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Abstract
The Fokker–Planck equation is a key ingredient of many models in physics, 
and related subjects, and arises in a diverse array of settings. Analytical 
solutions are limited to special cases, and resorting to numerical simulation is 
often the only route available; in high dimensions, or for parametric studies, 
this can become unwieldy. Using asymptotic techniques, that draw upon the 
known Ornstein–Uhlenbeck (OU) case, we consider a mean-reverting system 
and obtain its representation as a product of terms, representing short-term, 
long-term, and medium-term behaviour. A further reduction yields a simple 
explicit formula, both intuitive in terms of its physical origin and fast to 
evaluate. We illustrate a breadth of cases, some of which are ‘far’ from the OU 
model, such as double-well potentials, and even then, perhaps surprisingly, 
the approximation still gives very good results when compared with numerical 
simulations. Both one- and two-dimensional examples are considered.

Keywords: stochastic processes, mean reversion, Fokker–Planck equation

(Some figures may appear in colour only in the online journal)

1.  Introduction

The Fokker–Planck equation (FPE) arises in a broad range of problems from physics, engi-
neering science, economics and mathematical modelling. Part of this breadth of application 
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can be traced back to its success in modelling generic transport processes provided the 
dynamics can be represented by a Hamiltonian or Lagrangian with random components [19]. 
Alternatively, a time series of data can be analysed as a Markov process to create an effective 
FPE that captures the statistics of the observed process. This has led to modelling based upon 
extracting FPEs from experimental or observable data for instance in turbulent cascades [22], 
fractal-generated turbulence [45], modelling the beat fluctuations in heart-rate [24], electronic 
noise and kinetics [11], electronic circuits with nonlinear resistance [16], systems with over-
damped Langevin dynamics [17], climate modelling [14], or from nonlinear friction [31, 47]. 
Financial modelling yields a wealth of further applications [23]. The modelling of market 
behaviour, where deviation from equilibrium is likely to be accompanied by higher volatility 
and/or slower mean-reversion, means that the invariant distribution is fat-tailed or leptokur-
tic [36]. Agent-based models [1] for the herd behaviour of interactions between traders, and 
the influence of rumours, social interactions and external information [7], take ideas from 
Kirman’s stochastic models of information transmission [29] to arrive at FPEs. Rather than 
study a single specialised case we consider generic FPEs with the main restriction being that 
we consider mean reverting processes.

Another important application for FPEs is in Kalman filtering, which in addition to physics 
also impacts upon control theory, optimisation, and time series analysis. Examples include: 
subatomic particle tracks [9]; movements in the ionosphere [43]; chemical reactions [41]; and 
extensive use in econometrics for making predictions about financial variables in systems 
dominated by stochastic behaviour, e.g. [15]. The basic operation of Kalman-type filters is 
long-established (see e.g. [26, 27, 37, 46]), and a key ingredient is the state transition den-
sity. Initial work used linear assumptions, i.e. an underlying Gaussian model. When the drift 
and covariance are nonlinear functions of the state vector, the extended Kalman filter [18] is 
often used, but in essence this employs a linearisation so that the Gaussian is used locally. 
This is usually acceptable for short time periods, but may not be over longer ones. A better 
approximation to the transition density for non-Gaussian processes, such as that we provide, 
is therefore highly desirable.

The normalised form of the FPE, in one dimension, that we investigate is

∂f
∂τ

= − ∂

∂y

[
A(y) f

]
+

∂2f
∂y2 ≡ L†f , f (0, y) = δ(y − y0)� (1)

where f  is the probability density function, τ  is nondimensional time and y  is a spatial vari-
able; the initial condition is a delta-function centred at y0. There is a general drift function 
A(y) for which we will take various choices as examples in later sections. The steady-state 
solution f (∞, y) ∝ exp

∫ y A(z) dz, is a normalisable probability density: this can be ensured 
by the condition lim sup|y|→∞ −yA(y) > 1 + ε for some ε > 0. As alluded to earlier this par-
tial differential equation, the FPE, is connected to a stochastic differential equation (SDE):

dYt = κA(Yt) dt +
√

2κ dWt,� (2)

with τ = κt. More generally an SDE having both spatially varying mean and variance is

dXt = µX(Xt) dt + σX(Xt) dWt;� (3)

however, provided σX  is bounded away from zero we can make the substitution (also known 
as the Lamperti transformation) from X to Y defined by dy/dx =

√
2κ/σX(x), which places (3) 

in the normalised form (2); therefore the analysis we present for the normalised form is more 
general than it first appears. In higher dimensions we take A to be the gradient of a potential, 
i.e. conservative, and note that under some common assumptions the Lamperti transformation 
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can be appropriately generalised [39]. It is worth noting that in one particular case, the affine 
model in which µ and σ2 are both linear in Xt, the FPE associated with (3) is exactly solvable 
[25, 32, 34]. In general, though, the full solution of the FPE is considerably more difficult than 
the stationary solution.

The best-known example with a steady state is the OU process given by A(y) = −θy (θ is 
a parameter), for which there is a well-known explicit Gaussian solution [40]. However, one 
often wants to deviate from this model because away from equilibrium the force field A cannot 
be expected to rise without limit, but instead be bounded; equivalently, the equation describes 
diffusion in the presence of a potential which cannot be expected to be quadratic in general. 
In these situations the steady state will no longer be Gaussian. Departing from the OU, whilst 
gaining closer connection to the physical model under consideration, loses analytical tracta-
bility and typically numerical methods are required. Naturally, one would like the best of both 
worlds: analytical tractability and physical relevance.

Given the connection with SDEs, there is a choice between the deterministic or stochastic 
approaches in terms of which is more practical to tackle numerically. Choosing the latter natu-
rally leads to Monte-Carlo methods: evaluating the density of a stochastic process requires not 
only a large number of simulations, but also kernel density estimation (KDE) at each point in 
time to produce a smooth estimate from the simulated data points: For literature on KDE, see. 
e.g. [4, 42, 44]. The quality of the estimation depends on the kernel width and the number of 
simulations. The optimal choice of width is not straightforward [13, 28]4. In the work we have 
done, if f (∞, y) is very fat-tailed, for example student-t, then simulation of �100 000 paths is 
required to get an L1 error (integrated absolute error) of 4 · 10−2. In two dimensions, �100 000 
paths only yield an L1 error of 2 · 10−1. Furthermore, for every evaluation point one typically 
needs to make use of every path simulated, so the computation time of estimating the density 
is much higher than the simulation time and suffers considerably from the curse of dimen-
sionality; see [10] for background and numerical algorithms that aim to lift the curse. This 
impediment means that numerical methods for the FPE are preferred and literature combining 
Monte-Carlo and KDE methods is rare and specific, e.g. [5]. Thus, when we perform numer
ical calculations we do so upon the FPE directly; for efficiency and accuracy we use spectral 
methods and detail these in section 2.1. Even so, the numerical simulations in two dimensions 
become very time-consuming, particularly if one is not looking for the solution at short time. 
Furthermore, if one desires to sweep over different parameter values to analyse the effect on 
the results, the problem gets even worse.

