
An Objective Evaluation Method for
Rehabilitation Exergames

1st Reza Haghighi Osgouei
Dept. of Surgery and Cancer

Imperial College London
London, UK

r.haghighi-osgouei@imperial.ac.uk

2nd David Soulsby
Acute Team Lead Paediatric Physiotherapist

Chelsea and Westminster Hospital
London, UK

david.soulsby@chelwest.nhs.uk

3rd Fernando Bello
Dept. of Surgery and Cancer

Imperial College London
London, UK

f.bello@imperial.ac.uk

Abstract—The aim of this work is to objectively evaluate the
performance of patients using a virtual rehabilitation system
called MIRA. MIRA is a software platform which converts
conventional therapeutic exercises into games, enabling the
user to practice the given exercise by playing a game. The
system includes a motion sensor to track and capture user’s
movements. Our assessment of the performance quality is based
on the recorded trajectories of the human skeleton joints. We
employ two different machine learning approaches, dynamic
time warping (DTW) and hidden Markov modeling (HMM),
both widely used for gesture recognition, to compare the user’s
performance with that of a reference as ground truth.

Index Terms—Rehabilitation, exergame, objective evaluation,
DTW, HMM, Kinect

I. INTRODUCTION

Rehabilitation is essential to regain the lost or weakened
functionality after injury or surgery. While it is initiated in a
clinic and supervised by a clinician, the therapeutic exercises
must be practiced at home by the patients themselves. The
lack of motivation and compliance hinder the healing process
and even in some cases worsen the injury. With the advances
in virtual reality technologies, various virtual rehabilitation
platforms have been introduced addressing this issue [1]–[3].
They are generally equipped with some sensory devices to
track and monitor user’s motions. Among them are systems
based on the concept of exergaming, exercise gaming. These
are interactive video games, with some simple scenarios, that
enable a user to perform a therapeutic exercise by playing
the game. Accessibility, not needing the constant presence of
a physician, and entertain-ability, turning repetitive tasks to
playful activities, are the two main advantages of such systems.
However, they tend to lack objective, clinically meaningful
evaluation of the user’s performance. At best, game scores,
the extent to which the player achieved the game goals,
are reported in the end. This work aims to fill this gap by
introducing an approach to compare the patient’s performance
with that of a reference using MIRA (Medical Interactive
Recovery Assistant) rehabilitation platform. We apply two
different machine learning techniques, dynamic time warping
(DTW) and hidden Markov model (HMM), which have been
widely used for gesture recognition [4]–[9], to study acquired
motion trajectories. Comparing two trajectories, user’s vs.

reference, each approach outputs an objective similarity score
indicating how similar the performances were.

The paper is organized as follows. In section II we review
some of the related work. We then introduce MIRA platform
and our data collection using Kinect in section III. In section
IV, the two machine learning approaches are outlined. The
results and discussion are given in section V, followed by
conclusion and future work remarks in section VI.

II. RELATED WORK

A. Rehabilitation Platforms

The concept of exergaming enables users exercise while
playing games. For players, it is an opportunity to play games
in a more active and less passive way. For patients, it offers
the chance to practice therapeutic tasks in a more playful
and less repetitive manner. Exergames offer various activities,
such as aerobic exercises and dancing, balance and stretching
workouts, and recreational simulations such as golf, skiing,
and more. However, they exert additional requirements on
hardware and software. Hardware-wise, they require a proper
sensory equipment to track user’s motion. In terms of software,
the game scenario must fit into whole body interaction. There
are various commercially available game consoles enabling
exergames, including Xbox (Microsoft), PlayStation (Sony),
and Wii (Nintendo). Each comes with its own dedicated input
device for enabling user interaction with the games, i.e., Kinect
for Xbox, Move for PlayStation, and Remote Plus for Wii.

