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SIZE MATTERS: CARDINALITY-CONSTRAINED CLUSTERING
AND OUTLIER DETECTION VIA CONIC OPTIMIZATION∗
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Abstract. Plain vanilla K-means clustering has proven to be successful in practice, yet it suffers
from outlier sensitivity and may produce highly unbalanced clusters. To mitigate both shortcomings,
we formulate a joint outlier detection and clustering problem, which assigns a prescribed number of
data points to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering
on the residual data set, treating the cluster cardinalities as a given input. We cast this problem as
a mixed-integer linear program (MILP) that admits tractable semidefinite and linear programming
relaxations. We propose deterministic rounding schemes that transform the relaxed solutions to
feasible solutions for the MILP. We also prove that these solutions are optimal in the MILP if a
cluster separation condition holds.
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1. Introduction. Clustering aims to partition a set of data points into a set
of clusters so that data points in the same cluster are more similar to each other
than to those in other clusters. Among the myriad of clustering approaches from the
literature, K-means clustering stands out for its long history (dating back to 1957)
as well as its impressive performance in various application domains, ranging from
market segmentation and recommender systems to image segmentation and feature
learning (Jain (2010)).

This paper studies the cardinality-constrained K-means clustering problem, which
we define as the task of partitioning N data points ξ1, . . . , ξN ∈ Rd into K clusters
I1, . . . , IK of prescribed sizes n1, . . . , nK , with n1+· · ·+nK = N , so as to minimize the
sum of squared intra-cluster distances. We can formalize the cardinality-constrained
K-means clustering problem as follows:

(1)
minimize

∑K
k=1

∑
i∈Ik‖ξi −

1
nk

(
∑
j∈Ik ξj)‖

2

subject to (I1, . . . , IK) ∈ P(n1, . . . , nK),
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1212 RUJEERAPAIBOON, SCHINDLER, KUHN, AND WIESEMANN

where

P(n1, . . . , nK) =

(I1, . . . , IK) :

|Ik| = nk ∀k,⋃K
k=1 Ik = {1, . . . , N},

Ik ∩ I` = ∅ ∀k 6= `


denotes the ordered partitions of the set {1, . . . , N} into K sets of sizes n1, . . . , nK ,
respectively.

Our motivation for studying problem (1) is threefold. Firstly, it has been shown
by Bennett, Bradley, and Demiriz (2000) and Chen, Zhang, and Ji (2006) that the
algorithms commonly employed for the unconstrained K-means clustering problem
frequently produce suboptimal solutions, where some of the clusters contain very few
or even no data points. In this context, cardinality constraints can act as a regular-
izer that avoids local minima of poor quality. Secondly, many application domains
require the clusters I1, . . . , IK to be of comparable size. This is the case in, among
others, distributed clustering (where different computer clusters should contain simi-
lar numbers of network nodes), market segmentation (where each customer segment
will subsequently be addressed by a marketing campaign), and document clustering
(where topic hierarchies should display a balanced view of the available documents);
see Banerjee and Ghosh (2006) and Balcan, Ehrlich, and Liang (2013). Finally, and
perhaps most importantly, K-means clustering is highly sensitive to outliers. To il-
lustrate this, consider the data set in Figure 1, which accommodates three clusters as
well as three individual outliers. The K-means clustering problem erroneously merges
two of the three clusters in order to assign the three outliers to the third cluster (top
left graph), whereas a clustering that disregards the three outliers would recover the
true clusters and result in a significantly lower objective value (bottom left graph).
The cardinality-constrained K-means clustering problem, where the cardinality of
each cluster is set to be one-third of all data points, shows a similar behavior on this
data set (graphs on the right). We will argue below, however, that the cardinality-
constrained K-means clustering problem (1) offers an intuitive and mathematically
rigorous framework to robustify K-means clustering against outliers. A comprehen-
sive and principled treatment of outlier detection methods can be found in the book
by Aggarwal (2013).

Unconstrained K-means Clustering without Outliers (25.21)

Unconstrained K-means Clustering with Outliers (1.97)

Constrained K-means Clustering without Outliers (54.28)

Constrained K-means Clustering with Outliers (1.97)

Fig. 1. Sensitivity of the (un)constrained K-means clustering problem to outliers. Indicated
in parentheses next to the panel titles are the respective sums of squared intra-cluster distances
achieved.

To the best of our knowledge, only two solution approaches have been proposed
for problem (1) to date. Bennett, Bradley, and Demiriz (2000) combine a classical
local search heuristic for the unconstrained K-means clustering problem due to Lloyd
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(1982) with the repeated solution of linear assignment problems to solve a variant
of problem (1) that imposes lower bounds on the cluster sizes n1, . . . , nK . Banerjee
and Ghosh (2006) solve the balanced version of problem (1), where n1 = · · · = nK ,
by sampling a subset of the data points, performing a clustering on this subset, and
subsequently populating the resulting clusters with the remaining data points while
adhering to the cardinality constraints. Balanced clustering is also considered by
Malinen and Fränti (2014) and Costa, Aloise, and Mladenović (2017). Malinen and
Fränti (2014) proceed similarly to Bennett, Bradley, and Demiriz (2000) but take
explicit advantage of the Hungarian algorithm to speed up the cluster assignment
step within the local search heuristic. Costa, Aloise, and Mladenović (2017) propose
a variable neighborhood search heuristic that starts from a random partition of the
data points into balanced clusters and subsequently searches for better solutions in
the neighborhood obtained by an increasing number of data point swaps between two
clusters. Although all of these heuristics tend to quickly produce solutions of high
quality, they are not known to be polynomial-time algorithms, they do not provide
bounds on the suboptimality of the identified solutions, and their performance may be
sensitive to the choice of the initial solution. Moreover, neither of these local search
schemes accommodates for outliers.

In recent years, several conic optimization schemes have been proposed to alle-
viate the shortcomings of these local search methods for the unconstrained K-means
clustering problem (Peng and Wei (2007); Awasthi et al. (2015)). Peng and Wei
(2007) develop two semidefinite programming relaxations of the unconstrained K-
means clustering problem. Their weaker relaxation admits optimal solutions that can
be characterized by means of an eigenvalue decomposition. They further use this
eigenvalue decomposition to set up a modified K-means clustering problem where the
dimensionality of the data points is reduced to K − 1 (provided their original dimen-
sionality was larger than that). To obtain an upper bound, they solve this K-means
clustering problem of reduced dimensionality, which can be done either exactly by
enumerating Voronoi partitions, as described in Inaba, Katoh, and Hiroshi (1994),
or by approximation methods such as those in Hasegawa et al. (1993). Using either
approach, the runtime grows polynomially in the number of data points N but not
in the number of desired clusters K. Hence, this method is primarily suitable for
small K. Similar conic approximation schemes have been developed by Elhamifar,
Sapiro, and Vidal (2012) and Nellore and Ward (2015) in the context of unconstrained
exemplar-based clustering.

Awasthi et al. (2015) and Iguchi et al. (2017) develop probabilistic recovery guar-
antees for the stronger semidefinite relaxation of Peng and Wei (2007) when the data
is generated by a stochastic ball model (i.e., data points are drawn randomly from
rotation symmetric distributions supported on unit balls). More specifically, they use
primal-dual arguments to establish conditions on the cluster separation under which
the semidefinite relaxation of Peng and Wei (2007) recovers the underlying clusters
with high probability as the number of data points N increases. The condition of
Awasthi et al. (2015) requires less separation in low dimensions, while the condition
of Iguchi et al. (2017) is less restrictive in high dimensions. In addition, Awasthi et al.
(2015) consider a linear programming relaxation of the unconstrained K-means clus-
tering problem, and they derive similar recovery guarantees for this relaxation as well.

Two more papers study the recovery guarantees of conic relaxations under a
stochastic block model (i.e., the data set is characterized by a similarity matrix where
the expected pairwise similarities of points in the same cluster are greater than those
of points in different clusters). Ames (2014) considers the densest K-disjoint-clique
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1214 RUJEERAPAIBOON, SCHINDLER, KUHN, AND WIESEMANN

problem, whose aim is to split a given complete graph into K subgraphs so as to
maximize the sum of the average similarities of the resulting subgraphs. K-means
clustering can be considered as a specific instance of this broader class of problems.
By means of primal-dual arguments, the author derives conditions on the means in the
stochastic block model such that his semidefinite relaxation recovers the underlying
clusters with high probability as the cardinality of the smallest cluster increases.
Vinayak and Hassibi (2016) develop a semidefinite relaxation and regularize it with
the trace of the cluster assignment matrix. Using primal-dual arguments they show
that, for specific ranges of the regularization parameter, their regularized semidefinite
relaxation recovers the true clusters with high probability as the cardinality of the
smallest cluster increases. The probabilistic recovery guarantees of Ames (2014) and
Vinayak and Hassibi (2016) can also be extended to data sets containing outliers.

Table 1
Comparison of recovery guarantees for K-means clustering relaxations.

Awasthi Iguchi Vinayak and This
et al. et al. Ames Hassibi paper

Data-generating stochastic stochastic stochastic stochastic none/
model ball ball block block arbitrary

Type of relaxation SDP + LP SDP SDP SDP SDP + LP

Type of guarantee stochastic stochastic stochastic stochastic deterministic

Guarantee depends yes yes yes yes no
on N

Guarantee depends yes yes no no no
on d

Requires balancedness yes yes no no yes

Proof technique primal-dual primal-dual primal-dual primal-dual valid cuts

Access to cardinalities no no no no yes

Outlier detection no no yes yes yes

In this paper, we propose the first conic optimization scheme for the cardinality-
constrained K-means clustering problem (1). Our solution approach relies on an
exact reformulation of problem (1) as an intractable mixed-integer linear program
(MILP) to which we add a set of valid cuts before relaxing the resulting model to
a tractable semidefinite program (SDP) or linear program (LP). The set of valid
cuts is essential in strengthening these relaxations. Both relaxations provide lower
bounds on the optimal value of problem (1), and they both recover the optimal value
of (1) whenever a cluster separation condition is met. The latter requires all cluster
diameters to be smaller than the distance between any two distinct clusters and,
in the presence of outliers, smaller than the distance between any outlier and any
other point. The same condition (in the absence of outliers) was used in Elhamifar,
Sapiro, and Vidal (2012) and Awasthi et al. (2015). Our relaxations also give rise
to deterministic rounding schemes which produce feasible solutions that are provably
optimal in (1) whenever the cluster separation condition holds. Table 1 compares our
recovery guarantees to the results available in the literature. We emphasize that our
guarantees are deterministic, that they apply to arbitrary data-generating models,
that they are dimension independent, and that they hold for both our SDP and LP
relaxations. Finally, our algorithms extend to instances of (1) that are contaminated
by outliers and whose cluster cardinalities n1, . . . , nK are not known precisely. We
summarize the paper’s contributions as follows.