All this points to the need for a simple, fast, approximation. Further, it is desirable to have 
a modus operandi that gives results that are intuitive and offer direct insight into the problem 
at hand. Ideally, we would like to address the metaphysical question of ‘how diffusions think 
about solving themselves’. In this respect, what we are going to describe—in the first instance 
(10)—does give clear intuition, in that the various terms in the equation make it clear how the 
solution behaves; also, the result at some basic level looks like an expression for the evolution 
of a probability density, in a way that an infinite series of eigenfunctions does not.

Most analytical approximations are based on the summation of eigenfunctions [40] that 
are often orthogonal polynomials and special functions, which is unsurprising given the lin-
earity of the FPE; the OU can also be approached this way using Hermite polynomials [38]. 
Alternative asymptotic approaches, such as WKB methods [8], are useful for analysing the 
approach to equilibrium but are limited to studying specific regimes involving small or large 
diffusivities. A somewhat different approach, upon which the first steps were made in [36], 

4 The bandwidth that minimizes the mean integrated square error, Scott’s rule, is of order N−1/(d+4) where N is the 
number of simulations and d the number of dimensions and leads to an accuracy of O(N−4/(d+4)).
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consists in expressing the solution as a product of terms, rather than the more usual sum. 
Intuitively, with a sum it is difficult to represent the initial delta-function without generat-
ing oscillatory artefacts, whereas with a product this is simple: a narrow Gaussian, of width 
tending to zero as τ → 0, will capture that regardless of what the other terms in the product 
are; another term can capture the steady state; and a series of correction terms ‘patches-up’ 
the mid-term behaviour. Intuitively, we are expanding around an OU model, in the sense of 
finding the characteristics of a mean-reverting solution as exemplified by the OU case and 
capturing these characteristics for the general case, while reproducing the OU case exactly. 
There is a passing similarity with the WKB approximation, mainly in the use of a logarithmic 
transformation, but WKB expands around a zero-volatility (deterministic) model and is singu-
lar in the zero-volatility limit.

There are some important consequences of using products. The logarithm of the density 
is represented by a sum, and so: (i) positivity is guaranteed, in a way that it is typically not 
using linear methods; (ii) from the theoretical perspective there is a clear relation to entropy, 
and calculation of that from an approximated density is virtually impossible if the approxi-
mated density is anywhere negative. Based on these points, we therefore choose to develop 
this approach.

We begin by introducing our approach in the one-dimensional setting (section 2), giv-
ing the key results and the main technical route to them. A range of examples demonstrates 
the efficiency of the results as we move away from the OU process. We then move on to the 
higher-dimensional case in section 3 and show numerical simulations. Section 4 discusses 
extensions and potential limitations of the method, with concluding remarks drawn together 
in section 5.

2. Theory in one dimension

We introduce the methodology and results in one dimension. A key step is the decision to 
work with the normalised density g, and the derivative, h, of the log-density5 defined as 
h = −(∂/∂y) log g, with g(τ , y) = f (τ , y)/f (∞, y). Thereby g solves the backward equation

∂g
∂τ

= A(y)
∂g
∂y

+
∂2g
∂y2 ≡ Lg� (4)

with initial condition a delta-function of strength 1/f (∞, y0) at y0, and h solves the nonlinear 
partial differential equation (PDE)

∂h
∂τ

=
∂

∂y

{
A(y) h +

∂h
∂y

− h2
}

� (5)

which has a singular initial condition, in the sense that h ∼ (y − y0)/2τ  as τ → 0. This singu-
lar behaviour can also be seen by dominant balance in (5).

Next we observe that for the OU model A(y) = θ(y∞ − y), with the constant y∞ denoting 
the long-term mean, we have exactly

(OU) h(τ , y) =
θ
√

q(y − y0)

1 − q
+

θ
√

q(y∞ − y)
1 +

√
q

, q = e−2θτ ,� (6)

as is easily verified by substituting it into (5) and ploughing through the algebra. Finally, from 
its definition, g(∞, y) must always equal unity, and so h(∞, y) = 0. This inspires the ansatz

5 f , g, h are understood to mean f Y, gY, hY respectively.
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h(τ , y) =
θ
√

q(y − y0)

1 − q
+

√
q

1 +
√

q
A(y) +

√
q o(1)q=1� (7)

for arbitrary A. When (7) is inserted into the PDE for h, (5), and a Laurent expansion per-
formed around τ = 0, the lhs and rhs agree at O(τ−2) and O(τ−1), explaining why we are 
writing the error term in (7) as o(1) in the short-time limit. This error can then in principle be 
approximated as a Taylor series around τ = 0, which we will discuss later.

Another matter presents itself when this Laurent expansion is done: the development of 
(7) is

h(τ , y) =
y − y0

2τ
+

A(y)
2

+ o(1), τ → 0,

and we observe that θ is absent from both the first two terms. Accordingly, all θ’s give the 
same leading-order behaviour, and so we cannot say anything about θ simply by looking at 
the first two terms in the short-time expansion of the solution. In this sense, therefore, θ is 
now arbitrary, representing an estimate of the mean reversion speed of the force-field A, or, 
equivalently, the reversion speed of the OU process ‘about which’ we are expanding the given 
model A. Given that the leading-order asymptotics do not tell us what θ to use, some other 
method of inference is necessary, and we return to this later. In this context we call (7) the 
leading-order approximation for h.

To deduce g and f  we integrate (7) from y0 to y , giving (again for arbitrary A)

g(τ , y) ∼ (. . .)τ ,y0 exp

(
− 1

2θ
√

q(y − y0)
2

1 − q

)
f (∞, y)

−√
q

1+
√

q f (∞, y0)
√

q
1+

√
q

where (. . .)τ ,y0  generically denotes a function of τ , y0. By means of the reciprocity condition 6

g(τ , y | y0) = g(τ , y0 | y)� (8)

that is obeyed by the exact solution, we can infer the dependence of the prefactor on y0, to 
obtain

g(τ , y) ∼ (. . .)τ exp

(
− 1

2θ
√

q(y − y0)
2

1 − q

)
f (∞, y)

−√
q

1+
√

q f (∞, y0)
−√

q
1+

√
q .

The OU case requires the prefactor to be

(θ/2π)
√

q
1+

√
q

√
1 − q

.

(Another way of deriving the prefactor is to write

g(τ , y) = n(τ)e−
∫ y

y0
h(τ ,z) dz,

substitute into (1), and solve for the function n, which obeys a first-order linear differential 
equation; we shall refer to this technique later on.) Thence

6 This can also be written f (τ , y | y0)/f (∞, y) = f (τ , y0 | y)/f (∞, y0). Viewed as a function of y  (and τ ), the lhs 
obeys the adjoint forward equation, whereas the rhs obeys the backward equation. However, those are the same 
PDE, with the same initial condition; alternatively, we could invoke the Kolmogorov criterion, e.g. [30, section 1.5].

R J Martin et alJ. Phys. A: Math. Theor. 52 (2019) 085002
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g(τ , y) ∼ 1√
1 − q

exp

(
− 1

2θ
√

q(y − y0)
2

1 − q

)(
θ/2π

f (∞, y)f (∞, y0)

) √
q

1+
√

q

� (9)

and

f (τ , y) ∼ (θ/2π)
√

q
1+

√
q

√
1 − q

exp

(
− 1

2θ
√

q(y − y0)
2

1 − q

)
f (∞, y)

1
1+

√
q f (∞, y0)

−√
q

1+
√

q

� (10)
which are the lowest-order approximations.

