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Abstract

Developmental genes require intricate control of the timing, location and

magnitude of their expression. This is provided by multiple evolutionarily con-

served enhancers, known as conserved non-coding elements (CNEs). CNEs cluster

around their target genes, forming long syntenic arrays known as genomic regula-

tory blocks (GRBs). Current methods for GRB identification rely on the selection

of arbitrary minimum conservation thresholds, impeding their performance in many

contexts. In this thesis, I propose a novel measure of pairwise genome conservation

that eliminates the need for conservation thresholds, and use this measure to study

the evolutionary dynamics of GRBs in metazoa. I define sets of GRBs based on

their rate of regulatory turnover – high turnover GRBs (htGRBs) and low turnover

GRBs (ltGRBs) – in three independent metazoan lineages. I show that ht- and

ltGRBs target functionally distinct classes of genes, and that these genes tend to

be expressed during late and early development respectively, potentially contribut-

ing to their differing tolerance of regulatory turnover. Moreover, the differences

between ht- and ltGRBs are consistent across all three lineages, suggesting that

similar evolutionary pressures have defined the rate of turnover in these GRBs since

their emergence in the metazoan ancestor. Next I identify GRBs in the extremely

compact Caenorhabditis elegans and Oikopleura dioica genomes for the first time,

and use these GRBs to investigate the effects of genome compaction on GRB size

and composition. I show that GRB size scales proportionally with genome size and

that GRBs exhibit similar enrichment and depletion of specific genomic features.
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This suggests that regardless of background genome content, GRBs are under sim-

ilar pressure to maintain a permissive environment for long-range gene regulation.

The development of a threshold-free GRB identification method has facilitated the

analysis of GRBs in both closely related species and compact genomes, providing

further insights into their origin and evolution.
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Chapter 1 1.1. METAZOAN GENE REGULATION

1.1 Metazoan gene regulation

Pioneering work by Jacob and Monod in the 1960s produced the first model

of gene regulation. Through a series of elegant experiments in E. coli, they were able

to show that the product of one gene was able to regulate the expression of another

by binding its "operator" sequence and repressing transcription (Jacob and Monod

1961). The operator sequence is a stretch of DNA partially overlapping the pro-

moter of an operon. The binding of a repressor to this sequence obstructs the access

of RNA polymerase to the promoter, thereby preventing transcription. While this

simple mode of gene regulation was identified in prokaryotes, it provides us with the

foundation for understanding gene regulation in eukaryotes - that is that gene prod-

ucts can act in trans to activate or repress the transcription of other genes. These

gene products are DNA binding proteins known as transcription factors (TFs). In

eukaryotes, TFs can affect the expression of a gene by binding its promoter, simi-

lar to prokaryotic gene regulation, but can also bind distal cis-regulatory elements

called enhancers. While promoters always coincide with the site of transcription

initiation, enhancers can be either 5’ or 3’ of the gene they regulate, and are fre-

quently very distant in linear genomic space. Eukaryotic gene regulation is further

modulated by DNA accessibility. Eukaryotic DNA is packaged into chromatin by

structural proteins called histones. Through post-translational modification of his-

tones, chromatin can be either more or less compacted, thereby regulating the access

of TFs to their cis-regulatory targets. A final layer of complexity in the regulation of

eukaryotic gene expression comes from the requirement for enhancers to be in close

3D proximity with the promoter of their target gene. This imposes strict constraints

on the 3D organisation of the genome, resulting in the formation of several hierar-

chical levels of preferential nuclear localisation and self-interaction. The presence of

multiple layers of regulation provides the fine spatiotemporal control of transcrip-

tion required for the development of a complex, multicellular organism. This section

outlines and discusses the two main classes of eukaryotic cis-regulatory elements,

Chapter 1 1.1.0 19



Chapter 1 1.1. METAZOAN GENE REGULATION

promoters and enhancers, and their interaction with chromatin accessibility and 3D

genome organisation.

1.1.1 Promoters

The promoter is the integration point of the total regulatory input for a

gene, converting signals from multiple regulatory elements and TFs into differing

rates of transcriptional initiation. The promoter spans the transcription start site

(TSS), and positions RNA polymerase, and its associated general TFs, ensuring ini-

tiation of transcription occurs at the correct location (Figure 1.1B). Transcription

initiation occurs within the ’core promoter’ region, which stretches approximately

50 base pairs (bp) up- and downstream of the TSS. The core promoter sequence

contains sequence motifs that are specifically bound by TFs, facilitating assembly

of the pre-initiation complex (PIC). Promoters contain different combinations of

TF binding motifs depending on the gene they regulate. For example, the promot-

ers of many tissue specific genes contain the TATA box motif, while ubiquitously

expressed gene’s promoters do not, instead containing an greater proportion of cy-

tosine followed by guanine (CpG) dinucleotides than expected, forming long CpG

islands (CGIs) (Carninci et al. 2006; Akalin et al. 2009). In fact, metazoan RNA

polymerase II promoters can be roughly separated into three main classes based on

their expression patterns, sequence features, and precision of transcription initia-

tion (Lenhard, Sandelin, and Carninci 2012), although there are likely many more

unidentified classes of promoters.

