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Abstract

Many optimisation problems are formulated with nonconvexities in the objective function and

the set of constraints. Nonconvex optimisation has applications in a wide range of disciplines

and this thesis examines scheduling and process network design problems. Two main solution

approaches are used to deal with such problems: exact and approximation algorithms. Exact

algorithms guarantee to solve a problem to global optimality but may require exponential time.

On the other hand, approximation algorithms can generate near-optimal solutions in reasonable

time. Both sets of algorithms could benefit from insights on the special structure of optimisation

problems, e.g. symmetry and degeneracy.

This thesis proposes novel structures i.e. matrices and graphs, for detecting symmetry in Quadrat-

ically Constrained Quadratic Programs. In several critically important engineering applications,

such as Heat Exchanger Network Synthesis (HENS), symmetry and degeneracy have not been

characterised yet. This work investigates the minimum number of matches, e.g. heat exchanger

units, which is the current bottleneck in designing HENS. We classify special cases with many

equivalent optimal solutions and define symmetry and degeneracy. Due to the aforementioned

complexities, we report via computational results that state-of-the-art approaches cannot solve

the minimum number of matches problem to global optimality for moderately-sized instances.

Hence this thesis develops three classes of heuristics with performance guarantees to the mini-

mum number of matches problem. Each of these heuristics is either novel or provably the best in

its class. Our work has interesting implications for solving the problem exactly, e.g. the analysis

into reducing big-M parameters or the possibility of quickly generating good primal feasible

solutions.

Detecting special structures in optimisation problems and dealing with instances of HENS is

neither trivial nor easy. This thesis provides an in-depth analysis of these problems and develops

fundamental tools to efficiently solve challenging optimisation problems via both exact and

approximation approaches.
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Chapter 1

Mathematical Toolkit

1.1 List of Abbreviations

PL - LP Linear Program

PMIL - MILP Mixed-Integer Linear Program

PMINL - MINLP Mixed-Integer Nonlinear Program

PQ - QCQP Quadratically Constrained Quadratic Program

PMIQCQ - MIQCQP Mixed-Integer Quadratically-Constrained Quadratic Program

PLQ - LQP Linearised Program

B&B Brunch-and-Bound Algorithm

RLT Reformulation Linearisation Technique

BLG Binary Layered Graph

DAG Directed Acyclic Graph

HENS Heat Exchanger Network Synthesis Problem
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Table 1.1: Table of notation for symmetry in mathematical programming

Symbol Description Symbol Description
xi,yi,z Variables I Identity element
x,y Vectors of variables π,σ Permutations
α Coefficient Π Set of permutations
a,c,b,p Vectors of parameters Sn Symmetric group of order n
A,Q,B,X Matrices of parameters/variables Ω,Y,X Sets
θ Variables f ,ξ ,φ Functions
M,I,J,K Sparse representations of matrices G,H Graphs
F Set of feasible solutions E,V Set of edges, vertices
G , G̃ Symmetry groups e Edges in the graph
W,Z,K Groups u,v Nodes in the graph
Cn Cyclic group order n rk,λ Constants
Xi j,Yi j,Zi j Auxiliary variables d,z,g,w,k Group elements

1.2 Lists of Notation

1.3 Mathematical Preliminaries

This section presents basic definitions and notation of group theory (Clark 1984, Robinson 1996)

and graph theory (Chartrand 1977, Gibbons 1985).

1.3.1 Definitions of Convexity

The definition of convexity is used in a subsequent proof (Bertsekas et al. 2003).

Definition 1.1 Convex set

A set X ⊂ Rn is called convex if

∀x,y ∈ X, λ ∈ [0,1] λx+(1−λ )y ∈ X

For any two points in the set, a line segment between them includes only points that are inside

the set.

Definition 1.2 Convex function

3



Table 1.2: Notation for the minimum utility cost problem (an LP optimisation model)

Name Description
Cardinalities, Indices, Sets
ns,ms Number of hot, cold streams
nu,mu Number of hot, cold utilities
k Number of temperature intervals
i ∈ HS∪HU Hot stream, utility
j ∈CS∪CU Cold stream, utility
t ∈ T I Temperature interval
HS,CS Set of hot, cold streams
HU,CU Set of hot, cold utilities
T I Set of temperature intervals

Parameters
FCpi,FCp j Flowrate heat capacity of hot stream i, cold stream j
T HS

in,i ,T
HS

out,i Inlet, outlet temperature of hot stream i
TCS

in, j,T
CS
out, j Inlet, outlet temperature of cold stream j

T HU
in,i ,T

HU
out,i Inlet, outlet temperature of hot utility i

TCU
in, j ,T

CU
out, j Inlet, outlet temperature of cold utility j

∆Tmin Minimum heat recovery approach temperature
κHU

i ,κCU
j Unitary cost of hot utility i, cold utility j

σHS
i,t Heat supply of hot stream i in interval t

δCS
j,t Heat demand of cold stream j in interval t

Variables
σHU

i,t Heat supply of hot utility i in interval t
δCU

j,t Heat demand of cold utility j in interval t
Rt Residual heat exiting temperature interval t

A function f : Rn→ R is called convex if

∀x,y ∈ Rn, λ ∈ [0,1] f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

Definition 1.3 Concave function

A function f : Rn→ R is called concave if function (− f ) is convex on X.

∀x,y ∈ Rn, λ ∈ [0,1] f (λx+(1−λ )y)≥ λ f (x)+(1−λ ) f (y)

1.3.2 Group Theory

Group theory studies the algebraic structure of a wide range of objects with or without spe-

cial properties. An important class of groups is the one of transformations (symmetries). We

use the class of permutation groups, e.g. the symmetric and the cyclic group, to describe the
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transformations in geometric objects (Armstrong 1988, Cameron 1999).

Definition 1.4 Group

A group (W, ·) is a nonempty set W with a binary operation · on W satisfying the following

properties:

1. If g, z ∈W, then g · z is also in W;

2. g · (z ·d) = (g · z) ·d for all g, z, d ∈W;

3. Every group W has an identity element I, such that g · I = I ·g = g, f oreachg ∈W;

4. If g ∈W, ∃ g−1 ∈W such that g ·g−1 = g−1 ·g = I.

Definition 1.5 Subgroup

A subgroup Z of a group W is a nonempty subset of W that forms a group itself under the

operation induced by W.

Definition 1.6 Isomorphic groups

Two groups W, Z are isomorphic if ∃ a bijective function φ : W→ Z that satisfies:

1. φ(I) = I for an identity element I;

2. φ(g−1) = φ(g)−1, ∀g ∈W;

3. φ(gz) = φ(g)φ(z), ∀g, z ∈W.

A group automorphism is an isomorphism from a group to itself.

To define the composition of groups, Clark (1984) uses the notion of external and internal direct

product.

Definition 1.7 External direct product

Given a finite sequence of groups K1, . . . , Kn, their external direct product is Πn
i=1Ki = K1×

K2×·· ·×Kn, with elements the tuples (k1, k2, . . . , kn) for each ki ∈ Ki, ∀i and the operation of

their product (k1, . . . , kn)(k1′ , . . . , kn′) = (k1k1′ , . . . , knkn′).
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Given a finite sequence of subgroups K1, . . . , Kn ≤ W, W is their internal direct product if the

following properties hold:

Definition 1.8 Internal direct product

1. W = K1 · · ·Kn with tuples (k1 · · ·kn) for ki ∈ Ki;

2. For each Ki∩K j a trivial subgroup is generated;

3. Each Ki is a normal subgroup of W i.e. ∀k ∈ Ki, ∀g ∈W, gkg−1 ⊆ Ki and is denoted as

Ki �W.

Definition 1.9 Permutation

A permutation of a set Y = {1, . . . , n} is a bijective function π : Y−→ Y.

Definition 1.10 Permutation group

A permutation group Πn is a finite group whose elements are permutations of a given set Y and

whose group operation is composition of permutations in the group.

For permutations π ∈Πn, σ ∈Πm, A(π,σ) is a matrix obtained by permuting the columns of A

by π and the rows of A by σ .

Definition 1.11 Symmetric group

The symmetric group Sn is the group of all permutations of a given set Y.

In mathematics, representation theory studies ways to represent the elements of groups as linear

transformations of vector spaces.

Definition 1.12 Symmetry group

The symmetry group of an object is the group of all transformations under which the object is

invariant with group operation the composition of such transformations.

Definition 1.13 Cyclic group

A cyclic group is a group that can be generated by a single element e.g. Cn = 〈r|rn = 1,n ∈ Z〉

is the cyclic group of order n.

An object has cyclic symmetries if it is invariant under the transformations in a cyclic group.
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1.3.3 Graph Theory

Definition 1.14 Graph

A graph is a tuple G = (V,E) where V is a (finite non-empty) set of vertices and v ∈ V is called

a vertex and E ⊂ V×V is a finite collection of edges and e = {u,v} ∈ E is called an edge.

Definition 1.15 Loop

An edge from a vertex to itself e = {u} is said to be a loop.

Definition 1.16 Weighted graph

A weighted graph K is a triplet K = (V,E,w) where w : E(K)→ R.

Definition 1.17 Vertex coloured graph

A `-colouring of a labelled graph G = (V,E,c) is a function c : V (G)→{0,1, . . . , `−1} where

k is the number of colours. The vertices of one colour form a colour class.

Definition 1.18 Graph isomorphism

Two simple graphs G= {V(G),E(G)} and H= {V(H),E(H)}, are isomorphic, denoted G∼=H,

if ∃ a bijective function f : V(G)→V(H), such that for each edge {u ,v}∈E(G) there is an edge

{ f (u), f (v)} ∈ E(H). Under this relation, any set of adjacent vertices E(V) = {{u,v}|u,v ∈

V,u 6= v} remains adjacent.

An automorphism is an isomorphism of a graph to itself.

Definition 1.19 Graph automorphism

Given a graph G, a permutation π of V(G) is an automorphism of G, if ∀u, v ∈ V(G) there

exist an edge {u ,v} ∈ E(G) then under any permutation π remains in the set of edges as

{π(u),π(v)} ∈ E(G).

Definition 1.20 Colour - preserving isomorphism

Consider pairs (G,c) where G is a graph and c : V (G)→ {0, . . . , `−1} is a `-colouring of G.

A colour - preserving isomorphism from (G,c) to (H,c′) is a bijection π : V (G)→ V (H) such

that π is an isomorphism from G to H and c(v) = c′(π(v)) ∀v ∈V (G).
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A colouring of the vertices is also referred to as a partition, and the colour classes as the cells of

the partition.

Definition 1.21 Graph partitioning

A graph partitioning of G into ` parts is a collection of nonempty disjoint subsets V0, . . . ,V`−1

for ` ∈ Z whose union is V, i.e. V = V0∪ . . .∪V`−1 ∀`.

1.3.4 Basic Computational Complexity Classes

We briefly introduce basic computational complexity classes (Papadimitriou 1994, Arora and

Barak 2009). In a computational problem, we are given an input and we want to return as output

a solution satisfying some property: a computational problem is then described by the property

that the output has to satisfy given the input. In a decision problem, given a problem instance, the

solution consists of an answer of YES or NO. An algorithm is a step-by-step process for solving

a problem. A polynomial algorithm produces a solution for a computational problem with a

running time polynomial to the size of the problem instance. A decision problem belongs to

class P if there is a deterministic algorithm that solves it in polynomial time. The class of N P

is the set of decision problems for which a ”YES” instance can be verified deterministically in

polynomial time. A decision problem P is N P-hard when for every problem Q in N P , there

is a polynomial-time reduction from Q to P. There is also the class of N P-complete problems

for which we do not know whether they admit a polynomial algorithm or not. The question of

whether N P-complete problems admit a polynomial algorithm is known as the P = N P

question. In general, it is conjectured that P 6= N P , i.e. N P-complete problems are not

solvable in polynomial time. An optimisation problem is N P-hard if its decision version

is N P-complete. A computational problem is strongly N P-hard if it remains N P-hard

when all parameters are bounded by a polynomial to the size of the instance.
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Table 1.3: Notation for the minimum number of matches problem, presenting the standard

transportation and transshipment MILP models

Name Description
Cardinalities
n Number of hot streams
m Number of cold streams
k Number of temperature intervals
v Number of matches (objective value)
Indices
i ∈ H Hot stream
j ∈C Cold stream
s, t,u ∈ T Temperature interval
b ∈ B Bin (single temperature interval problem)
Sets
H, C Hot, cold streams
T Temperature intervals
M Set of matches (subset of H×C)
Ci(M),H j(M) Cold, hot streams matched with i ∈ H, j ∈C in M
B Bins (single temperature interval problem)
A(M) Set of valid quadruples (i,s, j, t) with respect to a set M of matches
Au(M) Set of quadruples (i,s, j, t) ∈ A(M) with s≤ u < t
V H(M) Set of pairs (i,s) ∈ H×T appearing in A(M) (transportation vertices)
VC(M) Set of pairs ( j, t) ∈C×T appearing in A(M) (transportation vertices)
VC

i,s(M) Set of pairs ( j, t) ∈VC(M) such that (i,s, j, t) belongs to A(M)

V H
j,t(M) Set of pairs (i,s) ∈V H(M) such that (i,s, j, t) belongs to A(M)

Parameters
hi Total heat supplied by hot stream i (hi = ∑s∈T σi,s)
hmax Maximum heat among all hot streams (hmax = maxi∈H{hi})
c j Total heat demanded by cold stream j (c j = ∑t∈T δ j,t )
σi,s Heat supply of hot stream i in interval s
δ j,t Heat demand of cold stream j in interval t
~σ ,~δ Vectors of all heat supplies, demands
~σt ,~δt Vectors of all heat supplies, demands in temperature interval t
Rt Residual heat exiting temperature interval t
Ui, j Upper bound (big-M parameter) on the heat exchanged via match (i, j)
λi, j Fractional cost approximation of match (i, j) (Lagrangian relaxation)
~λ Vector of all fractional cost approximations λi, j
Variables
yi, j Binary variable indicating whether i and j are matched
qi, j,t Heat of hot stream i received by cold stream j in interval t
qi,s, j,t Heat exported by hot stream i in s and received by cold stream j in t
~y,~q Vectors of binary, continuous variables
ri,s Heat residual of heat of hot stream i exiting s
xb Binary variable indicating whether bin b is used
wi,b Binary variable indicating whether hot stream i is placed in bin b
z j,b Binary variable indicating whether cold stream j is placed in bin b
Other
N Minimum cost flow network
G Solution graph (single temperature interval problem)
φ(M) Filling ratio of a set M of matches
~y f ,~q f Optimal fractional solution
αi,β j Number of matches of hot stream i, cold stream j
Li, j Heat exchanged from hot stream i to cold stream j
I Instance of the problem
r Remaining heat of an algorithm
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Chapter 2

Symmetry and Degeneracy in

Mathematical Programming

2.1 Introduction

Mixed-Integer Nonlinear Programming (MINLP) is one of the most challenging computational

optimisation problems as it combines combinatorial aspects with non-linearities that arise in a

broad range of applications in fields such as manufacturing, chemical and biological sciences

and engineering design (Floudas et al. 2005, Boukouvala et al. 2016, Liberti 2018). MINLP are

N P-hard in the most general case (Bussieck and Pruessner 2003). Subclasses of MINLP in-

clude; Nonlinear Programming (NLP), Mixed-Integer Linear Programming (MILP), Linear Pro-

gramming (LP), Mixed-Integer Quadratically-Constrained Quadratic Programming (MIQCQP)

and Quadratically-Constrained Quadratic Programming (QCQP).

Many state-of-the-art algorithms have been proposed to solve MINLP to global optimality.

Floudas and his coworkers establish the literature of this field as presented in (Floudas and

Gounaris 2008). While solving an MINLP problem a series of techniques may applied to sim-

plify its solvability and attain a global solution i.e. cutting planes, reformulation and linearisa-

tion methods, and solving substreams of the original problem (Belotti et al. (2009a), Skjäl et al.

(2012)). Moreover, it has been shown that, in several classes of problems, considering symmetry
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and degeneracy could speed up the performance of the algorithms (Costa et al. 2013, Ostrowski

et al. 2015).

2.2 Mathematical Optimisation

Mathematical programming formulates all the aforementioned classes of optimisation problems.

It consists of the input parameters, the decision variables as output that optimise the objective

function and a set of constraints which restrict the feasible region. The property of nonconvexity

in mathematical programs imposes more difficulties when we try to solve them. As shown in

Figure 2.1, nonconvexity causes the existence of multiple local optima when we may be seeking

a global solution that gives the best optimal value.

f(x)

xX1 X2 X3

CC

Figure 2.1: Graph: Maximisation function of multiple optima

2.2.1 Mixed-Integer Nonlinear Programming

We refer to a number of optimisation models that have both discrete and continuous variables,

dealing with nonlinear functions in the objective function and/or the constraints. A general

MINLP formulation is as follows:

min
x,y

f (x,y)

s.t. φ(x,y) = 0

ξ (x,y)≤ 0

x ∈ X

y ∈ Y

(MINLP)
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where f : Rn −→R and φ ,ξ : Rn −→Rm and polyhedra sets X = {x|x∈Rn,xl ≤ x≤ xu,Bx≤ b}

and Y = {y|y ∈ {0,1}m,Ay ≤ a} have values of decision continuous and discrete variables

respectively. Generic solvers for MINLP include ANTIGONE (Misener and Floudas 2014),

BARON (Sahinidis 1996), Couenne (Belotti et al. 2009b), LINDO (Youdong and Linus 2009),

and SCIP (Achterberg 2009).

2.2.2 Mixed-Integer Quadratically Constrained Quadratic Programming

A subclass of MINLP restricted to quadratic and bilinear nonlinearities is called Mixed-Integer

Quadratically Constrained Programming (MIQCP) problems. Several geometry problems are

mathematically formulated as MIQCQP (Kucherenko et al. 2007, Kallrath 2009).

A general formulation is given:

min
x,y

f0(x,y)

s.t. fk(x,y)≤ 0 ∀k = 1, · · · ,m

x ∈ Rn

y ∈ {0,1}m

(MIQCQP)

where the functions fk : Rn→ R, have the form: fk(x,y) = xT Qkx+pkx+ rky, ∀k = 0, · · · ,m

and Q0 · · ·Qm ∈ Rn×n, are n by n matrices and x ∈ Rn with xl ≤ x≤ xu, pk ∈ Rn, rk ∈ R.

2.2.3 Mixed-Integer Linear Programming

A large number of optimisation problems in Process Systems Engineering (PSE) can be de-

scribed by Mixed-Integer Linear Programming (MILP) models since the integrality constraints

capture the discrete nature of decisions. Examples include the optimisation of production oper-

ations e.g. planning and scheduling (Maravelias and Grossmann 2004), multiple period optimi-

sation (Lotero et al. 2016), and process synthesis using simplified models without nonlinearities

(Biegler et al. 1997). The formulation follows MINLP.

Consider the MINLP formulation. If the functions in the objective f (x,y) and the constraints

are linear and X 6= /0, Y 6= /0, i.e. variables take both continuous and integer values, then the
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MINLP formulation actually describes a MILP.

2.3 Resource Allocation Problems

Resource allocation problems are widely studied using mathematical programming models (Koop-

man 1953, Katoh et al. 2013). The objective is to achieve the best assignment of limiting re-

sources with some consideration to costs and benefits of such allocations. Efficient algorithms

have been developed, based on the type of the objective function, constraints and variables. The

concept of allocation of resources is wide spread in industry and several industrial problems

belong to this class. Applications include: load distribution, petroleum refining, supply-chain

operations and computer resource allocation. In these thesis we study and categorise special

cases of packing, scheduling and network design problems.

2.3.1 Scheduling Problems

Scheduling optimisation problems allocate resources to perform a set of tasks over time. The

resources are modelled as machines and the requests for resources are modelled as jobs with

a service requirement. Given this broad definition, scheduling problems frequently arise in the

manufacturing industries such as production planning in factories, supply chain planning of

pharmaceutical companies (Sousa et al. 2011) and scheduling of heat-integrated plants (Papa-

georgiou et al. 1994). A vast amount of literature on machine scheduling, including job shop

scheduling, has been published (Brucker 2001, Conway et al. 2012).

Typically, scheduling problems aim to minimise the total amount of time (or cost) required to

complete all the tasks. The most basic version is as follows: We are given n jobs of varying

processing times, which need to be scheduled on m machines with varying processing power,

while trying to minimise the makespan.

2.3.1.1 Job Shop Scheduling Problem

The following simple scheduling problem incorporates also time limitations. Given m identical

machines for scheduling, indexed by the set i ∈ {1, . . . ,m}. There are n given jobs, indexed by
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the set j ∈ {1, . . . ,n}, with processing time pi, j units and resources at the rate ci, j. Each task

j has release time zero and deadline d j. All the jobs, randomly chosen, can be processed on

any of the m machines. The task is to assign jobs to machines so that the completion time,

also called the makespan, is minimised. The formulation is given by Ierapetritou and Floudas

(1998), Hooker (2005):

min z (2.1)

s.t. ∑
it

xi jt = 1 ∀ j (2.2)

∑
j

∑
t ′∈Ti jt

ci jxi jt ≤Ci ∀i, t (2.3)

z≥∑
it
(t + pi j)xi jt ∀ j (2.4)

xi jt = 0 ∀ j, t with d j− pi j < t < ri or t > n− pi j (2.5)

xi jt ∈ {0,1} ∀i, j, t (2.6)

There are N discrete times and any job j at machine i might start any time from t = 0 and

Ti jt = {t ′|t − pi j < t ′ ≤ t}. Constraints ensure that each job is allocated to one machine and

starts once. Moreover, there are time windows and each machine has to be within a limit. The

total rate of jobs consumption on machine i is never more than Ci at any given time.

2.3.2 Point Packing Problems

We study and categorise classes of computational geometry problems as packing problems

(Kallrath 2009, Kucherenko et al. 2007). An example of such problems is to maximise the

number of circles that can fit in a given shape.

Problem 2.1 Maximise the minimum distance θ between every pair of points (xi, yi) in a unit
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square.

max θ

s.t. (xi− x j)
2 +(yi− y j)

2 ≥ θ 1≤ i < j ≤ n

x ∈ [0, 1]n

y ∈ [0, 1]n

The nonconvexity in several packing problems appears due to the distance constraint (xi−x j)
2+

(yi− y j)
2 ≥ θ , θ ∈ R which is a nonconvex function.

Statement 2.1

(xi− x j)
2 +(yi− y j)

2 ≥ θ (2.7)

is a nonconvex function

Proof:

We prove this statement by using the method of contradiction.

Let the set:

Ω =
{
(x,y ∈ Rn×Rn : (xi− x j)

2 +(yi− y j)
2 ≥ θ ∀i, j = 1, . . . ,n, i 6= j

}
(2.8)

We will show that ∃ two points:

x̂, ŷ ∈Ω, and a λ̂ ∈ [0,1], for which: λ̂ x̂+(1− λ̂ ŷ) /∈Ω

Consider points (x1,y1),(x2,y2),(x2,y2− ε), (x1,y1− ε) ∈Ω for ε>0 as shown in the graph,

satisfying the conditions in Ω.

A point say X̂ on the line segment between (x1,y1),(x2,y2− ε) is of the form:

λ (x1,y1)+(1−λ )(x2,y2− ε) = (λx1 +(1−λ )x2, λy1 +(1−λ )(y2− ε)) (2.9)
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A point say Ŷ on the line segment between (x2,y2), (x1,y1− ε) is of the form:

λ (x2,y2)+(1−λ )(x1,y1− ε) = (λx2 +(1−λ )x1, λy2 +(1−λ )(y1− ε)) (2.10)

x axis

y axis

•

•

•

•

(x1,y1− ε)

(x1,y1)

Eq 2.9

(x2,y2− ε)

(x2,y2)

Eq 2.10

Figure 2.2: Graph illustrating the proof of nonconvexity of Point Packing Problems.

Subtract the two arrays to get the distance between the points:

 λx1−λx2 + x2−λx2− x1 +λx1

λy1−λy2 + y2−λy2− y1 +λy1



Now choose λ̂ = 1
2 , and the distance is equal to |x̂− ŷ|2 = 0< θ which contradicts the conditions

of Ω.

We conclude that the function is nonconvex.

2.4 Relaxation Techniques

Real world problems tend to be large and exhibit an exponential complexity with the problem

size. Relaxation techniques are used to transform such optimisation problems into simpler re-

lated problems.
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Problem MILP Relaxed problem
Formulation

Relaxation of
constraints

Figure 2.3: Steps of a Relaxation Technique

2.4.1 Relaxation for Mixed-Integer Linear Programming

The basic idea of relaxation is illustrated in Figure 2.3. We relax some constraints of the original

MILP and obtain another problem. We use optimisation algorithms to solve this problem. The

solution to the relaxed program can be used to gain information about the solution to the original

integer program. However, it is not necessarily feasible for the original problem but is rather

considered as a valid bound bound in the integer model’s solution.

Linear programming relaxation in the most general form of MILP relaxes the integrality con-

straints and generates an LP. Although the concept of relaxations is applied generally to most

nonconvex problems, in this thesis the performance of the LP solver is of paramount importance

in the solution of MILP problems and is examined in Chapter 6.

2.4.2 Convex Relaxation for Quadratically Constrained Quadratic Pro-

gramming

There are several convex relaxation techniques for global optimisation problems (Liberti 2004).

McCormick (1976) achieves a convex relaxation of quadratically constrained quadratic prob-

lems (formulation MIQCQP with no integral component) of such problems by adding inequality

constraints generated on new auxiliary variables which combine the given ones. More precisely,

a Reformulation Linearisation Technique (RLT) is the McCormick convex and concave relax-

ation for bilinear terms.

This part follows Anstreicher (2009) and Qualizza et al. (2012) to derive convex relaxation of

the original QCQP. For each bilinear term set Xi j = xix j, the McCormick hull forms under and
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Figure 2.4: McCormick convex and concave relaxation for bilinear terms

overestimator constraints, related to the variable bounds xL
i ≤ xi ≤ xU

i , xL
j ≤ x j ≤ xU

j



Xi j ≥ xL
i x j + xL

j xi− xL
i xL

j

Xi j ≥ xU
i x j + xU

j xi− xU
i xU

j

Xi j ≤ xU
i x j + xL

j xi− xU
i xL

j

Xi j ≤ xL
i x j + xU

j xi− xL
i xU

j

Statement 2.2 Any quadratic program (QCQP) can be linearised by using the reformulation

linearisation technique.

To derive the McCormick (1976) convex and concave relaxation for bilinear terms, consider any

quadratic equation of the form fk(x) = xT Qkx+pk
T x+ rk ≤ 0∀k = {0, . . . ,m} and define:

X = xxT =



x1

·

·

·

xn


(

x1 · · · xn

)
=



x1x1 x1x2 · · xnxn

x2x1 · · · ·

· · · · ·

· · · · ·

xnx1 · · · xnxn


Rewrite each quadratic expression using the inner product:

xT Qkx =
n

∑
i=1

n

∑
j=1

Qki jxix j = Qk •X =
n

∑
i=1

n

∑
j=1

Qki jXi j

Now use the variable bounds of xi,x j to obtain the constraints of the following linearised opti-

misation problem LQP. Note that for i 6= j, Xi j = X ji as the matrices are symmetric above their

diagonal, and X = XT . Hence we can define the linear form of QCQP as
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Definition 2.1

max Q0 •X+p0
T x+ r0

s.t. Qk •X+pk
T x+ rk ≤ 0 ∀k = {1, . . . ,m}

X−xLxT −x(xL)T ≥−xL(xL)T

X−xU xT −x(xU )T ≥−xU (xU )T

X−xLxT −x(xU )T ≤−xL(xU )T

X−xU xT −x(xL)T ≤−xU (xL)T

X = XT

x ∈ [xL,xU ]

(LQP)

where x ∈ Rn, Q0, . . . ,Qm ∈ Rn×n, are n by n matrices and pk ∈ Rn, rk ∈ R.

2.5 Solution Procedures

2.5.1 Branch-and-Bound

A widely used divide-and-conquer algorithm for solving mathematical programming problems

to global optimality is the branch-and-bound (B&B). A tree search strategy initially proposed by

Land and Doig (1960) for solving discrete programming. The B&B algorithm is carried out on

a search tree rooted at a node representing the full set of candidate solutions. The search process

moves forward through dividing the initial problem into subproblems; generating a search tree in

which every node represents a subset of solutions. Basic elements of this algorithm are bounding

functions for computing upper and lower bound for each subproblem. Fathoming takes place

when (1) a global optimum for the subproblem in that node is found or (2) the node is shown to

be infeasible or (3) the lower bound of a subproblem has higher value of the value of the current

best optimum as shown in Figure 2.5. The main components of B&B are: separation, relaxation

and fathoming.

For MILP problems a standard process for relaxation is to replace integer variables with bounded

continuous variables to form LP. Branching strategy is applied to integer variables only and the
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Figure 2.5: A branch-and-bound framework showing the fathoming stage of a minimisation

problem.

complexity of this algorithm is known to be exponential even if the algorithm is guaranteed to

terminate finitely.

Branch-and-cut (Elf et al. 2001) combines cutting plane method as first proposed by Gomory

(1963) with a branch-and-bound algorithm for MILP. The goal of adding valid inequalities to a

formulation is to try to get better bounds so that more nodes of the branch-and-bound tree can

be fathomed as early as possible. The framework of this algorithm is to solve the relaxation

at every subproblem with a small subset of all constraints and check if the optimum solution

violates any other of the constraints. If so, append them to the relaxation. This generates a

cutting plane method at each node of the enumeration tree that arises by branching on integer

variables. Several combinatorial optimisation problems: matching, traveling salesman problem

and set packing favour via this solving technique. Branch-and-cut methods are also common in

modern MINLP solving (Tawarmalani and Sahinidis 2005, Misener et al. 2015).

Spatial B&B (Smith and Pantelides 1999) and several variations in literature extend this tech-

nique for solving nonlinear programs (MINLP) with nonconvex terms (Adjiman et al. 1998,

Belotti et al. 2009a). The relaxation process generates convex envelopes as shown in Section

2.4. Branching takes place both on integer and continuous variables and the worst case complex-

ity is also exponential. Such algorithms terminate finitely when and ε tolerance for optimality

is specified in advance.

According to Smith and Pantelides (1999), the deterministic Spatial branch-and-bound algo-

rithm divides the problem into subproblems. The algorithm generates a converging sequence of
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upper and lower bounds on the optimal solution. The algorithm converges as the gap between

the original nonconvex problem and the convex relaxation decreases as the size of variable do-

main is reduced. This solution is set as an optimal solution of the original problem.

More precisely, consider initially a nonconvex minimisation problem. Any factorable program-

ming problem can be reformulated into a standard form based on binary and unary operations

(McCormick 1976). Then a convex relaxation is constructed for each term which results to a

convex relaxation for the whole problem.

1. Set a convergence tolerance ε > 0 on the difference between the upper and lower bounds.

Initialise the search by setting the best objective value found, a domain that comprises the

whole set of variable ranges and a list of regions (depending on the variables) that need to

be examined and the domain for each one.

2. Range tightening. To accelerate the convergence of the algorithm, the range tightening

tries to reduce the interval without changing the optimal value of the problem. Meth-

ods include Optimality based bound tightening (Liberti 2006), Feasibility based bound

tightening (Belotti et al. 2009a). There has recently been significant work in the area

of making optimality-based bounds tightening more robust (Caprara and Locatelli 2010,

Gleixner et al. 2017).

3. Choice of node. Generally if it is a minimisation problem choose the one node with the

lowest bound and if it is maximisation choose the one with the highest upper bound.

4. Pruning. Prune a branch when: (1) the local lower bound is greater than the global

upper bound, which suggests that the current branch can not generate better solutions, (2)

another branch representing the same solution set has been investigated, then there is no

need to further explore, (3) there is no feasible point in the current region.

5. Objective function upper bound. Any feasible point can be taken of the original problem.

Such points can be obtained by using local optimisation methods. Heuristics can generate

a good starting point for this purpose. If a local minimum cannot be achieved or if the ob-

jective function upper bound exceeds the best objective value, then proceed to branching.

Otherwise, set this as the best found and delete all subregions for which objective func-

tion lower bound is greater than the best found. If the upper and lower objective function
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values are close enough, delete the subregion and choose a new one.

6. Objective function lower bound. Generate a convex relaxation of the original problem

and solve the relaxed problem to determine the objective function lower bound.

