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Abstract

Mass efficient inelastic thin-walled rectangular hollow section (RHS) struts practically al-
ways fail in a combination of local–global interactive buckling and material nonlinearity
while also exhibiting high sensitivity to initial imperfections. Nonlinear finite element (FE)
models for inelastic thin-walled RHS struts with pre-defined local and global geometric im-
perfections are developed within the commercial package Abaqus. Using a unified local
imperfection measurement based on equal local bending energy, the effects of imperfect
cross-section profiles, imperfection wavelength and the degree of localization in the longi-
tudinal direction on the ultimate load and the nonlinear equilibrium path are investigated
for four characteristic length struts at different material yielding stress levels. The corre-
sponding most severe imperfection profiles are determined and are found to be qualitatively
different to the linear eigenmodes in all cases. Moreover, it is found that the most severe
purely periodic imperfections may be used to provide a safe approximation of the ultimate
load when the corresponding amplitude is constrained to the manufacturing tolerance level.
An extensive parametric study on the wavelength of the most severe periodic imperfection
profile is conducted and a relationship for this is proposed in terms of the normalized local
slenderness, which compares excellently with the FE results.

Keywords: Imperfection sensitivity; Mode interaction; Local buckling; Global buckling;
Imperfection modelling; Most severe imperfection

1. Introduction

With the development of material science and manufacturing technology alongside fun-
damentally better understanding of nonlinear mechanics, structural forms have become
increasingly slender [1]. Well-known for mass efficiency and the ease of forming into a
variety of different profiles, thin-walled structural members are widely used in structural
engineering [2, 3]. Buckling instability is practically always the governing failure mode
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of such members. Moreover, optimized thin-walled members are generally susceptible to
triggering different buckling modes simultaneously [4] and exhibit highly nonlinear be-
haviour with failure modes being associated with a severe degree of sensitivity to imper-
fections [5, 6, 7, 8, 9, 10]. Moreover, owing to their excellent ductility, most steel thin-
walled members in structural engineering are designed such that their ultimate state lies
in the elasto-plastic range [11], which has also been observed in many experimental studies
[12, 13, 14, 15, 16, 17]. The coupling of material nonlinearity and buckling mode interac-
tion has been shown to increase the imperfection sensitivity further [18, 19]. The erosion
in the load-carrying capacity may be up to 50% for members with tolerance level geo-
metric imperfections [20]. Therefore, the treatment of geometric imperfections is of great
importance in such members since it affects both the ultimate load and the post-buckling
behaviour.

Owing to its modelling convenience, the introduction of local geometric imperfections
affine to the local eigenmode (or modes) with the lowest load that can trigger the ultimate
failure mode is still one of the most widely accepted methodologies in both research and
design practice [21, 22, 23, 19]. However, actual geometric imperfections are affected by a
great many factors, e.g. material and cross-section properties, manufacturing methods and
handling [24]. They are essentially random variables and measured imperfection data have
demonstrated that they are far removed from the linear buckling modes [25, 26, 16]. More
importantly, several studies have demonstrated that the local eigenmode with the lowest
load may not even represent the most severe imperfection profile anyway [27, 28, 29, 30, 31].

Much effort has been devoted to developing the methodology for determining geometric
imperfections that reflect those in physical reality by expanding the imperfection profiles
from the space of linear buckling modes using statistical methods [32, 33]. These methods
can generally provide reasonably accurate predictions for the ultimate load alongside the
final failure mechanism. However, since imperfections are essentially stochastic quantities,
a large number of analyses are required to obtain statistically significant results [34].

Since localized imperfections are very common in practice, arising for instance from
component joining processes or mishandling, a series of investigations on the effects of
localized imperfections on the ultimate load and failure mechanism of plates under pure
compression have been conducted [35, 36, 37]. It has been determined that localized
imperfections have minor effects on the stiffness of plates but may lead ultimately to a
violent collapse, i.e. a sharp unloading being observed beyond the ultimate state. Moreover,
effects of localized imperfections on the ultimate strength have been found to be negligible
for stocky plates but significant for slender ones. The effect of these localized imperfections
was mainly determined by their amplitude while the shape and position along the plate
length was shown not to have a major influence. However, these works were only limited
to a single plate or panel. A systematic study is therefore required to understand the
behaviour in plate assemblies, which are also more susceptible to nonlinear buckling mode
interaction.

Recently, the authors investigated the imperfection sensitivity of elastic and inelastic
thin-walled rectangular hollow section (RHS) struts using variational [38] and finite element
(FE) models [20, 39] respectively. The sensitivity to local imperfections, global imperfec-
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tions as well as their combinations for struts with different slenderness levels was quantified
and the underlying mechanism was explained. In particular, a unified local imperfection
measurement method, based on an equivalent local bending energy of the initial imperfect
geometry, was proposed to investigate the effects of local imperfection profiles on the ero-
sion in the load-carrying capacity for purely elastic struts. It revealed that the wavelength
of the most severe local imperfection profile is significantly smaller than that of the local
eigenmode with the smallest load. Moreover, introducing a modulated amplitude in the
local imperfection profile leads to a further decrease in the ultimate load. However, struts
with highly localized local imperfection profiles exhibited a relatively stiffer response, thus
leading to a higher ultimate load, which implies that there exists a ‘most severe’ profile.

The current article is related to the work presented in [20] but with an increased focus
on the effects of material nonlinearity. A validated nonlinear FE model with pre-defined
geometric imperfections developed within the commercial package Abaqus is adopted [39].
Based on the aforementioned unified geometric imperfection measurement [20], the effects
of imperfection profiles, i.e. the cross-section profile, the longitudinal wavelength and the
degree of localization, on the ultimate load of four characteristic length struts with differ-
ent yielding stress levels are investigated. The most severe local imperfection profiles are
identified and the underlying failure mechanism of struts with different periodic and local-
ized imperfection profiles are also discussed. Even though the localized imperfections are
consistently found to be the most severe particularly for struts with lower local slenderness
levels, it is also determined that the ultimate load can be approximately minimized with
the purely periodic imperfection where the amplitude is constrained to the manufacturing
tolerance. Hence, a simplified equation to determine the wavelength of the most severe
periodic imperfection profile is proposed from a parametric study. The current work pro-
vides a better understanding of the effects of different local imperfection profiles on the
load-carrying capacity of inelastic thin-walled RHS struts and presents a more rational
local imperfection modelling approach that can be implemented in nonlinear FE analyses.

2. Development of finite element model

A thin-walled rectangular hollow section (RHS) strut of length L with simply-supported
boundary conditions under an axial load P is considered, as shown in Figure 1(a, b). The
web depth and flange width are d and b respectively; the web and flange thicknesses are
assumed to be uniform and are labelled as t. The joints between the flanges and webs
are assumed to be rigid. The FE model is developed within the general-purpose package
Abaqus [40]. It should be noted that the geometric and material nonlinear FE model
with the same properties has been developed in [20, 39]. Therefore, only a brief overview
of the FE model is provided currently.

