
Geometrically navigating topological plate modes
around gentle and sharp bends

Mehul P. Makwana1,2, Richard V. Craster1
1 Department of Mathematics, Imperial College London, London SW7 2AZ, UK and
2 Multiwave Technologies AG, 3 Chemin du Prê Fleuri, 1228, Geneva, Switzerland

Predictive theory to geometrically engineer devices and materials in continuum systems to have desired
topological-like effects is developed here by bridging the gap between quantum and continuum mechanical
descriptions. A structured elastic plate, a bosonic-like system in the language of quantum mechanics, is shown
to exhibit topological valley modes despite the system having no direct physical connection to quantum effects.
We emphasise a predictive, first-principle, approach, the strength of which is demonstrated by the ability to
design well-defined broadband edge states, resistant to backscatter, using geometric differences; the mechanism
underlying energy transfer around gentle and sharp corners is described. Using perturbation methods and group
theory, several distinct cases of symmetry-induced Dirac cones which when gapped yield non-trivial band-gaps
are identified and classified. The propagative behavior of the edge states around gentle or sharp bends depends
strongly upon the symmetry class of the bulk media and we illustrate this via numerical simulations.

I. INTRODUCTION

There has been considerable recent activity in wave phe-
nomena motivated through topological effects: The critical re-
alisation has been that fundamental ideas originating in topo-
logical insulators and quantum mechanics [1–3], based around
the Schrödinger equation, carry across, in some regards, to
continuous wave systems based around, say, the Maxwell
equations, such as topological photonic and phononic crys-
tals [4, 5]. Much of the recent continuum literature draws very
heavily upon that from quantum mechanics and it is important
to note that some care is required in this translation.

Similar care is required in dealing with the delicacies and
repercussions of group theoretic concepts [6–9]. We will go
back to first principles and elucidate key details in the trans-
lation process, and in group theory, highlighting and clarify-
ing common issues that arise within structured elastic plates
and by extension to other periodic crystal structures such as
those in photonics or phononics. A recurrent theme through-
out the article is the power of group theory in terms of clarify-
ing and classifying, a priori without any explicit calculation,
when certain effects will occur in classical waves.

The fields of group theory and topology transcend specific
physical systems, hence the phenomena we describe translate
widely. However, there are naturally technical differences and
we choose to illustrate our theory within the context of flex-
ural waves upon thin structured elastic plates [10], by doing
so we emphasise the continuum nature of the model and show
the generality of the basic ideas: It has no connection with
quantum mechanics in either its formulation or theoretical ba-
sis. Thin plate flexural wave theories, as described in [11, 12]
are highly effective physical models for elastic waves in plates
and have proved to be reliable in predictions of many wave
phenomena for structured plates [13], plate models utilising
Dirac cones in the style of graphene [14], illustrating cloaking
[15], negative refraction [16] and valley edge states [17]. Typ-
ically flexural wave theory, for homogeneous plates, is quoted
as only being accurate for wavelengths greater than 20 times
the plate thickness [18] which is rather limiting. However, as
shown in [13], it is the wavelength in the periodic system that

actually matters, and that can be large compared to the plate
thickness, even at high frequencies. These plate models also
act in practical terms as motivation for seismic metamaterial
applications [19, 20]. Gaining understanding of the interac-
tion of sub-wavelength arrays of resonators with an underly-
ing plate [21, 22] enabled these concepts to carry across to full
vector elastic systems involving Rayleigh waves [23]. Simi-
larly, plate models are also critical in terms of highlighting
features such as zero-frequency stopbands [24] that can then
be used to try and design broadband seismic phononic shields
that can function at the long-wave and low-frequency regimes
that are of importance in that context [25–27].

The elastic plate model is ideal in terms of describing and
modelling topological effects as many results for point scat-
terers are available explicitly [28]. A particularly pleasant
feature of analysis using this model is that the fundamental
Green’s function is, unlike in acoustics, electromagnetism and
vector elasticity, non-singular and it remains bounded. This
means we can concentrate cleanly upon issues such as group
theory, and its influence upon the effects we see, without nu-
merical distractions. The plate model, unlike acoustic and
electromagnetic counterparts, has wave dispersion even when
homogeneous and thus exemplifies the ubiquitous nature of
the effects we discuss.

There are two canonical types of topological insulators,
those which preserve time reversal symmetry (TRS) and those
which break it. In quantum mechanics the design of a TRS in-
sulator is contingent upon the fractional spin of the fermions.
Quantitively, this condition requires that the time-reversal op-
erator squares to −1; this is different to Newtonian systems
that consist of spin-1 bosonic-like particles. In the absence
of spin-half particles for our system, we leverage the pseu-
dospins inherent in hexagonal lattices that have broken inver-
sion symmetry. The binary valley degree of freedom can be
used to design valleytronic devices similar to those in spin-
tronics by leveraging the valley-pseudospin in the manner of
electron spin. The prohibition of backscattering is reliant upon
there being no intervalley scattering hence the valley Hall ef-
fect [29–32] of our system here is unlike the quantum Hall
effect that breaks TRS; as our valley Hall insulators do not
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break TRS they are far more straightforward to realise.
In the topological context, care must be taken when nav-

igating waves around bends as we must prohibit hybridisa-
tion of modes with opposite pseudo-spin. Transport of en-
ergy around corners in structured media is of inherent interest
[33–35]. We simultaneously require that the incoming edge
mode can couple into a mode, that must exist, along the in-
terface after the corner. Critically the existence of that mode
is dependent upon the geometrical properties of the elemen-
tary cells of the structured media and their relative arrange-
ment. Within these constraints we now proceed to construct
valley-dependent edge states that enable the suppression of
intervalley scattering along the zigzag boundary, leading to
valley-protected broadband robust transport around a bend.

