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Abstract: In this paper we consider a nonlocal energy Iα whose kernel is obtained by
adding to the Coulomb potential an anisotropic term weighted by a parameter α ∈ R.
The case α = 0 corresponds to purely logarithmic interactions, minimised by the circle
law; α = 1 corresponds to the energy of interacting dislocations, minimised by the semi-
circle law. We show that for α ∈ (0, 1) the minimiser is the normalised characteristic
function of the domain enclosed by the ellipse of semi-axes

√
1 − α and

√
1 + α. This

result is one of the very few examples where the minimiser of a nonlocal anisotropic
energy is explicitly computed. For the proof we borrow techniques from fluid dynamics,
in particular those related to Kirchhoff’s celebrated result that domains enclosed by
ellipses are rotating vortex patches, called Kirchhoff ellipses.

1. Introduction

The starting point of our analysis is the nonlocal energy

Iα(μ) = 1

2

∫∫
R2×R2

Wα(x − y) dμ(x) dμ(y) +
1

2

∫
R2

|x |2 dμ(x) (1.1)

defined on probability measuresμ ∈ P(R2), where the interaction potentialWα is given
by

Wα(x1, x2) = −1

2
log(x21 + x22 ) + α

x21
x21 + x22

, x = (x1, x2) ∈ R
2 , (1.2)

and α ∈ R. Here the parameter α has the role of tuning the strength of the anisotropic
component of Wα , making it more or less prominent.

In the particular case where the anisotropy is switched off, namely for α = 0, the
minimiser is radial, and is given by the celebrated circle law μ0 := 1

π
χB1(0), the nor-

malised characteristic function of the unit disc. This result is now classical and has been
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proved in a variety of contexts, from Fekete sets to orthogonal polynomials, from ran-
dom matrices to Ginzburg-Landau vortices and Coulomb gases (see, e.g., [26,39], and
the references therein).

In the case α = 1, the energy I1 models interactions between edge dislocations of
the same sign (see, e.g., [27,36]). The minimisers of I1 were since long conjectured to
be vertical walls of dislocations, and this has been confirmed only very recently, in [37],
where the authors proved that the only minimiser of I1 is the semi-circle law

μ1 := 1

π
δ0 ⊗

√
2 − x22 H1 (−√

2,
√
2) (1.3)

on the vertical axis.
In this paper we explicitly characterise the minimiser of Iα for every α ∈ R. It

turns out that the values α = ±1 are critical values of the parameter, corresponding
to maximal anisotropy, at which an abrupt change in the dimension of the support of
the minimiser occurs. Indeed, for α ∈ (−1, 1) we prove that the unique minimiser of
Iα is the normalised characteristic function of the region surrounded by an ellipse of
semi-axes

√
1 − α and

√
1 + α. On the other hand, we show that for every α ≥ 1 the

only minimiser of Iα is the semi-circle law μ1 on the vertical axis, while for α ≤ −1 it
is the semi-circle law on the horizontal axis.

Minimisers of nonlocal energies have been explicitly determined only in very few
cases. Even in the classical case of purely logarithmic interactions, the characterisation
of the equilibrium measure for a general confinement is still an open problem, and is the
object of an intense research activity (see [4,8,9,26,32] for the study of various confine-
ments of special form). For anisotropic interaction kernels with logarithmic singularity,
the present contribution, together with [37], is the only result of explicit computation of
the equilibrium measure.

The main result of the paper is the following:

Theorem 1.1. Let 0 ≤ α < 1. The measure

μα := 1√
1 − α2π

χ�(
√
1−α,

√
1+α), (1.4)

where

�(
√
1 − α,

√
1 + α) :=

{
x = (x1, x2) ∈ R

2 : x21
1 − α

+
x22

1 + α
< 1

}
,

is the unique minimiser of the functional Iα among probability measures P(R2), and
satisfies the Euler–Lagrange conditions

(Wα ∗ μα)(x) +
|x |2
2

= Cα for every x ∈ �(
√
1 − α,

√
1 + α), (1.5)

(Wα ∗ μα)(x) +
|x |2
2

≥ Cα for every x ∈ R
2, (1.6)

with

Cα = 2Iα(μα) − 1

2

∫
R2

|x |2 dμα(x)

= 1

2
− log

(√
1 − α +

√
1 + α

2

)
+ α

√
1 − α√

1 − α +
√
1 + α

.
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The result for α > 1 can be obtained by a simple comparison argument, and for
α < 0 by symmetry (see Sect. 2). We emphasise that for 0 ≤ α ≤ 1 the Euler–Lagrange
conditions (1.5)–(1.6) are a sufficient condition to minimality, since we will show that
the energy Iα is strictly convex for these values of α (see Proposition 2.1). Thus, proving
that μα satisfies (1.5)–(1.6) immediately entails the minimality of μα .

1.1. Kirchhoff ellipses and dislocations. To prove that the ellipse law μα satisfies the
Euler–Lagrange conditions (1.5)–(1.6), we evaluate the convolution of the kernel Wα

with the characteristic function of the domain enclosed by a general ellipse. Let us define,
for any a, b > 0, the domain

�(a, b) :=
{
x = (x1, x2) ∈ R

2 : x21
a2

+
x22
b2

< 1

}
,

which is the region surrounded by an ellipse centred at the origin with horizontal semi-
axis a and vertical semi-axis b. As a first step, we compute explicitly the gradient of
Wα ∗χ�(a,b), both inside and outside�(a, b); see Eqs. (3.6)–(3.7) in Proposition 3.1. As
we shall see, this is enough to conclude the proof of Theorem 1.1, but for completeness
we shall also explicitly compute Wα ∗ χ�(a,b) in the whole plane (see Remark 4.1).
The gradient of Wα ∗ χ�(a,b) is the sum of −(1/z) ∗ χ�(a,b), where z = x1 + i x2 is
the complex variable in the plane, and of a second term containing the gradient of the
anisotropic part of the potential. The convolution −(1/z) ∗ χ�(a,b) has been computed
before, for instance in [28], for rotating vortex patches in fluid dynamics.