2.1. Strut modelling

Based on previous work [41], the FE model exploits two planes of symmetry for com-
putational efficiency, as shown in Figure 1(c). A reference point, as well as rigid body
coupling, is introduced at the loaded-end section to ensure that the pinned-roller support
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Figure 1: Geometric properties of the thin-walled RHS strut and the illustration of the FE model. (a)
Plan view of the strut of length L under an axial load P . Lateral and longitudinal coordinates are x and
z respectively. (b) Cross-section properties of the strut; the vertical coordinate being y. (c) Illustration
of the FE model for thin-walled RHS struts. Global buckling bends the strut about the weak axis y. (d)
Distributed applied load at the end-section: magnitude of the load on the nodes at the symmetric line
(y = 0) is half of that applied to the other nodes.

condition is satisfied. In terms of the axial load, it is applied as a distributive load on each
node at the end-section, as shown in Figure 1(d). In particular, the magnitude of the ap-
plied load on the two nodes at the symmetric line (y = 0) is one-half of those on the other
nodes. It should be noted that this choice of doubly-symmetry and load application was
made after careful verification against the full models [41]. As for the element type, 4-node
reduced-integration S4R general-purpose shell elements were selected, which have been
demonstrated to be capable of modelling the nonlinear geometric and material behaviour
of plated structures with very good accuracy [42, 23, 15]. The element size was kept to
be one-tenth of the local eigenmode (i.e. the linear local buckling mode) half-wavelength
in the longitudinal direction [20], which has been demonstrated to produce more than
satisfactory results while maintaining computational efficiency [43].

The material is assumed to be homogeneous and isotropic with Young’s modulus E,
Poisson’s ratio ν and shear modulus G = E/[2(1 + ν)]. Previous studies [44, 39] have
demonstrated that the material strain-hardening rate of 2%, which is the typical value for
structural carbon steel [45, 46], has a negligible effect on the ultimate load of thin-walled
box-section struts susceptible to local–global mode interaction. Therefore, an elastic–
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perfectly plastic model was adopted. Full details of the strut modelling may be found in
[20].

2.2. Geometric imperfection description and modelling

Rather than using the keyword ‘*IMPERFECTION’ in Abaqus to introduce the shape
of the eigenmodes from linear buckling analysis (LBA) as geometric imperfections, a pre-
processing program was developed in Matlab to generate the nodal coordinates input
file for the FE model with pre-defined global or local imperfections. The local and global
imperfections are based on the descriptions of the local and global buckling modes presented
in [47, 41, 20], which have been demonstrated to be capable of describing purely local and
global buckling modes as well as the interactive post-buckling mode very well. As for the
global imperfection, it is decomposed into two components, an initial out-of-straightness
in the x-direction W0 and an initial pure rotation of the plane section θ0, as shown in
Figure 2(a), which are known as the ‘sway’ and ‘tilt’ modes respectively [48]. They are

Figure 2: Imperfection descriptions. (a) Global imperfection bending about the weak axis y: sway and tilt
components. (b) Cross-section component of local imperfections: doubly-symmetric and mono-symmetric
profiles.

defined by the following expressions:

W0 (z) = −qs0L sin
(πz

L

)

, θ0 (z) = −qt0π cos
(πz

L

)

, (1)

with qs0 and qt0 being the respective normalized amplitudes. Moreover, previous work
[38] has demonstrated that the following relationship for qs0 and qt0 should be satisfied for
compatibility:

qs0 = (1 + s) qt0, (2)

where s is the shear correction factor, thus:

s =
π2Eb2

12GL2
(1 + 3φc), (3)
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with φc = d/b being the cross-section aspect ratio.
With the similar approach adopted in previous studies [49, 30, 50, 31, 38], the local

imperfection is introduced by defining an initial out-of-plane deflection in both flanges and
webs, which has the same format as the local eigenmode description in [41]:

wf0(x, z) = f1f(x)w10(z) + f2f(x)w20(z),

wwc0(y, z) = f1wc(y)w10(z) + f2wc(y)w20(z),

wwt0(y, z) = f1wt(y)w10(z) + f2wt(y)w20(z),

(4)

where f represents the cross-sectional components of the local imperfection, as shown in
Figure 2(b); wi0, where i = {1, 2}, are the longitudinal components. Subscripts 1 and 2
represent the doubly-symmetric and mono-symmetric cross-sectional profiles respectively,
as shown in Figure 2(b), which correspond to the purely local buckling and globally induced
interactive post-buckling modes respectively [41]. They are approximated by applying
kinematic and static boundary conditions for each plate at their joints in conjunction with
the Rayleigh–Ritz method:

f1wc =
C1w

C10

cos
πy

d
+

(

1−
C1w

C10

)(

1−
4y2

d

)

,

f1f =
C1f1

C10

(

1−
4x2

b

)

+
C1f2

C10

cos
πx

b
,

f2wc =
C2w

C20

cos
πy

d
+

(

1−
C2w

C20

)(

1−
4y2

d2

)

,

f2f =
C2f

C20

(

x

b
+

1

2

)2 (
x

b
−

1

2

)

, f2wt = 0,

(5)

where:
C1w = 214.60 + 679.81φc − 1158.10φ2

c + 92φ3
c ,

C1f1 = π (250/φc − 273 + 23φc),

C1f2 = −785.40/φc + 771.81− 158.10φc,

C2w = −2 (2φc + 1) ,

C2f = −2π/φc,

C10 = 214.60− 105.58φc − 300.45φ2
c + 19.74φ3

c ,

C20 = πφc − 4φc − 2.

(6)

The detailed derivations of Eqs. (5) and (6) as well as their verification against FE results
may be found in [20, 47].

The longitudinal component of the local imperfection wi0(z) is derived from a first-order
approximation of a multiple scale perturbation analysis of a strut on a nonlinear softening
foundation [51], which has also been used to investigate the most severe imperfection profile
in sandwich panels [49], I-section struts [30, 31], stiffened plates [50] and functionally-
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graded carbon nanotube-reinforced composite beams [52]:

wi0(z) = Ai0 sech

[

αi

(

z

L
−

1

2

)]

cos

[

βiπ

(

z

L
−

1

2

)]

, (7)

where z = [0, L] and the imperfection is symmetric about z = L/2; the quantity Ai0 controls
the imperfection amplitude; parameters αi and βi control the degree of localization of the
imperfection and its number of half-waves respectively, as shown in Figure 3. It should be

z/L
0 0.2 0.4 0.6 0.8 1

w
i0
(z
)/
A

i0

-1

0

1

(b)

z/L
0 0.2 0.4 0.6 0.8 1

w
i0
(z
)/
A

i0

-1

0

1

(a)

βi increasingαi increasing

Figure 3: Profile of the local imperfection function, wi0(z)/Ai0. (a) Localized imperfections introduced by
varying the localization parameter αi from zero to 10. (b) Periodic imperfections (αi = 0) with different
numbers of half sine waves by varying the frequency parameter βi from 1 to 9.

noted that βi should be an odd number such that the boundary conditions at the strut
ends are satisfied. The wavelength of the longitudinal component of the local imperfection
is defined as Λ = 2L/βi.

2.3. Solution strategy and validation

The Riks arc-length method [53] is used to trace the nonlinear equilibrium path of
imperfect struts. In the parametric studies where only the ultimate load is of interest, a
function developed in Matlab, which can monitor the nonlinear Riks arc-length analysis
and terminate it automatically once certain failure criteria are met, is adopted. This greatly
improves the computational efficiency in the search of the most severe imperfection profile.
Further details about the function may be found in [39].

The developed FE model has been validated against experimental results from two
independent sources [54, 16]; very good comparisons have been observed for both ultimate
loads and equilibrium paths, the details of which may be found in [39].

