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A B S T R A C T

We present LAFTER, an algorithm for de-noising single particle reconstructions from cryo-EM.
Single particle analysis entails the reconstruction of high-resolution volumes from tens of thousands of par-

ticle images with low individual signal-to-noise. Imperfections in this process result in substantial variations in
the local signal-to-noise ratio within the resulting reconstruction, complicating the interpretation of molecular
structure. An effective local de-noising filter could therefore improve interpretability and maximise the amount
of useful information obtained from cryo-EM maps.

LAFTER is a local de-noising algorithm based on a pair of serial real-space filters. It compares independent
half-set reconstructions to identify and retain shared features that have power greater than the noise. It is
capable of recovering features across a wide range of signal-to-noise ratios, and we demonstrate recovery of the
strongest features at Fourier shell correlation (FSC) values as low as 0.144 over a 2563-voxel cube. A fast and
computationally efficient implementation of LAFTER is freely available.

We also propose a new way to evaluate the effectiveness of real-space filters for noise suppression, based on
the correspondence between two FSC curves: 1) the FSC between the filtered and unfiltered volumes, and 2) Cref,
the FSC between the unfiltered volume and a hypothetical noiseless volume, which can readily be estimated
from the FSC between two half-set reconstructions.

1. Introduction

1.1. Interpretability of single particle density maps in Fourier-space

Single particle analysis entails the in silico reconstruction of high-
resolution volumes from (typically) tens of thousands of transmission
electron particle images of vitrified specimens with low individual
signal-to-noise ratios (SNRs) (Frank, 1975; Adrian et al., 1984;
Henderson et al., 1990). Whereas in crystallography, helical diffraction
or nuclear-magnetic resonance spectroscopy, the experimenter has an
immediate read-out of the quality of their data (the reflections, layer-
lines and peaks respectively), single particle analysis is denied an ac-
curate estimate of the eventual resolution or SNR without extensive
data processing. Although the two-dimensional (2D) information limit
may now be estimated quickly (Rohou and Grigorieff, 2015; Zhang,
2016), three-dimensional (3D) analysis is limited by the incredibly low
SNR recorded for individual particles before their signal fades due to
radiation damage, and the fact that the 3D Fourier space must be re-
constructed from heterogeneous, preferentially distributed 2D

projections (Saxton and Frank, 1977; Henderson, 1995). This is a real
issue, as it is impossible to interpret reconstructed densities without
knowing what features can be relied upon.

Scientists have struggled with this problem since the field began
(Liao and Frank, 2010). Initial efforts focused on a resolution limit in
Fourier space (Frank et al., 1981; Kessel et al., 1985; van Heel, 1987;
Harauz and van Heel, 1986; Penczek, 2002; Unser et al., 2005; Sousa
and Grigorieff, 2007), and today this is commonly measured using the
Fourier shell correlation (FSC) (Harauz and van Heel, 1986). The FSC is
frequently calculated between independently reconstructed half-sets, in
order to prevent the correlation of one half-density with noise from the
other during the reconstruction process (Grigorieff, 2000; Henderson
et al., 2012).

It is generally acknowledged that the SNR in Fourier space varies
according to the distribution of the particle projections; the frequency
shells are therefore non-uniform (e.g. Tan et al., 2017). However, the
field has converged towards the use of a set of criteria for the resolution
at which a reconstruction should be low-pass filtered. Some of these
take into account the effects of applying symmetry or voxel count, such
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as the ½-bit FSC criterion (van Heel and Schatz, 2005), or the masking
of volumes (Chen et al., 2013), whereas others do not. Most criteria lie
in the same vicinity for an unmasked map, without symmetry aver-
aging, at high resolution. This convergence is based on the calculation
that an FSC of 0.143 would correspond to a theoretical cross-FSC
(xFSC), or figure of merit, Cref of 0.5 between the summed experimental
half maps and a “noiseless” map (Rosenthal and Henderson, 2003). A
figure of merit of 0.5 was already a standard for dataset phasing in
crystallography, and using a similar interpretability measure for cryo-
EM data is desirable.

1.2. Local resolution and density map interpretability in real-space

The interpretability of single particle reconstructions also varies in
real-space. This occurs because the density is reconstructed from many
images of different particles. Regions that vary between the particles
will exhibit a mixture of their respective signals. Several sources are
known to contribute to this phenomenon, principally partial occupancy
(Belnap et al., 2003), and conformational variability (Ishikawa et al.,
2004; Leschziner and Nogales, 2007). Affected reconstructions have a
lower SNR in the varying regions. The variations between particles are
often relatively localised in their effects and therefore this phenomenon
has been dubbed “local resolution”, and handled accordingly.

