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1.  Introduction

2D ‘van der Waals’ materials can support a range 
of highly confined polaritons in the mid- and far-
infrared, such as plasmon-polaritons (plasmons) in 
graphene [1–4] and phonon–polaritons in boron 
nitride [2, 5–7]. The electrical tuneability of graphene 
plasmons, in particular [8–12], promises a range of 
applications in the nanoscale control of light, such as 
highly sensitive sensing [13], optical switching [14] 
and terahertz photodetection [15]. Furthermore, 
constraining these polaritons to scales below the 
polariton wavelength through the fabrication of so-
called nanoresonators [16–21], strengthens the field 
enhancement further still.

Recently, scattering scanning near-field optical 
microscopy (s-SNOM) has enabled direct imaging of 
plasmon modes in nanoresonators [17, 19]. Until now, 
the theoretical understanding of such experiments 
has required time-consuming and computationally 
expensive simulations using finite or boundary ele-
ment methods [16, 17, 19], which require the input of 
a free parameter, the Fermi energy. These drawbacks 

mean that only simple 2D geometries, such as discs 
and rectangles [16, 19] or ribbons [11, 17, 22], have 
been studied. Furthermore, the reliance on numer
ical simulations inhibits an intuitive understanding of 
polariton nanoresonators.

Here, we introduce a simple wave model of how 
polaritons, including plasmons, behave in 2D geom-
etries of length scales, L , smaller than the polariton 
wavelength (i.e. L < λsp). This model allows sim-
ple analytical calculations, which provide quantita-
tively accurate predictions of polariton behaviour in 
nanoresonators.

As the model requires prior knowledge of the 
plasmon dispersion relation, we first determine 
experimentally the Fermi energy of the single-layer 
graphene (1LG) in the sample under study. Typical 
methods for measuring EF  are the Hall effect, Kelvin 
probe force microscopy (KPFM), vector decompo-
sition of Raman spectra, ultraviolet photoemission 
spectroscopy (UPS) and angle-resolved photoemis-
sion spectroscopy (ARPES). However, each method 
has its own set of advantages and drawbacks. For exam-
ple, Hall effect measurements offer straightforward 
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Abstract
Van der Waals surface polariton nanostructures are promising candidates for miniaturisation of 
electromagnetic devices through the nanoscale confinement of infrared light. To fully exploit these 
nanoresonators, a computationally efficient model is necessary to predict polariton behaviour in 
complex geometries. Here, we develop a general wave model of surface polaritons in 2D geometries 
smaller than the polariton wavelength. Using geometric approximation widely tuneable infrared 
nanoimaging and local work function microscopy, we test this model against complex mono-/
bi-layer graphene plasmon nanoresonators. Direct imaging of highly resonant graphene plasmon 
hotspots confirms that the model provides quantitatively accurate, analytical predictions of 
nanoresonator behaviour. The insights built with such models are crucial to the development of 
practical plasmonic nanodevices.

LETTER
2019

Original content from 
this work may be used 
under the terms of the 
Creative Commons 
Attribution 3.0 licence.

Any further distribution 
of this work must 
maintain attribution 
to the author(s) and the 
title of the work, journal 
citation and DOI.

RECEIVED  
11 July 2018

REVISED  

9 January 2019

ACCEPTED FOR PUBLICATION  

21 January 2019

PUBLISHED   
12 February 2019

OPEN ACCESS

https://doi.org/10.1088/2053-1583/ab00512D Mater. 6 (2019) 021003

publisher-id
doi
https://orcid.org/0000-0002-5462-9766
https://orcid.org/0000-0003-3954-8535
https://orcid.org/0000-0003-3890-5457
https://orcid.org/0000-0001-6425-8236
mailto:research@wshart.com
https://doi.org/10.1088/2053-1583/ab0051
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/2053-1583/ab0051&domain=pdf&date_stamp=2019-02-12
https://doi.org/10.1088/2053-1583/ab0051


2

and direct measurement of the carrier density, which 
can then be used to calculate the Fermi energy. How-
ever, the Hall effect method typically requires fabrica-
tion of electrical devices with the typical sizes ranging 
from hundreds of nanometres to several millimeters  
[23, 24]. This leads to averaging of the Hall voltage 
measurement over the large sample area and can there-
fore give a misrepresented EF  for non-uniform gra-
phene samples.