3. Unified local imperfection measurement criterion

Since there are many varying parameters in the imperfections investigated, i.e. the im-
perfection amplitude Ai0, the number of half-waves in the longitudinal direction βi, the
degree of localization αi and the cross-section profile functions f , purely using the imperfec-
tion amplitude Ai0 as the sole measurement of imperfection inevitably neglects important
features and hinders meaningful comparisons being made. Even though the fundamentally
one-dimensional approach based on the concept of the initial total end-shortening due to lo-
cal imperfections [49, 30] considers the contributions from all parameters in Eq. (7), i.e. the
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variation of the local imperfection in the longitudinal direction, it is not easily adaptable
for providing the comparison between the doubly-symmetric and mono-symmetric cross-
section imperfection profiles in the current case. Therefore, an imperfection measurement
approach based on the initial local bending energy is adopted currently. It should be noted
that similar approaches have also been adopted previously in investigations on the effects of
local imperfection profiles in the response of simply-supported rectangular plates [36] and
the imperfection sensitivity of lipped channel columns [55]. From classical plate bending
theory [56], the generalized expression for local bending energy due to initial imperfections
in each plate U0

b,lp can be expressed thus:

U0
b,lp =

Dp

2

∫ L

0

∫ bp/2

−bp/2

{

(

∂2wp0

∂z2
+

∂2wp0

∂x2
b

)2

− 2(1− ν)

[

∂2wwc0

∂z2
∂2wp0

∂x2
b

−

(

∂2wp0

∂z∂xb

)2 ]
}

dxb dz,

(8)

whereDp = Et3/ [12(1− ν2)] is the plate flexural rigidity; L and bp are the plate length and
width respectively; wp0 is the initial out-of-plane displacement of the plate; z and xb are
the longitudinal and transverse coordinates of the plate respectively. Based on previous
studies regarding the energy formulation of thin-walled RHS struts [41], the total local
bending energy stored in the entire strut due to the initial local imperfections U0

b,l can be
expressed thus:

U0
b,l =U0

b,lf + U0
b,lwc + U0

b,lwt, (9)

where U0
b,lf , U

0
b,lwc, U

0
b,lwt are the local bending energies due to the initial local imperfections

in both flanges, the more compressed web and the less compressed web respectively.
By substituting wf0, wwc0 and wwt0 from Eq. (4) into Eq. (9), the local bending en-

ergy due to the initial local imperfections with the doubly-symmetric (i = 1) and mono-
symmetric (i = 2) cross-sectional components can be expressed thus:

U0
b,li = Dp

∫ L

0

[

(

2
{

f 2
if

}

x
+
{

f 2
iwc

}

y
+
{

f 2
iwt

}

y

)

ẅ2
i0

+
(

2
{

f ′′2
if

}

x
+
{

f ′′2
iwc

}

y
+
{

f ′′2
iwt

}

y

)

w2
i0

+ 2ν
(

2 {fiff
′′

if}x + {fiwcf
′′

iwc}y + {fiwtf
′′

iwt}y

)

ẅi0wi0

+ 2 (1− ν)
(

2
{

f ′2
if

}

x
+
{

f ′2
iwc

}

y
+
{

f ′2
iwt

}

y

)

ẇ2
i0

]

dz,

(10)

where dots represent differentiation with respect to z; primes denote differentiation with
respect to x and y for the flanges and webs respectively; the terms {X}x and {Y }y represent
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definite integrals with respect to their corresponding subscript, thus:

{X}x =

∫ b/2

−b/2

X dx, {Y }y =

∫ d/2

−d/2

Y dy. (11)

From Eqs. (9) and (10), it can be seen that the variation of local imperfections in both
the cross-sectional and longitudinal dimensions can be considered. Moreover, the ad-
vance in imperfection measurement facilities [57] has made it possible to obtain the three-
dimensional distribution of local imperfections. Using numerical integration, the corre-
sponding local bending energy can be obtained, which can be adopted as the reference
value to compare different imperfection profiles.

3.1. Algorithm determining most severe local imperfection

The investigation to determine the most severe local imperfections comprises two stages,
as shown in Figure 4:

Figure 4: Algorithm for determining the most severe periodic and modulated local geometric imperfections
under the constraint of the equal local bending energy of the initially imperfect geometry.
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1. Periodic imperfections are investigated by adopting βi as the principally varying pa-
rameter. Initially, the value of U0

b,li is determined and fixed based on the combination
of αi = 0, βi being the number of half waves of the purely local eigenmode βi0 from
the analytical model [41], and A0

i0 being the local imperfection amplitude tolerance
level value adopted from Eurocode 3 [58]. Then, the quantity βi is varied as the prin-
cipal parameter and increased from a sufficiently small, but reasonable, odd integer
while the value of αi remains precisely zero. Note that the value of βi only takes odd
integer values such that the boundary conditions are satisfied. The amplitude Ai0 is
varied accordingly to keep U0

b,li at the selected value; hence, increasing βi would nat-
urally lead to a decrease in Ai0. Geometrically and Material Nonlinear Analysis with
Imperfections (GMNIA) is conducted to obtain the ultimate load of the strut with
each combination of βi and Ai0. In particular, the combination of βi and Ai0 that
gives the lowest ultimate load Pu is recorded and used for the modulated imperfection
study.

2. Modulated local imperfections are investigated by adopting αi as the principally
varying parameter. The quantities βi and U0

b,li are the same as those corresponding
to the lowest ultimate load in stage 1. The localization parameter αi is set as the
principal varying parameter and the amplitude Ai0 is varied accordingly to keep
U0
b,li constant; increasing αi naturally leads to a higher value of Ai0. GMNIA is also

conducted to obtain the ultimate load of the strut with each imperfection combination
of αi and Ai0. In particular, the combination of αi and Ai0 that gives the lowest
ultimate load Pu is recorded.

4. Numerical results

A previous study [41] has demonstrated that there are four distinct length-related zones
for thin-walled RHS struts, which exhibit characteristic interactive buckling behaviour,
as shown in Figure 5. Therefore, four struts with the same cross-section properties but
different characteristic lengths are selected, which are the same as those presented in [41,
20]. The material and cross-section properties of the example struts are presented in
Table 1. Strut lengths, the global and local buckling loads, the number of half-waves of

Table 1: Material and cross-section properties of the example thin-walled RHS struts in the numerical
examples.

Young’s Modulus
E

Poisson’s ratio
ν

Flange width
b

Web depth
d

Plate thickness
t

210 kN/mm2 0.3 60 mm 120 mm 1 mm

the local eigenmode with the lowest load β0 and corresponding zones of the example struts
are summarized in Table 2.