1. We derive a novel MILP reformulation of problem (1) that only involves
NK binary variables, as opposed to the standard MILP reformulation that
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contains N2 binary variables, and whose LP relaxation is at least as tight as
the LP relaxation of the standard reformulation.

2. We develop lower bounds that exploit the cardinality information in prob-
lem (1). Our bounds are tight whenever a cluster separation condition is
met. Unlike similar results for other classes of clustering problems, our sep-
aration condition is deterministic, model-free, and dimension independent.
Furthermore, our proof technique does not rely on the primal-dual argument
of SDPs and LPs.

3. We propose deterministic rounding schemes that transform the relaxed solu-
tions to feasible solutions for problem (1). The solutions are optimal in (1)
if the separation condition holds. To the best of our knowledge, we are
proposing the first tractable solution scheme for problem (1) with optimality
guarantees.

4. We illustrate that our lower bounds and rounding schemes extend to instances
of problem (1) that are contaminated by outliers and whose cluster cardinal-
ities are not known precisely.

The remainder of the paper is structured as follows. Section 2 analyzes the
cardinality-constrained K-means clustering problem (1) and derives the MILP refor-
mulation underlying our solution scheme. Sections 3 and 4 propose and analyze our
conic rounding approaches for problem (1) in the absence and presence of outliers,
respectively. Section 5 presents numerical experiments, and section 6 gives concluding
remarks. Finally, a detailed description of the heuristic proposed by Bennett, Bradley,
and Demiriz (2000) for cardinality-constrained K-means clustering is provided in Ap-
pendix A.

Notation. We denote by 1 the vector of all ones and by ‖ · ‖ the Euclidean norm.
For symmetric square matrices A,B ∈ SN , the relation A � B means that A − B
is positive semidefinite, while A ≥ B means that A−B is elementwise nonnegative.
The notation 〈A,B〉 = Tr(AB) represents the trace inner product of A and B.
Furthermore, we use diag(A) to denote a vector in RN whose entries coincide with
those of A’s main diagonal. Finally, for a set of N data points ξ1, . . . , ξN , we use
D ∈ SN to denote the matrix of squared pairwise distances dij = ‖ξi − ξj‖2.

2. Problem formulation and analysis. We first prove that the clustering
problem (1) is an instance of a quadratic assignment problem and transform (1) to an
MILP with NK binary variables. Then, we discuss the complexity of (1) and show
that an optimal clustering always corresponds to some Voronoi partition of Rd.

Our first result relies on the following auxiliary lemma, which we state without
proof.

Lemma 1. For any vectors ξ1, . . . , ξn ∈ Rd, we have

n∑
i=1

∥∥∥∥ξi − 1

n

( n∑
j=1

ξj

)∥∥∥∥2

=
1

2n

n∑
i,j=1

‖ξi − ξj‖2.

Proof. See Zha et al. (2002, Page 1060).

Using Lemma 1, Costa, Aloise, and Mladenović (2017) noticed that the K-means
objective can be stated as a sum of quadratic terms. In the following proposition,
we elaborate on this insight and prove that problem (1) is a specific instance of a
quadratic assignment problem.
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Proposition 1 (quadratic assignment reformulation). Clustering problem (1)
can be cast as the quadratic assignment problem

(2) minimize
σ∈SN

1
2 〈Q,PσDP>σ 〉,

where Q ∈ SN is a block diagonal matrix with blocks 1
nk

11> ∈ Snk , k = 1, . . . ,K,

SN is the set of permutations of {1, . . . , N}, and Pσ ∈ RN×N is defined through
(Pσ)ij = 1 if σ(i) = j; (Pσ)ij = 0 otherwise.

Proof. We show that for any feasible solution of (1) there exists a feasible solution
of (2) which attains the same objective value and vice versa. To this end, for any
partition (I1, . . . , IK) feasible in (1), consider any permutation σ ∈ SN that satisfies

σ({1 +
∑k−1
i=1 ni, . . . ,

∑k
i=1 ni}) = Ik for all k = 1, . . . ,K, and denote its inverse by

σ−1. This permutation is feasible in (2), and it achieves the same objective value as
(I1, . . . , IK) in (1) because

K∑
k=1

∑
i∈Ik

∥∥∥∥ξi − 1

nk

(∑
j∈Ik

ξj

)∥∥∥∥2

=
1

2

K∑
k=1

1

nk

∑
i,j∈Ik

dij

=
1

2

K∑
k=1

1

nk

∑
i,j∈σ−1(Ik)

dσ(i)σ(j)

=
1

2
〈Q,PσDP>σ 〉,

where the first equality is implied by Lemma 1, the second equality is a consequence
of the definition of σ, and the third equality follows from the definition of Q.

Conversely, for any σ ∈ SN feasible in (2), consider any partition (I1, . . . , IK)

satisfying Ik = σ({1 +
∑k−1
i=1 ni, . . . ,

∑k
i=1 ni}) for all k = 1, . . . ,K. This partition is

feasible in (1), and a similar reasoning to that above shows that the partition achieves
the same objective value as σ in (2).

Generic quadratic assignment problems with N facilities and N locations can be
reformulated as MILPs with Ω(N2) binary variables via the Kaufmann and Broeckx
linearization; see, e.g., Burkard (2013, Page 2741). The LP relaxations of these MILPs
are, however, known to be weak and give a trivial lower bound of zero; see, e.g., Zhang,
Royo, and Ma (2013, Theorem 4.1). In Proposition 2 we show that the intra-cluster
permutation symmetry of the data points enables us to give an alternative MILP
reformulation containing only NK � Ω(N2) binary variables. We also mention that
the related, yet different, cardinality-constrained exemplar-based clustering problem
can be formulated as an MILP containing Ω(N2) binary variables; see Mulvey and
Beck (1984).

Proposition 2 (MILP reformulation). The clustering problem (1) is equivalent
to the MILP

(P)

minimize 1
2

∑K
k=1

1
nk

∑N
i,j=1 dijη

k
ij

subject to πki ∈ {0, 1}, ηkij ∈ R+, i, j = 1, . . . , N, k = 1, . . . ,K,∑N
i=1 π

k
i = nk, k = 1, . . . ,K,∑K

k=1 π
k
i = 1, i = 1, . . . , N,

ηkij ≥ πki + πkj − 1, i, j = 1, . . . , N, k = 1, . . . ,K.
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The binary variable πki in the MILP (P) satisfies πki = 1 if i ∈ Ik; πki = 0
otherwise. At optimality, ηkij = max{πki + πkj − 1, 0} is equal to 1 if i, j ∈ Ik (i.e.,

πki = πkj = 1) and 0 otherwise.

Proof of Proposition 2. At optimality, the decision variables ηkij in problem (P)

take the values ηkij = max{πki +πkj −1, 0}. Accordingly, problem (P) can equivalently
be stated as

(P ′)

minimize 1
2

∑K
k=1

1
nk

∑N
i,j=1 dij max{πki + πkj − 1, 0}

subject to πki ∈ {0, 1}, i = 1, . . . , N, k = 1, . . . ,K,∑N
i=1 π

k
i = nk, k = 1, . . . ,K,∑K

k=1 π
k
i = 1, i = 1, . . . , N.

In the following, we show that any feasible solution of (1) gives rise to a feasible
solution of (P ′) with the same objective value and vice versa. To this end, consider
first a partition (I1, . . . , IK) that is feasible in (1). Choosing πki = 1 if i ∈ Ik and
πki = 0 otherwise for all k = 1, . . . ,K is feasible in (P ′) and attains the same objective
value as (I1, . . . , IK) in (1) since

K∑
k=1

∑
i∈Ik

∥∥∥∥ξi − 1

nk

(∑
j∈Ik

ξj

)∥∥∥∥2

=
1

2

K∑
k=1

1

nk

∑
i,j∈Ik

dij

=
1

2

K∑
k=1

1

nk

N∑
i,j=1

dij max{πki + πkj − 1, 0}.

Here, the first equality is implied by Lemma 1, and the second equality follows from
the construction of πki . By the same argument, every πki feasible in (P ′) gives rise to
a partition (I1, . . . , IK), Ik = {i : πki = 1} for k = 1, . . . ,K, that is feasible in (1) and
that attains the same objective value.

Remark 1. Note that zero is a (trivial) lower bound on the objective value of the
LP relaxation of the MILP (P). As a consequence, this LP relaxation is at least as
tight as the LP relaxation of the Kaufmann and Broeckx exact MILP formulation of
problem (2), which always yields a lower bound of zero. It is also possible to construct
instances where the LP relaxation of the MILP (P) is strictly tighter.

K-means clustering with cardinality constraints is known to be NP-hard as it is
a special case of cardinality-constrained p-norm clustering, which was shown to be
NP-hard (for any p > 1) by Bertoni et al. (2012). The restriction to the Euclidean
norm (i.e., p = 2), however, allows for a more concise proof, which is given in the
following proposition.

Proposition 3. K-means clustering with cardinality constraints is NP-hard even
for K = 2. Hence, unless P = NP, there is no polynomial time algorithm for solving
problem (1).

Proof. In analogy to Proposition 2, one can show that the unconstrained K-means
clustering problem can be formulated as a variant of problem (P) that omits the first

set of assignment constraints, which require that
∑N
i=1 π

k
i = nk for all k = 1, . . . ,K,

and replaces the (now unconstrained) cardinality nk in the objective function by the
size of Ik, which can be expressed as

∑N
i=1 π

k
i . If K = 2, we can thus solve the

unconstrained K-means clustering problem by solving problem (P) for all cluster

D
ow

nl
oa

de
d 

10
/0

2/
19

 to
 1

55
.1

98
.1

1.
15

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1218 RUJEERAPAIBOON, SCHINDLER, KUHN, AND WIESEMANN

cardinality combinations (n1, n2) ∈ {(1, N − 1), (2, N − 2), . . . , (bN/2c, dN/2e)} and
selecting the clustering with the lowest objective value. Thus, in this case, if problem
(P) were polynomial-time solvable, then so would be the unconstrained K-means
clustering problem. This, however, would contradict Theorem 1 in Aloise et al. (2009),
which shows that the unconstrained K-means clustering problem is NP-hard even for
K = 2 clusters.