The first attempts to diagnose local resolution rigorously began with
the work of Cardone et al. (2013), who demonstrated that local varia-
tions could be identified similarly to global resolution. They convoluted
a window function with the reconstruction and calculated the half-set
FSC locally at each position. Due to an effect of the properties of the
window on the outcome, their method was less widely adopted than it
deserved. The most widely used algorithm for local resolution de-
termination currently is that of Kucukelbir et al. (2014). They con-
voluted the reconstruction with a series of small kernels forming a
complete basis for the extraction of the local waveform at a given re-
solution. This increased the resolution and reproducibility with which
local resolution could be determined. A further recent step forward has
been the demonstration of the direct extraction of amplitudes for SNR
estimation using the monogenic signal by Vilas et al. (2018).

1.3. Current real-space filters for local noise suppression

Without a way of representing volumes according to their inter-
pretability, local resolution estimates would be of limited use. The in-
itial approach to solving the issues posed by local resolution was to
isolate regions from the reconstruction, and then to mask and filter each
(Gao et al., 2004). The development of programs to diagnose local re-
solution allowed these methods to be reversed, filtering the volume
according to the local resolution assigned to each voxel. BLOCFILT
(Cardone et al., 2013) was the first algorithm to do this, while the local
filter provided by RELION (Chen et al., 2013) performs a similar pro-
cess. Few real-space filters are currently available; the MONORES al-
gorithm (Vilas et al., 2018) provides one that considers only the
minimal vicinity of the voxel for each frequency, rather than in-
corporating noise from the solvent as windowing methods do.

1.4. Local resolution filtering and signal to noise filtering

The philosophy underlying previous local filtering approaches has
very closely mirrored the approach taken for global noise. The signal
over a substantial window of the map in each case is truncated in the
Fourier domain, or an extension of it in the case of MONORES, at a
point at which the signal is considered to have fallen below an accep-
table level. Typically noise suppression has not been an aim in and of
itself. Instead, interpretation has been seen from the perspective of the
“usable” resolution.

We approach the problem of signal-to-noise ratio within the ex-
perimental map from a different perspective. We have set out to provide

a filter to produce a locally noise-suppressed map in real space, using
Fourier space as a tool for deconvolution of the noise from the signal
where appropriate. We seek to both weight and truncate the experi-
mental map in order to ensure as much representation of signal and as
little representation of noise as possible, without consideration of re-
solution in and of itself.

1.5. Cause for Local Agreement Filtering of Transmission EM
Reconstructions (LAFTER)

A consideration of the real-space filtering problem reveals that the
aims of local resolution diagnosis are at odds with those of a filter to
provide a noise-suppressed map. The principal concerns of diagnostic
tools must be: to step finely through the resolution range to maximise
resolution assignment accuracy; to be locally consistent to allow in-
terpretation of the local-resolution map; and to provide a binary, “re-
solved/unresolved” statement of significance against a certain p-value
for each voxel at each resolution. Only the consistency requirement
applies to filtering, while a binary assignment is damaging as it fails to
reflect the reality of the SNR continuum within all reconstructions.

An algorithm for noise minimisation must step through the lowest
and highest resolution shells most finely, as the variation due to the
signal is highest at low resolution, whereas the large variation due to
noise must be suppressed effectively at high resolution. There is no
requirement for fine slicing when the SNR is very high. It can also take
into account the known increase in noise with higher resolution, and
the fact that, in a macromolecule, signal from the same structure will be
present at all length scales currently accessible to cryo-EM. It may
function at any resolution below the resolution limit of the map without
compromising the results, not being limited to twice the reciprocal
separation in question, thus yielding relatively crisp edges to avoid
blurring the density into the solvent. Finally it is desirable that the filter
should weight the map appropriately, rather than truncating at a par-
ticular frequency.

1.6. Evaluating the LAFTER denoising algorithm and a general means by
which to evaluate the effectiveness of local noise suppression

We present a real-space filtering algorithm, a Local Agreement Filter
for Transmission EM Reconstructions (LAFTER), which filters maps
according to an estimate of the noise distribution and thereby facilitates
interpretation. It is important to note that LAFTER is not a “local re-
solution” filter per se, as local resolution is not explicitly evaluated;
instead it focuses on the SNR. The SNR is higher for regions of stronger
density, and therefore LAFTER frequently allows these regions to be
observed through underlying noise even if the local resolution is poor.
This phenomenon is often observed in the case of phosphates in nu-
cleotide residues. A disadvantage of this SNR-centric approach is that
regions of the molecule with lower SNR must be observed at lower
contours.