Let us recall that a vortex patch is the solution of the vorticity form of the planar Euler
equations inwhich the initial condition is the characteristic function of a bounded domain
D0. Since vorticity is transported by the flow, the vorticity at time t is the characteristic
function of a domain Dt . In general the evolution of Dt is an extremely complicated
phenomenon, but Kirchhoff proved more than one century ago that if D0 is the domain
enclosed by an ellipse with semi-axes a and b, then Dt is just a rotation of D0 around its
centre of mass with constant angular velocity ω = ab/(a + b), see [25,30,34]. Domains
with the simple evolution property described above are called V -states or rotating vortex
patches. They can be viewed as stationary solutions in a reference system that rotates
with the patch, and they can be described by means of an equation involving the stream
function − log | · | ∗ χD0 of the initial patch D0 (see [11]), which is formally similar
to the Euler–Lagrange equation (1.5). If one wants to verify that for the elliptical patch
�(a, b) such equation is satisfied, one needs to compute explicitly − log | · | ∗ χ�(a,b),
and this can be done by first computing its gradient −(1/z) ∗ χ�(a,b).

This is the main connection between Kirchhoff ellipses and dislocations. However,
the challenge in the dislocations case is to compute the gradient of the anisotropic part of
Wα ∗ χ�(a,b). The key observation is that it can be written in terms of suitable complex
derivatives of the fundamental solution of the operator ∂2, where ∂ = ∂/∂z. To compute
such term explicitly we need the expression of −(1/z) ∗ χ�(a,b), which was known, as
well as the expression of (z/z̄2) ∗ χ�(a,b), which we obtain in Proposition 3.1.

What is surprising is that techniques developed in the context of fluid mechanics turn
out to be crucial for the characterisation of the minimisers of the anisotropic energy Iα ,
which arises, in the case α = 1, in the context of edge dislocations inmetals. In particular
the minimality of the semi-circle law for the dislocation energy I1 can be deduced from
Theorem 1.1 by a limiting argument based on 	-convergence (see Corollary 3.3). That
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is, we obtain again the main result of [37], but with a different proof based on methods
from fluid mechanics and complex analysis.

It is worth emphasising the special role that ellipses play in both contexts. On the one
hand, in fluid mechanics they provide one of the few explicit solutions of the incom-
pressible Euler equations. On the other hand, the characteristic function of the elliptical
domains�(a, b) is one of the fewmeasuresμ for which the convolution potentialWα∗μ

can be explicitly computed.
What is even more surprising is that, for 0 < α < 1, the normalised characteristic

function of �(
√
1 − α,

√
1 + α) is actually the minimiser of the energy Iα and that it is

possible to prove it. To see this, let us first consider the purely logarithmic case α = 0.
By radial symmetry of the energy and uniqueness, the minimiserμ0 must be radial. This
case is well-known to be connected to the classical obstacle problem for the Laplace
operator [10,12,13]. Defining 
0 = W0 ∗ μ0 and assuming that μ0 is supported on
the closure of a smooth bounded open set �, the Euler–Lagrange equations (1.5)–(1.6)
imply ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


0 ≥ C0 − |x |2
2

in R2,

−�
0 ≥ 0 in R2,(

0 − C0 +

|x |2
2

)
�
0 = 0 in R2,

(1.7)

where � is the coincidence set, i.e., the points where 
0 = C0 − (|x |2/2). It is not
surprising from (1.7) thatμ0 is the normalised characteristic function of the coincidence
set � with constant density since 2πμ0 = −�
0, and due to the radial symmetry the
Euclidean ball is the clear candidate for �.

In the presence of the anisotropic term, that is, forα > 0,wewriteWα = W0+αF and
define
α = Wα ∗μα whereμα is the unique minimiser of Iα . A corresponding obstacle
problem as (1.7) can be formally written for the potential 
α , and the coincidence set is
again determined by the condition 
α = Cα − (|x |2/2). Assuming it is the closure of a
smooth bounded open set �, one obtains

�
α = −2πμα + α�F ∗ μα = −2 in �.

Ifμα is the normalised characteristic function of�, then�F∗μα should be constant on�

aswell. However, computing�F∗χ� for a general domain� is a highly non-trivial task,
and in principle �F ∗ χ� could be a very complicated object. It is therefore surprising
that, for elliptic domains � = �(a, b), �F ∗ χ�(a,b) is constant in �(a, b). In fact, as
we mentioned before, we are able to compute the convolution potential Wα ∗ χ�(a,b) in
the whole of R2, and to show that in �(a, b) it is a homogeneous polynomial of degree
2 plus a constant. From this property, indeed, establishing the first Euler–Lagrange
condition is a relatively easy task. The expression of the convolution potential (and of its
gradient) outside�(a, b) is instead much more involved, so that establishing the second
Euler–Lagrange condition is the challenge.

1.2. Dimension of the support of the equilibrium measure. We have seen that the values
α = ±1 of the weight for the anisotropic term of the kernel Wα determine a sharp
transition in the dimension of the support of the minimising measure μα from two (for
α ∈ (−1, 1)) to one (for α ≤ −1 and α ≥ 1).
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For general energies of the form

E(μ) = 1

2

∫
Rd

∫
Rd

W (x − y) dμ(x) dμ(y) +
∫
Rd

V (x) dμ(x) for all μ ∈ P(Rd),

(1.8)
where W : Rd → R ∪ {+∞} is an interaction potential and V : Rd → R ∪ {+∞} is a
confining potential, understanding how the dimension of the support of the minimisers
depends on W and V is a challenging question.

In [3] the authors showed that the dimension of the support of a minimiser of E is
directly related to the strength of the repulsion of the potential at the origin. What they
showed is that the stronger the repulsion (up to Newtonian), the higher the dimension
of the support. The case of mild repulsive potentials in which the minimisers are a finite
number of Dirac deltas has been recently studied in [19].

