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Abstract

We describe a simple and systematic method for obtaining approximate sensitivity information from a chaotic dynamical system
using a hierarchy of cumulant equations. The resulting forward and adjoint systems yield information about gradients of functionals
of the system and do not suffer from the convergence issues that are associated with the tangent linear representation of the original
chaotic system. The functionals on which we focus are ensemble-averaged quantities, whose dynamics are not necessarily chaotic;
hence we analyse the system’s statistical state dynamics, rather than individual trajectories. The approach is designed for extracting
parameter sensitivity information from the detailed statistics that can be obtained from direct numerical simulation or experiments.
We advocate a data-driven approach that incorporates observations of a system’s cumulants to determine an optimal closure for
a hierarchy of cumulants that does not require the specification of model parameters. Whilst the sensitivity information from the
resulting surrogate model is approximate, the approach is designed to be used in the analysis of turbulence, whose degrees of
freedom and complexity currently prohibits the use of more accurate techniques. Here we apply the method to obtain functional
gradients from low-dimensional representations of Rayleigh-Bénard convection.

1. Introduction

Complete information about a particular solution of an engi-
neering problem is often less useful than knowledge of the way
in which a small number of functionals of the solution change
with respect to input parameters. An example in fluid mechan-
ics is the effect that a body’s shape has on the drag to which it is
subjected [39, 23]. Further examples can be found in the fields
of data assimilation [9], uncertainty quantification [6], stability
analysis [33, 18], flow reconstruction [19] and flow optimisa-
tion more generally [29]. In these situations it is natural to focus
on adjoint variables, which represent the derivative of a given
functional with respect to the problem’s constraints or govern-
ing equations. With adjoint variables, the derivative of the func-
tional with respect to any combination of input parameters can
be readily computed with a single dot product, alleviating the
need to run a large ensemble of simulations to obtain gradients
in different directions. For a general introduction to the theory
the reader is referred to Marchuk [35] and Giles & Pierce [21].

Whilst adjoint analysis is well established and used suc-
cessfully in many fields, the problem of obtaining meaning-
ful functional gradients from chaotic dynamical systems, such
as turbulence, is an open question [48]. Whether such gradi-
ents are well-defined depends on the properties of the dynam-
ical system. For example, if the system is uniformly hyper-
bolic [44, 11] then linear response theory provides the required
formula [12, 42]. In all chaotic systems, however, the lin-
earised description, on which both forward and adjoint analysis
is based, produces divergent trajectories that make it impossible
to compute accurate gradients over large times in the conven-
tional way [27]. A variety of different methods have been pro-
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posed to overcome this practical difficulty. A possible approxi-
mation is to obtain an estimation of a system’s linear response
by taking finite differences [43]. An approach employing ad-
joint formalism is to limit the duration over which sensitivity
information is obtained [48], and to collect an ensemble of gra-
dients to compensate for the short time intervals to which the
adjoint equations are otherwise restricted [27, 12]. In addition
to the requirement of having to obtain a potentially large en-
semble, the difficulty of this approach is in determining an ap-
propriate time interval a priori. Consequently, probability den-
sity functions have also received attention as a reliable source of
gradient information. Thuburn [45] proposed solving an adjoint
Fokker-Planck equation, which, though capable of producing
accurate derivatives, is computationally expensive and involves
approximation in the selection of stochastic forcing terms. Re-
lated work uses ideas from the fluctuation-dissipation theorem
[36] to determine sensitivities [e.g. 8], and typically relies on an
assumption about the underlying probability density function.

Recent efforts to reconcile adjoint techniques and chaotic
systems have focused on deriving sensitivities from shadow tra-
jectories, which are defined as remaining uniformly close to a
given trajectory of the system over time [49], and can therefore
yield meaningful sensitivity information. An improvement of
the method proposed by Wang [49], which relied on the calcu-
lation of Lyapunov exponents, and was therefore restricted to
low-dimensional dynamical systems, is the least-squares shad-
owing method proposed by Wang et al. [50]. The least-squares
shadowing method involves solving an optimisation problem to
determine a perturbed trajectory that is closest to the chosen ref-
erence trajectory. Notably, the least-squares shadowing method
has been applied to the Kuramoto-Sivashinsky equation, and
yields accurate gradient information for certain states [4].
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The issue regarding divergent trajectories in tangent and ad-
joint systems can be circumvented altogether by computing
sensitivities of unstable periodic orbits [26]. Perturbations of
unstable periodic orbits, which behave like a skeleton around
chaotic orbits [see e.g. 3], provide a proxy for the latter’s sen-
sitivity. In general, each unstable period orbit returns a differ-
ent sensitivity. In certain cases, however, the sensitivities are
closely aligned and exhibit a good agreement with that of the
underlying chaotic orbit [26]. Principal among the challenges
associated with this technique is the difficulty of finding unsta-
ble periodic orbits in chaotic systems of high dimension, such
as turbulence at high Reynolds number [see e.g. 32].

The need to overcome the sensitive dependence on pertur-
bations inherent in chaotic systems might be regarded as un-
necessary, in view of the fact that one is often interested in
gradients of ensemble-averaged quantities. Indeed, following
Hopf [22] and Lorenz [30], it is possible to directly simulate
a system’s statistics or cumulant dynamics. With the use of
the original governing equations, the cumulant equations can
be derived from a single flow functional [22] and provide a di-
rect means of understanding the behaviour of a flow’s statis-
tics. With an evolution that is relatively slow and not neces-
sarily chaotic, the cumulant equations can be used to investi-
gate statistically unsteady problems, statistical stability and to
provide an analytical means of determining the linear response
of a system [16]. The evolution of a finite set of dependent
variables corresponds to an infinite hierarchy of cumulant equa-
tions. The benefits of focusing on the evolution of statistics are
therefore offset by the requirement of finding a suitable clo-
sure [41]. Fortunately, heterogeneous flows that are dominated
by the interaction of eddies with a mean shear are amenable to
relatively simple closures, because the evolution of third-order
cumulants, describing eddy-eddy interactions, can sometimes
be neglected [16]. Statistical state dynamics, or direct statisti-
cal simulation [46, 1] has therefore been applied with success in
simulations of planetary jets [37, 47, 14, 7] and wall-bounded
shear-flow [17, 13]. Whilst strongly nonlinear systems, such as
the model for Rayleigh-Bénard convection given by the Lorenz
equations [31], require a more sophisticated treatment that ac-
counts for the role of cumulants beyond second order, direct
statistical simulation can nevertheless produce accurate predic-
tions [2].

