be sliced and transformed.

In the main procedure, after listing the separate function calls
in the form of procedures in Boogie, the final assertions are con-
structed based on the partition indices and thread indices. If N is
the number of threads, and M is the number of memory partitions,
the Boogie program has N X M assertions corresponding to the in-
dividual interconnections between the threads and banks. Since the
thread function calls are inlined in the main procedure, recursive
function calls are not possible, however, recursion is also generally
not supported by HLS tools.

5.3 Arbiter Optimization Process

Based on which Boogie assertions hold, memory arbiters are sim-
plified without affecting execution correctness. This step is carried
out in the LLVM-IR code level frontend. In each thread, the bank
multiplexer used to access the partitioned memory is simplified
by removing ports to banks that are never accessed. An example
is shown in Fig. 9, for the case of thread 0 being proven to not
access sub-arrays 1 and 2. The red *x’s show hardware that is safely
removed in the final circuit.

6 EXPERIMENTAL RESULTS

The FPGA family we used for results measurements is Cyclone V
(5CSEMAS5F31C6) in Quartus II 15.0.0. The reason is that this FPGA
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input_sub_array 0 | | iuputj/&&arrayﬁl | | inpuL%anayj | | input_sub_array 3 |

ik - local address of array subX_ga. bk - partition index.

Figure 9: LLVM-IR modification for efficient bank selection.

is one of the devices supported by LegUp HLS tool. We evaluate the
arbitration simplification process on a set of benchmarks, assessing
its impact on both circuit area and speed: Fp,4x, cycle latency, and
wall-clock time (cycle latency X 1/Fy,4x). We also discuss its impact
on CAD tool run-time.

6.1 Benchmark Descriptions

We apply our approach to the eight multi-threaded benchmarks
from [22]: matrixadd, histogram, matrixmult, matrixmult (cyclic),
matrixtrans, matrixtrans (block cyclic), substring and los. In ma-
trixadd, two integer matrices of size 128 X 128 are summed by
blocking matrix operations into groups of row summations, each
performed by a different thread. Histogram reads an input integer
array of size 32768 and counts the number of elements in five dis-
tinct ranges, storing the final element distribution in a result array.
Matrix multiplication is implemented with two matrices of size 32 X
32 in matrixmult. Similarly, the element operations are divided into
groups of row summations for parallelism. In matrixmult (cyclic),
the matrix row allocation has been rearranged in a cyclic scheme,
grouping rows with matching LSBs to be operated on by a single
thread. Matrixtrans computes the transpose of an input matrix of
size 128 x 128 following the cyclic scheme. In matrixtrans (block
cyclic), the row allocation to different threads is based on both MSBs
and LSBs of the index in a block-cyclic partitioning scheme, where
a thread transposes rows at addresses of 0-3, 32-35, 64-67 and 96-99,
for instance.

Benchmark substring searches for a string pattern of size 3 within
an input string of size 16384, counting the number of occurrences
of this pattern. The input string has been divided into several con-
tinuous substrings for multi-threaded execution. The arbitration
complexity is relatively high due to there being multiple expres-
sions for partitioned bank access within a single thread. The line of
sight example in los analyzes the presence of an obstacle between
the elements in a predefined obstacle map of size 64 X 64 and center
of the map, wherein an element with value 1 indicates an obstacle,
while an element with value 0 represents free space. The analysis of
the elements is distributed to several threads for parallelism and the
resultant output is a map, where elements having value 0 represent
the presence of obstacles between the test coordinates and center
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Figure 10: Evaluation of absolute parameters on histogram
hardware with equal numbers of threads and banks.

point, while 1s are verified line-of-sight cases. This benchmark has
aloop-carried dependency at the thread level, and an infinite while
loop is used with two conditional breaks, leading to more complex
partition index expressions.

6.2 Case Study: Histogram

Overall computational performance is maximized when the degree
of computational parallelism matches the degree of parallelism pro-
vided by the memory system. In the simplest cases, this is often
achieved when there is an equal number of partitioned banks and
threads, with each thread operating on a private portion of the
data. Fig. 10 shows the wall-clock time and LUT utilization of the
optimized design (with efficient memory arbitration) as compared
to the original architecture, for the histogram benchmark. Observe
that the wall-clock time appears to have a linear relationship with
number of threads, where more threads with sufficient memory
bandwidth and no memory contention results in faster hardware ex-
ecution. However, due to the increased number of parallel hardware
units, hardware utilization increases quadratically, which appears
to have doubled increasing rate compared to the wall-clock time.
After arbiter simplification, both performance and chip area are
generally improved with an increasing gap as the number of threads
increases. Although the total number of clock cycles is not notice-
ably reduced, the critical path is optimized, improving wall clock
time by up to 27%. The chip area also decreases compared to the
original design by up to 58%. Since this work modifies the arbitra-
tion hardware alone, memory block usage is unchanged. However,
the hardware resources for the arbitration circuit, namely LUTs and
registers, are reduced appreciably. More importantly, with more
threads, the improvements in performance and chip area are more
effective as more arbiter ports may be removed.