7. Branching: Choose a variable to branch on. Then create two subropoblems and delete the

current one. Several heuristics exist for selecting branching variable and value (Belotti

et al. 2009a).

8. Delete the subregion from the list and go to step 3.

9. Evaluation. Quit when the global upper and lower bound are close enough which depends

on ε and set the best objective value found.

B&B algorithms are extremely useful when solving optimisation programming problems to

global optimality. However, in several cases such algorithms may not be able to effectively

solve large problems due to the exponential number of subproblems and their complexity.

2.5.2 Approximation Algorithms

An alternative method for solving optimisation problems is using heuristics and approximation

algorithms. Heuristics can generate good solutions with worst-case running time polynomial to

the problem size. A heuristic with a performance guarantee is usually called an approximation

algorithm (Vazirani 2001, Williamson and Shmoys 2011).

An approximation algorithm is a polynomial algorithm producing a near-optimal solution to an

optimisation problem. Formally, consider an optimisation problem, without loss of generality

minimisation, and a polynomial Algorithm A for solving it (not necessarily to global optimal-

ity). For each problem instance I, let CA(I) and COPT (I) be the algorithm’s objective value and

the optimal objective value, respectively. Algorithm A is ρ-approximate if, for every problem

instance I, it holds that:

CA(I)≤ ρ ·COPT (I).

That is, a ρ-approximation algorithm computes in polynomial time a solution with an objective

value at most ρ times the optimal objective value. The value ρ is the approximation ratio of
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CLB COPT CALG ρ ·CLB ρ ·COPT

Figure 2.6: Analysis of an Approximation Algorithm

Algorithm A. To prove a ρ-approximation ratio, we proceed as depicted in Figure 2.6. For each

problem instance, we compute analytically a lower bound CLB(I) of the optimal objective value,

i.e. CLB(I) ≤COPT (I), and we show that the algorithm’s objective value is at most ρ times the

lower bound, i.e. CA(I) ≤ ρ ·CLB(I). The ratio of a ρ-approximation algorithm is tight if the

algorithm is not ρ − ε approximate for any ε > 0. An algorithm is O( f (n))-approximate and

Ω( f (n))-approximate, where f (n) is a function of an input parameter n, if the algorithm does

not have an approximation ratio asymptotically higher and lower, respectively, than f (n).

As shown later in this thesis, heuristics and approximation algorithms are also known to be

useful for generating good solutions early in a branch-and-bound tree.

In the following sections we describe symmetry and degeneracy in mathematical programming.

Information about such special structures may lead to advances in generating better cuts and

improve the efficiency of MILP solvers. Hence investigating the existence and effect of such

numerical difficulties in MILP problems is the major goal of this thesis.

2.6 Symmetry in Mathematical Programming

Margot (2010) defines symmetry in Integer Linear Programming (ILP) of the form

PL = minx∈Zn{cT x |Ax≥ b} where A ∈ Rm×n and vectors c ∈ Rn, b ∈ Rm. Symmetry is the set

of variable permutations under which any feasible solution remains feasible and the objective

function value is invariant. Let F be the set of feasible solutions of any problem PL. The

symmetry group is:

G̃ (PL) = {π ∈Π
n | ∀ x̂ ∈F , π(x̂) ∈F and cT

π(x̂) = cT x̂}

Liberti (2012a) studies and extends the definition of symmetry to mixed-integer nonlinear opti-

misation problems.
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Symmetric structure in optimisation may be viewed through the lens of group theory for QCQP

(Bödi et al. 2013, Herr et al. 2013). In many situations though, it is difficult to detect the sym-

metry of the original problem and its polyhedron representation (Bremner et al. 2014). The

formulation group is a subgroup of the symmetry group and reflects the symmetric proper-

ties of the variables and the constraints of an optimisation problem. Symmetry handling ap-

proaches present methodologies to associate optimisation problems with graph representations

from which the graph automorphism is generated by using software tools (Puget 2005, Berthold

and Pfetsch 2009, Margot 2010, Liberti 2012b, Bödi et al. 2013, Knueven et al. 2017).

Many researchers exploit the above information and the insights of several problems; covering

problems (Margot 2003a, 2007), scheduling and packing problems (Ostrowski et al. 2010, Costa

et al. 2013) and engineering problems as the unit commitment problem and heat exchanger net-

work synthesis (Ostrowski et al. 2015, Alemany et al. 2016, Kouyialis and Misener 2017). They

identify the presence of symmetry and in some cases propose symmetry handling approaches

for problems with known symmetric structure. The improved performance of the solvers vali-

dates the efficiency of these techniques (Pfetsch and Rehn 2015). However, they are problem

specific and cannot be generalised to other problems.

There are several methods to exploit symmetry which are categorised as static and dynamic

methods. Static methods adjoin new constraints to the formulation in order to make some sym-

metric optima infeasible. Sherali and co-workers add symmetry breaking constraints or perturb

the objective function (Sherali and Smith. 2001, Ghoniem and Sherali 2011). Other researchers

investigate the orbitopes of a problem (Berthold and Pfetsch 2009, Faenza and Kaibel 2009,

Kaibel et al. 2011): convex hull of 0-1 matrices that represent possible solutions to packing and

partitioning constraints. The new constraints yield to a reformulation which is guaranteed to

keep at least one symmetric optimum feasible. Orbitopes have additionally been considered for

cutting planes (Friedman 2007, Hojny and Pfetsch 2015). Liberti (2008) automatically generates

symmetry handling inequalities, whereas other works study inequalities which exploit multiple

variable orbits (Liberti and Ostrowski 2014, Dias and Liberti 2015); the groups of variables that

can be sent to each other under some actions (permutations in the group) which are equivalent

with respect to symmetry of the problem.

In the dynamic category are approaches which modify the solution method i.e. the search tree
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algorithm to recognise and exploit symmetry dynamically as it goes along. For example, con-

straints can be derived for each node in the tree to forbid the isomorphic nodes (Gent and Smith

2000, Gent et al. 2005, Ramani and Markov 2005). Another way of exploiting symmetry in

B&B is given by isomorphism pruning (Margot 2002, 2003b,a) and orbital/constrained orbital

branching (Ostrowski et al. 2008, 2011). By introducing artificial variables, Fischetti et al.

(2017) reformulate the problem to a reduced problem which considers only variables of sym-

metry orbits instead of all variables, so-called orbital shrinking.

While most of these works consider the symmetry representation as a step enclosed by the scope

of handling symmetry, Liberti (2012a) is the first who stated the importance of a practical and

general representation of symmetry. He uses expression trees to explicitly capture the structure

of an optimisation problem and develops the ROSE (Liberti et al. 2010) reformulation software

engine that produces a file representation of the problem as Directed Acyclic Graphs (DAG).

The work introduced in this thesis concerns with the improvements on symmetry detection,

which is the first phase of symmetry handling techniques. Symmetry representation is an el-

ementary process given to the software package nauty, on which all the following steps to

break symmetry depend. Hence it is very essential to guarantee and increase its correctness and

efficiency.

2.6.1 Motivation

To isolate this phenomenon we present a prototype circle packing problem. Visually consider a

problem of locating two identical circles (c1,c2) with centre coordinates (x,y), (x′,y′) in a unit

square. Figure 2.6.1 illustrates this problem. The optimisation problem is to make the circles

as large as possible without overlapping. There are four ways to locate these circles and they

are related by rotations and reflections. Mathematically speaking, there are four sets of feasible

(approximated) solutions which give the same objective value; distance between their centre

coordinates (Specht 2018).
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Figure 2.7: Example that shows four different ways of locating two circles in a unit square

which lead to the same optimal minimum distance between their centre.

As shown in Figure 2.6.1:

1 = {(0.293,0.293),(0.707,0.707)}

2 = {(0.293,0.707),(0.707,0.293)}

3 = {(0.707,0.707),(0.293,0.293)}

4 = {(0.707,0.293),(0.293,0.707)}

However only one can be considered as unique as all the others can be obtained by permuting

the variables of the problem. Consider solution 1 and permute variables (yy′) to get solution

2 = {(0.293,0.707),(0.707,0.293)}, (xx′) to get 4 = {(0.707,0.293),(0.293,0.707)}, apply

both permutations (yy′)(xx′) to get solution 3 = {(0.707,0.707),(0.293,0.293)}. Permutations

(xy) and/or (x′ y′) take solution 1 to itself (Costa et al. 2013). The exchange of the variables of

the problem which leaves the set of feasible solutions and the objective function value unaffected

is the symmetry in an optimisation problems. In a branch-and-bound framework, symmetry is

an optimal solution with different configuration leading to the same objective function value. In

worst case, B&B exhaustively enumerates all feasible solutions. Hence, the presence of sym-

metry can cause unexpectedly large trees which immediately affects the time that is taken for

the algorithm to terminate and the problem to be solved. Hence exploiting symmetry is a chal-

lenge. Identifying and classifying problem symmetries is an important step towards exploiting

tree-based algorithms such as branch-and-cut. This subsequently allows state-of-the-art solver

software to omit symmetric solutions.
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2.7 Degeneracy and Multiplicity of Solutions

Degeneracy is a phenomenon that may cause efficiency and convergence problems when solving

MILP problems that produce difficult linear subproblems (George and Osborne 1993, Gal 2003)

using branch-and-cut algorithms. Roos et al. (1998) characterise an LP model as degenerate if

either the primal problem or its dual has multiple optimal solutions. This definition relates

the degeneracy of an LP model to the degeneracy of the optimal faces (Tijssen and Sierksma

1998). A theoretical aspect of degeneracy arises when the solving method may repeat a series

of iterations and enumerate many equivalent optimal bases by randomly pivoting on variables

with zero reduced cost. In linear programming (Charnes 1952), the practical implication of

degeneracy is shown within the context of the following examples.

Example 2.1

max 2x1 + x2

s.t. 2x1 + x2 ≤ 8

x1 + x2 ≤ 4

x1,x2 ≥ 0

The practical implication of this condition indicates that the first constraint is redundant i.e. it

could be removed without affecting the feasible solution space.

Moreover, there exists multiplicity of solutions that differ in the values of variables, but produce

identical values for the objective function leading to duplicate optimal solutions as shown in the

next example.

Example 2.2

max 2x1 + x2

s.t. 2x1 + x2 ≤ 8

x1,x2 ≥ 0
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There exists a linear segment such that every solution with different configuration is optimal.

LP degeneracy is classified into primal and dual (Oberdieck et al. 2016). A convex optimisation

problem may illustrated as a polyhedron formed by the constrained feasible set and hyperplanes

of the objective function. Primal degeneracy is considered as multiple bases defining one vertex

of the polyhedron. In this case there is one or more redundant constraints on which the optimal

solution lies, which intersects the feasible set without changing it. Hence the active set of

constraints at the optimal point is not unique. Dual degeneracy as a complement of primal is

explained as a facet of the polyhedron parallel to the objective function. Hence the objective

function linearly depends on an active constraint; moving anywhere along that constraint all

points are optimal solutions.

Branch-and-bound algorithms solve LP relaxations through general LP solvers. Valid inequal-

ities are usually used to eliminate any infeasible integer points and tighten the LP problems;

called cuts (Balas et al. 1996). Pure cutting-plane approaches though might cause numerical

difficulties for LP and slow down the convergence of the original MILP. Hence advanced cut

generation is integrated with branch-and-bound, leading to branch-and-cut schemes.

Within the context of MILP, Lodi and Tramontani (2013) discuss the performance variability

of multiple runs of branch-and-cut solvers. They emphasise the effect of degeneracy associated

with linear programming relaxations and identify it as a prominent cause of MILP performance

variability (Koch et al. 2011).

Elhallaoui et al. (2011) propose decomposition based methods to address and reduce primal

degeneracy in LP models. Stephen et al. (2017) investigate the effect of such techniques for

dual degeneracy cases. A fundamental component of this method is to decompose the original

problem into a reduced and complimentary one based on degenerate and non-degenerate vari-

ables classified by a pivoting rule of Omer et al. (2015). The reduced problem eliminates the

degeneracy and further constraints are imposed to both. The algorithm iteratively updates the

problems and solves them until a feasible solution is achieved. This method is implemented

within the SCIP software solver (Stephen et al. 2017) which uses commercial solvers for deal-

ing with the LP relaxed problem involved. An alternative approach to exploit dual degeneracy is

lexicographic optimisation by finding an optimal basis and then generating stable cutting planes.

Letsios and Misener (2018) further show that this lexicographic structure is useful for hedging
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against uncertainty. Zanette et al. (2011) explain that generating cutting planes comes with the

risk of introducing cuts almost parallel to the objective function. The purpose of their work is to

use information about degeneracy and choose the best LP solution among the equivalent optima

that eventually leads to a practical convergence of their method. Fischetti et al. (2016) following

a similar approach aim to collect different LP optimal and generate better cuts via a k-sample

method. LP solution polishing algorithms that target improvements on the quality of an existing

optimum play a leading role on the final performance of SCIP software that incorporates such

algorithms for solving MILP problems. On the same context CPLEX uses algorithms which

fixes several variables and try to explore LP solutions to generate better cuts recognising the im-

portant and difficulties that arise from degeneracy when solving MILP problems and the need

to exploit this phenomenon.

2.7.1 Degeneracy in Mixed-Integer Linear Programming

We abbreviate the interpretation of dual degeneracy and consider a new concept of degeneracy

in MILP model when solved via tree search strategies. When the solution method fixes (decides)

the integer (decision) variables of a MILP then a degenerate sub-instance of continuous variables

remained to be solved.

Definition 2.2 MILP Degeneracy

We call MILP with relaxations that are dual degenerate to be MILP degenerate. This is similar

to Lodi and Tramontani (2013).

2.8 Summary

To distinguish these special properties, consider a job shop scheduling problem following the

formulation and description in Section 2.3. An optimal solution is illustrated in Figure 2.8.

The number and type of tasks to be performed in a continuous time formulation of scheduling

problems lead to complicate forms of symmetry and degeneracy with infinite equivalent solu-

tions. Maravelias and Grossmann (2004) address such cases and generate integer cuts to exclude

previously examined solutions.
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Figure 2.8: Optimal schedule for the problem described in Section 2.8.
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Figure 2.9: Optimal solution representing a degenerate case of this problem.

In the optimal solution, the decision variables allocating each job to each machine have been

decided. Due to the time incorporated in this problem (Yee and Shah 1998, Stefansson et al.

2011, Maravelias 2005) more optimal solutions can be generated by shifting the tasks leading

to degenerate cases as shown in Figures 2.9, 2.10.

A simple case of symmetry in this problem is caused by the presence of identical machines. For

example, we can exchange the machines at which each job is allocated as shown in Figure 2.11.

Furthermore, due to symmetry and degeneracy, more cases of equivalent solutions might appear

when solving this problem. i.e. as presented in Figure 2.12.

Summarising the literature of this specific field one could claim that approximation algorithms

and heuristics which generate multiple optimal solutions may be favoured by degeneracy and

produce important information by exploiting it. This statement nicely links the storyline of

Time

M1

M2 Task 2

Task 1

Task 3

0 1 2 3 4 5 6 7 8 9 10

Figure 2.10: Optimal solution representing a degenerate case of this problem.
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Figure 2.11: An equivalent solution of the problem in figure due to symmetry that arises in the

problem from the identical machines.
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Figure 2.12: Another case that presents an equivalent optimal solution.

this thesis. We investigate the special properties of symmetry and degeneracy in optimisa-

tion problems and identify the complexities that arise when state-of-the-art commercial solvers

are employed to deal with such cases. Furthermore we develop approximation algorithms and

heuristics that not only provide good near-optimal solutions in efficient running times but as a

complementary contribution can be practically used to improve the performance of branch-and-

cut algorithms via exploiting the above properties.
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Chapter 3

Heat Recovery Networks

3.1 Literature Review

Heat recovery is a major component of industrial processes: a quarter of the 2012 European

Union energy consumption came from industry and industry uses 73% of this energy on heating

and cooling (European Commission 2016). Heat exchanger network synthesis (HENS) min-

imises cost and improves energy recovery in chemical processes (Biegler et al. 1997, Smith

2000, Elia et al. 2010, Baliban et al. 2012). HENS exploits excess heat by integrating hot

and cold process streams and improves energy efficiency by reducing utility usage (Floudas

and Grossmann 1987, Gundersen and Naess 1988, Furman and Sahinidis 2002, Anantharaman

et al. 2010, Escobar and Trierweiler 2013). Floudas et al. (2012) review the critical role of

heat integration for energy systems producing liquid transportation fuels (Niziolek et al. 2015).

Other important applications of HENS include: refrigeration systems (Shelton and Grossmann

1986), batch semi-continuous processes (Bancheva et al. 1996, Zhao et al. 1998, Castro et al.

2015, Kong and Shah 2017) and water utilisation systems (Bagajewicz et al. 2002). In their

review articles, Furman and Sahinidis (2002) and Escobar and Trierweiler (2013) report two

main synthesis approaches: pinch- and optimisation-based methodologies. Optimisation meth-

ods automatically generate the best design taking into consideration both the investment and

the operation cost (Grossmann 1990). But there are difficulties when we try to model and

solve these problems. Heat exchanger network design is a mixed-integer nonlinear optimisa-
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tion (MINLP) problem (Yee and Grossmann 1990, Ciric and Floudas 1991, Papalexandri and

Pistikopoulos 1994, Hasan et al. 2010) with nonlinear terms including bilinear stream mixing,

concave cost functions, and the logarithmic mean temperature difference (LMTD). Approaches

to overcome difficulties related to LMTD include using the Paterson (1984) or Chen (1987) ap-

proximations. Mistry and Misener (2016) apply strong relaxation methods to approach a global

optimum. Further to the simultaneous way of solving this problem another approach is the se-

quential method which decomposes the objective function of minimising the overall cost into

three simpler task: (1) minimum utility cost, (2) minimum number of matches and (3) minimum

investment cost. But HENS remains a difficult problem with many nonconvex nonlinearities.

Each possible match between two streams introduces a binary decision variable, so the number

of binary variables may grow quadratically with the number of streams. Mathematical symmetry

in the problem structure combinatorially increases the possible stream configurations and dete-

riorates the performance of exact, tree-based algorithms (Kouyialis and Misener 2017). Furman

and Sahinidis (2001) proved that HENS is N P - hard in a strong sense as even the subproblem

of the minimum number of matches problem is proved to be N P - hard due to its combinatorial

nature. The standard MILP formulations for the minimum number of matches contain big-M

constraints, i.e. the on/off switches associated with weak continuous relaxations of MILP. We

choose to study the complexities that arise in the sequential method because each subproblem

nicely isolates computational difficulties associated with solving the full simultaneous model;

these studies will give us a new handle on approaching simultaneous synthesis.

Moreover, state-of-the-art approaches cannot deal with few dozen stream-problems to global

optimality (Chen et al. 2015a) and engineers develop experience-motivated heuristics (Linnhoff

and Hindmarsh 1983, Cerda et al. 1983, Furman and Sahinidis 2004, Letsios et al. 2018).

This thesis develops new heuristics and provably efficient approximation algorithms for the

minimum number of matches problem. These methods have guaranteed solution quality and

efficient run-time bounds.

The chapter explains the two main optimisation approaches in Section 3.2. Section 3.3 defines

the parameters of the general heat exchanger network design required for minimising utility

cost. Next, we present a way of obtaining temperature intervals and Section 3.4 presents the LP

for minimising utility cost. Section 3.5 describes the minimum number of matches problem and
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Section 3.6 defines the minimum investment cost problem.

3.2 Optimisation Approaches for Heat Exchanger Network

Synthesis

Solving the HENS simultaneously, i.e. generating the optimal network without decomposition

(Furman and Sahinidis 2002), requires a mixed-integer nonlinear programming (MINLP) for-

mulation to account for stream mixing and the nonlinear nature of heat exchange (Yee and

Grossmann 1990, Ciric and Floudas 1991, Papalexandri and Pistikopoulos 1994). Mistry and

Misener (2016) recently showed that expressions incorporating logarithmic mean temperature

difference, i.e. the nonlinear nature of heat exchange, may be reformulated to decrease the num-

ber of nonconvex nonlinear terms in the optimisation problem. There are several formulations

proposed, with the simultaneous method for minimising the running cost being the one that can

guarantee global solution to such problem and MINLP SYNHEAT model by (Yee and Gross-

mann 1990), and MINLP model proposed by (Ciric and Floudas 1991) being widely used. An

alternative approach and a way to generate good HENS solutions is to use the so-called sequen-

tial method (Furman and Sahinidis 2002).The sequential method decomposes the original HENS

MINLP into three tasks: (i) minimising utility cost, (ii) minimising the number of matches, and

(iii) minimising the investment cost. This method optimises the three mathematical models se-

quentially with: (i) a linear program (LP) (Cerda et al. 1983, Papoulias and Grossmann 1983),

(ii) a mixed-integer linear program (MILP) (Cerda and Westerberg 1983, Papoulias and Gross-

mann 1983), and (iii) a nonlinear program (NLP) (Floudas et al. 1986). The sequential method

is less computationally difficult than the simultaneous method, but the sequential method cannot

guarantee global optimality of the original problem.

3.3 General Heat Exchanger Network Design

An instance of the general heat exchanger network design consists of a set HS = {1,2, . . . ,ns} of

hot streams, a set CS = {1,2, . . . ,ms} of cold streams, a set HU = {1,2, . . . ,nu} of hot utilities

and a set CU = {1,2, . . . ,mu} of cold utilities. Each hot stream i ∈ HS (cold stream j ∈ CS)
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has initial inlet, outlet temperatures T HS
in,i , T HS

out,i (resp. TCS
in, j, TCS

out, j) and flowrate heat capacity

FCpi (resp. FCp j). Each hot utility i ∈ HU (cold utility j ∈CU) is associated with inlet, outlet

temperatures T HU
in,i , T HU

out,i (resp. TCU
in, j , TCU

out, j) and a cost κHU
i (resp. κCU

j ).

Table 3.1: Minimum Utility Cost Notation

Name Description

Cardinalities, Indices, Sets

ns,ms Number of hot, cold streams

nu,mu Number of hot, cold utilities

k Number of temperature intervals

i ∈ HS∪HU Hot stream, utility

j ∈CS∪CU Cold stream, utility

t ∈ T I Temperature interval

HS,CS Set of hot, cold streams

HU,CU Set of hot, cold utilities

T I Set of temperature intervals

Parameters

FCpi,FCp j Flowrate heat capacity of hot stream i, cold stream j

T HS
in,i ,T

HS
out,i Inlet, outlet temperature of hot stream i

TCS
in, j,T

CS
out, j Inlet, outlet temperature of cold stream j

T HU
in,i ,T

HU
out,i Inlet, outlet temperature of hot utility i

TCU
in, j ,T

CU
out, j Inlet, outlet temperature of cold utility j

∆Tmin Minimum heat recovery approach temperature

κHU
i ,κCU

j Unitary cost of hot utility i, cold utility j

σHS
i,t Heat supply of hot stream i in interval t

δCS
j,t Heat demand of cold stream j in interval t

Variables

σHU
i,t Heat supply of hot utility i in interval t

δCU
j,t Heat demand of cold utility j in interval t

Rt Residual heat exiting temperature interval t
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3.3.1 Temperature Intervals

The sequential method begins by computing a set T I = {1,2, . . . ,k} of k temperature inter-

vals (Linnhoff and Flower 1978, Ciric and Floudas 1989). A minimum heat recovery ap-

proach temperature ∆Tmin specifies the minimum temperature difference between two streams

exchanging heat. In order to incorporate ∆Tmin in the problem’s setting, we enforce that each

temperature interval corresponds to a temperature range on the hot stream side shifted up by

∆Tmin with respect to to its corresponding temperature range on the cold stream side. Let

T IH and T IC be the temperature intervals on the hot and cold side, respectively. Consider,

on the hot side, all k+ 1 discrete temperature values T1 > T2 > .. . > Tk+1 belonging to the set

{T HS
in,i : i∈HS}∪{T HU

in,i : i∈HU}∪{TCS
in, j +∆Tmin : j ∈CS}∪{TCU

in, j +∆Tmin : j ∈CU}. Then, we

define T IH =
⋃k

t=1{[Tt ,Tt+1]} and T IC = ∪k
t=1{[Tt −∆Tmin,Tt+1−∆Tmin]}. We set T I = T IH

and we observe that T IC contains exactly the same temperature intervals with T I shifted by

∆Tmin. Moreover, we set ∆Tt = Tt −Tt+1, for t ∈ T I.

For each temperature interval t ∈ T I, we are now able to compute the quantity σHS
i,t of heat load

exported by hot stream i ∈ HS as well as the amount δCS
j,t of heat load received by cold stream

j ∈CS in t ∈ T I. Specifically, for each i ∈ HS and t ∈ T I, we set

σ
HS
i,t =


FCpi ·∆Tt , if T HS

in,i ≥ Tt and T HS
out,i ≤ Tt+1

FCpi · (Tt −T HS
out,i), if T HS

in,i ≥ Tt and T HS
out,i > Tt+1

0, if T HS
in,i < Tt

Similarly, for each j ∈CS and t ∈ T I,

δ
CS
j,t =


FCp j ·∆Tt , if TCS

in, j ≤ Tt+1−∆Tmin and TCS
out, j ≥ Tt −∆Tmin

FCp j · (TCS
out, j− (Tt+1−∆Tmin)), if TCS

in, j ≤ Tt+1−∆Tmin and TCS
out, j < Tt −∆Tmin

0, if TCS
in, j > Tt+1−∆Tmin

36



3.4 Minimum Utility Cost

This problem is solved in order to compute the minimum amount of utility heat so that there is

heat balance in the network. For each hot utility i ∈ HU and cold utility j ∈CU the continuous

variables σHU
i,t and δCU

j,t correspond to the amount of heat of i and j, respectively, in temperature

interval t. The LP uses a heat residual variable Rt , for each t ∈ T I. Let T Ii be the set of

temperature intervals to which hot utility i∈HU can transfer heat, feasibly. Similarly, let T I j be

the set of temperature intervals from which cold utility j ∈CU can receive heat. The minimum

utility cost problem can be solved by using the following LP model (see Cerda et al. (1983),

Papoulias and Grossmann (1983)).

min ∑
i∈HU

∑
t∈T I

κ
HU
i ·σHU

i,t + ∑
j∈CU

∑
t∈T I

κ
CU
j ·δCU

j,t (3.1)

∑
i∈HS

σ
HS
i,t + ∑

i∈HU
σ

HU
i,t +Rt = ∑

j∈CS
δ

CS
j,t + ∑

j∈CU
δ

CU
j,t +Rt+1 t ∈ T I (3.2)

R1,Rk+1 = 0 (3.3)

σ
HU
i,t = 0 i ∈ HU, t ∈ T I \T Ii (3.4)

δ
CU
j,t = 0 j ∈CU, t ∈ T I \T I j (3.5)

σ
HU
i,t ,δCU

j,t ,Rt ≥ 0 i ∈ HU, j ∈CU, t ∈ T I (3.6)

Expression 3.1 minimises the utility cost. Constraints 3.2 and 3.3 ensure energy balance. Con-

straints 3.4 and 3.5 ensure that heat flows from a temperature interval to the same or a lower

temperature interval.

3.5 Minimum Number of Matches

Given an optimal solution of the minimum utility cost problem, we obtain an instance of the

minimum number of matches problem as follows. All utilities are considered as streams, i.e.

H = HS∪HU , C = CS∪CU , n = ns+ nu and m = ms+mu. Furthermore, T = T I. Finally,

for each i ∈ H and t ∈ T the parameter σi,t is equal to σHS
i,t or σHU

i,t depending on whether i was

originally a hot stream or utility. The parameters δ j,t are obtained similarly, for each j ∈C and
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t ∈ T .

This section defines the minimum number of matches problem and analytically represents the

heat exchanger network synthesis problem using the standard transportation and transshipment

MILP models. Table 4.1 contains the notation.

3.5.1 Problem Definition

The minimum number of matches problem posits a set of hot process streams to be cooled and

a set of cold process streams to be heated. Each stream is associated with an initial and a target

temperature. This set of temperatures defines a collection of temperature intervals. Each hot

stream exports (or supplies) heat in each temperature interval between its initial and target tem-

peratures. Similarly, each cold stream receives (or demands) heat in each temperature interval

between its initial and target temperatures. Subsection 3.3.1 formally defines the temperature

range partitioning. Heat may flow from a hot to a cold stream in the same or a lower temper-

ature interval, but not in a higher one. In each temperature interval, the residual heat descends

to lower temperature intervals. A zero heat residual is a pinch point. A pinch point restricts the

maximum energy integration and divides the network into subnetworks.

A problem instance consists of a set H = {1,2, . . . ,n} of hot streams, a set C = {1,2, . . . ,m}

of cold streams, and a set T = {1,2, . . . ,k} of temperature intervals. Hot stream i ∈ H has

heat supply σi,s in temperature interval s ∈ T and cold stream j ∈ C has heat demand δ j,t in

temperature interval t ∈ T . Heat conservation is satisfied, i.e. ∑i∈H ∑s∈T σi,s = ∑ j∈C ∑t∈T δ j,t .

We denote by hi = ∑s∈T σi,s the total heat supply of hot stream i ∈ H and by c j = ∑t∈T δ j,t the

total heat demand of cold stream j ∈C.

A feasible solution specifies a way to transfer the hot streams’ heat supply to the cold streams,

i.e. an amount qi,s, j,t of heat exchanged between hot stream i ∈ H in temperature interval s ∈ T

and cold stream j ∈C in temperature interval t ∈ T . Heat may only flow to the same or a lower

temperature interval, i.e. qi,s, j,t = 0, for each i ∈ H, j ∈ C and s, t ∈ T such that s > t. A hot

stream i∈H and a cold stream j ∈C are matched, if there is a positive amount of heat exchanged

between them, i.e. ∑s,t∈T qi,s, j,t > 0. The objective is to find a feasible solution minimising the

number of matches (i, j).
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3.5.2 Mathematical Models

The minimum number of matches problem is a mixed-integer linear program (MILP) based on

transportation and transshipment models.

3.5.2.1 Transportation Model (Cerda and Westerberg 1983)

As illustrated in Figure 3.1a, the transportation model represents heat as a commodity trans-

ported from supply nodes to destination nodes. For each hot stream i ∈ H, there is a set of

supply nodes, one for each temperature interval s ∈ T with σi,s > 0. For each cold stream j ∈C,

there is a set of demand nodes, one for each temperature interval t ∈ T with δ j,t > 0. There is an

arc between the supply node (i,s) and the destination node ( j, t) if s ≤ t, for each i ∈ H, j ∈C

and s, t ∈ T .

In the MILP formulation, variable qi,s, j,t specifies the heat transferred from hot stream i ∈ H in

temperature interval s ∈ T to cold stream j ∈C in temperature interval t ∈ T . Binary variable

yi, j whether streams i ∈ H and j ∈C are matched or not. Parameter Ui, j is a big-M parameter

bounding the amount of heat exchanged between every pair of hot stream i ∈H and cold stream

j ∈C, e.g. Ui, j = min{hi,c j}. The problem is formulated:

min ∑
i∈H

∑
j∈C

yi, j (3.7)

∑
j∈C

∑
t∈T

qi,s, j,t = σi,s i ∈ H,s ∈ T (3.8)

∑
i∈H

∑
s∈T

qi,s, j,t = δ j,t j ∈C, t ∈ T (3.9)

∑
s,t∈T

qi,s, j,t ≤Ui, j · yi, j i ∈ H, j ∈C (3.10)

qi,s, j,t = 0 i ∈ H, j ∈C,s, t ∈ T : s≤ t (3.11)

yi, j ∈ {0, 1},qi,s, j,t ≥ 0 i ∈ H, j ∈C, s, t ∈ T (3.12)

Expression (3.7), the objective function, minimises the number of matches. Equations (3.8)

and (3.9) ensure heat conservation. Equations (3.10) enforce a match between a hot and a cold

stream if they exchange a positive amount of heat. Equations (3.10) are big-M constraints.

Equations (3.11) ensure that no heat flows to a hotter temperature.
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Temperature interval t

Temperature interval t+1

σ1,t

σi,t

σi,t+1

σm,t+1

δ1,t

δ1,t+1

δ j,t+1

δm,t+1

(a) Transportation Model

Temperature interval t

Temperature interval t+1

h1

hi

hn

c1

c j

cm

(b) Transshipment Model

Figure 3.1: In this model (Cerda and Westerberg 1983), each hot stream i supplies σi,t units of

heat in temperature interval t which can be received, in the same or a lower temperature interval,

by a cold stream j which demands δ j,t units of heat in t. Following the transshipment model

(Papoulias and Grossmann 1983), there are also intermediate nodes transferring residual heat to

a lower temperature interval. This figure is adapted from Furman and Sahinidis (2004).