We begin in Sec. II by explicitly recasting the continuum
plate model into the language of quantum mechanics, utilising
a Hamiltonian description, whilst retaining elements of the
continuum language to bridge across the quantum and elas-
tic plate communities. In Sec. III we demonstrate the geo-
metrical differences in propagation around gentle and sharp
bends which adjoin topologically distinct media. Concluding
remarks are drawn together in section IV.

II. ELASTIC PLATE CRYSTALS

We consider the elastic plate analogues of photonic, or
phononic, crystals where a homogeneous plate is given struc-
ture by a lattice of defects which could be holes, pillars,
mass-spring resonators or elastic rods; familiar effects such
as forbidden frequency band-gaps and dynamic anisotropy all
emerge within this plate system. We choose to use the sim-
plest defects, that is we either use clamped points, “pins”,
of zero radius or mass-loading at a point and both are com-
mon idealisations for point scatterers [28]. Resonators at-
tached at the lattice vertices [14, 17, 36] could easily be added
into the formalism we present, but introduce an unnecessary
additional physical feature associated with resonance; using
point-scatterers, that are either simple masses or constrained,
demonstrate that resonance is not required in order to obtain
topological effects.

A. Formulation

The flexural wave modes that exist on an infinite elastic
plate with constraints at lattice points are characterised by
their vertical displacement, ψnκ(x). The subscript notation
denotes that this field variable is dependent upon the Bloch-
wavevector κ and n is an index that numbers the eigenmodes.

These displacement eigenmodes are governed by the (non-
dimensionalised) Kirchhoff-Love (K-L) equation[

HKL − µ(x)ω2
κ

]
ψnκ = F (x), (1)

where we introduce the operator HKL as

HKL = ∇2
x

[
β (x)∇2

x

]
(2)

and the reaction forces at the point constraints F (x) introduce
the dependence upon the direct lattice. The quantities µ(x)
and β(x) represent variations in the non-dimensional mass per
unit length and flexural rigidity of the plate respectively; their
spatial dependence respects the same periodicity as the lattice
of point constraints.

The simplest constraints are those of point mass-loading
with the reaction forces proportional to the displacement via
an impedance coefficient and thus

F (x) = ω2
κ

∑
n

P∑
p=1

M (p)
n ψnκ(x)δ

(
x− x(p)

n

)
. (3)

Here n labels each elementary cell, containing p = 1...P con-
straints, that periodically repeats to create the infinite physical
plate crystal. The mass in cell n at point constraint p is given
byM (p)

n . This constraint automatically encompasses the point
pinned plate crystal, as the limit ω2

κM
(j)
n →∞, where the re-

action forces are retained

F (x) =
∑
n

P∑
p=1

F (p)
n δ

(
x− x(j)

n

)
(4)

but the displacement is constrained explicitly to be zero at the
pins, i.e. ψnκ(x

(p)
n ) = 0.

More generally, it is convenient to use the eigenstate nota-
tion for the K-L equation as

Ĥ |ψnκ〉 = µ̂(x)ω2
κ |ψnκ〉+ F (x) |ψnκ〉 , (5)

where the component equation (1) is retrieved from Eq. (5)
using

Ĥ =

∫
|x〉H(x,y) 〈y| dxdy, H(x,y) = δ(x− y)HKL.

In an infinite medium the displacements are Bloch eigenfunc-
tions

ψnκ(x) = 〈x|ψnκ〉 = exp (iκ · x) 〈x|unκ〉 ,

where |unκ〉 is a periodic eigenstate. The displacements sat-
isfy the following completeness and orthogonality relations:∑

nκ

|ψnκ〉 〈ψnκ| = 1̂, 〈ψnκ|ψmκ′〉 = δmnδκ,κ′ . (6)

Due to the periodic arrangement of the inclusions, the dis-
placement response, in Eq. (1), naturally encourages a Fourier
representation

ψnκ(x) =
∑
G

W (G) exp (i(G− κ) · x). (7)

as a sum over reciprocal lattice vectors G. This gives the for-
mal solution in reciprocal space via(
|G− κ|4 − ω2

κ

)
W (G) =

ωκ

APC

P∑
p=1

M
(p)
I ψnκ

(
x

(p)
I

)
exp

[
−i(G− κ) · x(p)

I

]
, (8)
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where I denotes an arbitrary reference cell in physical space,
APC is the area of the primitive cell and, for clarity, we do
not allow for spatial dependence of physical parameters. This
formulation is convenient for numerical simulation, and we
use an adaptation [36] of the plane wave expansion method
[37] to determine the eigenstates.

B. Perturbation theory

We now apply the k · p perturbation method [38, 39] to the
system (1) whereby we retrieve the perturbed eigensolutions
as a function of those at a reference point in Fourier space.
Initially, we define a new complete orthogonal set, namely,
the Kohn-Luttinger functions as,

χnκ(x) = exp (iκ · x)χnκ0(x), (9)

where κ0 is a fixed wavevector. Similar to ψnκ(x), they
form a complete orthogonal basis set, (6). Using the Kohn-
Luttinger functions, we can expand any Bloch state, ψnκ(x),
in the complete orthogonal basis set {χjκ(x)},

|ψnκ〉 =
∑
j

Anj(κ) |χjκ〉 =

exp (i∆κ · x)
∑
j

Anj(κ) |ψjκ0
〉 (10)

and ∆κ = κ − κ0. After inserting the expansion into the
governing equation we obtain the integrand,

exp (i∆κ · x)
∑
j

Anj(κ)[(ω2
κ0
− ω2

κ)×µ(x) +
∑
N,p

M
(p)
N δ

(
x− x

(p)
N

)+

∆κ · p̂x +O
(
|∆κ|2

)
]ψjκ0

(x) = 0. (11)