Equation (7), and its consequences, have several facets worthy of comment. First, they 
are exact for any OU model of reversion speed θ regardless of the reversion level, i.e. for 
A(y) = θ(y∞ − y). Another way of putting this is to say that the correction terms to (7) will 
be expressible as functions of (d/dy)(A(y) + θy). Secondly, the approximations (9) and (10) 
are necessarily positive, and correct in both the short- and long-time limits, regardless of A(y). 
Thirdly, the approximations (9) and (10) obey the reciprocity condition.

We can proceed to determine higher-order terms in the representations for, say, h by con-
tinuing (7) and introducing an expansion for the remainder so

h(τ , y) =
p

1 + p

(
θ(y − y0)

1 − p
+ A(y) +

∞∑
r=1

(1 − p)rbr(y)

)
� (11)

where p =
√

q = e−θτ , and consider the remainder terms, (br), that also depend parametri-
cally on the starting-point y0. An alternative expansion is in powers of (1 − q), giving a dif-
ferent series, but with similar convergence properties and we do not pursue this further here. 
The power of 

√
q in (11) ensures h(∞, y) = 0 for any truncation of the series (i.e. sum as far 

as r  =  N). By inserting (11) into (5) and comparing coefficients in powers of (1  −  p )r+1 we 
find that

d
dy

[
(y − y0)

r+2br+1(y)
]
= (y − y0)

r+1Fr(y)

where Fr is a complicated quadratic expression invoking A, b1, . . . , br and their derivatives. So 
although (5) is second-order nonlinear, successive terms in the expansion can be recursively 
obtained by solving a first-order linear differential equation, which can be integrated imme-
diately to give7

br+1(y) =
1

(y − y0)r+2

∫ y

y0

(z − y0)
r+1Fr(z) dz.

In the special case r  =  0, we have

b1(y) =
1

θ(y − y0)2

∫ y

y0

(z − y0)

(
d
dz

+ A(z) +
θ

2
(z − y0)

)
d
dz

(
A(z) + θz

)
dz

which vanishes whenever A(y) + θy is a constant, as it should. As an aside, the term b1(y ) also 
vanishes in another special case, i.e. when

Ã′ +
1
2

Ã2 = θ(y2/4 + y0/2 + const), Ã(y) ≡ A(y) + θy;

7 The lower limit has to be y0, as otherwise br+1 will be singular at y = y0.

R J Martin et alJ. Phys. A: Math. Theor. 52 (2019) 085002
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which has Ã as the logarithmic derivative of a parabolic cylinder function. This solution is 
sporadic in that it also depends on the starting-point, that is, for this choice of A(y) the func-
tion b1  =  0 only if y0 is chosen correctly.

As (7) is a sum, the expressions for f , g will be infinite products, and so we refer to the 
method as an infinite product expansion. The focus here is not on the extraction of higher-
order terms: rather, it is on the leading-order term, which is probably the most applicable. 
But it is notable that, should it be desired, one can also treat the correction term by spectral 
methods: that is to say, write f̃ (τ , y) for (10), derive the PDE that it satisfies (this is another 
parabolic PDE), and solve it approximately by means of a Galerkin or collocation expansion 
[2]. As the initial spike and also the long-term behaviour have already been accounted for in f̃ , 
the unknown function f/f̃  is unity in both limits τ → 0,∞, and therefore well approximated 
by spectral methods, which are ideally suited to smooth problems.

The first steps towards a product expansion were made in [36], which carries out a power 
series expansion on broadly similar lines and provides an expansion of the form

h(τ , y) =
θ(qy −√

q y0)

1 − q
+
√

q
∞∑

r=0

(1 − q)rbold
r (y).� (12)

The development here confers several advantages, besides greater compactness and elegance, 
over [36]: (i) the reciprocity condition (8) is enforced, whereas it was not in [36]; (ii) it is more 
readily adaptable to higher dimensions; (iii) it is more accurate over shorter time-scales; (iv) 
the leading-order approximation in [36] exhibits instability when |y0| is large. What is shown 
here can be obtained from (12) by taking the initial term and bold

0 (y) as the new leading-order 
term, with minor alterations, and modifying the prefactor in the derivation of g so as to enforce 
(8). Otherwise, however, it is neither more nor less convergent, being in effect a rearrangement 
of the terms.

The approach of expanding around an OU process leaves a free parameter, θ, that controls 
the intermediate-time behaviour, and the remainder series implicitly depends upon it. As we 
said earlier, we cannot infer θ from the O(τ−1) or O(τ 0) terms in the short-time expansion. 
We can argue that θ should be chosen to minimise b1(y ) as given earlier, and as that function 
vanishes when A′(y) + θ is identically zero, it seems reasonable to choose θ so as to minimise 
A′(y) + θ ‘on average’. This motivates the choice

θ̂ = 〈−A′〉∞ = 〈A2〉∞� (13)

where 〈·〉∞ means an average over the invariant density f (∞, ·). This was proposed in [36], 
albeit using a different line of reasoning based on a sort of Rayleigh–Ritz argument to iden-
tify the least negative eigenvalue of L†, the differential operator of the FPE8. Clearly (13) is 
correct in the OU case, and it guarantees θ̂ > 0, all of which make it a pragmatic choice, but 
there is another compelling reason based on a connection with entropy and information the-
ory, which runs as follows. Consider, for some p.d.f. ψ, the family of distributions ψ(y − µ) 
indexed by the parameter µ ∈ R. It is desired to estimate µ (from data), and the standard way 
of doing this is the maximum likelihood estimator. Writing

f (y |µ) = ψ(y − µ)

we seek to maximise log f (y |µ) w.r.t. µ. The Fisher information [33, section 2.5] is the expec-
tation of the square of the µ-derivative of the log-likelihood, and hence is

8 It was, however, reliant on the operator L† having a discrete spectrum, which it may not.

R J Martin et alJ. Phys. A: Math. Theor. 52 (2019) 085002
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∫ ∞

−∞

(
∂

∂µ
log f (y |µ)

)2

f (y |µ) dy =

∫ ∞

−∞

(
ψ′(y − µ)

ψ(y − µ)

)2

ψ(y − µ) dy

=

∫ ∞

−∞

(
ψ′(y)
ψ(y)

)2

ψ(y) dy;

if we set ψ(y) = f (∞, y) then this is exactly the definition of θ̂. In broad terms, the higher the 
Fisher information, the more certain we are about the estimation of the parameter in question, 
and indeed the reciprocal of the Fisher information furnishes the Cramér–Rao lower bound 
for the variance of any unbiased estimator. This has an interpretation in terms of the mean 
reversion: the higher the average speed of mean reversion, the more certain we are about our 
estimate of the mean from a given dataset, and vice versa. Using the Fisher information as an 
estimator of reversion speed is therefore natural. As will be seen later, the method extends in a 
natural way to higher dimensions, with ∂/∂µ replaced by ∇, and then the Fisher information 
is a positive definite symmetric matrix rather than just a positive number.