In the context of balanced clustering, similar hardness results have been estab-
lished by Pyatkin, Aloise, and Mladenović (2017). Specifically, they prove that the
balanced K-means clustering problem is NP-complete for K ≥ 2 and N

K ≥ 3 (i.e.,
the shared cardinality of all clusters is greater than or equal to three). In contrast, if
K ≥ 2 and N

K = 2 (i.e., each cluster should contain two points), balanced K-means
clustering reduces to a minimum-weight perfect matching problem that can be solved
in polynomial-time by different algorithms; see Cook and Rohe (1999, Table I) for a
review.

In K-means clustering without cardinality constraints, the convex hulls of the
optimal clusters do not overlap, and thus each cluster fits within a separate cell of a
Voronoi partition of Rd; see, e.g., Hasegawa et al. (1993, Theorem 2.1). We demon-
strate below that this property is preserved in the presence of cardinality constraints.

Theorem 1 (Voronoi partition). For every optimal solution to problem (1),
there exists a Voronoi partition of Rd such that each cluster is contained in exactly
one Voronoi cell.

Proof. We show that for every optimal clustering (I1, . . . , IK) of (1) and every
k, ` ∈ {1, . . . ,K}, k < `, there exists a hyperplane separating the points in Ik from
those in I`. This in turn implies the existence of the desired Voronoi partition. Given
a cluster Im for any m ∈ {1, . . . ,K}, define its cluster center as ζm = 1

nm

∑
i∈Im ξi,

and let h = ζk − ζ` be the vector that connects the cluster centers of Ik and I`.
The statement holds if h>(ξik − ξi`) ≥ 0 for all ik ∈ Ik and i` ∈ I` as h itself
determines a separating hyperplane for Ik and I` in that case. We thus assume that
h>(ξik − ξi`) < 0 for some ik ∈ Ik and i` ∈ I`. However, this contradicts the
optimality of the clustering (I1, . . . , IK) because

h>(ξik − ξi`) < 0 ⇐⇒ (ζk − ζ`)>(ξik − ξi`) < 0

⇐⇒ ξ>ikζk + ξ>i`ζ` < ξ
>
ik
ζ` + ξ>i`ζk

⇐⇒ ‖ξi` − ζk‖2 + ‖ξik − ζ`‖2 < ‖ξik − ζk‖2 + ‖ξi` − ζ`‖2,

where the last equivalence follows from multiplying both sides of the second inequality
with 2 and then completing the squares by adding ξ>ikξik + ζ>k ζk + ξ>i`ξi` + ζ>` ζ` on
both sides. Defining Ĩk = Ik ∪ {i`} \ {ik} and Ĩ` = I` ∪ {ik} \ {i`}, the above would
imply that∑

i∈Ĩk

‖ξi − ζk‖2 +
∑
i∈Ĩ`

‖ξi − ζ`‖2 +
∑

m=1,...,K
m 6∈{k,`}

∑
i∈Im

‖ξi − ζm‖2

<
∑
i∈Ik

‖ξi − ζk‖2 +
∑
i∈I`

‖ξi − ζ`‖2 +
∑

m=1,...,K
m6∈{k,`}

∑
i∈Im

‖ξi − ζm‖2.

The left-hand side of the above inequality represents an upper bound on the sum of
squared intra-cluster distances attained by the clustering (I1, . . . , Ĩk, . . . , Ĩ`, . . . , IK)
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since ζk and ζ` may not coincide with the minimizers 1
nk

∑
i∈Ĩk ξi and 1

n`

∑
i∈Ĩ` ξi,

respectively. Recall that the cluster centers are chosen so as to minimize the sum
of the squared distances from the cluster center to each point in the cluster. We
thus conclude that the clustering (I1, . . . , Ĩk, . . . , Ĩ`, . . . , IK) attains a strictly lower
objective value than (I1, . . . , IK) in problem (1), which is a contradiction.

3. Cardinality-constrained clustering without outliers. We now relax the
intractable MILP (P) to tractable conic programs that yield efficiently computable
lower and upper bounds on (P).

3.1. Convex relaxations and rounding algorithm. We first eliminate the
ηkij variables from (P) by re-expressing the problem’s objective function as

1

2

K∑
k=1

1

nk

N∑
i,j=1

dijη
k
ij =

1

2

K∑
k=1

1

nk

N∑
i,j=1

dij max{πki + πkj − 1, 0}

=
1

2

K∑
k=1

1

nk

N∑
i,j=1

dijπ
k
i π

k
j ,

where the last equality holds because the variables πki are binary. Next, we apply the
variable transformation xki ← 2πki − 1, whereby (P) simplifies to

(3)

minimize 1
8

∑K
k=1

1
nk

∑N
i,j=1 dij(1 + xki )(1 + xkj )

subject to xki ∈ {−1,+1}, i = 1, . . . , N, k = 1, . . . ,K,∑N
i=1 x

k
i = 2nk −N, k = 1, . . . ,K,∑K

k=1 x
k
i = 2−K, i = 1, . . . , N.

Here, xki takes the value +1 if the ith data point is assigned to cluster k and −1
otherwise. Note that the constraints in (3) are indeed equivalent to the first two
constraints in (P), respectively. In Theorem 2 we will show that the reformulation (3)
of the MILP (P) admits the SDP relaxation

(RSDP)

minimize 1
8

〈
D,
∑K
k=1

1
nk

(
Mk + 11> + xk1> + 1(xk)>

)〉
subject to (xk,Mk) ∈ CSDP(nk), k = 1, . . . ,K,∑K

k=1 x
k = (2−K)1,

where, for any n ∈ N, the convex set CSDP(n) ⊂ RN × SN is defined as

CSDP(n) =


(x,M) ∈ RN × SN :

1>x = 2n−N, M1 = (2n−N)x,
diag(M) = 1, M � xx>,
M + 11> + x1> + 1x> ≥ 0,
M + 11> − x1> − 1x> ≥ 0,
M− 11> + x1> − 1x> ≤ 0,
M− 11> − x1> + 1x> ≤ 0


.

Note that CSDP(n) is semidefinite representable because Schur’s complement allows
us to express the constraint M � xx> as a linear matrix inequality; see, e.g., Boyd
and Vandenberghe (2004). Furthermore, we point out that the last four constraints

D
ow

nl
oa

de
d 

10
/0

2/
19

 to
 1

55
.1

98
.1

1.
15

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1220 RUJEERAPAIBOON, SCHINDLER, KUHN, AND WIESEMANN

in CSDP(n) are also used in the reformulation-linearization technique for nonconvex
programs, as described by Anstreicher (2009).

We can further relax the above SDP to an LP, henceforth denoted by (RLP),
where the constraints (xk,Mk) ∈ CSDP(nk) are replaced with (xk,Mk) ∈ CLP(nk),
and where, for any n ∈ N, the polytope CLP(n) is obtained by removing the nonlinear
constraint M � xx> from CSDP(n).

Theorem 2 (SDP and LP relaxations). We have

min(RLP) ≤ min (RSDP) ≤ min (P).

Proof. The inequality

min(RLP) ≤ min(RSDP)

is trivially satisfied because CSDP(n) is constructed as a subset of CLP(n) for every n ∈
N. To prove the inequality min(RSDP) ≤ min (P), consider any set of binary vectors
{xk}Kk=1 feasible in (3) and define Mk = xk(xk)> for k = 1, . . . ,K. By construction,
the objective value of {xk}Kk=1 in (3) coincides with that of {(xk,Mk)}Kk=1 in (RSDP).
Moreover, the constraints in (3) imply that

Mk1 = xk(xk)>1 = (2nk −N)xk, diag(Mk) = 1, Mk � xk(xk)>,

and

Mk + 11> + xk1> + 1(xk)> = +(1 + xk)(1 + xk)> ≥ 0,

Mk + 11> − xk1> − 1(xk)> = +(1− xk)(1− xk)> ≥ 0,

Mk − 11> + xk1> − 1(xk)> = −(1− xk)(1 + xk)> ≤ 0,

Mk − 11> − xk1> + 1(xk)> = −(1 + xk)(1− xk)> ≤ 0,

which ensures that (xk,Mk) ∈ CSDP(nk) for every k. Finally, the remaining constraint

K∑
k=1

xk = (2−K)1

in (RSDP) coincides with the last constraint in (3). Thus, {(xk,Mk)}Kk=1 is feasible
in (RSDP). The desired inequality now follows because any feasible point in (3)
corresponds to a feasible point in (RSDP) with the same objective value. Note that
the converse implication is generally false.

Remark 2. In the special case when K = 2, we can half the number of variables
in (RSDP) and (RLP) by setting x2 = −x1 and M2 = M1 without loss of generality.

It is possible to show that (RLP) is at least as tight as the näıve LP relaxation of
the MILP (P), which we denote by (L), where the integrality constraints are simply
ignored. One can also construct instances where (RLP) is strictly tighter than (L).
We also emphasize that both LP relaxations entail O(N2K) variables and O(N2K)
constraints.

Proposition 4. We have min(RLP) ≥ min(L).

Proof. Consider a feasible solution {(xk,Mk)}Kk=1 of (RLP). Its feasibility implies
that

(a)
∑K
k=1 x

k
i = 2−K ∀i, (b)

∑N
i=1 x

k
i = 2nk−N ∀k, (c) mk

ij−xki −xkj +1 ≥ 0 ∀i, j, k.
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Next, set πki = (xki + 1)/2 and ηkij = 1
4 (mk

ij + xki + xkj + 1) for all i, j, k. Then,

(a′)
∑K
k=1 π

k
i = 1 ∀i, (b′)

∑N
i=1 π

k
i = nk ∀k, (c′) ηkij ≥ πki + πkj − 1 ∀i, j, k.

Hence, this solution is feasible in (L). A direct calculation also reveals that both
solutions attain the same objective value in their respective optimization problems.
This confirms that (RLP) is a relaxation that is at least as tight as (L).

Next, we develop a rounding algorithm that recovers a feasible clustering (and
thus an upper bound on (P)) from an optimal solution of the relaxed problem (RSDP)
or (RLP); see Algorithm 1.

Algorithm 1 Rounding algorithm for cardinality-constrained clustering.