Our result shows that a change of the dimension of the support of the minimisers can
also be obtained by tuning the asymmetry of the interaction potential.

Another challenging question arising from the results in this paper and in [3] is to give
explicit examples in which a change of the dimension of the support of the minimisers
is obtained by tuning the confining potential V , or the singularity of the interaction
potential at zero.

1.3. Moregeneral interactions and evolution. Theproblemof establishing existence and
qualitative properties of minimisers of (1.8) has been the object of an intense research
activity in the last 20 years; see, e.g., [16–18,22,41]. A very related question is to study
the asymptotic stability properties of stationary solutions of its associated gradient flow

∂tμ = div
(
μ∇ δE

δμ

)
= div

(
μ∇(W ∗ μ + V )

)
on R

d , for t > 0, (1.9)

in the Wasserstein sense [2,21], where μ : [0,∞) → P(Rd) is a curve in the space of
probabilitymeasures. Here, the variational derivative δE/δμ := W ∗μ+V is obtained by
doing variations of the energy E(μ) preserving the unit mass of themeasure as originally
introduced in [38]; see [2,45] for the general theory. Equations like (1.9) describe the
macroscopic behaviour of agents interacting via a potential W , and are at the core of
many applications ranging from mathematical biology to economics; see [7,29,35,43]
and the references therein.

In most of the early works, interaction and confinement potentials were assumed to
be smooth enough and convex in some sense, including interesting cases with appli-
cations in granular media modelling [21,44]. In most of the applications however the
potential W is singular, and in fact most of the rich structure of the minimisers happens
when the potentials are singular at the origin; see [1,3,5,6,20,24,31,40] and [22] for a
recent review in the subject. Typical interaction potentials in applications are repulsive
at the origin and attractive at infinity (the latter guaranteeing confinement). The classical
case corresponding to α = 0 in (1.2), that is, the repulsive Newtonian interaction with
quadratic confinement, was analysed in [6]. They showed that all the solutions of the cor-
responding gradient flow equation (1.9) converge as t → ∞ to the suitably normalised
characteristic function of an Euclidean ball with a certain radius. In particular, their
results imply a dynamic proof of the classical minimisation result of Frostman [26,39].
We also mention [40], where these results are recovered by taking the limit from the
fractional diffusion range and the obstacle problems studied in [14,15].
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Euler–Lagrange necessary conditions for local minimisers of the energy E in a suit-
able topology were derived in [3], see also [39] for the particular case of the logarith-
mic potential. They were used to give necessary and sufficient conditions on repulsive-
attractive potentials to have existence of global minimisers [16,41], and to analyse their
regularity for potentials that are as repulsive as, or more singular than, the Newtonian
potential [18]. In both cases, global minimisers are solutions of some related obsta-
cle problems for Laplacian or nonlocal fractional Laplacian operators, implying that
they are bounded and smooth in their support, or even continuous up to the boundary
[10,13,18,22]. Similar Euler–Lagrange conditions were also used for nonlinear versions
of the Keller-Segel model in order to characterise minimisers of related functionals [17].

The plan of the paper is as follows. The proof of the Euler–Lagrange conditions
in Theorem 1.1 will be done in Sect. 3. We start next section, Sect. 2, by showing
the existence and uniqueness of the global minimiser for Iα . Section 4 contains some
additional information. On the one hand, we discuss an alternative proof of the first
Euler–Lagrange condition and compute the minimal energy. On the other hand, we
study more general anisotropies.

2. Existence and Uniqueness of the Minimiser of Iα

In this section we prove that for every α ∈ R the nonlocal energy Iα defined in (1.1) has
a unique minimiser μα ∈ P(R2), and that the minimiser has a compact support.

We observe that it is sufficient to consider the case α ∈ (0, 1). In fact, for α = 0,
that is, for purely logarithmic interactions, it is well-known that there exists a unique
minimiser of I0, which is given by the so-called circle law μ0 := 1

π
χB1(0) (see, e.g.,

[26,39], and the references therein). The case α = 1, that is, the case of interacting edge
dislocations, has been recently solved in [37], and it has been shown that I1 has a unique
minimiser, given by the semi-circle law (1.3). A simple comparison argument shows
that μ1 is indeed the unique minimiser of Iα for any α ≥ 1. In fact, for any α ≥ 1 and
any μ ∈ P(R2) with μ �= μ1, we have

Iα(μ1) = I1(μ1) < I1(μ) ≤ Iα(μ).

If α < 0, instead, we observe that

Wα(x1, x2) = − log |x | + |α| x22
|x |2 + α,

hence all results in this case may be obtained from those with α > 0 just by swapping
x1 and x2.

In what follows we assume the kernel Wα to be extended to the whole of R2 by
continuity, that is, we set Wα(0) := +∞.

Proposition 2.1. Let α ∈ [0, 1]. Then the energy Iα is well defined on P(R2), is strictly
convex on the class of measures with compact support and finite interaction energy, and
has a unique minimiser in P(R2). Moreover, the minimiser has compact support and
finite energy.

Proof. The case α = 0 is well-known. The proof for α ∈ (0, 1) follows the lines of the
analogous result for α = 1; see [37, Section 2]. For the convenience of the reader we
recall the main steps of the proof.
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Step 1: Existence of a compactly supported minimiser. We have that

Wα(x−y)+
1

2
(|x |2+|y|2) ≥ W0(x−y)+

1

2
(|x |2+|y|2) ≥

(
1

2
− 1

e

)
(|x |2+|y|2). (2.1)

The lower bound (2.1) guarantees that Iα is well defined and nonnegative on P(R2)

and, since Iα(μ0) < +∞, where μ0 = 1
π
χB1(0), it implies that infP(R2) Iα < +∞. It

also provides tightness and hence compactness with respect to narrow convergence for
minimising sequences, that, together with the lower semicontinuity of Iα , guarantees
the existence of a minimiser.

As in [37, Section 2.2], one can show that any minimiser of Iα has compact support,
again by (2.1).