Among them, the Kinect has gained higher popularity due to
its acceptable performance and versatility [10]. Kinect enables
interaction with virtual environments using gestures rather
than conventional controllers. Since its launch, researchers
began to use Kinect for various applications including
rehabilitation [11]–[16]. Kinerehab is introduced in [11] to
assist therapists in rehabilitating students in a public school.
They showed a significant increase in patients motivation and
hence improved exercise performance. The Kinect serious
game for physiotherapy (KSGphysio) is proposed in [12]
with a mobile interface to facilitate analysis of patients
progress by generating relevant statistics. A web-based serious
game called Therasoup is developed in [13] to improve
patients motivation and to provide technical data to the
physiotherapist. In [14] they developed a Kinect-enabled



home-based rehabilitation system (KEHR) to assist patients
in conducting safe and effective off-hospital rehabilitation
without the immediate supervision of a physician. A serious
game framework for therapy (Theragame) providing options
to imitate the actions performed by an avatar or to play a
game that trains specific parts of the body is introduced in
[15]. A web-based platform for physical tele-rehabilitation for
patients after hip replacement surgery is described in [16]
having two goals in mind: making use of a low-cost motion
capture device (Kinect) with a real-time automatic assessment
of the execution correctness. While Kinect-based rehabilitation
systems are accepted by both patients and therapists, the lack
of objective, clinically meaningful evaluation of the user’s
performance raises questions regarding their effectiveness.

Commerciallly available rehabilitation platforms based on
Kinect and exergames include MIRA [1], VirtualRehab [2],
and REHABILITY [3]. MIRA, a class I medical device, uses
games, which are built based on best clinical practice and
expertise from specialist physiotherapists, to keep the patient
engaged and motivated throughout the therapy. VirtualRehab,
a CE certified class I medical device, is a product that can be
used in clinics and hospitals, as well as in the patient’s homes,
allowing them to continue their rehabilitation treatment, which
leads to improved patient outcomes. With REHABILITY,
patients can carry out their rehabilitation exercises, from
either the centre in which they are hospitalized, or remotely,
autonomously, but with constant medical supervision.

B. Performance Evaluation

Automatic performance evaluation of a user carrying out
a task has been always a challenge among researchers in
both medical and non-medical domain. Such evaluations
are less problematic in the real world when they are
subjectively assessed by judges who are experts in the given
field. For example, evaluation of the quality of a dance,
a gymnastic performance, or a physiotherapy/rehabilitation
exercise, is carried out by expert dancers, sport masters,
and professional therapists, respectively. Such evaluations
require the presence of human specialists, who are not easily
accessible or affordable to everybody. In addition, the fact
that the assessment is subjective, means that a different expert
might have a different opinion. The benefits are evident if such
evaluation is done automatically by a computer or machine,
given that human performance is properly captured by sensory
tools. A real world example is a video game called Just Dance
developed by the French company Ubisoft for Microsoft Xbox.
Using the Kinect sensor, the players must mimic the on-screen
dancer’s choreography to a chosen song. The system then
continuously evaluates in real-time the quality of a user’s
dance movements in terms of being ‘Ok’, ‘Good’, ‘Super’,
or ‘Perfect’, and reports a total numeric score at the end.

Regarding automated assessment of therapy motions, the
studies in the literature are scarce [17]–[20], and not much
attention has been paid to the development of metrics
for perfromance evaluation [21]. As a common scheme, a
reference model is captured as the ground truth first. Then,

a user’s performance is compared to the reference using
machine learning approaches. A comprehensive taxonomy
of the metrics for evaluation of patient performance in
physical therapy is given in [21]. The metrics are classified
into quantitative and qualitative categories. Further the
quantitative metrics are divided into model-less (based on
raw measurements of motions) and model-based (based on
a mathematical model of the motions). Utilizing KEHR, the
authors used DTW and fuzzy logic to provide real-time
subjective discrepancies between the model exercise and
patient’s performance [14]. Applying HMM and defining an
accpet/reject interval, a method to detect deviations from
normal repetitions in theraputic activities is presented in [17].
They later compared the performance of their HMM-based
technique with that of DTW in [22]. A similar approach
using HMMs to assess the correctness of tele-rehabilitation
exercises is employed in [18], whereas a cloud-based physical
therapy monitoring and guidance system is proposed in [19],
which applies DTW to produce subjective assessments in
terms of being too slow/fast or overdone/incomplete. Lastly,
[20] presents a method based on incremental DTW to classify
the incorrectness of the user’s performance for a hip abduction
exercise into four discrete categories: bent knee, foot outside,
upper body, and wrong plane. What is common between
all these efforts is that they focused on evaluating the
incorrectness of the user’s performance on the basis of some
subjective terms. In most cases, the developed method was
used to sort multiple erratic performances with respect to a
reference template. This motivated us to employ the common
practice techniques, DTW and HMM, but to generate a
similarity score between a user’s performance and a reference.