1: Input: I1 = {1, . . . , N} (data indices), nk ∈ N, k = 1, . . . ,K (cluster sizes).
2: Solve (RSDP) or (RLP) for the data points ξi, i ∈ I1, and record the optimal
x1, . . . ,xK ∈ RN .

3: Solve the linear assignment problem

Π′ ∈ argmax
Π


N∑
i=1

K∑
k=1

πki x
k
i :

πki ∈ {0, 1},∑N
i=1 π

k
i = nk ∀k,∑K

k=1 π
k
i = 1 ∀i

 .

4: Set I ′k ← {i : (π′)ki = 1} for all k = 1, . . . ,K.
5: Set ζk ← 1

nk

∑
i∈I′k

ξi for all k = 1, . . . ,K.

6: Solve the linear assignment problem

Π? ∈ argmin
Π


N∑
i=1

K∑
k=1

πki ‖ξi − ζk‖2 :

πki ∈ {0, 1},∑N
i=1 π

k
i = nk ∀k,∑K

k=1 π
k
i = 1 ∀i

 .

7: Set Ik ← {i : (π?)ki = 1} for all k = 1, . . . ,K.
8: Output: I1, . . . , IK .

Recall that the continuous variables xk = (xk1 , . . . , x
k
N )> in (RSDP) and (RLP)

correspond to the binary variables in (3) with identical names. This correspondence
motivates us to solve a linear assignment problem in step 3 of Algorithm 1, which seeks
a matrix Π ∈ {0, 1}N×K with πki ≈ 1

2 (xki + 1) for all i and k subject to the prescribed
cardinality constraints. Note that even though this assignment problem constitutes
an MILP, it can be solved in polynomial time because its constraint matrix is totally
unimodular, implying that its LP relaxation is exact. Alternatively, one may solve the
assignment problem using the Hungarian algorithm; see, e.g., Burkard, Dell’Amico,
and Martello (2009).

Note that steps 5–7 of Algorithm 1 are reminiscent of a single iteration of Lloyd’s
algorithm for cardinality-constrained K-means clustering as described by Bennett,
Bradley, and Demiriz (2000). Specifically, step 5 calculates the cluster centers ζk,
while steps 6 and 7 reassign each point to the nearest center while adhering to the
cardinality constraints. Algorithm 1 thus follows just one step of Lloyd’s algorithm
initialized with an optimizer of (RSDP) or (RLP). This refinement step ensures that
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1222 RUJEERAPAIBOON, SCHINDLER, KUHN, AND WIESEMANN

the output clustering is compatible with a Voronoi partition of Rd, which is desir-
able in view of Theorem 1.

3.2. Tighter relaxations for balanced clustering. The computational bur-
den of solving (RSDP) and (RLP) grows with K. We show in this section that if all
clusters share the same size n (i.e., nk = n for all k), then (RSDP) can be replaced by

(Rb
SDP)

minimize 1
8n 〈D,M

1 + 11> + x11> + 1(x1)>

+ (K − 1)(M + 11> + x1> + 1x>)〉
subject to (x1,M1), (x,M) ∈ CSDP(n),

x1 + (K − 1)x = (2−K)1,

x1
1 = 1,

whose size no longer scales with K. Similarly, (RLP) simplifies to the LP (Rb
LP)

obtained from (Rb
SDP) by replacing CSDP(n) with CLP(n). This is a manifestation of

how symmetry can be exploited to simplify convex programs, a phenomenon which is
studied in a more general setting by Gatermann and Parrilo (2004).

Corollary 1 (relaxations for balanced clustering). We have

min(Rb
LP) ≤ min (Rb

SDP) ≤ min (P).

Proof. The inequality min(Rb
LP) ≤ min (Rb

SDP) is trivially satisfied. To prove
the inequality min (Rb

SDP) ≤ min (P), we first add the symmetry-breaking constraint
x1

1 = 1 to the MILP (P). Note that this constraint does not increase the optimal value
of (P). It just requires that the cluster containing the data point ξ1 should be assigned
the number k = 1. This choice is unrestrictive because all clusters have the same
size. By repeating the reasoning that led to Theorem 2, the MILP (P) can then be
relaxed to a variant of the SDP (RSDP) that includes the (linear) symmetry-breaking
constraint x1

1 = 1. Note that the constraints and the objective function of the resulting
SDP are invariant under permutations of the cluster indices k = 2, . . . ,K because
nk = n for all k. Note also that the constraints are not invariant under permutations
involving k = 1 due to the symmetry-breaking constraint. Next, consider any feasible
solution {(xk,Mk)}Kk=1 of this SDP, and define

x =
1

K − 1

K∑
k=2

xk and M =
1

K − 1

K∑
k=2

Mk.

Moreover, construct a permutation-symmetric solution {(xks ,Mk
s )}Kk=1 by setting

x1
s = x1, xks = x ∀k = 2, . . . ,K,

M1
s = M1, Mk

s = M ∀k = 2, . . . ,K.

By the convexity and permutation symmetry of the SDP, the symmetrized solution
{(xks ,Mk

s )}Kk=1 is also feasible in the SDP and attains the same objective value as
{(xk,Mk)}Kk=1. Moreover, as the choice of {(xk,Mk)}Kk=1 was arbitrary, we may
indeed restrict attention to symmetrized solutions with xk = x` and Mk = M` for
all k, ` ∈ {2, . . . ,K} without increasing the objective value of the SDP. Therefore, the
simplified SDP relaxation (Rb

SDP) provides a lower bound on (P).
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If nk = n for all k, then the SDP and LP relaxations from section 3.1 admit
an optimal solution where both xk and Mk are independent of k, in which case
Algorithm 1 performs poorly. This motivates the improved relaxations (Rb

SDP) and
(Rb

LP) involving the symmetry-breaking constraint x1
1 = 1, which ensures that—

without loss of generality—the cluster harboring the first data point ξ1 is indexed by
k = 1. As the symmetry between clusters 2, . . . ,K persists and because any additional
symmetry-breaking constraint would be restrictive, the optimal solutions of (Rb

SDP)
and (Rb

LP) only facilitate a reliable recovery of cluster 1. To recover all clusters,
however, we can solve (Rb

SDP) or (Rb
LP) K − 1 times over the as yet unassigned data

points; see Algorithm 2. The resulting clustering could be improved by appending
one iteration of Lloyd’s algorithm (akin to steps 5–7 in Algorithm 1).

In contrast, the näıve relaxation (L) of (P) becomes significantly weaker when
all cardinalities are equal. To see this, we note that a solution πki = 1/K and ηkij = 0
for all i, j = 1, . . . , N and for all k = 1, . . . ,K is feasible in (L) (i.e., it satisfies all
constraints in problem (P) except for the integrality constraints that are imposed on
πki ) whenever K ≥ 2. Hence, the optimal objective value of (L) is zero. This could be
avoided by adding a symmetry-breaking constraint π1

1 = 1 to problem (L) to ensure
that the cluster containing the first data point ξ1 is indexed by k = 1. However, the
improvement appears to be marginal.

Algorithm 2 Rounding algorithm for balanced clustering.

1: Input: I1 = {1, . . . , N} (data indices), n ∈ N (cluster size), K = N/n ∈ N
(number of clusters).

2: for k = 1, . . . ,K − 1 do
3: Solve (Rb

SDP) or (Rb
LP) for the data points ξi, i ∈ Ik, and record the optimal

x1 ∈ R|Ik|.
4: Determine a bijection ρ : {1, . . . , |Ik|} → Ik such that x1

ρ(1) ≥ x1
ρ(2) ≥ · · · ≥

x1
ρ(|Ik|).

5: Set Ik ← {ρ(1), . . . , ρ(n)} and Ik+1 ← Ik \ Ik.

6: Set IK ← IK .
7: Output: I1, . . . , IK .

3.3. Comparison to existing SDP relaxations. We now compare (RSDP)
and (Rb

SDP) with existing SDP relaxations from the literature. First, we report the
various SDP relaxations proposed by Peng and Wei (2007) and Awasthi et al. (2015).
Then, we establish that two of them are equivalent. Finally, we show that (RSDP) and
(Rb

SDP) are relaxations that are at least as tight as their corresponding counterparts
from the literature. The numerical experiments in section 5 provide evidence that
this relation can also be strict.

Peng and Wei (2007) suggest two different SDP relaxations for the unconstrained
K-means clustering problem and an SDP relaxation for the balanced K-means clus-
tering problem. All of them involve a Gram matrix W ∈ SN with entries wij = ξ>i ξj .
Their stronger relaxation for the unconstrained K-means clustering problem takes the
form

(PW1)

minimize 〈W, I− Z〉
subject to Z ∈ SN ,

Z � 0, Z ≥ 0, Z1 = 1, Tr(Z) = K,
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where I denotes the identity matrix of dimension N . Note that the constraints Z ≥ 0
and Z1 = 1 ensure that Z is a stochastic matrix, and hence all of its eigenvalues lie
between 0 and 1. Thus, further relaxing the nonnegativity constraints leads to the
following weaker relaxation:

(PW2)

minimize 〈W, I− Z〉
subject to Z ∈ SN ,

I � Z � 0, Z1 = 1, Tr(Z) = K.

Peng and Wei (2007) also demonstrate that (PW2) essentially reduces to an eigenvalue
problem, which implies that one can solve (PW2) in O(KN2) time; see Golub and
van Loan (1996). Their SDP relaxation for the balanced K-means clustering problem
is similar to (PW1) and takes the form

(PWb
1)

minimize 〈W, I− Z〉
subject to Z ∈ SN ,

Z � 0, 0 ≤ Z ≤ (K/N)11>, Z1 = 1, Tr(Z) = K.

Awasthi et al. (2015) suggest another SDP relaxation for the unconstrained K-
means clustering problem, based on the same matrix of squared pairwise distances D
considered in this paper:

(A)

minimize 〈D,Z〉
subject to Z ∈ SN ,

Z � 0, Z ≥ 0, Z1 = 1, Tr(Z) = K.

The following observation asserts that the stronger relaxation (PW1) of Peng and
Wei (2007) and the relaxation (A) of Awasthi et al. (2015) are actually equivalent.

Observation 1. The problems (PW1) and (A) are equivalent.