The approach that we describe combines the desirable fea-
tures of the statistical state equations with observations from
direct simulation and classical adjoint techniques. In §2 we
describe the problems associated with the adjoint analysis of
chaotic systems, before deriving a well-conditioned adjoint op-
erator from a system’s cumulant equations in §3. In §4 we apply
the approach to the sensitivity analysis of thermal convection
via the Lorenz equations, and consider their extension to a 9-
dimensional phase space in §5. Conclusions and suggestions
for further work are made in §6.

2. The problem

Consider a dynamical system whose state, Q(t), evolves ac-
cording to
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Figure 1: The dependence of the statistic Z, as defined in equation (3), on the
renormalised Rayleigh number r from a solution of the Lorenz equations (2)
with (s, b) = (10, 8/3). The results were obtained from integration along a
statistically stationary trajectory for τ = 1000 time units (blue/dark lines) and
τ = 10000 time units (red/light lines). The thin black line corresponds to the
location Z = r−1 of the stable fixed points of the system for r < 24.7 (solid) and
to an upper bound of Z for r ≥ 24.7 (dashed). The dotted black line Z = r−4.50
is provided for reference. The dependence Z ∝ r has been subtracted from the
data that are displayed in the inset window.

dQ
dt

= F(Q,m), (1)

where m is a vector of system parameters. If the dynamical sys-
tem (1) is chaotic then an understanding of the system’s statis-
tics becomes crucial. Fortunately, engineers and scientists are
typically interested in a small subset of the possible statistics
that can be obtained from (1). Unfortunately, they typically
wish to understand how sensitively such statistics depend on
each element of the parameter vector m.

We focus our attention on the Lorenz equations as a specific
example. Lorenz [31] derived the following system of equa-
tions from a truncated description of Rayleigh-Bénard convec-
tion between hot and cold horizontal surfaces:

dX
dt

= s(Y − X),
dY
dt

= rX − Y − XZ,
dZ
dt

= XY − bZ.
(2)

The state Q = (X,Y,Z) describes the strength of the velocity
field, the difference in temperature between ascending and de-
scending fluid, and the strength of the horizontally averaged
temperature with respect to a state of pure conduction, respec-
tively. The parameters m = (s, b, r) are the Prandtl number, the
aspect ratio of the resulting convection rolls and the Rayleigh
number, respectively, the latter normalised with respect to a crit-
ical Rayleigh number.

We will focus on statistics J that correspond to a finite time
average L of a function L:

J[Q] ≡ L =
1
τ

τ∫
0

L(Q)dt, (3)

which depends implicitly on the parameters m via Q(t). Under
the assumption of ergodicity, the estimator J using the finite
time average in (3) corresponds to a phase-average of the func-
tion L when τ→ ∞. Following previous work on the sensitivity
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analysis of the Lorenz equations [27, 49], in §4 we will consider
the scalar function L ≡ Z, such that the scalar functional J ≡ Z
estimates the average amplitude of the horizontally-averaged
temperature fluctuations. Figure 1 displays Z computed numer-
ically from simulations of (2) with s = 10 and b = 8/3. In spite
of the chaotic dynamics described by equation (2), Z appears to
vary linearly with respect to r > rc, for the values of r consid-
ered, where rc ≈ 24.74 is a critical value of r. At r = rc the
two stable fixed points of the system, for the given values of s
and b, become unstable. The value rc marks the threshold of
sustained chaotic behaviour, on which we focus, for almost all
initial conditions, in contrast to the transient chaos that can be
observed on an unstable chaotic set for 13.93 < r < 24.06 [51].
The oscillations in Z in figure 1 are due to the fact that Z is an
estimator obtained from a finite time interval. Indeed, compar-
ison of the statistic obtained over τ = 1000 with that obtained
over τ = 10000 in figure 1, indicates that the oscillations reduce
in amplitude as the length of the time interval increases.

2.1. The finite difference approach
An estimation of the Gâteaux derivative of the jth component
J j of J with respect to the ith component mi of m is

∂J j

∂mi
≈
δJ j

δmi
≡

J j[Q(t|m + εei)] − J j[Q(t|m)]
ε

, (4)

in which all elements of ei are equal to zero, with the excep-
tion of the ith element, which is equal to 1. If ε is relatively
large, then δJ j/δmi will not provide an accurate approxima-
tion to the local derivative. If, on the other hand, ε is relatively
small, the non-smooth behaviour of J j for finite-time averages
evident in figure 1 suggests that we would need to obtain statis-
tics over a correspondingly large time to obtain meaningful re-
sults [see e.g. 43]. Moreover, the use of such an approach to
obtain the sensitivity of J j with respect to other system param-
eters requires the entire simulation to be run at least once for
each parameter mi.

2.2. The tangent linear and adjoint approach
Using the chain rule, a functional’s gradient can be calculated

exactly from a single simulation over a finite time in one of two
ways:

∂J j

∂mi
=

1
τ

τ∫
0

∂L j

∂Q
· qi dt =

1
τ

τ∫
0

pj ·
∂F
∂mi

dt, (5)

where qi satisfies the tangent linear equation:

dqi

dt
−

(
∂F
∂Q

)
qi =

∂F
∂mi

, (6)

and pj satisfies the adjoint equation:

−
dpj

dt
−

(
∂F
∂Q

)†
pj =

∂L j

∂Q
. (7)

The tangent linear approach is convenient when the number of
functionals exceeds the number of parameters, whereas the ad-
joint approach is convenient when the number of parameters

exceeds the number of functionals. However, for systems with
positive Lyapunov exponents solutions to the tangent linear and
adjoint systems grow without bound as time τ in (5) increases.

As pointed out by Thuburn [45], the cause of the difference
between the actual gradient and a gradient obtained from either
the tangent or adjoint system is the fact that the operation of
time averaging over τ→ ∞ does not, in general, commute with
the finite difference of an infinite time average over an interval
ε → 0:

∂J j

∂mi
= lim

ε→0
lim
τ→∞

δJ j

δmi
, lim

τ→∞
lim
ε→0

δJ j

δmi
. (8)

The finite difference of the functional J j does not converge uni-
formly to the sought-after derivative for all integration times τ
and, therefore, neither does (5).

An approximation to ∂mi J j can be obtained if (7) is integrated
over relatively short time intervals [27]. On the other hand, if fi-
nite differences are employed using equation (4), then the min-
imal time τ over which accurate statistics can be obtained is
determined by ε � 1. An accurate finite difference approxima-
tion requires a small value of ε, which requires a large value of
τ [see e.g. 43]. Thus, approximate gradients can be obtained by
using the tangent linear equations or finite differences, provided
that small or large time intervals are used, respectively.

That it is crucial to take the limit τ → ∞ before analysing
derivatives suggests that sensitivity analysis of the equations
governing the statistics of the process might result in a more
tractable problem. At the expense of introducing additional un-
knowns, we therefore focus on obtaining adjoint information
for the equations satisfied by the system’s cumulants.