The momentum operator is explicitly given by

p̂x = 2i
[
∇2

xβ(x)∇x + 3∇xβ(x)∇2
x + 2β(x)∇3

x

]
(12)

and the orthogonality of the eigensolutions, (6), is written as,

〈ψnκ|ψmκ′〉 =

(2π)2

APC

∫
PC
ψ∗nκ(x)µ(x)ψmκ′(x)dx = δmnδκ,κ′ , (13)

where the integral is taken over the primitive cell. Motivated
by the orthogonality relation we multiply (11) by ψ∗lκ0

(x) and
integrate over the primitive cell to get∑

j

(
Hlj − (ω2

κ − ω2
κ0

)Λlj

)
Anj(κ) = 0,

Hlj = ∆κ · plj +O(|∆κ|2), plj = 〈ψlκ0
|p̂x|ψjκ0

〉 ,

Λlj = δlj +
∑
p

M
(p)
I ψ∗lκ0

(
x

(p)
I

)
ψjκ0

(
x

(p)
I

)
(14)

Nontrivial eigensolutions exist if the following secular equa-
tion is satisfied,

det
[
H − (ω2

κ − ω2
κ0

)Λ
]

= 0. (15)

To retrieve the full dispersion relation, the entire basis set at
κ0, would need to be considered. However, if we are solely
interested in linear dispersions around Dirac- and Dirac-like
cones then the summation is limited to the degenerate Bloch
states (as these eigensolutions, collectively, form an orthogo-
nal degenerate subspace). Hence after neglecting second- and
higher-order terms, (14) is simplified to,

d∑
j=1

[
H

(1)
lj − 2ωκ0

∆ωΛlj

]
Anj(κ) = 0,

∆ω = ωκ − ωκ0
= ∆κ · ∇κωκ0

+O(|∆κ|2),

H
(1)
lj = ∆κ · plj , (16)

where d is the degree of degeneracy. From this we see that
the first-order term is exclusively determined by the strength
of the coupling between the degenerate Bloch states. Other
non-degenerate states contribute to higher-order corrections
[6]. No assumption has been made on the origins of the de-
generacy; therefore the above equation is applicable to both,
essential and accidental, degeneracies with linear dispersive
behaviour. As an alternative to the Kohn-Luttinger model we
could have opted to expand |ψnκ0

〉 into its constituent plane-
waves [40] to obtain the same result.

C. Symmetry induced Dirac cones

In this subsection we rectify and extend basic group the-
oretical concepts, found in [41], that aid us in the reduction
of the Hamiltonian. All the space group elements, which
leave our lattice invariant, are succinctly written as {R, τ};
where R denotes a point group symmetry element and τ cor-
responds to a lattice translation. The triangular-like periodic
structures, under consideration here, belong to a symmorphic
space group G; hence all {R, τ} ∈ G are compound sym-
metries obtained by combining a point group element and a
primitive lattice translation. Specifically, the elements in G
are separable, {R, τ} = {R, 0} {ε, τ}; where τ denotes a
Bravais lattice translation. It follows that the plate wavefunc-
tions satisfy the following equalities,

P̂{R,τ}ψnκ(x) = P̂{R,0}P̂{ε,τ}ψnκ(x) =

exp
(
iR̂κ · τ

)
ψnR̂κ(x), (17)

where R̂ denotes the operator form of R. If we are at a high-
symmetry point in the Brillouin zone then R̂κ = κ mod G,
for many different R̂, where G is an arbitrary reciprocal lattice
vector. Each R̂, which satisfies this transformation property at
κ, belongs to the group of the wavevector, denoted by Gκ.
The wavevector group of highest symmetry is GΓ which is
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isomorphic to the factor group G/T ; T is the translation sub-
group. Hence, any non-zero wavevector group is a (normal)
subgroup of GΓ; notationally this is written as Gκ C GΓ .
At high-symmetry points in Fourier-space, deterministic de-
generacies form, which yield a degenerate set of eigenfunc-
tions

{
ψnR̂κ(x)

}
, which correspond to the same frequency.

In the following two subsections we shall use the point group
symmetries, at the KK ′ valleys, to simplify the Hamiltonian
found in Eq. (16).

(a) Physical space (b) Reciprocal space

Figure 1: Wigner-Seitz cell in physical and reciprocal space.
Shaded region, in the latter, indicates the IBZ.

Symmetries for the Brillouin zone of an unperturbed sys-
tem are given by the group C6v = C6 + 3σv(+3σd), where
the two distinct families of mirror symmetries, namely the
vertical (σv) and dihedral (σd), are shown in Fig. 2. The
corners of the Brillouin zone are associated with the point
groups C3v = C3 + 3σv, C3; where the dependency on 3σd
(if present) is dropped as the symmetry does not contribute to
gapping the Dirac cone. For the point group C3v (see table II)
we ascertain, immediately, that the KK ′ valleys always sup-
port Dirac cones. The symmetries at Γ are also immediately
found, as C3v C GΓ, therefore GΓ = C6v or C3v . Examples,
of hexagonal lattices that have these symmetries are shown,
as the first two rows, in table I. For continuous systems, con-
taining a periodic array of scatterers, it is sufficient to solely
consider a hexagonal cell with a single inclusion; the benefits
of the honeycomb or Kagome structures are in the additional
degrees of freedom that they offer when analysing discrete
analogues of continuous systems [42–46]. Hence, for sim-
plicity, we primarily consider the single ‘inclusion’ case from
hereon. Additionally, to have explicit solutions we use point
scatterers in place of finite radii inclusions; where the point
scatterers are placed at the vertices of the ‘inclusion’. It is also
sufficient to consider the illustrative examples, of triangular
and hexagonal inclusions, as all permutations that yield Dirac
cones (and which gap them) are distilled down into these two
distinct shapes.