Promoters can be divided into two general categories based on the precision

with which they initiate transcription. In this context, the precision of transcrip-

tion initiation from a promoter is defined by how frequently transcription initiation

occurs at the exact same nucleotide within the core promoter. When visualising

the frequency of all initiation events within a promoter, very precise promoters have

a sharp profile, with the majority of transcription initiation events occurring at a

Chapter 1 1.1.1 20
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single nucleotide position or within a very narrow window. Broad promoters initiate

transcription at multiple positions spread over a wider area, resulting in a more dis-

persed profile of initiation events. These definitions are facilitated by cap analysis

of gene expression (CAGE), a technique that identifies all transcription initiation

events with single nucleotide resolution (Shiraki et al. 2003). In general, sharp pro-

moters, or type I promoters, are enriched for the TATA box motif and tend to

regulate tissue specific genes. Broad promoters can be further divided into two cat-

egories based on the tissue specificity of the genes they regulate and their sequence

content. Type II promoters regulate ubiquitously expressed genes and contain a sin-

gle short CGI. The second class of broad promoters, type III promoters, are enriched

for genes that regulate multicellular development. These promoters are also CpG

rich, however, unlike type II promoters, they frequently contain multiple CGIs that

extend beyond the promoter into the gene body (Akalin et al. 2009). Interestingly,

broad promoters have very consistently positioned 5’ and 3’ nucleosomes relative

to the TSS, while there is no consistent positioning of the nucleosomes surround-

ing sharp promoters. This likely points to different mechanisms governing the site

of transcription initiation between sharp and broad promoters. Sharp promoters

are enriched for a strong TATA box motif, located 30 (+/- 2) nucleotides 5’ of the

TSS, while broad promoters do not contain any very strong positionally constrained

TFBS motifs. Thus it is possible that transcription initiation in sharp promoters is

very precise due to anchoring of the PIC via the binding of TATA binding protein

(TBP) to the TATA motif, while in broad promoters the location of the downstream

nucleosomes may dictate where initiation takes place (Haberle et al. 2014).

The division between promoter classes is still fairly rough, and there likely

exist several classes of promoters which have not yet been identified, however, what

is clear is that promoters have evolved from simple "on-off" switches, as originally

described by Jacob and Monod, to achieve fine scale control of transcription initia-

tion in a variety of contexts.

Chapter 1 1.1.2 21



Chapter 1 1.1. METAZOAN GENE REGULATION

Figure 1.1: Metazoan gene regulation. (A) The genome can be broadly separated
into two preferentially self-interacting compartments. The A compartment is generally
located at the centre of the nucleus and associated with active transcription, while the B
compartment is correlated with the nuclear lamina and generally transcriptionally silent.
Within compartments, the genome is further divided into TADs and subTADs that define
the regulatory environment of a gene. (B) Promoters integrate the total regulatory input
required to correctly direct transcription. This occurs via the recruitment of RNA poly-
merase II to a gene’s core promoter - the region immediately surrounding the transcription
start site (TSS). This is orchestrated by the binding of transcription factors to their binding
sites (TFBS) within proximal and distal cis-regulatory elements (enhancers).

(continued)
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Figure 1.1: It is common for transcription factor binding to occur in clusters known as
cis-regulatory modules (CRMs). (C) There are several proposed models for the binding of
multiple transcription factors at enhancers. These models range from the strict enhanceo-
some model, in which the order and orientation of TFBS must be maintained for enhancer
activation, to the highly flexible billboard model, in which each transcription factor within
an enhancer can bind and provide signals to the promoter without maintenance of TFBS
order and orientation, and without the presence of other transcription factors. Adapted
from: (A) Yu and Ren 2017, (B) Lenhard, Sandelin, and Carninci 2012, (C) Lelli, Slattery,
and Mann 2012.

1.1.2 Enhancers

The second major class of cis-regulatory elements in metazoa is enhancers.

Enhancers are DNA sequences of approximately 10 - 1000bp that contain binding

sites for TFs. Enhancers can be up- or downstream of their target gene, and can

act at long distances from the TSS. Enhancers can be bound by a single or, more

commonly, multiple TFs. The combinatorial binding of multiple TFs to an individual

enhancer provides greater context-dependent control of a gene’s regulation.