3. The cumulant equations and their closure

The equations that govern the behaviour of cumulants pro-
vide a means of establishing the leading-order relationships be-
tween the statistics of a chaotic attractor. These relationships
constrain the response of statistics to changes in parameters.
The cumulants and their dynamics have a natural hierarchy and
can be derived in a systematic way from the equations that gov-
ern individual trajectories.

3.1. The cumulant generating functional
The cumulants U of a dynamical system can be defined in

terms of a cumulant generating functional logψ:

Uα1α2...αd = (−ı)|α|
∂α

∂Pα log ψ
∣∣∣∣∣
P=0

, (9)

where α = (α1, α2, . . . , αd) is a multi-index for the system of d
time-dependent variables Q(t), and

ψ ≡ exp (ı PiQi(t)) , (10)

where ψ is the Hopf generating functional [see e.g. 22, 20] and
ı =
√
−1. The over bar in (9) denotes the finite time average

defined in (3), which we assume converges to a phase average
when the length of the averaging interval τ → ∞. Due to the
logarithm in (9), a cumulant, unlike a moment, derived from the
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sum of two independent random variables, is equal to the sum
of their respective cumulants. This commutativity is related to
the fact that cumulants isolate the interdependence of random
variables without including the effects of correlations between
statistics of lower order. For example, according to (9) and (10),

Z3 = U003 + 3U002U001 + U3
001, (11)

where the coefficients of the three terms on the right-hand side
correspond to the number of ways of partitioning a multiset of
three (identical) elements into (a) a single multiset of three; (b)
a multiset of two and a set of one; (c) three sets of one. In
this respect, cumulants are the atoms of which moments are
comprised, and therefore have simpler algebraic properties than
the latter. Further examples of the decomposition of moments
into cumulants include XZ = U101 + U100U001, and

XYZ2 =

4th order︷︸︸︷
U112 +

3rd and 1st order︷                                       ︸︸                                       ︷
2U111U001 + U100U012 + U010U102

+ U100U010U002 + 2U100U001U011 + 2U010U001U101︸                                                            ︷︷                                                            ︸
2nd and 1st order

+ U100U010U2
001︸           ︷︷           ︸

1st order

+ U110U002 + 2U101U011︸                       ︷︷                       ︸
2nd order

,

(12)
in which the grouped terms correspond to a summation over
the different ways that the multiset of four elements {X,Y,Z,Z}
can be partitioned into subsets of a given cardinality. The con-
nection between cumulants and moments is discussed in more
detail in Appendix A, in which it is helpful to compare (12)
with (A.5).

Noting from (10) that Q plays the role of −ı∂P, the Hopf
functional ψ satisfies the linear equation

ı
∂ψ

∂t
= −P · F

(
−ı

∂

∂P
,m

)
ψ. (13)

The original d nonlinear equations F from (1) are recovered
by differentiating (13) with respect to the vector P. Associated
with the original system (1) are an infinite hierarchy of cumu-
lant equations,

H(U,m) = 0, (14)

which are obtained, under the assumption of ergodicity, by av-
eraging (13) to obtain a stationary equation for ψ, in which the
equation for a given cumulant Uα corresponds to the coefficient
of Pα. Readers are referred to Frisch [20] for further details.

Despite the fact that they do not form a closed system, the cu-
mulant equations provide useful information. For example, as
noted by Knobloch [24], the cumulant equations for the Lorenz
system indicate that

Z =
X2

b
= r − 1 −

1

s2bZ

dX2

dt
−

Z2 − Z
2

Z
, (15)

which, since Z2 ≥ Z
2
, implies that 0 ≤ Z ≤ r−1 in a statistically

steady state.
If the original system evolves on a d-dimensional phase space

then, ignoring symmetries in the governing equations, the num-
ber of cumulants at order j = |α| is equal to the number of ways

that j indistinguishable objects can be assigned to d sets; hence
the number of cumulants up to and including those of order N
is

N∑
j=1

(
j + d − 1

d − 1

)
. (16)

Known symmetries of a system reduce the number of inde-
pendent unknown cumulants. In the case of the Lorenz equa-
tions (2), for which F is invariant under the mapping (X,Y) 7→
(−X,−Y), a cumulant Uα1α2α3 for which α1 + α2 is odd, is nec-
essarily equal to zero. Therefore, of the 34 and 55 available
cumulants up to order N = 4 and N = 5, only 18 and 27, re-
spectively, are not necessarily equal to zero.

3.2. Adjoint cumulant dynamics

As described in §2, if one wishes to differentiate a vector-
valued functional with respect to vector-valued input one can
employ a forward or reverse (adjoint) approach. We now regard
J[U(m)], originally defined in (3), as a functional of an infinite
hierarchy of cumulants, constrained by (14):

∂J
∂m

= −︸         ︷︷         ︸
v

∂J
∂U

−u︷         ︸︸         ︷(
∂H
∂U

)−1
∂H
∂m

, (17)

where the cumulant perturbation u and the corresponding ad-
joint variables v are defined according to

u ≡
∂U
∂m

= −

(
∂H
∂U

)−1
∂H
∂m

, v ≡
∂J
∂H

=
∂J
∂U

(
∂H
∂U

)−1

. (18)

As discussed in §2, if the problem involves more functionals
than parameters, it is computationally preferable to solve the
tangent linear system to find u before evaluating (17). If, on the
other hand, the problem contains more parameters than func-
tionals, then it is computationally preferable to find the adjoint
variables v before evaluating (17). For a given functional J j and
a given parameter mi, the two alternatives can be expressed as

∂J j

∂mi
=

〈g j,ui〉 s.t. Tui = f i,

〈v j, f i〉 s.t. T †v j = g j,
(19)

where

T =
∂H
∂U

, f i = −
∂H
∂mi

, g j =
∂J j

∂U
, (20)

and 〈 , 〉 is a dot product. We focus on the adjoint problem of
determining the sensitivity of a single functional J (we omit the
subscript j hereafter) with respect to a potentially large number
of unknown parameters. Unlike the systems (6) and (7), whose
validity relies on the commutation of time averaging and dif-
ferentiation with respect to mi, (17) works with time averaged
variables directly.
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3.3. Building the cumulant operator
If the original system of equations (1) contains nonlinear terms
then the equations for the cumulants of order j will depend on
cumulants of order j + 1 and higher, depending on the degree
of nonlinearity. For the Lorenz equations (2), and indeed the
quadratic equations resulting from a Galerkin projection of the
Navier-Stokes equations more generally, cumulants of order j
do not have a dependence on cumulants whose order is higher
than j + 1. It is nevertheless necessary to close the problem, as
illustrated by the shape of the tangent linear operator:


T (11) T (12) 0 0 . . .
T (21) T (22) T (23) 0 . . .
...