Step 2: Strict convexity of Iα and uniqueness of the minimiser. We prove that
∫
R2

Wα ∗ (ν1 − ν2) d(ν1 − ν2) > 0 (2.2)

for every ν1, ν2 ∈ P(R2), ν1 �= ν2, with compact support and finite interaction energy,
namely such that

∫
R2(Wα ∗ νi ) dνi < +∞ for i = 1, 2. Condition (2.2) implies strict

convexity of Iα on the set of probability measures with compact support and finite
interaction energy and, consequently, uniqueness of the minimiser.

To prove (2.2), we argue again as in [37, Section 2.3]. The heuristic idea is to rewrite
the interaction energy of ν := ν1 − ν2 in Fourier space, as∫

R2
Wα ∗ ν dν =

∫
R2

Ŵα(ξ)|ν̂(ξ)|2 dξ.

Since ν is a neutral measure, ν̂ vanishes at ξ = 0. So, the claim (2.2) follows by showing
the positivity of the Fourier transform ofWα on positive test functions vanishing at zero.

Since Wα ∈ L1
loc(R

2) and has a logarithmic growth at infinity, it is a tempered
distribution, namely Wα ∈ S ′, where S denotes the Schwartz space; hence Ŵα ∈ S ′.
We recall that Ŵα is defined by the formula

〈Ŵα, ϕ〉 := 〈Wα, ϕ̂〉 for every ϕ ∈ S
where, for ξ ∈ R

2,

ϕ̂(ξ) :=
∫
R2

ϕ(x)e−2π iξ ·x dx .

Proceeding as in [37, Section 2.3], we have that the Fourier transform Ŵα ofWα is given
by

〈Ŵα, ϕ〉 =
(α

2
+ γ + logπ

)
ϕ(0) +

1

2π

∫
|ξ |≤1

(ϕ(ξ) − ϕ(0))
(1 − α)ξ21 + (1 + α)ξ22

|ξ |4 dξ

+
1

2π

∫
|ξ |>1

ϕ(ξ)
(1 − α)ξ21 + (1 + α)ξ22

|ξ |4 dξ (2.3)

for every ϕ ∈ S, where γ is the Euler constant. In particular, from (2.3), we have that

〈Ŵα, ϕ〉 = 1

2π

∫
R2

(1 − α)ξ21 + (1 + α)ξ22

|ξ |4 ϕ(ξ) dξ (2.4)
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for every ϕ ∈ S with ϕ(0) = 0. Thus, (2.4) implies that 〈Ŵα, ϕ〉 > 0 for every ϕ ∈ S
with ϕ(0) = 0 and ϕ ≥ 0, ϕ �≡ 0.

Finally, the approximation argument in the proof of [37, Theorem 1.1] allows one to
pass from test functions in S to measures. Hence (2.2) is proved. ��

3. Characterisation of the Minimiser of Iα: The Ellipse Law.

It is a standard computation in potential theory (see [37,39]) to show that any minimiser
μ of Iα must satisfy the following Euler–Lagrange conditions: there exists C ∈ R such
that

(Wα ∗ μ)(x) +
|x |2
2

= C for μ-a.e. x ∈ suppμ, (3.1)

(Wα ∗ μ)(x) +
|x |2
2

≥ C for q.e. x ∈ R
2, (3.2)

where quasi everywhere (q.e.) means up to sets of zero capacity. The Euler–Lagrange
conditions (3.1)–(3.2) are in fact equivalent to minimality for 0 ≤ α ≤ 1 due to Propo-
sition 2.1. See [37, Section 3] for details.

In this section we show that, for every 0 ≤ α < 1, the measure μα defined in (1.4)
satisfies the Euler–Lagrange conditions (1.5)–(1.6), for some constant Cα ∈ R. By the
above discussion this immediately implies that μα is the unique minimiser of Iα , thus
completing the proof of Theorem 1.1. The precise value of Cα will be computed in
Sect. 4.

We begin by studying Wα ∗ χ�(a,b) for every b ≥ a > 0. We note that the function
Wα ∗χ�(a,b) is C1 inR2 (see [42]). As a first step, we compute the convolution

(∇Wα ∗
χ�(a,b)

)
(x) for every b ≥ a > 0 and at every point x ∈ R

2.
In fact we wish to prove that μα satisfies the conditions

∇(Wα ∗ μα)(x) + x = 0 for every x ∈ �(
√
1 − α,

√
1 + α), (3.3)

x · ∇(Wα ∗ μα)(x) + |x |2 ≥ 0 for every x ∈ R
2. (3.4)

Clearly, conditions (3.3)–(3.4) imply that (1.5)–(1.6) are satisfied for some constant
Cα ∈ R.

In order to evaluate the convolution∇Wα∗χ�(a,b), it is convenient towork in complex
variables. As usual, we identify z = x1 + i x2 ≡ x = (x1, x2), and we write the standard
differential operators as

∂ = ∂

∂z
= 1

2

(
∂

∂x1
− i

∂

∂x2

)
and ∂̄ = ∂

∂ z̄
= 1

2

(
∂

∂x1
+ i

∂

∂x2

)
.

In complex variables the potential Wα in (1.2) reads as

Wα(x) ≡ Wα(z) = −1

2
log(zz̄) +

α

2

(
1 +

z

2z̄
+

z̄

2z

)
,

and thus

∇Wα(x) = − x

|x |2 + 2α
x1x2
|x |4 x⊥ ≡ 2∂̄Wα(z) = −1

z̄
+

α

2

1

z
− α

2

z

z̄2
, (3.5)

where x⊥ = (x2,−x1).
The result is the following.
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Proposition 3.1. Let b ≥ a > 0 and μa,b := 1
πab χ�(a,b) be the (normalised) charac-

teristic function of the ellipse of semi-axes a and b. Then we have

∇(Wα ∗ μa,b)(z) = 1

πab

(
− 1

z̄
+

α

2

1

z
− α

2

z

z̄2

)
∗ χ�(a,b) (z)

= 1

ab
(−1 − αλ) z +

1

ab

(
λ +

α

2
+ λ2

α

2

)
z̄ (3.6)

for every z ∈ �(a, b) and

∇(Wα ∗ μa,b)(z) = 1

πab

(
− 1

z̄
+

α

2

1

z
− α

2

z

z̄2

)
∗ χ�(a,b) (z)

= −(2 + αλ)h(z̄) + αh(z) − α(λz̄ − z + 2abh(z̄))h′(z̄) (3.7)

for every z ∈ �(a, b)c. Here

λ := a − b

a + b
, h(z) := 1

z +
√
z2 + c2

, (3.8)

and c2 = b2 − a2, where c is the eccentricity of the ellipse.