Unlike the point group C3v , the C3 point group supports
a deterministic Dirac cone if and only if GΓ = C6. In this
instance, the two complex one-dimensional representations
in table III stick together due to the presence of TRS. Let
us demonstrate this fact by considering the point group of
an arbitrary element κ0. If an element g ∈ GΓ such that
g : κ0 → −κ0 then clearly g2 ∈ Gκ0

. Now, if the inversion
operator π̂ ∈ Gκ0

then {g} ∈ Gκ0
and, trivially, we are at Γ

where we obtain a non-degenerate quadratic curve. However
if π̂ /∈ Gκ0

then g may or may not belong to Gκ0
, hence a

test is required to discern which of the above cases is satis-
fied. The test conducted is known as Herring’s criterion [7]
and is succinctly written as,

∑
{g}

χ
(
g2
)

=

{
hg, no additional degeneracy,
0,−hg doubling of degeneracy,

(18)

where χ
(
g2
)

is a character associated to a specific irreducible
representation (IR) in Gκ0

and hg is the number of ele-
ments in {g}. This test is used to determine whether or not
TRS introduces any additional degeneracies. Returning to
our specific case, let κ0 = K or K ′; now since π̂ /∈ C3

we proceed with Herring’s criterion. If GΓ = C6 then
{g} = {C2, C6, C

−1
6 }. In other words, these are the only

elements within C6 which transform K to its TR counter-
part K ′ and vice-versa. Squaring these elements we find that
{C2

2 , C
2
6 , C

−2
6 } = {E,C3, C

2
3}; next we perform Herring’s

criterion by using table III,

χ (E) + χ (C3) + χ
(
C2

3

)
= 1 + ε+ ε2 = 0, (19)

where ε = exp (2πi/3); this is the second case in (18) there-
fore if GΓ = C6 we get a double degeneracy due to the
presence of TRS. Similarly, this test can be carried out for
GΓ = C3v , where {g} = {3σv},

∑
χ
(
g2
)

= hg which is the
first case hence when {GΓ, GKK′} = {C3v, C3} we obtain a
non-degenerate quadratic curve.

In summary, the three sets of symmetries that yield de-
terministic Dirac cones are {GΓ, GKK′} = {C6v, C3v},
{C3v, C3v}, {C6, C3}. Examples of structures yielding these
symmetry sets are shown in table I.

Table I: Hexagonal Lattice Dirac Cones

Case GΓ GK,K′ Example Inclusions K ↔ K′

(i) C6v C3v Hexagonal, λ = εn {σv}, π̂
(ii) C3v C3v Triangular, λ = ε2n {σv}
(iii) C6 C3 Hexagonal, λ 6= εn π̂

The three cases: Here λ is the angle of rotation away from
the vertical axis and ε = exp(iπ/6). The column K ↔ K ′

indicates whether the mirror {σv} and/or inversion π̂
symmetries map K to K ′ (and vice versa).

D. Hamiltonian reduction

By using the group theoretic principles espoused in the pre-
vious section we can further reduce the Hamiltonian of Eq.
(16). Due to the invariance of a scalar product to symme-
try operations, applying R̂ to an arbitrary wavevector, κ, is
equivalent to applying its inverse operator R̂−1 to the physi-
cal space vector, x. Therefore for an R ∈ Gκ0

, Eq. (17) can
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be written as,

P̂Rψjκ0
(x) = ψjR̂κ0

(x) = ψjκ0

(
R̂−1x

)
=

d∑
i=1

D(R)i,jψiκ0
(x), (20)

where D(R) is an irreducible matrix representation (IMR)
which relates the basis functions in an IR

P̂R |ψjκ〉 =

d∑
i=1

D(R)i,j |ψiκ〉 . (21)

Motivated by Eq. (20), we apply a change of variables,
namely y = R̂−1x, to plj in (14),

plj =

∫
PC
ψ∗lκ0

(y) p̂yψjκ0 (y) dy

= R̂−1
∑
m,n

D∗(R)l,mD(R)n,jpmn,
(22)

as well as to Λlj ,

Λlj =
∑
m,n

D∗(R)l,mD(R)n,jΛmn. (23)

Recall that, as we are dealing with orthogonal transforma-
tions, the Laplacian is invariant under a change of basis; hence
(22) is true for any system with an even-ordered governing
equation. Eq. (22) relates different matrix elements within
the first-order correction, hence the perturbed Hamiltonian is
reduced using the point group symmetries at κ0.

Directly from the form of plj , in (14), we immediately as-
certain that the matrix p is Hermitian. Therefore, for the dou-
bly degenerate case, of the Dirac cone we get p12 = p∗21.
Restricting ourselves to symmetry induced Dirac cones we
need only to consider the point groups C3 = {e, C3, C

2
3}

and C3v = C3 + 3σv . The point group C3 supports two in-
dependent complex one-dimensional IR’s; see table III. As
mentioned earlier, by Herring’s criterion; the pair of one-
dimensional complex IRs join to yield a double-degeneracy
if (and only if) the point group at Γ is C6; the resulting two-
dimensional IMRs of the rotation operators are identical, up
to a similarity transformation, to those found in C3v (see App.
B). As GKK′ = C3 or C3v and C3 C C3v , we opt to ini-
tially reduce the Hamiltonian by using the rotation operators
belonging to C3; additionally, due to the equivalence of the
representationsE, for bothC3 andC3v , we use the same IMR,
see Eq. (B1) in App. B.