III. MATERIALS

A. MIRA

MIRA [23] is a software platform that turns physiotherapy
exercises into clinical exergames, increasing engagement
levels by converting the rehabilitation sessions into
entertaining activities, making therapy more convenient
and easier to follow, offering greater accessibility and
improving uptake of exercises. In turn, this has the potential
of better recovery times for patients, as well as supporting
the therapists and reducing the workload and waiting times
at clinics. MIRA has been used in several clinical studies
[24]–[27].

The MIRA system includes a Kinect sensor (Microsoft
Corp.) connected to a computer running the MIRA program
(Fig. 1). Currently, 32 exercises and 25 games are supported.
Each rehabilitation session requires selecting an exercise and
a suitable game (Fig. 2). Shoulder abduction, elbow flexion
and side strides are among the exercises, whereas Firefly,
Fishing and Football are examples of the available games.
Once an exercise has been selected, adequate game options
to choose are presented. The selected combination of exercise
and game is then added to the session and can subsequently be
executed. Each execution starts with a process to calibrate the
user’s position in front of the Kinect. A short video tutorial



explaining the exercise is followed by another video tutorial
describing the game mechanics. As the game starts, the user
must play it by moving the intended body part (i.e. left arm,
right leg, or neck) in the manner shown in the video. At the
end of each session, game scores are reported. Depending on
the game, the score reflects to what extent the player followed
the game’s objectives, for example, the number of fish caught
and taken to the boat, or the number of times the spaceship
is safely passed through the fire rings. While the scores can
be an indication of how well the user played the game, they
do not have much value in a clinical context. The aim of this
work is to introduce an objective evaluation method that is
more meaningful and suitable for clinical evaluation.

B. Data collection

We developed a program in Unity 3D game engine (Unity
Technologies - unity3d.com) to capture and store raw 3D
position coordinates of the select joints using the Kinect. This
was needed as the MIRA program does not allow accessing
joint data while playing an exergame due to regulations
imposed on class I medical devices. Using Kinect V2 (the
second and last version of Kinect), 3D position coordinates of
25 different human skeleton joints can be tracked (Fig. 3(a))
with an update rate of 30 fps. However, it is not necessary
to track all the joints, but only those that are involved in
the exercise. For this initial study, we have chosen shoulder
abduction of the left arm as the exercise. The correct or
reference execution requires keeping the arm fully stretched
while moving from 0◦ to 180◦ as shown in Fig. 3(b). We also
devised two incorrect executions to objectively compare with
the reference. The first one keeps the arm stretched without
making the full range of motion (Fig. 3(c)), whilst the second
one does not keep the arm stretched and does not make the
full range of motion (Fig. 3(d)).

The four cardinal joints involved in this exercise are
spin-shoulder (X1), shoulder-left (X2), elbow-left (X3), and
wrist-left (X4) as shown in Fig. 3(a). The 3D position of
joint j (1 ≤ j ≤ 4) at time stamp t is denoted by vector
[xj(t), yj(t), zj(t)]. As position coordinates are dependent on
the user size and location in front of the camera (Kinect),
we extract two invariant features, namely shoulder angle (θ2)

Fig. 1: MIRA system including a Kinect sensor to detect user’s
motion and software to match an exercise with a game.

Fig. 2: A snapshot of the MIRA program. The exercises are
listed on the left and the games are shown on the right.
Selecting an exercise, the user is given multiple game options,
enabling to practice the same exercise playing different games.
This greatly encourages the user to cope with the prescribed
exercise by discovering the various game scenarios.

and arm angle (θ3) as shown in Fig. 3(a). These two scalar
features are sufficient to represent the three executions since
θ2 reflects the range of motion and θ3 indicates if the arm is
being stretched or not. For each execution, a motion trajectory
T (l) is formed by the sequence of feature values within the
time frame 0 ≤ t ≤ l, with l being the execution time.

T (l) =


θ2(0), θ3(0)
θ2(1), θ3(1)

...
θ2(l), θ3(l)

 (1)

For simplicity, the reference trajectory is denoted by T0 and
the two incorrect trajectories by T1 and T2, with execution
times l0, l1, and l2, respectively. The data of a single user was
collected repeating each exercise five times. A sample plot is
given in Fig. 4.