...
...



u(1)

i
u(2)

i
u(3)

i
...

 = f . (21)

Here u( j)
i represents perturbations ∂mi U

( j) to the cumulants of
order j = |α|. According to (16), each operator T (i j) has the
shape

shape(T (i j)) =

(
i + d − 1

d − 1

)
×

(
j + d − 1

d − 1

)
. (22)

For the Lorenz equations,

[T (11),T (12)] =


s −s 0 0 0 0 0 0 0

r − Z −1 −X 0 0 −1 0 0 0
Y X b 0 1 0 0 0 0

 .
(23)

Whilst the tangent linear system is under determined, the ad-
joint system T †v = f is over determined. The overall prop-
erties of the system can be be seen in the self-adjoint problem
that combines the tangent linear and adjoint operators. With the
equations for perturbations to the first order cumulants (e.g. X,
Y and Z), one finds 0 T (11) T (12)

T (11)† 0 0
T (12)† 0 0



v(1)

u(1)
i

u(2)
i

 =

 f (1)
i

g(1)

g(2)

 . (24)

If the functional J, and therefore the vector ∂U(1) J ≡ g(1), is
specified then one can solve for the adjoint variables v(1) ac-
cording to the second row of (24). However, a consistency re-
quirement for the extended system (24) to possess a solution
is that g(2) = T (12)†v(1) , 0, in general. We are therefore not
at liberty to choose the functional J arbitrarily, because it will
automatically contain a contribution scaled by g(2) from the un-
closed perturbations u(2)

i .
The vacuous consequence of using (24) is that only function-

als whose value can be determined identically from the original
cumulant equations, such as equation (15), can be determined
exactly. For (24) to yield novel information an assumption is
required about the response of the unknown cumulant perturba-
tions u(2)

i . The simplest, albeit naive, approach is to assume that
〈g(2),u(2)

i 〉 = 0, which corresponds to the unknown high-order
perturbations u(2)

i being either zero or orthogonal to the weight-
ing vector g(2), as illustrated in figure 2(a). More generally, tak-
ing the system (24) as an example, a closure corresponds to the

Jµ

J∇J∗

∇J

m1

m2

J

optimal model
models

∇Jµ

J∗

(b)(a)

u(N+1)
i

Null space

g(N+1)

Error

Figure 2: (a) Modification of the functional due to the inner product of unclosed
cumulants u(N+1)

2 and the weighting factor g(N+1). (b) Local observation of the
underlying functional J[U(m)] (red circle) and gradient ∇J∗ from the optimal
model as an approximation of the underlying exact gradient ∇J.

specification of 〈g(2),u(2)
i 〉 in terms of the the retained cumulant

sensitivities u(1)
i . If m belongs to a three-dimensional parame-

ter space, then truncation at order N entails three assumptions,
determining 〈g(N+1),u(N+1)

i 〉 for i = 1, 2, 3. In this respect, the
number of required assumptions is independent of the order N
at which a closure is invoked, which arguably makes finding a
suitable closure for sensitivity analysis less onerous than find-
ing a suitable closure for the original cumulant equations.

3.4. Closure
To obtain a closed system of cumulant equations one needs

to make an assumption about how the highest-order cumulants
are related to those of lower order and, therefore, the way in
which they depend on the problem’s parameters. Closures of
the cumulant hierarchy aim to strike a balance between the in-
corporation of additional physics from nonlinear interactions
and keeping the number of unknowns small. One approach is
to assume that cumulants whose order is higher than N are not
affected, or respond sufficiently slowly, to changes in the prob-
lem’s parameters, such that 〈g(N+1),u(N+1)〉 ≈ 0. For N = 2
in a system with quadratic nonlinearities, this approach is con-
sistent with the assumption that the probability distribution of
the underlying process is Gaussian and is therefore completely
determined by its cumulants of first and second order [20].

The implications of discarding cumulants beyond a certain
order for sensitivity analysis are weaker than for the direct sim-
ulation of the truncated equations themselves. For example,
truncation of the cumulant equations at order N = 3 and as-
suming that U(4) ≡ 0, produces non-realisable statistics [25],
leading to a negative energy spectrum in turbulence [38]. From
the perspective of sensitivity analysis, however, the orthogonal-
ity condition 〈g(4),u(4)〉 = 0 does not necessarily imply that
U(4) ≡ 0. Similarly, 〈g(3),u(3)〉 = 0 does not necessarily im-
ply that the process is Gaussian. It is nevertheless important to
note that the behaviour of higher-order cumulants in a Gaussian
distribution is a special case, because probability distributions
possessing non-zero cumulants at order N∗ > 2, followed by
zero cumulants at all orders N > N∗, do not exist [34, p. 223].

One can discard cumulants of order higher than N and model
their effects with a forcing function such as M(N), which, in
general, will depend on a vector µ of unknown parameters:
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H(N)(πNU,m) = R(N) + M(N)(πNU,µ), (25)

where R(N) represents the residuals arising from the truncation
and πNU is the projection that sets the value of cumulants whose
order exceeds N to zero. Assuming that the residual R(N) can be
made small with a suitable choice of M(N), and that for a given
M(N), R(N) does not depend on m, the tangent linear equations
at order N are (

∂H
∂U

(N)

−
∂M
∂U

(N))
u(N) = −

∂H
∂m

(N)

. (26)

A key assumption underlying the use of (26) as a model for the
tangent linear behaviour of the system is that the model param-
eters µ in (25) exhibit a weak dependence on the problem pa-
rameters m (hence ∂mM is not included in (26)), which is con-
sistent with the assumption that R(N) = 0 in the vicinity of m.
Utilising (26) for truncation at N = 3 in the sensitivity analysis
of a system with quadratic nonlinearities, under the assumption
that M(N) depends only on the highest retained cumulants U(N),
yields



0 0 0 T (11) T (12) 0
0 0 0 T (21) T (22) T (23)

0 0 0 T (31) T (32) T (33) −M (33)

T (11)† T (21)† T (31)† 0 0 0
T (12)† T (22)† T (32)† 0 0 0

0 T (23)† T (33)† −M (33)† 0 0 0





v(1)

v(2)

v(3)

u(1)

u(2)

u(3)


=



f (1)

f (2)

f (3)

g(1)

g(2)

g(3)


,

(27)
where

M (33) ≡
∂M(3)

∂U(3) . (28)

The closed system of extended equations (27) is, in general, in-
vertible and therefore provides a set of solutions for the adjoint
variables v for a specified set of weights g. Without select-
ing the model parameters µ, inversion of the adjoint operator
(T −M)† yields a fan of gradients, as indicated in figure 2(b).
The determination of a unique gradient from the fan requires
the selection of an optimal set of model parameters µ∗. Follow-
ing a data-driven approach [10], the optimal parameters could
be chosen to minimise R(N) according to statistical observations
from a direct simulation:

µ∗ = arg min
µ

∥∥∥H(N) − M(N)
∥∥∥ , (29)

Using local observational data the procedure of obtaining sen-
sitivity information can therefore be freed from tunable param-
eters once a suitable class of models has been selected.