After substituting R̂ = ±Ĉ3 into (22), we arrive at the fol-
lowing relations,

p11 = −p22, p12 = p21, p12 = −iσ̂yp11,

Λ11 = Λ22, Λ12 = Λ21 = 0,
(24)

where σ̂y is the second Pauli matrix; the final equation in (24)
indicates that p11 and p12 are orthogonal. The Pauli matrices

along with the identity matrix form a basis for the vector space
of 2× 2 Hermitian matrices; they are defined as,

σ̂a =

[
δa,z δa,x − iδa,y

δa,x + iδa,y −δa,z

]
, (25)

where a = x, y, z. Using the relations (24) we simplify the
Hamiltonian, found in Eq. (16), to the following,

H(1) = −|∆κ||p11|
[
− cos θ sin θ

sin θ cos θ

]
, (26)

where θ is the angle between ∆κ and p11. Somewhat unex-
pectedly (24) and (26) are identical to those for photonic crys-
tals in [41]. Herein we have demonstrated that they hold for
all even-ordered two-dimensional systems. Using the reduced
Hamiltonian and (16) we find the gradient near the KK ′ val-
leys, in addition to, the first-order frequency correction,

2ωκ0∆ωΛ11 = ±|∆κ||p11| =⇒ ∆ω

|∆κ|
= ±|p11|

2ωκ0

Λ11.

(27)

Note Eq. (27) is angular-independent; therefore the linear
slopes, near Dirac cones, are independent of the reflectional
properties of the system. However, if we are dealing with a
system which has C3v symmetry, at the KK ′ points, then the
set of three equivalent reflections 3σv are used to simplify the
Hamiltonian (26) further by specifying the angular compo-
nent.

The IMR associated to the element σv ∈ C3v is propor-
tional to the third Pauli matrix σ̂z (see App. B for more de-
tails). Therefore, if GKK′ = C3v we substitute R̂ = σ̂z into
Eq. (22) which yields,

H
(1)
unpert = τzvD(σ̂z∆κx − σ̂x∆κy), (28)

where the group velocity is,

vD =
|p11|
2ωκ0

Λ11, (29)

τz = ±1 is the valley spin index, which corresponds to the
KK ′ valleys, respectively. The connection between the τz
term and the KK ′ valleys is seen explicitly by substituting in
the binary rotation about the z-axis C2 into (22); this trans-
forms K into K ′. The plate Hamiltonian (28) resembles that
of a massless Dirac fermion; it acts upon the amplitudes of the
Kohn-Luttinger functions (9) which, themselves, have been
expanded around a degenerate pair of eigenstates (10). Note
that, alternatively, the Hamiltonian could have been reduced
using selection rules [6, 47].

Due to the simplified form of the reduced Hamiltonian,
(26), the Berry phase is immediately retrievable [48, 49]. This
phase factor, defined as,

φ = i

∮
〈ψnκ|∇x|ψnκ〉 · dl =

i

∮ ∑
j

A∗nj(κ)∇κAnj(κ) · dl, (30)



6

impacts wave transport properties when there is interaction
between different Bloch eigenstates. The Kohn-Luttinger
functions, in (30), are analytically derivable by substituting
the perturbed Hamiltonian (26) into the eigenvalue problem
(16). In turn, these are substituted into the Berry phase
formula (30) thereby yielding the expected result, for Dirac
cones, φ = π. The relevance of this result was shown in [47]
where for Dirac-like cones φ = 0 whilst for pure Dirac cones,
φ = ±π. In a perfectly periodic medium, both, Dirac and
Dirac-like cones are associated to perfect transmission of an
incident wave through the medium; this is due to the locally
linear curves which yield dispersionless waves. The physical
ramifications of the difference in Berry phase present them-
selves in the presence of a defect whereby a zero Berry phase
is associated with normal localisation whilst a system with a
Berry phase of ±π implies antilocalisation effects. Under PT-
symmetry, the Berry phase is quantized such that φ = πn
hence no perturbation can continuously change it. In order
to destroy a Dirac point, you either, move two Dirac points
together which have opposite flux or you break parity and/or
TRS. In the next section we shall break parity symmetry to
gap the Dirac point, thereby yielding non-trivial band gaps.

(a) Physical space (b) Reciprocal space

Figure 2: The two sets of reflectional symmetries: {σd} and
{σv} (solid lines) in the physical and reciprocal spaces
respectively. Similarly {σv}, {σd} are shown dashed in

physical and reciprocal space [50].

Figure 3: Symmetry breaking at K: the left and right panels
show the absolute value of the displacement at the ungapped,

and gapped Dirac point of case (i), shown in Fig. 5, for
ω = 16.5.

Figure 4: The chirality of the separated valley states at K
(left panel) and K ′ (right panel) for the gapped Dirac point of

case (i) shown in Fig. 5, ω = 16.5 showing the intrinsic
circular-polarized orbital angular momentum using the phase

distribution of the field.

E. Perturbed Hamiltonian and the valley Chern number

We now demonstrate, from first-principles, how the Hamil-
tonian is altered when a Dirac point is gapped. We then im-
mediately retrieve (local) topological quantities in the vicinity
of the KK ′ valleys that indicate the existence of topological
valley modes.

For simplicity, we consider the honeycomb structure, com-
prised of the AB sublattices, that, when unperturbed, has the
system symmetries {C6v, C3v}. The other two Dirac point
gapping perturbations, used in the subsequent section, arise
from changing mass values and/or positions; their perturbed
Hamiltonian is obtained in a very similar manner. Return-
ing to the honeycomb structure, the effective Hamiltonian is
given in (28) and the associated eigenvalues are shown in (27).
When perturbed, the mass term in (3) is expanded as,

MA,B = Mav + dM (xA,B) = Mav ± α∆M,

Mav =
MA +MB

2
, ∆M =

|MA −MB |
2

,
(31)

where, hereafter, we assume that ∆M is of the same order as
|∆κ|. The leading-order Mav part is independent of the AB
sublattices and retains the C6v symmetry of the unperturbed
crystal. After substituting (31) into (11) the bracketed mass
term is altered to,∑

N,p

δ
(
x− x

(p)
N

) [
(ω2

κ0
− ω2

κ)Mav + ω2
κ0
dM (xA,B)

]
.