2.1.  Results and discussion in one dimension

We consider a range of one dimensional examples deviating from the OU by different degrees 
and compare the leading-order approximation (10) to numerical solutions from a PDE solver. 
The numerical solution is computed by means of Fourier spectral collocation in the spa-
tial direction coupled with a fourth-order Runge–Kutta algorithm in time and uses a nar-
row Gaussian as initial condition; a sufficiently large spatial domain is taken such that the 
FPE does not interact with the edge, and convergence is checked by mode-doubling. We take 
advantage of the linear diffusion by using an integrating-factor, and also the fast Fourier trans-
form, to design a highly efficient solver; such methods are standard in scientific computing [6, 
48] and the fully-converged numerical simulations act as the ‘gold standard’ against which we 
compare the approximations. Even then, the PDE solver is far slower than the leading-order 
approximations. Our solution is a truncation from an infinite product, and so it is of central 
importance to demonstrate its efficiency. The following examples explore the domain of valid-
ity of the leading-order approximation in which it successfully replicates the time-evolution of 
the numerical FPE solutions. We mainly choose cases from fat-tailed invariant distributions, 
which were our main motivation; the last case exhibits the adaptability of the approximation 
in places where it was unexpected.

2.1.1.  Sech-power model.  One way of moving away from the linear force field (quadratic 
potential well) of the OU model is to make the force field grow less rapidly away from equi-
librium by stipulating

A(y) = − δ̂

γ̂
tanh γ̂y.

�

(14)

This is an example, of the well-known Pearson diffusions [21], which is obtained from the 
local volatility model

dXt = −κXt dt + σ

√
1 + γ2X2

t dWt,
�

(15)

in which volatility increases away from equilibrium, using the transformation γX = sinh γ̂Y; 
see [36] for more details and some applications in mathematical finance. The associated poten-
tial is also known in mathematical physics as the Pöschl–Teller potential [20] in the special 
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case δ̂/γ̂2 = 2. The resulting Schrödinger equation is solvable in terms of special functions 
and its link with the FPE has been used to derive analytical solutions, see [3]. The steady state 
is a sech-power:

f (∞, y) =
γ̂(cosh γ̂y)−δ̂/γ̂2

B
(

δ̂
2γ̂2 , 1

2

) , 〈−A′〉∞ =
δ̂2

δ̂ + γ̂2� (16)

with B denoting the Beta function; the explicit solutions mean that this is an attractive model 
that has been well-studied, for instance, for systems with nonlinear random vibrations (16) 
occurs, see [35].

In the limit where γ̂ → 0 we recover the OU model, so γ̂  is a measure of the deviation from 
OU. We have looked at many parameter sets, the comparison of the leading order solution 
to full numerical simulations is consistently qualitatively pleasing, and a typical example in 
figure 1 shows the comparison.

2.1.2.  Dry-friction.  Dry-friction [47] is the limit of the sech-power model obtained when 
δ̂ = γ̂ → ∞, and we then have a discontinuous A(y) as

A(y) = −sgn y, f (∞, y) =
e−|y|

2
, 〈−A′〉∞ = 1.

This case is interesting in terms of the physics it describes, but also as additionally the trans
ition density is available in closed form [47], e.g. by the usual route of Laplace transforming 
the Fokker–Planck equation:

f (τ , y | y0) =
e−(y−y0)

2/4τ
√

4πτ
e−τ/4e(|y0|−|y|)/2 +

e−|y|

2
Φ

(
τ − |y| − |y0|√

2τ

)
� (17)

or

g(τ , y | y0) =
e−(y−y0)

2/4τ
√
πτ

e−τ/4e(|y0|+|y|)/2 +Φ

(
τ − |y| − |y0|√

2τ

)
� (18)

and this exact solution provides a convenient benchmark against which to test our theory.
In this example, f  arises as a sum of two pieces, and so h, rather than being a simpler func-

tion than g (as it is for example with the OU), is more complicated. Nonetheless, comparing to 
numerical simulation the accuracy is excellent when starting at the origin (not shown) or fairly 
near the origin (y0 = −2, figure 2(a)), but worse when it is much further away (y0 = −5, fig-
ure 2(b)). This points to a separate development of the theory that deals with far-field expan-
sions, and that we pursue later in section 4: as we will show by consideration of (5), the first 
term in either of the above expressions corresponds to an approximation in which we start a 
long way from equilibrium and the drift is small, as here.

2.1.3.  Student-t.  Another popular deviation, and as noted in the introduction important across 
many fields, from the OU is that associated with fat-tailed distributions. We use, as in [36], a 
distribution that conveniently has student-t as its steady state in the Y coordinates:

A(y) = − y
1 + γ̂2y2 , f (∞, y) =

γ̂(1 + γ̂2y2)−(ν−1)/2

B( ν−2
2 , 1

2 )
, 〈−A′〉∞ =

ν − 2
ν + 1

.

This model gives rise to fatter tails than the sech-power example, because the force-field 
decays to zero as |y| → ∞. The distinction is further accentuated by noting that the sech-power 
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case can be obtained, for certain parameter values, from transforming a model in which the 
steady state is student-t in X coordinates; we demonstrate the efficacy of the leading-order 
approximation in figure 3.

2.1.4.  Double-well potentials.  A gross deviation from OU is that of double-well potentials, 
and quite remarkably we find that the leading-order approximation still performs well captur-
ing both the quantitative features and the qualitative behaviour, see figures 4 and 5. We take a 
very general form

fY(∞, y) = Ke−y2/2 y2 + γ2
(
(y − α1)2 + β2

1

)(
(y − α2)2 + β2

2

)

with zeros at y = ±iγ and poles at y = αj ± iβj  for j = 1, 2; in [36] a limited case with 
just the quadratic in the numerator, but no denominator, that does not allow the flexibility to 
explore the parameters. These act as follows: γ → 0 makes the two wells disjoint, so that it 
becomes progressively less easy to transit from one well to the other; α controls their location; 
β → 0 makes them deeper. The force-field is

Figure 1.  Density as a function of position (sech2 , γ̂ = 1, δ̂ = 2), with y0 = −2, (a) the 
profile of f  versus times from the numerical simulation and (b) comparing the leading-
order approximation (solid) with the numerics (dotted).
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A(y) = −y +
2y

y2 + γ2 − 2(y − α1)

(y − α1)2 + β2
1
− 2(y − α2)

(y − α2)2 + β2
2

and there are explicit forms for 〈−A′〉∞, and the normalising constant K, that can be obtained 
from the complex error function, or which can simply be evaluated numerically. We have 
evaluated several parameter sets and the results are shown in figures  4 and 5 are typical. 
To be specific, the parameters are: poles at ±2 ± i, zeros at ±i/

√
2, and for this we have 

〈−A′〉∞ ≈ 1.557. It is evident that starting from the equilibrium point (figure 4) produces 
different results from starting in one of the wells (figure 5). In the former, the approximation 
is excellent whilst in the latter, the approximation overestimates the rate at which the process 
‘finds out about’ the other well, with the density being shared between the two wells at too 
early a time, though of course as τ → ∞ the results must again agree. Nonetheless even when 
starting in one of the wells the leading-order approximation gives qualitative insight. It is 
perhaps surprising that the approximation works at all, and that it does is suggestive that our 
philosophy of building an approximation based upon ‘how diffusions think about themselves’ 
and using the slightly counter-intuitive approach of using a product, rather than a sum, expan-
sion is of value.