We note that here and in what follows
√
z2 + c2 denotes the branch of the complex

square root that behaves asymptotically as z at infinity. Namely, for z ∈ C\[−ic, ic]
such that z = ρeiθ with ρ > 0 and 0 ≤ θ < 2π , we have z2 + c2 = ρ1eiθ1 with
ρ1 > 0, and 0 ≤ θ1 < 2π if 0 ≤ θ < π and 2π ≤ θ1 < 4π if π ≤ θ < 2π ,
and

√
z2 + c2 = √

ρ1eiθ1/2. In other words, we choose the branch of the complex
square root that preserves the quadrants. In particular, for every z ∈ C\[−ic, ic] we
have �(z)�(

√
z2 + c2) ≥ 0 and �(z)�(

√
z2 + c2) ≥ 0, where �(z) and �(z) denote,

respectively, the real and imaginary part of z. This property will be crucial in the proof
of Theorem 1.1.

Proof of Proposition 3.1. We divide the proof into two steps.
Step 1: Computation of 1

z ∗ χ�(a,b) and 1
z̄ ∗ χ�(a,b). We observe that 1

z ∗ χ�(a,b) is
the Cauchy transform of the (characteristic function of the) ellipse �(a, b), up to a
multiplicative constant. Indeed, the Cauchy transform of a C1 domain � ⊂ C is defined
as

C(χ�)(z) := 1

π

∫
�

1

z − ξ
dξ. (3.9)

Clearly C(χ�) is a continuous function in C, holomorphic in C\� and vanishes at
infinity.

In the special case of an ellipse, namely for � = �(a, b), the expression (3.9) can
be computed explicitly (see [28, page 1408]), and is given by

1

π z
∗ χ�(a,b) = C(χ�(a,b))(z) =

{
z̄ − λz if z ∈ �(a, b),

2abh(z) if z ∈ �(a, b)c,
(3.10)

where λ and h are as in (3.8).
By taking the conjugate of (3.10) we obtain directly

1

π z̄
∗ χ�(a,b) = C(χ�(a,b))(z̄) =

{
z − λz̄ if z ∈ �(a, b),

2abh(z̄) if z ∈ �(a, b)c,
(3.11)
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and hence the first two terms of ∇Wα ∗ χ�(a,b) are now computed.

Step 2: Computation of z
z̄2

∗ χ�(a,b). We start by observing that

− 1

π

z

z̄2
∗ χ�(a,b) = ∂̄

(
1

π

z

z̄
∗ χ�(a,b)

)
, (3.12)

hence it is sufficient to compute 1
π

z
z̄ ∗χ�(a,b). Now we recall that 1

π
z
z̄ is the fundamental

solution of ∂2, hence

∂2
(
1

π

z

z̄
∗ χ�(a,b)

)
= ∂2

(
1

π

z

z̄

)
∗ χ�(a,b) =

{
1 if z ∈ �(a, b),
0 if z ∈ �(a, b)c.

The previous expression implies that 1
π

z
z̄ ∗χ�(a,b) is quadratic in z in�(a, b) and linear

in z in �(a, b)c. More precisely,

1

π

z

z̄
∗ χ�(a,b) =

{
z2
2 + zhi1(z̄) + hi2(z̄) if z ∈ �(a, b),
zho1(z̄) + ho2(z̄) if z ∈ �(a, b)c,

(3.13)

with hi1, h
i
2, h

o
1 and h

o
2 holomorphic functions in their respective domains (and the indices

i and o stand for “inner” and “outer”).
It remains to determine the functions hi1, h

i
2, h

o
1 and ho2 explicitly. By applying the

operator ∂ to both sides of (3.13), we deduce

1

π z̄
∗ χ�(a,b) =

{
z + hi1(z̄) if z ∈ �(a, b),

ho1(z̄) if z ∈ �(a, b)c,

which, together with (3.11), leads to the identification of hi1 and ho1, as

hi1(z̄) = −λz̄ in �(a, b) and ho1(z̄) = 2abh(z̄) in �(a, b)c .

Substituting these expressions into (3.13) we then have

1

π

z

z̄
∗ χ�(a,b) =

{
z2
2 − λz̄z + hi2(z̄) if z ∈ �(a, b),
2abzh(z̄) + ho2(z̄) if z ∈ �(a, b)c,

(3.14)

with hi2 and h
o
2 holomorphic functions in their respective domains, still to be determined.