We have tested LAFTER both on synthetic data and on experimental
reconstructions, and detail the results here. In order to evaluate the
success or failure of LAFTER in suppressing the noise between half-
maps, we note that, as noise suppression is achieved, the xFSC between
the filtered volume and the unfiltered volume should approach Cref, the
estimated xFSC between the unfiltered volume and a theoretical
noiseless volume. We apply this correspondence as a measure of suc-
cessful noise suppression by LAFTER, and show that the xFSC for
LAFTER output maps indeed approaches Cref. While unsuitable as a
target for optimisation, we suggest that a comparison between these
curves represents a sensible global measure by which to evaluate the
efficient suppression of noise by local filters in general.
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2. Methods

2.1. The LAFTER algorithm

2.1.1. Summary
The intention of LAFTER is to suppress noise to the point at which

every voxel within the final map has an SNR greater than 1.0. LAFTER
operates in both real and Fourier space. It consists of two separate se-
quential filters. The first isolates and weights frequency bands in-
dependently according to the probability they represent noise (Fig. 1A),
to suppress the noise in the map. The second filter excludes higher
frequency noise where it could be stronger than the signal (Fig. 1B). The
resulting map should have high SNRs throughout.

2.1.2. Assumptions
Our algorithm makes three explicit assumptions. First, we assume

that the agreement and disagreement between half-maps represent
signal and noise respectively. This assumption is also inherent to the
FSC calculation, and is required to estimate the signal and noise dis-
tributions, however it is frequently violated to some extent due to over-
refinement, an unavoidable artefact of certain refinement practices.
Second, we assume that noise between half-maps is Gaussian at each
resolution, and well distributed within the refined region. This is ne-
cessary as we estimate the power of the noise at each resolution, and
this assumption has proven safe in all experimental cases tested, pro-
viding that only the region that was refined is considered. Finally, we
assume that features have structure that varies smoothly across suc-
cessive resolution bands. This assumption is necessary as LAFTER op-
erates on isolated (band-pass filtered) resolution bands in real-space,
but we consider it safe for macromolecular samples as biological

structures can be considered smooth and exhibit structure at all scales
up to the current resolution limit of the technique.

2.1.3. Steps in the algorithm
LAFTER performs two successive filtering operations on the half-

volumes (Fig. 1). In the first, resolution shells are isolated from the two
half volumes by band-pass filtering. The half volumes are transformed
into Fourier space, and for each resolution shell, the Fourier coefficients
are weighted using an eighth-order Butterworth band-pass filter
(Butterworth, 1930):
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In this equation, F r( )in and F r( )out represent the complex Fourier
coefficients in the original transform and the band-passed output re-
spectively, at radius r from the origin; h and l are the high and low
cutoff frequencies for the band-pass filter. This particular filter is used
because it produces minimal ringing artefacts and conveniently sums to
unity across successive resolution bands, meaning no further scaling is
necessary when the filtered volumes are later re-combined.

Each successive resolution shell is incorporated using an adaptive
step size proportional to the current resolution and the current mean
signal probability (see below). This minimises the step size both at low
resolution, where the signal varies strongly, and near the resolution-
limit, as the noise eclipses the signal. The larger the step the algorithm
takes, the greater its chance of estimating the noise incorrectly, or of
introducing discontinuities into the signal. The incorporation of new
resolution shells terminates when the FSC between half-maps reaches
either a threshold of 0.143, or a user-provided threshold value.

noisulcxeesioN-BnoisserppusesioN-A

LAFTER algorithm 

Simplified illustration of the process for an individual voxel 
All weighting is performed in real-space

Down-weight frequency bands by 
probability signal not present
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On assignment the half maps are combined

Fig. 1. The LAFTER algorithm. The application of the LAFTER algorithm is illustrated graphically for an individual voxel. Magnitude is indicated by the height (or
depth) of the bar, and the relevant properties of the noise within the dataset as a whole are indicated by red lines.
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For each resolution shell, the two half volumes are transformed to
real space after the band pass filter has been applied. The total power at
this resolution, T , and the power of the noise, N , are calculated from
the sums and differences of the voxel values respectively:

∑= +T v v( )
xyz

xyz xyz1, 2,
2

∑= −N v v( )
xyz

xyz xyz1, 2,
2

In these equations, v xyz1, and v xyz2, are the values of the voxels from
the two half-volumes at position xyz , and the sum is over all voxel
positions within the region of the map that was considered during re-
construction.

The standard deviation of the noise is calculated as =σ N n/N ,
where n is the number of voxels within the region considered, and the
proportional contributions of the noise and the signal to the total power
are calculated as follows:

=P N
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Each voxel in each of the band-passed half volumes is then weighted
using an estimate of the probability that it corresponds to signal. This is
calculated using erf , the error function for the normal distribution:
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First, erf is used to calculate the probability of measuring a value at
least as great in magnitude as the voxel value, assuming it is sampled
from the noise distribution:
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This is then used to estimate the overall probability that the voxel
corresponds to signal according to the following formula:
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This calculation can be seen as a best attempt at prior adjustment of
the signal probability for this voxel, using the overall signal contribu-
tion to the power at the given resolution as a prior. Rigorous Bayesian
adjustment would require estimation of the probability distribution
corresponding to the signal, which is too computationally expensive to
estimate for routine use, and does not appear to greatly affect the
output except at very low SNRs. A modified version of LAFTER that
estimates the signal distribution through Maximum Likelihood is
available on request from the authors. We note that it is not fast.