3.5.2.2 Transshipment Model (Papoulias and Grossmann 1983)

As illustrated in Figure 3.1b, the transshipment formulation transfers heat from hot streams

to cold streams via intermediate transshipment nodes. In each temperature interval, the heat

entering a transshipment node either transfers to a cold stream in the same temperature interval

or it descends to the transshipment node of the subsequent temperature interval as residual heat.

Binary variable yi, j is 1 if hot stream i ∈ H is matched with cold stream j ∈C and 0 otherwise.

Variable qi, j,t represents the heat received by cold stream j ∈ C in temperature interval t ∈ T

originally exported by hot stream i ∈ H. Variable ri,s represents the residual heat of hot stream

i ∈H that descends from temperature interval s to temperature interval s+1. Parameter Ui, j is a

big-M parameter bounding the heat exchanged between hot stream i ∈H and cold stream j ∈C,

e.g. Ui, j = min{hi,c j}. The problem is formulated:

min ∑
i∈H

∑
j∈C

yi, j (3.13)

∑
j∈C

qi, j,s + ri,s = σi,s + ri,s−1 i ∈ H,s ∈ T (3.14)
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ri,k = 0 i ∈ H (3.15)

∑
i∈H

qi, j,t = δ j,t j ∈C, t ∈ T (3.16)

∑
t∈T

qi, j,t ≤Ui, j · yi, j i ∈ H, j ∈C (3.17)

yi, j ∈ {0,1}, qi, j,t ,ri,s ≥ 0 i ∈ H, j ∈C,s, t ∈ T (3.18)

Expression (3.13) minimises the number of matches. Equations (3.14)-(3.16) enforce heat

conservation. Equation (3.17) allows positive heat exchange between hot stream i ∈H and cold

stream j ∈C only if (i, j) are matched.

3.6 Minimum Investment Cost Superstructure

The last problem solved sequentially is a nonlinear program that develops the heat exchanger

network with a minimum investment cost. The networks may involve stream splitting, mixing,

and bypassing. The LP transshipment model provides the corresponding heat duties of the

utilities and the MILP transshipment model the matches that take place for the process streams

and utilities indexed by the set MA = {(i, j)} hot stream/ utility i exchanges heat with cold

stream/ utility j with heat exchanged Qi, j = ∑t∈T qi, j,t for i ∈ H, j ∈C. This derivation of the

stream superstructure relies on the optimal area (A = Q/U.LMT D) of the exchangers subject to

stream interconnections, heat load distribution and temperature of each stream.

Table 3.2: Minimum investment cost superstructure

Name Description

Cardinalities, Indices, Sets

p ∈ HC Hot and cold stream, utility

l ∈ Np Streams involved in the superstructure of each stream p

s ∈ Sp Splitter stream

s0 Initial splitting point in the streams superstructure p

m ∈Mp Mixer stream

mo Final mixing point in the streams superstructure p
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HC Set of hot and cold stream, utility

Np Set of streams involved with stream p

Sp Set of splitter streams

Mp Set of mixed streams

Sin
p (s),S

out
p (s) = {l|l ∈ Np} Set of relation of inlet/outlet stream to/from splitter s ∈ Sp

Min
p (m),Mout

p (m) = {m|m ∈ Np} Set of relation of inlet/outlet stream to/from mixer m ∈Mp

EH
in,(i, j) = {η |η ∈ Ni} Inlet stream of hot stream i to unit (i, j) ∈MA

EH
out,(i, j) = {ν |ν ∈ Ni} Outlet stream of hot stream i to unit (i, j) ∈MA

EC
in,(i, j) = {µ|µ ∈ N j} Inlet stream of cold stream j to unit (i, j) ∈MA

EC
out,(i, j) = {ρ|ρ ∈ N j} Outlet stream of cold stream j to unit (i, j) ∈MA

Fp = {FH
i ,FC

j } Set of flowrate heat capacities of streams i, j

T in
p = {T H

in, i,T
C
in, j} Inlet temperature

T out
p = {T H

out, i,T
C
out, j} Outlet temperature

Parameters

Qi, j Heat exchanged for each match (i, j) ∈MA

bi, j Cost exponent

ci, j Cost coefficient

∆HH , ∆HC Specific enthalpy of hot, cold utility

Ui, j Overall heat transfer coefficient

Variables

Ai, j Area of each exchanger for match (i, j) ∈MA

f p
l Variable of flowrate heat capacity

t p
l Variable temperature

LMTDi, j Log mean temperature difference for match (i, j) ∈MA

Definition of LMTD

dt1
i, j = t i

η − t j
µ Minimum temperature approach

dt2
i, j = t i

ν − t j
ρ Minimum temperature approach

LMTDi, j =
dt1

i, j−dt2
i, j

ln
dt1i, j
dt2i, j

For i ∈ HS, j ∈CS

Specifications
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f p
l = Fp Flowrate heat capacity for l ∈ Sin

p (s0), p ∈ HS∪CS

t p
l = T in

p Inlet temperature for l ∈ Sin
p (s0), p ∈ HC

t p
l = T out

p Outlet temperature for l ∈Mout
p (m0), p ∈ HC

The problems is formulated (Floudas et al. 1986):

min ∑
(i, j)∈MA

ci, jA
bi, j
i, j (3.19)

∑
l∈Sin

p (s)

f p
l − ∑

l∈Sout
p (s)

f p
l = 0 s ∈ Sp, p ∈ HC (3.20)

∑
l∈Min

p (m)

f p
l − ∑

l∈Mout
p (m)

f p
l = 0 m ∈Mp, p ∈ HC (3.21)

∑
l∈Min

p (m)

f p
l t p

l − ∑
l∈Mout

p (m)

f p
l t p

l = 0 m ∈Mp, p ∈ HC (3.22)

Qi, j− f i
l (t

i
η − t i

ν) = 0 η ∈ EH
in,(i, j),ν ∈ EH

out,(i, j), i /∈ HU ′,(i, j) ∈MA (3.23)

Qi, j f i
l ∆HH

i = 0 η ∈ EH
in,(i, j),ν ∈ EH

out,(i, j), i ∈ HU ′,(i, j) ∈MA (3.24)

Qi, j− f j
l (t

j
µ − t j

ρ) = 0 µ ∈ EC
out,(i, j),ρ ∈ EC

in,(i, j), j /∈CU ′,(i, j) ∈MA (3.25)

Qi, j f j
l ∆HC

j = 0 µ ∈ EC
out,(i, j),ρ ∈ EC

in,(i, j), j ∈CU ′,(i, j) ∈MA (3.26)

t i
η − t j

µ ≥ ∆Tmin, η ∈ EH
in,(i, j),µ ∈ EC

out,(i, j),(i, j) ∈MA (3.27)

t i
ν − t j

ρ ≥ ∆Tmin, ν ∈ EH
out,(i, j),ρ ∈ EC

in,(i, j),(i, j) ∈MA (3.28)

t p
l = tk

ν l ∈ Sin
p (s),ν ∈ Sout

p (s),s ∈ Sp, p ∈ HC (3.29)

f p
l ≥ 0 l ∈ Np, p ∈ HC (3.30)

Ai, j = Qi, jU−1
i, j (LMT D)−1

i, j (3.31)

Expression (3.19) minimises the investment cost based on the coefficients and the areas. Equa-

tions (3.20) and (3.21) ensure mass conservation where equations (3.22-3.26) ensure heat con-

servation. Equations (3.27, 3.28) for minimum temperature approaches constraints. Equations

(3.29) ensure equalities for inlet and outlet temperatures of splits and equations 3.30 ensure that

flowrate heat capacity variables are nonnegative. Finally the area of each exchanger is expressed
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via equation 3.31 in terms of the given heat loads and the log mean temperature difference for

each match of streams (i, j).
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Chapter 4

Data Structures for Representing

Symmetry in Quadratically

Constrained Quadratic Programs

4.1 Introduction

Symmetry in mathematical programming may lead to a multiplicity of solutions. In noncon-

vex optimisation, it can negatively affect the performance of the branch-and-bound algorithm.

Symmetry may induce large search trees with multiple equivalent solutions, i.e. with the same

optimal value. Dealing with symmetry requires detecting and classifying it first. Symmetries

of a mathematical program are classified by Margot (2010) and Liberti (2012a) as the symmetry

and the formulation group. This chapter develops methods for detecting groups of symmetry

in the formulation of quadratically constrained quadratic optimisation problems via adjacency

matrices. Using graph theory, we transform these matrices into Binary Layered Graphs (BLG)

and enter them into the software package nauty (McKay and Piperno 2014). Nauty generates

important symmetric properties of the original problem.

This chapter proceeds as follows: Section 4.2 formally defines symmetry in quadratically con-
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Table 4.1: Table of Notation.

Symbol Description Symbol Description

xi Variables I Identity element
x Vectors of variables π,σ Permutations
α Coefficient Πn Set of all permutations
c,b,p Vectors of parameters Sn Symmetric group order n
A,Q Matrices of parameters Y Sets
X Matrix of auxiliary variables f ,h,φ Functions
M, IM,JM,KM Sparse representations of matrices G,H Graphs
F Set of feasible solutions E,V Set of edges, vertices
G , G̃ Symmetry groups e Edges in the graph
W,Z Groups u,v Nodes in the graph
s Number of nonzero elements ` Number of unique coefficients
i, j, k, r Indices L Number of layers

strained quadratic optimisation problems and identifies the role of integrality and nonconvexity

in such cases. Section 4.3 evolves around the formulation symmetries in optimisation problems

and the graph structures that currently exist in literature for detecting such symmetries. Section

4.4 suggests two different methods on forming a problem as an adjacency matrix and explains

how to convert these matrices into graphs. Section 4.5 introduces binary layered graphs and de-

scribes how to use the proposed matrices and construct these graphs. Section 4.6 shows how to

automatically detect symmetry using software package nauty. This work concludes in Section

4.7 with a discussion on the proposed structures and comparison to other methods.

4.2 Symmetry Group of Quadratically Constrained Quadratic

Programs

A Quadratically Constrained Quadratic program QCQP is a subclass of MIQCQP.

Definition 4.1
min
x∈Rn

f0(x)

s.t. fk(x)≤ 0 ∀k = 1, . . . ,m

xi ∈ [xL
i ,x

U
i ] ∀ i = 1, . . . ,n

(QCQP)
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where

fk(x) =
n

∑
i=1

n

∑
j=1

xiα
k
i jx j +

n

∑
i=1

α
k
i0xi +α

k
00∀k = 0. . . . ,m (4.1)

with coefficients αk
i j ∈R for i∈{0, . . . ,n}, j = {0, . . . ,n} and k∈{0,1, . . . ,m} for xi ∈ [xL

i ,x
U
i ], i∈

{1, . . . ,n}.

After surveying the available sources for detecting symmetry, we contemplate the explanation

of symmetry given by Margot (2010) which is also presented by Liberti (2012a) on different

problems. Under a set of permutations of the problem variables, each feasible solution can be

mapped to another solution having the same value and the whole set of feasible solutions F can

be mapped to itself.

Modifying this definition to the case of quadratic problems we define symmetry in QCQP:

Definition 4.2 Symmetry group

G̃ (PQ) = {π ∈Π
n | ∀ x̂ ∈F , π(x̂) ∈F and f0(π(x̂)) = f0(x̂)}

The symmetry group is based on the feasible set of solutions of an optimisation problem. Deriv-

ing this set is impractical in our work. Hence, the scope of this chapter is to efficiently associate

data structures with optimisation problems which can generate the formulation group: a set of

permutations that fix the problem formulation. Liberti (2012a) proves that the formulation group

is a subset of the symmetry group. Definitions and relevant structures of this group are provided

in the next section.

This work discusses the symmetry in nonlinear QCQPs, as well as the symmetry in linearised

cases of LQP (formulation in Chapter 2, Section 2.4) which arise after applying the RLT to the

QCQP formulation.

Relaxing the problem using the RLT technique adds constraints which may alter the symmetric

structure of the problem. We evaluate and state how the integrality and nonlinearities affect the

symmetry group of the original problem. The following examples show that another challenging

aspect of detecting symmetry is the fact that symmetry in the original problem does not imply

the same symmetry in the relaxed problem and vice versa.
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Example 4.1

min x1 + x2

s.t. 2x1 + x2 ≤ 2

x1,x2 ∈ {0,1}

The set of feasible solutions is {(0,0),(1,0),(0,1)}. Hence, the symmetry group is charac-

terised by permutation π = (x1,x2) under which any feasible solution remains within the set

of feasible solutions and the objective function value is invariant. On the other hand, if we re-

lax the integrality constraints over a continuous range x,y ∈ [0,1] the feasible solution (0.5,1)

under permutation π(0.5,1) = (1,0.5) violates the linear constraint. Hence, if the integrality

restrictions in a MIQCQP are relaxed and the symmetry group is defined over the feasible set

of solutions, then it is not necessarily a subgroup of the symmetry group in the relaxation. The

next example shows that the symmetry group of the relaxation is also not a subgroup of the

symmetry group in the original problem.

Example 4.2

min x1 + x2

s.t. x1 + x2 ≤ 1

x1 ∈ [0,1]

x2 ∈ {0,1}

Similar to Example 4.1 permutation π = (x1,x2) is the symmetry of the relaxed problem, but

solution (0.5,1) is not feasible under this permutation for the original problem.

Another example shows that the original optimisation problem might not inherit any symmetry.

But under relaxation, e.g. McCormick, symmetries arise.
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Example 4.3

min − x1− x2
2

s.t. x2 + x3 ≥ 1

x1 ≥ 2x3−1

x1 ≤ x3

x1,x2,x3 ∈ {0,1}

(QP)

min − x1− x4

s.t. x2 + x3 ≥ 1

x1 ≥ 2x3−1

x1 ≤ x3

x4 ≥ 2x2−1

x4 ≤ x2

x1,x2,x3,x4 ∈ {0,1}

(LQP)

For the symmetry group the feasible set of solutions:

F (QP) = {(111),(010),(101)} with G̃ (QP) = {I}.

F (LQP) = {(1111),(1010),(0101)} with

G̃ (LQP)= {I,(x1 x3),(x2 x4),(x1 x3)(x2 x4),(x1 x2)(x3 x4),(x1 x4)(x2 x3)} hence, G (LPQ)�G (QP).

4.3 Formulation Symmetry Detection via Directed Acyclic Graphs

The formulation group of a mathematical optimisation problem is defined by Liberti (2012b)

as the set of permutations of the variable indices for which the objective function and the con-

straints are the same. Hence, for QCQP:

Definition 4.3 Formulation group of QCQP

G (PQ) = {π ∈Π
n | f0(π(x)) = f0(x) and ∃ σ ∈Π

m(σ fk(π(x)) = fk(x))}
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4.3.1 Expression Trees

To compare two functions, Liberti (2012b) suggests to compare their expression trees. An ex-

pression tree as first introduced by Crawford et al. (1996) and explained by Ramani and Markov

(2005) for Constrained Programming (CP) is used to represent algebraic functions, since it can

visually present the structural relation of its components. To guarantee that a tree correctly rep-

resents an algebraic expression, it should contains all of the component i.e. operations, constants

and variables. Therefore, tree nodes are categorised into three types: operator nodes, constant

nodes, and variable nodes. All the actions to modify an expression tree, like removing parenthe-

ses and merging similar terms, are in accordance with the laws of algebra. The rank of a node v

is the maximum number of edges taken to reach a node and all the leaf nodes are of rank zero.

The basic rules are:

1. Operators are distinguished in: binary (difference, power) and k-ary (sum and product)

for positive integer k.

2. Leaf nodes: labelled with variable symbols and numerical constants.

3. Non-leaf nodes: labelled with operator symbols.

A simple example is provided in Figure 4.1:

Example 4.4

3x1 +2x2
4 +2x2x3

+

* **

2

2

23 X

X

X X1 2 3

4

^

Figure 4.1: Example of expression tree representation.
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An algorithm for the tree comparison starts at the root node by comparing their attributes and

values. If the current nodes are equal, then it descends down to the child nodes and carries on

the comparison in the same way. The comparison steps are recursively executed until the test

function reports the existence of equivalence or detects that the two trees violate an equivalence

criteria.

Designing equivalence test functions seems reasonable, however, it is not practical. Such tests

might require a large number of numerical comparisons, and so they would be algorithmically

intractable. To validate the correctness of this method, Liberti (2012b) claims that f1, f2 : Rn→

R, are equivalent if they have the same range of feasible domain, i.e. dom( f1) = dom( f2) and

∀x ∈ dom( f1) f1(x) = f2(x). Based on which he proves that the formulation group of a mathe-

matical program is a subset of its symmetry group, i.e. G (P)≤ G̃ (P).

Moreover, in terms of the problem formulation, the role of convex relaxation is highly signif-

icant. The definition must be strictly applied in every nonlinear term otherwise the symmetric

properties of the problem can be affected as in the following example.

Example 4.5 Consider the original problem:

min − x2
1− x2

2

s.t. 0≤ x1 ≤ 1

0≤ x2 ≤ 1

with G̃ (PQ) = G (PQ) = {I,(x1,x2)}

If we generate RLT constraints only for x2
1, let x4 = x1x1 then we get (PLQ) which has no

symmetric properties, G̃ (PLQ) = {I}. Following the definition of convex relaxation,

let x4 = x1x1, x3 = x2x2 then we get PLQ′ with G = {I,(x1,x2)(x3,x4)}.

4.3.2 Directed Acyclic Graphs

Liberti (2012a) reduces the formulation symmetry problem to the graph isomorphism problem.
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As an extension of the expression tree structures for single functions, he introduces a coloured

DAG for multiple functions appearing in mathematical programs. Such functions have the same

variable (argument) list, so the trees can share the same variable leaf nodes. Further simplifica-

tions for duplicated nodes and algebraic equivalence are applied by Liberti (2012b).

A major component of these structures is an equivalence relation on the graph vertices which

determines the interchangeability of two vertices. Subsequently, a graph colouring partitions the

DAG vertices and identifies the subsets of nodes which can be permuted.

The vertex set of an expression graph is partitioned according to the following rules:

1. Root nodes that represent the constraints can be permuted iff they have the same RHS.

2. Variable nodes can be permuted, iff they are of the same type and same range.

3. Constant nodes can be permuted, iff they have the same rank level and value.

4. Operator nodes can be permuted, iff they have the same rank level and value.

5. The order of a child node can not be exchanged iff the operator node is non-commutative.

Two important theoretical results support the correctness of DAG constructions. Ramani and

Markov (2005) prove that:

Theorem 4.1 The symmetries of the constraints of the given mathematical problem, correspond

one-to-one to the symmetries of the graph.

Liberti (2012b) proves how to map the automorphism group of a DAG graph to the formulation

group of the original problem.

Theorem 4.2 A subgroup of the automorphism group of a DAG that fixes the variable nodes of

the graph is equivalent to the formulation group of the original problem.

4.4 Symmetry Representation via Matrices

This section proposes and discusses structures to detect the formulation group which captures

the symmetric nature of a given linear and nonlinear programming problem.
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4.4.1 Matrix Structures

This part suggests two different methods of forming a problem as a matrix. The definition of

the formulation group of a problem depends on these matrices. We transform each matrix into

a graph for detecting and classifying the automorphism group which reveals the symmetry of

the original problem. The presence of linear and bilinear terms in quadratic problems though

indicates their difficulty. Consider the formulation of QCQP with functions

fk(x) =
n

∑
i=1

n

∑
j=1

xiα
k
i jx j +

n

∑
i=1

α
k
i0xi +α

k
00∀k = 0. . . . ,m

with coefficients αk
i j ∈R for i∈{0, . . . ,n}, j = {0, . . . ,n} and k∈{0,1, . . . ,m} for xi ∈ [xL

i ,x
U
i ], i∈

{1, . . . ,n}.

Method 4.1 Create a tensor AQ ∈ R(n+1)×(n+1)×(m+1) with entries ak
i j.

... ... ...

... ... ...

... ... ...

... ... ...
... ... ...
... ... ...
... ... ...
... ... ...

... ... ...

... ... ...

... ... ...

... ... ...

Variables

V
ar

ia
bl

es

Constraints

Figure 4.2: Matrix illustration of Method 4.1.

Each matrix corresponds to a QCQP equation and the rows and columns to a constant element

and the variables of the QCQP, capturing the relations between the bilinear term. The following

example shows this idea.

Example 4.6

max 3x1 +3x4 +2x2x3 (c0)

x2 + x1
2 +1≤ 0 (c1)

x3 + x2
4 +1≤ 0 (c2)

x2 + x3 +1≤ 0 (c3)

x1,x2,x3,x4 ∈ [0,1]

(QP1)
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AQ1 =

Ac0 =



0 3 0 0 3

3 0 0 0 0

0 0 0 2 0

0 0 2 0 0

3 0 0 0 0


Ac1 =



1 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Ac2 =



1 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 1


Ac3 =



1 0 1 1 0

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 0 0 0 0



Consider the problem LQP which incorporates the constraints of the original problem and the

RLT constraints formed by McCormick relaxation for each nonlinear term as presented in Chap-

ter 2. Let m̂ = (1+m+(# of non linear terms)×4) and n̂ = (1+n+# of non linear terms).

Method 4.2 Create a 2 dimensional matrix ALQ ∈ Rm̂×n̂, with entries the coefficients of LQP

ak j.



Constant︷︸︸︷ Variables︷︸︸︷
. . . . . . . . . . . .

. . . . . . . . . . . .



}
Objective FunctionConstraints

}
RLT constraints

Figure 4.3: Matrix illustration of Method 4.2.

The number of columns set as n̂ consists of a constant element, each variable and the auxiliary

variables introduced for nonlinear terms. The number of rows say m̂ consists of the objective

function and all the constraints of the problem. Note that the maximum number of nonlinear

terms is: n(n+1)
2 . Consider the linearised form of QP1 by introducing the auxiliary variables,

X23 = x2x3, X11 = x2
1, X44 = x2

4 and add the McCormick relaxation constraints. Adding the RLT

constraints lead to the following example:
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Example 4.7

max 3x1 +2X23 +3x4 (c0)

s.t. X11 + x2 +1≤ 0 (c1)

x3 +X44 +1≤ 0 (c2)

x2 + x3 +1≤ 0 (c3)

x2 + x3−X23−1≤ 0 (c4)

X23− x2 ≤ 0 (c5)

X23− x3 ≤ 0 (c6)

2x1−X11−1≤ 0 (c7)

X11− x1 ≤ 0 (c8)

2x4−X44−1≤ 0 (c9)

X44− x4 ≤ 0 (c10)

X23,X11,X44 ≥ 0

x1,x2,x3,x4 ∈ [0,1]

(LQP1)

ALQ1 =
I x1 x2 x3 x4 X11 X23 X44



0 3 0 0 3 0 2 0 C0

1 0 1 0 0 1 0 0 C1

1 0 0 1 0 0 0 1 C2

1 0 1 1 0 0 0 0 C3

−1 0 1 1 0 0 −1 0 C4

0 0 −1 0 0 0 0 0 C5

0 0 0 0 0 0 1 0 C6

−1 2 0 0 0 −1 0 0 C7

0 −1 0 0 0 1 0 0 C8

−1 0 0 0 2 0 0 −1 C9

0 0 0 0 −1 0 0 1 C10

If we compare these two methods we observe that Method 4.2 has potentially considerably fewer

entries. Consider the case where a problem has n variables. Method 4.2 requires 4 new con-

straint for each nonlinear term. Then in the worst case scenario there are (1+n)(1+ n
2 )(1+m+

2n2 +2n) entries in contrast to the Method 4.1 which has (1+n)(1+n)(1+m). In most cases,

Method 4.1 has fewer entries than Method 4.2. There exist pathological cases, e.g. fully dense
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formulations as m > 3n2 +6n+3, where Method 4.2 has fewer entries. The graph transforma-

tion is based on the number of entries of these matrices. Hence, dealing with smaller graphs

reduces their complexity and the procedure time taken to generate their symmetric properties

and to compare them.

Next, we define the formulation group of a matrix; necessary for detecting symmetry.

Definition 4.4 Formulation group of the matrix ALQ

G (ALQ) = {π ∈Π
n̂ | ∃σ ∈Π

m̂ such that A(σ ,π) = A}

The set of permutations of the columns of ALQ such that there is a corresponding permutation

of the rows that when applied yields the original matrix. For permutations π ∈ Πn, σ ∈ Πm,

A(π,σ) is a matrix obtained by permuting the columns of A by π and the rows of A by σ .

Definition 4.5 Formulation group of the matrix AQ

G (AQ) = {π ∈Π
n | ∃σ ∈Π

m such that A(π,π,σ) = A}

The set of permutations of the columns and rows of each matrix in AQ under which the matrix

yields to its original form. The same permutation π acts both on rows and columns of the matrix

AQ which represent the same number and type of variables.

Matrix representation shows that exchanging the columns and rows of a matrix which subse-

quently means changing the position of the variables and constraints of the problem, leads to an

equivalent problem. Margot (2002, 2003b) proves that the formulation group of similar matrices

is a subset of the symmetry group of the original problem, i.e G ≤ G̃ . The corresponding set of

permutations that fixes the problem formulation is called the problem symmetry. Liberti (2008)

proposes an automatic way to compute permutations of the formulation group and proves that

is a subset of the symmetries in the solution group of a MILP in the general form. As far as

we know, this is the only approach for automatic symmetry detection that does not reduce the

problem to a graph. Computational experiments report that finding elements of the symmetry

automatically is too costly in terms of CPU time.
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4.4.2 Converting Matrices to Edge-Labelled Vertex-Coloured Graphs

The matrix representations proposed in this chapter include all the elements of an optimisation

problem by construction: variables, constraints and coefficients. The main idea of this work

is to convert such matrices into edge-labelled vertex-coloured graphs associated with the basic

elements of the problem and then map the graph automorphisms to the original problem sym-

metries. Margot (2010) states that mapping the instance of a problem to a coloured graph is a

standard procedure (Ramani and Markov 2005, Salvagnin 2005, Ramani et al. 2006). Colour

preserving automorphisms of such graphs correspond to problem symmetries. A similar idea

on how to convert the matrices in Section 4.4.1 to edge-labelled vertex-coloured graphs is given

here.

Since many of the matrix values A are 0, a sparse matrix representation of Method 4.1 is used to

reduce space in memory and time accessing all the coefficient of the problem. Consider a tuple

A = (M,I,J,K) of vectors M,I,J,K ∈ Rs with maximum size s = (n+1)(n+1)(m+1).

J

I    

K

IM = 

KM =

JM =

M =

Figure 4.4: Sparse matrix representation.

• M = (M1, . . . ,Ms) is a vector with all non zero entries of a matrix stored from left to right

and from top to bottom.

• J = (J1, . . . ,Js) represent the column indices correspond to non zero entries.

• I = (I1, . . . , Is) represent the row indices correspond to non zero entries.

• K = (K1, . . . ,Ks) represent the matrix (constraint) indices correspond to non zero entries.

Recall Example QP1. For Method 4.1, since each matrix is symmetric, without loss of generality

we consider only the upper triangular matrices of each case.

• MQP1 = (332111111111)
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• IQP1 = (002001004000)

• JQP1 = (143021034023)

• KQP1 = (000111222333)

Note that this is not the case for Method 4.2 since the matrix illustration of Example LQP1 is

not symmetric.

Using these vectors, we construct edge-labelled vertex-coloured graphs which are variants of

constraint/variable incidence graphs. Consider a graph G = (V,E,c) corresponding to an in-

stance M,I,J,K. The function c : E→ r, for r ∈ {0, . . . , `−1} is an edge colouring and ` ∈ Z+

is the unique number of different coefficients in M. Each of these unique elements in vector

M is stored in a vector U ∈ Rn. The vertex set is partitioned (coloured) into four subsets as

explained in Section 4.3.2, VF a set containing a node for the objective function, VC nodes for

the constraints, VS a constant node and VR nodes for the variables. Note that the definition of the

automorphism with respect to colours states that each vertex can only be mapped onto a vertex

of the same colour.

For Method 4.2, we construct the following edge coloured graph with edge set initially empty

E = /0. For i = {0, . . . ,s} where s = |I| = |K| = |M| add an edge v(r)Ii to v(r)Ki
, i.e. from a vertex

in the set that represents the constant element / variables to a vertex in the set of the objective

function / constraints, with the relevant colour as shown in Figure 4.5.

Cm

•
•
•

C2

C1

C0

Xn

•
•
•

X2

X1

X0
w1

w3

w2

w`

Figure 4.5: Weighted graph representation for Method 4.2.

For Method 4.1 the graph construction also accounts edges between nodes in the variable set to

show the bilinear relations and loops for quadratic terms. Initially for graph G = (V,E,c) let

E = /0. For i = {0, . . . ,s}:
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• If Ii = Ji then E = E∪{{(vIi ,vKi)
r}∩{(vIi)

r}}

• else for Ii 6= Ji then E = E∪{{(vIi ,vKi)
r}∩{(vJi ,vKi)

r}∩{(vIi ,vJi)
r}}

Cm

•
•
•

C2

C1

C0

Xn

•
•
•

X2

X1

X0
w1

w2

w`

Figure 4.6: Weighted graph representation for Method 4.1.

4.5 Formulation Symmetry Detection via Binary Layered Graphs

To detect symmetry, we use software nauty (McKay and Piperno 2014). Ideally, each variable

could be a vertex in the graph and each coefficient a label of an edge connecting the vertices

involved using edge vertex coloured graphs in Section 4.4.2. But nauty (McKay and Piperno

2014) accepts only vertex coloured graphs, so we associate edge colours with layers in a graph.

McKay and Piperno (2014) state that graphs similar to Section 4.4.2 and matrix representa-

tions in Section 4.4.1 are isomorphic to a general vertex coloured layered graph representation.

According to this statement we describe how to illustrate an optimisation problem with binary

layered graph (BLG) structures (McKay and Piperno (2014)). In this chapter, we convert the

adjacency matrices in Section 4.4.1 into binary layered graphs (BLG) and generate the automor-

phism group of such graphs that projects the symmetry in the original optimisation problems.

McKay and Piperno (2014) explain how to convert a graph G = (V,E,c) with colouring c : E→

{0, . . . , `− 1} of ` colours into an ` - layering graph. First, replace each vertex v j ∈ V with a

fixed connected graph of ` vertices v(0)j , . . . ,v(`−1)
j . If an edge (v j,v j′) has colour r, add an edge

from v(r)j to v(r)j′ . Finally, partition the vertices by the superscripts, Vr = {v(r)0 , . . . ,v(r)n−1}.
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4.5.1 Binary Layered Graph Representation

We use a binary representation to avoid many layers in G when the number of colours is large.

Definition 4.6 Binary Layered Graph

Let ` be the number of edge labels of G. A BLG is an edge-labelled vertex-coloured graph B.

Each vertex colour is associated with a binary representation. The number of layers of B is:

L = dlog2 (`+1)e for ` ∈ Z (4.2)

Assign a unique positive integer µ(z) to each unique element z in vector U. The set {µ(z) |z∈U}

is a set of edge labels for B. For each µ(z) compute a binary representation.

z = cL−12L−1 + cL−22L−2 + . . .+ c020, for ct ∈ {0,1} t = {0, . . . ,L−1} (4.3)

For nonzero ct , the powers of 2 reveals which layers encode that value. If ct = 1, add a new edge

from v(t)i to v(t)j for every ct ∈ {c1, . . . ,cL−1}. The form of a layered graph is shown in Figure

4.7.

Figure 4.7: General form of a Binary Layered Graph.

In QCQP it is important to consider both nonlinear terms and how to incorporate the different

variable coefficients in the graph representation. BLG structures can handle this situation with

loops as described below. This section shows how to illustrate different mathematical problems

as graphs.

Next we describe the different graphic illustrations of problems with a finite number of algebraic

expressions.
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4.5.2 Graph Structures

Section 4.4.1 presents two methods on how to associate matrices with optimisation problems

LQP and QCQP.