The extent to which it is necessary to include cumulants of
order greater than N for sensitivity calculations depends on the
role they play in maintaining the statistical equilibrium defined
by (14). Although the truncation of the cumulants at second or-
der yields realisable statistics, the second order cumulants alone
will in general not be capable of describing the fully nonlinear
features of a flow [20]. As described above, inclusion of the
third-order cumulants (the quasi-normal approximation) with-
out accounting for the fourth-order cumulants is problematic in

simulations, because the latter play a crucial role in damping the
third-order cumulants [5]. Therefore, a popular choice, known
as the Eddy Damped Quasi-Normal Markovian approximation
[see e.g. 28], is to truncate the cumulants at third order and to in-
clude a damping term to account for the discarded fourth-order
cumulants:

M(3) = µU(3); hence M =
[
0, 0, µI

]
. (30)

When µ → ∞ the cumulants of order N = 3 become increas-
ingly damped and the closure corresponds to a truncation at
N = 2; when µ → 0 the closure corresponds to truncation at
N = 3 [2]. The eddy-damping parameter therefore produces a
fan of possible functional gradients, as illustrated in figure 2(b).

The optimal value of µ that minimises the size of the normed
residual ‖R(3)‖ is

µ∗ =
〈U(3),H(3)〉

‖U(3)‖2
, (31)

which enables the optimal functional gradient to be determined
according to

∂J
∂mi

=

〈 
T

(11)† T (21)† T (31)†

T (12)† T (22)† T (32)†

0 T (23)† T (33)†

 +

0 0 0
0 0 0
0 0 −µ∗I



−1

g, f i

〉
.

(32)
The procedure described in this section consists of identi-

fying the order N at which the cumulant hierarchy should be
truncated, before selecting a subclass of possible models for
the unknown cumulants. The optimal parameters µ∗ and, there-
fore, the optimal gradient ∇J∗ in figure 2(b), can be determined
by minimising the residual between statistics from direct sim-
ulation and the corresponding model prediction according to
equation (29).

4. Two-dimensional convection (d = 3)

4.1. Truncation of the cumulant hierarchy
To test the method for obtaining functional gradients de-

scribed in §3.4, we collect statistics from direct simulations of
the Lorenz equations (2). We focus on the statistically station-
ary state produced by parameters (s, b, r) = (10, 8/3, 28), which
is well documented and was the state chosen for the sensitivity
analysis of Wang [49]. The dynamical equations are integrated
using the DOPRI5 explicit Runge-Kutta method in Python’s
SciPy library. To check convergence of the computed cumu-
lants the time τ used to define the time average (3) was varied
from τ = 103 to τ = 106. To allow for transient behaviour,
the initial time used in the simulations is −100. Integrals such
as (3) were computed using a trapezium rule over the discrete
points obtained from the simulations.

Gradients of the functional J = Z are displayed in figure
3, which shows the projection of the gradient vector ∇J onto
two-dimensional planes. The symbols denote the gradients
that are obtained by truncating the cumulant hierarchy at or-
der N = 1, 2, 3, 4, without modelling the discarded cumulants.
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Figure 3: Direction of the gradient ∇J = ∇Z evaluated at m = (10, 8/3, 28)
using the hierarchy of cumulant equations truncated at order N = 1, 2, 3, 4. The
star corresponds to the observed gradient reported in [49] and × corresponds to
the optimised eddy-damped model (31). Statistics were obtained over τ = 106

dimensionless time units. Points along the thick dashed red line that connects
N = 2 with N = 3 were obtained by determining ∇Z for different values of
µ ∈ (0,∞).

Truncation of the tangent linear system at N = 1 yields an in-
accurate representation of the gradient of Z. The response of
the second order cumulants to changes in the parameters is ev-
idently significant and therefore the assumption that their de-
pendence on parameters is identically zero (or, more generally,
orthogonal to g(2), as described in §3.3) produces poor predic-
tions. Truncation of the tangent linear system at N = 2 also
yields a poor approximation of ∇Z, particularly ∂bZ, but one
that is an improvement in comparison with truncation at N = 1.
As discussed in §3.4, in shearless turbulence the effect on ed-
dies of eddy-eddy interactions, captured by the third order cu-
mulants [16], is expected to play a crucial role in maintaining
statistical equilibrium in the case of the Lorenz equations. In-
deed, the third order cumulants play a dynamically important
role in determining the response of the Lorenz system to para-
metric changes, and figure 3 shows that their retention yields a
reasonable approximation of ∇Z.

Truncation of the cumulant equations at N = 4 yields a poor
approximation to ∇Z, which illustrates the need to find a com-
promise between the efficiency and simplicity of truncation at
relatively low order and the additional physics that is captured
by higher-order cumulants. In the absence of physical justifi-
cation, truncation at higher order, rather than lower order, does
not necessarily imply an improved estimation of the behaviour
of the retained cumulants. Indeed, as noted in §3.4, distribu-
tions with cumulants that are non-zero up to order N, followed
by cumulants that are zero above order N, are not realisable for
N > 2. In this respect, it is perhaps not surprising that the fourth
order approximation shown in figure 3 is inaccurate.

4.2. Error analysis

The difference between the approximation
∑N

j=1〈v
( j), f ( j)

i 〉

that was obtained by truncating the cumulant hierarchy and the
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Figure 4: Components of the error 〈g(N+1),u(N+1)
3 〉 for truncation at order N =

4. The values used to create this figure can be found in table B.6 in appendix
Appendix B.

observed gradient ∇Z (depicted in figure 3 with a star) can be
understood by inspecting the derivatives of the discarded cu-
mulants. As discussed at the end of §3.3, the error associated
with the ith component of the gradient ∇Z for truncation at order
N is 〈g(N+1),u(N+1)

i 〉, where u(N+1)
i are the perturbations of the

neglected cumulants, and g(N+1) determines the influence they
have on the functional in question:

∂J
∂mi

=

N∑
j=1

〈v( j), f ( j)
i 〉︸         ︷︷         ︸

approximation

− 〈g(N+1),u(N+1)
i 〉︸            ︷︷            ︸

error

. (33)

We focus on the error associated with the derivative of Z with
respect to r (i.e. i = 3), and display g(N+1) and u(N+1)

3 for N = 4
in figure 4. We restrict attention to non-zero cumulants using
the symmetry arguments made in §3.1. The gradients were de-
termined by analysing statistics from 256 simulations employ-
ing values of r distributed uniformly over a unit interval cen-
tred on r = 28. The full details and errors corresponding to
N = 1, 2, 3 can be found in Appendix B. To summarise, when
N = 1 the error comes entirely from the neglected cumulant
XY = U110. At N = 2 the dominant contribution to the error
comes from the response of U111, which is related to the mo-
ment XYZ and at N = 3 it comes predominantly from U310 and
U130, which are related to the moments X3Y and XY3, respec-
tively.