KPFM is often used to map the local work function 
of graphene, which in turn can be used to estimate EF. 
However, KPFM is extremely sensitive to surface con-
tamination as well as substrate and environmental 
doping [25, 26], and estimation of the sample’s work 
function requires meticulous calibration of the KPFM 
probe [27].

The vector decomposition of the Raman G and 2D 
modes can also be used to determine the carrier den-
sity of graphene, but this method is currently limited 
to p-type 1LG samples [28]. Moreover, the spatial reso-
lution of Raman mapping is limited by the relatively 
large spot size of the laser (100s of nanometres), mak-
ing it unsuitable for samples with non-uniform layer 
thicknesses.

Finally, nano-ARPES offers direct measurement 
of EF  [29], but the technique requires ultrahigh vac-
uum conditions that significantly change the doping 
of graphene, thus making it difficult to form direct 
comparisons to ambient conditions.

In 2012, Chen et  al [11] demonstrated that the 
wavelength of graphene plasmons can be measured by 
analysing the surface plasmon interference fringes that 
appear in images obtained by scattering-type scanning 
near-field optical microscopy (s-SNOM). Using a first 
order approximation of the plasmon dispersion rela-
tion, they inferred an approximate value for the Fermi 
energy of exfoliated graphene, EF ≈ 400 meV. Since 
then, many experiments have used this technique to 
study graphene and other layered 2D materials with 
applications in the study of chemical doping [30], 
grain boundary phenomena [31], graphene plasmonic 
nano-resonators [19, 32], and hybrid systems with 

hyperbolic [33] or phonon polaritons [34]. However, 
the accuracy and energy range of these studies have 
so far been limited to a small number of discrete lines 
in a narrow spectral range, corresponding to free-
space wavelengths of λ0 ≈ 9.2 − 10.6 µm that can be 
accessed by the CO2 lasers typically used for s-SNOM 
measurements [11, 35].

Here, we demonstrate broad measurement of 
plasmon dispersion with high spectral resolution to 
provide a high-accuracy, quasi-local measurement 
of the graphene Fermi energy. This enables accurate 
prediction of plasmon hotspots in mono-/bi-layer 
graphene constrictions using our model. We confirm 
these predictions using s-SNOM to directly image the 
behaviour of plasmons in arbitrary sub-wavelength 
(L < λsp) constrictions. These new experimentally 
confirmed, analytical insights into the behaviour of 
nano-constrained 2D polariton hotspots open the 
path to development of more complex nanoresonator 
devices.

2.  Methods

2.1.  Plasmon nano-imaging
S-SNOM is a type of scanning probe microscopy that 
relies on ‘tapping mode’ atomic force microscopy 
(AFM), i.e. with a vertical dither applied to the probe 
at its mechanical resonance frequency ( f0 ≈  280 kHz), 
which tracks the sample surface height. When the 
probe is in a close vicinity of the sample, the sharp 
platinum-coated tip radially scatters incident laser 
light into the graphene surface plasmon modes, which 
then propagate in the sample plane (figure 1). When 
the plasmons encounter a defect, for example the edge 
of the 2D graphene layer, they are partially reflected 
back and produce a standing wave interference 
pattern, whose fringes have a spatial periodicity given 
by half the surface plasmon wavelength, λsp/2 [11]. 
The amount of energy subsequently scattered out 
of the plasmon modes and back into the s-SNOM 
detection system is proportional to the field intensity 
at the probe, allowing the fringes to be mapped out 

Figure 1.  The probe with ~10 nm apex radius of curvature scatters surface plasmons (bright fringes) into graphene, overcoming the 
momentum mismatch between the plasmons and the light incident from the quantum cascade laser.
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in the s-SNOM image. The backscattered signal is 
demodulated at a higher harmonic (n > 1) of f0. This 
eliminates signals due to background scattered light, 
and makes the measurement sensitive only to light 
scattered by its interaction with the near-field intensity 
in the nanoscale region between the probe apex and 
the sample [36]. All s-SNOM measurements presented 
in this work use the near-field scattered amplitude at 
the second harmonic, s2.

Here, we pair s-SNOM with a radiation source 
consisting of a bank of widely tuneable quantum cas-
cade lasers (QCL; MIRcat, Daylight Solutions). This 
allows us the capability to tune through a free-space 
wavelength range λ0  =  8.93–10.43 µm with high spec-
tral resolution. In turn, this enables the full graphene 
plasmon dispersion curve to be obtained and highly 
resonant plasmonic phenomena investigated.