The voxel values in real space are weighted using this probability
estimate (Fig. 1A), and normalised (to make them comparable for the
second filter) by the resolution shell width and the root mean squared
value of the total power at that resolution:
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This multiplication by the probability of significance has the benefit
of suppressing noise considerably, without the substantial computation
that is required to develop a statistical model of the signal, and can be
thought of as “adaptive masking” of regions indistinguishable from
noise.

Finally, the estimated probabilities for all voxels within the region
of interest are used to calculate the mean signal probability for this
resolution, which is used in the calculation of the next resolution step
size (see above).

After all resolution shells have been processed, the series of band-
passed, noise-weighted maps for each half volume is then summed in

real space, combining the isolated resolutions to yield a pair of noise-
suppressed half volumes.

In the second filtering step (Fig. 1B) the noise-suppressed half vo-
lumes from the first filter are transformed into the Fourier domain, and
then each low pass filtered at every resolution that was considered in
the previous step. Low pass filtering is performed similarly to the band
pass filtering described above, using an eighth-order Butterworth re-
sponse (Butterworth, 1930):
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Each pair of low pass-filtered half-maps is transformed back into
real space, and a summed volume is calculated. The noise maximum is
found as the greatest difference between corresponding voxels in the
half volumes, for all voxel coordinates xyz within the region considered:

= −noise v vmax(| |)max xyz xyz1, 2,

Starting at the highest resolution considered, each voxel in the
summed volume is tested. If its value is greater than the maximum noise
at the current resolution, then that value is assigned to the corre-
sponding voxel in the final output volume. If its value is lower than the
noise maximum, the corresponding voxel in the output volume is left
un-assigned, and will be re-considered at the next (lower) resolution.
Voxels that have already been assigned at higher resolution are ex-
cluded from consideration at lower resolutions, so the overall effect is
that each voxel in the final output is assigned to its value at the highest
resolution where its signal is greater than the maximum noise (Fig. 1B).

After the last, lowest-resolution pair of half-volumes has been pro-
cessed, the output density map is slightly softened to remove hard
edges, by setting any remaining zero-valued voxels to an average of
their six nearest neighbours. (This is done eight times to ensure that the
map density spreads smoothly into any un-assigned areas.) Finally, the
volume is explicitly low-pass filtered at the highest resolution that was
considered during the noise suppression process.

2.1.4. Important points
LAFTER is intended to recover the signal corresponding to the

agreement between two independently refined half-sets. It uses the
noise distribution between half-sets, from which the FSC and therefore
Cref is calculated, and therefore requires the independent, unfiltered
half-maps for agreement estimation, and a map or mask from 0 to 1,
where 1 indicates the voxel was refined, specifying the region used in
the refinement process, to identify those regions within which the noise
distribution can safely be estimated. Over-fitting or over-refinement is a
major issue and will typically invalidate the results, as the over-refined
noise will be retained in the filtered map. We would encourage users to
rethink their refinement strategy in such cases. Similarly, running
LAFTER with an incorrect region of the map specified by the mask will
also result in an incorrect result.

2.2. Implementation and availability

We have produced a reference implementation of LAFTER as a
performance-optimised C program using FFTW for Fourier transfor-
mation (Frigo and Johnson, 2005) to maximise speed and portability. It
performs acceptably in terms of speed and computing requirements in
comparison to other local filters, typically processing a 2563 voxel vo-
lume on a 4-CPU 2.7 GHz x86-64 laptop in one and a half minutes. To
simplify the use of LAFTER for macromolecular interpretation, we
output an MRC format volume (Cheng et al., 2015) that is up-sampled
to give a smooth map suitable for use with model building tools. Source
code for the LAFTER reference implementation is available from the
Imperial College Section for Structural Biology GitHub (github.com/
StructuralBiology-ICLMedicine) under the GPL open source licence. It
operates on MRC format density files in MRC mode 2 (C float or
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FORTRAN real). It is provided as a C-2000 program requiring the C
standard library and FFTW3, and can be compiled for any POSIX-
compatible operating system. LAFTER will also be made available in
pre-compiled binary format for both Linux and Mac OS X as part of the
CCP-EM suite (Burnley et al., 2017).