For truncation at order N = 4, the perturbations in the dis-
carded cumulants are of order 103, with figure 4 indicating that
the dominant contribution to the error comes from U311, which
is related to the moment X3YZ. The effect on the error of the
growing sensitivity and number of discarded cumulants is, to a
limited extent, compensated by their diminishing influence on
the gradient ∂rZ, as evidenced by the relatively small values of
g(5) in figure 4.

A summary of the truncation errors obtained at each order
is provided in table 1. Obtaining accurate observations of the
sensitivity of fifth-order statistics from the Lorenz attractor is
challenging, because it requires the use of relatively large in-
tervals for time averaging. The approximate equality between
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N = 1 2 3 4∑N
j=1〈v( j), f (N)

3 〉 -0.0003 1.1715 0.8012 1.8502
−〈g(N+1),u(N+1)〉 1.0033 -0.1691 0.2007 -0.8625∑N

j=1〈v( j), f (N)
3 〉 − 〈g

(N+1),u(N+1)〉 1.0030 1.0023 1.0019 0.9877
∂rZ 1.0030 1.0030 1.0030 1.0030

Table 1: The error −〈g(N+1),u(N+1)
3 〉 in the estimation of ∂rZ using a truncation

of the cumulant hierarchy at order N. See appendix Appendix B for further
details.

the third and fourth rows of table 1 nevertheless indicates that
the sum of the inferred gradient

∑N
j=1〈v

( j), f (N)
i 〉 and the error

−〈g(N+1),u(N+1)
3 〉 agrees with ∂rZ, and therefore satisfies the

original cumulant equations to within 2%. At orders 1, 2 and
3 the difference between the third and fourth columns of table
1 implies that the cumulant equations are satisfied to within ap-
proximately 0.1%.

4.3. Optimal closure

In addition to the relatively simple truncations discussed in
§§4.1-4.2, corresponding to assumption that 〈g(N+1),u(N+1)〉 =

0, the projections in figure 3 also display the gradients that are
obtained by varying the eddy-damping parameter µ described
in §3.4. The resulting family of gradients produce a fan of
gradient vectors lying between the limit points associated with
second-order truncation (µ → ∞) and the third-order trunca-
tion (µ→ 0). At least one member of the family corresponds to
an eddy damping that is optimal, in the sense of equation (29),
with respect to observations. Although the optimal eddy damp-
ing µ∗ yields a gradient that is close to the observed gradient,
figure 3 indicates that other values of µ would yield a slightly
improved prediction. The reason for this is that the parameter
that minimises the residual of the difference between the cu-
mulant equations and the observations is not necessarily that
which minimises the difference between the predicted and ob-
served gradients of a given functional, and therefore typifies the
difficulties of deriving gradients from a single set of statistics.
The optimal value of µ = µ∗ was found to be 8.96. A summary
of the results, including the dependence of the computed gradi-
ents on the integration time used to obtain statistics, is provided
in table 2.

5. Three-dimensional convection (d = 9)

A logical extension of the model for two-dimensional
Boussinesq convection analysed in the previous section is the
model for three-dimensional Boussinesq convection studied by
Reiterer et al. [40]. Like its two-dimensional counter part, the
system is a truncated Galerkin representation of the full dynam-
ics. Unlike its two-dimensional counter part, the system evolves
on a d = 9 dimensional, rather than d = 3 dimensional, phase
space and therefore yields statistics that exhibit a more com-
plicated dependence on the problem’s parameters. Expressing
temperature and velocity in terms of a triple Fourier series and

∂sZ ∂bZ ∂rZ
Wang [49, regression] 0.16 -1.68 1.01
Wang [49] 0.21 -1.74 0.97

1st order 0.0000 ( 0.0000) -8.8346 (-8.8327) -0.0003 (-0.0001)
2nd order 0.0312 ( 0.0312) 1.5146 ( 1.5145) 1.1715 ( 1.1715)
3rd order 0.2144 ( 0.2145) -2.7844 (-2.7840) 0.8012 ( 0.8012)
4th order -0.3353 (-0.3350) 8.5854 ( 8.5774) 1.8502 ( 1.8495)

Model (τ = 103) 0.2186 -2.5566 0.8379
Model (τ = 104) 0.1754 -1.9172 0.8723
Model (τ = 105) 0.1734 -1.9082 0.8730
Model (τ = 106) 0.1712 -1.8743 0.8748

Table 2: Cumulant sensitivities for the Lorenz equations. Nth order corresponds
to truncation of the cumulant equations at order N (i.e. discarding cumulants
of order N + 1, which is equivalent to assuming that 〈g(2),u(2)〉 = 0), obtained
from integrals over τ = 105 dimensionless time units (values corresponding to
τ = 106 are shown in parentheses). The entries marked ‘Model’ correspond to
those obtained by using an optimal eddy damping parameter µ∗ in the equations
for the third order cumulants.

retaining terms up to second order yields the following closed
system of equations [40]:

Q̇0 = −s b1 Q0 − Q1 Q3 + b4 Q2
3 + b3 Q2 Q4 − s b2 Q6,

Q̇1 = −s Q1 + Q0 Q3 − Q1 Q4 + Q3 Q4 − s Q8/2,

Q̇2 = −s b1 Q2 + Q1 Q3 − b4 Q2
1 − b3 Q0 Q4 + s b2 Q7,

Q̇3 = −s Q3 − Q1 Q2 − Q1 Q4 + Q3 Q4 + s Q8/2,

Q̇4 = −s b5 Q4 + Q2
1/2 − Q2

3/2,
Q̇5 = −b6 Q5 + Q1 Q8 − Q3 Q8,

Q̇6 = −b1 Q6 − r Q0 + 2 Q4 Q7 − Q3 Q8,

Q̇7 = −b1 Q7 + r Q2 − 2 Q4 Q6 + Q1 Q8,

Q̇8 = −Q8 − r Q1 + r Q3 − 2 Q1 Q5 + 2 Q3 Q5 + Q3 Q6 − Q1 Q7,



(34)

where

b1 = 4
1 + k2

1 + 2 k2 , b2 =
1 + 2 k2

2 (1 + k2)
, b3 = 2

1 − k2

1 + k2 ,

b4 =
k2

1 + k2 , b5 = 8
k2

1 + 2 k2 , b6 =
4

1 + 2 k2 .