2.2.  Sample preparation
The graphene used in the present study was grown on 
semi-insulating 4H-SiC(0 0 0 1) substrates in a hot-wall 
reactor (Aixtron VP508). First, a complete interfacial 
layer (IFL) was grown under an argon laminar flow 
at 1600 °C. Following IFL growth, the sample was 
annealed in hydrogen-rich environment. The hydrogen 
penetrates between the IFL and substrate, forming Si–
H bonds, transforming the IFL to quasi-free-standing 
(QFS) 1LG. For more details, see [29]. As it is not 
possible to entirely avoid nucleation growth in certain 
areas, e.g. near the edges of SiC terraces, such areas are 
covered with bi-layer graphene (2LG). QFS graphene 
on SiC produced with this growth method is typically 
p-type doped, which is attributed to the spontaneous 
polarisation of the hexagonal SiC [37, 38].

To investigate the electronic properties of the 
sample sheet, a van der Pauw structure was fabricated. 
Firstly, using electron beam lithography, the sam-
ple was etched into a 10 µm  ×  10 µm square, ensur-
ing the external regions were etched down to the SiC  
substrate. Four gold contacts were then deposited onto 
the corners of the graphene using electron beam evap-
oration. The contacts were annealed in argon at 400 
°C for 10 min to improve adhesion of the contacts to 
the graphene. Finally, large pads were fabricated using 
a lift-off process to allow for electrical connections. 
The sample preparation process is detailed in [39]. The 
entire graphene device was cleaned mechanically of 
resist residues using contact-mode AFM.

3.  Results and discussion

3.1.  Widely-tuneable nano-imaging of graphene 
plasmons
3.1.1.  Measurement of Fermi energy with KPFM and 
the Hall effect
Figure 2(a) shows the topography of the sample 
obtained with AFM, featuring height steps (2–6 nm) 
from the underlying SiC substrate, together with 
particulate remnants from the sample fabrication 

processes (small white spots typically seen on the SiC 
substrate). Figure 2(b) shows the work function, Φ, of 
the same area. This was obtained by first calibrating 
the KPFM probe’s work function, ΦProbe, against gold, 
ΦAu = 4.82 eV, using ΦProbe = ΦAu + eVSP(Au), 
where VSP is the surface potential measured on gold, 
followed by applying ΦSample = ΦProbe − eVSP(Sample) 
to the surface potential image to obtain the work 
function of the sample [27]. Given that KPFM is 
sensitive only to changes in the surface potential, 
it clearly distinguishes the structure of 1LG, 2LG, 
SiC and Au due to their inherent differences in work 
function. For 1LG and 2LG, the work functions are 
Φ1LG = 4.81 eV and Φ2LG = 4.56 eV, respectively, 
and by assuming the intrinsic work function of 
graphene as Φ0 = 4.47 ± 0.05 eV from our 
previous work [26], we estimate the Fermi energy for 
1LG as EKPFM

F = 340 ± 10 meV.
The Fermi energy can also be measured via the Hall 

effect, as E1LG
F = νF�

√
πne  for single-layer graphene 

(1LG), where νF is the Fermi velocity, � is reduced 
Planck’s constant and ne is the carrier density of gra-
phene. For bi-layer graphene (2LG), the Fermi energy 
is given by E2LG

F  = π�2ne/2m∗, where m∗ is the effec-
tive mass of the charge carriers. Using this method, we 
measure the Fermi energy (in the van der Pauw geom-
etry [39]) to be EHall

F = 333 ± 1 meV, which com-
pares well with the KPFM measurement above. The 
assignment of 2LG in the middle of the graphene sheet 
was also confirmed by mapping the Raman 2D-peak 
width, where it was determined as ~60 cm−1 for 2LG 
versus ~20 cm−1 for 1LG (figure 2(e)) [40]. Further-
more, the 2D peak can be fitted by a single Lorentzian 
for 1LG and a broad peak with shoulders requiring 
four Lorentzians, which is characteristic for 2LG (fig-
ure 2(f)) [40–42].