Proof. Begin by expressing the objective of (PW1) in terms of the pairwise dis-
tance matrix D:

(4)

〈W, I− Z〉 =
1

2
[2〈W, I〉 − 〈2W,Z〉 − 〈D,Z〉] +

1

2
〈D,Z〉

=
1

2
[2〈W, I〉 − 〈2W + D,Z〉] +

1

2
〈D,Z〉

(a)
=

1

2
[2〈W, I〉 − 〈1 diag(W)> + diag(W) 1>,Z〉] +

1

2
〈D,Z〉

=
1

2
[2〈W, I〉 − 〈1 diag(W)>,Z〉 − 〈diag(W) 1>,Z〉] +

1

2
〈D,Z〉

=
1

2
[2Tr(W)− Tr(Z 1 diag(W)>)− Tr(diag(W) 1> Z)] +

1

2
〈D,Z〉

(b)
=

1

2
[2Tr(W)− Tr(1 diag(W)>)− Tr(diag(W) 1>)] +

1

2
〈D,Z〉

=
1

2
[2(1>diag(W))− 1>diag(W)− 1>diag(W)] +

1

2
〈D,Z〉

=
1

2
〈D,Z〉.
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Here, (a) follows from the observation that the ijth element of the matrix 2W + D
can be written as 2ξ>i ξj + ‖ξi − ξj‖2 = ‖ξi‖2 + ‖ξj‖2, and (b) uses the insights that
Z1 = 1 and 1>Z = 1>. Comparing (PW1) and (A), identity (4) shows that the
two relaxations are equivalent because their objective functions are the same (up to
a factor 2), while they share the same feasible set.

Next, we establish that (RSDP) is at least as tight a relaxation of the cardinality-
constrained K-means clustering problem (1) as the stronger relaxation (PW1) of Peng
and Wei (2007).

Proposition 5. We have min(RSDP) ≥ min (PW1).

Note that, through Observation 1, Proposition 5 also implies that (RSDP) is at
least as tight as the relaxation (A) of Awasthi et al. (2015).

Proof of Proposition 5. To prove that (RSDP) is at least as tight a relaxation as
(PW1), we will argue that for every feasible solution {(xk,Mk)}Kk=1 of (RSDP) one
can construct a solution

Z =
1

4

K∑
k=1

1

nk
(Mk + 11> + xk1> + 1(xk)>)

that is feasible in (PW1) and achieves the same objective value. We first verify the
feasibility of the proposed solution Z. Note that Z is symmetric by construction.
Next, we can directly verify that Z is positive semidefinite since

Z � 0⇐= Mk + 11> + xk1> + 1(xk)> � 0 ∀k = 1, . . . ,K

⇐⇒ v>(Mk + 11> + xk1> + 1(xk)>)v ≥ 0 ∀v ∈ RN , ∀k = 1, . . . ,K

⇐= v>(xk(xk)> + 11> + xk1> + 1(xk)>)v ≥ 0 ∀v ∈ RN , ∀k = 1, . . . ,K

⇐⇒ (v>xk)2 + (v>1)2 + 2(v>xk)(v>1) ≥ 0 ∀v ∈ RN , ∀k = 1, . . . ,K

⇐⇒ (v>xk + v>1)2 ≥ 0 ∀v ∈ RN , ∀k = 1, . . . ,K,

where the third implication is due to the definition of CSDP(nk), which requires that
Mk � xk(xk)>. The last statement holds trivially because any quadratic form is
nonnegative. Next, we can ensure the elementwise nonnegativity of Z, again through
the definition of CSDP(nk):

Z ≥ 0 ⇐= Mk + 11> + xk1> + 1(xk)> ≥ 0 ∀k = 1, . . . ,K.

Furthermore, combining the definition of CSDP(nk) and the constraint

K∑
k=1

xk = (2−K)1

of (RSDP), we can see that each row of Z indeed sums to 1:

Z 1 =
1

4

K∑
k=1

1

nk
(Mk1 + 11>1 + xk1>1 + 1(xk)>1)

=
1

4

K∑
k=1

1

nk
((2nk −N)xk +N1 +Nxk + (2nk −N)1)

=
1

2

K∑
k=1

(xk + 1) = 1.
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Finally, the trace of Z is uniquely determined as follows:

Tr(Z) =
1

4

K∑
k=1

1

nk
Tr(Mk + 11> + xk1> + 1(xk)>)

=
1

4

K∑
k=1

1

nk
(2N + 2(1>xk))

=
1

4

K∑
k=1

1

nk
(2N + 2(2nk −N)) = K.

Thus, Z is feasible in (PW1), and it remains to prove that it achieves the same
objective value as the original solution {(xk,Mk)}Kk=1 in (RSDP). Invoking relation
(4), it is easy to see that

〈W, I− Z〉 =
1

2
〈D,Z〉 =

1

8

〈
D,

K∑
k=1

1

nk
(Mk + 11> + xk1> + 1(xk)>)

〉
.

The proof is thus concluded.

Finally, we assert that (Rb
SDP) is at least as tight a relaxation of the balanced

K-means clustering problem as the corresponding relaxation (PWb
1) of Peng and Wei

(2007).

Proposition 6. We have min(Rb
SDP) ≥ min (PWb

1).

Proof. To show that (Rb
SDP) is at least as tight a relaxation as (PWb

1), we will
again argue that for every feasible solution {(x1,M1), (x,M)} of (Rb

SDP) one can
construct a solution

Z =
K

4N
((M1 + 11> + x11> + 1(x1)>) + (K − 1)(M + 11> + x1> + 1x>))

that is feasible in (PWb
1) and achieves the same objective value. Following similar

steps as in the proof of Proposition 5, one can verify that Z indeed satisfies Z � 0,
Z ≥ 0, Z1 = 1, and Tr(Z) = K. In order to see that Z ≤ (K/N)11>, note from the
definition of CSDP(n) (where n = N/K denotes the shared cardinality of all clusters)
that

2(M1 − 11>) = (M1 − 11> + x11> − 1(x1)>) + (M1 − 11> − x11> + 1(x1)>) ≤ 0

=⇒ M1 ≤ 11>,

2(M− 11>) = (M− 11> + x1> − 1x>) + (M− 11> − x1> + 1x>) ≤ 0

=⇒ M ≤ 11>.

Using this insight and the constraint x1 + (K − 1)x = (2 − K)1 of (Rb
SDP), any

arbitrary element zij of Z can be bounded above as desired:

zij =
K

4N
((m1

ij + 1 + x1
i + x1

j ) + (K − 1)(mij + 1 + xi + xj))

≤ K

4N
(2K + x1

i + (K − 1)xi + x1
j + (K − 1)xj) =

K

N
.
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Finally, a direct calculation reveals that the objective value of (Rb
SDP) evaluated at

{(x1,M1), (x,M)} coincides with the objective of (PWb
1) evaluated at Z, which, from

(4), is equal to 1
2 〈D,Z〉. Hence, (Rb

SDP) is at least as tight a relaxation as (PWb
1),

and the proof is concluded.

Note that, while Propositions 5 and 6 demonstrate that our SDP relaxations
(RSDP) and (Rb

SDP) are at least as tight as their respective counterparts by Peng and
Wei (2007), similar tightness results cannot be established for our LP relaxations.
Indeed, our numerical experiments based on real-world data sets in section 5 show that
both (RLP) and (Rb

LP) can be strictly weaker than (PW1) and (PWb
1), respectively.

Furthermore, it is possible to construct artificial data sets on which even (PW2)
outperforms (RLP) and (Rb

LP).

3.4. Perfect recovery guarantees. We now demonstrate that the relaxations
of section 3.2 are tight and that Algorithm 2 finds the optimal clustering if the clusters
are perfectly separated in the sense of the following assumption.

(S) Perfect separation. There is a balanced partition (J1, . . . , JK) of {1, . . . , N}
where each cluster k = 1, . . . ,K has the same cardinality |Jk| = N/K ∈ N and

max
1≤k≤K

max
i,j∈Jk

dij < min
1≤k1<k2≤K

min
i∈Jk1

, j∈Jk2

dij .

Assumption (S) implies that the data set admits the natural balanced clustering
(J1, . . . , JK), and that the largest cluster diameter (that is, max1≤k≤K maxi,j∈Jk dij)
is smaller than the smallest distance between any two distinct clusters (that is,
min1≤k1<k2≤K mini∈Jk1

,j∈Jk2
dij).

Theorem 3. If assumption (S) holds, then the optimal values of (Rb
LP) and (P)

coincide. Moreover, the clustering (J1, . . . , JK) is optimal in (P) and is recovered by
Algorithm 2.

Put simply, Theorem 3 states that, for data sets whose hidden classes are bal-
anced and well separated, Algorithm 2 will succeed in recovering this hidden, provably
optimal clustering.

Proof of Theorem 3. Throughout the proof we assume without loss of generality
that the clustering (J1, . . . , JK) from assumption (S) satisfies 1 ∈ J1, that is, the
cluster containing the data point ξ1 is assigned the number k = 1. The proof now
proceeds in two steps. In the first step, we show that the optimal values of the
LP (Rb

LP) and the MILP (P) are equal and that they both coincide with the sum of
squared intra-cluster distances of the clustering (J1, . . . , JK), which amounts to

1

2n

K∑
k=1

∑
i,j∈Jk

dij .

In the second step we demonstrate that the output (I1, . . . , IK) of Algorithm 2 coin-
cides with the optimal clustering (J1, . . . , JK) from assumption (S). As the algorithm
uses the same procedure K times to recover the clusters one by one, it is actually
sufficient to show that the first iteration of the algorithm correctly identifies the first
cluster, that is, it suffices to prove that I1 = J1.

Step 1. For any feasible solution (x1,x,M1,M) of (Rb
LP), we define H,W ∈ SN

through

(5) H = M1 + 11> + x11> + 1(x1)> and W = M + 11> + x1> + 1x>.
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From the definition of CLP(n) it is clear that H,W ≥ 0. Moreover, we also have that∑
i6=j

hij =
∑
i 6=j

m1
ij +N(N − 1) + 2(N − 1)(x1)>1

= (2n−N)2 −N +N(N − 1) + 2(N − 1)(2n−N) = 4n(n− 1).

A similar calculation for W reveals that
∑
i 6=j wij = 4n(n−1). Next, we consider the

objective function of (Rb
LP), which can be rewritten in terms of W and H as

(6)
1

8n
〈D,H + (K − 1)W〉 =

1

8n

∑
i 6=j

dij(hij + (K − 1)wij).