For each characteristic length strut, four different imperfection cases are studied, as
presented in Table 3. For the first case, the imperfection profile is the local eigenmode
with the lowest load obtained from linear buckling analysis using the FE model and the
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Figure 5: (a) Van der Neut-type curve [21] for perfect thin-walled RHS struts with Pu, P
C
l and PC

o being
the ultimate, local buckling and global buckling loads respectively. (b) Global buckling mode bending
about the weak axis y with the deflection at mid-span being qsL; cross-section profile of the interactive
post-buckling mode at mid-span with the maximum out-of-plane displacement in the more compressed web
being wwc,max. (c) Sketches of equilibrium paths for struts corresponding to zones 1–4 as presented in (a).
Circles marked C and S represent the critical and secondary bifurcation points for each case respectively.
Note that the abscissa changes from the normalized global amplitude qs for struts in zones 1 and 2 to
wwc,max for those in zones 3 and 4, reflecting the primary buckling mode amplitude. Note also that the
Van der Neut-type relationship in zones 3 and 4 is curved owing to the strut tangent stiffness decreasing
with the advance of local buckling.

corresponding imperfection amplitude is d/200, which is the tolerance level for the local
imperfection amplitude, as recommended by Eurocode 3 [58]. It is used as a reference to
compare with the imperfection profiles in other cases. The second case adopts the mono-
symmetric cross-section imperfection profile, with the number of half-waves along the strut
length β0 being equal to those listed in Table 2 and the initial imperfection amplitude A0

i0

also being d/200. The third case adopts the doubly-symmetric cross-section imperfection
profile and the local bending energy due to local imperfections is equal to that in the second
case, which aims to study the more severe case between the mono-symmetric and doubly-
symmetric ones with the same local bending energy stored from the initially imperfect
geometry. The fourth case adopts the doubly-symmetric cross-section imperfection profile,
with β0 and A0

i0 being the same as those in the second case; this aims to study the more
severe case between the mono-symmetric and doubly-symmetric cases with the same local
imperfection amplitude. Note that βi and Ai0 are subsequently varied from β0 and A0

i0,
which are only the starting values to establish U0

b,li, in accordance with the algorithm
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Table 2: Theoretical values of the global and local critical buckling loads and the number of half-waves
β0 in the local eigenmode with the lowest load for the four characteristic length cases [41]. Note that the
detailed expressions to determine the values of PC

o , PC
l and β0 may be found in [41, 20].

L(mm) PC
o (kN) PC

l (kN) β0 PC
o /PC

l Zone Length description

4800 22.67 24.50 49 0.92 1 ‘Long’
4500 25.79 24.49 45 1.05 2 ‘Transitional’
4000 32.54 24.50 41 1.32 3 ‘Intermediate’
3600 40.30 24.51 37 1.63 4 ‘Short’

Table 3: Initial local imperfection parameters for the most severe local imperfection case study. Note that
‘Eval’ represents quantities evaluated based on the other input parameters and the number of half-waves
of the local imperfection in each case βi=β0 at the beginning of the parametric study.

Case U0
b,li A0

i0 Cross-section profile fi Notes

1 N/A d/200 doubly-symmetric Linear buckling mode
2 U0

b,l2 d/200 mono-symmetric A0
10=0, A0

20=d/200
3 U0

b,l2 Eval doubly-symmetric U0
b,l is equal to that in case 2

4 Eval d/200 doubly-symmetric A0
10=d/200, A0

20=0

presented in Figure 4. Moreover, the global imperfection with the normalized amplitude
qs0=10−3 is introduced in all example struts, which is the recommended value for ultimate
load prediction purposes in Eurocode 3 [59].

4.1. Effects of varying number of sinusoidal half-waves βi

The normalized ultimate loads of struts with various different local periodic imperfec-
tion profiles at different material yielding stress levels are shown in Figure 6. In particular,
four typical yielding stress levels are selected, i.e. Py/P

C
l = {1, 1.5, 2, 4} and the corre-

sponding normalized local slendernesses λ̄p =
√

Py/PC
l = {1, 1.225, 1.414, 2}, with Py and

PC
l being the the squash load evaluated in conjunction with the gross cross-sectional area

and the local buckling load respectively [2]. With the increase of the number of half-waves
βi, the normalized ultimate load pu = Pu/P

C, where PC is the critical buckling load of
the perfect strut, decreases and then increases again. This trend is the same as that for
the purely elastic case [20]. It should be noted that under the equal local bending energy
constraint, the imperfection amplitude naturally decreases with increasing βi. Therefore,
it is confirmed that the imperfection amplitude itself only cannot be used as the unique
measure for determining the severity of the different imperfection profiles.

A summary of the most severe imperfection profiles and the corresponding ultimate
loads are presented in Table 4. Similar to the purely elastic case, the longitudinal wave-
length of the most severe imperfection is significantly smaller than that of the perfect strut
in terms of the local eigenmode with the lowest load as well as that of the local–global
interactive post-buckling mode, as shown in Figure 6. The corresponding imperfection
amplitudes are also smaller than the tolerance level, where ATol

0 = d/200 = 0.6t currently.
For cases 2 and 4, where the initial local imperfection parameters A0

i0 and β0
i are the same
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Figure 6: Normalized ultimate load pu = Pu/P
C versus number of half-waves βi with different local imper-

fection cases presented in Table 3 for different length struts with different cross-sectional local slenderness
levels λ̄p. Solid symbols represent the most severe periodic imperfection profile for each case. The pen-
tagram and hexagram on the βi axis represent the number of half-waves in the purely local eigenmode
and in the local–global interactive post-buckling mode of the perfect struts respectively; recall that the
interactive post-buckling mode has a naturally modulated amplitude.

as for case 1 (see Table 3), the corresponding ultimate loads are smaller than those of case
1 at all λ̄p levels. The largest difference is up to 8% for the transitional length strut with
L = 4500 mm, λ̄p = 1 and a mono-symmetric imperfection. The difference is even larger if
the corresponding imperfection amplitude is scaled to the tolerance level. Therefore, it is
also confirmed that the local eigenmode with the lowest load does not necessarily represent
the most severe imperfection profile.

For cases 2–4, the most severe periodic imperfection profile varies with the cross-
sectional slenderness level λ̄p. When λ̄p is large, the most severe imperfection profile
corresponds to case 4 for all four characteristic length struts, which is in accord with the
purely elastic case [20]. However, with the decrease of λ̄p, imperfections with a mono-
symmetric cross-section component (case 2) become the most severe case; this change in
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Table 4: Normalized ultimate load, local imperfection amplitude and longitudinal wavelength of the most
severe local periodic imperfection profile ΛWorst at different local slenderness levels λ̄p. Note that ultimate
loads (Pu) are normalized with respect to case 1 (Pu,LBA,FE), where the local eigenmode with the lowest
load is introduced as a geometric imperfection with the amplitude being Ai0/t = 0.6 for all lengths; ΛWorst

is normalized with respect to the longitudinal wavelength local eigenmode from case 1, ΛLBA. Also note
that the numbers in bold in the ultimate load columns represent the lowest values amongst cases 2 to 4.