By (3.12), however, it is sufficient to determine their derivatives, since, by applying the
operator ∂̄ to both sides of (3.14), we have

− 1

π

z

z̄2
∗ χ�(a,b) = ∂̄

(
1

π

z

z̄

)
∗ χ�(a,b) =

{
−λz + (hi2)

′(z̄) if z ∈ �(a, b),
2abzh′(z̄) + (ho2)

′(z̄) if z ∈ �(a, b)c.
(3.15)

Now we observe that the function 1
π

z
z̄2

∗ χ�(a,b) on the left-hand side of (3.15) is
continuous in C and decays to zero as z → ∞; see, e.g., [42]. Therefore, also the
right-hand side of (3.15) is continuous in C, which implies in particular that

−λz + (hi2)
′(z̄) = 2abzh′(z̄) + (ho2)

′(z̄) (3.16)



The Ellipse Law: Kirchhoff Meets Dislocations 517

for every z ∈ ∂�(a, b). By using the expression of the boundary of the ellipse in complex
variables, namely

∂�(a, b) = {z ∈ C : z̄ = λz + 2abh(z)}
where λ and h are defined as in (3.8), and by rearranging the terms in (3.16), we obtain
that

−λ2 z̄ + (hi2)
′(z̄) = 2abλh(z̄) + 2ab(λz̄ + 2abh(z̄))h′(z̄) + (ho2)

′(z̄) (3.17)

on ∂�(a, b). Consider now the auxiliary function

R(z̄) =
{

−λ2 z̄ + (hi2)
′(z̄) if z ∈ �(a, b),

2abλh(z̄) + 2ab(λz̄ + 2abh(z̄))h′(z̄) + (ho2)
′(z̄) if z ∈ �(a, b)c.

(3.18)

Because of the continuity condition (3.17), R(z̄) is an anti-holomorphic function in C.
Moreover, it easy to see that R has zero limit at ∞. This is clear for all the terms in the
expression of R in �(a, b)c involving h and h′, by (3.8); for the term (ho2)

′ it follows
by (3.15). The Liouville Theorem then implies that R(z̄) ≡ 0. As a consequence, both
expressions on the right-hand side of (3.18) are zero, which gives

(hi2)
′(z̄) = λ2 z̄ in �(a, b) and

(ho2)
′(z̄) = −2abλh(z̄) − 2ab(λz̄ + 2abh(z̄))h′(z̄) in �(a, b)c,

and hence the identification of (hi2)
′ and (ho2)

′ in their respective domains.
Plugging these formulas into (3.15), we finally conclude that

− 1

π

z

z̄2
∗ χ�(a,b) =

{
λ2 z̄ − λz if z ∈ �(a, b),
2ab(z − λz̄ − 2abh(z̄))h′(z̄) − 2abλh(z̄) if z ∈ �(a, b)c.

(3.19)
Finally, using (3.10), (3.11) and (3.19) we have that (3.6) and (3.7) immediately

follow. ��
We are now in the position to prove our main result.

Proof of Theorem 1.1. We need to show that (3.3)–(3.4) hold. By using the expression
(3.5), conditions (3.3)–(3.4) are equivalent to show that for a = √

1 − α and b = √
1 + α

we have

1

πab

(∇Wα ∗ χ�(a,b)
)
(z) + z = 0 for every z ∈ �(a, b), (3.20)

1

πab
�

(
z̄
(∇Wα ∗ χ�(a,b)

)
(z)

)
+ |z|2 ≥ 0 for every z ∈ �(a, b)c. (3.21)

Step 1: The measure μα satisfies (3.3). Using (3.6), we have that

1

πab

(∇Wα ∗ χ�(a,b)
)
(z) + z = 1

ab
(−1 − αλ + ab) z +

1

ab

(
λ +

α

2
+ λ2

α

2

)
z̄

for every z ∈ �(a, b). It is easy to check that a = √
1 − α and b = √

1 + α are the
unique solution of the system ⎧⎨

⎩
−1 − αλ + ab = 0,

λ +
α

2
+ λ2

α

2
= 0,
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leading to condition (3.20), hence (3.3).
Step 2: The measure μα satisfies (3.4). By (3.7) we have that

(∇Wα ∗ μα)(z) + z = −(2 + αλ)h(z̄) + αh(z) − α(λz̄ − z + 2abh(z̄))h′(z̄) + z (3.22)

for every z ∈ �(
√
1 − α,

√
1 + α)c. Since a = √

1 − α and b = √
1 + α, we note that

λ = 1

α
(
√
1 − α2 − 1) and ab =

√
1 − α2. (3.23)

To simplify the expression (3.22) we also observe that

h(z) = 1

z +
√
z2 + 2α

= 1

2α
(
√
z2 + 2α − z) and h′(z) = −h(z)√

z2 + 2α
, (3.24)

where we have used the fact that c2 = b2 −a2 = 2α. Substituting (3.23) and (3.24) into
(3.22), and performing some simple algebraic manipulations, we deduce that

(∇Wα ∗ μα)(z) + z = 1

2

√
z2 + 2α − 1

2α

√
z̄2 + 2α +

z̄

2

(
z +

1

α
z̄
) 1√

z̄2 + 2α

= |z2 + 2α| + |z2| − 2

2|z2 + 2α|
√
z2 + 2α.

Proving that (3.21) holds with a = √
1 − α and b = √

1 + α is then equivalent to
showing that

|z2 + 2α| + |z2| − 2

2|z2 + 2α| �(
z̄
√
z2 + 2α

) ≥ 0 for every z ∈ �(
√
1 − α,

√
1 + α)c. (3.25)

Now, we recall that
√
z2 + 2α denotes the branch of the complex square root preserving

the quadrants, that is, for every z ∈ C\[−i
√
2α, i

√
2α]we have�(z)�(

√
z2 + 2α) ≥ 0

and �(z)�(
√
z2 + 2α) ≥ 0. Therefore, we immediately deduce that �(z̄

√
z2 + 2α) ≥ 0

for every z ∈ �(
√
1 − α,

√
1 + α)c.