IV. METHODS

A. Dynamic Time Warping

Dynamic Time Warping (DTW) [28] is a technique to align
two time series and find the minimum Euclidean distance
between them. It is a frequently used approach in speech
recognition to classify sound waves of the same word spoken
in different accents and duration. DTW is sensitive to both
signal pattern and amplitude. If two signals have the same
patterns, for example, the same number of peaks, but different
amplitude, then the alignment cannot be done perfectly, thus
yielding a large distance between them. If they have the same
amplitude, but different patterns, the alignment will also result
in a large distance. Therefore, the output distance is a measure



Fig. 3: The 25 skeleton joints tracked by the Kinect V2
(a). Cardinal joints involved in shoulder abduction of the left
hand: 1) spin-shoulder, 2) shoulder-left, 3) elbow-left, and 4)
wrist-left. From the variant position data, two invariant features
are extracted: θ2 and θ3. Shoulder abduction is executed in
three different ways: a reference with fully stretched arm and
full range of motion (b), an incorrect execution with fully
stretched arm but half range of motion (c), and a second
incorrect execution with a closed arm and half range of motion
(d).

of similarity between the two time series. The higher the
distance, the greater the deviation.

Whilst it was initially applied to speech recognition, it
has also been widely used in gesture recognition due to the
similarities between the two domains [5], [7], [29]. In this
work, the motion trajectories, each representing a gesture, are
classified into the most similar gesture group (i.e. the one with
the smallest distance) by converting the distance between two
trajectories into a similarity measure.

We define D01 = DTW(T0, T1) and D02 = DTW(T0, T2)
as distances between the correct and two incorrect trajectories.
We used Matlab function dtw to implement DTW. While the
lower limit of this distance is zero, the upper limit is unknown
and can be any large value. By estimating an upper limit, it
is possible to convert the distance measure into a similarity
score. Associating the upper bound with the worst possible
performance, an upper limit can be approximated. For the
shoulder abduction, the worst performance would be to fully
close the arm and to not move at all.

A series of trajectories T3 were collected for a single user
executing this worst performance. Calculating its distance to
the reference D03 = DTW(T0, T3) allowed us to establish
the upper bound for shoulder abduction. Knowing both lower
and upper bounds, a given distance Dl ≤ D ≤ Du can be

(a) Reference execution with open arm and full range of motion.

(b) Incorrect execution with open arm and half range of motion.

(c) Incorrect execution with half close arm and half range of motion.

Fig. 4: Collected position trajectories of four joints (left) and
extracted features (right). The joints X1, X2, X3, and X4 are
colored in purple, orange, red, and blue, respectively. Angles
θ2 and θ3 are colored in blue and red.

transformed into a similarity measure or percentage score SD:

SD = 100× D −Dl

Du −Dl
(2)

B. Hidden Markov Modeling

A Hidden Markov Model (HMM) [30] is a stochastic
model that considers an observed signal as the result of the
transition of a system between several states, each of which
has a probability that a particular symbol might be observed.
HMMs are useful for recognition of temporal patterns such
as speech, handwriting, and gestures. An HMM with discrete
observations is mainly specified by the state transition matrix
A and the observation matrix B, assuming that the system
goes through N different possible states S1, S2, ..., SN and



Fig. 5: Structure of a hidden Markov model with three states
(q1 to q3) and five observation symbols (v1 to v5). The
relationship among states is described by transition matrix
A = [aij ]3×3, and between states and discreet symbols by
observation matrix B = [bij ]3×5. It is assumed that the
system under study evolves through certain states and we are
interested in discovering their relationship.

in each state one of M different symbols v1, v2, ..., vM can
be observed (Fig. 5).

HMMs need to be trained to optimize their parameters,
matrices A and B. For that purpose, the number of hidden
states (N ) and the number of symbols (M ) should be
determined. In addition, the data of multiple repetitions
of the same task need to be collected and quantized
into single-column symbol vectors. After examining several
different values, an adequate consistency in the results
was observed setting N = 5 and M = 10. We used
Matlab function kmeans to quantize observation vectors and
functions hmmtrain and hmmdecode to train and evaluate
our HMM. Once trained, the HMM can be used to calculate
the probability (or likelihood) that the given sequence of
observations are to be generated by the same process. In our
case, the higher the likelihood, the higher the similarity.