For i = {1, . . . ,n}, k = {1, . . . ,m}, ` ∈ Z where n is the number of variables, m is the number

of constraints and ` the number of unique coefficients in each problem (P). The following graph

representation skeletons are presented for GP = (VP,EP). The vertex set consists of VF set

containing vertices associated with the objective function, VC with the constraints and VS with a

constant and VR the variables. Similar to Liberti (2012a), we define an equivalence relation ∼

on VP as follows:

∀u,v ∈VP u∼ v =⇒ (u,v ∈VF ∧ `(u) = `(v))

∨ (u,v ∈VC ∧ `(u) = `(v))

∨ (u,v ∈VS∧ `(u) = `(v))

∨ (u,v ∈VR∧ `(u) = `(v))

i.e. vertices on the same vertex set and layer are in the same partition and can be exchanged.

Graph 4.1 represents linear problems (originally or after applying RLT) and matrix represen-

tation in Method 4.2.

The number of layers L = dlog2 (`+1)e+1. The total number of vertices is: |V|= (n̂+1)(L−

1)+ m̂+1. The vertex set consists of (layer 0) vertices that correspond to the objective function

and the constraints of the problem. On every other layer, there are copies of these nodes as

shown by the vertical lines. Then on the top layer there is one vertex for a constant element and

vertices for each QCQP variable. From nodes in (layer 0) and its copies, we add edges with

endpoints the nodes on the top layer, based on which variable is included on each constraint and

what is the coefficient in front of this variable.

Graph 4.2 represents quadratic (nonlinear) QCQP problems and matrix on Method 4.1.

The graph consists of two different parts with number of layers L = dlog2 (`+1)e+ 2; the

vertices for the objective function and each constraint and layers of copies of these constraints

(connected with vertical edges). In this part the horizontal edges encode the coefficients of the
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objective 
function +  constraints +  relaxation 

                           constraints

identity  + variables + auxiliary
                                   variables

2

Figure 4.8: Illustration of Graph 4.1.

problem. The total number of vertices is |V|= 2(n+1)+(m+1)(L−2). On the upper part as

shown in Figure 4.7, there are vertices for a constant element and each variable and a layer of

copies of variables (connected with vertical edges). On this layer the horizontal edges and loops

distinguish the relations of linear and bilinear terms.

objective 
function +  constraints

identity  +

2

bilinear 
relations

Figure 4.9: Illustration of Graph 4.2.

4.6 Computational Case

The following example incorporates all the steps and the algorithms proposed in this paper. We

construct the binary labelled graph and then enter it into nauty through dreadnaut command

lines which compute the formulation group of the original problem.
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4.6.1 Numerical Example

In this part we consider the Example QP1 of a QCQP problem from Subsection 4.4.1 and apply

the two different graph representations as described in Subsection 4.5.2. Recall Example QP1:

max 3x1 +3x4 +2x2x3 (c0)

x2 + x1
2 +1≤ 0 (c1)

x3 + x2
4 +1≤ 0 (c2)

x2 + x3 +1≤ 0 (c3)

x1,x2,x3,x4 ∈ [0,1]

The sparse matrix representation:

• MQP1 = (332111111111)

• IQP1 = (002001004000)

• JQP1 = (143021034023)

• KQP1 = (000111222333)

with vector of unique elements U = (123). There are three unique elements and L = 2 lay-

ers (see Equation 4.2) to represent the relation of the variables of this problem. The binary

representation of each unique element is computed using Equation 4.3, e.g. 3 = 21 + 20 indi-

cates that there is an edge between vertices on layer zero and another edge between the same

vertices on layer 1. Following the Graph 4.2 description, this graph consists of 4 layers and

|V| = 18, one associated with a constant element and one with the objective function and the

rest for the variables and constraints of the problem. The graph representation of QP1 is shown

in Figure 4.10. Nauty generates the following permutations: π = (1 2)(5 6)(9 12)(10 11)(14

17)(15 16); the automorphism group of the graph under which it remains invariant. The relevant

enumeration distinguishes which permutations are applied on the constraints and which on the

variables of the problem. We then reflect these information on the original problem and explain

its symmetric properties. Permutations (1 2)(5 6), permute the constraints c1,c2 of Problem

QP1. Permutations (9 12)(10 11) are associated to the variables x1,x4 and x2,x3 with (14 17)(15,

16) their copies. Hence, the formulation group of problem refex1d is G = (x1x4)(x2x3).
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Problem LPQ1 is the relaxed form of the original Problem QP1 after applying convex relaxation

by introducing the auxiliary variables, X23 = x2x3, X11 = x2
1, X44 = x2

4 and adding the McCormick

relaxation constraints.

max 3x1 +2X23 +3x4 (c0)

s.t. X11 + x2 +1≤ 0 (c1)

x3 +X44 +1≤ 0 (c2)

x2 + x3 +1≤ 0 (c3)

x2 + x3−X23−1≤ 0 (c4)

X23− x2 ≤ 0 (c5)

X23− x3 ≤ 0 (c6)

2x1−X11−1≤ 0 (c7)

X11− x1 ≤ 0 (c8)

2x4−X44−1≤ 0 (c9)

X44− x4 ≤ 0 (c10)

X23,X11,X44 ≥ 0

x1,x2,x3,x4 ∈ [0,1]

Similar to Problem QP1 apply Method 4.2 described in Section 4.5. Observe that this problem

also contains negative coefficients mapped to positive integers via function µ(z) e.g. µ(−1) = 4

with binary representation 4= 22. The relevant graph is shown in Figure 4.11. Nauty generates

(1 2)(5 6)(7 9)(8 10)(12 13)(16 17)(18 20)(19 21)(23 24)(27 28)(29 31)(30 32) (34 37)(35

36)(39 40) with specific permutations (34 37)(35 36)(39 40) to reveal the symmetric relations

of variables (x1x4)(x2x3)(X11X44) the formulation group G of LPQ1. The above results validate

both Method 4.2 and Method 4.1 in Section 4.5 for representing an optimisation problem as

a graph and then generate its symmetric properties. Figure 4.12 shows a DAG representation

of Problem QP1 as described in Section 4.3. The leaf nodes represent the variables and the

coefficients, the intermediate nodes the operators and root nodes the plus signs that indicate the

existence of a new constraint in this problem. Colours in the graph explain the vertex partitioning

of the nodes that can be exchanged. The graph size in terms of the number of vertices and edges
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I X1 X2 X3 X4

C1C0 C2 C3

Figure 4.10: Illustration of Problem QP1 using Graph 4.2 representation.

is smaller to the size of the methods proposed in this chapter for this example and generates the

same formulation group.

4.6.2 Comparison with Current Methods

We evaluate the trade-offs among the graph constructions in this paper and different graph con-

structions already in the literature. Regarding the graph transformation and its significant role

in dealing with symmetry, Ostrowski et al. (2008) introduce the method ”Orbital Branching”

for combating symmetry. They illustrate each problem and its subproblems on each node of

the tree as graphs and use nauty to compute the automorphism group and the orbits of the

graph. The presence of many coefficients in a problem expand the difficulty of identifying its

symmetric properties. Liberti (2012b) uses Directed Acyclic Graphs to represent any mathemat-

ical expression of MINLP and automatically generates the formulation group. A major advance

of both methods is that they are easy to implement and DAG can capture the structure of any

class of mathematical programming problem. This work proposes an alternative method that

may be useful when working with problems with many coefficients of different values. Using

the function that assigns integer values to the coefficients of a problem let us work not only

with non 0− 1 coefficient but with any other value. Also the use of a logarithmic number of

layers may reduce the number of nodes in the graph for problems with a large number of coef-
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C1C0 C2 C3 C4 C5 C6 C7 C8 C9 C10

I X1 X2 X3 X4 X23 X11 X44

Figure 4.11: Illustration of Problem LQP1 using Graph 4.1 representation.

+ + + +

* * * ^ ^

23 X XX1 2 3 1X4

Figure 4.12: Illustration of Problem 1 using DAG representation.
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ficients. For example, we are able to present 60 different coefficients in a graph with 6 layers.

Another advantage is that we are able to capture the relation of bilinear terms in a way that it

is unnecessary to create new nodes for every mathematical operation presented in the problem.

Addition is the main operation on which the structure of the graph is based and multiplication

is only presented with edges and loops. Subtraction is treated as a new coefficient together with

the number that follows. The original form of DAG graphs without any simplification, provides

important informations on the exact formulation of the original problem something which is not

clear with our methods. BLG may be associated with problems that have the exact same sym-

metric structure but different formulation. This work though focuses on providing an alternative

method to detect the symmetric structure of a problem and not solving the problem itself.

4.7 Conclusion

This work appraise the presence and significance of symmetry in optimisation problems. Sym-

metry representation and detection are the fundamental steps towards exploiting symmetry. We

propose graph structures that may capture the symmetric properties of a problem in a coherent

size.
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Chapter 5

Detecting Symmetry and

Understanding Complexities of the

Minimum Number of Matches

Problem in Heat Recovery Network

Design

5.1 Introduction

Determining the minimum number of matches is the bottleneck of designing a heat recovery

network using the sequential method. The minimum number of matches problem posits a set

H = {1,2, . . . ,n} of hot streams to be cooled and a set C = {1,2, . . . ,m} of cold streams to

be heated. Each stream is associated with an initial and a target temperature. The mathemati-

cal MILP formulations that follow the transportation and transshipment models are provided in

Chapter 3. There are combinatorial and computational difficulties when we try to model and

solve this problem. One source of problem complexity is the combinatorial explosion in the
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possible number of matches of streams to enhance energy recovery. More precisely, Floudas

(1995) observed that, in the MILP transshipment model, several solutions with different com-

binations of streams lead to the same objective function value. Under this interpretation these

solutions are considered to be symmetric. When solving the problem using a tree search strategy

such as the branch-and-bound algorithm, all these obstacles can cause exponentially large trees

with long times to termination. Current state-of-the-art solvers do not recognise the presence of

symmetry and cannot deal with moderately-sized problems when industry requires thousands

of streams (Furman 2000, Chen et al. 2015a). In order to solve these problems, we first need

to understand the aforementioned challenges in the special case of a single temperature interval

and then reflect these to the bigger problem. Moreover, this subproblem is proved by Fur-

man and Sahinidis (2001) to be N P-hard even in the case of one temperature interval. The

standard MILP formulations for the minimum number of matches in Chapter 3 contains big-M

constraints, i.e. the on/off switches associated with weak continuous relaxations of MILP. Both

optimisation-based heuristics and exact state-of-the-art methods for solving minimum number

of matches problem are highly affected by the big-M parameter. Trivial methods for computing

the big-M parameters are typically adopted, but Gundersen et al. (1997) propose a tighter way

of computing the big-M parameters.

This chapter proceeds as follows: Section 5.2 presents the special case of the minimum number

of matches in a single temperature interval problem. Section 5.3 analyses the problem structure

and detects where symmetry and degeneracy arise. Section 5.4 discusses the packing nature of

this problem. Then, Section 5.5 provides a novel N P-hardness reduction to the bin packing

problem and proposes a novel MILP formulation for the single temperature interval problem.

Section 5.7 explores the maximum heat exchanged between the streams with match restrictions

including the computation of tighter big-M parameters. These constraints are used in Section

5.8 to examine the computational limits of exact optimisation methods when solving instances

of the minimum number of matches from test cases that are manually constructed in this thesis

and the ones that currently exist in literature.
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Table 5.1: HENS transshipment model symbols (Papoulias and Grossmann 1983). Regular

expressions denote alternatives, e.g. expression FCp[i, j] represents FCpi and FCp j, the capacity

of hot stream i and cold stream j, respectively.

Name Units Description

Sets
HS,CS − Hot/Cold process streams
HU,CU − Hot/Cold utilities
H,C − Hot/Cold streams & utilities
T = {1, · · · ,k} − Temperature intervals
FCpi,FCp j − Heat capacities of HS, CS

Indices
i ∈ H = {HS∪HU} − Hot process stream/utility
j ∈C = {CS∪CU} − Cold process stream/utility
t ∈ T − Temperature interval

Parameters
FCp[i, j] [kW/K] Flowrate capacity
T HS

in,i ,T
HS

out,i [K] Inlet, outlet temperature of hot stream i
TCS

in, j,T
CS
out, j [K] Inlet, outlet temperature of cold stream j

T HU
in,i ,T

HU
out,i [K] Inlet, outlet temperature of hot utility i

TCU
in, j ,T

CU
out, j [K] Inlet, outlet temperature of cold utility j

δT[i, j]t [K] Temperature change at t
σ i, tHU [kW ] Heat load of HU entering t
δCU

j,t [kW ] Heat load of CU exiting t
σi,t ,δ j,t [kW ] Heat load at t
Rt [kW/K] Total heat residual exiting t
∆Rt [kW ] Heat residual difference at t

Variables
yi, j,t [0, 1] Existence of match (i j)
qi, j,t [kW ] Heat load of (i j) at t
Ri,t [kW/K] Heat residual of HS exiting t
Ui, j [kW ] Upper bound of match (i j)
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5.2 Single Temperature Interval

This section analyses the problem structure of the minimum number of matches problem in a

single temperature interval. Initially consider the problem description and the MILP formulation

similar to the transshipment model given in Chapter 3. The temperature change δTt is assumed

to be constant and the same for all streams in a fixed temperature interval. The heat loads

σi,t provided and δ j,t required by the relevant subset of hot streams HS and cold streams CS,

respectively, are:

σi,s = δTsFCpi (5.1)

δ j,t = δTtFCp j (5.2)

In this model, the hottest hot utility is in the top temperature interval and a cold utility in the bot-

tom interval; utilities are treated as streams in intermediate intervals. Excess heat is transferred

to the next interval via a heat residual. To decide the minimum utility consumption in order

to balance the energy at each interval the LP based on the transshipment model is solved first.

The cost in the original formulation in Section 3.4 in Chapter 3 as Floudas (1995) suggests is

assumed to be kHU
i = kCU

j = 1 for both in order to meet the minimum consumption. A modified

version for t ′ ∈ T I is the following:

min σ
HU
i,t ′ +δ

CU
j,t ′ +Rt ′ +Rt ′−1 (5.3)

s.t. Rt ′ −Rt ′−1 +δi,k−σ j,1 = ∑
i∈H

σi,t ′ −∑
j∈C

δ j,t ′ i ∈ HU, j ∈CU (5.4)

Rt ′ ≥ 0 (5.5)

σi,t ′ = δ j,t ′ = 0 i ∈ HU, j ∈CU (5.6)

σi,1 > 0,δ j,k > 0 i ∈ HU, j ∈CU (5.7)

R1 = Rk = 0 (5.8)

Hence the LP model initially provides the utility duties of the system, σHU
i,1 ,δCU

j,k , Rt ,Rt−1. Fig-

ure 5.1 represents a transshipment model interval (Papoulias and Grossmann 1983, Floudas
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1995). The overall energy balance in Figure 5.1 is given by:

Rt −Rt−1 + ∑
j∈CU

δ
CU
j,t − ∑

i∈HU
σ

HU
i,t = ∑

i∈HS
σi,t − ∑

j∈CS
δ j,t (5.9)

HU

HP

CU

CP

∑i∈H Qi,t ∑ j∈C Q j,t

Rt−1

Rt

Temperature
Interval (t)

Figure 5.1: Heat balance around a temperature interval.

The objective is to minimise the matches of streams subject to thermodynamic constraints and

prohibiting matches between hot utilities HU and cold utilities CU . The following formulation,

illustrated in Figure 5.1, represents one fixed temperature interval t = t ′:

min ∑
i∈HS

∑
j∈CS

yi, j,t ′ (5.10)

s.t. σi,t ′ = Ri,t ′ −Ri,t ′−1 + ∑
j∈C

qi, j,t ′ , i ∈ HS (5.11)

σ
HU
i,t ′ = Ri,t ′ −Ri,t ′−1 + ∑

j∈CS
qi, j,t ′ , i ∈ HU (5.12)

δ j,t ′ = ∑
i∈H

qi, j,t ′ , j ∈CS (5.13)

δ
CU
j,t ′ = ∑

i∈HS
qi, j,t ′ , j ∈CU (5.14)

Rt ′ = ∑
i∈H

Ri,t ′ , (5.15)

qi, j,t ′ = 0, i ∈ HU, j ∈CU (5.16)

qi, j,t ′ ≤min{σit ′ +Ri,t ′−1,δ jt ′}yi, j,t ′ , i ∈ H, j ∈C (5.17)

Ri,t ′ ≥ 0, qi, j,t ′ ≥ 0 i ∈ H, j ∈C (5.18)

yi, j,t ′ ∈ {0, 1} i ∈ H, j ∈C (5.19)

72



5.3 Combinatorial Structure

Using the MILP transshipment formulation, this section investigates network topology and de-

tects symmetry in HENS. Figure 5.2 is based on the transshipment model (Floudas 1995). Anal-

ogously to transferring a product from source to destination via intermediate intervals, the trans-

shipment model transfers the heat from hot streams and utilities to the cold streams and utilities

via temperature intervals. The temperature change is caused by matching the hot and cold

streams and utilities at each interval, so, for two sets of 3 hot streams and 3 cold streams, there

are 3 ·3 = 9 binary variables and in the worst case the MILP will require 29 = 512 nodes. The

H2

H1

H3

C2

C3

C1

H2

H1

H3

C2

C3

C1

H2

H1

H3

C2

C3

C1

Figure 5.2: Possible configurations of hot/cold stream pairs.

MILP formulation exhibits combinatorial explosion of the possible number of configurations

of pairs of hot and cold streams. For example, in Figure 5.2, C1 can receive heat from 3 hot

streams. At the same time C2, C3 no matter how C1 matches, also require heat from one of the

3 choices. Hence there are 33 = 27such configurations. Since δ j,t ′ 6= 0 =⇒ ∑
i∈HS

qi, j,t ′ > 0,

j ∈CS; i.e. each cold stream needs to match with at least one hot stream in order to satisfy the

load requirements. In the worst case scenario of two sets of n hot streams and m cold streams,

their match is restricted either as one to one or one to many. Hence the following Lemma holds:

Lemma 5.1 There are nm such configurations.

Proof:

Possible configurations of n hot, m cold streams

=
(

n
1

)
· · ·
(

n
1

)
︸ ︷︷ ︸

m

= n!
(n−1)! · · ·

n!
(n−1)! =

n(n−1)!
(n−1)! · · ·n = nm

We observe that when we only consider hot-to-cold matches in each transshipment model inter-

val, n hot streams and m cold streams may generate n ·m possible pairs. There may be many

MILP transshipment model solutions with equivalent objective value (Gundersen and Gross-

mann 1990); we posit that this is due to symmetry.
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The significant role of symmetry in optimisation models is described and defined by Margot

(2010) and Liberti (2012a). When solving the problem using a tree search strategy such as

branch-and-cut, symmetric solutions are unnecessary duplications that need not be investigated.

Exploiting symmetry, e.g. via advanced branching strategies, may offer an important advantage

for branch-and-cut (Ostrowski et al. 2011, Costa et al. 2013). Identifying problem symmetries is

an important step towards expediting tree search algorithms because computationally classifying

equivalence allows state-of-the-art solver software to omit symmetric solutions. But symmetry

has not been characterised in several critically important process systems engineering applica-

tions such as heat exchanger network synthesis; neither do current MILP solvers detect or use

symmetries for these energy efficiency problems. This section uses group theory to study the

MILP transshipment model of heat exchanger network synthesis and identifies symmetry and

degeneracy in the problem.

5.3.1 Symmetry in Heat Exchanger Networks

Applying the formulation and definitions on several cases and combinations of streams, leads

to the statement that in a fixed interval in HEN there can appear local symmetries through the

exchange of streams. These symmetries arise in the feasible set of solutions from the topology

of the problem as several pairs based on the binary variable yi, j,t give the same number of

matches. The trouble with the HENS problem is that there is both symmetry in the objective

and the constraints. This yields to the observation that if solutions in a temperature interval have

the same number of matches and change of residual ∆Rt ′ = Rt ′ −Rt ′−1 then they are related

between them. The symmetry group of a HEN is defined as follows: For i ∈ HS, j ∈ CS and

t = t ′ if ∑
i∈HS

∑
j∈CS

yi, j,t ′ = ∑
i∈HS

∑
j∈CS

y′i jt ′ and ∆Rt ′ = ∆R′t ′ then ∃π ∈Πn andπ ′ ∈Πm such that:

G (HEN(t ′),∆Rt ′)∼= {π : HS−→ HS,π ′ : CS−→CS} (5.20)

In the context of exploiting symmetry Liberti (2012a) and Costa et al. (2013) are the first who

use algebra groups to explain the structure of optimisation problems and represent the symmetry.

The properties of these groups are then used to generate symmetry breaking constraints which

improve the time that is taken for the problems to be solved. In this section descriptions and
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proofs specify under which cases streams and utilities are considered to be symmetric in a single

temperature interval.

For each stream the heat flow FCp[i, j] is considered and Eq. (5.9) is rewritten.

∆Rt ′ = δTt ′
(

∑
i∈HS

FCpi− ∑
j∈CS

FCp j

)
(5.21)

If two hot or two cold streams have the same flowrate heat capacity then they are equivalent.

Lemma 5.2 For hot streams h1,h2 ∈ HS if FCph1 = FCph2 then ∃ a permutation π ∈Πn such

that π(h1) = (h2).

Proof:

Let FCph = FCph1 = FCph2 , and since temperature interval is assumed to be constant then

from Eq. (5.21)

∆Rt ′ = δTt ′
(

FCph1 +FCph2 − ∑
j∈CS

FCp j

)
= δTt ′

(
FCph +FCph− ∑

j∈CS
FCp j

)

Lemma 5.3 For cold streams c1,c2 ∈CS if FCpc1 = FCpc2 then ∃ a permutation π ′ ∈Πm such

that π ′(c1) = (c2).

Proof:

Same as Lemma 5.2 for cold stream.

Since the change of temperature δTt ′ is the same and constant it can be trivially claimed that

the above results hold for the cases where hot streams and utilities or cold streams and utilities

have the same heat load σi,t ′ ,δ j,t ′ and can be exchanged between them in the possible matches

as shown in Figure 5.3.

For the cases where there exist more than one type of streams with the same heat capacities the

idea of Ostrowski et al. (2015) for the unit commitment problem is contemplated in this part.

He distinguishes the units with the same characteristic into classes and proves that the structure

of the problem can enforce the branching strategies that he proposes when the problem is solved

with the B&B algorithm.

Let W be the set of classes of equivalent hot streams and nw the number of streams in each class.
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σi,t

δ1,t

δ2,t

If δ1,t = δ2,t σi,t

δ1,t

δ2,t

Figure 5.3: Configuration of symmetry in the minimum number of matches problem when there

are streams of equal heat capacity.

Proposition 5.1 For t = t ′, given a set HSw = {h1, · · · ,hnw} ⊂HS with FCpi = FCpi′ the sym-

metry group of HSw:

G (HSw)∼= {π ∈Π
n|π : HSw −→ HSw} ∼= Snw

Proof:

Claim: there are n! such permutations between all the elements of HSw.

This can be shown as follows (Clark 1984):

(1) Assign π(h1) to one of the elements of HSw: there are n such choices

Because π is bijective π(h1) 6= π(h2)

(2) Assign π(h2) to one of the remaining elements of HSw−{π(h1)}: there are (n−1) such

choices

· · ·

(n) Assign π(hnw) to the only remaining element: there is only 1 such choice

Hence there are n(n−1) · · ·1 = n! such permutations under which HSw is invariant.

Let Z be the set of classes of equivalent cold streams and nz the number of streams in each class.

Proposition 5.2 For t = t ′, given a set CSz = {c1, · · · ,cmz} ⊂CS with FCp j = FCp j′ the sym-

metry group of CSz:

G (CSz)∼= {π ′ ∈Π
m|π ′ : CSz −→CSz} ∼= Smz
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Proof:

Follows Proposition 5.1 for cold streams.

Proposition 5.3 Let G (HS1), G (HS2),· · · , G (HSw) be the sequence of finite groups Sn1 ,Sn2 , · · · ,Snw .

G (HS)∼= G (HS1)×G (HS2)×·· ·×G (HSw)∼= Sn1 ×·· ·×Snw

Proof:

Follows a relevant Proof that is provided in (Liberti 2012a, Costa et al. 2013).

Proposition 5.4 Let G (CS1), G (CS2),· · · , G (CSz) be the sequence of finite groups Sm1 ,Sm2 , · · · ,Smz :

G (CS)∼= G (CS1)×G (CS2)×·· ·×G (CSz)∼= Sm1 ×·· ·×Smz

Proof:

Same as proof of Proposition 5.3 for cold streams.

Theorem 5.1 For t = t ′ with sets of classes of equivalent hot and cold streams HSw ⊂ HS,

CSz ⊂CS the symmetry group that describes the relations of all streams in the interval is given

by: G (HEN(t ′),∆Rt ′)∼= G (HS)×G (CS)

Proof:

Follows from Proposition 5.3, 5.4 and the definition of the internal and external direct product

of groups.

These proofs can also be trivially generalised for the cases where hot streams and utilities and

cold streams and utilities have the same heat load from the Eq. (5.1) and Lemma 5.2, Lemma

5.3 which consist the bottleneck of the above results.

Furthermore, all the above results and proofs contemplate cases where the heat rate capacity

flow is the same for all the hot and cold streams involved in the same temperature interval. In
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the following examples we also examine some cases of symmetric instances with dissimilar

flowrate heat capacities.

If we merge these two disjoint sets we define a new ordered set FCphc = FCph ∪FCpc and

denote it as (FCphc,≤) as defined in Chapter 1. Let Fω be the set of feasible solutions with

minimum number of matches (i j), i.e. all the solutions in Fω consist of the same number of

matches. For any feasible solution with minimum number of matches in the interval t = t ′ ∈ T I

we observe the following symmetric cases. In all cases we assume that there are no one-to-one

matches and subset sums.

Example 5.1 Case: mini∈HSFCpi >FCp j, ∀ j ∈CS and Rω ≥ 0 and n=m then G (HEN(t ′))∼=

Sm. Let HS = {h1,h2} and CS = {c1,c2} with FCph = {7,5} and FCpc = {4,2}. If we merge

them in ascending order FCpc2 < FCpc1 < FCph2 < FCph1 with (FCphc,≤) = {6,5,3,1}. The

minimum number of matches is 2 with the set of feasible solutions

Fω =

{h1 c1

h1 c2


h1 c1

h2 c2


h2 c1

h1 c2

}

for ω = 1, · · ·3, and δFCpω = {1,6,6}. From definition of symmetry, we consider F2 symmetric

to F3, i.e. ∃aπ ′ ∈ Πm, π ′(F2) = F3 with π ′ = (c1c2) and leaves F2 invariant. Hence the

symmetry group of this case is S2 ∼= 〈(c1c2)〉.

e.g.

5.3.2 Degeneracy in Heat Exchanger Networks

We posit that detecting symmetry is particularly difficult because as stated above the initial form

of the problem does not inherit symmetry. Also, the heat that is provided or required by the

streams is a continuous variable which can be split into several temperature intervals. Following

the interpretation of degeneracy in MILP described in Section 2.7, Chapter 2 we claim that the

continuous nature of these variables causes the phenomenon of degeneracy in this problem. As

shown in Figure 5.4, as long an the integer variables that decide the possible matches is set then

there are multiple ways to distribute the required heat that lead to multiple equivalent solutions.
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σi,t = 10 δ1,t

δ2,t

9

1

σi,t = 10 δ1,t

δ2,t

8.9

1.1

Figure 5.4: Degeneracy in the minimum number of matches problem.

5.3.3 Computational Test Case

The proofs of symmetry in HEN and the above observations demonstrated in a test case 1 of a

transshipment model as formulated and implemented on GAMS 24.7.1 by Chen et al. (2015a).

The model has been tested on a single 3.40 GHz Intel(R) Core(TM) i7-4770 CSU of a computer

with 130 GB memory and running Linux. The MILP solver CPLEX 12.6 is used with optimality

gap set to be 10−3 and absolute gap 0.99. The flow capacities of the streams that are used lie

in a range that are closed to each other and considered as balanced streams. Authors report

that tests with balanced streams show exponential increase in the number of nodes and the

termination time, which is expected as there are much more combinations of pairs that can take

place. From a CPLEX’s feature ”solnpool” several optimal solutions with the same objective

value are obtained. The given data of the streams and how they take part at each of the three

subnetworks in which the problem is solved are analysed.

The instance that is tested here is the Transshipment V 1 5. It consists of 5 hot streams and 5

cold streams and 2 hot utilities and 1 cold utility as initially provided and obtained from the LP

transshipment model in the output analysis. The problems data are shown in Table 5.2 and ten

solutions of the MILP model with objective value 24 are presented analytically in Figure 5.5.

Table 5.2: Data for Test Case.

Streams [i,j] FCp[i, j] [kW/K] σi,δ j [kW]

5 HS [1;2;1.5;1.7;2.5] [280;440;345;442;500]
5 CS [1.3;1.5;1.9;2.5;2.8] [195;360;570;625;504]
2 HU - [110;195]
1 CU - [60]

The last subnetwork is isolated as the configuration of matches vary in each solution. It is

1http://minlp.org/library/problem/index.pHS?i=191&lib=MINLP
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HP	-	CP N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3 N1 N2 N3
1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
1.3 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1.4 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1.5 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
2.1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
2.2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
2.3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1
2.4 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
2.5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0
3.1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0
3.2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4.2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0
4.3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
4.4 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
4.5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
5.1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1
5.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
5.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.4 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
5.5 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0

HU	-	CP						1.5 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
2.4 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
2.5 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

HP	-	CU						1.1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
2.1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
3.1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
4.1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.5: Matches of streams/utilities at each subnetwork.

observed that the load that is provided by H1 and H3 are the same and the load that is required

by C1 and CU are also the same. What is interesting is that even if initially they have different

heat capacities in this subnetwork following the proofs from previous section these streams can

be exchanged. As illustrated in Figure 5.6 these permutations lead to other optimal solutions

some of which appear in the set of these solutions.

What is crucial in the results and observations is that if we are able to represent the relation of

the parameters of a HEN problem from the given data then potentially the duplications of the

identical solutions can be eliminated when the problem is solved. At the same time though is

important that if at least one such optimal solution is produced all the others can be generated

from the symmetry group that is assigned to the problem. Hence their effect in the overall

investment cost can be evaluated which is sequentially solved in the last part of the formulation,
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that is not examined in this work.

5.4 Packing Nature of the Minimum Number of Matches Prob-

lem

Ceccon et al. (2016) uncover special structures of the pooling problem in MINLP problems.

They claim that finding these named structures will allow branch-and-cut software solvers to

apply generic algorithms and expedite performance for many mathematical optimisation prob-

lems. In a similar way, this section relates the minimum number of matches problem with

packing problems. The thermodynamic constraints impose obstacles when we try to fit HENS

into the standard formulations. Nevertheless, the next two chapters use variations of a simple

packing representation to analyse its computational complexity, derive a novel MILP formula-

tion for a single temperature interval and develop heuristics and approximation algorithms.

A feasible solution of the minimum number of matches problem can be viewed as a fractional

packing of 2-dimensional items into 2-dimensional boxes as shown in Figure 5.7. Hot stream

i ∈ H is a rectangle of width FCpi and and height spanning the interval [T HS
in,i ,T

HS
out,i], while cold

stream j ∈C is a rectangle of width FCp j and height spanning the interval [TCS
in, j,T

CS
out, j]. Notice

that the positioning of the items and the boxes on the vertical temperature axis is important,

while the positioning on the horizontal flow rate axis does not matter. Then, a feasible solution

of the problem is a fractional packing of the items in the boxes so that no pair of items overlap

in any box. The objective of this problem is to minimise the number of item splittings.

5.5 Computational Complexity: N P-hardness reduction

The minimum number of matches problem is known to be strongly N P-hard, even in the

special case of a single temperature interval. Furman and Sahinidis (2004) propose an N P-

hardness reduction from the well-known 3-Partition problem, i.e. they show that the minimum

number of matches problem has difficulty equivalent to the 3-Partition problem. This chapter

presents an alternative N P-hardness reduction from the bin packing problem.

81



Theorem 5.2 There exists an N P-hardness reduction from bin packing to the minimum num-

ber of matches problem with a single temperature interval.