The sum on the right-hand side can be viewed as a weighted average of the squared
distances dij with nonnegative weights hij + (K − 1)wij , where the total weight is
given by ∑

i 6=j

(hij + (K − 1)wij) = 4Kn(n− 1).

Furthermore, each weight hij + (K − 1)wij is bounded above by 4 because

(7)
hij + (K − 1)wij = (m1

ij + 1 + x1
i + x1

j ) + (K − 1)(mij + 1 + xi + xj)

≤ 2K + (x1
i + (K − 1)xi) + (x1

j + (K − 1)xj) = 4,

where the inequality holds because M1,M ≤ 11> (which we know from the proof
of Proposition 6) and the last equality follows from the constraint x1 + (K − 1)x =
(2−K)1 in (Rb

LP).
Hence, the sum on the right-hand side of (6) assigns each squared distance dij

with i 6= j a weight of at most 4, while the total weight equals 4Kn(n− 1). A lower
bound on the sum is thus obtained by assigning a weight of 4 to the Kn(n−1) smallest
values dij with i 6= j. Thus, we have

(8)

1

8n
〈D,H + (K − 1)W〉

≥ 1

2n
{sum of the Kn(n− 1) smallest entries of dij with i 6= j}

=
1

2n

K∑
k=1

∑
i,j∈Jk

dij ,

where the last equality follows from assumption (S). By Lemma 1, the right-hand side
of (8) represents the objective value of the clustering (J1, . . . , JK) in the MILP (P).
Thus, (Rb

LP) provides an upper bound on (P). By Corollary 1, (Rb
LP) also provides

a lower bound on (P). We may thus conclude that the LP relaxation (Rb
LP) is tight

and, as a consequence, that the clustering (J1, . . . , JK) is indeed optimal in (P).

Step 2. As the inequality in (8) is tight, any optimal solution to (Rb
LP) satisfies

hij+(K−1)wij = 4 whenever i 6= j and i, j ∈ Jk for some k = 1, . . . ,K (i.e., whenever
the data points ξi and ξj belong to the same cluster). We will use this insight to show
that Algorithm 2 outputs I1 = J1.

For any i ∈ J1, the above reasoning and our convention that 1 ∈ J1 imply that
h1i + (K − 1)w1i = 4. This in turn implies via (7) that m1

1i = m1i = 1 for all i ∈ J1.
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From the definition of CLP(n), we know that

2(M1 + 11>) = (M1 + 11> + x11> + 1(x1)>) + (M1 + 11> − x11> − 1(x1)>) ≥ 0

=⇒ M1 ≥ −11>.

This allows us to conclude that

2n−N =

N∑
i=1

m1
1i =

∑
i∈J1

m1
1i +

∑
i/∈J1

m1
1i ≥ n+ (N − n)(−1) = 2n−N,

where the first equality holds because M11 = (2n − N)x1, which is one of the con-
straints in (Rb

LP), and because of our convention that x1
1 = 1. Hence, the above

inequality must be satisfied as an equality, which in turn implies that m1
1i = −1 for

all i /∈ J1.
For any i /∈ J1, the 1ith entry of the matrix inequality M1 + 11> − x11> −

1(x1)> ≥ 0 from the definition of CLP(n) can be expressed as

0 ≤ m1
1i + 1− x1

1 − x1
i ∀i = 1, . . . , N =⇒ x1

i ≤ −1,

where the implication holds because m1
1i = −1 for i /∈ J1 and because x1

1 = 1 due to
the symmetry-breaking constraint in (Rb

LP). Similarly, for any i ∈ J1, the iith entry
of the matrix inequality

M1 + 11> − x11> − 1(x1)> ≥ 0

can be rewritten as

0 ≤ m1
ii + 1− 2x1

i ∀i = 1, . . . , N =⇒ x1
i ≤ 1,

where the implication follows from the constraint diag(M1) = 1 in (Rb
LP).

As x1
i ≤ 1 for all i ∈ J1 and x1

i ≤ −1 for all i /∈ J1, the equality constraint
1>x1 = 2n − N from the definition of CLP(n) can only be satisfied if x1

i = 1 for all
i ∈ J1 and x1

i = −1 for all i /∈ J1. Since Algorithm 2 constructs I1 as the index set of
the n largest entries of the vector x1, we conclude that it must output I1 = J1, which
completes the proof.

Theorem 3 implies via Corollary 1 that the optimal values of (Rb
SDP) and (P) are

also equal. Thus, both the LP and the SDP relaxations lead to perfect recovery.
In the related literature, assumption (S) has previously been used by Elhami-

far, Sapiro, and Vidal (2012) to show that the natural clustering can be recovered
in the context of unconstrained exemplar-based clustering whenever a regularization
parameter is chosen appropriately. In contrast, our formulation does not rely on reg-
ularization parameters. Likewise, Theorem 3 is reminiscent of Awasthi et al. (2015,
Theorem 9), which formalizes the recovery properties of their LP relaxation for the
unconstrained K-means clustering problem. Awasthi et al. (2015) assume, however,
that the data points are drawn independently from a mixture of K isotropic distri-
butions and provide a probabilistic recovery guarantee that improves with N and
deteriorates with d. In contrast, our recovery guarantee for constrained clustering is
deterministic, model-free, and dimension independent. If assumption (S) holds, sim-
pler algorithms than Algorithm 1 and 2 can be designed to recover the true clusters.
For instance, a simple threshold approach (i.e., assigning data points to the same
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cluster whenever the distance between them falls below a given threshold) would be
able to recover the true clusters whenever assumption (S) holds. It seems unlikely,
however, that such approaches would perform well in a setting where assumption (S)
is not satisfied. In fact, Awasthi et al. (2015) show that their LP relaxation fails to
recover the true clusters with high probability if assumption (S) is violated. In con-
trast, the numerical experiments of section 5 suggest that Algorithms 1 and 2 perform
well even if assumption (S) is violated.

Remark 3. To the best of our knowledge, there is no perfect recovery result for
the cardinality-constrained K-means clustering algorithm by Bennett, Bradley, and
Demiriz (2000) (see Appendix A), whose performance depends critically on its ini-
tialization. To see that it can be trapped in a local optimum, consider the N = 4
two-dimensional data points ξ1 = (0, 0), ξ2 = (a, 0), ξ3 = (a, b), and ξ4 = (0, b) with
0 < a < b, and assume that we seek two balanced clusters. If the algorithm is initial-
ized with the clustering ({1, 4}, {2, 3}), then this clustering remains unchanged, and
the algorithm terminates and reports a suboptimal solution with relative optimality
gap b2/a2−1. In contrast, as assumption (S) holds, Algorithm 2 recovers the optimal
clustering ({1, 2}, {3, 4}) by Theorem 3.

4. Cardinality-constrained clustering with outliers. If the data set is cor-
rupted by outliers, then the optimal value of (1) may be high, indicating that the
data set admits no natural clustering. Note that the bounds from section 3 could
still be tight, i.e., it is thinkable that the optimal clustering is far from “ideal” even
if it can be found with Algorithm 2. If we gradually remove data points that are
expensive to assign to any cluster, however, we should eventually discover an “ideal”
low-cost clustering. In the extreme case, if we omit all but K data points, then the
optimal value of (1) drops to zero, and Algorithm 2 detects the optimal clustering
due to Theorem 3.

We now show that the results of section 3 (particularly Proposition 2 and The-
orem 2) extend to situations where n0 data points must be assigned to an auxiliary

outlier cluster indexed by k = 0 (
∑K
k=0 nk = N), and where neither the distances

between outliers and retained data points nor the distances between different outliers
contribute to the objective function. In fact, we could equivalently postulate that
each of the n0 outliers forms a trivial singleton cluster. The use of cardinality con-
straints in integrated clustering and outlier detection has previously been considered
by Chawla and Gionis (2013) in the context of local search heuristics. Inspired by
this work, we henceforth minimize the sum of squared intra-cluster distances of the
N − n0 nonoutlier data points. We first prove that the joint outlier detection and
cardinality-constrained clustering problem admits an exact MILP reformulation.

Proposition 7 (MILP reformulation). The joint outlier detection and cardi-
nality-constrained clustering problem is equivalent to the MILP

(Po)

minimize 1
2

∑K
k=1

1
nk

∑N
i,j=1 dijη

k
ij

subject to πki ∈ {0, 1}, ηkij ∈ R+, i, j = 1, . . . , N, k = 0, . . . ,K,∑N
i=1 π

k
i = nk, k = 0, . . . ,K,∑K

k=0 π
k
i = 1, i = 1, . . . , N,

ηkij ≥ πki + πkj − 1, i, j = 1, . . . , N, k = 0, . . . ,K.

Proof. The proof is an immediate extension of Proposition 2 to account for the
outlier cluster.
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In analogy to section 3.1, one can demonstrate that the MILP (Po) admits the
SDP relaxation

(Ro
SDP)

minimize 1
8

〈
D,
∑K
k=1

1
nk

(
Mk + 11> + xk1> + 1(xk)>

)〉
subject to (xk,Mk) ∈ CSDP(nk), k = 0, . . . ,K,∑K

k=0 x
k = (1−K)1.

Moreover, (Ro
SDP) can be further relaxed to an LP, henceforth denoted by (Ro

LP), by
replacing the semidefinite representable set CSDP(nk) in (Ro

SDP) with the polytope
CLP(nk) for all k = 0, . . . ,K.

Theorem 4 (SDP and LP relaxations). We have

min(Ro
LP) ≤ min (Ro

SDP) ≤ min (Po).

Proof. This result generalizes Theorem 2 to account for the additional outlier
cluster. As it needs no fundamentally new ideas, the proof is omitted for brevity.

The relaxations (Ro
SDP) and (Ro

LP) not only provide a lower bound on (Po), but
also give rise to a rounding algorithm that recovers a feasible clustering and thus an
upper bound on (Po); see Algorithm 3. Note that this procedure calls the outlier-
unaware Algorithm 1 as a subroutine.

Algorithm 3 Rounding algorithm for joint outlier detection and cardinality-
constrained clustering.

1: Input: I0 = {1, . . . , N} (data indices), nk ∈ N, k = 0, . . . ,K (cluster sizes).
2: Solve (Ro

SDP) or (Ro
LP) for the data points ξi, i ∈ I0, and record the optimal

x0 ∈ RN .
3: Determine a bijection ρ : I0 → I0 such that x0

ρ(1) ≥ x
0
ρ(2) ≥ · · · ≥ x

0
ρ(N).