 (35)

The parameters s and r continue to represent the Prandtl num-
ber and the renormalised Rayleigh number. In addition, equa-
tion (35) defines a set of geometrical parameters, as a function
of the wave number k, which correspond to b in the previous
problem. To within constants of proportionality, the variables
X, Y and Z in the two-dimensional case correspond to Q4, Q9
and Q6, respectively. More precisely, because Z = −A Q6 for
A > 0, we focus on the dependence of −Q6 on r, where −Q6
is proportional to the strength of the horizontal average tem-
perature with respect to a state of pure conduction. For details
pertaining to the derivation of (34), the reader is referred to Re-
iterer et al. [40]. To aid comparison with the results presented
in Reiterer et al. [40], we choose s = 10, k = 1/2 and vary r.
The statistics were obtained over a dimensionless time τ = 104.

As described in Reiterer et al. [40], when r > 14.17 for s =

10 and k = 1/2, the system is chaotic. When projected onto the
Q6,Q9 plane the attractor consists of two lobes either side of the
hyperplane Q9 = 0, as can be seen in figure 5. As r increases
the deviation of the horizontally averaged temperature from the
linear behaviour associated with pure conduction increases.
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Figure 5: Projection of the chaotic attractor associated with the nine-
dimensional system (34) onto the plane describing the mode associated with
horizontally average temperature −Q6 and the difference in temperature be-
tween ascending and descending fluid Q9. The trajectories correspond to 2000
dimensionless time units.

The precise relationship between r and −Q6 for the param-
eters s = 10 and k = 1/2 is displayed in figure 6. In spite
of the discontinuities resulting from the use of a finite time av-
erage for each value of r, the relationship indicates that −Q6
tends to increase as r increases. At a glance, a linear relation-
ship between r and −Q6 over [26, 30] 3 r appears to provide a
reasonable first description of the sensitivity. However, closer
inspection reveals that −∂rQ6 varies significantly on scales of
approximately ∆r ∼ 0.5, in contrast to the equivalent relation-
ship for the Lorenz system (see figure 1), for which ∂rZ is ap-
proximately constant over a large range of r.

Since the dynamical system has d = 9 degrees of freedom,
the number of cumulants up to order N is given by equation
(16):

N∑
j=1

(
j + d − 1

d − 1

)
= 9 + 45 + 165 + . . . +

(
N + d − 1

d − 1

)
. (36)

The derivative of −Q6 with respect to r was computed by trun-
cating the cumulant equations at N = 3 and invoking the op-
timal eddy-damping closure described in §3.4. As is evident
from figure 6, the computed gradients appear to under estimate
the underlying exact gradients in general, but nevertheless pro-
vide a reasonably good approximation. As pointed out in §3.4,
the least-squares optimal eddy-damping parameter yields an ap-
proximation to the gradient based on point-wise observations,
rather than the best approximation to the gradient. It is there-
fore useful to consider the sensitivity of the computed gradient
to changes in the eddy-damping parameter µ by calculating the
derivative −∂µ∂rQ6. Figure 6 displays gradients correspond-
ing to the optimal eddy-damping parameter µ∗, along with lines
whose gradients are ±µ∗∂µ∂rQ6 to indicate the sensitivity of

26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0
r

5.00
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5.75

6.00

6.25

6.50
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7.00

−
Q

6

4.50

3.65

2.48

Figure 6: The dependence of −Q6 on the system parameter r (blue line) and
approximations to the local derivative using a truncated cumulant expansion.
The statistics were obtained over a dimensionless time τ = 104. The shaded
regions indicate the linear sensitivity of the computed gradient to changes in
the eddy-damping parameter µ; the gradient of the bounds of the shaded regions
are calculated according to ±µ∗∂µ∂rQ6.

the results to changes in µ. It is interesting that at r = 29, we
observe that ∂µ∂rQ6 = 0, which indicates that the computed
gradient is insensitive to changes in µ.

As discussed in §3.4, different values of µ correspond to dif-
ferent assumptions about the involvement of third-order cumu-
lants in the statistical equilibrium. Picking an arbitrary value
of µ in equation (32) might result in the adjoint operator being
close to singular and therefore yielding gradients that depend
sensitively on the choice of µ. To illustrate this, figure 7 shows
evaluations of the derivative of Q6 with respect to r using equa-
tion (32) for values of µ in the vicinity of the optimal value µ∗ as
determined by equation (29). When r = 28.0 it is evident that
some choices of µ result in a singular or near-singular adjoint
operator and, therefore, a large amount of uncertainty in the re-
sulting gradients. To obtain robust results in this particular case
it is therefore necessary to use an optimal eddy-damping param-
eter that is determined systematically, rather than an estimation
that is independent of observations. The optimal parameter µ∗
appears to find a local maximum in the value of −∂rQ6 when
r = 29.0, which explains why the estimated gradient is locally
insensitive to changes in µ.

6. Conclusions

We have described a systematic means of obtaining approxi-
mate forward and adjoint sensitivity information from a chaotic
system using a truncated hierarchy of cumulant equations. Un-
like linearisation of the underlying evolution equations for in-
dividual trajectories, the cumulant equations yield robust, al-
beit approximate, information about functional derivatives. The
method was designed for situations in which one has access to
statistical data from the direct simulation of a potentially high-
dimensional chaotic system and wishes to approximate the gra-
dients of a functional with respect to many input parameters. In
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Figure 7: The dependence of the derivative ∂rQ6 on the eddy-damping param-
eter µ, derived from a truncation of the cumulant hierarchy at N = 3, according
to (32).

principle the method could also be applied to obtain gradients
of flow functionals from experimental measurements.

We combined data from direct simulation with tangent linear
and adjoint equations for the system’s statistical state dynam-
ics. These equations can be obtained from the original system
systemically using a cumulant generating function. Whilst the
method is approximate, because it relies on truncation of the
cumulant equations, the incorporation of observations to derive
optimal truncations significantly improves its accuracy and ro-
bustness. Although the method itself is not restricted to statisti-
cally stationary problems, we expect the acquisition and incor-
poration of the corresponding unsteady statistical observations
to be challenging.