Proof:

Initially, define the decision version of bin packing. A bin packing instance consists of a set

B = {1,2, . . . ,m} of bins, each bin of capacity K, and a set O = {1,2, . . . ,n} of objects, where

object i ∈ O has size si ∈ (0,K]. The goal is to determine whether there exist a feasible packing

O1,O2, . . . ,Om of the objects into the bins, where O j ⊆ O is the subset of objects packed in

bin j ∈ B. Each object is placed in exactly one bin, i.e. ∪m
j=1O j = O and O j ∩O j′ = /0 for

each 1 ≤ j < j′ ≤ m, and the total size of the objects in a bin do not exceed its capacity, i.e.

∑i∈O j si ≤ K, for j ∈ B.

Consider an instance (O,n,B,m) of bin packing. Construct an instance of the minimum number

of matches problem with a single temperature interval by setting H = O, hi = si for i = 1, . . . ,n,

C = B and c j = K for j = 1, . . . ,m. We claim that bin packing has a feasible solution if and only

if the constructed minimum number of matches instance is feasible using exactly n matches.

To the first direction, consider a feasible packing O1, . . . ,Om. For each i ∈ H and j ∈ C, we

obtain a solution for the minimum number of matches instance by setting qi, j = hi if i ∈O j, and

qi, j = 0, otherwise. By the constraints ∪m
j=1O j = O and O j ∩O j′ = /0 for each 1 ≤ j < j′ ≤ m,

there is exactly one j ∈ B such that i ∈ O j. Hence, the number of matches is |{(i, j) ∈ H×C :

qi, j > 0}|= n and ∑ j∈C qi, j = hi for every i∈H. Since the capacity of bin j ∈ B is not exceeded,

we have that ∑i∈O j si ≤ K, or equivalently ∑i∈H qi, j ≤ c j for all j ∈ C. Thus, the obtained

solution is feasible.

To the other direction, consider a feasible solution for the minimum number of matches instance.

Obtain a feasible packing by placing object i ∈ O in the bin j if and only if qi, j > 0. Since the

solution contains at most n matches and hi > 0, for each i ∈ H, each hot stream i ∈ H matches

with exactly one cold stream j ∈C and it holds that qi, j = hi. That is, each object is placed in

exactly one bin. Given that ∑i∈H qi, j ≤ c j = K, the bin capacity constraints are also satisfied.

This alternative setting of the minimum number of matches problem gives new insight into the

packing nature of the problem. A major contribution of this thesis is to design efficient, greedy

heuristics motivated by packing as presented in Chapter 6.
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5.6 Novel Mixed-Integer Linear Programming Formulation

for a Single Temperature Interval

In the single temperature interval problem, a feasible solution can be represented as a bipartite

graph G = (H∪C,M) as shown in Figure 5.2 in which there is a node for each hot stream i ∈H,

a node for each cold stream j ∈ C and the set M ⊆ H ×C specifies the matches. We observe

that an optimal solution whose graph G represents an optimal solution does not contain any

cycle as shown in Figures 5.8 and 5.9. A connected graph without cycles is a tree, so G is a

forest consisting of trees. The number v of edges in G, i.e. the number of matches, is related

to the number ` of trees with the equality v = n+m− `. Since n and m are input parameters,

minimising the number of matches in a single temperature interval is equivalent to finding a

solution whose graph consists of a maximal number ` of trees.

We propose a novel MILP formulation for the single temperature interval problem. In an optimal

solution without cycles, there can be at most min{n,m} trees. From a packing perspective, we

assume that there are min{n,m} available bins and each stream is placed into exactly one bin.

If a bin is non-empty, then its content corresponds to a tree of the graph. The objective is to find

a feasible solution with a maximum number of bins. To formulate the problem as an MILP, we

define the set B = {1,2, . . . ,min{n,m}} of available bins. Binary variable xb is 0 if bin b ∈ B is

empty and 1, otherwise. A binary variable wi,b indicates whether hot stream i ∈H is placed into

bin b ∈ B. Similarly, a binary variable z j,b specifies whether cold stream j ∈C is placed into bin

b ∈ B. Then, the minimum number of matches problem can be formulated:

max ∑
b∈B

xb (5.22)

xb ≤ ∑
i∈H

wi,b b ∈ B (5.23)

xb ≤ ∑
j∈C

z j,b b ∈ B (5.24)

∑
b∈B

wi,b = 1 i ∈ H (5.25)

∑
b∈B

z j,b = 1 j ∈C (5.26)

∑
i∈H

wi,b ·hi = ∑
j∈C

z j,b · c j b ∈ B (5.27)
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xb,wi,b,z j,b ∈ {0,1} b ∈ B, i ∈ H, j ∈C (5.28)

Expression (5.22), the objective function, maximises the number of bins. Equations (5.23) and

(5.24) ensure that a bin is used if there is at least one stream in it. Equations (5.25) and (5.26)

enforce that each stream is assigned to exactly one bin. Finally, Eqs. (5.27) ensure the heat

conservation of each bin. Note that, unlike the transportation and transshipment models, Eqs.

(5.22)-(5.27) do not use a big-M parameter. This formulation is particularly useful in the next

chapter where an approximation algorithm is proposed for solving each temperature interval

individually. However, the aim of generalising this idea to multiple temperature intervals is

still a challenge. The next section explores alternatively, methods of generating tighter big-M

constraints in a single and multiple temperature intervals. This leads to the evaluation of the

exact methods on solving the minimum number of matches using the proposed bounds.

5.7 Maximum Heat Computations with Match Restrictions

This section discusses the feasibility of HENS problem. We propose methods to compute the

maximum heat that can be feasibly exchanged given a minimum number of matches instance.

Such methods are used to reduce the value of big-M parameter Ui, j.

Section 5.7.1 is limited to a restricted subset of matches in a single temperature interval. Section

5.7.2 calculates the maximum heat that can be feasibly exchanged for the most general case of

multiple temperature intervals.

5.7.1 Maximum Heat in a Single Temperature Interval

Given an instance of the single temperature interval problem and a subset M of matches, the

maximum amount of heat that can be feasibly exchanged between the streams using only the

matches in M can be computed by solving MaxHeatLP. For simplicity, MaxHeatLP drops
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temperature interval indices for variables qi, j.

max ∑
(i, j)∈M

qi, j

∑
j∈C

qi, j ≤ hi i ∈ H

∑
i∈H

qi, j ≤ c j j ∈C

qi, j ≥ 0 i ∈ H, j ∈C

(MaxHeatLP)

5.7.2 Multiple Temperature Intervals

Maximising the heat exchanged through a subset of matches across multiple temperature inter-

vals can be solved with an LP that generalises MaxHeatLP. The generalised LP must satisfy the

additional requirement that, after removing a maximum heat exchange, the remaining instance

is feasible. Feasibility is achieved using residual capacity constraints which are essential for the

efficiency of greedy packing heuristics (see Section 6.4.1).

Given a set M of matches, let A(M) be the set of quadruples (i,s, j, t) such that a positive amount

of heat can be feasibly transferred via the transportation arc with endpoints the nodes (i,s) and

( j, t). The set A(M) does not contain any quadruple (i,s, j, t) with: (i) s > t, (ii) σi,s = 0, (iii)

δ j,t = 0, or (iv) (i, j) 6∈M. Let V H(M) and VC(M) be the set of transportation vertices (i,s) and

( j, t), respectively, that appear in A(M). Similarly, given two fixed vertices (i,s) ∈ V H(M) and

( j, t) ∈VC(M), we define the sets VC
i,s(M) and V H

j,t(M) of their respective neighbours in A(M).

Consider a temperature interval u ∈ T . We define by Au(M) ⊆ A(M) the subset of quadruples

with s≤ u< t, for u∈ T . The total heat transferred via the arcs in Au(M) must be upper bounded

by Ru = ∑
n
i=1 ∑

u
s=1 σi,s−∑

m
j=1 ∑

u
t=1 δ j,t . Furthermore, A(M) eliminates any quadruple (i,s, j, t)

with Ru = 0, for some s≤ u < t. Finally, we denote by T (M) the subset of temperature intervals

affected by the matches in M, i.e. if u ∈ T (M), then there exists a quadruple (i,s, j, t) ∈ A(M),

with s≤ u < t.

max ∑
(i,s, j,t)∈A(M)

qi,s, j,t (5.29)

∑
( j,t)∈VC

i,s(M)

qi,s, j,t ≤ σi,s (i,s) ∈V H(M) (5.30)
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∑
(i,s)∈V H

j,t (M)

qi,s, j,t ≤ δ j,t ( j, t) ∈VC(M) (5.31)

∑
(i,s, j,t)∈Au(M)

qi,s, j,t ≤ Ru u ∈ T (M) (5.32)

qi,s, j,t ≥ 0 (i,s, j, t) ∈ A(M) (5.33)

Expression (5.29) maximises the total exchanged heat by using only the matches in M. Con-

straints (5.30) and (5.31) ensure that each stream uses only part of its available heat. Constraints

(5.32) enforce the heat residual capacities. Using this method of computing the maximum heat

exchanged between any pair of streams and subsequently the big-M constraints, the next session

evaluates the performance of exact methods for solving this problem.

5.8 Performance of Exact Methods for Solving the Minimum

Number of Matches Problem

We evaluate exact methods using state-of-the-art commercial approaches. For each problem

instance, CPLEX and Gurobi solve the transportation and transshipment models as formulated

in Chapter 3, Section 3.5. The description, configuration and analysis of HENS follow Floudas

(1995). This section addresses MILP transshipment models consisting of a set of hot process

streams HS to be cooled and a set of cold process streams CS to be heated; each stream has an

initial and target temperature and a heat capacity. There are also hot utilities HU and cold utili-

ties CU with associated temperatures. The symbols representing the mathematical formulation

are shown in Table 5.1.

5.8.1 System Specification and Benchmark Instances

All computations are run on an Intel Core i7-4790 CPU 3.60GHz with 15.6 GB RAM running

64-bit Ubuntu 14.04. CPLEX 12.6.3 and Gurobi 6.5.2 solve the minimum number of matches

problem exactly. The mathematical optimisation models and heuristics are implemented in

Python 2.7.6 and Pyomo 4.4.1 (Hart et al. 2011, 2012).

We use problem instances from two existing test sets (Furman and Sahinidis 2004, Chen et al.
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2015a). We also generate a collection of larger test cases using work of Grossmann (2017). An

instance of general heat exchanger network design consists of streams and utilities with inlet,

outlet temperatures, flowrate heat capacities and other parameters.

The Furman (2000) test set consists of test cases from the engineering literature. Table 5.3 re-

ports bibliographic information on the origin of these test cases. We manually digitize this data

set and make it publicly available for the first time (Letsios et al. 2017). Table 5.3 lists the 26

problem instance names and information on their sizes. The total number streams and tempera-

ture intervals varies from 6 to 38 and from 5 to 32, respectively. Table 5.3 also lists the number

of binary and continuous variables as well as the number of constraints in the transshipment

MILP formulation.

The Chen et al. (2015b,a) test set consists of 10 problem instances. These instances are classified

into two categories depending on whether they consist of balanced or unbalanced streams. Test

cases with balanced streams have flowrate heat capacities in the same order of magnitude, while

test cases with unbalanced streams have dissimilar flowrate heat capacities spanning several

orders of magnitude. The sizes of these instances range from 10 to 42 streams and from 12 to

35 temperature intervals. Table 5.3 reports more information on the size of each test case.

The Grossmann (2017) test set is generated randomly. The inlet, outlet temperatures of these

instances are fixed while the values of flowrate heat capacities are generated randomly with

fixed seeds. This test set contains 12 moderately challenging problems (see Table 5.3) with a

classification into balanced and unbalanced instances, similarly to the Chen et al. (2015b,a) test

set. The smallest problem involves 27 streams and 23 temperature intervals while the largest

one consists of 43 streams and 37 temperature intervals. The Large Scale test set is generated

randomly. These instances have 80 hot streams, 80 cold streams, 1 hot utility and 1 cold utility.

For each hot stream i ∈ HS, the inlet temperature T HS
in,i is chosen uniformly at random in the

interval (30,400]. Then, the outlet temperature T HS
out,i is selected uniformly at random in the

interval [30,T HS
in,i ). Analogously, for each cold stream j ∈ CS, the outlet temperature TCS

out, j is

chosen uniformly at random in the interval (20,400]. Next, the inlet temperature TCS
in, j is chosen

uniformly at random in the interval [20,TCS
out, j). The flowrate heat capacities FCpi and FCp j of

hot stream i and cold stream j are chosen as floating numbers with two decimal digits in the

interval [0,15]. The hot utility has inlet temperature T HU
in = 500, outlet temperature T HS

out = 499,
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and cost κHU = 80. The cold utility has inlet temperature TCU
in = 20, outlet temperature TCU

out =

21, and cost κCU = 20. The minimum heat recovery approach temperature is ∆Tmin = 10.

5.8.2 Experiments

Based on the difficulty of each test set, we set a time limit for each solver run as follows: (i)

1800 seconds for the Furman (2000) test set, (ii) 7200 seconds for the Chen et al. (2015b,a) test

set, and (iii) 14400 seconds for the Grossmann (2017) and large scale test sets. In each solver

run, we set absolute gap 0.99, relative gap 4%, and maximum number of threads 1.

Table 5.4 reports the best found objective value, CPU time and relative gap, for each solver run.

Observe that state-of-the-art approaches cannot, in general, solve moderately-sized problems

with 30-40 streams to global optimality. For example, none of the test cases in the Grossmann

(2017) or large scale test sets is solved to global optimality within the specified time limit. Table

5.5 contains the results reported by Furman and Sahinidis (2004) using CPLEX 7.0 with 7 hour

time limit. CPLEX 7.0 fails to solve 4 instances to global optimality. Interestingly, CPLEX

12.6.3 still cannot solve 3 of these 4 instances with a 1.5 hour timeout.

Theoretically, the transshipment MILP is better than the transportation MILP because the for-

mer has asymptotically fewer variables. This observation is validated experimentally with the

exception of very few instances, e.g. balanced10, in which the transportation model com-

putes a better solution within the time limit. CPLEX and Gurobi are comparable and neither

dominates the other. Instances with balanced streams are harder to solve, which highlights the

difficulty introduced by symmetry, see Kouyialis and Misener (2017).

The preceding numerical analysis refers to the extended transportation MILP. Table 5.7 com-

pares solver performance to the reduced transportation MILP, i.e. a formulation removing re-

dundant variables qi,s, j,t with s > t and Equations (3.11). Note that modern versions of CPLEX

and Gurobi show effectively no difference between the two formulations. Despite the various

differences, the obtained results indicate that CPLEX and Gurobi are able to detect redundant

variables and their performance on the two models is not substantially different.

These findings motivate the design of efficient heuristic methods and approximation algorithms

with proven performance guarantees.
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Test Case Hot
Streams

Cold
Streams

Temp.
Intervals

Binary
Vars

Continuous
Vars Constraints Ref

Furman and Sahinidis (2004) Test Set
10sp-la1 5 6 9 30 315 134 Linnhoff. and Ahmad (1989)
10sp-ol1 5 7 8 35 320 136 Shenoy (1995)
10sp1 5 6 9 30 315 134 Pho and Lapidus (1973)
12sp1 10 3 13 30 520 209 Grossmann and Sargent (1978)
14sp1 7 8 14 56 882 273 Grossmann and Sargent (1978)
15sp-tkm 10 7 15 70 1200 335 Tantimuratha et al. (2000)
20sp1 10 11 20 110 2400 540 Grossmann and Sargent (1978)
22sp-ph 12 12 18 144 2808 588 Polley and Heggs (1999)
22sp1 12 12 17 144 2652 564 Miguel et al. (1998)
23sp1 11 13 19 143 2926 610 Mocsny and Govind (1984)
28sp-as1 17 13 15 221 3570 688 Ahmad and Smith (1989)
37sp-yfyv 21 17 32 357 12096 1594 Yu et al. (2000)
4sp1 3 3 5 9 60 42 Lee et al. (1970)
6sp-cf1 3 4 5 12 75 50 Ciric and Floudas (1989)
6sp-gg1 3 3 5 9 60 42 Gundersen and Grossmann (1990)
6sp1 3 4 6 12 90 57 Lee et al. (1970)
7sp-cm1 4 5 8 20 192 96 Colberg and Morari (1990)
7sp-s1 7 2 8 14 168 93 Shenoy (1995)
7sp-torw1 5 4 7 20 175 88 Trivedi et al. (1990)
7sp1 3 5 6 15 108 66 Masso and Rudd (1969)
7sp2 4 4 7 16 140 76 Masso and Rudd (1969)
7sp4 7 2 8 14 168 93 Dolan et al. (1990)
8sp-fs1 6 4 8 24 240 110 Farhanieh and Sunden (1990)
8sp1 5 5 8 25 240 110 Grossmann and Sargent (1978)
9sp-al1 5 6 9 30 315 134 Ahmad and Linnhoff (1989)
9sp-has1 6 5 9 30 324 135 Hall et al. (1990)
Chen et al. (2015b,a) Test Set
balanced10 12 11 20 132 2880 604
balanced12 14 13 23 182 4508 817
balanced15 17 16 28 272 8092 1213
balanced5 7 6 12 42 588 205
balanced8 10 9 16 90 1600 404
unbalanced10 12 11 20 132 2880 604
unbalanced15 17 16 28 272 8092 1213
unbalanced17 19 18 32 342 11552 1545
unbalanced20 22 21 36 462 17424 2032
unbalanced5 7 6 12 42 588 205
Grossmann (2017) Test Set
balanced12 random0 14 13 23 182 4508 817
balanced12 random1 14 13 23 182 4508 817
balanced12 random2 14 13 23 182 4508 817
balanced15 random0 17 16 28 272 8092 1213
balanced15 random1 17 16 28 272 8092 1213
balanced15 random2 17 16 28 272 8092 1213
unbalanced17 random0 19 18 32 342 11552 1545
unbalanced17 random1 19 18 32 342 11552 1545
unbalanced17 random2 19 18 32 342 11552 1545
unbalanced20 random0 22 21 36 462 17424 2032
unbalanced20 random1 22 21 36 462 17424 2032
unbalanced20 random2 22 21 36 462 17424 2032

Table 5.3: Problem sizes of the test cases. The number of variables and constraints are computed

with respect to the transshipment model. All test cases are available online (Letsios et al. 2017).
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HP-CP N3
1.1 0 0 0 0 1 0 0 0 0 0
1.2 1 0 0 1 0 1 1 1 0 1 H1	-	
1.3 0 1 1 0 0 0 0 0 1 0 1.1 0 0 0 0 1 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0 0 0 1.2 1 0 0 1 0 1 1 1 0 1
1.5 0 0 1 0 1 0 0 0 0 0 1.3 0 1 1 0 0 0 0 0 1 0
2.1 0 1 0 1 0 0 0 1 0 0 1.4 0 0 0 0 0 0 0 0 0 0
2.2 1 1 1 0 0 0 0 1 1 1 1.5 0 0 1 0 1 0 0 0 0 0
2.3 1 1 1 1 1 1 1 1 0 1
2.4 0 0 0 0 0 0 0 0 0 0 H3	-	
2.5 1 0 0 0 1 1 1 0 1 0 3.1 1 0 0 1 1 0 0 0 1 0
3.1 1 0 0 1 1 0 0 0 1 0 3.2 0 1 0 1 1 0 0 0 0 0
3.2 0 1 0 1 1 0 0 0 0 0 3.3 0 0 1 0 0 0 1 1 1 1
3.3 0 0 1 0 0 0 1 1 1 1 3.4 0 0 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0 0 0 3.5 0 0 0 1 0 1 0 0 0 0
3.5 0 0 0 1 0 1 0 0 0 0
4.1 0 0 1 0 0 0 1 0 0 0 	-	C1
4.2 0 0 0 0 0 1 0 0 0 0 1.1 0 0 0 0 1 0 0 0 0 0
4.3 1 1 1 1 1 1 1 1 1 1 2.1 0 1 0 1 0 0 0 1 0 0
4.4 0 0 0 0 0 0 0 0 0 0 3.1 1 0 0 1 1 0 0 0 1 0
4.5 0 1 0 0 0 0 0 1 0 1 4.1 0 0 1 0 0 0 1 0 0 0
5.1 0 0 0 0 0 1 0 0 0 1 5.1 0 0 0 0 0 1 0 0 0 1
5.2 0 0 0 0 1 1 1 0 0 1
5.3 0 0 0 0 0 0 0 0 0 0 	-	CU
5.4 0 0 0 0 0 0 0 0 0 0 1.1 1 0 0 0 1 0 1 0 1 0
5.5 1 1 1 1 0 0 0 1 1 0 2.1 0 1 0 0 0 0 0 1 1 1

HP-CU 3.1 1 0 1 0 0 1 1 0 0 0
1.1 1 0 0 0 1 0 1 0 1 0 4.1 0 0 0 1 0 0 0 0 0 0
2.1 0 1 0 0 0 0 0 1 1 1 5.1 0 0 0 0 0 0 0 0 0 0
3.1 1 0 1 0 0 1 1 0 0 0
4.1 0 0 0 1 0 0 0 0 0 0

Figure 5.6: Matches of streams/utilities in subnetwork three.

90



Items

T
em

pe
ra

tu
re

(C
)

T h1
in

T h1
out

h1
h2

h3

Bins

c1

c2

c3

hot streams cold streams

Figure 5.7: A packing representation of the minimum number of matches.

5

2

4

3

3
2
1

1

Figure 5.8: Cycle existence.

5

2

4

3

4
1

2

Figure 5.9: Eliminate any cycle via backtrack-

ing method.

91



Test Case CPLEX Transportation CPLEX Transshipment Gurobi Transportation Gurobi Transshipment
Value Time (s) Gap Value Time (s) Gap Value Time (s) Gap Value Time (s) Gap

Furman and Sahinidis (2004) Test Set (30min time limit)
10sp-la1 12 0.04 12 0.03 12 0.10 12 0.09
10sp-ol1 14 0.06 14 0.03 14 0.13 14 0.11
10sp1 10 0.51 10 0.05 10 0.24 10 0.13
12sp1 12 0.08 12 0.05 12 0.16 12 0.11
14sp1 14 145.50 14 41.23 14 170.45 14 126.71
15sp-tkm 19 0.17 19 0.07 19 0.28 19 0.14
20sp1 19 * 19% 19 * 19% 19 * 21% 19 * 15%
22sp-ph 26 0.25 26 0.04 26 0.44 26 0.13
22sp1 25 * 12% 25 * 11% 25 * 12% 25 * 12%
23sp1 23 * 28% 23 * 28% 23 * 30% 23 * 26%
28sp-as1 30 0.19 30 0.05 30 0.44 30 0.12
37sp-yfyv 36 54.80 36 7.36 36 20.40 36 6.02
4sp1 5 0.03 5 0.02 5 0.10 5 0.08
6sp-cf1 6 0.03 6 0.03 6 0.09 6 0.09
6sp-gg1 3 0.02 3 0.02 3 0.09 3 0.08
6sp1 6 0.03 6 0.02 6 0.30 6 0.09
7sp-cm1 10 0.02 10 0.02 10 0.09 10 0.08
7sp-s1 10 0.02 10 0.02 10 0.09 10 0.08
7sp-torw1 10 0.03 10 0.02 10 0.10 10 0.09
7sp1 7 0.03 7 0.04 7 0.09 7 0.08
7sp2 7 0.05 7 0.03 7 0.09 7 0.09
7sp4 8 0.03 8 0.02 8 0.10 8 0.08
8sp-fs1 11 0.03 11 0.02 11 0.10 11 0.08
8sp1 9 0.04 9 0.03 9 0.14 9 0.10
9sp-al1 12 0.04 12 0.03 12 0.11 12 0.09
9sp-has1 13 0.04 13 0.04 13 0.12 13 0.09
Chen et al. (2015b,a) Test Set (2h time limit)
balanced10 25 * 6% 24 1607.14 25 * 4% 24 358.18
balanced12 30 * 16% 28 * 7% 29 * 13% 29 * 10%
balanced15 36 * 19% 37 * 17% 35 * 17% 36 * 16%
balanced5 14 0.27 14 0.20 14 0.43 14 0.23
balanced8 20 180.84 20 69.16 20 997.01 20 248.08
unbalanced10 25 36.24 25 7.45 25 46.81 25 15.97
unbalanced15 36 * 8% 36 * 4% 36 * 8% 36 * 4%
unbalanced17 43 * 15% 43 * 11% 43 * 13% 43 * 9%
unbalanced20 55 * 22% 51 * 13% 51 * 17% 50 * 10%
unbalanced5 16 0.09 16 0.05 16 0.26 16 0.13
Grossmann (2017) Test Set (4h time limit)
balanced12 random0 29 * 13% 28 * 7% 29 * 13% 28 * 7%
balanced12 random1 29 * 13% 29 * 9% 30 * 13% 29 * 10%
balanced12 random2 30 * 16% 29 * 10% 29 * 10% 29 * 10%
balanced15 random0 36 * 18% 36 * 15% 35 * 14% 36 * 13%
balanced15 random1 36 * 18% 36 * 15% 35 * 17% 35 * 11%
balanced15 random2 36 * 17% 35 * 12% 36 * 16% 35 * 11%
unbalanced17 random0 44 * 16% 43 * 9% 43 * 13% 43 * 9%
unbalanced17 random1 44 * 16% 44 * 10% 44 * 15% 43 * 6%
unbalanced17 random2 43 * 13% 43 * 9% 43 * 13% 43 * 9%
unbalanced20 random0 51 * 16% 51 * 12% 52 * 19% 52 * 13%
unbalanced20 random1 52 * 18% 52 * 15% 52 * 19% 51 * 11%
unbalanced20 random2 51 * 16% 52 * 14% 52 * 19% 50 * 10%

Table 5.4: Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with

relative gap 4%. Relative gap is defined (best incumbent - best lower bound) / best incumbent

and * indicates timeout. Bold values mark the best solver result. The transshipment formulation

performs better than the transportation model: the transshipment model solves one additional

problem (balanced10) and performs as well or better than the transportation model on 46 of

the 48 test cases (with respect to time or gap closed). CPLEX solves the small models slightly

faster than Gurobi while Gurobi closes more of the optimality gap for large problems. All exact

method results are available online (Letsios et al. 2017).
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Test Case
CPLEX

FS04 LKM17
Value Time Value Time

10sp-la1 12 0.07 12 0.03
10sp-ol1 14 0.09 14 0.03
10sp1 10 2.20 10 0.05
12sp1 12 0.04 12 0.05
14sp1 14 33.76 14 41.23
15sp-tkm 19 0.70 19 0.07
20sp1 19 ** 19 *
22sp-ph 26 1.84 26 0.04
22sp1 25 ** 25 *
23sp1 23 ** 23 *
28sp-as1 30 0.03 30 0.05
37sp-yfyv 36 ** 36 7.36
4sp1 5 0.00 5 0.02
6sp-cf1 6 0.01 6 0.03
6sp-gg1 3 0.00 3 0.02
6sp1 6 0.00 6 0.02
7sp-cm1 ] 10 0.00 10 0.02
7sp-s1 10 0.00 10 0.02
7sp-torw1 10 0.03 10 0.02
7sp1 7 0.01 7 0.04
7sp2 7 0.04 7 0.03
7sp4 8 0.00 8 0.02
8sp-fs1 11 0.01 11 0.02
8sp1 ] 9 0.03 9 0.03
9sp-al1 12 0.03 12 0.03
9sp-has 13 0.03 13 0.04

Table 5.5: Comparison of our results (labelled LKM17) with the ones reported by Furman and

Sahinidis (2004) (labelled FS04). The CPLEX comparison basically confirms that CPLEX has

improved in the past 13 years: LKM17 use CPLEX 12.6.3 while FS04 use CPLEX 7.0. An *

indicates 30min timeout while ** corresponds to a 7h timeout. All results are available online

(Letsios et al. 2017).

Test Case
CPLEX

Transshipment
Value Time

large scale0 175 *
large scale1 219 *
large scale2 239 *

Table 5.6: Upper bounds, i.e. feasible solutions, for large-scale instances computed by CPLEX

12.6.3 transshipment model with 4h timeout. Symbol * indicates timeout.
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Test Case CPLEX Transportation CPLEX Reduced Transportation Gurobi Transportation Gurobi Reduced Transportation
Value Time Gap Value Time Gap Value Time Gap Value Time Gap

Furman and Sahinidis (2004) Test Set(30min time limit)
10sp-la1 12 0.04 12 0.05 12 0.10 12 0.13
10sp-ol1 14 0.06 14 0.04 14 0.13 14 0.11
10sp1 10 0.51 10 0.65 10 0.24 10 0.13
12sp1 12 0.08 12 0.08 12 0.16 12 0.13
14sp1 14 145.50 14 144.87 14 170.45 14 172.62

15sp-tkm 19 0.17 19 0.14 19 0.28 19 0.20
20sp1 19 * 19% 19 * 19% 19 * 21% 19 * 21%
22sp-ph 26 0.25 26 0.13 26 0.44 26 0.24
22sp1 25 * 12% 25 * 12% 25 * 12% 25 * 12%
23sp1 23 * 28% 23 * 28% 23 * 30% 23 * 30%

28sp-as1 30 0.19 30 0.09 30 0.44 30 0.23
37sp-yfyv 36 54.80 36 32.86 36 20.40 36 89.50

4sp1 5 0.03 5 0.02 5 0.10 5 0.08
6sp-cf1 6 0.03 6 0.02 6 0.09 6 0.08
6sp-gg1 3 0.02 3 0.02 3 0.09 3 0.08
6sp1 6 0.03 6 0.02 6 0.30 6 0.08

7sp-cm1 10 0.02 10 0.02 10 0.09 10 0.09
7sp-s1 10 0.02 10 0.02 10 0.09 10 0.12

7sp-torw1 10 0.03 10 0.03 10 0.10 10 0.09
7sp1 7 0.03 7 0.23 7 0.09 7 0.08
7sp2 7 0.05 7 0.04 7 0.09 7 0.09
7sp4 8 0.03 8 0.02 8 0.10 8 0.10

8sp-fs1 11 0.03 11 0.05 11 0.10 11 0.10
8sp1 9 0.04 9 0.07 9 0.14 9 0.13

9sp-al1 12 0.04 12 0.03 12 0.11 12 0.10
9sp-has1 13 0.04 13 0.04 13 0.12 13 0.10

Chen et al. (2015b,a) Test Set (2h time limit)
balanced10 25 * 6% 25 * 6% 25 * 4% 25 * 8%
balanced12 30 * 16% 30 * 16% 29 * 13% 29 * 13%
balanced15 36 * 19% 37 * 21% 35 * 17% 36 * 19%
balanced5 14 0.27 14 0.26 14 0.43 14 0.33
balanced8 20 180.84 20 885.66 20 997.01 20 214.00

unbalanced10 25 36.24 25 64.92 25 46.81 25 61.19
unbalanced15 36 * 8% 36 * 9% 36 * 8% 36 * 8%
unbalanced17 43 * 15% 43 * 15% 43 * 13% 43 * 13%
unbalanced20 55 * 22% 53 * 21% 51 * 17% 53 * 20%
unbalanced5 16 0.09 16 0.08 16 0.26 16 0.22

Grossmann (2017) Test Set (4h time limit)
balanced12 random0 29 * 13% 28 * 8% 29 * 13% 29 * 13%
balanced12 random1 29 * 13% 29 * 11% 30 * 13% 29 * 10%
balanced12 random2 30 * 16% 29 * 13% 29 * 10% 28 * 7%
balanced15 random0 36 * 18% 36 * 18% 35 * 14% 36 * 19%
balanced15 random1 36 * 18% 36 * 18% 35 * 17% 35 * 17%
balanced15 random2 36 * 17% 37 * 19% 36 * 16% 36 * 19%
unbalanced17 random0 44 * 16% 43 * 14% 43 * 13% 43 * 13%
unbalanced17 random1 44 * 16% 44 * 15% 44 * 15% 44 * 15%
unbalanced17 random2 43 * 13% 43 * 14% 43 * 13% 44 * 13%
unbalanced20 random0 51 * 16% 51 * 16% 52 * 19% 52 * 19%
unbalanced20 random1 52 * 18% 52 * 18% 52 * 19% 52 * 17%
unbalanced20 random2 51 * 16% 51 * 17% 52 * 19% 53 * 20%

Table 5.7: Computational results using exact solvers CPLEX 12.6.3 and Gurobi 6.5.2 with

relative gap 4% for solving the transportation and reduced transportation MILP models. The

relative gap is (best incumbent - best lower bound) / best incumbent and * indicates timeout. All

exact method results are available online in Letsios et al. (2017).
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Chapter 6

Heuristics with Performance

Guarantees for the Minimum

Number of Matches Problem in

Heat Recovery Network Design

This work is dedicated, with deepest respect, to the memory of Professor C. A. Floudas. Pro-

fessor Floudas showed that, given many provably-strong solutions to the minimum number of

matches problem, he could design effective heat recovery networks. So the diverse solutions

generated by this manuscript directly improve Professor Floudas’ method for automatically

generating heat exchanger network configurations.