3.1.2.  High-accuracy measurement of Fermi energy 
using plasmon nano-imaging
The s-SNOM amplitude, s2, image in figure  2(c) 
shows a strong mid-IR signal from the 1LG and 
reveals plasmon interference fringes at the 1LG/SiC 
and 1LG/2LG boundaries. The s-SNOM amplitude 
image shows interference fringes emanating from the 
right and top of the image (as indicated by the white 
arrows) that arise from the strong plasmon reflection 
from the straight, lithographically defined edges of 
the graphene sheet (i.e. the 1LG/SiC boundary). For 
homogeneous 1LG, the full dispersion relation of 
plasmons as a function of optical frequency, ω, is given 
by [1]:

εsub»
εsub k2

0 − k2
sp

+
1»

k2
0 − k2

sp

= −4πσ(ω)

ω� (1)

where εsub is the substrate dielectric function, 
k0 ≡ 2π

λ0
= ω/c is the free space wavevector, 

ksp ≡ 2π/λsp is the in-plane plasmon wavevector 
and σ(ω) is the graphene conductivity. Under the 
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random phase approximation, and for excitation 
energies sufficiently below EF  so as to avoid interband 
transitions (�ω � 2EF), the graphene conductivity 
depends linearly on the Fermi energy EF  according  
to [1]:

σ (ω) =
e2EF

π�2

i

ω + iτ−1
� (2)

where e is the electronic charge and τ  is the relaxation 
time of charge carriers in the graphene.

By smoothly tuning the QCL through a wide range 
from λ0  =  8.93 to 10.43 µm, in steps of 100 nm, we 
map out the variation of the fringe spacing with high 
spectral resolution. Figures 3(a) and (b) show maps 
of the plasmon interference fringes at λ0  =  10.03 and 
9.83 µm, respectively. Obtaining maps throughout 
the specified range of the QCL, we determine the gra-
phene plasmon dispersion over more than a decade in 
the surface plasmon wavelength, λsp  =  140–1700 nm 
(figure 3(c)). As expected, the fringe spacing, and so 
the plasmon wavelength, increases with increasing 
λ0. Despite the larger error bar for the final data point, 
which stems from the poorer contrast of the peaks and 
troughs of the plasmon standing wave, we can extract 
the precise value of EF  by combining equations (1) and 
(2) and fitting the experimental data with an error-
weighted numerical minimisation. Across the spectral 
range used here (λ0  =  8.93 to 10.43 µm), the dielectric 
function of the SiC substrate decreases monotonically 
from εsub = 3.3 to  −0.5, and the exact form is taken 
from the literature [11]. The resulting fitted dispersion 
relation yields ESNOM

F = 298 ± 4 meV (figure 3(c)).

The larger estimation of EF  from the Hall effect is 
attributed to the averaging from the presence of a small 
quantity of 2LG, which typically exhibits a higher car-
rier density than 1LG [40]. Furthermore, the Hall effect 
and KPFM measurements were performed imme-
diately after mechanical cleaning, whereas s-SNOM 
measurements were made after the sample had chemi-
cally stabilised to ambient conditions. The observed 
variations between EHall

F  and EKPFM
F , and ESNOM

F  are 
consistent with the variation of the carrier concentra-
tion and work function of graphene due to prolonged 
exposure to the environment [43].

3.1.3.  Comparison of plasmon reflection at different 
boundaries
Additional fringes are also present from plasmons 
scattering at the boundaries between 1LG and 2LG 
(see figure  4(a), obtained at λ0 = 9.68 µm). These 
reflections are generally weaker than those at the edges 
of the 1LG sheets (i.e. from 1LG/SiC boundary). Chen 
et  al reported on plasmons in graphene reflecting 
purely from the terrace step edges in SiC [35]. In our 
case, although there is an additional complication of 
2LG also being present at step edges, we believe the 
latter is not the primary cause of plasmon reflection 
at 1LG/2LG boundaries, given that we also observe 
plasmon reflections from smaller 2LG islands (blue 
arrows in figure 2(c)), where the step height is ~0.3 nm 
(figure 2(d)). The decrease in surface height from 
1LG to the islands is consistent with epitaxial growth 
of 2LG rather than an exposed region of SiC, which 
would show as higher [39]. Furthermore, as discussed 

Figure 2.  Multi-mode measurements of intercalated epitaxial graphene on SiC. (a) Topography, (b) work function, Φ, (c) s-SNOM 
amplitude, s2, at λ0  =  9.78 µm and (e) Raman map of the 2D-peak width. Blue arrows in (b) point to 2LG islands. Black arrow in 
(c) indicates a line profile of a 2LG island shown in (d). White and blue arrows in (c) point to plasmons reflecting from 1LG/SiC 
and 1LG/2LG boundaries, respectively. (f) Raman spectra for single- (1LG) and bi-layer graphene (2LG) showing typical features 
observed in this type of graphene. The inset in (f) shows Raman 2D-peak in greater detail with the characteristic single Lorentzian 
fitted to 1LG and four Lorentzians fitted to 2LG. All scale bars are 1 µm.