The extraction of gradient information from functionals of
chaotic dynamical systems is a stringent test for modelling and
closure schemes. A given model can be tuned to adequately
represent a given problem. However, unless it accurately de-
scribes the underlying physics, it is unlikely to yield accurate
information about how an output functional changes with re-
spect to changes in the problem’s definition. Hence, the class
of models from which one selects a suitable surrogate must be
capable of describing the dynamics correctly. In the absence of
shear, Rayleigh Bénard convection and, specifically, the Lorenz
model, provide a difficult test for cumulant closures because
truncation of the equations at second order removes interactions
that are vital in determining the response of the system’s statis-
tical equilibrium. In contrast, for problems dominated by mean
shear, such as jets, it is likely that cumulant truncation at sec-
ond order would adequately capture the leading-order dynam-
ics [15] and would significantly simplify the approach to ob-
taining gradient information. The basic approach that we have
described can be refined by exploring more appropriate ways of
fitting the surrogate model.

Although we have focused on relatively low-dimensional dy-
namical systems, the idea of using cumulant expansions was
motivated by the need to analyse high-dimensional dynamical
systems. The challenge in the successful application of the
method to large systems lies in the acquisition of a large num-

ber of accurate high order cumulants and the systematic deriva-
tion and manipulation of a potentially large number of cumu-
lant equations. In such cases statistical symmetries of a given
problem can be used to significantly reduce the number of un-
knowns. An alternative or complementary approach would be
to map the full system onto a relatively low-order model, for
which the cumulants and their dynamics can be more readily
obtained. Guided by the classical moment problem, further
work should also incorporate restrictions that could be imposed
on the gradients of cumulants to ensure that they point in a re-
alisable direction.

Appendix A. Derivation of the cumulant equations

The Hopf generating functional [22] is defined according to

Ψ(Q(t), P) = exp (ıPiQi(t)) , (A.1)

where ı =
√
−1. The moment Qα can therefore be generated as

Qα = (−ı)|α|∂αΨ

∣∣∣∣∣
P=0

, (A.2)

where α = (α1, α2, . . . , αd) is a multi-index, such that Qα =

Qα1
1 Qα2

2 . . . Qαd
d and ∂α = ∂α1

P1
∂α2

P2
. . . ∂αd

Pd
. A moment Qα can be

decomposed into a sum of products of cumulants Uβ, contain-
ing all possible factorisations of the monomial Qα:

Qα =
∑
π∈Π(α)

∏
β∈π

Uβ, (A.3)

where π is a multiset that decomposes a multi-index into
addends. For example, if α = (2, 1, 0, 0, . . . ) then π =

{(2, 0, . . .), (0, 1, 0, . . .)} would be one such decomposition. The
multiset Π(α) consists of all such decompositions. For exam-
ple, if α = (0, 0, 4), then Qα = Z4, and

Π(α) = {{(0, 0, 4)} ,

{(0, 0, 3), (0, 0, 1)}4 ,

{(0, 0, 2), (0, 0, 2)}3 ,

{(0, 0, 2), (0, 0, 1), (0, 0, 1)}6 ,
{(0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1)}} ,

(A.4)

in which the exponents denote set multiplicities. In the example
above, the set multiplicities arise from the different ways that a
set consisting of 4 elements can be partitioned. According to
(A.3) and (A.4), the moment Z4 can be expressed in terms of
cumulants as

Z4 = U004 + 4U003U001 + 3U2
002 + 6U002U2

001 + U4
001. (A.5)

The decomposition (A.3) is identical to that which arises when
partial derivatives are applied to composite functions. Indeed,
using Ψ = exp(log(Ψ)),

∂αΨ

∣∣∣∣∣
P=0

=
∑
π∈Π(α)

∏
β∈π

∂β log Ψ

∣∣∣∣∣
P=0

, (A.6)
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which shows that the logarithm of the moment generating func-
tion is the cumulant generating function.

Appendix B. Observed cumulant gradients

The gradients used to compute the truncation errors dis-
played in figure 4 were obtained from simulations of the Lorenz
equations for 256 values of r uniformly distributed over a unit
interval centred on r = 28. An approximation of the partial
derivative of non-zero cumulants up to order 5 was obtained
by minimising the squared difference between the straight line
(∂r J|r=28)r + J(0) and the data, which are both displayed in fig-
ure B.8. The resulting gradients are tabulated in tables B.3-B.6.

α g(2) u(2)
3

(2, 0, 0) 0.00e+00 2.68e+00
(1, 1, 0) -3.75e-01 2.67e+00
(0, 2, 0) 0.00e+00 3.95e+00
(0, 0, 2) 0.00e+00 2.92e+00

Table B.3: Components of the error 〈g(2),u(2)
3 〉 for truncation at order N = 1.

α g(3) u(3)
3

(2, 0, 1) 1.70e-03 2.19e+01
(1, 1, 1) 1.70e-02 7.79e+00
(0, 2, 1) 0.00e+00 1.14e+00
(0, 0, 3) 0.00e+00 -1.81e+00

Table B.4: Components of the error 〈g(3),u(3)
3 〉 for truncation at order N = 2.
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α g(4) u(4)
3

(4, 0, 0) 0.00e+00 -3.33e+02
(3, 1, 0) 2.56e-04 -3.33e+02
(2, 2, 0) 1.27e-04 -2.87e+02
(2, 0, 2) -1.27e-04 1.33e+02
(1, 3, 0) 2.73e-04 -2.38e+02
(1, 1, 2) -5.46e-04 -5.72e+00
(0, 4, 0) 0.00e+00 -2.33e+02
(0, 2, 2) 0.00e+00 -6.99e+01
(0, 0, 4) 0.00e+00 -2.32e+02

Table B.5: Components of the error 〈g(4),u(4)
3 〉 for truncation at order N = 3.
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Figure B.8: Estimators for the non-zero cumulants of the Lorenz attractor from
simulations of duration τ = 105 time units (blue/dark) and τ = 106 time units
(red/light). The gradients of the data were computed from simulations of dura-
tion τ = 106 time units. The cumulant Uα corresponds to the moment Qα mod-
ulo all combinations of the corresponding low-order cumulants, as described in
Appendix A. The numbers in each window correspond maximum and mini-
mum value of the given cumulant.

α g(5) u(5)
3

(4, 0, 1) 8.20e-06 -7.16e+03
(3, 1, 1) -1.47e-04 -5.22e+03
(2, 2, 1) -6.37e-06 -3.37e+03
(2, 0, 3) -9.74e-06 -1.18e+03
(1, 3, 1) -5.97e-05 -1.73e+03
(1, 1, 3) -2.66e-05 -6.31e+02
(0, 4, 1) 0.00e+00 -5.73e+02
(0, 2, 3) 0.00e+00 -2.49e+02
(0, 0, 5) 0.00e+00 -9.62e+02

Table B.6: Components of the error 〈g(5),u(5)
3 〉 for truncation at order N = 4.
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