4: Set I0 ← {ρ(1), . . . , ρ(n0)} and I1 ← I0 \ I0.
5: Call Algorithm 1 with input (I1, {nk}Kk=1) to obtain I1, . . . , IK .
6: Output: I0, . . . , IK .

If all normal clusters are equally sized, i.e., nk = n for k = 1, . . . ,K, then (Ro
SDP)

can be replaced by

(Rob
SDP)

minimize K
8n 〈D,M + 11> + x1> + 1x>〉

subject to (x,M) ∈ CSDP(n), (x0,M0) ∈ CSDP(n0),

Kx+ x0 = (1−K)1,

whose size no longer scales with K. Similarly, (Ro
LP) simplifies to the LP (Rob

LP)
obtained from (Rob

SDP) by replacing CSDP(n) and CSDP(n0) with CLP(n) and CLP(n0),
respectively. Note that the cardinality n0 = N −Kn may differ from n.

Corollary 2 (relaxations for balanced clustering). We have

min(Rob
LP) ≤ min (Rob

SDP) ≤ min (Po).

Proof. This follows from a marginal modification of the argument that led to
Corollary 1.
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If the normal clusters are required to be balanced, then Algorithm 3 should be
modified as follows. First, in step 2 the relaxations (Rob

SDP) or (Rob
LP) can be solved

instead of (Ro
SDP) or (Ro

LP), respectively. Moreover, in step 5 Algorithm 2 must be
called as a subroutine instead of Algorithm 1.

In the presence of outliers, the perfect recovery result from Theorem 3 remains
valid if the following perfect separation condition is met, which can be viewed as a
generalization of assumption (S).

(S′) Perfect separation. There exists a partition (J0, J1, . . . , JK) of {1, . . . , N}
where each normal cluster k = 1, . . . ,K has the same cardinality |Jk| = (N−n0)/K ∈
N, while

max
1≤k≤K

max
i,j∈Jk

dij < min
1≤k1<k2≤K

min
i∈Jk1

, j∈Jk2

dij and max
1≤k≤K

max
i,j∈Jk

dij < min
i∈J0,

j∈{1,...,N}\{i}

dij .

Assumption (S′) implies that the data set admits the natural outlier cluster J0

and the natural normal clusters (J1, . . . , JK). It also postulates that the diameter of
each normal cluster is strictly smaller than (i) the distance between any two distinct
normal clusters and (ii) the distance between any outlier and any other data point.
Under this condition, Algorithm 3 correctly identifies the optimal clustering.

Theorem 5. If assumption (S′) holds, then the optimal values of (Rob
LP) and (Po)

coincide. Moreover, the clustering (J0, . . . , JK) is optimal in (Po) and is recovered by
Algorithm 3.

Proof. The proof parallels that of Theorem 3 and can be divided into two steps.
In the first step we show that the LP relaxation (Rob

LP) for balanced clustering and
outlier detection is tight, and in the second step we demonstrate that Algorithm 3
correctly identifies the clusters (J0, . . . , JK). As for the second step, it suffices to prove
that the algorithm correctly identifies the outlier cluster J0. Indeed, once the outliers
are removed, the residual data set satisfies assumption (S), and Theorem 3 guarantees
that the normal clusters (J1, . . . , JK) are correctly identified with Algorithm 2.

As a preliminary, note that (x,M) ∈ CLP(n) implies

diag(M + 11> + x1> + 1x>) ≥ 0 =⇒ x ≥ −1,

diag(M + 11> − x1> − 1x>) ≥ 0 =⇒ x ≤ +1,

where the implications use diag(M) = 1. Similarly, (x0,M0) ∈ CLP(n0) implies
−1 ≤ x0 ≤ +1.

Step 1. For any feasible solution (x0,x,M0,M) of (Rob
LP), introduce the auxiliary

matrix H = M + 11>+ 1x>+x1>. Recall from the proof of Theorem 3 that H ≥ 0
and ∑

i 6=j

hij = 4n(n− 1).

The constraint Kx+ x0 = (1−K)1 from (Rob
LP) ensures via the inequality −1 ≤ x0

that x ≤ ( 2
K − 1)1. Recalling from the proof of Theorem 3 that M ≤ 11>, we then

find

(9) hij = mij + 1 + xi + xj ≤ 1 + 1 +

(
2

K
− 1

)
+

(
2

K
− 1

)
=

4

K
∀i, j = 1, . . . , N.
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Similar arguments to those in the proof of Theorem 3 reveal that the objective func-
tion of the joint outlier detection and (balanced) clustering problem (Rob

LP) can be
expressed as

(10)

K

8n
〈D,H〉 ≥ 1

2n
{sum of the Kn(n− 1) smallest entries of dij with i 6= j}

=
1

2n

K∑
k=1

∑
i,j∈Jk

dij ,

where the equality follows from assumption (S′). By Lemma 1, the right-hand side
of (10) represents the objective value of the clustering (J0, . . . , JK) in the MILP (Po).
Thus, (Rob

LP) provides an upper bound on (Po). By Corollary 2, (Rob
LP) also provides

a lower bound on (Po). We may thus conclude that the LP relaxation (Rob
LP) is tight

and, as a consequence, that the clustering (J0, . . . , JK) is indeed optimal in (Po).

Step 2. As the inequality in (10) is tight, any optimal solution to (Rob
LP) satisfies

hij = 4
K whenever i 6= j and i, j ∈ Jk for some k = 1, . . . ,K (i.e., whenever ξi and

ξj are not outliers and belong to the same cluster). This in turn implies via (9) that
xi = 2

K − 1 for all i ∈ ∪Kk=1Jk. Furthermore, the constraint 1>x = 2n − N from
CLP(n) implies

2n−N =

K∑
k=1

∑
i∈Jk

xi +
∑
i∈J0

xi ≥ Kn
(

2

K
− 1

)
+
∑
i∈J0

(−1) = 2n−N,

where the inequality holds because −1 ≤ x. Thus, the above inequality must in
fact hold as an equality, which implies that xi = −1 for all i ∈ J0. The constraint
Kx+x0 = (1−K)1 from (Rob

LP) further implies that x0
i = −1 for all i ∈ ∪Kk=1Jk and

x0
i = +1 for all i ∈ J0.

Since Algorithm 3 constructs I0 as the index set of the n0 = N − Kn largest
entries of the vector x0, we conclude that it must output I0 = J0, which completes
the proof.

Remark 4 (unknown cluster cardinalities). The joint outlier detection and car-
dinality-constrained clustering problem (Po) can also be used when the number of
outliers is not precisely known and only an estimate of the relative size (as opposed
to the exact cardinality) of the clusters is available. To this end, we solve (Po)
for different values of n0, respectively assigning the remaining N − n0 data points to
clusters whose relative sizes respect the available estimates. The value n?0 representing
the most reasonable number of outliers to be removed from the data set can then be
determined using the elbow method; see, e.g., Gareth et al. (2017, Chapter 10).

As an illustration, consider again the data set depicted in Figure 1, which show-
cases the crux of outlier detection in the context of cardinality-constrained clustering.
In section 1, we inadvertently assumed we had the knowledge that the data set un-
der consideration was contaminated by three outliers. To demonstrate the practical
usefulness of our approach, we will now employ the elbow method to determine the
number of outliers n0 without making any assumptions about the data set. As eluci-
dated in Remark 4, the ideal value of n0 can be determined by solving problem (Po)
repeatedly. However, as (Po) constitutes an intractable optimization problem, we
solve its convex relaxations (Rob

LP) and (Rob
SDP) instead and plot the resulting objec-

tive values in logarithmic scale in Figure 2. It becomes apparent that n?0 = 3 is most
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appropriate as it marks the transition from the initially steep decline pattern of the
objective value to a substantially flatter decline pattern. Note that n0 needs to be a
multiple of K = 3 to allow for balanced clustering.

0 5 10 15 20 25

n0

-3

-2

-1

0

1

2

3
L
o
g
a
ri
th

m
ic

o
b
je

ct
iv

e
log(minRob

LP)

log(minRob
SDP)

Fig. 2. Elbow plot for the data set depicted in Figure 1.

5. Numerical experiments. We now investigate the performance of our algo-
rithms on synthetic as well as real-world clustering problems with and without outliers.
All LPs and SDPs are solved with CPLEX 12.7.1 and MOSEK 8.0, respectively, using
the YALMIP interface on a 3.40 GHz i7 computer with 16 GB RAM.

5.1. Cardinality-constrained K-means clustering (real-world data). We
compare the performance of our algorithms from section 3 with the algorithm of Ben-
nett, Bradley, and Demiriz (2000) (see Appendix A) and with the two SDP relaxations
proposed by Peng and Wei (2007) on the classification data sets of the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/) with 150–300 data points, up to
200 continuous attributes, and no missing values. Table 2 reports the main charac-
teristics of these data sets. In our experiments, we set the cluster cardinalities to the
numbers of true class occurrences in each data set. It should be emphasized that,
in contrast to the other methods, and with the exception of the two balanced data
sets, the SDP relaxations of Peng and Wei (2007) do not have access to the cluster
cardinalities. They should thus be seen as a baseline for the performance of the other
methods. Furthermore, we remark that all data sets severely violate assumption (S).
Indeed, the ratios of the largest cluster diameter to the smallest distance between
clusters (when the clusters are determined by the true labels) vary from 7 to 149,
while they should be less than 1 in order to satisfy assumption (S). Also, only two
data sets actually entail balanced clusters.

Table 3 reports the lower bounds provided by (RLP)/(Rb
LP) and (RSDP)/(Rb

SDP)
(LB), the upper bounds from Algorithms 1 and 2 (UB), the objective value of the
best of 10 runs of the algorithm of Bennett, Bradley, and Demiriz (UB), randomly ini-
tialized by the cluster centers produced by the K-means++ algorithm of Arthur and
Vassilvitskii (2007), the coefficient of variation across these 10 runs (CV), the respec-
tive lower bounds (LB) obtained from the SDP relaxations (PW1)/(PWb

1) and (PW2)
of Peng and Wei (2007), and the solution times for each of these methods. The latter
was limited to a maximum of three hours, and in one case (namely, “glass identifica-
tion”), (RSDP) did not terminate within this limit. The “—” in Table 3 indicate this
occurrence.