2D Mater. 6 (2019) 021003
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in the supplementary material (stacks.iop.org/
TDM/6/021003/mmedia), the strengths and shapes 
of the interference fringes around these islands are in 
excellent agreement with the fringes associated with 
the Raman-confirmed 1LG/2LG boundaries (figure 
2(e)), and inconsistent with those at the 1LG/SiC 
boundary. In this case, the plasmon reflection occurs 
due to the change in carrier density across the 1LG/2LG 
boundary (figure 4(b)), as revealed by Fei et al, where 
they apply a back gate voltage to vary the Fermi energy 
of single-, bi- and tri-layer graphene [39, 44–46].

Finally, we observe a multitude of plasmon focus-
ing hotspots (indicated by green arrows) in 1LG 

constrained by the 2LG ‘strips’ in the middle of fig-
ure 4(a). These strips of 2LG are known to form, as in 
this instance, near to terraces in the SiC substrate, as 
illustrated in figure 4(c). These hotspots arise from the 
extreme spatial confinement of plasmons in structures 
smaller than the plasmon wavelength, λsp.

3.2.  Plasmon hotspots in sub-wavelength 
geometries
3.2.1.  Theoretical model of surface wave hotspots in 
sub-wavelength 2D geometries
To understand the nature of the plasmon hotspots that 
appear in figure 4(a), we propose a theoretical model of 

Figure 3.  Plasmon interference fringes at (a) λ0  =  10.03 µm and (b) λ0  =  9.83 µm. (c) Calculated plasmon dispersion relation 
for graphene on SiC (black line) numerically fitted to the experimentally extracted plasmon wavelengths (red points), yielding a 
graphene Fermi energy EF = 298 ± 4 meV. The inset in (c) shows the line profile extracted from the red dashed rectangle in (a).

Figure 4.  (a) S-SNOM amplitude, s2, image showing graphene plasmon interference at various boundaries at λ0 = 9.68 µm. The 
green arrows indicate strong plasmon hotspots in geometric constrictions. (b) s-SNOM amplitude line profiles along the black 
and cyan regions indicated in (a) showing the relative strengths of plasmon reflections from SiC/1LG and 2LG/1LG boundaries, 
respectively. (c) Schematics of SiC/1LG and 2LG/1LG interfaces. (d) Topography of the line profiles in (b). All scale bars are 1 µm.

2D Mater. 6 (2019) 021003
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how plasmons, and indeed any surface wave including 
phonon-polaritons, behave in constrictions of length 
scales, L , smaller than the plasmon wavelength 
(i.e. L < λsp). To that end, figure  5(a) provides 
definitions of salient features of fringes caused by 
plasmon reflection from an arbitrary boundary, 
wherein the nth fringe has a strength, Fn, above a 
background near-field amplitude, s2,bg. The first 
fringe is located at a distance L0 from the boundary, 
and the spacing between fringes n and n  +  1 is some 
distance Ln. According to the literature [11, 34], and 
consistent with our own experimental measurements 
above, all fringe-to-fringe spacings that arise from 
the interference of tip-launched and reflected 
plasmons are equal to half the plasmon wavelength, 
i.e. Ln = λsp/2 ∀ n � 1. Furthermore, fringe heights 
typically decay exponentially in a lossy medium [30]. 
Therefore, the strengths of successive fringes decrease 
in a geometric progression, and the ratio of fringe 
strengths, ρn ≡ Fn+1/Fn , is well approximated by 
the relative strengths of the first two fringes, i.e. that 
ρn ≈ ρ ≡ F2/F1 .