L
(mm)

λ̄p
Pu/Pu,LBA,FE cases A0i/t cases ΛWorst/ΛLBA cases
2 3 4 2 3 4 2 3 4

4800

1.000 0.964 1.022 0.972 0.514 0.365 0.530 0.860 0.860 0.891
1.095 0.967 1.017 0.970 0.514 0.380 0.508 0.860 0.891 0.860
1.225 0.973 1.012 0.967 0.514 0.365 0.508 0.860 0.860 0.860
1.414 0.980 1.006 0.966 0.514 0.365 0.508 0.860 0.860 0.860
2.000 0.989 0.994 0.965 0.475 0.350 0.487 0.803 0.831 0.831

4500

1.000 0.912 0.969 0.924 0.509 0.361 0.502 0.849 0.849 0.849
1.095 0.917 0.967 0.924 0.509 0.361 0.502 0.849 0.849 0.849
1.225 0.928 0.968 0.928 0.509 0.361 0.502 0.849 0.849 0.849
1.414 0.944 0.971 0.935 0.509 0.361 0.502 0.849 0.849 0.849
2.000 0.970 0.975 0.949 0.468 0.346 0.460 0.789 0.818 0.789

4000

1.000 0.956 1.018 0.974 0.522 0.371 0.516 0.872 0.872 0.872
1.095 0.956 1.013 0.972 0.522 0.371 0.516 0.872 0.872 0.872
1.225 0.960 1.006 0.969 0.522 0.371 0.516 0.872 0.872 0.872
1.414 0.969 1.000 0.967 0.498 0.353 0.491 0.837 0.837 0.837
2.000 0.984 0.988 0.963 0.475 0.336 0.468 0.804 0.804 0.804

3600

1.000 0.957 1.017 0.976 0.514 0.365 0.508 0.860 0.860 0.860
1.095 0.955 1.012 0.974 0.514 0.365 0.508 0.860 0.860 0.860
1.225 0.955 1.005 0.972 0.514 0.365 0.508 0.860 0.860 0.860
1.414 0.962 0.998 0.969 0.514 0.365 0.481 0.860 0.860 0.822
2.000 0.982 0.987 0.964 0.463 0.345 0.455 0.787 0.822 0.787

the most severe imperfection profile is attributed to the change in the ultimate failure
mode. For illustration purposes, the equilibrium paths of long length struts with mono-
symmetric and doubly-symmetric imperfections (case 4), where λ̄p = 1 and 2, are presented
in Figure 7. When λ̄p is larger, the strut behaves like a purely elastic strut and the ultimate
load is principally governed by its elastic behaviour. As has been demonstrated in [20],
the tangent flexural stiffness of an elastic strut with doubly-symmetric imperfections (case
4) is smaller than that of a strut with mono-symmetric imperfections (case 2). Therefore,
the corresponding ultimate load for struts with doubly-symmetric imperfections is lower
than that with mono-symmetric ones. When λ̄p is smaller, the ultimate state of struts is
principally governed by material failure. The mono-symmetric imperfections introduce an
additional eccentricity to the strut, which facilitates the material failure within the more
compressed web.

Under the same local buckling energy level due to imperfections, the mono-symmetric
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Figure 7: Equilibrium path of long length struts (L = 4800 mm) with the most severe mono-symmetric
and doubly-symmetric periodic local imperfections at two different normalized slenderness levels.

imperfection is more severe than the doubly-symmetric one (case 3) at all λ̄p levels inves-
tigated; the difference increasing with decreasing λ̄p. This is also attributed to the change
in the aforementioned governing failure mode. As for cases 3 and 4, which have the same
cross-section imperfection profiles but different local bending energy levels due to local
imperfections, the corresponding wavelengths of the most severe imperfection profiles are
very close. It implies that the wavelengths are insensitive to the imperfection amplitude,
which is different from the purely elastic case [20]. Moreover, it should also be noted that
a small increase or decrease in the value of βi in the neighbourhood of βi,Worst only leads
to a tiny change in the ultimate load (less than 0.5% in pu for βi,Worst ± 4 for all cases
investigated).

4.2. Effects of varying the degree of localization αi

As described in the algorithm presented in Figure 4, the study on the effect of local-
ization is based on the results of the immediately preceding section. The imperfection
wavelength, i.e. the number of half-waves βi, for each case is kept to the value correspond-
ing to the lowest ultimate load, as presented in Table 4. The equivalent local bending
energy due to local imperfections U0

b,l also remains the same in each case. In contrast with
the relationship of Ai0 versus βi, the increase in αi leads to an increase in Ai0 under the
constraint of equal local bending energy due to imperfections.

The relationship between the normalized ultimate load pu and the degree of localization
αi for the four characteristic length struts at different yielding stress levels is presented in
Figure 8. Initially, the ultimate load decreases with the imperfection profile changing
from periodic to localized in all cases. Further increase of αi subsequently leads to an
increase in the ultimate load, even though the imperfection amplitude increases. This is
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Figure 8: Normalized ultimate load pu = Pu/P
C versus the degree of imperfection localization αi with

different local imperfection cases presented in Table 3 for the four characteristic length struts with different
cross-sectional local slenderness λ̄p levels.

attributed to the fact that struts with highly localized imperfections exhibit a relatively
higher tangent flexural stiffness than those with more periodic ones [20], thus leading to a
higher ultimate load. It, again, demonstrates that the imperfection amplitude is insufficient
as the sole criterion to determine the severity of geometric imperfections. However, for the
intermediate and short length struts with doubly-symmetric imperfections, the further
increase in αi leads to a decrease in the ultimate load when λ̄p is close to unity. As
explained in §4.1, the ultimate state is principally governed by material failure in such
cases. The highly localized imperfections with large amplitudes would definitely facilitate
such a failure mode. For illustration purposes, the equilibrium paths of the intermediate
length struts with the most severe doubly-symmetric imperfection profiles at λ̄p = 1 and
2 are presented in Figure 9. The equilibrium paths of the examples with the degrees of
localization αi being those of the most severe imperfection profile at two different levels of
λ̄p are also presented for comparison purposes. The strut with αi = 20 exhibits a higher
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Figure 9: Equilibrium paths of intermediate length struts (L = 4000 mm) with doubly-symmetric cross-
sectional imperfections (case 4) at different λ̄p levels. Note that cases where α1 = 20 and 5.6 correspond
to the degree of localization of the most severe imperfection profile at λ̄p = 1 and 2 respectively.

stiffness than that with αi = 5.6 for both λ̄p levels. Since the strut failure is principally
governed by the elastic behaviour when λ̄p = 2, the less localized imperfection is more
severe. When λ̄p = 1, the failure of the strut is principally governed by material failure.
The strut with αi = 20 exhibits a lower ultimate load than that with αi = 5.6 due to
the material failure; the highly localized imperfection resembling the formation of a plastic
hinge.

The ultimate load as well as the degree of imperfection localization and amplitude for
struts with the most severe imperfection profiles for the four characteristic length struts at
different cross-section slenderness levels are summarized in Table 5. In terms of the ultimate
load, the difference between cases 2–4 compared with case 1 increases with decreasing
λ̄p. Specifically, for the transitional length strut (L = 4500 mm) with doubly-symmetric
imperfections (case 4), the difference increases from 6.7% at λ̄p = 2 to 13.2% at λ̄p = 1.
Among all the four cases, the most severe case is always case 4 for various different strut
lengths as well as local slenderness levels. This is different from the periodic imperfection
cases presented in Table 4. In order to understand the effects of imperfection localization
on the ultimate load more quantitatively, a comparison of the ultimate loads with the most
severe localized and periodic imperfection profiles is presented in Table 6. It can be seen
that the ultimate load erosion due to localization increases with decreasing λ̄p. Moreover,
the load-carrying capacity erosion in the doubly-symmetric imperfections (cases 3 and 4)
is relatively larger than that for mono-symmetric ones and the erosion in case 4 is the most
significant amongst all three cases.

As for the most severe imperfection profile, the degree of localization αi increases with
decreasing λ̄p. The values of αi for doubly-symmetric imperfections are generally higher
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Table 5: Normalized ultimate load, degree of imperfection localization αi and normalized local imperfection
amplitude A0i/t of the most severe imperfection profile at different cross-sectional local slenderness levels
λ̄p. Note that the rest of the table is as described in Table 4; the wavelengths of the modulated imperfection
profiles are those presented in Table 4.