To conclude the proof of the claim (3.25) it remains to show that |z2+2α|+|z2|−2 ≥ 0
in �(

√
1 − α,

√
1 + α)c. This is true since |z2 + 2α| + |z|2 − 2 is a level-set function

for the ellipse�(
√
1 − α,

√
1 + α). This is a general statement for ellipses�(a, b)with

b ≥ a > 0, that we prove in Lemma 3.2 below.
The proof of Theorem 1.1 is thus complete, up to the computation of the constant

Cα , that we postpone to Sect. 4. ��
Lemma 3.2. Let 	 = ∂�(a, b), with b ≥ a > 0. Then

|z2| + |z2 + c2| = a2 + b2 if z ∈ 	, (3.26)

|z2| + |z2 + c2| ≥ a2 + b2 if z ∈ �(a, b)c, (3.27)

where c2 = b2 − a2.
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Proof. By dilating z by a factor of 2
a+b we can further assume that a + b = 2, and write

a = 1 − β and b = 1 + β, for some 0 ≤ β < 1. Thus c2 = (1 + β)2 − (1 − β)2 = 4β
and a2 + b2 = (1 − β)2 + (1 + β)2 = 2(1 + β2), and the claim becomes

|z2| + |z2 + 4β| = 2(1 + β2) if z ∈ 	, (3.28)

|z2| + |z2 + 4β| ≥ 2(1 + β2) if z ∈ �(1 − β, 1 + β)c. (3.29)

Since 	 = {z = ζ − βζ̄ : |ζ | = 1}, we have
z2 = (ζ 2 + β2ζ̄ 2) − 2β (3.30)

and
z2 + 4β = (ζ 2 + β2ζ̄ 2) + 2β. (3.31)

Now we observe that, whenever ζ ∈ C, |ζ | = 1, then ζ 2 + β2ζ̄ 2 ∈ ∂�(1 + β2, 1− β2).
Hence, since the foci of the ellipse ∂�(1 + β2, 1− β2) are ±2β, we deduce by (3.30)–
(3.31) that

|z|2 + |z2 + 4β| = 2(1 + β2),

which completes the proof of (3.28) (and then of (3.26)). The statement (3.27) can be
proved in the same way. ��

The limiting case α = 1 studied in [37] can be obtained from our analysis, valid for
0 ≤ α < 1, by means of a simple argument based on 	-convergence. As a first step, we
note that (Iα)α∈(0,1) is an increasing family of lower semicontinuous functionals (with
respect to the narrow convergence of measures). Hence, I1 is not only the pointwise
limit of Iα as α → 1−, but also the 	-limit, namely

	-lim
α→1− Iα = I1,

see, e.g., [23, Proposition 5.4]. Let now μα and μ1 be the measures defined in (1.4)
and in (1.3), respectively. Since μα is a minimiser of Iα for every α ∈ (0, 1), and since
μα ⇀ μ1 narrowly as α → 1−, the Fundamental Theorem of 	-convergence implies
that μ1 is a minimiser of I1. It is in fact the unique minimiser, by the strict convexity of
I1.

Corollary 3.3. The unique minimiser of I1 is given by the semi-circle law

μ1 := 1

π
δ0 ⊗

√
2 − x22 H1 (−√

2,
√
2) .

4. Further Comments

4.1. Stationarity of μα: an alternative proof. Here, we provide an alternative proof of
the fact that, for every α ∈ (0, 1), the ellipse-lawμα in (1.4) is a stationary solution of the
gradient flow (1.9) associated to (1.5), namely it satisfies the Euler–Lagrange condition
(1.5) inside its support, for some constant Cα ∈ R. In doing so, we also compute the
exact value of Cα and the minimum value of Iα . Finally, we explicitly compute the
function Wα ∗ μa,b in the whole of R2 for a general ellipse (see Remark 4.1). We recall
that μa,b = 1

πab χ�(a,b), with 0 < a ≤ b, is the (normalised) characteristic function of
the ellipse of semi-axes a and b.



520 J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera

The proof we propose in this section uses the explicit expression of the logarithmic
potential of μa,b, namely − log | · | ∗ μa,b, which is well-known in the literature, in the
context of fluidmechanics. This potential represents the stream function associated to the
vorticity corresponding to an elliptic vortex patch (the Kirchhoff ellipse) rotating with
constant angular velocity about its centre, and it was computed in order to prove that the
Kirchhoff ellipses are V-states of the Euler equations in two dimensions [25,28,30,34].

The explicit expression of the logarithmic potential for any ellipse

�a,b := − log | · | ∗ μa,b (4.1)

is well-known (see, e.g., [33, Section 159]) and is given by

�a,b(x) =
⎧⎨
⎩

− 1

ab

bx21 + ax22
a + b

− log
(a + b

2

)
+
1

2
if x ∈ �(a, b),

H(x) if x ∈ �(a, b)c,

where the function H is defined as

H(x)≡H(z)=
⎧⎨
⎩

− log |z| if a = b,

− 1

c2
�(

z
√
z2 + c2 − z2

) − log |
√
z2 + c2 + z| + log 2 +

1

2
if a < b.

We note that H is real-valued, H(z) = H(z̄), and that

∇H(x) ≡ 2∂̄H(z̄) = −1

z̄
(4.2)

if a = b, whereas

∇H(x) ≡ 2∂̄H(z̄) = −2h(z̄) = − 2

c2
(
√
z̄2 + c2 − z̄) (4.3)

for a < b.
Note that �a,b is only one part (the radial component) of the convolution potential

Wα ∗μa,b.We now show that the anisotropic part ofWα ∗μa,b can be obtained from�a,b
by means of an ingenious differentiation. We first write (4.1) explicitly, for x ∈ �(a, b)
and 0 < a < b:

�a,b(x) = − 1

πab

∫
�(a,b)

log |x − y| dy = − 1

ab

bx21 + ax22
a + b

− log
(a + b

2

)
+
1

2
. (4.4)

We perform a change of variables in order to write the integral in the expression above
as an integral on the fixed domain B1(0), the unit disc. In terms of the new variables
u = (u1, u2) := ( x1

a , x2
b

)
, v = (v1, v2) := ( y1

a ,
y2
b

)
, and the aspect ratio k := a/b,

k ∈ (0, 1), the expression in (4.4) becomes

− log b− 1

2π

∫
B1(0)

log
(
k2(u1−v1)

2+(u2−v2)
2) dv = −ku21 + u22

1 + k
−log

b

2
−log(1+k)+

1

2
.