2.3. Synthetic and experimental datasets

Simulated half maps were generated by adding noise to noiseless
densities, and simulated full reconstructions were generated by sum-
ming the two half maps. We used synthetic densities (3D models of Tux,
Gnu and Mandelbulb – kindly provided by thingiverse users me2space,
luigismith and aeron203 respectively) to provide a fully controllable
benchmark with an immediately recognisable, strong signal that cannot
be confused with an experimental volume even without close inspec-
tion. Gaussian noise of the necessary power to yield the desired half-set
FSC (van Heel and Schatz, 2005) was generated in two dimensions (real
and imaginary units) using the SciPy (Jones et al., 2001) function sci-
py.stats.multivariate_normal, with zero mean, zero covariance and the
stated power in relation to the known (Fourier-space blurred) signal,
and added directly to the Fourier transform of the noiseless maps using
the same framework. When the FSC was varied, the noiseless map was
low-pass filtered at a resolution of 4.0 voxels, while when the resolution
was being varied the FSC was set at 0.5. Results for a series of macro-
molecular synthetic densities (based on the proteasome from PDBID
6BDF) are included in the supplement to show that they behave simi-
larly.

Regions of lower local resolution typically have low SNR and
therefore lower FSCs than the better-ordered regions of the density.
LAFTER is intended to aid interpretation of regions of low local re-
solution, or weak SNR in general, with correspondingly low FSCs. If the
global FSC varies before the resolution cut-off, any global filtering effect
can improve the map. Because the LAFTER algorithm will have a co-
incidental global filtering effect, we used a low, flat FSC to ensure that
any improvement in the map represents the effects of local filtering
only. This excludes the interpretation that noise suppression might be a
resolution shell, global filtering, effect.

We also show the results of LAFTER application to five experimental
datasets corresponding to EMDB entries (EMD-3048, EMD-6721, EMD-
3954, EMD-6287 and EMD-3460). These density maps were chosen
firstly because of the availability of independently refined half-set
density maps and models, and secondly in order to cover a wide range
of local and global resolutions (∼2.5 to ∼25 Å) and of molecular
structures (DNA, RNA and protein).

2.4. Calculation of Cref and comparison to LAFTER-Sum xFSC

In order to evaluate the efficiency of noise suppression by LAFTER,
we used a comparison between: 1) the FSC between the LAFTER-fil-
tered and unfiltered volumes, and 2) the statistic Cref. The value of Cref

was calculated from the FSC between unfiltered half sets according to
the equation defined by Rosenthal and Henderson:

= ∙
+

C FSC
FSC

2
1ref

Cref provides an independent, widely accepted, estimator of the
xFSC of the unfiltered volume with a (usually hypothetical) noiseless
volume. For the synthetic maps we generated, we have the advantage of
being able to calculate the true FSC between the original noiseless
volume and the noisy volume derived from it. The Cref estimate cal-
culated from these maps agrees very well with the true map xFSC
(RMSD below 0.01 for resolutions up to the cut-off), as is predicted by
theory.

The xFSC between a locally filtered map and the unfiltered summed
half-maps (Filter-Sum xFSC) reveals the level of residual noise at each
resolution. Any global filter must necessarily yield a Filter-Sum xFSC of

1, as at each resolution the Fourier components in each Fourier shell
will be scaled versions of one another. Any local filter must necessarily
yield a Filter-Sum xFSC below 1, as the Fourier components in each
Fourier shell will no longer be scaled equivalents, one density having
been scaled in real-space without convolution. The Filter-Sum xFSC
drops from 1.0, in the case of a global filter, to reach Cref as the residual
noise level is decreased to zero (Supplementary Fig. 1). In experimental
cases, perfect deconvolution of the signal from the noise is of course
impossible: there will always be some suppression of both signal and
noise, however the Filter-Sum xFSC to Cref comparison remains a clear
indicator of the level of noise suppression (Supplementary Fig. 1).

We propose that the residual between Cref and the Filter-Sum xFSC
provides a useful measure by which to judge the success of a local filter
in achieving noise suppression in the output map. The logic is as fol-
lows: a half-set sum to filtered volume xFSC higher than Cref must in-
dicate the retention of noise, as the signal alone could only yield a
Filter-Sum xFSC equalling Cref, whereas a Filter-Sum xFSC below Cref

must indicate the loss of at least some of the useable signal available in
the original data, as the Filter-Sum xFSC with a noiseless volume should
yield Cref. A local filter suppressing noise optimally would be expected
to yield maps with a Filter-Sum xFSC approaching Cref, as it must
balance as evenly as possible the loss of usable signal with the retention
of problematic noise.

All experimental FSCs were calculated with masked densities to
maximise their effective comparison to the LAFTER output. This Cref

control is performed by the LAFTER reference implementation and re-
ported to stdout, along with the corresponding RMSD between the
curves, to provide the user with a measure of the effectiveness of noise
suppression.