L
(mm)

λ̄p
Pu/Pu,LBA,FE cases αi cases A0i/t cases
2 3 4 2 3 4 2 3 4

4800

1.000 0.923 0.972 0.918 7.525 10.828 10.788 0.997 0.847 1.227
1.095 0.935 0.979 0.926 6.566 7.552 7.909 0.932 0.738 1.009
1.225 0.949 0.983 0.933 5.606 6.241 6.566 0.863 0.645 0.921
1.414 0.965 0.985 0.939 4.838 5.586 5.990 0.806 0.611 0.880
2.000 0.983 0.983 0.949 3.879 4.931 5.414 0.675 0.553 0.805

4500

1.000 0.872 0.918 0.868 8.101 19.345 20.000 1.023 1.116 1.578
1.095 0.886 0.930 0.883 6.566 8.207 8.677 0.923 0.731 1.045
1.225 0.905 0.941 0.895 5.798 6.241 6.758 0.869 0.639 0.923
1.414 0.929 0.951 0.909 5.030 5.586 5.990 0.812 0.606 0.871
2.000 0.965 0.965 0.933 3.879 4.931 5.414 0.665 0.546 0.759

4000

1.000 0.911 0.954 0.900 9.636 20.000 20.000 1.144 1.162 1.620
1.095 0.922 0.972 0.922 7.333 10.172 20.000 0.999 0.834 1.620
1.225 0.935 0.978 0.933 5.990 6.897 7.717 0.905 0.688 1.014
1.414 0.952 0.980 0.940 5.222 6.241 6.182 0.809 0.624 0.865
2.000 0.979 0.978 0.947 4.071 4.931 5.606 0.689 0.530 0.785

3600

1.000 0.908 0.944 0.890 14.051 20.000 20.000 1.356 1.141 1.590
1.095 0.918 0.962 0.910 8.293 20.000 20.000 1.045 1.141 1.590
1.225 0.933 0.975 0.929 6.374 8.207 9.444 0.918 0.737 1.101
1.414 0.945 0.978 0.942 5.414 6.241 6.758 0.849 0.644 0.883
2.000 0.976 0.975 0.947 4.071 5.586 5.798 0.672 0.578 0.776

than those for mono-symmetric ones. As aforementioned, the imperfection amplitude in-
creases with αi under the constraint of equal local bending energy due to imperfections
U0
b,li. Apart from struts with λ̄p = 2 and doubly-symmetric imperfections (case 3), the

amplitudes of the most severe imperfection are all much larger than that for case 1, i.e. the
tolerance level value Ai0/t = 0.6. For illustration purposes, the longitudinal components
of the most severe imperfection profile for intermediate length struts with cases 2 and 4 at
selected cross-section slenderness levels as well as the imperfection for case 1 are shown in
Figure 10.

4.3. Local imperfections constrained to manufacturing tolerance level

Based on the algorithm presented in Figure 4, the effects of varying the imperfection
profile on the erosion of load-carrying capacity have been investigated and the most severe
profiles for each cases have been determined. However, it should be noted that the ampli-
tudes of the most severe imperfection profiles presented in Table 5 exceed the recommended
local imperfection tolerance [59]. Since manufacturers principally adopt the tolerance level
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Table 6: Comparison of the ultimate load for the four characteristic length struts with the most severe
localized and periodic imperfection profiles at different cross-section slenderness levels.

Pu,αi,Worst
/Pu,αi=0

λ̄p 1.000 1.095 1.225 1.414 2.000 1.000 1.095 1.225 1.414 2.000
L (mm) 4800 4500
Case 2 0.958 0.967 0.976 0.984 0.994 0.956 0.966 0.976 0.984 0.994
Case 3 0.951 0.962 0.972 0.980 0.989 0.948 0.962 0.972 0.980 0.990
Case 4 0.945 0.955 0.964 0.971 0.983 0.939 0.955 0.965 0.972 0.984
L (mm) 4000 3600
Case 2 0.953 0.964 0.974 0.983 0.994 0.949 0.962 0.973 0.982 0.994
Case 3 0.937 0.959 0.972 0.980 0.989 0.928 0.950 0.970 0.980 0.989
Case 4 0.924 0.948 0.963 0.972 0.983 0.912 0.934 0.960 0.972 0.983

of imperfection amplitude as the quality control, the determined worst profiles with ex-
cessive amplitudes would not be practically significant. Therefore, based on the algorithm
presented in Figure 4, the most severe imperfection profile under the constraint of imper-
fection tolerance is investigated. A summary of the results is presented in Table 7. With
the decrease of the imperfection amplitude, alongside the degree of localization, the corre-
sponding ultimate load increases. The most severe imperfection profiles amongst cases 2–4
at different strut lengths as well as cross-sectional slenderness levels are almost the same
as that in the purely periodic case, as presented in Table 4. Specifically, case 4 is the most
severe for long length struts and those with high λ̄p levels, where the failure is principally
governed by elastic behaviour; case 2 is the most severe for struts with local buckling being
critical and with low λ̄p levels, where the failure is governed by material failure. The values
of αi for cases 2 and 4 are much smaller than those presented in Table 5, which do not
include the imperfection tolerance constraint. The imperfection amplitudes of the most
severe profiles for all cases are equal to the tolerance level value except for struts with a
doubly-symmetric imperfection (case 3) and λ̄p = 2. Moreover, since case 3 corresponds
to a lower level of local bending energy due to the imperfection when compared with case
4, with the same imperfection amplitude as case 4, it leads to much larger values of αi.

4.4. Periodic approximation for most severe imperfection

The process of determining the most severe imperfection profile based on the algo-
rithm presented in Figure 4 is complex and cumbersome to some degree. Moreover, the
determined most severe imperfection profiles, i.e. the modulated longitudinal and mono-
symmetric cross-sectional components, are not convenient to model. Therefore, it would be
advantageous if the most severe imperfection profile could be approximated using the pro-
files with periodic longitudinal and doubly-symmetric components, which could be obtained
directly from some existing software, such as CUFSM [60] and Abaqus [40]. Figure 11
presents the comparison between the ultimate loads with the most severe imperfection
profile from cases 2 and 4 alongside those using the approximate periodic imperfection
profiles with the doubly-symmetric cross-sectional component. It should be stressed that
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Figure 10: Longitudinal component of local imperfection profiles for intermediate length struts (L = 4000
mm). Most severe doubly-symmetric imperfections (case 4) with (a) λ̄p = 1 and (b) λ̄p = 2; (c) most
severe mono-symmetric imperfection with λ̄p = 1; (d) periodic imperfection with the wavelength being the
same as that of the local eigenmode with the lowest load and at the tolerance level A0 = d/200 = 0.6t.
Note that z̄ = 2z/L and the imperfection profile is symmetric about z̄ = 1.

the wavelengths of the ‘approximate’ periodic imperfection profile are the same as those
of case 4 presented in Table 4 and the amplitudes are equal to the tolerance value, i.e.
A0 = d/200. It can be seen that the ‘approximate’ imperfection profile can generally pro-
vide a reasonably accurate estimation of the response from the most severe imperfection
profile in terms of the ultimate load. Specifically, the average ratio of the ultimate load
of struts with the most severe imperfection profile (the more severe cases between cases 2
and 4) and the approximate ones is 1.001 and the coefficient of variation (COV) is 0.98%.
The approximation leads to a slight overestimate in the ultimate load prediction for struts
with λ̄p being close to unity and local buckling being critical; the error is within 2% and
decreases with the increase of the strut length as well as the cross-sectional slenderness
λ̄p. For struts with a relatively large cross-sectional slenderness, the ‘approximate’ peri-
odic imperfection would lead to a safe, yet accurate, prediction of the ultimate load. This
is reasonable since the most severe imperfection profile in such cases is modulated with
doubly-symmetric cross-sectional components and a small degree of localization.