6.3 Results for All Benchmarks

The post P&R results for all benchmarks are given Table 3 for
the case of 16 threads and memory banks!. The table shows LUT
and register count, Fp,4x, cycle latency, and wall-clock time of the
whole benchmarks. We observe that all benchmarks are improved

1Full dataset DOI: 10.5281/zenodo.1523170.
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in area and performance, however, the extent of the improvement
varies, depending on benchmark-specific memory-access behav-
ior. Significant improvements in benchmarks such as matrixmult
and substring are due to multiple accesses to partitioned arrays in
one iteration, or to partitioning of multiple arrays, where the origi-
nal arbitration circuits are larger leading to greater improvements.
We also observe that the same benchmark with different memory
partitioning schemes can have dramatically different results. For
matrixtrans benchmark, the cyclic partitioning scheme has been
applied by default, which has significantly benefited from the pro-
posed work reaching improved clock period by 50.5% and logic by
87.4%. However, when applying block — cyclic scheme, it appears
to have the worst improvements. This attributed to the fact that
each bank is touched by all threads during execution, the arbiters
cannot be simplified. Hence appropriate memory partitioning is
required to perform the most efficient arbitration solution. Across
all benchmarks, LUT count was reduced by up to 87%, and wall-
clock time was improved by up to 39%. Greater improvements are
expected for devices with more threads. On average, wall-clock
time is improved by 21%, and LUT count is reduced by 58%.

6.4 Runtime analysis

While the theoretical worst-case runtime of the approach we present
is exponential in program size, in practice, the runtime of the ver-
ification process is reasonably short. In addition, the increase in
the number of threads also leads to more assertions, as well as
duplicated thread procedure calls. The average runtime for all the
benchmarks was 13 seconds. This is directly related to the number
of constructed assertions, which in turn is related to two issues: the
complexity of partition memory accesses and the number of threads.
The longest verification time was 70s for substring, which has mul-
tiple memory accesses in one iteration using different partition
index values resulting in multiple assertions for each access. Such
verifications times are insignificant compared to Synthesis/P&R
time.

7 CONCLUSIONS

In this work, we propose an automated process to simplify and/or re-
move memory arbiters in HLS-generated circuits for multi-threaded
software code. Our flow uses previously-proposed simulation trace-
based proposals for memory banking, using them as formal specifi-
cations for memory exclusivity which, if verified, guarantee that
arbiters can be removed or simplified without impacting on pro-
gram correctness. Across a range of benchmarks, the execution time
of the circuits has been improved by up to 39% (avg. 21%) combined
with an area saving of up to 87% (avg. 58%). The performances of
hardware with more memory architecture are also promising from
our measurements.

The novelty of this work is in the automated procedure for
optimization of the arbitration circuits. We have shown that the
behavior of typical concurrent multi-threaded code can be over-
approximated using non-deterministic choice in sequential Boogie
code, allowing existing verification tools to represent and check
the verification conditions required. The runtime of the proposed
compiler pass is 13 seconds, on average, across a set of 8 multi-
threaded benchmarks.
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Table 3: Arbitration simplification evaluation for 16 memory partitions and 16 threads.

. Max clock Wall clock

benchmark LUT count Register count frequency (MHz) Total clock cycles time (i)
before\ after\ % before\ after\ % before\ after \ % || before \ after \ % || before \ after \ %
histogram 18081| 7639| 58%|| 22331|13552|39%|| 71.79| 94.54|32% 15269| 14660(4% 2127\ 155.1|27%
matrixadd 14286| 2261| 84%|| 14594| 4176|71%|| 73.73|107.01|45% 2125 2122|0% 28.8 19.8(31%
matrixmult 21005| 3641| 83%|| 15872| 5184|67%|| 74.02| 85.88|16%(|2130200(2130199|0%|28778.7(24804.4|14%
matrixmult(cyclic) 20880(11227| 46%|| 15872|10479|34%|| 73.84| 83.08|13%(|2130200(2130199|0% ||28848.9|25640.3|11%
matrixtrans 18653| 2358| 87%|| 14352| 3548|75%|| 61.31| 92.30|51% 37194| 36167|3% 606.7| 391.8|35%
matrixtrans(blockcyclic) || 10606 9100| 14%|| 8996| 7402|18%|| 75.48| 75.55| 0% 62900| 61715|2% 833.3| 816.9| 2%
substring 11029| 2558| 77%|| 11959 4718|61%|| 77.39|125.58|62% 443 439(1% 5.7 3.5(39%
los 23785|20610| 13%|| 31283|25122|20%|| 73.81| 81.46|10%|| 46514| 45384|2% 630.2| 557.1|12%
] geom. mean I - 1 - 8% - | - [48%]] - [ - [29%]] - [ - [2%] - | - [21%

One of the key advantages we have retained over more struc- REFERENCES

tured approaches, such as polyhedral methods, is the ability to
deal with arbitrary code. That being said, although our tool can
accept arbitrary code as input, we can certainly contrive examples
where it fails to prove the necessary properties without human
guidance, due either to the over approximation of multi-threaded
behavior induced, or execution time. Our future work will explore
the fundamental limits of this approach, both theoretically and
practically.