The obtained lower bounds of (RSDP)/(Rb
SDP) allow us to certify that the al-

gorithm of Bennett, Bradley, and Demiriz (2000) provides nearly optimal solutions
in almost all instances. Also, both Algorithms 1 and 2 are competitive with the
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Table 2
Overview of the main characteristics of the relevant data sets.

N d K nk

ID Data set name (# data points) (# dimensions) (# clusters) (cardinalities) Balanced
1 Iris 150 4 3 50, 50, 50 yes
2 Seeds 210 7 3 70, 70, 70 yes
3 Planning relax 182 12 2 130, 52 no
4 Connectionist bench 208 60 2 111, 97 no
5 Urban land cover 168 147 9 23, 29, 14, 15, 17, no

25, 16, 14, 15
6 Parkinsons 195 22 2 48, 147 no
7 Glass identification 214 9 6 70, 76, 17, 13, 9, 29 no

Table 3
Performance of (RLP), (RSDP), Bennett, Bradley, and Demiriz (BBD), and Peng and Wei.

The “—” indicate that the problem instance could not be solved within a time limit of three hours.

(RLP)/(Rb
LP) (RSDP)/(Rb

SDP) BBD (PW1)/(PWb
1) (PW2)

ID UB LB Time [s] UB LB Time [s] UB CV [%] Time [s] LB Time [s] LB Time [s]

1 81.4 78.8 17 81.4 81.4 584 81.4 0.0 6 81.4 154 15.2 0.02

2 620.7 539.0 46 605.6 605.6 3,823 605.6 0.0 7 604.5 1,320 19.0 0.03

3 325.9 297.0 24 315.7 315.7 2,637 315.8 0.3 9 299.0 510 273.7 0.02

4 312.6 259.1 49 280.6 280.1 3,638 280.6 0.4 6 270.0 1,376 246.2 0.04

5 3.61e9 3.17e9 2,241 3.54e9 3.44e9 10,754 3.64e9 9.2 13 2.05e9 460 1.94e8 0.02

6 1.36e6 1.36e6 22 1.36e6 1.36e6 2,000 1.36e6 15.1 7 1.11e6 777 6.31e5 0.02

7 469.0 377.2 232 — — — 438.2 28.4 13 321.9 1,500 23.8 0.03

algorithm of Bennett, Bradley, and Demiriz (2000) in terms of solution quality while
providing rigorous error bounds. Moreover, as expected in view of Propositions 5
and 6, for all data sets, (RSDP)/(Rb

SDP) yield better lower bounds than the SDP
relaxations (PW1)/(PWb

1) and (PW2) of Peng and Wei (2007). The lower bounds
obtained from (RLP)/(Rb

LP) are competitive with those provided by the relaxations
(PW1)/(PWb

1), and they are always better than the lower bounds provided by their
relaxation (PW2). It should be mentioned, however, that one can construct instances
where the situation is reversed, i.e., both (PW1)/(PWb

1) and (PW2) are tighter than
(RLP)/(Rb

LP). Peng and Wei (2007) also suggest a procedure to compute a feasi-
ble clustering (and thus upper bounds) for the unconstrained K-means clustering
problem. However, this procedure relies on an enumeration of all possible Voronoi
partitions, which is impractical for K ≥ 3; see Inaba, Katoh, and Hiroshi (1994).
Furthermore, it is not clear how to impose cardinality constraints in this setting.

Specifically, in the context of the two balanced data sets (i.e., “iris” and “seeds”),
we can enrich the preceding comparison with the heuristics proposed by Costa, Aloise,
and Mladenović (2017) and Malinen and Fränti (2014). As for the variable neighbor-
hood search method of Costa, Aloise, and Mladenović (2017), we were provided with
the executables of the C++ implementation used in that paper. For the “iris” data
set, the best objective value out of 10 independent runs of this method was 81.4 (which
is provably optimal thanks to the lower bounds provided by (RSDP) and (PWb

1)) and
the time to execute all runs was 0.12 seconds. For the “seeds” data set, the best ob-
jective value out of 10 independent runs was 605.6 (again, provably optimal in view of
the lower bound provided by (RSDP)) and the overall runtime was 0.53 seconds. The
algorithm of Malinen and Fränti (2014) follows the same steps as the one of Bennett,
Bradley, and Demiriz (2000), with the improvement that the cluster assignment step
is solved by the Hungarian algorithm, which provides better runtime guarantees and
typically solves faster than interior-point methods for LPs. For this reason, the upper
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bounds of Malinen and Fränti (2014) for the “iris” and “seeds” data sets coincide with
those of Bennett, Bradley, and Demiriz (2000), while their algorithm can be expected
to terminate faster. A direct comparison of the time complexity of these two methods
can be found in Malinen and Fränti (2014).
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Fig. 3. Comparison between different algorithms for (cardinality-constrained) K-means clus-
tering for 100 data points, where the cardinalities are given by (n1, n2, n3) = (10, 20, 70). Indicated
in parentheses next to the panel titles are the respective sums of squared intra-cluster distances
achieved.

5.2. Cardinality-constrained K-means clustering (synthetic data). We
now randomly generate partitions of 10, 20, and 70 data points in R2 that are drawn
from uniform distributions over K = 3 unit balls centered at ζ1, ζ2, and ζ3, respec-
tively, such that ‖ζ1−ζ2‖ = ‖ζ1−ζ3‖ = ‖ζ2−ζ3‖ = δ. Theorem 3 shows that (Rb

LP)
is tight and that Algorithm 2 can recover the true clusters whenever n1 = n2 = n3 and
δ ≥ 4. Figure 3 demonstrates that, in practice, perfect recovery is often achieved by
Algorithm 1 even if δ � 4 and n1 6= n2 6= n3. We also note that (RSDP) outperforms
(RLP) when δ is small, and that the algorithm of Bennett, Bradley, and Demiriz fre-
quently fails to determine the optimal solution even if it is run 10 times. In line with
the results from the real-world data sets, (RSDP) and (RLP) are tighter than the
stronger SDP relaxation of Peng and Wei (2007). Furthermore, it can be shown that
in this setting the weaker relaxation of Peng and Wei (2007) always yields the trivial
lower bound of zero. The average runtimes are 7 seconds (RLP), 106 seconds (RSDP),
11 seconds (Bennett, Bradley, and Demiriz), and 16 seconds (Peng and Wei).

5.3. Outlier detection. We use (Ro
LP) and Algorithm 3 to classify the Breast

Cancer Wisconsin (Diagnostic) data set. The data set has d = 30 numerical features,
which we standardize using a Z-score transformation, and it contains 357 benign and
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Fig. 4. Outlier detection for breast cancer diagnosis.

212 malignant cases of breast cancer. We interpret the malignant cases as outliers and
thus set K = 1. Figure 4 reports the prediction accuracy as well as the false positives
(benign cancers classified as malignant) and false negatives (malignant cancers clas-
sified as benign) as we increase the number of outliers n0 from 0 to 400. The figure
shows that while setting n0 ≈ 212 (the true number of malignant cancers) maximizes
the prediction accuracy, any choice n0 ∈ [156, 280] leads to a competitive prediction
accuracy above 80%. Thus, even rough estimates of the number of malignant cancer
data points can lead to cancer predictors of decent quality. The average runtime is
286 seconds, and the optimality gap is consistently below 3.23% for all values of n0.

6. Conclusion. Clustering is a hard combinatorial optimization problem. For
decades, it has almost exclusively been addressed by heuristic approaches. Many of
these heuristics have proven to be very successful in practice as they often provide
solutions of high, or at least satisfactory, quality within attractive runtimes. The
common drawback of these methods is that there is typically no way of certifying
the optimality of the provided solutions nor of giving guaranteed bounds on their
suboptimality.

Maybe precisely because of this shortcoming, more recently, convex optimization
approaches have been proposed for solving relaxed versions of the clustering problem.
These conic programs are polynomial-time solvable and offer bounds on the subopti-
mality of a given solution. Furthermore, the solutions of these conic relaxations can
be “rounded” to obtain actually feasible solutions to the original clustering problem,
which results in a new class of heuristic methods.

The results presented in this paper follow precisely this recent paradigm. Com-
bined, conic relaxations and (rounding) heuristics offer solutions to the clustering
problem together with a posteriori guarantees on their optimality. Naturally, one
would also wish for attractive a priori guarantees on the performance of these com-
bined methods. The conditions required to derive such a priori guarantees are still
quite restrictive, but the strong performance of these methods in practical instances
makes us confident that this is a promising avenue for future research.

Appendix A. Bennett, Bradley, and Demiriz’s algorithm. The algorithm
of Bennett, Bradley, and Demiriz (2000) is designed for a variant of problem (1), where
only lower bounds on the clusters’ cardinalities are imposed. This algorithm has the
following natural extension to our cardinality-constrained clustering problem (1).
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Algorithm 4 The algorithm of Bennett, Bradley, and Demiriz for cardinality-
constrained clustering.

1: Input: I1 = {1, . . . , N} (data indices), nk ∈ N, k = 1, . . . ,K (cluster sizes).
2: Generate the cluster centers ζ1, . . . , ζK ∈ Rd.
3: Solve the linear assignment problem

Π? ∈ argmin
Π


N∑
i=1

K∑
k=1

πki ‖ξi − ζk‖2 :

πki ∈ {0, 1},∑N
i=1 π

k
i = nk ∀k,∑K

k=1 π
k
i = 1 ∀i

 .

4: Set Ik ← {i : (π?)ki = 1} for all k = 1, . . . ,K.
5: Set ζk ← 1

nk

∑
i∈Ik ξi for all k = 1, . . . ,K.

6: Repeat steps 3–5 until there are no more changes in ζ1, . . . , ζK .
7: Output: I1, . . . , IK .

Algorithm 4 adapts to problem (1) a classical local search heuristic for the un-
constrained K-means clustering problem due to Lloyd (1982). At initialization, it
generates random cluster centers ζk, k = 1, . . . ,K. Each subsequent iteration of the
algorithm consists of two steps. The first step assigns every data point ξi to the near-
est cluster center while adhering to the prescribed cluster cardinalities, whereas the
second step replaces each center ζk with the mean of the data points that have been
assigned to cluster k. The algorithm terminates when the cluster centers ζ1, . . . , ζK
no longer change.

Acknowledgments. We are grateful to Leandro Costa and Daniel Aloise for
sharing with us the executables of the variable neighborhood search heuristic proposed
in Costa, Aloise, and Mladenović (2017).
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