(4.5)
By differentiating the previous expression (4.5) with respect to the aspect ratio k we
obtain the identity

1

π

∫
B1(0)

k(u1 − v1)
2

k2(u1 − v1)2 + (u2 − v2)2
dv = u21 − u22

(1 + k)2
+

1

1 + k
, k ∈ (0, 1),
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which, expressed in the original variables x and y, and a, b, becomes

1

πab

∫
�(a,b)

(x1 − y1)2

|x − y|2 dy = a

a + b
+
b2x21 − a2x22
ab(a + b)2

. (4.6)

Note that the left-hand side of (4.6) is exactly the convolution of the anisotropic term of
the potentialWα with themeasureμa,b. This allows us to compute thewhole convolution
potential Wα ∗ μa,b on �(a, b):

(Wα ∗ μa,b)(x) = 1

πab

∫
�(a,b)

(
− log |x − y| + α

(x1 − y1)2

|x − y|2
)
dy

= − 1

ab

bx21 + ax22
a + b

− log
(a + b

2

)
+
1

2
+ α

a

a + b
+ α

b2x21 − a2x22
ab(a + b)2

= −a − b + α b

a(a + b)2
x21 − a + b + α a

b(a + b)2
x22 − log

(a + b

2

)
+
1

2
+ α

a

a + b
.

(4.7)

Then we can evaluate the value of the energy Iα on ellipses μa,b, namely

Iα(μa,b) = 1

2πab

∫
�(a,b)

(Wα ∗ μa,b)(x) dx +
1

2πab

∫
�(a,b)

(x21 + x22 ) dx

= 1

2πab

(
1 +

−a − b + α b

a(a + b)2

) ∫
�(a,b)

x21 dx

+
1

2πab

(
1 − a + b + α a

b(a + b)2

) ∫
�(a,b)

x22 dx

− 1

2
log

(a + b

2

)
+
1

4
+

α

2

a

a + b
, (4.8)

where
1

πab

∫
�(a,b)

x21 dx = a2

4
and

1

πab

∫
�(a,b)

x22 dx = b2

4
. (4.9)

In the special case of a = √
1 − α and b = √

1 + α we have that

−a − b + α b

a(a + b)2
= −a + b + α a

b(a + b)2
= −1

2
,

so that by (4.7) we conclude that (Wα ∗μα)(x) = − 1
2 |x |2+Cα for every x ∈ �(

√
1 − α,√

1 + α) with

Cα = − log
(√

1 − α +
√
1 + α

2

)
+
1

2
+ α

√
1 − α√

1 − α +
√
1 + α

= 2Iα(μα) − 1

2

∫
R2

|x |2 dμα(x).

In particular, by (4.8) and (4.9) we obtain the minimum value Iα(μα) of the energy Iα ,
that is,

Iα(μα) = 3

8
− 1

2
log

(√
1 − α +

√
1 + α

2

)
+

α

2

√
1 − α√

1 − α +
√
1 + α

.
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Remark 4.1 (Computation of Wα ∗ μa,b). For completeness, we can compute, for any
b ≥ a > 0 and any x ∈ R

2, the value of (Wα ∗ μa,b)(x). Equation (4.7) gives

(Wα ∗ μa,b)(x) = −a − b + α b

a(a + b)2
x21 − a + b + α a

b(a + b)2
x22 − log

(a + b

2

)
+
1

2
+ α

a

a + b

for any x ∈ �(a, b). Outside the ellipse, it is again convenient to pass to complex
variables. Integrating (3.7) with respect to z̄, and recalling (4.2) and (4.3), we can show
that

(Wα ∗ μa,b)(z) = H(z) + α�(
h(z)z̄ − abh(z̄)2 − λh(z̄)z̄

)
+ α

a

a + b

for any z ∈ �(a, b)c.

4.2. More general anisotropy. Now we briefly discuss the case of a more general
anisotropy of the type

Vα,β,γ (x1, x2) := αx21 + βx22 + γ x1x2
x21 + x22

, (4.10)

where α, β, γ ∈ R. Let W γ
α be the kernel defined as

Wα,β,γ (x1, x2) := − log |x | + αx21 + βx22 + γ x1x2
x21 + x22

,

and let Iα,β,γ be the corresponding energy, defined on probability measures μ ∈ P(R2)

as

Iα,β,γ (μ) := 1

2

∫∫
R2×R2

Wα,β,γ (x − y) dμ(x) dμ(y) +
1

2

∫
R2

|x |2 dμ(x).

If γ = 0, the anisotropy (4.10) can be written as

Vα,β,0(x1, x2) = (α − β)
x21

x21 + x22
+ β,

so that the study of minimisers of Iα,β,0 is covered by the previous analysis.
Assume γ �= 0. Consider the rotation in the plane defined by

y = 1√
a2 + γ 2

(−a γ

−γ −a

)
x

where a := β − α − √
(β − α)2 + γ 2. Setting b := √

(β − α)2 + γ 2, a simple compu-
tation shows that

Vα,β,γ (x1, x2) = b
y21

y21 + y22
+ β − b γ 2

a2 + γ 2 ,

so that, up to this change of variables, the study of the minimality of Iα,β,γ reduces again
to the original case. In particular, for b < 1 the minimiser is an ellipse with major axis
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along the line y1 = 0, that is, −ax1 + γ x2 = 0, while for b ≥ 1 the minimiser is the
semi-circle law on that line.

The two orthogonal lines y1 = 0 and y2 = 0 are the zero set of the anisotropic force
Fα,β,γ , given by

Fα,β,γ (x) = −∇Vα,β,γ (x) = γ x21 − γ x22 + 2(β − α)x1x2
(x21 + x22 )

2
x⊥, (4.11)

where x⊥ = (x2,−x1). The force Fα,β,γ is perpendicular to the radial direction, and it
is indeed zero only when

x2 = 1

γ

(
β − α ±

√
(β − α)2 + γ 2

)
x1,

which correspond to y1 = 0 and y2 = 0. Looking at the sign of the force in (4.11) it is
clear that Fα,β,γ points towards the line y1 = 0.
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