(32)
Consequently M (p) is replaced with, the p independent term,
Mav up until (28). The additional perturbative term, within
the bracket, in (16) is,

dΛlj =
∑

p=A,B

ω2
κ0
dM (xp)ψ∗lκ0

(xp)ψjκ0
(xp) . (33)

If MA 6= MB then the point group symmetry at the KK ′ val-
leys is reduced to C3 hence the Dirac point is gapped. This
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(a) {C6v, C3v} (b) {C3, C3}
Space Group: p6m Space Group: p3m1

Figure 5: Case (i) in table I generated by perturbing masses,
showing the geometry, space groups and dispersion curves of

(a) unperturbed and (b) perturbed cases: Unperturbed
(perturbed) mass value 1 (2) the norm of basis vectors is 2
and distance from center of cell to masses is 0.5 In (a) the

Dirac points are circled and in (b) the new bandgap created
by gapping the Dirac point is shaded blue.

is due to the breakdown in parity symmetry between the val-
leys in Fourier space and is reflected in the symmetry reduced
counterpart to (23),

dΛlj = −
∑
m,n

D∗(σv)l,mD(σv)n,jdΛmn. (34)

Using this, and (28), the perturbed effective Hamiltonian takes
the form,

H
(1)
eff = H

(1)
unpert + τzMK σ̂y, MK = ω2

κ0
∆M, (35)

hence, due to the presence of τz , MK = −MK′ . The corre-
sponding eigenvalues for this effective Hamiltonian are,

(ω2
κ0
− ω2

κ) = ±
√
v2
D|∆κ|2 +M2

K . (36)

This is precisely the form of the eigenvalues for the massive
Dirac fermionic equation albeit, here, it is for a plate crys-
tal. The, now, non-zero Dirac mass term in (36) implies lo-
cally quadratic curvature. Following similar arguments to [40]
we evaluate the Chern number as C = CK + CK′ where
CK,K′ = sgn (MK,K′) /2 = ±φ/2; the first relation arises
because the greatest modal contribution emanates from the
KK ′ valleys; the latter relation, with φ, becomes evident af-
ter applying Stokes theorem to the Berry phase (30). Due to

(a) {C3v, C3v} (b) {C3, C3}
Space Group: p3m1 Space Group: p3

Figure 6: Case (ii) of table I, generated by an angular
perturbation of λ = 0.05, showing the geometry, space
groups and dispersion curves of (a) unperturbed and (b)

perturbed cases: the norm of basis vectors is 2 and distance
between cell center and vertices of triangle is 0.8. In (a) the
Dirac points are circled and in (b) the new bandgap created

by gapping the Dirac point is shaded blue.

the presence of the valley matrix index, τz , in (36) it follows
that the Chern number vanishes; therefore a globally nontriv-
ial topology is not permitted within the framework of our ef-
fective theory. However, the non-zero topological quantities
at each of the valleys indicates that edge states, with limited
backscattering, are possible as long as the hybridisation of the
two valley modes is controlled.

III. ENGINEERING TOPOLOGICAL VALLEY STATES IN
PLATE CRYSTALS

A. Symmetry reduction

The three sets of symmetries, table I, give rise to determin-
istic Dirac cones. The systematic reduction in symmetry of
a plate crystal will gap the Dirac points thereby yielding a
band gap. More specifically, for cases (i) and (ii), by reduc-
ing GKK′ from C3v down to the symmetry set C3 (or lower)
we are assured of a pair of non-degenerate quadratic curves at
the KK ′ valleys. For case (i), if GKK′ = C3 then we would
have to ensure that GΓ did not have six-fold symmetry. Case
(iii) already has GKK′ = C3 and the task is to lower the GΓ
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(a) {C6, C3} (b) {C3, C3}
Space Group: p6 Space Group: p3

Figure 7: Case (iii) in table I, generated by perturbing masses
and geometry, showing the geometry, space groups and

dispersion curves of (a) unperturbed and (b) perturbed cases:
Angular deviation λ, from cell symmetry axis, is is 0.15;

unperturbed mass value is 1, perturbed mass value is 2. Norm
of basis vectors is 2 and distance between cell center and

masses is 0.5. In (a) the Dirac points are circled and in (b) the
new bandgap created by gapping the Dirac point is shaded

blue.

symmetry set by breaking inversion symmetry.
Consider cases (i) and (ii) of table I which, for an unper-

turbed system, have {C6v, C3v} or {C3v, C3v} symmetries;
these two are reduced down to the symmetry set {C3v, C3} or
lower. The appropriate symmetry breaking, for these cases,
occurs when the mirror symmetry set {σv} (and, for case (i),
inversion symmetry as well) is removed in reciprocal space.
Removing these mirror symmetries {σv} c.f. Fig. 2 is equiv-
alent to the removal of {σd} in physical space (see Fig. 3).
This is evident in the eigensolutions, shown in Fig. 3, which
demonstrate the symmetry breaking in physical space. The
gapped Dirac points result in eigensolutions which have oppo-
site chirality at the KK ′ valleys, Fig. 4; this opposite pseudo-
spin between the valleys is represented by τz in Eq. (35). A
canonical example of this symmetry breaking occurs for the
honeycomb structure when the alternating sublattice mass val-
ues are made inequivalent; similar to Fig. 5. Conversely, re-
moving {σd} symmetries in Fourier space preserves the Dirac
point, as GKK′ = C3v , and hence there are no gapped states.
For example, if the cellular structure of Fig. 5(b) is rotated by
π/6 the Dirac point will remain ungapped, despite inversion

(a) Case (ii) - 2π/3 bend (b) Case (ii) - π/3 bend

(c) Case (i) - 2π/3 bend (d) Case (i) - π/3 bend

Figure 8: The detail of the junction cells, showing their
asymmetric edges, for the cases we consider.

symmetry being broken, as the {σv} symmetries remain.