3. Results

3.1. LAFTER recovered input features from synthetic data at a range of
resolutions

LAFTER was trialled against four synthetic datasets with explicitly
generated resolution limits and smoothed, but approximately constant,
SNR to ensure that the algorithm output exhibited the expected beha-
viour. To prevent confusion and ease interpretation, non-macro-
molecular maps were used (macromolecular output is shown in Supp.
Fig. 2A–F). The algorithm was modified to prevent termination until the
Nyquist limit was reached, in order to evaluate the efficacy of noise
suppression at very low SNR, well above the resolution of the low-pass
filter that was applied to the signal. The signal of the noiseless, sof-
tened, density maps was explicitly truncated at three different resolu-
tions: 20.0, 10.0 and 5.0 voxels (Fig. 2A–C), and along a gradient from
128.0 to 2.1 voxels (Fig. 2D), before combination with Gaussian noise
at an FSC of 0.5. In each case the resolution of the resulting LAFTER
output volume increased along with the resolution of the signal exactly
as expected. Some signal is lost completely, excluded by the algorithm,
at lower resolution due to the signal falling below the noise (Fig. 2D).

3.2. LAFTER recovered input features from synthetic data at low SNR

LAFTER was trialled against further synthetic datasets with low
SNR. This was an extreme case with sharp signal and massive noise, but
was intended to explore the robustness of feature recovery without any
effect of whole resolution shell weighting. The FSC for a map truncated
at a resolution of 4.0 voxels was explicitly decreased from 0.333, to
0.144 and 0.072 (Fig. 3A–C). The quality of the recovered signal falls
off at low SNR as expected, however LAFTER output has a higher xFSC
with the noiseless input volume than the summed half maps down to a
half-set FSC of 0.144, demonstrating the power of LAFTER.
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3.3. The output of LAFTER gives a Filter-Sum xFSC approximating Cref and
a higher xFSC against the true volumes

The expected FSC between the summed noisy volume and an
idealised noiseless volume should be approximated by the calculated
value of Cref from the FSC between the two noisy half-sets. This is the
case for the synthetic data we generated (Fig. 2A-C; Fig. 3A-C). The
expectation would be that the FSC between an effectively noise-sup-
pressed volume and the summed noisy half sets should yield a similar
curve to Cref, and the FSC between the filtered volume and the noiseless
synthetic volume should be substantially higher (ideally approaching
unity, however this must remain beyond the scope of any algorithm in
regions of low SNR as there is insufficient information retained). When
these curves are evaluated, this is indeed generally the case, although as
the SNR and FSC decrease to low levels LAFTER performs poorly, as
would be expected (Fig. 2A-C; Fig. 3A-C). Although a systematic in-
vestigation has not been performed, generally LAFTER performs no-
ticeably better than other local filters on densities with low FSCs (Supp.
Fig. 3A-C).

While for experimental data the noiseless volume against which Cref

is calculated is no more than a useful construct, it remains a useful
parameter, since an FSC higher than Cref indicates that noise is retained
unsuppressed, whereas an FSC lower than Cref indicates the loss of
useful signal. The comparison between Cref and the Filter-Sum xFSCs for
five experimental datasets demonstrate a good match overall, the RMSD

between the curves remaining consistently low with values of 0.018,
0.007, 0.006, 0.026 and 0.017 (Fig. 4A-B; Fig. 5B; Fig. 6A-B) respec-
tively. Once again, although a systematic investigation is beyond the
scope of this manuscript, this is not necessarily the case for other local
filters, the RMSDs being 0.077 for RELION and 0.062 for BLOCFILT
(Fig. 5C-D) respectively (see also Supp. Fig. 3B-C). Despite the good
agreement shown by the low RMSD, inspection of the FSC curves for
EMD-3048 (Fig. 4A) and EMD-6287 (Fig. 6A) reveals that the LAFTER-
Sum xFSC curve is slightly above Cref at resolutions below the Cref= 0.5
threshold, indicating retention of more residual noise than would be
preferred at these resolutions.

3.4. LAFTER reproducibly recovers low-SNR features from experimental
datasets, and retains higher resolution features

The principal benefit of local filters such as LAFTER is the recovery
of weak or low local-resolution features, which remain a substantial
issue for macromolecular interpretation. To establish whether or not
LAFTER fulfils this purpose, we trialled it on several datasets with re-
gions of very low local resolution. LAFTER proved capable of robustly
recovering low-resolution features from all reconstructions tested.
Application of LAFTER to EMD-3048 (Llácer et al., 2015) in which the
low-resolution features in the density map are resolved to 15–25 Å,
whereas the high-resolution features extend to 4.9 Å (Fig. 4A), proved
successful in recovering the envelope of peripheral factors bound to the
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LAFTER application to synthetic densities with defined resolutions recovers signal of the correct resolution 