For performance evaluation, a single HMM, λ0, is trained
based on the reference motion trajectory T0. We then calculate
log-likelihood of T1 and T2 given the trained model by L01 =
log(P (T1|λ0))/l1 and L02 = log(P (T2|λ0)/)l2. Similar to
DTW, lower and upper limits of the log-likelihood need to
be calculated. The upper limit is known to be zero since
the highest probability is one. However, the lower limit is
unknown and can be any small value less than zero. Same as
before, we assumed that this lower limits reflects the worst
possible performance captured by T3. Our initial examination
showed that, during the worst performance, the system stays
in only one state and does not transit between states. This in
turn results in a local minimum likelihood value. Observing
that from a trained HMM we can find both the most likely
state sequence generating a given observation, as well as
the least likely state sequence, it is possible to associate the
corresponding likelihood value to the lower limit. Letting the
lower limit be L03, a similarity score SH corresponding to
log-likelihood Ll ≤ L ≤ Lu is obtained by:

SH = 100× L− Ll

Lu − Ll
(3)

V. RESULTS AND DISCUSSION

In this section we report similarity scores obtained by
applying DTW and HMM. As mentioned earlier, data of
a single user performing the given exercise under three
conditions, one correct (T0) and two incorrect ones (T1 and T2)
was collected. In addition, we asked the user to perform under
the worst condition, closing arm and not moving (T3), and also
randomly (T4). Each condition was repeated five times.

Similarity scores obtained by applying DTW are listed in
Table I. The distance between each pair of five repetitions of
the reference trajectories was calculated first. The minimum
distance was then used as the lower limit Dl and the trajectory
which was closest to the other four as the minimum reference
trajectory. The upper limit Du was established by obtaining
the maximum distance between this trajectory and each of the
five worst trials. Similarity scores were then calculated using
equ. 2. On average, the first incorrect performance (full arm
with half range of motion) is 88% similar to the reference
execution. The second incorrect performance (half closed arm
and half range of motion) is 42% similar to the reference. The
worst trials received the minimum score (0.6% on average).
However, random trials achieved a similarity score between
28% and 60%.

TABLE I: The similarity scores obtained applying DTW.

SD (%) tr1 tr2 tr3 tr4 tr5 avg, std

D00 98.3 98.6 100.0 98.7 98.7 98.9, 0.66
D01 89.6 88.3 87.9 87.7 88.2 88.3, 0.78
D02 43.5 41.3 39.8 42.5 43.9 42.2, 1.70
D03 0.0 0.8 0.6 0.6 1.2 0.6, 0.43
D04 60.4 59.6 57.3 28.4 41.6 49.5, 14.04

Similarity scores obtained applying HMM are listed in Table
II. The log-likelihood between each pair of five repetitions of
the reference trajectories was calculated first. The maximum
log-likelihood was considered as the upper limit Lu, with the
trajectory more similar to the other four used as the maximum
reference trajectory. The lower limit Ll was established by
finding the less likely state sequence given the maximum
reference trajectory. Similarity scores were then calculated
using equ. 3. On average, the first incorrect execution is only
64% similar to the reference and the second incorrect is only
32%. For the worst performance, the score is the same for all
trials (47%) and the similarity of random trials are between
18% and 56%.

TABLE II: The similarity scores obtained applying HMM.

SH (%) tr1 tr2 tr3 tr4 tr5 avg., std

L00 88.3 91.3 100.0 94.9 95.6 94.0, 4.46
L01 75.6 70.7 58.0 63.2 54.3 64.4, 8.79
L02 29.7 22.2 26.0 35.2 49.1 32.4, 10.48
L03 47.4 47.4 47.4 47.4 47.4 47.4, 0.00
L04 56.4 32.1 49.5 18.1 37.1 38.6, 15.00

A comparison between the average similarity scores
obtained by DTW and HMM is given in Fig. 6.



Fig. 6: Average similarity scores obtained by DTW (blue) and
HMM (red). Error bars indicate standard error.