Simple examples for the systematic reductions of all three
symmetry sets, and analysis of the resulting topological states,
are given in the subsequent sections. In particular Fig. 5(a)
shows case (i), {C6v, C3v}, reduced to {C3, C3} by the sim-
ple act of breaking reflectional symmetry through alternating
the masses; case (ii) {C3v, C3v} has symmetry broken by ro-
tating the inner triangular arrangement. Case (iii), with the
unperturbed state as {C6, C3}, is slightly different to the other
two cases as GKK′ is already C3 and only supports a deter-
ministic Dirac cone if GΓ = C6; hence the reduction of GΓ

to C3 is sufficient to gap the Dirac cone. Fig. 7 shows the
consequence of breaking the C6 symmetry at Γ, in this case
alternating the masses removes inversion symmetry.

Figs 5, 6, 7 show the bandstructures for the cases of interest.
The positions in reciprocal space we choose deserve a note of
detail regarding time-reversal invariant systems. From the cell
configurations shown in Figs 5, 6, 7 only the configuration in
Fig. 5(a) reduces down to the IBZ, shown in Fig. 1, with
just the use of its spatial symmetries. The presence of TRS
permits a further folding, on top of the spatial symmetries,
thereby yielding an IBZ having the p6m space group IBZ.

Several papers have discussed how different inclusion
shapes affect the bandgap width [51–53]. Although no sys-
tematic rules can be drawn from these numerical studies sev-
eral factors appear to significantly impact the presence and
width of bandgaps. [54] showed that the largest absolute pho-
tonic bandgap is achieved by selecting an inclusion of the
same symmetry as the cell. Other factors influencing the gap
width are the orientation and size of the inclusions.
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(a) Orange medium (b) Blue medium

(c) Ribbon dispersion curves and edge mode

Figure 9: Plate zero-line mode. (a) and (b) showing the upper
and lower media (case (ii) of Table I as shown in Fig. 6(b) for

the upper medium and its rotation by π/3 for the lower
medium), see Fig. 8(a), and the sign of the valley Chern

numbers at the KK ′ points. (c) shows the dispersion curves
with the edge mode lying in the bandgap,

ω = {17.79, 20.07}, and at the highlighted frequency
ω = 19.13, we show the edge mode in physical space.

B. Plate zero-line modes

The perturbation of the media has broken the six-fold sym-
metry whilst retaining three-fold symmetry. This results in
asymmetric behaviour at the edges (and vertices) of the per-
turbed cellular structures. Due to the broken parity symmetry
we now have inequivalentKK ′ valleys, and moreover the val-
ley Chern numbers are opposite in sign (τz in Eq. (35)). Cre-
ating interfaces between two media that have opposite Chern
numbers, at a particular valley, will generate valley Hall edge
states, [31]; these are aptly named zero-line modes (ZLMs)
due to the opposite Chern numbers either side of the inter-

(a) Orange medium (b) Blue medium

(c) Ribbon dispersion curves and edge mode.

Figure 10: Plate zero-line mode. (a) and (b) showing the
upper and lower media (case (i) of Table I as shown in Fig.
5(b) for the upper medium and its rotation by π/3 for the
lower medium), see Fig. 8(b). (c) shows the dispersion

curves with the edge modes lying in the bandgap,
ω = {14.13, 16.65}, and at the highlighted frequencies
ω = 15.11, 15.67, we show the edge modes in physical

space.

face. A convenient approach for creating such media is to
take advantage of the lack of six-fold symmetry and join one
perturbed medium to its π/3 rotated twin. A benefit of these
valley Hall modes is that we have a priori knowledge of how
to construct the two adjoining media (sharing a bandgap) such
that we are guaranteed broadband edge modes.

To compute the ZLMs we adapt the plane wave expan-
sion method, (8), by extending it to a finite, long, ribbon of
hexagons (as shown in the inset to Fig. 9). We need only con-
sider Bloch conditions in the direction indicated by the arrow
shown in the hexagonal ribbon of Fig. 9. Numerically, we
consider a long ribbon and extract solutions that decay expo-
nentially; we apply periodic conditions at the top/bottom of
the ribbon and convergence is checked by mode doubling and
extending the ribbon.

The three-fold symmetry of the perturbed structures, result-
ing in asymmetric edges, yields two distinct interfaces be-
tween two topologically distinct media; these distinct edges
are shown in Fig. 8. ZLMs are shown for two different ge-
ometrical cases; namely, cases (i) and (ii). For the latter, we
obtain the edge modes shown in Fig. 9; the broadband mode
pertains to the orange cell over the blue cell, whilst the narrow
band mode, below it, comes from flipping the cells i.e. the
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blue over orange; the different interfaces between the media
coincide with the two distinct edges. The limited overlap be-
tween the two modes implies that for a large frequency range
these modes do not couple into each other. This property will
be used for filtering waves in section III C.

In contrast, Fig. 10 for case (i) has two overlapping broad-
band modes. Unlike case (ii) both the edge modes for orange
over blue (and vice versa) exist over a simultaneous frequency
range. The distinction in the edges is reflected in the different
modal patterns shown in Fig. 10. The differences, between
cases (i) and (ii), emerge from the degree of asymmetry of the
cell’s edges. The large distance between the centroid and the
vertices of the triangular inclusion for case (ii) results in an
almost effective barrier to wave transport (see Fig. 8 (a) and
(b)); this is unlike case (i) (Fig. 8 (c) and (d)).

C. Transport around sharp edges

To illustrate the consequences of particular cellular struc-
tures, we now examine the propagative behaviour around gen-
tle and sharp bends of angles 2π/3, π/3 respectively. Our
simulations use the explicit Green’s function to create a lin-
ear system that is rapidly evaluated as in [14, 28].