Figure 2.  Density as a function of position (dry-friction), with (a) y0 = −2, (b) y0 = −5 
at several different time points and comparing the leading-order approximation (solid) 
with the numerical simulation (dotted).
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3.  Multivariate theory

Buoyed by the success of the one-dimensional theory, and the exemplars that demonstrate the 
viability of the approach we employ across a range of illustrative cases, we move to higher 
dimensions where the availability of a fast accurate approximation to partially cure the ‘curse 
of dimensionality’ is attractive. In extending to the multivariate case we use two approaches: 
we can consider the case of the multivariate OU process as a guideline, and we can attempt to 
glue together components from the general one-dimensional case. There are, however, some 
preliminaries before we embark upon this. The general form (noting the discussion in [39] 
regarding assumptions required for the multivariate Lamperti transformation to move from 
Xt to Yt) is

dYt = κA(Yt) dt +
√

2κ dWt� (19)

where, in m dimensions, Wt, Yt ∈ Rm and A : Rm → Rm is the force field and the corre
sponding FPE is (with τ = κt as before)

∂f
∂τ

= −∇ · (Af ) +∇2f .� (20)

Figure 3.  Density as a function of position (student-t) with (a) the profile of f  versus 
times from the leading-order approximation and (b) comparing the leading-order 
approximation (solid) with the numerics (dotted).
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It is natural to take A, the force field, conservative: that is to say it is the gradient of a poten-
tial. Indeed, A = ∇ log f∞, where f∞ is the steady-state solution and then g = f/f∞ obeys 
the adjoint equation

∂g
∂τ

= A · ∇g +∇2g� (21)

so that if H = −g−1∇g, we have the vector equation

∂H
∂τ

= ∇(A · H +∇ · H − H · H).� (22)

If A were considered non-conservative then the equations (21) and (22) are no longer correct.

3.1.  Symmetric OU

By a symmetric OU process, we mean (in normal form) that

dYt = −κaYt dt +
√

2κ dWt� (23)

Figure 4.  Density as a function of position (Double-well Vsn 1, poles ±2 ± i, zeros 
±i/

√
2, (α,β, γ) = (2, 1, 1√

2
)) with y0 = 0. (a) Shows the field profile in time, 

taken from the leading-order approximation and (b) comparison of the leading-order 
approximation (solid) versus numerics (dotted).
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where italic bold letters are square matrices and Wt is an m-dimensional standard Brownian 
motion, i.e. different coordinates are independent and so E[dWt dW†

t ] = I dt where † denotes 
the transpose. The force field is conservative if, and only if, the matrix a, which we call 
the generator, is symmetric, and this is assumed henceforth. The steady-state is a Gaussian 

Figure 5.  Density as a function of position (Double-well Vsn 1, poles ±2 ± i, zeros 
±i/

√
2, (α,β, γ) = (2, 1, 1√

2
)) with y0 = −2, at several different time points: (a) PDE 

solver, (b) leading-order approximation, (c) comparison at several different time points 
(dotted line is PDE solver, solid is leading-order approximation).
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distribution of mean 0 and with covariance matrix σ∞ = a−1. Further, writing q as the matrix 
exponential

q = exp(−2aτ),

which is evaluated by diagonalising a, this is eased by noting that a is symmetric, we find the 
following

σ(τ) = a−1(I − q)

f (∞, y) = |a/2π|1/2 exp(−1
2

y†ay)

g(τ , y | y0) =
1

|I − q|1/2 exp

(
−1

2
y†

aq
I − q

y − 1
2

y0
† aq

I − q
y0 + y0

† a√q
I − q

y
)

=
1

|I − q|1/2 exp

(
−1

2
(y − y0)

† a√q
I − q

(y − y0)

)

× exp

(
1
2

y†
a√q

I +√q
y
)
exp

(
1
2

y0
† a√q

I +√q
y0

)

H(τ , y | y0) =
a√q
I − q

(y − y0) +
a√q

I +√q
y

�

(24)

where the notation | · | denotes the determinant of the matrices. A technical, and notational, 
point is that as q lies in the commutative matrix ring R[a], we can legitimately write rational 
functions of a, q as if they were scalar indeterminates, providing the denominator is an invert-
ible matrix. Thus a/(I − q), a(I − q)−1, (I − q)−1a are all equivalent. It is notable that the 
equation for H is, as in one dimension (6), a simple sum of two terms.

3.2.  General theory

With the OU case in hand we now proceed to the non-OU case, and emphasise that although 
A is not linear, it has to be a conservative field; broadly we follow the approach of the univari-
ate case, but there are technicalities associated with higher dimension. Comparing with the 
univariate case, the next step is to define a matrix analogue of q and also of θ. Recalling the 
previous discussion on Fisher information, we use the following for the multivariate analogue:

q = exp(−2θτ), and θ = 〈−∇A〉 = 〈−∇∇ log f∞〉.� (25)

As A is conservative, its matrix θ of partial derivatives is symmetric and is also equal the 
Hessian of − log f∞. It is then immediate that θ is positive definite because of the identity

−∇∇(logψ) =
∇ψ

ψ

∇ψ

ψ
− ∇∇ψ

ψ
;

setting ψ = f∞, multiplying by f∞ and integrating over Rm causes the second term to vanish, 
while the first is the integral of a tensor square. Analogously to the univariate case, and also 
(24), we adopt the ansatz

H(τ , y) =
θ
√q

I − q
(y − y0) +

√q
I +√q

A(y) +
√

q o(1).� (26)

The first term may be integrated immediately to give a Gaussian, but the second is not in gen-
eral a conservative field, except in certain cases: (i) any one-dimensional model or composite 
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of one-dimensional models (by multiplying the marginals); (ii) any spherical model, i.e. one 
in which f (∞, y) is a function of (y − µ)†(y − µ) for some constant vector µ. This seems to 
be a difficulty as, no well-defined antiderivative exists in general. Upon further investigation 
the ‘non-conservative’ part of this term is O(τ) because, if we write

B(y) =
√q

I +√q
A(y),

then

∂Bi

∂yj
−

∂Bj

∂yi
= O(τ)

which at leading order is ignorable; it also disappears as τ → ∞.
We are then at liberty to define a function Ω(τ , y) as

Ω(τ , y) = exp

∫ y

µ∞

dx ·
( √q

I +√q
A(x)

)
,� (27)

where µ∞ is the long-term mean 〈Y〉∞, and the path of integration, which needs to be speci-
fied whenever the integrand is non-conservative, is a straight line. As the integral in (27) is 
taken along a line, its computation does not present greater difficulties as the dimension is 
raised; for all the examples considered later it can be evaluated in closed form. This is the 
main technical hurdle and we can now proceed in much the same way as the univariate case 
to find that

g(τ , y) ∼ (. . .)τ ,y0 exp

(
−1

2
(y − y0)

† θ
√q

I − q
(y − y0)

)
· Ω(τ , y0)

Ω(τ , y)

and, from reciprocity, as g must be symmetric in y, y0 we must have

g(τ , y) = (. . .)τ exp

(
−1

2
(y − y0)