Current MILP solvers are not able to solve the minimum number of matches problem to global

optimality for moderately-sized problems. Hence we shift our interest on developing heuris-

tics with performance guarantees that provide near-optimal solutions in coherent time. These

methods have guaranteed solution quality and efficient run-time bounds. Furman and Sahinidis

(2004) propose a collection of approximation algorithms, for the minimum number of matches

problem by exploiting the LP relaxation of an MILP formulation. They present a greedy ap-
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proximation algorithm similar to the Cerda et al. (1983) northwest algorithm, which generalises

a simple greedy algorithm for the single temperature interval problem that resembles to the tick-

off heuristic in Linnhoff and Hindmarsh (1983). They present a unified worst-case analysis of

their algorithms’ performance guarantees and show a non-constant approximation ratio scaling

with the number of temperature intervals and a constant performance guarantee for the single

temperature interval problem. This chapter explores this challenging optimisation problem from

a graph theoretic perspective and correlate it with other special optimisation problems such

as cost flow network and packing problems. In the sequential method, many possible stream

configurations are required to evaluate the minimum overall cost (Floudas 1995), so a comple-

mentary contribution of this work is a heuristic methodology for producing multiple solutions

efficiently. We classify the heuristics based on their algorithmic nature into three categories: (i)

relaxation rounding, (ii) water filling, and (iii) greedy packing. The relaxation rounding heuris-

tics we consider are (i) Fractional LP Rounding (FLPR), (ii) Lagrangian Relaxation Rounding

(LRR), and (iii) Covering Relaxation Rounding (CRR). The water-filling heuristics are (i)Water-

Filling Greedy (WFG), and (ii)Water-Filling MILP (WFM). Finally, the greedy packing heuris-

tics are (i) Largest Heat Match LP-based (LHMLP), (ii) Largest Heat Match Greedy (LHM),

(iii) Largest Fraction Match (LFM), and (iv) Shortest Stream (SS). Major ingredients of these

heuristics are adaptations of single temperature interval algorithms proposed in this section and

mathematical models in Section 5. We use maximum heat LP in a single temperature interval

and the extended maximum heat LP for a subset of matches on multiple temperature intervals.

This chapter proceeds as follows: Section 6.1 proposes an improved greedy approximation algo-

rithm for the single temperature interval problem and a greedy algorithm computing maximum

heat between two streams and their corresponding big-M parameter. Sections 6.2 - 6.4 present

our heuristics for the minimum number of matches problem based on: (i) relaxation rounding,

(ii) water filling, and (iii) greedy packing, respectively, as well as new theoretical performance

guarantees. Section 6.5 evaluates experimentally the heuristics and discusses numerical results.

6.1 Approximation algorithms

Approximation algorithms have been developed for two problem classes relevant to process

systems engineering: heat exchanger networks (Furman and Sahinidis 2004) and pooling (Dey
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Relaxation Rounding Water Filling Greedy Packing
FLPR LRR CRR WFM WFG LHM LFM LHM-LP SS
(6.2.1) (6.2.2) (6.2.3) (6.3) (6.3) (6.4.2) (6.4.3) (6.4.2) (6.4.4)

Single Temperature Interval Problem
MILP Model (5.6) X

Approximation Algorithm (6.1.1) X
Maximum Heat Computations

Two Streams, Big-M Parameter (6.1.2) X X X X X X
Single Temperature Interval (5.7.1) X X

Multiple Temperature Intervals (5.7.2) X X

Table 6.1: Table indicating the single temperature interval problem and maximum heat with

match restrictions components used by each heuristic. Each element is associated with a section

number. This table may be used as a roadmap to the chapter.

Heuristic Abbrev. Section Performance Guarantee Running Time
Single Temperature Interval Problem
Simple Greedy SG 6.1.1 2† (tight) O(nm)
Improved Greedy IG 6.1.1 1.5 (tight) O(nm)

Relaxation Rounding Heuristics
Fractional LP Rounding FLPR 6.2.1 O(k)†, O(Umax), Ω(n) 1 LP
Lagrangian Relaxation Rounding LRR 6.2.2 2 LPs
Covering Relaxation Rounding CRR 6.2.3 O(nm) ILPs
Water Filling Heuristics
Water Filling MILP WFM 6.3 & 5.6 O(k)†, Ω(k) O(k) MILPs
Water Filling Greedy WFG 6.3 & 6.1.1 O(k)†, Ω(k) O(nmk)
Greedy Packing Heuristics
Largest Heat Match LP-based LHM-LP 6.4.2 O(logn+ log(hmax/ε)) O(n2m2) LPs
Largest Heat Match Greedy LHM 6.4.2 O(n2m2k)
Largest Fraction Match LFM 6.4.3 O(n2m2k)
Shortest Stream SS 6.4.4 O(nmk)

Table 6.2: Performance guarantees for the minimum number of matches problem. The perfor-

mance guarantees marked † are from Furman and Sahinidis (2004); all others are new to this

manuscript.

and Gupte 2015). The literature and further explanations are provided in the introduction. Table

6.2 lists performance guarantees for the minimum number of matches problem; most are new to

this manuscript.

6.1.1 Improved Approximation Algorithm for a Single Temperature In-

terval Problem

Furman and Sahinidis (2004) propose a greedy 2-approximation algorithm for the minimum

number of matches problem in a single temperature interval. We show that their analysis is
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Algorithm 1 Simple Greedy (SG), developed by Furman and Sahinidis (2004), is applicable to
one temperature interval only.

1: Sort the streams so that h1 ≥ h2 ≥ . . .≥ hn and c1 ≥ c2 ≥ . . .≥ cm.
2: Set i = 1 and j = 1.
3: while there is remaining heat load to be transferred do
4: Transfer qi, j = min{hi,c j}
5: Set hi = hi−qi, j and c j = c j−qi, j
6: if hi = 0, then set i = i+1
7: if c j = 0, then set j = j+1
8: end while

tight. We also propose an improved, tight 1.5-approximation algorithm by prioritising matches

with equal heat loads and exploiting graph theoretic properties.

The simple greedy (SG) algorithm considers the hot and the cold streams in non-increasing heat

load order (Furman and Sahinidis 2004). Initially, the first hot stream is matched to the first cold

stream and an amount min{h1,c1} of heat is transferred between them. Without loss of gener-

ality h1 > c1, which implies that an amount h1− c1 of heat load remains to be transferred from

h1 to the remaining cold streams. Subsequently, the algorithm matches h1 to c2, by transferring

min{h1− c1,c2} heat. The same procedure repeats with the other streams until all remaining

heat load is transferred.

Furman and Sahinidis (2004) show that Algorithm SG is 2-approximate for one temperature

interval. Our new result in Theorem 6.1 shows that this ratio is tight.

Lemma 6.1 concerns the structure of an optimal solution for the single temperature interval

problem. It shows that the corresponding graph is acyclic and that the number of matches is

related to the number of graph’s connected components (trees), if arc directions are ignored.

Lemma 6.1 Consider an instance H, C of the single temperature interval problem. For each

optimal solution (~y∗,~q∗), there exists an integer `∗ ∈ [1,min{n,m}] s.t.

• if arc directions are ignored, the corresponding graph G(~y∗,~q∗) is a forest consisting of

`∗ trees, i.e. there are no cycles, and

• (~y∗,~q∗) contains v∗ = m+n− `∗ matches.

Proof:

Assume that G(~y∗,~q∗) contains a cycle, after removing arc directions. Moreover, let M =
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{(i1, j1),(i2, j1),(i2, j2),(i3, j2), . . . ,(ig, jg−1),(ig, jg),(i1, jg)} be a subset of matches forming

a cycle. Denote by q∗min = min{q∗i, j : (i, j) ∈ M} the minimum amount of heat transferred via

a match in M. Without loss of generality, assume that q∗i1, j1 = q∗min. Starting from (~y∗,~q∗),

produce a feasible solution (~y,~q) as follows. Set qi1, j1 = 0, qie, je = q∗ie, je − q∗min and qie, je−1 =

q∗ie, je−1
+q∗min, for e = 2, . . . ,g, as well as qi1, jg = q∗i1, jg +q∗min. The new solution (~y,~q) is feasible

and has a strictly smaller number of matches compared to (~y∗,~q∗), which is a contradiction.

Since G(~y∗,~q∗) does not contain a cycle, it must be a forest consisting of `∗ trees (which we call

bins from a packing perspective). Let B = {1, . . . , `∗} be the set of these trees and Mb the subset

of matches in tree b ∈ B. By definition, tree b ∈ B contains |Mb| matches (edges) and, therefore,

|Mb|+ 1 streams (nodes). Furthermore, each stream appears in exactly one tree implying that

∑
`∗
b=1 |Mb|= n+m− `∗. Thus, it holds that the number of matches in (~y∗,~q∗) is equal to:

v =
`∗

∑
b=1
|Mb|= n+m− `∗.

Theorem 6.1 Algorithm SG achieves an approximation ratio of 2 for the single temperature

interval problem and it is tight.

Proof:

In the algorithm’s solution, the number v of matches is equal to the number of steps that the

algorithm performs. For each pair of streams i ∈H and j ∈C matched by the algorithm, at least

one has zero remaining heat load exactly after they have been matched. Therefore, the number

of steps is at most v≤ n+m−1. The optimal solution contains at least v∗ ≥max{n,m}. Hence,

the algorithm is 2-approximate.

Consider a set of n hot streams with heat loads hi = 2n+1− i for 1≤ i≤ n and m = n+1 cold

streams with c j = 2n− j, for 1≤ j ≤ m. As shown in Figure 6.1 for the special case n = 5, the

algorithm uses 2n matches while the optimal solution has n+1 matches. Hence, the 2 approxi-

mation ratio of Algorithm SG is asymptotically tight.

Algorithm IG improves Algorithm SG by: (i) matching the pairs of hot and cold streams with
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Figure 6.1: An instance showing the tightness of the 2 performance guarantee for Algorithm

SG.

Algorithm 2 Improved Greedy (IG) is applicable to one temperature interval only.

1: for each pair of hot stream i and cold stream j s.t. hi = c j do
2: Transfer hi amount of heat load (also equal to c j) between them and remove them.
3: end for
4: Run Algorithm SG with respect to the remaining streams.

equal heat loads and (ii) using the acyclic property in the graph representation of an optimal

solution.

Lemma 6.2 formalises the benefit of matching stream pairs with equal heat loads and indicates

the way of manipulating these matches in the analysis of Algorithm IG and the proof of Theorem

6.2.

Lemma 6.2 Consider an instance (H,C) of the single temperature interval problem and sup-

pose that there exists a pair of streams i ∈ H and j ∈C such that hi = c j. Then,

• there exists an optimal solution (~y∗,~q∗) s.t. q∗i, j = hi, i.e. i and j are matched together,

• any ρ-approximate solution for (H \ {i},C \ { j}) is also ρ-approximate for (H,C) with

the addition of match (i, j).

Proof:

Consider an optimal solution (~y∗,~q∗) in which i and j are not matched solely to each other.

Suppose that i is matched with j1, j2, . . . , jm′ while j is matched with i1, i2, . . . , in′ . Without loss

of generality, q∗i, j = 0; the case 0 < q∗i, j < hi is treated similarly. Starting from (~y∗,~q∗), we
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obtain the slightly modified solution (~y,~q) in which i is matched only with j. The c j units of

heat of i1, i2, . . . , in′ originally transferred to j are now exchanged with j1, j2, . . . , jm′ , which are

no longer matched with i. The remaining solution is not modified. Analogously to the proof

of Theorem 6.1, we show that there can be at most n′+m′−1 new matches between the n′ hot

streams (i.e. i1, i2, . . . , in′ ) and the m′ cold streams (i.e. j1, j2, . . . , jm′ ) in (~y,~q). By also taking

into account the new match (i, j), we conclude that there exists always a solution in which i is

only matched with j and has no more matches than (~y∗,~q∗).

Consider an optimal solution (~y∗,~q∗) for (H,C), in which there are v∗ matches and i is matched

only with j. An optimal solution for (H \ {i},C \ { j}) contains v∗− 1 matches. Suppose that

(~y,~q) is the union of a ρ-approximate solution for (H \{i},C \{ j}) and the match (i, j). Let v

be the number of matches in (~y,~q). Clearly, v−1≤ ρ · (v∗−1) which implies that v≤ ρ ·v∗, as

ρ ≥ 1.

The following theorem shows a tight analysis for Algorithm IG.

Theorem 6.2 Algorithm IG achieves an approximation ratio of 1.5 for the single temperature

interval problem and it is tight.

Proof:

By Theorem 6.1, Algorithm IG produces a solution (~y,~q) with v≤ n+m matches. Consider an

optimal solution (~y∗,~q∗). By Lemma 6.1, (~y∗,~q∗) consists of `∗ trees and has v∗ = n+m− `∗

matches. Due Lemma 6.2, we may assume that instance does not contain a pair of equal hot

and cold streams. Hence, each tree in the optimal solution contains at least 3 streams, i.e.

`∗ ≤ (n+m)/3. Thus, v∗ ≥ (2/3)(n+m) and we conclude that v≤ (3/2)v∗.

For the tightness of our analysis, consider an instance of the problem with n hot streams, where

hi = 4n−2i for i = 1, . . . ,n, and m = 2n cold streams such that c j = 4n−2 j−1 for j = 1, . . . ,n

and c j = 1 for j = n+1, . . . ,2n. Algorithm IG uses 3n matches, while the optimal solution uses

2n matches. Hence the 3/2 approximation ratio of the algorithm is tight. Figures 6.2a and 6.2b

show the special case with n = 4.
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Figure 6.2: An instance showing the tightness of the 1.5 performance guarantee for Algorithm

IG.

6.1.2 Greedy Algorithm for Big-M Parameter Computation

A common way of computing the big-M parameters is setting Ui, j = min{hi,c j} for each i ∈ H

and j ∈C. Gundersen et al. (1997) propose a better method for calculating the big-M parameter.

Our novel Greedy Algorithm MHG (Maximum Heat Greedy) obtains tighter Ui, j bounds than

either the trivial bounds or the Gundersen et al. (1997) bounds by exploiting the transshipment

model structure.

Given hot stream i and cold stream j, Algorithm MHG computes the maximum amount of heat

that can be feasibly exchanged between i and j in any feasible solution. Algorithm MHG is

tight in the sense that there is always a feasible solution where streams i and j exchange exactly

Ui, j units of heat. Note that, in addition to Ui, j, the algorithm computes a value qi,s, j,t of the heat

exchanged between each hot stream i ∈ H in temperature interval s ∈ T and each cold stream

j ∈C in temperature interval t ∈ T , so that ∑s,t∈T qi,s, j,t =Ui, j. These qi,s, j,t values are required

by greedy packing heuristics in Section 6.4.

Algorithm 3 is a pseudocode of Algorithm MHG. The correctness, i.e. the maximality of the

heat exchanged between i and j, is a corollary of the well known maximum flow - minimum

cut theorem. Initially, the procedure transfers the maximum amount of heat across the same

temperature interval; qi,u,s,u = min{σi,u,δ j,u} for each u ∈ T . The remaining heat is trans-

ferred greedily in a top down manner, with respect to the temperature intervals, by account-
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Algorithm 3 Maximum Heat Greedy (MHG)
Input: Hot stream i ∈ H and cold stream j ∈C

1: ~q←~0
2: for u = 1,2, . . . ,k do
3: qi,u, j,u←min{σi,u,δ j,u}
4: σi,u← σi,u−qi,u, j,u
5: δ j,u← δ j,u−qi,u, j,u
6: end for
7: for s = 1,2, . . . ,k−1 do
8: for t = s+1,s+2, . . . ,k do
9: qi,s, j,t = min{σi,s,δ j,t ,mins≤u≤t−1{Ru}}

10: σi,s← σi,s−qi,s, j,t
11: δ j,t ← δ j,t −qi,s, j,t
12: for u = s,s+1,s+2, . . . , t−1 do
13: Ru← Ru−qi,s, j,t
14: end for
15: end for
16: end for
17: Return~q

ing heat residual capacities. For each temperature interval u ∈ T , the heat residual capacity

Ru = ∑
n
i=1 ∑

u
s=1 σi,s−∑

m
j=1 ∑

u
t=1 δ j,t imposes an upper bound on the amount of heat that may

descend from temperature intervals 1,2, . . . ,u to temperature intervals u+1,u+2, . . . ,k.

6.2 Relaxation Rounding Heuristics

This section investigates relaxation rounding heuristics for the minimum number of matches

problem. Figure 6.3 shows the main steps in relaxation rounding. These heuristics begin by

optimising an efficiently-solvable relaxation of the original MILP. The efficiently-solvable re-

laxation allows violation of certain constraints, so that the optimal solution(s) is (are) typically

infeasible in the original MILP. The resulting infeasible solutions are subsequently rounded

to feasible solutions for the original MILP. We consider 3 types of relaxations. Section 6.2.1

relaxes the integrality constraints and proposes fractional LP rounding. Section 6.2.2 relaxes

the big-M constraints, i.e. Eqs. (3.10), and uses Lagrangian relaxation rounding. Section 6.2.3

relaxes the heat conservation equations, i.e. Eqs. (3.8)-(3.9), and takes an approach based on

covering relaxations.
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Figure 6.3: The main components of relaxation rounding heuristics are (i) a preprocessing step,

(ii) a relaxation, and (iii) a rounding scheme. The preprocessing step constructs the relaxation.

Fractional relaxation and covering relaxation require big-M parameter computations, while La-

grangian relaxation minimum cost LP requires cost calculations. FLPR and LRR compute a

feasible heat exchange between all streams, i.e. values to variables qi,s, j,t , by solving their re-

spective relaxations and round the relaxed solutions according to Algorithm 4. Heuristic CRR

adds matches incrementally until it ends up with a feasible solution. Feasibility is determined

using the maximum heat LP in Section 5.7.2.
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6.2.1 Fractional Linear Programming Rounding

The LP rounding heuristic, originally proposed by Furman and Sahinidis (2004), transforms

an optimal fractional solution for the transportation MILP to a feasible integral solution. We

show that the fractional LP can be solved efficiently via network flow techniques. We observe

that, in the worst case, the heuristic produces a weak solution if it starts with an arbitrary optimal

solution of the fractional LP. We derive a novel performance guarantee showing that the heuristic

is efficient when the heat of each chosen match (i, j) is close to big-M parameter Ui, j, in the

optimal fractional solution.

Consider the fractional LP obtained by replacing the integrality constraints yi, j ∈ {0,1} of the

transportation MILP, i.e. Eqs. (3.7)-(3.12), with the constraints 0≤ yi, j ≤ 1, for each i ∈ H and

j ∈C:

min ∑
i∈H

∑
j∈C

yi, j

∑
j∈C

∑
t∈T

qi,s, j,t = σi,s i ∈ H,s ∈ T

∑
i∈H

∑
s∈T

qi,s, j,t = δ j,t j ∈C, t ∈ T

∑
s,t∈T

qi,s, j,t ≤Ui, j · yi, j i ∈ H, j ∈C

qi,s, j,t = 0 i ∈ H, j ∈C,s, t ∈ T : s≤ t

0≤ yi, j ≤ 1, qi,s, j,t ≥ 0 i ∈ H, j ∈C, s, t ∈ T

(FracLP)

FracLP can be solved via minimum cost flow methods. Figure 6.4 illustrates a network N, i.e. a

minimum cost flow problem instance, such that finding a minimum cost flow in N is equivalent

to optimising the fractional LP. Network N is a layered graph with six layers of nodes: (i) a

source node S, (ii) a node for each hot stream i ∈H, (iii) a node for each pair (i,s) of hot stream

i ∈ H and temperature interval s ∈ T , (iv) a node for each pair ( j, t) for each cold stream j ∈C

and temperature interval t ∈ T , (v) a node for each cold stream j ∈C, and (vi) a destination node

D. We add: (i) the arc (S, i) with capacity hi for each i ∈ H, (ii) the arc (i,(i,s)) with capacity

σi,s for each i ∈ H and s ∈ T , (iii) the arc ((i,s),( j, t)) with infinite capacity for each i ∈ H,

j ∈C and s, t ∈ T , (iv) the arc (( j, t), j) with capacity δ j,t for each j ∈ H and t ∈ T , and (v) the
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Figure 6.4: Minimum cost network flow formulation of FracLP. The heat is modelled as flow

transferred from a source node S to a destination node D. All finite capacities are labelled above

the corresponding arcs. The cost is incurred in each arc between node (i,s) ∈ H×T and node

( j, t) ∈C×T under the condition that heat flows to the same or a lower temperature interval.

Algorithm 4 Fractional LP Rounding (FLPR) (Furman and Sahinidis 2004)

1: (~y f ,~q f )← FractionalLP(I)
2: ~q←~q f

3: for each i ∈ H and j ∈C do
4: if ∑s,t∈T qi,s, j,t > 0 then
5: yi, j← 1
6: else
7: yi, j← 0
8: end if
9: end for

10: Return (~y,~q)

arc ( j,D) with capacity c j for each j ∈C. Each arc ((i,s),( j, t)) has cost 1/Ui, j for i ∈H, j ∈C

and s, t ∈ T . Every other arc has zero cost. Any flow of cost ∑i hi on network N is equivalent to

a feasible solution for FracLP with the same cost and vice versa.

Furman and Sahinidis (2004) observe that any feasible solution of FracLP can be rounded to

a feasible solution of the original problem via Algorithm 4, a simple greedy procedure that we

call FLPR. Given a problem instance I, the procedure FractionalLP(I) computes an optimal

solution of FracLP. We denote by (~y f ,~q f ) the optimal fractional solution.

An inherent drawback of the Furman and Sahinidis (2004) approach is the existence of opti-

mal fractional solutions with unnecessary matches. Theorem 6.3 shows that Algorithm FLPR
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performance is bad in the worst case, even for instances with a single temperature interval.

Theorem 6.3 Algorithm FLPR is Ω(n)-approximate.

Proof:

We construct a minimum number of matches instance for which Algorithm FLPR produces a

solution Ω(n) times far from the optimal solution. This instance consists of a single temperature

interval and an equal number of hot and cold streams, i.e. n = m, with the same heat load hi = n

and c j = n, for each i ∈ H and j ∈ C. Because of the single temperature interval, we ignore

the temperature interval indices of the variables ~q. In the optimal solution, each hot stream is

matched with exactly one cold stream and there are v∗ = n matches in total. Given that there

exist feasible solutions such that qi, j = n, for every possible i ∈ H and j ∈ C, the algorithm

computes the upper bound Ui, j = n. In an optimal fractional solution, it holds that q f
i, j = 1, for

each i ∈ H and j ∈C. In this case, Algorithm FLPR sets yi, j = 1 for each pair of streams i ∈ H,

j ∈C and uses a total number of matches equal to v = ∑i∈H ∑ j∈C yi, j = Ω(n2). Therefore, it is

Ω(n)-approximate.

Consider an optimal fractional solution to FracLP and suppose that M⊆H×C is the set of pairs

of streams exchanging a positive amount of heat. For each (i, j) ∈ M, denote by Li, j the heat

exchanged between hot stream i and cold stream j. We define:

φ(M) = min
(i, j)∈M

{
Li, j

Ui, j

}

as the filling ratio, which corresponds to the minimum portion of an upper bound Ui, j filled with

the heat Li, j, for some match (i, j). Given an optimal fractional solution with filling ratio φ(M),

Theorem 6.4 obtains a 1/φ(M)-approximation ratio for FLPR.

Theorem 6.4 Given an optimal fractional solution with a set M of matches and filling ratio

φ(M), FLPR produces a (1/φ(M))-approximate integral solution.

Proof:

We denote Algorithm FLPR’s solution and the optimal fractional solution by (~y,~q) and (~y f ,~q f ),
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respectively. Moreover, suppose that (~y∗,~q∗) is an optimal integral solution. Let M ⊆ H ×C

be the set of matched pairs of streams by the algorithm, i.e. yi, j = 1, if (i, j) ∈M, and yi, j = 0,

otherwise. Then, it holds that:

∑
(i, j)∈M

yi, j = ∑
(i, j)∈M

Ui, j

Li, j
∑

s,t∈T

qi,s, j,t

Ui, j

≤ 1
φ(M) ∑

(i, j)∈M
∑

s,t∈T

q f
i,s, j,t

Ui, j

≤ 1
φ(M) ∑

(i, j)∈M
y f

i, j

≤ 1
φ(M) ∑

i∈H
∑
j∈C

y∗i, j.

The first equality is obtained by using the fact that, for each (i, j)∈M, it holds that yi, j =
Ui, j
Li, j

Li, j
Ui, j

and Li, j = ∑s,t∈T qi,s, j,t . The first inequality is true by the definition of the filling ratio φ(M)

and the fact that ~q =~q f . The second inequality holds by the big-M constraint of the fractional

relaxation. The final inequality is valid due to the fact that the optimal fractional solution is a

lower bound on the optimal integral solution.

In the case where all heat supplies and demands are integers, the integrality of the minimum

cost flow polytope and Theorem 6.4 imply that FLPR is Umax-approximate, where Umax =

max(i, j)∈H×C{Ui, j} is the biggest big-M parameter. Because performance guarantee of FLPR

scales with the big-M parameters Ui, j, we improve the heuristic performance by computing a

small big-M parameter Ui, j using Algorithm MHG in Section 6.1.2.

6.2.2 Lagrangian Relaxation Rounding

Furman and Sahinidis (2004) design efficient heuristics for the minimum number of matches

problem by applying the method of Lagrangian relaxation and relaxing the big-M constraints.

This approach generalises Algorithm FLPR by approximating the fractional cost of every pos-

sible match (i, j) ∈ H×C and solving an appropriate LP using these costs. We present the LP

and revisit different ways of approximating the fractional match costs.

In a feasible solution, the fractional cost λi, j of a match (i, j) is the cost incurred per unit of heat
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transferred via (i, j). In particular,

λi, j =

 1/Li, j, if Li, j > 0, and

0, if Li, j = 0

where Li, j is the heat exchanged via (i, j). Then, the number of matches can be expressed as

∑i,s, j,t λi, j ·qi,s, j,t . Furman and Sahinidis (2004) propose a collection of heuristics computing a

single cost value for each match (i, j) and constructing a minimum cost solution. This solution

is rounded to a feasible integral solution equivalently to FLPR.

Given a cost vector~λ of the matches, a minimum cost solution is obtained by solving:

min ∑
i∈H

∑
j∈C

∑
s,t∈T

λi, j ·qi,s, j,t

∑
j∈C

∑
t∈T

qi,s, j,t = σi,s i ∈ H,s ∈ T

∑
i∈H

∑
s∈T

qi,s, j,t = δ j,t j ∈C, t ∈ T

qi,s, j,t ≥ 0 i ∈ H, j ∈C, s, t ∈ T

(CostLP)

A challenge in Lagrangian relaxation rounding is computing a cost λi, j for each hot stream i∈H

and cold stream j ∈C. We revisit and generalise policies for selecting costs.

6.2.2.0.1 Cost Policy 1 (Maximum Heat) Matches that exchange large amounts of heat

incur low fractional cost. This observation motivates selecting λi, j = 1/Ui, j, for each (i, j) ∈

H×C, where Ui, j is an upper bound on the heat that can be feasibly exchanged between i and

j. In this case, Lagrangian relaxation rounding is equivalent to FLPR (Algorithm 4).

6.2.2.0.2 Cost Policy 2 (Bounds on the Number of Matches) This cost selection policy

uses lower bounds αi and β j on the number of matches of hot stream i ∈ H and cold stream

j ∈C, respectively, in an optimal solution. Given such lower bounds, at least αi cost is incurred

for the hi heat units of i and at least β j cost is incurred for the c j units of j. On average, each

heat unit of i is exchanged with cost at least αi/hi and each heat unit of j is exchanged with

cost at least β j/c j. So, the fractional cost of each match (i, j) ∈ H×C can be approximated by

109



setting λi, j = αi/hi, λi, j = β j/c j or λi, j =
1
2 (

αi
hi
+

β j
c j
).

Furman and Sahinidis (2004) use lower bounds αi = 1 and β j = 1, for each i ∈ H and j ∈ C.

We show that, for any choice of lower bounds αi and β j, this cost policy for selecting λi, j is

not effective. Even when αi and β j are tighter than 1, all feasible solutions of CostLP attain

the same cost. Consider any feasible solution (~y,~q) and the fractional cost λi, j = αi/hi for each

(i, j) ∈ H×C. Then the cost of (~y,~q) in CostLP is:

∑
i∈H

∑
j∈C

∑
s,t∈T

λi, j ·qi,s, j,t = ∑
i∈H

∑
j∈C

∑
s,t∈T

αi

hi
·qi,s, j,t = ∑

i∈H
αi.

Since every feasible solution in (CostLP) has cost ∑i∈H αi, Lagrangian relaxation rounding re-

turns an arbitrary solution. Similarly, if λi, j = β j/c j for (i, j) ∈ H×C, every feasible solution

has cost ∑ j∈C β j. If λi, j =
1
2 (

αi
hi
+

β j
c j
), all feasible solutions have the same cost 1/2 · (∑i∈H αi +

∑ j∈C β j).

6.2.2.0.3 Cost Policy 3 (Existing Solution) This method of computing costs uses an existing

solution. The main idea is to use the actual fractional costs for the solution’s matches and a non-

zero cost for every unmatched streams pair. A minimum cost solution with respect to these costs

may improve the initial solution. Suppose that M is the set of matches in the initial solution and

let Li, j be the heat exchanged via (i, j) ∈ M. Furthermore, let Ui, j be an upper bound on the

heat exchanged between i and j in any feasible solution. Then, a possible selection of costs is

λi, j = 1/Li, j if (i, j) ∈M, and λi, j = 1/Ui, j otherwise.

6.2.3 Covering Relaxation Rounding

This section proposes a novel covering relaxation rounding heuristic for the minimum number

of matches problem. The efficiency of Algorithm FLPR depends on lower bounding the uni-

tary cost of the heat transferred via each match. The goal of the covering relaxation is to use

these costs and lower bound the number of matches in a stream-to-stream to basis by relaxing

heat conservation. The heuristic constructs a feasible integral solution by solving successively

instances of the covering relaxation.

Consider a feasible MILP solution and suppose that M is the set of matches. For each hot stream
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i ∈ H and cold stream j ∈C, denote by Ci(M) and H j(M) the subsets of cold and hot streams

matched with i and j, respectively, in M. Moreover, let Ui, j be an upper bound on the heat that

can be feasibly exchanged between i ∈ H and j ∈C. Since the solution is feasible, it must be

true that ∑ j∈Ci(M)Ui, j ≥ hi and ∑i∈H j(M)Ui, j ≥ c j. These inequalities are necessary, though not

sufficient, feasibility conditions. By minimising the number of matches while ensuring these

conditions, we obtain a covering relaxation:

min ∑
i∈H

∑
j∈C

yi, j

∑
j∈C

yi, j ·Ui, j ≥ hi i ∈ H

∑
i∈H

yi, j ·Ui, j ≥ c j j ∈C

yi, j ∈ {0,1} i ∈ H, j ∈C

(CoverMILP)

In certain cases, the matches of an optimal solution to CoverMILP overlap well with the matches

in a near-optimal solution for the original problem. Our new Covering Relaxation Rounding

(CRR) heuristic for the minimum number of matches problem successively solves instances

of the covering relaxation CoverMILP. The heuristic chooses new matches iteratively until it

terminates with a feasible set M of matches. In the first iteration, Algorithm CRR constructs a

feasible solution for the covering relaxation and adds the chosen matches in M. Then, Algorithm

CRR computes the maximum heat that can be feasibly exchanged using the matches in M and

stores the computed heat exchanges in ~q. In the second iteration, the heuristic performs same

steps with respect to the smaller updated instance (~σ ′,~δ ′), where σ ′i,s = σi,s−∑ j,t qi,s, j,t and

δ ′j,t = δ j,t −∑i,s qi,s, j,t . The heuristic terminates when all heat is exchanged.