First, we consider the simplest sub-wavelength 
geometry, that of a cavity comprising two parallel 
opposing boundaries, as illustrated in figure 5(b). As 
the first fringe is typically much stronger than subse-
quent fringes (i.e. ρ � 1), a strong central hotspot 
will form at a critical cavity width, Lc,‖ = 2L0, as this 
ensures that the fringes from plasmons reflected at 
either boundary will overlap exactly, in a 2D analogue 
of a Fabry–Pérot resonator. Any additional contrib
ution from higher order fringes (n > 1) will depend 
on the size of L0 relative to Ln�1. For these higher order 
fringes to constructively interfere with the central hot-

spot, it is required that L0 = m
Ln�1

2 = mλsp

4 , where 

m ∈ N+. The line profiles in figures 4(b) and (d) show 

that m = 1 for SiC/1LG boundaries (i.e. L0 =
λsp

4 ) in 

agreement with the literature [35], whereas m = 2 

for 1LG/2LG boundaries (i.e. L0 =
λsp

2 ). This means 

that only the (mn + 1)th fringes constructively inter-
fere with the first fringe to form a central hotspot with 
strength

FHS,‖ = 2
∞∑

n=0

Fmn+1� (3a)

= 2F1

(
1 +

∞∑
n=1

ρmn

)
= 2F1

Å
1 +

ρm

1 − ρm

ã
� (3b)

where ρ < 1.
Figure 5(c) illustrates an extension of this analysis 

to 2D cavities with regular polygonal geometries. As 
in the previous example, a strong central hotspot will 
form when first fringe of constructive plasmon inter-
ference from each boundary coincides with the geo-
metrical centre of the polygon. As such, the critical side 
length, Lc,p, of a p-sided polygon can be determined 
from simple trigonometric considerations. For exam-
ple, an equilateral triangle has a critical side length of 
Lc,3 = 2

√
3L0, and for a square Lc,4 = 2L0. Generally, a 

regular polygon with p sides has

Lc,p = 2L0 tan (π/p ) .� (4)

In the limit of a circle (p → ∞), equation (4) yields 
Lc,∞ = 0, as expected since a circle has zero side length. 
Therefore, it is necessary to redefine Lc,∞ as the critical 
diameter of a circle of radius L0, so that Lc,∞ = 2L0. In 
general, the central hotspots in such 2D constrictions 
will have greater strengths than that of a 1D cavity 
discussed above.

The final geometry we consider here is a wedge 
with angle θ between the two boundaries, as shown in 

Figure 5.  (a) Definitions of various features in general plasmon interference fringes. (b) A 1D cavity with critical width Lc,‖ will 
exhibit a strong central hotspot of strength determined by the constructive interference of successive fringes. (c) The relationships 
of critical size, Lc, to fringe-edge separation, L0, for various polygonal and circular geometries. (d) The location, y, of a hotspot in a 
wedge of angle, θ, corresponds to a specific wedge width.

2D Mater. 6 (2019) 021003
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figure 5(d). This geometry will create a hotspot at the 
intersection of the first fringe due to each boundary. 
This hotspot will occur at a distance

y = L0 csc

Å
θ

2

ã
� (5)

from the point of the wedge. This corresponds to a 
critical wedge width

W = 2L0 sec

Å
θ

2

ã
.� (6)

As a test from the literature, Chen et al reported that 

a θ ≈ 15◦ wedge of 1LG on a SiC substrate (L0 =
λsp

4  

as above) exhibits a strong hotspot at wedge width 
W ∼ 0.6λsp [11]. This is in good agreement with the 
theoretical relationship W ≈ 0.52λsp predicted by 
equation (6).

Using these simple geometric building blocks, 
it should be straightforward to extend this model to 
more complicated composite geometries.

3.2.2.  Experimental validation of hotspot model in 
graphene
The magnified KPFM image in figure  6(a) shows 
the 2LG strips in greater detail and identifies four 
geometric shapes (numbered 1–4) that will be used 
to test the model introduced in the previous section. 

The KPFM is critical for determining the geometries 
of these shapes, as the 1LG/2LG boundaries are barely 
visible in the topography. Figures  6(b)–(f) show 
plasmon nanoimaging of this region across a range of 
incident wavelengths from λ0 = 9.78 µm to 9.38 µm 
using the fine tuneability of our setup.

Figure 6(g) shows that the hotspot in region 1 
moves towards the wide end of the θ ≈ 30◦ wedge (see 
figure 5(d)) as λ0 increases. Using equation  (5) and 

L0 =
λsp

2  from figure 2 gives theoretical hotspot posi-

tion y ≈ 1.9λsp, which is in excellent agreement with 
the experimental relationship L0 = (1.6 ± 0.4)λsp  
taken from the linear fit shown in figure 5(k).