† θ
√q

I − q
(y − y0)

)
· 1
Ω(τ , y)Ω(τ , y0)

so that the prefactor now depends on τ  only. As τ → 0 we must have, as the density initially 
grows as a Gaussian, that

g(τ , y0) ∼
|θ/2π|1/2

|I − q|1/2 · 1
f (∞, y0)

, τ → 0,

while as τ → ∞ we have g(τ , y) → 1. This demands a prefactor of the form

1
|I − q|1/2

(
|θ/2π|

f (∞,µ∞)2

)ρ(τ)

,

where ρ(0) = 1
2, and ρ(∞) = 0, in view of the work leading up to (9) we write

ρ(τ) =
1
m

tr
√q

I +√q
.� (28)

This gives our final results, the multivariate counterparts of (9) and (10), as

g(τ , y) ∼ 1
|I − q|1/2 exp

(
−1

2
(y − y0)

† θ
√q

I − q
(y − y0)

) (
|θ/2π|

f (∞,µ∞)2

)ρ(τ)

Ω(τ , y)Ω(τ , y0)
� (29)
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and

f (τ , y) ∼ 1
|I − q|1/2 exp

(
−1

2
(y − y0)

† θ
√q

I − q
(y − y0)

) (
|θ/2π|

f (∞,µ∞)2

)ρ(τ)

f (∞, y)

Ω(τ , y)Ω(τ , y0)
.

� (30)
We consider the two special cases mentioned above. First, one-dimensional models: (27) 

reduces to

Ω(τ , y) =
(

f (∞, y)
f (∞,µ∞)

) √
q

1+
√

q

,

and as A is the logarithmic derivative of the invariant density we recover (9); µ∞ does not 
enter the final expression. An extension is to consider a product of independent processes, so 
that ∇A(y), and hence θ and q, are diagonal. This also leads to simplifications particularly 
if we take the reversion speeds (θi) to be identical, then θ and q are multiples of the identity 
matrix, and the multivariate approximation (30) becomes simply the product of the univari-
ate approximations (10). Secondly, the symmetric OU case which has A(y) = −ay, θ = a, 
f (∞,µ∞)2 = |θ/2π|, and

Ω(τ , y) = exp

(
−1

2
y†

a√q
I +√q

y
)

;

so we end up with (24), as we should. We now take illustrative examples and evaluate the 
leading-order approximations comparing to numerical simulation.

3.3.  Fat-tailed and double-well results

Two cases of interest are a student-t model, as a generalisation of that in section 2.1.3, and a 
bivariate double-well model. For the bivariate student-t model we take a general form9

A(y) = −ν + 2
ν

(
1 +

a1y2
1 + a2y2

2

ν

)−1 [a1y1

a2y2

]

for which

f (∞, y) =
√

a1a2

2π

(
1 +

a1y2
1 + a2y2

2

ν

)− ν+2
2

, 〈−∇A〉∞ =
ν + 2
ν + 4

[√
a1/a2 0
0

√
a2/a1

]
.

Note that, writing θ for 〈−∇A〉∞,

√q
I +√q

=

[
exp(−θ11τ)

1+exp(−θ11τ)
0

0 exp(−θ22τ)
1+exp(−θ22τ)

]
=

[
Q1 0
0 Q2

]
say,

and since µ∞ = 0 we have

Ω(τ , y) =
(

f∞(y)
f∞(0)

) a1Q1y2
1+a2Q2y2

2
a1y2

1+a2y2
2

so (30) is explicit.

9 While y 0 continues to denote y(0) and is a vector, y 1 and y 2 are being used to denote the components of y ; this 
should not cause confusion.
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This model is an extension in two dimensions of the student-t model shown previously, so 
it has the same characteristics, including the fat tails. We take a typical example, the model 
with a1 = 1, a2 = 3, so that the density starts off circularly-symmetric, and ends up elliptical. 
Two sub-cases are displayed, one with y0 = (−2, 2) (figure 6) and the other with y0 = (3, 1) 
(figure 7) as contour plots. It is pleasing to see that the features are accurately captured both 
quantitatively and qualitatively.

The bivariate double-well model is particularly challenging, and very far from the simple 
OU model, and we take a general model

A(y) = −ay +
2y

‖y‖2 + γ2 − 2(y − α1)

‖y − α1‖2 + β2
1
− 2(y − α2)

‖y − α2‖2 + β2
2

where a1, a2 ∈ R2, b1, b2, γ ∈ R and a is a 2-by-2 symmetric matrix. Then

f (∞, y) = Ke−y†ay/2 ‖y‖2 + γ2
(
‖y − α1‖2 + β2

1

)(
‖y − α2‖2 + β2

2

) .

We present cases illustrating different features:

	 (a)	�The first uses the following parameters

a = I, α1 =

[
2
0

]
, β1 = 1, α2 =

[
−2
0

]
, β2 = 1, γ =

1
2

		 for which we compute numerically

θ ≈
[

1.2633 0
0 1.2774

]
, K ≈ 2.5352.

		 Similarly to the 1D case, α controls the position, β the depth and γ  makes the wells more 
disjoint as it goes towards 0. Hence the wells are quite disjoint and located on the y 1-axis; 
we consider two sub-cases with different starting points.

		 In the first one, y0 = (0, 0.5) is equidistant from the two wells and the resulting field 
evolution is illustrated in figure 8. The diffusion takes place at the same pace towards both 
wells and, even though we notice that the numerical solution converges slightly faster 
than the approximation, the agreement is reassuring.

		 The second one is the extreme case when it starts at y0 = (−1.5, 0) corresponding to 
the bottom of a well and its evolution is shown in figure 9. As could be expected since 
the wells are well-separated, the approximation struggles to capture the medium-term 
behaviour.

	(b)	�Finally we consider

a = I, α1 =

[
2
2

]
, β1 = 1, α2 =

[
−2
−2

]
, β2 = 0.7, γ = 1

for which

θ ≈
[

0.9957 −0.1990
−0.1990 0.9957

]
, K ≈ 4.0767.
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		 In this example, due to the symmetry of α, the wells are located on the y1 = y2 line, and 
they are less separated because γ  is bigger. However the main difference is that β1 �= β2 
which implies that the wells have different depths. Again we present two sub-cases.

		 The first one starts equidistant from the wells with y0 = (−1, 1) and is illustrated in 
figure 10. Once more we observe that the rate of convergence is the same towards both 
wells and that the exact and leading-order solutions have a very similar behaviour even 
though the starting point is further away from the wells than in case (a).

		 The second sub-case starts at the bottom of a well which is represented by y0 = (1.3, 1.3) 
and is shown in figure 11. As with case (a), the medium-term approximation diverges 
from the exact solution.

Figure 6.  Bivariate student-t example (see text). PDE solver on the left, leading-order 
approximation on the right, y0 = (−2, 2). Densities at several different time points, 
from top to bottom: τ = 0.1, 0.25, 1, 5.
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4.  Extensions

We have presented typical examples and demonstrated, via comparison with numerical simu-
lation that the approximation is encouragingly capturing behaviour far from the OU case, 
despite being based, in some sense, around the OU. We now highlight three extensions: firstly, 
what happens when we big far from equilibrium, then half-line problems for which our exist-
ing theory is inconvenient, and then finally what happens if the field is non-conservative.