For illustration purposes, the ‘approximate’ periodic and the actual most severe im-
perfection profiles for two typical cases are presented in Figure 12. In both cases, the
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Table 7: Normalized ultimate load, degree of imperfection localization and local imperfection amplitude of
the most severe imperfection profile at different cross-sectional local slenderness levels under the constraint
of equal local bending energy alongside the local imperfection amplitude tolerance. Note that the ultimate
loads are normalized with respect to case 1, where the linear buckling mode is introduced as the geometric
imperfection with the amplitude being Ai0/t = 0.6 for all cases unless specified (e.g. case 3, λ̄p = 2.0); the
wavelengths of the modulated imperfection profiles are those presented in Table 4.

L
(mm)

λ̄p
Pu/Pu,LBA,FE cases αi cases A0i/t cases
2 3 4 2 3 4 2 3 4

4800

1.000 0.948 0.981 0.958 2.162 5.371 1.899

0.6 0.6
1.095 0.954 0.984 0.953 2.162 4.915 2.270
1.225 0.962 0.984 0.953 2.162 5.371 2.270 0.6
1.414 0.972 0.985 0.954 2.162 5.371 2.270
2.000 0.984 0.983 0.956 2.834 4.931 2.625 0.553

4500

1.000 0.897 0.929 0.906 2.251 5.478 2.365

0.6 0.6
1.095 0.904 0.934 0.908 2.251 5.478 2.365
1.225 0.917 0.941 0.914 2.251 5.478 2.365 0.6
1.414 0.936 0.951 0.923 2.251 5.478 2.365
2.000 0.965 0.965 0.937 2.964 4.931 3.119 0.546

4000

1.000 0.943 0.978 0.958 2.026 5.190 2.118

0.6 0.6
1.095 0.944 0.979 0.958 2.026 5.190 2.118
1.225 0.950 0.980 0.957 2.026 5.190 2.121 0.6
1.414 0.959 0.980 0.953 2.435 5.763 2.555
2.000 0.979 0.978 0.952 2.837 4.931 2.976 0.530

3600

1.000 0.942 0.976 0.959 2.166 5.380 2.270

0.6 0.6
1.095 0.942 0.978 0.959 2.166 5.380 2.270
1.225 0.944 0.979 0.959 2.166 5.380 2.270 0.6
1.414 0.954 0.979 0.955 2.166 5.380 2.742
2.000 0.977 0.975 0.952 3.059 5.586 3.211 0.578

initial deformation of the approximate imperfection profile is larger than the actual most
severe imperfection. In particular, it should be noted that the difference is even larger for
the imperfection with mono-symmetric cross-sectional components since the cross-section
component of the approximate most severe imperfection is doubly-symmetric. However,
as shown in Figure 11, the ultimate load of the short length struts with the most severe
imperfection is lower than that of the ‘approximate’ imperfection with a larger deformation
in both cross-sectional and longitudinal dimensions. For the long length strut, scaling the
imperfection amplitude near the ends to the tolerance level value only leads to a further
1% drop in the load-carrying capacity. Therefore, it may be concluded that the sever-
ity of imperfections principally depends on the characteristic failure mode being triggered
rather than the absolute deformation or the magnitude of local bending energy stored due
to imperfections. This also lends support to the current methodology of determining the
most severe imperfection profile based on equal local bending energy, since it can consider
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Figure 11: Comparison of ultimate loads with the most severe modulated imperfection profile (subscript m)
and the ‘approximate’ periodic profiles (subscript p) at different cross-sectional slenderness levels. Hollow
and solid symbols represent the most severe imperfection profile in cases 2 and 4 respectively. Note that
the key parameters of the most severe imperfection profiles are presented in Table 7; wavelengths of the
‘approximate’ periodic imperfections are the same as those for case 4 presented in Table 4.

the variation of imperfection profiles in both cross-sectional as well as the longitudinal
dimensions.

5. Parametric study

Hitherto, numerical results have shown that imperfection profiles with doubly-symmetric
cross-section and periodic components can be used as a relatively accurate approximation
of the most severe imperfection profile in terms of the ultimate load. Hence, a further
parametric study is conducted to evaluate the effects of varying geometric properties as
well as the material yielding stress levels on the wavelength of the most severe periodic
imperfection profile with a doubly-symmetric cross-sectional component (case 4). The ulti-
mate aim currently is to propose an explicit equation approximating the most severe local
imperfection wavelength ΛWorst. From Table 4, it can be seen that the value of ΛWorst/ΛLBA

ranges from 0.78 to 0.89. In order to make the solution process more efficient, an updated
algorithm is adopted, which is presented in Figure 13. Instead of initiating the solution
process from β0 and finding the most severe case by increasing βi, the updated algorithm
first solves the ultimate load with the estimated most severe imperfection profile βM as well
as two neighbouring profiles with βL = βM − 2 and βU = βM + 2. The following solution
steps are determined based on the relative magnitude of the ultimate loads for a given value
of βi, i.e. Pu(βM), Pu(βL) and Pu(βU). In the current study, the initial βM is determined
based on the estimation that Λest

Worst = 0.85ΛLBA and an adjustment is made, if necessary,
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Figure 12: Visual comparison of the approximate (dot-dashed line) and actual most severe (solid line)
imperfection profiles. (a) Short length strut (L = 3600 mm) with mono-symmetric imperfection and
λ̄p = 1. (b) Long length strut (L = 4800 mm) with doubly-symmetric imperfection (case 4) and λ̄p = 2.

to ensure that βM is an odd integer such that the boundary conditions are satisfied. From
the results, it generally takes a maximum of 2 complete iterations to obtain the solution,
i.e. 5 GMNIAs in total. Moreover, since Table 4 has shown that βWorst for struts with
different yielding stress levels (λ̄p) are very close, the solved βWorst in the current case is
used as the initial βM estimate for the proceeding case to improve efficiency.

The principal parameters and their ranges are presented in Table 8. Figure 14 presents

Table 8: Principal parameters and their ranges for the parametric study. Note that the critical buckling
load ratio is altered by varying the strut length and the cross-sectional slenderness is altered by varying
the material yielding stress levels.