Algorithm 5 is a pseudocode of heuristic CRR. Procedure CoveringRelaxation(~σ ,~δ ) produces

an optimal subset of matches for the instance of the covering relaxation in which the heat sup-

plies and demands are specified by the vectors ~σ and~δ , respectively. Procedure MHLP(~σ ,~δ ,M)

(LP-based Maximum Heat) computes the maximum amount of heat that can be feasibly ex-

changed by using only the matches in M and is based on solving the LP in Section 5.7.2.
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Algorithm 5 Covering Relaxation Rounding (CRR)

1: M← /0
2: ~q←~0
3: r← ∑i∈H hi
4: while r > 0 do
5: For each i ∈ H and s ∈ T , set σ ′i,s← σi,s−∑ j∈C ∑t∈T qi,s, j,t
6: For each j ∈C and t ∈ T , set δ ′j,t ← δ j,t −∑i∈H ∑s∈T qi,s, j,t

7: M′←CoveringRelaxation(~σ ′,~δ ′)
8: M←M∪M′

9: ~q←MHLP(~σ ,~δ ,M′)
10: r← ∑i∈H hi−∑i∈H ∑ j∈C ∑s,t∈T qi,s, j,t
11: end while

6.3 Water Filling Heuristics

This section introduces water filling heuristics for the minimum number of matches problem.

These heuristics produce a solution iteratively by exchanging the heat in each temperature in-

terval, in a top down manner. The water filling heuristics use, in each iteration, an efficient

algorithm for the single temperature interval problem (see Section 6.3).

Figure 6.5 shows the main idea of a water filling heuristic for the minimum number of matches

problem with multiple temperature intervals. The problem is solved iteratively in a top-down

manner, from the highest to the lowest temperature interval. Each iteration produces a solution

for one temperature interval. The main components of a water filling heuristic are: (i) a maxi-

mum heat procedure which reuses matches from previous iterations and (ii) an efficient single

temperature interval algorithm.

Given a set M of matches and an instance (~σt ,~δt) of the problem in the single temperature inter-

val t, the procedure MHS(~σt ,~δt ,M) (Maximum Heat for Single temperature interval) computes

the maximum heat that can be exchanged between the streams in t using only the matches in

M. At a given temperature interval t, the MHS procedure solves the LP in Section 5.7.1. The

procedure SingleTemperatureInterval(~σt ,~δt) produces an efficient solution for the single tem-

perature interval problem with a minimum number of matches and total heat to satisfy one cold

stream. SingleTemperatureInterval(~σt ,~δt) either: (i) solves the MILP exactly (Water Filling

MILP-based or WFM) or (ii) applies the improved greedy approximation Algorithm IG in Sec-

tion (Water Filling Greedy or WFG). Both water filling heuristics solve instances of the single

temperature interval problem in which there is no heat conservation, i.e. the heat supplied by
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Figure 6.5: A water filling heuristic computes a solution by exploiting the top down temperature

interval structure and moving from the higher to the lower temperature interval. In each tem-

perature interval t, the heuristic isolates the streams with positive heat at t, it matches them and

descends the excess heat to the next interval which is sequentially solved.

the hot streams is greater or equal than the heat demanded by the cold streams. The exact WFM

uses the MILP proposed in Eqs. (6.1) - (6.6). The greedy heuristic WFG adapts Algorithm IG

by terminating when the entire heat demanded by the cold streams has been transferred. After

addressing the single temperature interval, the excess heat descends to the next temperature in-

terval. Algorithm 6 represents our water filling approach in pseudocode. Figure 6.6 shows the

main components of water filling heuristics.

The reformulated MILP in Eqs. (6.1)-(6.6) solves the single temperature interval problem with-

out heat conservation. It is similar to the MILP in Eqs. (5.22)-(5.28) with heat conservation,

except that it does not contain constraints (5.23) while Equalities (5.25) and (5.27) become the

inequalities (6.3) and (6.5). In the single temperature interval problem with (without) heat con-

servation, the total heat of hot streams is equal to (greater than or equal to) the demand of the

cold streams. Each water filling algorithm step solves the single temperature interval problem

without heat conservation. All heat demands of cold streams are satisfied and the excess heat
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Figure 6.6: Water filling heuristics solve the temperature intervals serially in a top-down manner

and keep composition feasible. The main components are (i) a maximum heat computation re-

using higher temperature interval matches, (ii) a single temperature interval problem algorithm,

and (iii) excess heat descending between consecutive temperature intervals. Heuristic WFM

uses the MILP formulation in Section 5.6, Chapter 5 for solving the single temperature interval

problem, while heuristic WFG uses the Section 6.3.

supply of hot streams descends to the subsequent temperature interval.

max ∑
b∈B

xb (6.1)

xb ≥ ∑
j∈C

z j,b b ∈ B (6.2)

∑
b∈B

wi,b ≤ 1 i ∈ H (6.3)

∑
b∈B

z j,b = 1 j ∈C (6.4)

∑
i∈H

wi,b ·hi ≥ ∑
j∈C

z j,b · c j b ∈ B (6.5)

xb,wi,b,z j,b ∈ {0,1} b ∈ B, i ∈ H, j ∈C (6.6)

Theorem 6.5 shows an asymptotically tight performance guarantee for water filling heuristics

proportional to the number of temperature intervals. The positive performance guarantee implies

the proof of Furman and Sahinidis (2004).

Theorem 6.5 Algorithms WFG and WFM are Θ(k)-approximate (i.e. both O(k)-approximate
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Algorithm 6 Water Filling (WF)

1: M← /0
2: ~q←~0
3: for t = 1,2, . . . ,k do
4: if t 6= 1 then
5: ~q ′←MHS(~σt ,~δt ,M)
6: ~q←~q+~q ′

7: For each i ∈ H, set σi,t ← σi,t −∑ j∈C ∑t∈T q′i, j,t
8: For each j ∈C, set δ j,t ← δ j,t −∑i∈H ∑s∈T q′i, j,t
9: end if

10: (M′,~q ′)← SingleTemperatureInterval(~σt ,~δt)
11: M←M∪M′

12: ~q←~q+~q ′

13: if t 6= k then
14: for i ∈ H do
15: ~σi,t+1← ~σi,t+1 +(~σi,t −∑ j qi, j,t) (excess heat descending)
16: end for
17: end if
18: end for

and Ω(k)-approximate).

Proof:

A water filling algorithm solves an instance of the single temperature interval problem in each

temperature interval t = 1, . . . ,k. This instance consists of at most n hot streams and at most

m cold streams. By Theorem 6.1, algorithms WFG and WFM introduce at most n+m new

matches in each temperature interval and produce a solution with v ≤ k(n+m) matches. In

the optimal solution, each hot and cold stream appears in at least one match which means that

v∗ ≥max{n,m} matches are chosen in total. So, v≤ 2k · v∗.

On the negative side, we show a lower bound on the performance guarantee of algorithms WFG

and WFM using the extension of the problem instance in Figure 6.7 with an equal number of

hot streams, cold streams and temperature intervals, i.e. m = n = k. Each hot stream i ∈ H has

heat supply σi,s ∈ {0,1} and each cold stream j ∈ C has heat demand δ j,t ∈ {0,1}, for each

s, t ∈ T . Hot stream i has unit heat in temperature intervals {1, . . . , i} and no supply elsewhere.

Cold stream j demands unit heat in temperature intervals { j, . . . ,k} and no demand elsewhere.

In the optimal solution, hot stream i is matched with cold stream j = n− i and there are v∗ = k

matches in total. Algorithms WFG and WFM produce the same solution in which hot stream i

is matched with cold streams {1,2, . . . , j}, where j = i, and there are v = O(k2) matches in total.

115



h1

h1

h1

h1

h1

h2

h2

h2

h2

h3

h3

h3

h4

h4

h5 c1

c1

c1

c1

c1

c2

c2

c2

c2

c3

c3

c3

c4

c4 c5

Temperature
Intervals

1 1 1 1

Figure 6.7: An instance showing (asymptotically) the tightness of the O(k) performance guar-

antee for greedy packing heuristics. In this instance, it holds that n = m = k and every heat

supply and heat demand belongs to {0,1} in each temperature interval. In the optimal solution,

hot stream i is matched with cold stream j = n− i and there are n matches. In the algorithm’s

solution, hot stream i is matched with cold streams 1, . . . ,m and there are Ω(n2) matches in total.

6.4 Greedy Packing Heuristics

This section proposes greedy heuristics motivated by the packing nature of the minimum num-

ber of matches problem. Each greedy packing heuristic starts from an infeasible solution with

zero heat transferred between the streams and iterates towards feasibility by greedily selecting

matches. The two main ingredients of such a heuristic are: (i) a match selection policy and (ii) a

heat exchange policy for transferring heat via the matches. Section 6.4.1 observes that a greedy

heuristic has a poor worst-case performance if heat residual capacities are not considered. Sec-

tions 6.4.2 - 6.4.4 define formally the greedy heuristics: (i) Largest Heat Match First, (ii) Largest

Fraction Match First, and (iii) Smallest Stream First. Figure 6.8 shows the main components of

greedy packing heuristics.
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Figure 6.8: Greedy packing heuristics select matches iteratively one by one. The main com-

ponents of greedy packing heuristics are (i) a heat exchange policy, and (ii) a match selection

policy. Greedy packing heuristics apply these policies with respect to all unmatched stream

pairs, in each iteration. Options for the heat exchange policy include dynamic heat exchange,

which solves the Section 5.7.2 maximum heat LP, and static heat exchange, which uses the

Section 6.1.2 greedy algorithm. Once the heat exchange policy has been applied for every un-

matched pair of streams, a match selection policy chooses the new match, e.g. (i) with the largest

heat (LHM), (ii) with the largest fraction (LFM), or (iii) of the shortest stream (SS).
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Figure 6.9: A bad example of a non monotonic heuristic. If a heuristic begins by matching h1

with c2 and h2 with c3, then many unnecessary matches might be required to end up with a

feasible solution.

6.4.1 A Pathological Example and Heat Residual Capacities

A greedy match selection heuristic is efficient if it performs a small number of iterations and

chooses matches exchanging large heat load in each iteration. Our greedy heuristics perform

large moves towards feasibility by choosing good matches in terms of: (i) heat and (ii) stream

fraction. An efficient greedy heuristic should also be monotonic in the sense that every chosen

match achieves a strictly positive increase on the covered instance size.

The Figure 6.9 example shows a pathological behavior of greedy non-monotonic heuristics.

The instance consists of 3 hot streams, 3 cold streams and 3 temperature intervals. Hot stream

i ∈ H has heat supply σi,s = 1 for s = i and no supply in any other temperature interval. Cold

stream j ∈C has heat demand δ j,t = 1 for t = j and no demand in any other temperature interval.

Consider the heuristic which selects a match that may exchange the maximum amount of heat in

each iteration. The matches (h1,c2) and (h2,c3) consist the initial selections. In the subsequent

iteration, no match increases the heat that can be feasibly exchanged between the streams and

the heuristic chooses unnecessary matches.

A sufficient condition enforcing strictly monotonic behavior and avoiding the above pathology,

is for each algorithm iteration to satisfy the heat residual capacities. As depicted in Figure

6.10, a greedy heuristic maintains a set M of selected matches together with a decomposition

of the original instance I into two instances IA and IB. If I = (H,C,T,~σ ,~δ ), then it holds

that IA = (H,C,T,~σA,~δ A) and IB = (H,C,T,~σB,~δ B), where σ = ~σA +~σB and ~δ = ~δ A +~δ B.

The set M corresponds to a feasible solution for IA and the instance IB remains to be solved.

In particular, IA is obtained by computing a maximal amount of heat exchanged by using the
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Figure 6.10: Decomposition of a greedy packing heuristic. The problem instance I is the union

of the instance IA already solved by the heuristic and the instance IB that remains to be solved.

matches in M and IB is the remaining part of I. Initially, IA is empty and IB is exactly the original

instance I. A selection of a match increases the total heat exchanged in IA and reduces it in IB.

A greedy heuristic is monotonic if IB is feasible in each iteration. Furthermore, IB is feasible

if and only if IA satisfies the heat residual capacities Ru = ∑i∈H ∑
u
s=1 σi,s−∑ j∈C ∑

u
t=1 δ j,t , for

u ∈ T .

6.4.2 Largest Heat Match First

Our Largest Heat Match First heuristics arise from the idea that the matches should individually

carry large amounts of heat in a near optimal solution. Suppose that Qv is the maximum heat that

may be transferred between the streams using only a number v of matches. Then, minimising

the number of matches is expressed as min{v : Qv ≥ ∑
n
i=1 hi}. This observation motivates the

greedy packing heuristic which selects matches iteratively until it ends up with a feasible set

M of matches exchanging ∑
n
i=1 hi units of heat. In each iteration, the heuristic chooses a match

maximising the additional heat exchanged. Our two variants of largest heat matches heuristics

are: (i) LP-based Largest Heat Match (LHM-LP) and (ii) Greedy Largest Heat Match (LHM).

Heuristic LHM-LP uses the MHLP(M) (LP-based Maximum Heat) procedure to compute the

maximum heat that can be transferred between the streams using only the matches in the set M.

This procedure is repeated O(nm) times in each iteration, once for every candidate match, and

solves an LP incorporating the proposed heat residual capacities. Algorithm 7 is an LHM-LP

heuristic using the LP in Section 5.7.2. The algorithm maintains a set M of chosen matches and

selects a new match (i′, j′) to maximise MHLP(M∪ (i′, j′)).
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Algorithm 7 Largest Heat Match First LP-based (LHM-LP)

1: M← /0
2: r← ∑i∈H hi
3: while r > 0 do
4: (i′, j′)← argmax(i, j)∈H×C\M{MHLP(M∪{(i, j)})}
5: M←M∪{(i′, j′)}
6: r← ∑i∈H hi−MHLP(M)
7: end while
8: Return M

Lemma 6.3 shows a condition ensuring the strict monotonicity of a greedy heuristic which

decomposes any instance I into the instances IA (already solved) and IB (remaining to be solved)

in each iteration (see Section 6.4.1).

Lemma 6.3 A greedy heuristic is strictly monotonic if IB is feasible in each iteration.

Proof:

Given that IA is of maximal heat (see Section 6.4.1), any match of M is redundant in any feasible

solution of IB. Since IB is feasible, there exists a match in H×C \M whose selection increases

the amount of heat exchanged in IA.

Lemma 6.4 states necessary and sufficient conditions for the feasibility of a minimum number

of matches instance I. The first set of conditions ensures that heat always flows from the hot

side to the same or lower temperature intervals on the cold side. The last condition enforces heat

conservation.

Lemma 6.4 An instance I of the minimum number of matches is feasible if and only if the

following conditions hold.

• For each u ∈ T \{k}, it is the case that Ru ≥ 0, or equivalently

∑
i∈H

u

∑
s=1

σi,s ≥ ∑
j∈C

u

∑
t=1

δ j,t

• It holds that Rk = 0, or equivalently

∑
i∈H

k

∑
s=1

σi,s = ∑
j∈C

k

∑
t=1

δ j,t .
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Proof:

To the first direction, a violation of a condition makes the task of constructing a feasible solu-

tion impossible. To the opposite direction, Algorithm MHG in Section 3 constructs a feasible

solution for every instance satisfying the conditions; it suffices to consider all the hot and cold

streams as one large hot and large cold stream, respectively. The single hot stream has heat

load ∑i∈H σi,s in temperature interval s ∈ T and the single cold stream has heat load ∑ j,t δ j,t in

temperature interval t ∈ T .

Given a decomposition of an instance I into instances IA and IB, Lemma 6.5 shows that a careful

construction of IA respecting the proposed heat residual capacities in Section 6.4.1 implies that

IB is also feasible.

Lemma 6.5 Consider a decomposition of a feasible instance I into the instances IA and IB. Let

R, ~RA and ~RB be the corresponding heat residual capacities. If IA is feasible and it holds that

RA
u ≤ Ru for each u ∈ T , then IB is also feasible.

Proof:

To show that the Lemma is true, it suffices to show that IB satisfies the feasibility conditions of

Lemma 6.4. Consider a temperature interval u ∈ T \{k}. Then,

RA
u ≤ Ru⇔ ∑

i∈H

u

∑
s=1

σ
A
i,s−∑

j∈C

u

∑
t=1

δ
A
j,t ≤ ∑

i∈H

u

∑
s=1

σi,s−∑
j∈C

u

∑
t=1

δ j,t

⇔ ∑
i∈H

u

∑
s=1

(
σi,s−σ

A
i,s
)
≥ ∑

j∈C

u

∑
t=1

(
δ j,t −δ

A
j,t
)

⇔ ∑
i∈H

u

∑
s=1

σ
B
i,s ≥ ∑

j∈C

u

∑
t=1

δ
B
j,t

In the same fashion, the fact that Rk = RA
k = 0 implies that RB

k = 0. Hence, IB is feasible.

Given a set M matches, the LP in Eqs. (6.7)-(6.11) maximises the total stream fraction that can

be covered using only matches in M. It is similar to the LP in Eqs. (5.29)-(5.33) in Section 6.4.2,

except that the maximum fraction objective function (6.7) replaces the maximum heat objective

function (5.29).
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max ∑
(i,s, j,t)∈A(M)

(
qi,s, j,t

hi
+

qi,s, j,t

c j

)
(6.7)

∑
( j,t)∈VC

i,s(M)

qi,s, j,t ≤ σi,s (i,s) ∈V H(M) (6.8)

∑
(i,s)∈V H

j,t (M)

qi,s, j,t ≤ δ j,t ( j, t) ∈VC(M) (6.9)

∑
(i,s, j,t)∈Au(M)

qi,s, j,t ≤ Ru u ∈ T (6.10)

qi,s, j,t ≥ 0 (i,s, j, t) ∈ A(M) (6.11)

The following theorem shows a performance guarantee for Algorithm LHM-LP using a standard

packing argument.

Theorem 6.6 Algorithm LHM-LP is O(logn+ log hmax
ε

)-approximate, where ε is the required

precision.

Proof:

Initially, we show an approximation ratio of O(logn+ loghmax) for the special case of the prob-

lem with integer parameters. Then, we generalise the result to decimal parameters.

We denote by v the number of the algorithm’s matches and by v∗ the number of matches in

an optimal solution. To upper bound v, we assign unitary costs to the transferred heat in the

algorithm’s solution as follows. Algorithm LHM-LP constructs a feasible set M of matches

greedily. At each iteration, LHM-LP selects a match whose addition in M maximises the heat

that can be feasibly exchanged using the matches in M. For ` = 1, . . . ,v, let M` be the set of

selected matches at the end of the `-th iteration and Q` be the maximum amount of heat the

can be feasibly exchanged between all streams using exactly the matches in M`. Before the

algorithm begins, M0 = /0 and Q0 = 0. The extra amount of transferable heat with the addition

of the `-th chosen match is E` = Q`−Q`−1, for ` = 1, . . . ,v. We set the unitary cost to this

part of the algorithm’s total heat as κ` =
1

E`
. Then, the algorithm’s number of matches can be

expressed:

v =
v

∑
`=1

κ` ·E`. (6.12)
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Let S` be the total remaining heat to be transferred when the `-th iteration completes. Then,

S0 = Q and S` = Q−Q`, for ` = 1, . . . ,v, where Q = ∑
n
i=1 hi is the total amount of heat. Note

that Sv = 0 because the algorithm produces a feasible solution. Since the algorithm chooses

the match that results in the highest increase of transferred heat in each iteration, it must be

the case that E1 ≥ . . . ≥ Ev or equivalently κ1 ≤ . . . ≤ κv. At the end of the `-th iteration, the

remaining heat can be transferred using at most v∗ additional matches by selecting the remaining

matches of an optimal solution. Using a simple average argument we get that κ` ≤ v∗
S`−1

, for each

`= 1, . . . ,v. Thus, Eq. (6.12) implies:

v≤
v

∑
`=1

(
v∗

S`−1

)
·E` =

v

∑
`=1

(
E`

Q−Q`−1

)
· v∗. (6.13)

By the integrality of the minimum cost network flow polytope, each value E` is an integer, for

`= 1, . . . ,v. Hence,

E`

Q−Q`−1
=

E`

∑
e=1

1
Q−Q`−1

≤
E`

∑
e=1

1
Q−Q`−1− e+1

.

Given that Q` = Q`−1 +E`,
E`

Q−Q`−1
≤

Q`−1

∑
e=Q`−1

1
Q− e

. (6.14)

Inequalities (6.13) and (6.14) imply:

v≤

(
Q

∑
e=1

1
e

)
· v∗.

Using the asymptotic bound ∑
Q
e=1

1
e = O(logQ) of harmonic series and the fact that Q≤ n ·hmax,

we conclude that the algorithm is O(logn+ loghmax)-approximate, where hmax = maxi∈H{hi}

is the maximum heat of a hot stream.

Generalising to decimal parameters, the algorithm is O(logn+ log hmax
ε

), where ε is the preci-

sion required for solving the problem instance. The reasoning is the same except that, instead

of considering integer units, we consider ε units to extend inequality (6.14).

LHM-LP heuristic is polynomial-time in the worst case. The i-th iteration solves nm− i+ 1

LP instances which sums to solving a total of ∑
nm
i=1(nm− i+ 1) = O(n2m2) LP instances in
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Algorithm 8 Largest Heat Match First Greedy (LHM)

1: M← /0
2: ~q←~0
3: r← ∑i∈H hi
4: while r > 0 do
5: (i′, j′,~q ′)← argmax(i, j)∈H×C\M{MHG(~σ ,~δ , i, j)}
6: M←M∪{(i′, j′)}
7: ~q←~q+~q ′

8: For each s ∈ T , set σi′,s← σi′,s−∑t∈T q′i′,s, j′,t
9: For each t ∈ T , set δ j′,t ← δ j′,t −∑s∈T q′i′,s, j′,t

10: r← r−∑s,t∈T q′i′,s, j′,t
11: end while
12: Return M

the worst case. However, for large instances, the algorithm is time consuming because of this

iterative LP solving. So, we also propose an alternative, time-efficient greedy approach. The

new heuristic version builds a solution by selecting matches and deciding the heat exchanges,

without modifying them in subsequent iterations.

The new approach for implementing the heuristic, that we call LHM, requires the MHG(~σ ,~δ , i, j)

procedure. Given an instance (~σ ,~δ ) of the problem, it computes the maximum heat that can be

feasibly exchanged between hot stream i ∈H and cold stream j ∈C, as defined in Section 6.1.2.

The procedure also computes a corresponding value qi,s, j,t of heat exchanged between i ∈ H in

temperature interval s ∈ T and j ∈ C in temperature interval t ∈ T . LHM maintains a set M

of currently chosen matches together with their respective vector ~q of heat exchanges. In each

iteration, it selects the match (i′, j′) and heat exchanges q′ between i′ and j′ so that the value

MHG(~σ ,~δ , i′, j′) is maximum. Algorithm 8 is a pseudocode of this heuristic.

6.4.3 Largest Fraction Match First

The heuristic Largest Fraction Match First (LFM) exploits the bipartite nature of the problem

by employing matches which exchange large fractions of the stream heats. Consider a feasible

solution with a set M of matches. Every match (i, j) ∈M covers a fraction ∑s,t∈T
qi,s, j,t

hi
of hot

stream i ∈ H and a fraction ∑s,t∈T
qi,s, j,t

c j
of cold stream j ∈C. The total covered fraction of all

streams is equal to ∑(i, j)∈M ∑s,t∈T

(
qi,s, j,t

hi
+

qi,s, j,t
c j

)
= n+m. Suppose that Fv is the maximum

amount of total stream fraction that can be covered using no more than v matches. Then, min-

imising the number of matches is expressed as min{v : Fv ≥ n+m}. Based on this observation,
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the main idea of LFM heuristic is to construct iteratively a feasible set of matches, by selecting

the match covering the largest fraction of streams, in each iteration. That is, LFM prioritises pro-

portional matches in a way that high heat hot streams are matched with high heat cold streams

and low heat hot streams with low heat cold streams. In this sense, it generalises the idea of

Algorithm IG for the single temperature interval problem (see Section 6.3), according to which

it is beneficial to match streams of (roughly) equal heat.

An alternative that would be similar to LHM-LP is an LFM heuristic with an MFLP(M) (LP-

based Maximum Fraction) procedure computing the maximum fraction of streams that can be

covered using only a given set M of matches. Like the LHM-LP heuristic, this procedure would

be based on solving an LP, except that the objective function maximises the total stream fraction.

The LFM heuristic can be also modified to attain more efficient running times using Algorithm

MHG, as defined in Section 6.1.2. In each iteration, the heuristic selects the match (i, j) with

the highest value
U ′i, j
hi

+
U ′i, j
c j

, where U ′i, j is the maximum heat that can be feasibly exchanged

between i and j in the remaining instance.

6.4.4 Smallest Stream Heuristic

Subsequently, we propose Smallest Stream First (SS) heuristic based on greedy match selection,

which also incorporates stream priorities so that a stream is involved in a small number of

matches. Let αi and β j be the number of matches of hot stream i ∈ H and cold stream j ∈C,

respectively. Minimising the number of matches problem is expressed as min{∑i∈H αi}, or

equivalently min{∑ j∈C β j}. Based on this observation, we investigate heuristics that specify a

certain order of the hot streams and match them one by one, using individually a small number

of matches. Such a heuristic requires: (i) a stream ordering strategy and (ii) a match selection

strategy. To reduce the number of matches of small hot streams, heuristic SS uses the order

h1 ≤ h2 ≤ . . .≤ hn.

In each iteration, the next stream is matched with a low number of cold streams using a greedy

match selection strategy; we use greedy LHM heuristic. Observe that SS heuristic is more

efficient in terms of running time compared to the other greedy packing heuristics, because it

solves a subproblem with only one hot stream in each iteration. Algorithm 9 is a pseudocode of

SS heuristic. Note that other variants of ordered stream heuristics may be obtained in a similar
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Algorithm 9 Smallest Steam First (SS)

1: Sort the hot streams in non-decreasing order of their heat loads, i.e. h1 ≤ h2 ≤ . . .≤ hn.
2: M← /0
3: ~q←~0
4: for i ∈ H do
5: r← hi
6: while r > 0 do
7: (i, j′,~q ′)← argmax j∈C{MHG(~σ ,~δ , i, j)}
8: M←M∪{(i, j′)}
9: ~q←~q+~q ′

10: For each s ∈ T , set σi,s← σi,s−∑t∈T q′i,s, j′,t
11: For each t ∈ T , set δ j′,t ← δ j′,t −∑s∈T q′i,s, j′,t
12: r← r−∑s,t∈T q′i′,s, j′,t
13: end while
14: end for
15: Return M

way. The heuristic uses the MHG algorithm in Section 6.1.2.

6.5 Numerical Results

This section evaluates the proposed heuristics on three test sets. Section 6.5.1 provides infor-

mation on system specifications and benchmark instances. Section 5.8 presents computational

results of exact methods and shows that commercial, state-of-the-art approaches have difficult

solving moderately-sized instances to global optimality. Section 6.5.2 & 6.5.3 evaluate experi-

mentally the heuristic methods and compare the obtained results with those previously reported

in the literature. All result tables are provided in 6.7. Letsios et al. (2017) provide test cases and

source code for the paper’s computational experiments.

6.5.1 System Specification and Benchmark Instances

All computations are run on an Intel Core i7-4790 CPU 3.60GHz with 15.6 GB RAM running

64-bit Ubuntu 14.04. CPLEX 12.6.3 and Gurobi 6.5.2 solve the minimum number of matches

problem exactly. The mathematical optimisation models and heuristics are implemented in

Python 2.7.6 and Pyomo 4.4.1 (Hart et al. 2011, 2012).

We use problem instances from two existing test sets (Furman and Sahinidis 2004, Chen et al.
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2015a). We also generate two collections of larger test cases. The smaller of the two sets uses

work of Grossmann (2017). The larger of the two sets was created using our own random

generation method.

6.5.2 Heuristic Methods

We implement the proposed heuristics using Python and develop the LP models with Pyomo

(Hart et al. 2011, 2012). We use CPLEX 12.6.3 with default settings to solve all LP models

within the heuristic methods. Letsios et al. (2017) make the source code available. The follow-

ing discussion covers the 48 problems with 43 streams or fewer. Section 6.5.3 discusses the 3

examples with 160 streams each.

The difficulty of solving the minimum number of matches problem to global optimality moti-

vates the design of heuristic methods and approximation algorithms with proven performance

guarantees. Initially we want to highlight the difficulty of solving these problems due to the exis-

tence of big-M constraints as shown in Table 6.3. The method proposed in this work to compute

the big-M parameters improves the fractional relaxation results on all instances. Tables 6.4 and

6.5 contain the computed objective value and CPU times, respectively, of the heuristics for all

test cases. For the challenging Chen et al. (2015b,a) and Grossmann (2017) test sets, heuristic

LHM-LP always produces the best solution. The LHM-LP running time is significantly higher

compared to all heuristics due to the iterative LP solving, despite the fact that it is guaranteed

to be polynomial in the worst case. Alternatively, heuristic SS produces the second best heuris-

tic result with very efficient running times in the Chen et al. (2015b,a) and Grossmann (2017)

test sets. Figure 6.11 depicts the performance ratio of the proposed heuristics using a box and

whisker plot, where the computed objective value is normalised with the one found by CPLEX

for the transshipment MILP. Figure 6.12 shows a box and whisker plot of the CPU times of all

heuristics in log10 scale normalised by the minimum CPU time for each test case. Figure 6.13

shows a line chart verifying that our greedy packing approach produces better solutions than the

relaxation rounding and water filling ones.

Table 6.6 contains the heuristic results reported by Furman and Sahinidis (2004) and the ones

obtained with our improved version of the FLPR, LRR, and WFG heuristics of Furman and

Sahinidis (2004). Our versions of FLPR, LRR, and WFG perform better for the Furman and
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Figure 6.11: Box and whisker diagram of 48 heuristic performance ratios, i.e. computed solution

/ best known solution for the problems with 43 streams or fewer.

Figure 6.12: Box and whisker diagram of 48 CPU times (log10 scale) normalised by the mini-

mum CPU time for each test case.

Sahinidis (2004) test set because of our new Algorithm MHG for tightening the big-M parame-

ters. For example, out of the 26 instances, our version of FLPR performs strictly better than the
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Figure 6.13: Line chart comparing the performance ratio, i.e. computed solution / best known

solution, of the best computed result by heuristic methods: relaxation rounding, water filling,

and greedy packing. This graph applies to the 48 problems with 43 streams or fewer.

Furman and Sahinidis (2004) version 20 times and worse only once (10sp1). To further explore

the effect of the big-M parameter, Table 6.7 shows how different computations for the big-M

parameter change the FLPR and LRR performance. Table 6.7 also demonstrates the importance

of the big-M parameter on the transportation MILP fractional relaxation quality.

In particular, Table 6.7 compares the three big-M computation methods discussed in Section

6.1.2: (i) the trivial bounds, (ii) the Gundersen et al. (1997) method, and (iii) our greedy Algo-

rithm MHG. Our greedy maximum heat algorithm dominates the other approaches for comput-

ing the big-M parameters. Algorithm MHG also outperforms the other two big-M computation

methods by finding smaller feasible solutions via both Fractional LP Rounding and Lagrangian

Relaxation Rounding. In the 48 test cases, Algorithm MHG produces the best FLPR and LRR

feasible solutions in 46 and 43 test cases, respectively. Algorithm MHG is strictly best for 33

FLPR and 32 LRR test cases. Finally, Algorithm MHG achieves the tightest fractional MILP

relaxation for all test instances.

Figure 6.11 and Table 6.4 show that our new CRR heuristic is competitive with the other relax-

ation rounding heuristics, performing as well or better than FLPR or LRR in 19 of the 48 test
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cases and strictly outperforming both FLPR and LRR in 8 test cases. Although CRR solves a

sequence of MILPs, Figure 6.12 and Table 6.5 show that its running time is efficient compared

to the other relaxation rounding heuristics.

Our water filling heuristics are equivalent to or better than Furman and Sahinidis (2004) for 25

of their 26 test set instances (all except 7sp2). In particular, our Algorithm WFG is strictly bet-

ter than their WFG in 18 of 26 instances and is worse in just one. This improvement stems from

the new 1.5-approximation algorithm for the single temperature interval problem (see Section

6.3). The novel Algorithm WFM is competitive with Algorithm WFG and produces equivalent

or better feasible solutions for 37 of the 48 test cases. In particular, WFM has a better perfor-

mance ratio than WFG (see Figure 6.11) and WFM is strictly better than WFG in all but 1 of

the Grossmann (2017) instances. The strength of WFM highlights the importance of our new

MILP formulation in Eqs. (5.22)-(5.28). At each iteration, WFM solves an MILP without big-

M constraints and therefore has a running time in the same order of magnitude as its greedy

counterpart WFG (see Figure 6.12).