4.1.  Far-field expansion

The method is less accurate when the starting-point is a long way from equilibrium, and more 
concretely this means

|A(y)| � θ|y − µ∞|

Figure 7.  Bivariate student-t example (see text). PDE solver on the left, leading-order 
approximation on the right, y0 = (3, 1). Densities at several different time points, from 
top to bottom: τ = 0.1, 0.25, 1, 5.
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in one dimension. At one level this represents the deviation from the chosen OU model. 
However it can also be thought of as follows: |y − µ∞|/A(y) is, loosely, the time taken to get 
back to equilibrium, and if this is much larger than 1/θ, which is the reciprocal of the average 
speed of attraction, then we are in the far field—hence the above heuristic.

If we redevelop all the theory assuming no mean reversion (and there is little to be gained 
by staying in one dimension), we have, from (22),

H(τ , y) ∼ y − y0

2τ
+

A(y)
2

+∇B1(y)τ + · · · , τ → 0,� (31)

where we have replaced b1(y ) by the gradient of a function B1. Equating the terms at O(τ 0) 
in (22) gives

Figure 8.  Two dimensional double-well example (a) (see text). PDE solver on the left, 
leading-order approximation on the right, y0 = (0, 0.5). Densities at several different 
time points, from top to bottom: τ = 0.3, 1, 1.5, 5.
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B1 + (y − y0) · ∇B1 =
‖A‖2

4
+

∇ · A
2

.

In one dimension, this gives

B1(y) =
1

y − y0

∫ y

y0

(
A(z)2

4
+

A′(z)
2

)
dz

which is the average of the integrand, and hence approximated by the average of the values at 
the endpoints. If A is slowly-varying then, going back to the higher-dimensional case,

B1(y) ≈
1
8
(
‖A(y)‖2 + ‖A(y0)‖2).

Figure 9.  Two dimensional double-well example (a) (see text). PDE solver on the left, 
leading-order approximation on the right, y0 = (−1.5, 0). Densities at several different 
time points, from top to bottom: τ = 0.1, 0.8, 2, 5.
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Also, by the same arguments as in section 2, writing g(τ , y) = n(τ)e−
∫

h,

n(τ) ∼ e−(‖A(y0)‖2/4+∇·A(y0)/2)τ
√

4πτ

and combining the results gives (again ignoring the ∇ · A term)

g(τ , y) ≈ e−‖y−y0‖2/4τe−(‖A(y)‖2+‖A(y0)‖2)τ/8
√

4πτ f (∞, y)f (∞, y0)
, τ → 0� (32)

or

f (τ , y) ≈ e−‖y−y0‖2/4τe−(‖A(y)‖2+‖A(y0)‖2)τ/8
√

4πτ

(
f (∞, y)
f (∞, y0)

)1/2

.� (33)

Now let us reconsider the one-dimensional dry-friction case, which we reproduce for 
convenience:

Figure 10.  Two dimensional double-well example (b) (see text). PDE solver on the left, 
leading-order approximation on the right, y0 = (−1, 1). Densities at several different 
time points, from top to bottom: τ = 0.3, 1, 2, 5.
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g(τ , y | y0) =
e−(y−y0)

2/4τ
√
πτ

e−τ/4e(|y0|+|y|)/2 +Φ

(
τ − |y| − |y0|√

2τ

)
.

For |y|+ |y0| > τ  (a V-shaped domain, in a plot of y  versus τ ) the first term predominates, and 
in fact is identical to what we have just derived in (32) as ‖A‖ = 1. This is understood as the 
far-field solution. Inside the ‘V’, i.e. |y|+ |y0| < τ , the second term takes over; this is the term 
that governs the long-time limit, and the first term decays to zero then. It is elegant that these 
two halves combine to give the exact solution.

The basic principle is that (32) is a generic way of understanding the far-field behaviour 
of equations  of non-OU type in the far-field, where the drift is small: for example, when 
A(y) = −a tanh γ̂y or −y/(1 + γ̂2y2) as previously studied. However, extending (31) and 
(32) to a complete solution that works in all régimes does not seem to be straightforward—
there is no exponential damping factor in (31), so the expression is clearly wrong as τ → ∞. 
This is a matter for further research.

4.2.  Square-root process

Another new branch of the theory concerns processes that are bound to lie in the half-line by 
reason of the volatility decaying to zero at some point, without loss of generality X  =  0. (This 
is as opposed to a reflecting boundary condition, which is another way of constraining a pro-
cess; we do not consider that case here, but doubtless it could be.) A famous example of this 
is the so-called square root process, described in, for example, [12, 32]:

dXt = a(b − Xt) dt + σ
√

Xt dWt, X � 0.

It is unhelpful to transform this into (2) because the drift A will become infinite at the origin: 
1/σX  becomes undefined. The problem can be rescaled by setting Y = 2aX/σ2 and τ = at, 
giving

f (∞, y) =
yν−1e−y

Γ(ν)
, ν = 2ab/σ2

and

f (t, y | y0) =
e−y

1 − e−τ

(
yeτ

y0

)(ν−1)/2

exp

(
− (y + y0)e−τ

1 − e−τ

)
Iν−1

(
2
√

yy0e−τ

1 − e−τ

)

g(t, y | y0) =
Γ(ν)

1 − e−τ

(
eτ

yy0

)(ν−1)/2

exp

(
− (y + y0)e−τ

1 − e−τ

)
Iν−1

(
2
√

yy0e−τ

1 − e−τ

)

where Iν(z) denotes the modified Bessel function of the first kind. We have for short time

h(τ , y) =
e−τ/2(1 −

√
y0/y)

1 − e−τ
− e−τ/2

1 + e−τ/2 +
ν − 1

2

2y
+ o(1), τ → 0

where we have used Iν−1(z) ∼ ez/
√

2πz as z → ∞. We can replace ν−
1
2

2y  with e−τ/2

1+e−τ/2
ν− 1

2
y , 

thereby keeping an error term of the same order, O(τ), but ensuring h(∞, y) = 0. This gives

h(τ , y) =
e−τ/2(1 −

√
y0/y)

1 − e−τ
+

e−τ/2

1 + e−τ/2

(
−1 +

ν − 1
2

y

)
+ o(1),� (34)
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which is an analogue of (11) for generalised square-root processes. The y -dependence is dif-

ferent, but there are obvious parallels, notably the e−τ/2

1−e−τ  in the first term.
The expansion can also be derived directly, if we define the normal form of a process on 

the half-line as

dYt = κA(Yt) dt +
√

2κYt dWt� (35)

from which

∂h
∂τ

=
∂

∂y

{
A(y) h + y

∂h
∂y

− yh2
}

.� (36)

In the expansion of h, the first term must, by dominant balance of the ∂h/∂τ  and ∂(yh2)/∂y 
terms, look like

h(τ , y) ∼
1 −

√
c/y

τ
, τ → 0;

Figure 11.  Two dimensional double-well example (b) (see text). PDE solver on the left, 
leading-order approximation on the right, y0 = (1.3, 1.3). Densities at several different 
time points, from top to bottom: τ = 0.3, 2, 5, 10.
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the constant c must equal y0, by consideration of the initial behaviour, and to ensure 
h(∞, y) = 0 we write

h(τ , y) ∼
2θ
√

q(1 −
√

y0/y)
1 − q

+ · · ·

as the first term, where θ > 0 as before is arbitrary. The next term is obtained, as before, by 
requiring that the O(τ−1) terms balance in (36) and we find

h(τ , y) ∼
2θ
√

q(1 −
√

y0/y)
1 − q

+

√
q

1 +
√

q

(
A(y)

y
− 1

2y

)
+ · · ·� (37)

where the last term (−1/2y ) is needed to balance the (yh′)′ term in (36). (No such term appears 
in (7), because the relevant term in (5) is h′′, which vanishes at leading order in τ .) This gives 
the same result as the square-root process, for which A(y) = ν − y in normal form, provided 
we set θ = 1

2.
Similar considerations apply to doubly-bounded processes e.g.

dXt = (a − bXt) dt + σ

√
1 − X2

t dWt, X ∈ [−1, 1].