Several observations can be made from the results. Smaller
similarity scores were expected for T2 than for T1, since T2
included two deviations from the reference and T1 only one. In
that respect, both approaches show similar trends. For T2 vs.
T1, DTW reported 42% < 88%, while HMM reported 32% <
64%. However, the absolute scores are different. The similarity
for T1 is reported as 88% by DTW and 64% by HMM. DTW
found T1 more similar to the reference than HMM. It would
appear that DTW is less sensitive to range of motion deviations
than HMM. The similarity for T2 is reported as 42% by DTW
and 32% by HMM. In this case, the scores are closer and both
are less than 50%.

Variations between the scores obtained for different trials by
DTW are smaller than for HMM. For example, the standard
deviation for D00 is significantly smaller than L00 (0.66 vs.
4.46). The lowest score reported between reference trials by
DTW is 98.3% while it is 88.3% by HMM. It would appear
that HMM tends to be more sensitive to small-scale differences
compared to DTW.

This different level of sensitivity can be advantageous.
Assuming a patient just started a rehabilitation process,
highlighting small deviations might not be a good idea.
So, in the early phases, scores reported by DTW might be
more helpful and encouraging. Once the patient’s performance
has improved, reporting small deviations could better assess
his/her performance.

Regarding the random trajectories, small similarity scores
were initially expected given the randomness of the
movements. However, the obtained scores were relatively high,
with an average of 49% reported by DTW and 38% by HMM.
We initially concluded that both approaches have failed to
report meaningful values, and that an additional process would
be required to detect outliers such as random movements
in advance. But, having a closer look at the recorded data
(Fig. 7), we realized that the arm movements were not as

Fig. 7: Random trajectories of four joints (left) and
corresponding extracted features (right). Most of the random
movements include some form of shoulder abduction built-in,
this can be seen by comparing the elbow position (X3, colored
in red) and shoulder angle (θ2, colored in blue) with those of
the reference (Fig. 4(a)). The color code is same as Fig. 4.

random as first thought. In four out of five random trials, the
initial movement of the arm was still shoulder abduction with
minimal shoulder adduction or extension present, resulting in
a higher similarity score than expected. If the first shoulder
movement was flexion, then a likely natural occurrence for
the next movement would be abduction, again producing a
relatively high similarity score. This realization confirms the
ability of both approaches to adequately capture the inherent
similarity between the random movements and the reference
trajectory.

The reference score for the movement could have some
inaccuracies as different age groups would have different
abilities. For example, a 5 year old would have less ability to
stand on one leg than a teenager or adult, but this would still be
age appropriate. There would be a psychological/competitive
aspect to the movement when put in a game situation, which
may encourage people to do the movements at different
speeds. For example a child performing shoulder abduction
may speed up playing games to try and get a better score, but
in turn reduce the quality of their movement. It is therefore
important to consider age-specific reference movements, as
well as the impact of the game itself and other psychological
aspects on the resulting similarity scores.

Computationally, DTW is simpler to implement than HMM
since the latter needs to be trained in advance to optimize
its parameters, requiring a fairly large amount of data to be
collected for this purpose. DTW does not require any training,
being able to directly compare unknown and reference
trajectories. On the other hand, since DTW is sensitive to both
signal pattern and amplitude, it does need the extraction of
invariant features, as well as segmenting the right part of the
trajectories to compare.

VI. CONCLUSION

We presented the results of applying two machine learning
approaches, DTW and HMM, to objectively evaluate a
patient’s performance with respect to a reference conducting



a therapeutic exercise using the MIRA rehabilitation system.
The motivation behind this study was to introduce a more
clinically relevant measure than the currently used game
scores. Tested on a shoulder abduction exercise, we have
reported that the similarity scores obtained by both approaches,
well reflect the level of inconsistency between the correct and
incorrect performances. The scores obtained by each technique
for the same task were different, indicating their different level
of sensitivity. For example, for the given exercise, DTW is
less sensitive than HMM to deviations on range of motion
than on the arm not being fully stretched. In addition, HMM
is more sensitive than DTW to subtle variations from the
reference. This suggests that each method might be more
suitable at certain stages of rehabilitation or indeed for
certain exercises. In early phases of a rehabilitation process,
DTW-based evaluation might be more effective not focusing
on the details, whereas later on, HMM-based evaluation could
be advantageous to highlight subtle inconsistencies.

We intend to improve the current work in two aspects. First,
by conducting a more substantial human user study with actual
patients. Second, by correlating a physician’s evaluation of the
performances with the proposed objective similarity score.
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