In summary, our heuristics obtained via the relaxation rounding and water filling methods im-

prove the corresponding ones proposed by Furman and Sahinidis (2004). Furthermore, greedy

packing heuristics achieve even better results in more than 90% of the test cases.

6.5.3 Larger Scale Instances

Although CPLEX and Gurobi do not converge to global optimality for many of the Furman

(2000), Chen et al. (2015b,a), and Grossmann (2017) instances, the solvers produce the best

heuristic solutions in all test cases. But the literature instances are only moderately sized. We

expect that the heuristic performance improves relative to the exact approaches as the problem

sizes increase. Towards a more complete numerical analysis, we randomly generate 3 larger

scale instances with 160 streams each.

For larger problems, the running time may be important to a design engineer (Linnhoff and

Hindmarsh 1983). We apply the least time consuming heuristic of each type for solving the

larger scale instances, i.e. apply relaxation rounding heuristic FLPR, water filling heuristic

WFG, and greedy packing heuristic SS. We also solve the transshipment model using CPLEX
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12.6.3 with a 4h timeout. The results are in Table 6.8.

For these instances, greedy packing SS computes a better solution than the relaxation rounding

FLPR heuristic or the water filling WFG heuristic, but SS has larger running time. In instance

large-scale1, greedy packing SS computes 218, a better solution than the CPLEX value

219. Moreover, the CPLEX heuristic spent the first 1hr of computation time at solution 257

(18% worse than the solution SS obtains in 10 minutes) and the next 2hr of computation time

at solution 235 (8% worse than the solution SS obtains in 10 minutes). Any design engineer

wishing to interact with the results would be frustrated by these times.

In instance large-scale2, CPLEX computes a slightly better solution (239) than the SS

heuristic (242). But the good CPLEX solution is computed slightly before the 4h timeout. For

more than 3.5hr, the best CPLEX heuristic is 273 (13% worse than the solution SS obtains in

10 minutes). Finally, in instance large-scale0, CPLEX computes a significantly better

solution (175) than the SS heuristic (233). But CPLEX computes the good solution after 2h and

the incumbent is similar to the greedy packing SS solution for the first 2 hours. These findings

demonstrate that greedy packing approaches are particularly useful when transitioning to larger

scale instances.

6.6 Conclusion

In his PhD thesis, Professor Floudas showed that, given a solution to the minimum number of

matches problem, he could solve a nonlinear optimisation problem designing effective heat re-

covery networks. But the sequential HENS method cannot guarantee that promising minimum

number of matches solutions will be optimal (or even feasible!) to Professor Floudas’ nonlinear

optimisation problem. Since the nonlinear optimisation problem is relatively easy to solve, we

propose generating many good candidate solutions to the minimum number of matches prob-

lem. This manuscript develops nine heuristics with performance guarantees to the minimum

number of matches problem. Beyond approximation algorithms, numerical analysis shows that

our improved algorithms for the single temperature interval, our new way of computing tighter

big-M parameters and the other enhancements, improve the performance of relaxation rounding

and water filling heuristics.
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6.7 Experimental Results
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Test Case Fractional Relaxation
Simple GTA97 LKM17

Furman and Sahinidis (2004) Test Set
10sp-la1 7.04 7.57 8.35
10sp-ol1 8.29 8.86 9.94
10sp1 7.11 7.24 7.39
12sp1 10.06 10.12 10.26
14sp1 8.79 8.92 9.06
15sp-tkm 11.01 11.47 14.31
20sp1 11.75 11.75 11.75
22sp-ph 20.15 20.89 22.23
22sp1 13.66 14.04 15.86
23sp1 13.31 13.40 13.40
28sp-as1 27.51 27.96 28.45
37sp-yfyv 31.96 31.93 32.28
4sp1 4.03 4.06 4.25
6sp-cf1 4.10 4.10 4.18
6sp-gg1 3.00 3.00 3.00
6sp1 4.00 4.00 4.00
7sp-cm 6.61 7.15 8.40
7sp-s1 7.83 7.83 10.00
7sp-torw1 5.68 5.84 6.56
7sp1 5.00 5.00 5.01
7sp2 4.37 4.37 4.37
7sp4 7.01 7.01 7.11
8sp-fs1 6.89 7.50 8.69
8sp1 6.15 6.22 6.30
9sp-al1 7.04 7.57 8.35
9sp-has1 6.91 7.14 9.98
Chen et al. (2015b,a) Test Set
balanced10 13.51 13.92 15.29
balanced12 15.69 16.16 17.48
balanced15 18.84 19.31 21.56
balanced5 8.09 8.40 8.95
balanced8 11.54 11.88 12.76
unbalanced10 14.31 15.05 16.96
unbalanced15 19.62 20.59 23.17
unbalanced17 21.90 23.53 27.48
unbalanced20 25.89 27.72 32.43
unbalanced5 8.34 8.82 10.93
Grossmann (2017) Test Set
balanced12 random0 15.76 16.21 17.51
balanced12 random1 15.67 16.06 17.37
balanced12 random2 15.67 16.14 17.40
balanced15 random0 18.59 19.19 21.47
balanced15 random1 18.86 19.38 21.59
balanced15 random2 18.73 19.41 21.95
unbalanced17 random0 22.48 23.97 27.64
unbalanced17 random1 22.43 23.89 27.66
unbalanced17 random2 21.99 23.61 27.74
unbalanced20 random0 26.02 27.91 32.49
unbalanced20 random1 26.01 27.74 32.64
unbalanced20 random2 25.68 27.67 32.60

Table 6.3: This table compares the effect of three different methods for computing the big-M

parameter Ui j: (i) simple greedy, (ii) the Gundersen et al. (1997) (GTA97) method and (iii) our

greedy Algorithm MHG (LKM17). LKM17 achieves the tightest fractional relaxation for all

test instances.
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Test Case Relaxation Rounding Water Filling Greedy Packing CPLEXFLPR LRR CRR WFG WFM LHM LFM LHM-LP SS
Furman and Sahinidis (2004) Test Set
10sp-la1 16 17 16 16 15 15 13 14 13 12
10sp-ol1 18 18 17 18 18 19 17 15 16 14
10sp1 18 15 13 15 12 17 15 11 12 10
12sp1 16 17 13 14 15 18 17 13 13 12
14sp1 14 20 18 21 19 16 16 15 16 14
15sp-tkm 20 22 20 23 25 21 22 19 21 19
20sp1 22 20 23 24 21 20 21 20 21 19*
22sp-ph 27 28 28 27 28 37 27 27 27 26
22sp1 35 37 36 42 35 34 31 27 29 25*
23sp1 32 32 40 50 33 32 32 26 26 23*
28sp-as1 30 30 30 40 45 50 50 30 40 30
37sp-yfyv 44 40 45 37 43 55 46 40 37 36
4sp1 5 5 5 5 5 5 5 5 5 5
6sp-cf1 6 6 6 6 7 6 6 6 6 6
6sp-gg1 3 3 3 3 3 3 3 3 3 3
6sp1 8 7 9 9 6 6 6 6 6 6
7sp-cm1 10 10 10 10 10 10 10 10 10 10
7sp-s1 10 10 10 10 10 10 10 10 10 10
7sp-torw1 11 12 10 12 12 12 11 11 10 10
7sp1 8 10 11 10 8 9 8 8 8 7
7sp2 7 7 7 9 9 7 7 7 7 7
7sp4 8 8 8 8 8 10 8 8 8 8
8sp-fs1 13 13 12 12 12 15 12 14 12 11
8sp1 11 11 10 14 9 10 10 10 10 9
9sp-al1 16 17 16 16 15 15 13 14 13 12
9sp-has1 15 14 15 15 16 15 14 13 15 13
Chen et al. (2015b,a) Test Set
balanced10 39 42 37 42 38 40 42 30 35 24
balanced12 42 48 53 48 45 48 41 37 41 28*
balanced15 60 69 71 63 61 82 62 43 51 37*
balanced5 18 17 18 18 19 20 18 15 19 14
balanced8 28 33 35 29 32 29 30 24 30 20
unbalanced10 38 46 43 46 43 42 35 29 33 25
unbalanced15 57 64 63 64 60 85 55 44 49 36*
unbalanced17 70 78 73 79 75 86 67 50 57 43*
unbalanced20 89 89 104 84 90 106 80 61 68 51*
unbalanced5 19 20 18 21 22 19 18 18 18 16
Grossmann (2017) Test Set
balanced12 random0 42 48 52 44 43 44 45 32 42 28*
balanced12 random1 45 49 53 50 45 47 43 35 40 29*
balanced12 random2 42 49 57 49 40 46 43 34 42 29*
balanced15 random0 60 61 66 67 61 64 63 43 53 36*
balanced15 random1 56 65 71 66 56 65 55 40 52 36*
balanced15 random2 54 69 63 63 61 67 55 41 54 35*
unbalanced17 random0 74 80 86 81 65 102 72 52 67 43*
unbalanced17 random1 74 74 104 84 77 100 70 55 56 44*
unbalanced17 random2 70 79 95 77 77 111 76 52 59 43*
unbalanced20 random0 93 93 109 100 85 115 86 60 64 51*
unbalanced20 random1 83 89 117 92 88 114 100 63 75 52*
unbalanced20 random2 87 86 111 102 92 131 96 69 74 52*

Table 6.4: Upper bounds, i.e. feasible solutions, computed by our heuristics and CPLEX 12.6.3

with time limit (i) 30min for the Furman and Sahinidis (2004) Test Set, (ii) 2h for the Chen et al.

(2015b,a) test set, and (iii) 4h for the Grossmann (2017) test set. Symbol * indicates timeout.

Bold values indicate the best computed value. Italic values indicate the best heuristic result.

The proposed heuristics produce feasible as good as the exact solver for 13 of the 48 test cases.

All heuristic results are available online (Letsios et al. 2017).
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Test Case Relaxation Rounding Water Filling Greedy Packing CPLEXFLPR LRR CRR WFG WFM LHM LFM LHM-LP SS
Furman and Sahinidis (2004) Test Set
10sp-la1 0.01 0.01 0.10 0.14 0.28 0.02 0.01 7.76 < 0.01 0.03
10sp-ol1 0.01 0.01 0.07 0.10 0.21 0.02 0.01 9.83 < 0.01 0.03
10sp1 0.01 0.01 0.10 0.13 0.26 0.02 0.01 7.39 < 0.01 0.05
12sp1 0.01 0.01 0.10 0.25 0.40 0.04 0.02 9.79 < 0.01 0.05
14sp1 0.01 0.01 0.13 0.22 0.42 0.09 0.04 24.49 0.02 41.23
15sp-tkm 0.01 0.01 0.12 0.23 0.52 0.17 0.09 29.46 0.02 0.07
20sp1 0.01 0.01 0.29 0.37 0.60 0.52 0.24 64.63 0.05 *
22sp-ph 0.01 0.02 0.20 0.46 0.64 0.92 0.30 156.76 0.05 0.04
22sp1 0.02 0.02 0.32 0.39 0.60 0.76 0.34 144.77 0.06 *
23sp1 0.04 0.04 0.34 0.29 0.52 0.91 0.40 239.94 0.07 *
28sp-as1 0.01 0.01 0.09 0.31 0.57 1.26 0.38 227.06 0.05 0.05
37sp-yfyv 0.02 0.03 0.92 0.82 1.45 14.68 4.74 1435.94 0.50 7.36
4sp1 0.01 0.01 0.04 0.08 0.16 < 0.01 < 0.01 0.75 < 0.01 0.02
6sp-cf1 0.01 0.01 0.09 0.08 0.18 < 0.01 < 0.01 1.25 < 0.01 0.03
6sp-gg1 0.01 0.01 0.05 0.07 0.12 < 0.01 < 0.01 0.42 < 0.01 0.02
6sp1 0.01 0.01 0.07 0.07 0.14 < 0.01 < 0.01 1.36 < 0.01 0.02
7sp-cm1 0.01 0.01 0.05 0.10 0.24 0.01 < 0.01 3.51 < 0.01 0.02
7sp-s1 0.01 0.01 0.05 0.13 0.23 0.01 < 0.01 2.18 < 0.01 0.02
7sp-torw1 0.01 0.01 0.09 0.09 0.21 0.01 0.01 3.82 < 0.01 0.02
7sp1 0.01 0.01 0.09 0.08 0.17 < 0.01 < 0.01 2.10 < 0.01 0.04
7sp2 0.01 0.01 0.09 0.06 0.16 < 0.01 < 0.01 2.15 < 0.01 0.03
7sp4 0.01 0.01 0.04 0.13 0.27 < 0.01 < 0.01 1.61 < 0.01 0.02
8sp-fs1 0.01 0.01 0.09 0.15 0.27 0.01 < 0.01 5.84 < 0.01 0.02
8sp1 0.01 0.01 0.10 0.13 0.25 0.01 < 0.01 4.75 < 0.01 0.03
9sp-al1 0.01 0.01 0.09 0.13 0.28 0.02 0.01 8.18 < 0.01 0.03
9sp-has1 0.01 0.01 0.09 0.12 0.34 0.02 0.01 6.99 < 0.01 0.04
Chen et al. (2015b,a) Test Set
balanced10 0.02 0.02 0.32 0.43 0.84 1.15 0.50 181.13 0.09 1607.14
balanced12 0.03 0.03 0.62 0.57 1.05 2.74 1.00 397.37 0.16 *
balanced15 0.05 0.05 0.83 0.76 1.23 10.96 3.45 1147.96 0.41 *
balanced5 0.01 0.01 0.11 0.25 0.50 0.05 0.03 13.64 0.01 0.20
balanced8 0.02 0.01 0.21 0.31 0.65 0.33 0.15 68.85 0.04 69.16
unbalanced10 0.03 0.02 0.30 0.47 0.72 1.19 0.50 173.88 0.08 7.45
unbalanced15 0.05 0.04 0.90 0.74 1.34 11.28 3.78 1185.72 0.39 *
unbalanced17 0.07 0.07 1.45 0.95 1.76 21.25 8.31 2742.15 0.71 *
unbalanced20 0.13 0.13 3.08 1.25 2.41 47.55 15.94 7154.64 1.34 *
unbalanced5 0.01 0.01 0.11 0.26 0.45 0.05 0.04 16.40 0.01 0.05
Grossmann (2017) Test Set
balanced12 random0 0.03 0.03 0.46 0.59 1.00 2.51 1.15 351.10 0.17 *
balanced12 random1 0.03 0.03 0.46 0.59 1.11 2.74 0.99 398.26 0.16 *
balanced12 random2 0.03 0.03 0.46 0.60 0.88 2.61 0.95 382.57 0.17 *
balanced15 random0 0.04 0.05 0.83 0.76 1.49 8.87 4.13 1241.33 0.43 *
balanced15 random1 0.05 0.04 0.90 0.83 1.36 9.01 3.22 1041.37 0.42 *
balanced15 random2 0.05 0.05 0.90 0.82 1.53 9.26 3.43 1104.94 0.43 *
unbalanced17 random0 0.12 0.11 1.85 0.95 1.72 24.25 8.65 3689.80 0.80 *
unbalanced17 random1 0.12 0.12 1.82 0.79 1.54 24.08 8.32 4052.52 1.53 *
unbalanced17 random2 0.12 0.12 1.89 1.00 1.60 25.60 9.72 3471.80 0.73 *
unbalanced20 random0 0.18 0.17 3.23 1.22 2.18 50.67 18.37 8820.55 1.31 *
unbalanced20 random1 0.21 0.19 3.48 1.24 2.21 51.19 19.35 9613.90 1.40 *
unbalanced20 random2 0.23 0.22 3.17 1.28 2.33 56.47 17.93 11854.82 1.40 *

Table 6.5: CPU times of the heuristics and CPLEX 12.6.3 with time limit (i) 30min for the

Furman and Sahinidis (2004) test set, (ii) 2h for the Chen et al. (2015b,a) test set, and (iii) 4h for

the Grossmann (2017) test set. An * indicates timeout. All heuristic results are available online

(Letsios et al. 2017).
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Test Case
Relaxation Rounding Water Filling

FS04 LKM17 FS04 LKM17
FLPR LRR FLPR LRR CRR WFG WFG WFM

10sp-la1 21 19 16 17 16 22 16 15
10sp-ol1 22 17 18 18 17 23 18 18
10sp1 14 14 18 15 13 21 15 12
12sp1 17 18 16 17 13 18 14 15
14sp1 27 21 14 20 18 27 21 19
15sp-tkm 29 27 20 22 20 29 23 25
20sp1 24 25 22 20 23 25 24 21
22sp-ph 34 40 27 28 28 35 27 28
22sp1 41 42 35 37 36 54 42 35
23sp1 38 32 32 32 40 60 50 33
28sp-as1 41 45 30 30 30 43 40 45
37sp-yfyv 67 59 44 40 45 61 37 43
4sp1 5 6 5 5 5 5 5 5
6sp-cf1 6 6 6 6 6 7 6 7
6sp-gg1 3 3 3 3 3 3 3 3
6sp1 9 10 8 7 9 9 9 6
7sp-cm1 11 10 10 10 10 10 10 10
7sp-s1 10 10 10 10 10 10 10 10
7sp-torw1 14 15 11 12 10 13 12 12
7sp1 10 13 8 10 11 10 10 8
7sp2 8 7 7 7 7 8 9 9
7sp4 11 9 8 8 8 8 8 8
8sp-fs1 14 14 13 13 12 14 12 12
8sp1 11 13 11 11 10 14 14 9
9sp-al1 17 19 16 17 16 20 16 15
9sp-has1 16 14 15 14 15 18 15 16

Table 6.6: Comparison of our results (labelled LKM17) with the ones reported by Furman and

Sahinidis (2004) (labelled FS04). The LKM17 heuristics FLPR, LRR, and WFG perform better

than their FS04 counterparts because of our improved calculation of the big-M parameter Ui j.
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Test Case Fractional LP Rounding Lagrangian Relaxation Rounding
Simple GTA97 LKM17 Simple GTA97 LKM17

Furman and Sahinidis (2004) Test Set
10sp-la1 17 15 16 17 16 17
10sp-ol1 20 19 18 22 23 18
10sp1 18 18 18 14 17 15
12sp1 17 17 16 17 17 17
14sp1 27 20 14 22 17 20
15sp-tkm 27 27 20 25 25 22
20sp1 22 22 22 27 24 20
22sp-ph 31 30 27 32 30 28
22sp1 45 37 35 40 44 37
23sp1 40 37 32 35 33 32
28sp-as1 41 30 30 45 30 30
37sp-yfyv 56 53 44 42 42 40
4sp1 5 5 5 5 5 5
6sp-cf1 6 6 6 6 6 6
6sp-gg1 3 3 3 3 3 3
6sp1 8 7 8 8 7 7
7sp-cm1 11 10 10 10 10 10
7sp-s1 10 10 10 10 10 10
7sp-torw1 15 15 11 14 13 12
7sp1 10 10 8 9 9 10
7sp2 9 7 7 7 7 7
7sp4 11 11 8 9 9 8
8sp-fs1 15 13 13 14 13 13
8sp1 11 11 11 12 12 11
9sp-al1 17 15 16 17 16 17
9sp-has1 16 15 15 14 15 14
Chen et al. (2015b,a) Test Set
balanced10 61 46 39 46 43 42
balanced12 71 52 42 57 56 48
balanced15 91 63 60 91 69 69
balanced5 26 19 18 20 22 17
balanced8 42 33 28 38 35 33
unbalanced10 52 49 38 53 54 46
unbalanced15 73 60 57 76 62 64
unbalanced17 96 78 70 101 84 78
unbalanced20 132 95 89 137 99 89
unbalanced5 23 22 19 21 23 20
Grossmann (2017) Test Set
balanced12 random0 73 56 42 61 52 48
balanced12 random1 62 56 45 60 54 49
balanced12 random2 66 51 42 53 57 49
balanced15 random0 93 68 60 75 73 61
balanced15 random1 96 68 56 79 73 65
balanced15 random2 102 64 54 86 76 69
unbalanced17 random0 106 77 74 108 95 80
unbalanced17 random1 116 82 74 99 91 74
unbalanced17 random2 101 84 70 94 92 79
unbalanced20 random0 131 95 93 136 103 93
unbalanced20 random1 138 91 83 139 104 89
unbalanced20 random2 138 102 87 131 100 86

Table 6.7: This table compares the effect of three different methods for computing the big-M

parameter Ui j: (i) simple greedy, (ii) the Gundersen et al. (1997) (GTA97) method and (iii) our

greedy Algorithm MHG (LKM17). Bold values mark the best result for each of the heuris-

tics. LKM17 outperforms the other two big-M computation methods by finding smaller feasible

solutions via both Fractional LP Rounding and Lagrangian Relaxation Rounding.

137



Test Case
Relaxation Rounding Water Filling Greedy Packing CPLEX

FLPR WFG SS Transshipment
Value Time Value Time Value Time Value Time

large scale0 233 8.84 306 58.52 233 642.94 175 *
large scale1 273 15.59 432 54.53 218 652.00 219 *
large scale2 279 41.83 497 54.46 242 670.32 239 *

Table 6.8: Upper bounds, i.e. feasible solutions, for large-scale instances computed by the least

time consuming heuristics of each type and CPLEX 12.6.3 transshipment model with 4h time-

out. Symbol * indicates timeout. Bold marks the best upper bound. Italic marks the best

heuristic result. In instance large scale1, heuristic LFM computes the best heuristic result.
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Chapter 7

Conclusion

This thesis: 1) identifies special structure properties of nonconvex optimisation problems which

may provide advances on solving them via exact methods, 2) uses specific insights for the heat

exchanger network synthesis (HENS) problem to propose methods to deal with large-scale in-

stances via both exact and approximation methods.

7.1 Contributions

7.1.1 Data Structures for Representing Symmetry in Quadratically Con-

strained Quadratic Programs

This work appraises the significant role of symmetry in optimisation problems. Symmetry rep-

resentation and detection are the fundamental steps towards exploiting symmetry. This work

provides a review on methods that currently exist in literature for detecting symmetry. This

chapter introduces a novel symmetry detection methodology; Initially we associate quadratic

and linear optimisation problems with matrices. Then we construct binary layered graphs that

encode information from the matrices and capture the structure of the original problem. The

algorithm implementation provided in the software package nauty by McKay and Piperno

(2014) is associated with a search tree and determines the automorphism group of a problem

and whether two graphs are isomorphic. In this work nauty reads these graphs and generates
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important symmetric information of the original problem. The generators of this group can be

projected to the variables and the constraints of the given mathematical program. A computa-

tional case corroborates the proposed methods and the conclusion are discussed.

7.1.2 Detecting Symmetry and Understanding Complexities of the Mini-

mum Number of Matches Problem in Heat Recovery Network De-

sign

This chapter studies the complexities that arise in designing heat exchanger networks by inves-

tigating the minimum number of matches problem. This work explores for the first time, the

symmetric structure of the HENS problem. Initially we use group theory to study the MILP

transshipment model for a single temperature interval. We identify types of symmetry arising

in the problem. We also use parameters in the optimisation problem, e.g. temperature and

heat capacities of each stream, to classify special cases with many equivalent optimal solutions

and define degeneracy. Computational results from an online test case corroborate the proofs.

Degeneracy is also defined in this problem providing more information on the complexities

that may speed down the performance of current state-of-the-art solvers. Exploring further the

computational complexities that arise when formulating this problem, this chapter introduces a

novel N P-hardness reduction of the minimum number of matches problem from the bin pack-

ing problem which also reveals the packing nature of this problems. By exploiting this structure,

we propose a novel MILP formulation for the one temperature interval. We further explore the

maximum heat exchanged between the streams with match restrictions including the computa-

tion of tighter big-M parameters. We evaluate and report the computational performance of the

exact methods using state-of-the-art commercial approaches in three test cases of instances in

the engineering literature; (i) we manually digitise the Furman (2000) instances, (ii) process the

Chen et al. (2015a, 2015b) existing instances in the literature, and (iii) randomly generate the

Grossmann (2017) instances with fixed seeds.
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7.1.3 Heuristics with Performance Guarantees for the Minimum Number

of Matches Problem in Heat Recovery Network Design

This chapter develops new heuristics and provably efficient approximation algorithms for the

minimum number of matches problem; (i) relaxation rounding, (ii) water filling, and (iii) greedy

packing. In heat exchanger network design, many possible stream configurations are required to

evaluate the minimum overall cost, so a complementary contribution of this work is a heuristic

methodology for producing multiple solutions efficiently. This work shows that existing linear

programming (LP) rounding has poor worst case performance. We also prove a new positive

performance guarantee for LP rounding indicating an improved worst-case performance with

tighter big-M parameters. We also develop alternative relaxation rounding heuristics based on

Lagrangian relaxation and a new covering relaxation. We improve water filling heuristics by

developing novel, efficient ways for solving the single temperature interval problem. Using

graph theoretic properties, we propose an improved, greedy approximation algorithm which

prioritises stream matches with equal heat loads, for the single temperature interval problem.

With appropriate LP, we further improve water filling heuristics by reusing in each iteration

matches selected in previous iterations. We show that the temperature interval dependent per-

formance guarantee is asymptotically tight for water filling heuristics. Finally, we develop a

new greedy approach for designing efficient minimum number of matches heuristics motivated

by the packing nature of the problem. Greedy packing requires feasibility conditions inspired by

pinch point decompositions. Using feasibility conditions, we derive an LP that selects matches

carrying a large amount of heat and incurring low unitary cost for exchanging heat. Our main

greedy packing heuristic selects matches greedily by solving LP instances. Using a standard

packing argument, we obtain a new logarithmic performance guarantee. Despite its polynomial

worst-case running time, our heuristic is experimentally time-consuming due to the repeated

LP solving. So, we propose three other greedy packing heuristic variants which improve the

running time at the price of solution quality. The numerical results show that our novel greedy

packing heuristics dominate relaxation rounding and water filling ones in the majority of test

cases that currently exist in literature and the ones generated in this thesis.
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7.2 Future Work

7.2.1 Exploit Symmetry in Heat Exchanger Networks

Further computational results are required to validate the robustness of the methods proposed

in this chapter which is the extension of this work. This thesis focuses on detecting rather than

eliminating or breaking symmetry in optimisation problems. These detection algorithms may

be integrated into branching or cutting plane methods that exploit symmetry. There are two

main strategies for breaking symmetry; the static and dynamic method and several techniques

classified for each as presented by (Margot 2010). More precisely static strategy is related with

adding constraints to the formulation prior to solving it. It is considered to be easier and ideally

some or all symmetric global optima become infeasible except one. On the other hand dynamic

strategies as isomorphism pruning and orbital branching (Margot 2002, Ostrowski et al. 2011)

are the most efficient for exploitation of symmetry as the B&B is modified and recognises the

symmetries while solving the problem.

7.2.2 Constraints Generation for Heat Exchanger Network Synthesis

Initially we abbreviate the idea of defining and adding static symmetric constraints as (Liberti

2012a) Liberti and Ostrowski (2014), Dias and Liberti (2015) suggest to the formulation of the

problem. These constraints can be generated using the symmetry groups proposed in Chapter

4. As an advantage of other general symmetry breaking constraints that have been proposed we

take into account the special structure of heat exchanger network problem that is extensively

studied. Costa et al. (2013) propose a similar idea for the Kissing Number Problem and other

Point Packing Problems. They use static constraints to reformulate the problem and they prove

that the narrowed problem contains at least one feasible optima and then solve the problem by

using spatial B&B (Smith et al. 2001). One idea which follows the above papers is to derive

constrains and restrict the values of binary variables on whether there is a match or not between

two streams. For example if two hot streams are symmetric then we can force (weight) one of

them to match with a cold streams. Hence we eliminate the symmetric possibility of matching

with the other hot stream.
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7.2.3 Mathematical Reformulation of Heat Exchanger Network

A general framework of how to reformulate mathematical programs by adding static symmetry

breaking constraints and ensuring that at least one global optimum is preserved is presented by

Liberti (2009) with detailed proofs. For HENS in (Chen et al. 2015a) a set of dissagregated

models are tested with reformulation of the upper bound constraint; the heat load that is ex-

changed when two streams match. Moreover Chen et al. (2015a) provide formulations with

weight for preferences and restrictive choices. The following formulation with binary variables

can be tested and improved:

yi, j binary variable indicating whether hot stream i is matched with cold stream j

yi, j′ binary variable indicating whether hot stream i is matched with cold stream j′

yi, j, j′ binary variable indicating whether hot stream i is matched with both cold stream j and j′

For yi, j, j′ = yi, j · yi, j′

yi, j yi, j′ yi, j, j′

0 0 0

0 1 0

1 0 0

1 1 1
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min ∑
i∈H

∑
j∈C

yi, j

∑
j∈C

∑
u∈T I

qi,t, j,u = QH
i,t i ∈ H, t ∈ T I

∑
i∈H

∑
t∈T I

qi,t, j,u = QC
j,u j ∈C,u ∈ T I

∑
t∈T I

∑
u∈T I

qi,t, j,u ≤Ui, j · yi, j i ∈ H, j ∈C

qi,t, j,u = 0 t>u, t,u ∈ T I

∑
t∈T I

∑
u∈T I

qi,t, j,u + ∑
t∈T I

∑
u∈T I

qi,t, j′,u

≤Ui, j · yi, j +Ui, j′ · yi, j′ +[Ui, j, j′ −Ui, j−Ui, j′ ] · yi, j, j′ i ∈ H, j, j′ ∈C, j′ > j

yi, j + yi, j′ ≤ yi, j, j′ +1 i ∈ H, j, j′ ∈C, j′ > j

yi, j, j′ ≤ yi, j i ∈ H, j, j′ ∈C, j′ > j

yi, j, j′ ≤ yi, j′ i ∈ H, j, j′ ∈C, j′ > j

yi, j,yi, j′ ,yi, j, j′ ∈ {0, 1},qi,t, j,u ≥ 0 i ∈ H, j ∈C, t,u ∈ T I

7.2.4 Disjunctive Programming

Another interesting idea which can be applied to problems with linear/nonlinear models, 0−1

and continuous decision variables is using disjunctive programming. There is an extensive liter-

ature on this class of optimisation models by Grossmann (2002), Balas (2010), Grossmann and

Ruiz (2012) and others. A case where the problem is reformulated using the above approach

is the floor layout problem (Huchette et al. 2017) based on the constraint that the boxes that

located in a floor cannot overlap between them. More precisely in an optimisation problem all

the constraints need to be satisfied or in other words the feasible set of solutions can be consid-

ered as the intersection of the feasible sets of each constraint. Hence disjunctive programming

transforms the intersection to a union relation between the constraints which relaxes the feasible

space. For the formulation of HEN in Chapter 3, any decision binary variable consists on the

equation:

0≤ Qi j ≤Ui jyi jt , i ∈ HS, j ∈CS, t ∈ T I (7.1)
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which can be reformulated by using the basic steps of disjunctive programming in the following

way. Suppose that two cold streams say j, ĵ ∈ CS require the same load (are symmetric in

the way that has already defined for HEN synthesis). In a conjunctive normal form the two

constraints would intersect as:

0≤ Qi j ≤Ui jyi jt ∩ 0≤ Qi ĵ ≤Ui ĵyi ĵt (7.2)

Then there are 4 possible cases on how they can match with any hot stream i ∈ HS; either none

of them matches or one of them or both of them. Hence a disjunctive transformation could be:



yi jt = 0

yi ĵt = 0

Qi j = 0

Qi ĵ = 0


∪



yi jt = 1

yi ĵt = 0

Qi j ≤Ui j

Qi ĵ = 0


∪



yi jt = 0

yi ĵt = 1

Qi j = 0

Qi ĵ ≤Ui ĵyi ĵt


∪



yi jt = 1

yi ĵt = 1

Qi j =≤Ui j

Qi ĵ ≤Ui ĵyi ĵt


(7.3)

The general idea is that we can benefit from such a reformulation by using this LP relaxation

approach to generate bounds. Further to the reformulation there are some important questions

raised in this section. First of all how close to the optimal solution is the LP relaxation and for

the General Disjunctive Programming what is the best MILP formulation (i.e. big-M or convex

hull).
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