8 ACKNOWLEDGEMENTS

The authors wish to thank Jingming Hu for his assistance with result
measurements. This work is supported by EPSRC (EP/P010040/1),
the Royal Academy of Engineering and Imagination Technologies.

[1] A. Canis et al. 2013. LegUp: An Open-source High-Level Synthesis Tool for
FPGA-based Processor/Accelerator Systems. TECS 13, 2 (2013).

A. Cilardo and L. Gallo. 2015. Improving Multibank Memory Access Parallelism
with Lattice-Based Partitioning. TACO 11, 4 (2015).

Amazon EC2 F1 instances. 2018. (2018). https://aws.amazon.com/

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis & transformation. In CGO. IEEE, San Jose, CA.

N. Y. S. Chong. 2014. Scalable Verification Techniques for Data-Parallel Programs.
Doctoral Thesis. Imperial College London, London, UK.

Clang. 2018. (2018). https://clang.llvm.org/

F. Winterstein, K. Fleming, H.J. Yang, S. Bayliss and G. Constantinides. 2015.
MATCHUP: Memory Abstractions for Heap Manipulating Programs. In FPGA.
ACM, Monterey, CA.

Intel HLS Compiler. 2017. (2017). https://www.altera.com/

J. Escobedo and M. Lin. 2018. Graph-Theoretically Optimal Memory Banking for
Stencil-Based Computing Kernels. In FPGA. ACM, Monterey, CA.

J. Villarreal, A. Park, W. Najjar and R. Halstead. 2010. Designing modular hard-
ware accelerators in C with ROCCC 2.0. In FPGA. IEEE, Charlotte, NC.

Q. Liu, G.A. Constantinides, K. Masselos, and P.Y.K. Cheung. 2007. Automatic
On-chip Memory Minimization for Data Reuse. In FCCM.

M. Barnett et al. 2005. Boogie: a modular reusable verifier for object-oriented
programs. In FMCO. ACM, Amsterdam, The Netherlands.

M. Carter, S. He, ]J. Whitaker, Z. Rakamari¢ and M. Emmi. 2016. SMACK Software
Verification Toolchain. In ICSE-C. ACM, Austin, Texas.

Microsoft Project Catapult. 2018. (2018). https://www.microsoft.com/

P. Coussy, M. Meredith, D.D. Gajski and A. Takach. 2009. An Introduction to
High-Level Synthesis. DTC 26, 4 (2009).

S. T. Fleming and D. B. Thomas. 2017. Using Runahead Execution to Hide Memory
Latency in High Level Synthesis. In FCCM. IEEE, Napa, CA, USA.

V.G. Castellana, A. Tumeo and F. Ferrandi. 2014. High-level Synthesis of Memory
Bound and Irregular Parallel Applications with Bambu. In HCS. IEEE, Cupertino,
CA, USA.

Xilinx. 2016. SDAccel Development Environment - User Guide (v206.2). (2016).

Xilinx Vivado HLS. 2017. (2017). https://www.xilinx.com/

Y. Wang, P. Li and J. Cong. 2014. Theory and algorithm for generalized memory
partitioning in high-level synthesis. In FPGA. ACM, Monterey, CA.

Y. Zhou, KM. Al-Hawaj and Z. Zhang. 2017. A New Approach to Automatic
Memory Banking using Trace-Based Address Mining. In FPGA. IEEE, Monterey,
CA.

YT. Chen and J.H. Anderson. 2017. Automated Generation of Banked Memory
Architectures in the High-Level Synthesis of Multi-Threaded Software. In FPL.
IEEE, Ghent, Belgium.

[14
[15]

[16]

[17

-
Se.%

[21

[22


https://aws.amazon.com/
https://clang.llvm.org/
https://www.altera.com/
https://www.microsoft.com/
https://www.xilinx.com/

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 The LegUp HLS tool
	3.2 Memory Partitioning Schemes
	3.3 Program Analysis Tools
	3.4 Microsoft Boogie

	4 Methodology
	4.1 Multi-Threaded C and Boogie Program
	4.2 Loop Interpretation

	5 Integration into LLVM Framework
	5.1 Partitioned Memory Access Extraction
	5.2 Compilation into Boogie
	5.3 Arbiter Optimization Process

	6 Experimental Results
	6.1 Benchmark Descriptions
	6.2 Case Study: Histogram
	6.3 Results for All Benchmarks
	6.4 Runtime analysis

	7 Conclusions
	8 Acknowledgements
	References