Fig. 2. LAFTER application to synthetic densities with defined resolutions recovers signal of the correct resolution. LAFTER output for synthetic input truncated at
resolutions of 20 voxels (A), 10 voxels (B) and 5 voxels (C) and over a 128.0–2.1 voxel resolution gradient (D). All synthetic input was constructed with a flat FSC of
0.5, and the same level of noise with respect to the noiseless structure maintained after the resolution cut-off. In each case the initial noisy and filtered maps are
shown in grey with a linear transparency gradient over the density. The densities are shown as transparent “solids” as the signal in the half volumes is often otherwise
indiscernible, with surface features inset. Curves for the half-set FSC, Cref and xFSCs between the filtered, true and unfiltered maps in each case are shown adjacent as
described in the key.
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0.072 (C). All synthetic input was con-
structed with the same level of noise with
respect to the noiseless structure
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and filtered maps are shown in grey with a
linear transparency gradient over the den-
sity. The densities are shown as transparent
“solids” as the signal in the half volumes is
often otherwise indiscernible. Curves for the
half-set FSC, Cref and xFSCs between the
filtered, true and summed densities in each
case are shown adjacent as described in the
key.
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40S ribosomal subunit. Higher resolution features were retained well
(Fig. 4A). While such extremely low-resolution density remains inter-
pretable only as an envelope, higher-resolution rough or weak density
can be rendered interpretable by filtering according to SNR. LAFTER
output for EMD-6721 (Zhang et al., 2017), in which several peripheral
sub-domains are resolved to 7–10 Å in comparison to the 3.6 Å overall
resolution, filters these regions to retain secondary structural features
(Fig. 4B). It should be noted that because LAFTER filters according SNR,
lower local-resolution features appear at lower contours due to their
weaker signal.

One of the notable benefits of the LAFTER approach is the recovery
of high signal features in low SNR regions due to the fact that LAFTER is
applied on a per-voxel basis explicitly terminated at the global resolu-
tion by filtering, whereas other “local-resolution” filters typically
truncate the signal at the lowest resolution within a region. This is most
noticeable in the recovery of phosphate densities from DNA or RNA
such as those in EMD-3954 (Ayala et al., 2018) (Fig. 5). Such densities
are frequently weak, as they do not exhibit the same extreme level of
signal seen in X-ray crystallographic structures due to the different
scattering properties of electrons, and when peripheral their signal can
be much reduced by blending with the noisy solvent. LAFTER has
proven successful in recovering weak phosphate densities in several
cases.

3.5. LAFTER exhibits good high-resolution feature retention for
experimental datasets and output densities match deposited models

It is extremely important that high-resolution features are also re-
covered, either entirely without, or with minimal, degradation,

otherwise the output map will be of insufficient quality to be used for
interpretation. The application of LAFTER to two very well resolved
volumes, EMD-6287 (Campbell et al., 2015) and EMD-3460 (Wilkinson
et al., 2016), demonstrated clean recovery of high-resolution features
such as side-chain densities and main-chain carbonyls (Fig. 6A-B). We
note that some slight feature degradation is visible in comparison to the
final sharpened volumes used by the authors for interpretation in a few
regions. In particular, very weak side-chain densities are sometimes
suppressed in comparison to the sharpened final volume, whereas main-
chain features appear typically to be recovered more strongly than
before.

The fits of the LAFTER filtered maps for the experimental structures
considered were compared to the fits of the deposited models (PDB-
6BDF and PDB-5MBV) into each final density. In each case the models
matched the LAFTER filtered density very well, and essentially all
features represented in the models were apparent in the filtered output
at some reasonable variation of the density threshold (Fig. 6A-B).
Feature retention proved statistically comparable to that from other
local filters with respect to the PDB as demonstrated by xFSCs with
PDB-5MBV (Supp. Fig. 4A-C).

4. Discussion

4.1. LAFTER can aid the interpretation of experimental data exhibiting low
SNR or variable local resolution

LAFTER typically functions sufficiently quickly and reproducibly for
routine use, and suppresses disagreement between two independently
refined half volumes robustly. Our results from idealised synthetic

Fig. 5. LAFTER yields xFSCs approaching Cref in contrast to other local filters. Regions of EMD-3954 representing protein structure and DNA structure are shown
from globally filtered (A), LAFTER filtered (B), RELION local filtered (C) and BLOCFILT filtered (D) maps. One notable benefit of LAFTER is the recovery of stronger
phosphate densities within the DNA backbone than are visible under the other local filtering approaches. Curves for the half-set FSC, Cref and Filter-Sum xFSC in each
case are adjacent and described in the key.