Initially, we analyse the gentle bend, Fig. 11(a), and we
launch a ZLM at the leftmost interface towards the bend. No-

tably the leftmost interface differs from the post-bend inter-
face; Fig. 8(a) and (c) show a close-up of the four cells at the
bend. The edge pre- and post-bend are clearly different, the
pre-bend interface is identical to the leftmost interface. This
property explains the different results obtained for cases (i)
and (ii), shown in Fig. 11(c) and (b), respectively. For case
(ii) the single broadband ZLM cannot mode convert around
the bend as there is no overlapping ZLM to couple into, Fig.
8(a). Conversely, for case (i) the broadband ZLMs, that lie in a
simultaneous range, allow for perfect coupling from one ZLM
into the other, Fig. 8(c); this is demonstrated by the distinct
modal patterns pre- and post-bend, Fig. 11(c). The exacti-
tude of our numerical solutions allows for visual clarity of the
edge modes and hence easier interpretation of the underlying
physical mechanisms.

Turning our attention to the sharp bend, Fig. 12; from Fig.
8(b) and (d), along with the discussion in the previous para-
graph, one would naively expect similar behaviour to that of
the gentle bend. However this is not the case as the zigzag
edges pre- and post-bend are identical; this is more easily seen
from the scattering Figs. 12 rather than the cellular arrange-
ment, Fig. 8 (b) and (d). Additionally a new phenomena,
tunnelling, plays a role. These properties are numerically in-
dicated in Fig. 12, in particular note how the clarity of the
modes allows us to see with ease that the modal patterns pre-
and post-bend, are identical, for both geometrical cases.

(a) (b) (c)

Figure 11: ZLM transport around a gentle bend (2π/3 angle), schematic in (a). Panels (b) and (c) show the absolute value of
displacements for case (ii) C3v , and case (i) C6v respectively. The detail of the ZLM pre- and post-bend in (c) is of note. 1890

cells were used, excitation frequency for C3v case was ω = 19.53, and C6v case ω = 15.19.

IV. CONCLUDING REMARKS

We have shown, using group and k·p theory, a first-
principles approach to creating plate topological valley modes
for all two-dimensional hexagonal lattices. For the elastic
plate crystal, this allows for there to be a direct bridge between
the quantum and continuum mechanical worlds. Group theory
allowed us to identify three distinct geometrical cases having
symmetry induced Dirac cones; the correct breaking of parity
symmetry revealed nontrivial band-gaps in which broadband
edge modes reside. Given such edge modes it is natural to
consider the transport of energy around bends in partitioned
media. It becomes clear when doing so that the details of the

junction cells, in the vicinity of the bend, are significant. One
important issue that we have not considered here is that of dis-
order, [55] consider this and it would be interesting to explore
this carefully for the ZLMs presented here. The asymmetry
of the edges at cells, between the topologically distinct me-
dia, indicates two different mechanisms of energy transport
around bends; the success of the strategy we employ is seen
through the clarity of states demonstrated numerically.

Armed with this knowledge of how to design really clean
and sharp edge states, and the underlying principles at the
junction cells, this will motivate the design of more efficient
interfacial waveguides, topological networks and energy fil-
ters, using the different cases we have identified: Experimen-
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(a) (b) (c)

Figure 12: ZLM transport around a sharp bend (π/3 angle), schematic in (a). Panels (b) and (c) show the absolute value of
displacements for case (ii) C3v , and case (i) C6v respectively. The details of the ZLM pre- and post-bends are of note. 1890

cells were used, excitation frequency for C3v case was ω = 19.18, and C6v case ω = 15.09.

tal verification of these results in encouraged.
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V. APPENDICES

Appendix A: Character tables

Classes→ Basis Functions
IR ↓ E 2C3 3σv Odd-Parity Even-Parity

{x, y} {x2 − y2, 2xy}
E 2 −1 0 {h1(x, y), h2(x, y)} {(x2 − y2)2 − 4x2y2, xy(x2 − y2)}

Table II: Selected row and basis functions of C3v character table.

Classes→ Basis Functions
IR ↓ E C3 C2

3 Odd-Parity Even-Parity
1 ε ε2 {x, y} {x2 − y2, 2xy}

E
1 ε2 ε {h1(x, y), h2(x, y)} {(x2 − y2)2 − 4x2y2, xy(x2 − y2)}

Table III: Selected row and basis functions of C3 character table; ε = exp (2πi/3).

Appendix B: Irreducible representation matrices

IMR for three-fold rotations:

DE(±C3) =

[
−1/2 ∓

√
3/2

±
√

3/2 −1/2

]
. (B1)

This IMR is for the odd-parity basis {x, y} which is chosen
because it simplifies equation (22) moreso than its even-
parity counterpart {x2 − y2, 2xy}; due to the property
±Ĉ3 = DE(±C3). As we are seeking to examine the local
behaviour in the vicinity of the Dirac cone, either parity basis
may be used, as they are both associated to the same IR.

The IMR of σv , shown in table II, is explicitly,

DE(σv) = −σ̂z, (B2)

where σ̂z is the third Pauli matrix; this representation implies
that σv is the parity transformation κy → −κy .

We have shown that for KK ′ valleys with C3 symmetry
we get a determistic Dirac cone if and only if GΓ = C6. In

this instance, the sticking together of the two one-dimensional
complex representations yields IMR’s of the form,

D′E(R) =

[
ω 0
0 ω2

]
, (B3)

which is equivalent to the C3v rotation matrices after under-
going an equivalence transformation,

DE(R) = UD′E(R)U−1, U =
1√
2

[
i −i
1 1

]
, (B4)

therefore the form of the perturbed Hamiltonian, after re-
duction using rotational symmetries, is identical for systems
which have C3 and C3v point group symmetry at KK ′.
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