Region 2 can be modelled approximately as a 1D 
cavity (figure 5(b)) of width Lc = 200 ± 50 nm (from 
KPFM measurements in the supplementary mat
erial) in addition to connecting 1LG/2LG boundary. 
KPFM is required to map the geometry of our con-
strictions, as there is too little contrast between 1LG 
and 2LG in the topography. Such a structure is pre-
dicted to have maximal hotspot strength at the criti-
cal plasmon wavelength λsp,c = Lc. Figures 6(h) and 
(l) show maximal hotspot strength at λsp,c ≈ 225 nm, 
which is in excellent agreement with the prediction 
of the geometric model. Furthermore, using m = 2, 
F1 = 0.14 and, ρ = 0.23 (determined by experimental 
measurements in the supplementary material) in 

Figure 6.  Magnified view of the hotspots observed in figure 4(a). The geometries (pink outlines) of the 1LG/2LG strip boundaries 
are revealed by (a) KPFM, while (b)–(f) s-SNOM amplitude images show the highly resonant nature of the plasmon interference 
hotspots that occur in the 1LG in that region. All scale bars are 1 µm. The white arrows in (a) indicate the scans of the (g)–(j) near-
field amplitude, s2, line profiles across the four numbered hotspot regions. The line profiles are normalised with respect to either 
the maximum recorded amplitude, s2,max , or the graphene background, s2,bg. Normalisation to the peak maximum in (g) is used to 
more clearly show the lateral movement of the hotspot (k)–(n) The spectral dependence of the hotspot locations and strengths, as 
extracted from the line profiles in (g)–(j), respectively. (k) The hotspot location, y , is defined in Figure 5(d). The hotspot gap in (m) is 
the spatial separation of the two hotspot peaks in (i). The dashed black lines are intended only as guides to the eye.
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equation  (3b) gives maximum hotspot strength 
FHS,2 = FHS,‖ + F1 = 0.44 (i.e. hotspot strength of 1D 
cavity plus the first fringe from a single extra edge) for 
region 2, which is in good agreement with the maxi-
mum measured value of 0.43 taken from figure 6(l).

The following two regions, 3 and 4, have more com-
plicated geometries and serve to test the limits of the 
model. Here, we approximate regions 3 and 4 as an equi-
lateral triangle and a circle, respectively (see figure 5(c)). 
From equation (4), we predict λsp,c = Lc,3/

√
3   for the 

triangle. Furthermore, we take λsp,c = Lc,∞, where Lc,∞ 
is defined as the critical diameter of the circle, as dis-
cussed in the previous section. As detailed in the supple-
mentary material, we use KPFM measurements to give 
Lc,3 ≈ 450 nm (λsp,c ≈ 260 nm) and Lc,∞ ≈ 240 nm 
(λsp,c ≈ 240 nm) for the regions 3 and 4, respectively. 
A triangular constriction will behave as three wedges 
for λsp < λsp,c, which explains the behaviour seen in 
figures  6(b)–(f), where he hotspot in region 3 splits 
into three distinct hotspots as the incident wavelength 
λ0 decreases. By taking a line profile across two of these 
hotspots (see figure 6(i)), we plot their separation as a 
function of plasmon wavelength, λsp, (see figure 6(m)). 
Applying a linear fit, we find the critical plasmon wave-
length, i.e. at which there is no gap between the hotspots, 
to be λsp,c = 310 ± 60 nm, which is in reasonable agree-
ment with the prediction of 240 nm. Finally, figures 6(j) 
and (n) show λsp,c ≈ 210 nm for the hotspot in region 4, 
which is also consistent with geometric model of a sub-
wavelength circle detailed above.

These results show that even approximating com-
plex structures with simple geometric elements pro-
vides good quantitative predictions of the conditions 
of hotspot formation in sub-wavelength constrictions, 
as well as their strength. Higher resolution KPFM and 
AFM measurements would allow for the precision of 
this method to be pushed further.

4.  Conclusions

Through the combination of high spectral resolution 
graphene plasmon nanoimaging and KPFM, we have 
validated a new wave model of surface polaritons in 
2D nanoresonators. This model provides an intuitive 
understanding of complex phenomena using 
combinations of simple geometric approximations to 
provide quantitatively accurate predictions of hotspot 
behaviour. With this discovery, sophisticated graphene 
nanoresonators could be designed to manipulate the 
spectral and spatial nature of these hotspots, for use in 
plasmon-enhanced chemical analysis, environmental 
monitoring, and plasmonic nanoantennas for 
boosting the sensitivity of fluorescence microscopy 
and vibrational spectroscopy.
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