Fits of PDB-ID 5MBVB

EM
D

-3
46

0

Fits of PDB-ID 6BDFA LAFTER map Experimental map

EM
D

-6
28

7

FSC curves

LAFTER - Sum xFSCHalf-set CrefHalf-set FSC

LAFTER application to experimental densities retains high-resolution features and matches macromolecular models 

Fig. 6. LAFTER application to experimental densities retains high-resolution features and matches macromolecular models. LAFTER filtered volumes and the original
deposited maps are shown for EMD-6287 (A) and EMD-3460 (B). Detail of the corresponding models deposited in the PDB is shown fitted into the volumes in each
case. Density is shown in a transparent surface representation with the atomic models (PDB-6BDF) and (PDB-5MBV) as skeletal models in CPK colours. Curves for the
half-set FSC, Cref and Filter-Sum xFSC in each case are adjacent as described in the key.

K. Ramlaul et al. Journal of Structural Biology 205 (2019) 30–40

38



datasets demonstrate that the suppression of features in disagreement
and the recovery of features in agreement is accomplished cleanly.

During testing, the only substantial issues with the use of LAFTER
for local filtering have come from the explicit assumption that agree-
ment and disagreement between half volumes represent distributions of
the signal and noise respectively. This assumption can often be violated
due to masking and symmetry artefacts, or any other sources of in-
formation transfer between half sets, introduced during the refinement
process. These can result in the accumulation of correlated noise in
independent half sets, which is falsely interpreted as signal. During an
experimental structure determination the half set FSC and other sta-
tistics will already have been calculated at the point at which any local
filter plays a role. We would therefore suggest that any observed over-
refinement is best attended to by the experimenter, through modifica-
tion of the refinement strategy to prevent this occurrence, not as an
afterthought through a local filter. Other minor disadvantages of the
algorithm include the fact that lower local resolution features appear at
a much lower contour, although this represents a real phenomenon in
terms of relative signal strength. The occasional retention of mask or
filter waveforms from refinement is also apparent at extremely low
contours. Furthermore, again at similarly low contours, specks of higher
resolution noise can be retained in regions of very low local resolution
at a rate proportional to the logarithm of the number of voxels in the
map.

In order to ensure that our process is as robust as possible, the fil-
tered density output by LAFTER is explicitly low-pass filtered at the end
of the process to the resolution of the chosen FSC criterion, in order to
truncate the signal at that point. LAFTER filtered volumes are clearly
incompatible with atomic model refinement, given that the original
signal and noise spectra are required for such purposes, and a warning
is presented to users in the output of our implementation. LAFTER
proved capable of recovering signal in agreement between half-sets
despite considerable variation in signal, noise, and both the global and
local resolution. There is a cost: a slight reduction in the highest re-
solution features. This must be expected given that noise suppression is
the aim of the process. Features that lie within the noise distribution are
suppressed by design, which is unavoidable if the retention of high
levels of noise is not desired. Good agreement was attained up to re-
solutions close to the experimental cut-off, however, for all volumes
examined.

Given that our intention is to aid the interpretation of weak density,
a reference implementation of LAFTER has been made freely available.
We believe that LAFTER will be beneficial for the cryo-EM community
during the interpretation of density maps with weak features, sub-
stantial variations in local resolution and/or low SNR.

4.2. We propose that the fit of the Filter-Sum xFSC to Cref represents a useful
measure of effective noise suppression by a local filter

While several local filters are available, and more are understood to
be under development, to the authors’ knowledge there are as yet no
proposed criteria or metrics by which to judge their suppression of
noise within the filtered output. We propose that the agreement be-
tween Cref and the Filter-Sum xFSC provides a useful measure by which
to judge the success of a local filter in achieving noise suppression in the
output map.

While a xFSC value close to Cref will almost certainly indicate some
small loss of signal and some level of retention of residual noise, in the
absence of a means of reliably de-convoluting the signal from the noise,
we suggest that agreement between these curves is a sensible measure
of the effectiveness of the noise suppression achieved by a local filter.
We highlight, however, that because the signal and noise contributions
are imperfectly distinguishable this parameter is not suitable as the
target function for an optimisation algorithm. There is no unique so-
lution, and it therefore has to be ensured that noise, rather than signal,
suppression is being favoured by the filter. Noise suppression to this

level should minimise the possibility of over-interpretation of the fil-
tered volume.

We have shown that the xFSC with a noiseless synthetic volume is
higher, after noise suppression to these levels using LAFTER, than that
with the summed half maps, supporting the validity of our approach. Of
course, with respect to real experimental data used for single particle
analysis, the idealised, noiseless, volume hypothesised for Cref cannot
exist and is only useful as a construct. We take the correspondence
between Cref and the Filter-Sum xFSC, however, as an indication that
the suppression of noise in disagreement has been achieved robustly
using our algorithm. We would suggest that the Cref to xFSC root mean
squared deviation, and the corresponding curves, are imperfect but not
unreasonable measures to be reported for local filtering in general as a
measure of the level of noise suppression achieved, and therefore the
level of care that should be taken in interpreting the output map.
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