Principal parameters Range
Cross-section aspect ratio d/b 1 → 2.5

Critical buckling load ratio PC
o /P

C
l 0.9 → 4

Cross-sectional slenderness λ̄p 1 → 2
Plate width–thickness ratio d/t 60 → 150

the effects of varying the cross-section aspect ratio and the strut length on the most severe
imperfection wavelength for different cross-sectional slenderness values, where the plate
width–thickness ratio is fixed to 120. It can be seen that the values of ΛWorst/ΛLBA are
fairly constant with (a) varying d/b and (b) PC

o /P
C
l . Hence, it may be concluded that

the effects of geometric properties on the most severe periodic imperfection profile are not
significant. Therefore, a relationship to describe the most severe wavelength ΛWorst and the
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Figure 13: Algorithm for the parametric studies to determine the effects of varying geometric properties
as well as material yielding stress levels on the wavelength of the most severe periodic local imperfections
under the constraint of the equal local bending energy compared to the initial case with βi = β0, Ai0 = A0

i0

and U0
b,li.
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Figure 14: Effects of (a) cross-section aspect ratio and (b) strut length on the wavelength of the most
severe periodic imperfections. Note that the ratio d/t is fixed to 120 in these graphs.

normalized cross-sectional slenderness λ̄p is fitted initially for the ratio where d/t = 120:

ΛWorst

ΛLBA

=
1

3
+ 0.708 tanh(λ̄−1/5

p ) (12)

and a further parametric study was conducted with three additional d/t ratios. The average
and COV of the ratio of Eq. (12) to the FE results for the example struts considered are
presented in Table 9. The comparisons with the corresponding number of half-waves βWorst

Table 9: Average and COV of proposed Eq. (12) to FE results ratio for all d/t ratios considered.

d/t Average COV
60 0.967 4.51%
80 0.986 3.24%
120 0.996 2.26%
150 1.010 2.14%

All combined 0.992 3.24%

predicted by FE and Eq. (12) are shown in Figure 15, which show very good correlation in
each case presented. Figure 16 presents the distribution of the difference between βWorst,FE

and βWorst,Eq for various d/t ratios. As demonstrated in Figure 6, a small increase or
decrease in the value of β in the neighbourhood of βWorst only leads to a tiny change in
the ultimate load. Therefore, it may be concluded that the wavelength of the most severe
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Figure 15: Comparison of the number of half-waves in the most severe periodic imperfection profile solved
using GMNIA in Abaqus and the proposed fitting equation. The upper and lower dashed lines in (b–d)
represent βWorst,FE +4 and βWorst,FE − 4 as labelled in (a); the solid line represents βWorst,FE = βWorst,Eq.

periodic imperfection profile is principally related to the material yielding stress and Eq.
(12) provides a relatively accurate approximation of the most severe imperfection profile
for RHS struts within the parametric range presented in Table 8.

6. Concluding remarks

A nonlinear FE model developed within the commercial package Abaqus for inelastic
thin-walled rectangular hollow section struts susceptible to local–global mode interaction
with bespoke local and global imperfection profiles was used to investigate the effects of
different local imperfection profiles on the load-carrying capacity. Using a unified local
imperfection measurement based on the concept of equal local bending energy, the effects
of imperfection profiles, i.e. the cross-section profile, the wavelength and the degree of
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Figure 16: Distribution of differences in βWorst between Eq. (12) and the FE results. Note that βWorst,Eq

slightly underestimates βWorst,FE for higher d/t ratios and this becomes a slight overestimation for the
lower d/t ratios presented.

localization in the longitudinal direction, on the ultimate load and equilibrium behaviour
were investigated for four characteristic length struts at different yielding stress levels.
The most severe local imperfection profiles for example struts with different lengths and
cross-sectional slenderness levels have been determined within the chosen cross-section and
longitudinal imperfection parametric spaces. Subsequently, a systematic parametric study
was conducted for wider geometric and material parameter spaces. An explicit expression
to approximate the wavelength of the most severe periodic imperfection profile has been
proposed based on the results from the parametric study and this compares excellently
with the FE results of the investigated struts.

Based on the current findings, the following detailed conclusions may be drawn:

1. In terms of the imperfection cross-section profile, the mono-symmetric imperfection
is more severe than the doubly-symmetric one under the same equal local bending
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energy due to imperfections U0
b,li. However, under the same initial imperfection

amplitude A0
0 and number of half-waves β0

0 , the severity of the mono- and doubly-
symmetric imperfections depends on the cross-sectional local slenderness (λ̄p) as well
as the ratio of the global to local buckling load PC

o /P
C
l , the latter being related to

the strut length. The mono-symmetric imperfections are more severe in cases where
local buckling is critical (PC

o /P
C
l > 1 ) and λ̄p is small. In such cases, strut failure

is principally governed by the mono-symmetric imperfection and the material. For
cases where global buckling is critical PC

o /P
C
l < 1 and λ̄p is relatively large, doubly-

symmetric imperfections are more severe due to the large erosion in the tangent
flexural stiffness [20]. The failure of such struts is principally governed by the erosion
of the elastic post-buckling stiffness.

2. In terms of the effects of the number of half-waves βi in the longitudinal direction
of the imperfection profile, the increase in βi from β0 initially leads to a decrease in
the ultimate load, even though the corresponding imperfection amplitude decreases
under the constraint of equal U0

b,li. However, the further increase in βi leads to
an increase in the ultimate load owing to the fact that the imperfection begins to
correspond to a higher local eigenmode.

3. The influence of the degree of imperfection localization αi on the ultimate load is
related to the value of λ̄p, P

C
o /P

C
l , alongside the imperfect cross-section profile. When

λ̄p is large, the ultimate load initially decreases and then increases with the increase of
αi. This is attributed to the fact that the struts with large αi correspond to a higher
level of tangent stiffness in the struts, which leads to a higher ultimate load that is
related to the elastic post-buckling stiffness [20]. When λ̄p is small, local buckling is
critical and the imperfection cross-section profile is doubly-symmetric, the increase
in αi leads to a monotonic decrease in the ultimate load. This is attributed to the
fact that the high degree of localization would lead to material failure first. However,
in such cases, the imperfection amplitude is always larger than the tolerance level
and is hence of limited practical significance.

4. Even though the most severe imperfection profiles determined based on the con-
straint of equal initial local bending energy correspond to one with mono-symmetric
cross-sectional and modulated longitudinal components, it has been demonstrated
currently that it can be approximated using imperfections with doubly-symmetric
cross-sectional and periodic longitudinal components in terms of estimating the ulti-
mate load of struts with good accuracy. This can simplify the analysis considerably.

Generally, it has been demonstrated that the local imperfection amplitude cannot be
used as the sole measure of the severity of imperfections and the local eigenmode with
the lowest load may not represent the most severe imperfection profile. The proposed
imperfection measurement method and the solution algorithms provide systematic and
consistent approaches to determine the effects of different imperfection profiles on the
ultimate load of RHS struts. The methodology can be extended to investigate the effects
of imperfection profiles on thin-walled members with other cross-section profiles [61, 62],
particularly where mode interaction is a significant factor and the post-buckling profile
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changes qualitatively while loading is continued.
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[37] R. M. Lúıs, M. Witkowska, C. G. Soares, Collapse behaviour of damaged panels with
a dimple imperfection, in: ASME 2007 26th International Conference on Offshore
Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2007,
pp. 687–697.

[38] J. Shen, M. A. Wadee, Imperfection sensitivity of rectangular hollow section struts
susceptible to interactive buckling, Int. J. Non-Linear Mech. 99 (2018) 112–130.

[39] J. Shen, M. A. Wadee, Behaviour and design of inelastic thin-walled rectangular hol-
low section struts susceptible to local–global mode interaction, Eng. Struct. Submit-
ted. 2018.

31



[40] ABAQUS, Version 6.14, Dassault Systèmes, Providence RI, USA, 2014.
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