Both of these are examples of processes identified by Wong [49], where the usual method of 
solution is orthogonal expansion using the Hermite, Laguerre or Jacobi polynomials.

There is also, as intimated above, the possibility of studying processes with one or two 
reflecting barriers.

4.3.  Non-conservative problems

The theory of diffusion in the presence of a non-conservative force field is considerably more 
difficult. Even the OU case is not straightforward, but it can be related to its symmetric case 
as follows. To retain the general setting let us write the SDE as

dXt = −κaX dt + bX dWt

with aX , bX square matrices of dimension m. Writing

Y =
√

2κ b−1
X X, a = κ−1b−1

X aXbX ,

we convert the SDE to its normal form (23), but a might not be symmetric. The invariant 
density is still multivariate Gaussian with zero mean but the covariance matrix σ∞ is not a−1: 
instead it is given by the Lyapunov equation,

aσ∞ + σ∞a† = 2I

which is most easily solved for σ∞ by writing it as a set of linear equations in its elements. 
Also

f (τ , y | y0) =
1

|2πσ(τ)|1/2 exp

(
−
(
y − µ(τ)

)†
σ(τ)−1

(
y − µ(τ)

)
2

)

with

µ(τ) = e−aτy0, σ(τ) = 2
∫ τ

0
e−ase−a†s ds = σ∞ − e−aτσ∞e−a†τ .
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From this, with H = −∇ log( f/f∞) as before, we can see by direct calculation that

H(τ , y | y0) =
(
σ(τ)−1 − σ−1

∞
)
y − σ(τ)−1µ(τ)

=
(
eaτσ∞ − σ∞e−a†τ)−1

(y − y0) +
(
eaτσ∞ − σ∞e−a†τ)−1

σ∞
(
e−a†τ − 1

)
σ−1

∞ y.

The first term, which is singular at τ = 0, corresponds to the first term in (7) and (26), if we 
accept the substitutions

θ
√

q
1 − q

�
(
eaτσ∞ − σ∞e−a†τ)−1

, θ � σ−1
∞

(notionally, 
√

q � e−aτ  or e−a†τ ), while the second term corresponds similarly, from the 
substitutions

√
q

1 +
√

q
=

θ
√

q
1 − q

1 −√
q

θ
�

(
eaτσ∞ − σ∞e−a†τ)−1

σ∞
(
1 − e−a†τ)

and

A(y) � −σ−1
∞ y.

Therefore, in some altered way, (7) and (26) carry over.
This brings us on to another matter: our work concerns approximating the FP solution 

using the short- and long-term behaviour. Is it possible to find two OU models with the same 
short- and long-term behaviour, even if the medium-term behaviour is different? The answer 
is yes: indeed, all generators of the form

a = (I + u)σ−1
∞ , u ∈ A

where A  is the space of skew-symmetric matrices, give rise to the same behaviour in both lim-
its. Formally, define two generators a to be equivalent (notation � and clearly an equivalence 
relation) if they give rise to the same asymptotic covariance matrix. It is easy to see that two 
equivalent generators have the same trace.

As an example: when a =

[
1 a
0 1

]
 we have

σ(t) =
[

1 − e−2τ + 1
2 a2

(
1 − (1 + 2τ + 2τ 2)e−2τ

)
− 1

2 a
(
1 − (1 + 2τ)e−2τ

)
− 1

2 a
(
1 − (1 + 2τ)e−2τ

)
1 − e−2τ

]

and

σ∞ =

[
1 + a2/2 −a/2
−a/2 1

]
, σ−1

∞ =
1

1 + a2/4

[
1 a/2

a/2 1 + a2/2

]
.� (38)

So the equivalence class of a under � is

[a]� =
1

1 + a2/4

[
1 − ab/2 a/2 − b − a2b/2
b + a/2 1 + ab/2 + a2/2

]
, b ∈ R

which contains the following elements, as it must:
[

1 a
0 1

]
;

1
1 + a2/4

[
1 a/2

a/2 1 + a2/2

]
.

All elements of [a]� have trace 2.
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In summary, every OU process (or generator) is equivalent under � to a unique symmetric 
one; we obtain σ∞ from the Lyapunov equation and then invert it to obtain the symmetric 
generator.

5.  Conclusions and final remarks

We have described the solution to the Fokker–Planck equation with steady state in simple, 
intuitive terms and demonstrated the validity of our approach with numerical examples in a 
range of cases: The main results are (10) and its multidimensional analogue (30). The most 
striking, and potentially most useful, conclusion is that even a simple expansion without the 
intermediate correction terms—the ‘leading-order’ expansion—produces acceptable results 
for the great majority of cases, in what may be described as the ‘central zone’ where the 
process spends most of its time. Perhaps surprisingly it continues to work well even if the 
departure from the OU model is quite gross, such as for the double-well potentials that we 
consider. Given the explicit nature of the formulae we provide, they are very fast to compute 
by comparison with a PDE solver or Monte Carlo simulation, especially in higher dimensions. 
Hence we anticipate that our approach can be utilised to form the core of, say, a Kalman filter 
avoiding linearisation or high-dimensional computation.

We have also indicated in section  4 other developments that deal with extensions and 
important side-issues. These are: the far-field expansion, where the core result works less 
effectively; problems constrained to lie in the half-line or channel; and also the difficult case 
of when the force-field is non-conservative, i.e. not arising from a potential field.

On the more theoretical side there remains the open question of whether (7) converges 
in a neighbourhood of τ = 0, or whether it is simply an asymptotic expansion for small τ  
that eventually blows up if too many terms are taken. The empirical evidence of [36] is that 
it is convergent when A is analytic, but this is far from clear. There is also the possibility, as 
indicated in [36], of using spectral methods to produce a higher-order expansion, rather than 
developing in a power series in 1 − e−2θτ  or 1 − e−θτ. Another avenue is attempting to com-
bine the far-field expansion with the near-equilibrium expansion, essentially by allowing θ to 
be lower when y  is a long way from equilibrium. If this is to be done then θ must be made 
symmetric in y  and y0 so as to preserve the reciprocity condition (8).

This paper is, therefore, not the last word on the subject, but provides opportunities for 
further work in an area that we consider still to be fertile.
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