Transcription factor binding at enhancers

The mode by which multiple TFs cooperatively bind enhancers is the sub-

ject of much research and currently there are several competing models. The en-

hanceosome model posits that enhancer activity requires the binding of multiple

TFs to tightly spaced, or even overlapping, TFBS with a strict order and orienta-

tion (Figure 1.1C). This model is derived from the identification of the enhancer

responsible for the activation of interferon-β (IFN-β). The cooperative binding of

eight TFs to the IFN-β enhancer is required for its activation (Thanos and Mani-

atis 1995; Panne 2008) and subsequent IFN-β expression. None of these eight TFs

were able to individually activate IFN-β, and, in fact, the loss of any one of them

prevented IFN-β expression (Thanos and Maniatis 1995). Structural studies and

molecular dynamics simulations suggest that, despite the density of TFBS motifs in

this 55bp enhancer, TF cooperativity is unlikely to be mediated by protein-protein
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interactions. Instead these studies propose that TF binding induces changes in the

local DNA structure, facilitating subsequent TF binding to overlapping binding sites

(Panne, Maniatis, and Harrison 2004; Panne, Maniatis, and Harrison 2007; Panne

2008). The IFN-β enhancer is extensively studied and very well characterised, how-

ever it is one of very few examples (Barthel et al. 2003) in which the order and

orientation of TFBS is so inflexible. The strict threshold for enhancer activation,

and the high stability of the enhanceosome complex (Thanos and Maniatis 1995),

suggests that these types of enhancers may only be used to regulate genes that re-

quire very precise regulation and a prolonged period of expression once activated

(Lelli, Slattery, and Mann 2012).

At the opposite end of the spectrum to the highly inflexible enhanceosome

model is the billboard model (Figure 1.1C)(Kulkarni and Arnosti 2003; Arnosti

and Kulkarni 2005). Under this model, TFBS within an enhancer can have their

orientation and order changed without affecting the expression of the target gene.

Further, loss of individual binding sites does not abolish gene expression, rather the

gene expression pattern in a particular cellular context is altered. The flexibility of

TFBS spacing and orientation is attributed to individual TFs independently recruit-

ing different components of the transcriptional machinery, or specific cofactors, that

promote transcription. This form of combinatorial TF binding has been observed

in many genome-wide TF binding assays (Menoret et al. 2013; Jiang and Singh

2014), and fine-scale dissection of mammalian enhancers has shown that, in general,

enhancer grammar is relatively flexible (Patwardhan et al. 2012; Smith et al. 2013).

A third model for TF binding at enhancers has been proposed that can be

viewed as an intermediate between the enhanceosome and the billboard model. The

TF collective model suggests that TF binding at enhancers is highly cooperative,

resulting in an all-or-nothing, switch-like behaviour, similar to the enhanceosome

model, but does not rely on strict ordering or orientation of the TFBS within the

enhancer (Junion et al. 2012; Erceg et al. 2014). Under this model, protein-protein
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interactions between the TFs stabilise their cooperative binding to the enhancer

to such a degree that there need not be a TFBS motif for all TFs present in the

complex. Given the vast number of cellular contexts in which metazoan genes must

be correctly regulated, it is likely that no single model can accurately encompass all

modes of TF binding, and there likely exists a spectrum of flexibility with respect

to cooperative TF binding.

Enhancer-core promoter specificity

Once an enhancer has been bound by the correct combination of TFs, and

recruited the various cofactors required for its activation, it must make contact with

the core promoter to influence gene expression. It is generally accepted that this

occurs by looping of the DNA such that the enhancer is in close physical proximity

with the promoter of the gene that it regulates (discussed in detail below). Since en-

hancers can be separated from their target gene by large genomic distances, and fre-

quently by intervening genes, a long-standing question in regulatory genomics is how

an active enhancer identifies its correct regulatory target. Temporarily overlooking

chromatin conformation mediated mechanisms, there appears to be enhancer-core

promoter specificity based purely on sequence composition. Since distinct classes

of genes tend to have specific core promoter types, it is logical that their disparate

motif content may result in differing affinity for specific enhancers. Indeed, using self-

transcribing active regulatory region sequencing (STARR-seq) (Arnold et al. 2013),

Zabidi et al. showed that enhancers had a marked preference for either a house-

keeping or a developmental gene promoter in Drosophila (Zabidi et al. 2015). The

authors selected core promoters from ribosomal protein gene 12 and even skipped to

represent the housekeeping and developmental category respectively, and found that

of the 11,364 enhancers tested, 72% activated one class of core promoter at least

twofold more than the other. Further the enhancers that specifically activated one

promoter more than the other were differentially enriched for TFBS motifs. Since
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both housekeeping and developmental core promoters, and the enhancers that acti-

vate them, are differentially enriched for specific TFBS motifs, it is likely that the

specificity between enhancers and promoter types is driven by biochemical interac-

tions between the TFs (and their cofactors) recruited at enhancers and promoters.

It has been hypothesised that different types of promoters allow the assembly of

distinct PICs that are only biochemically compatible with specific TFs, resulting

in the observed enhancer-core promoter specificity. This hypothesis is supported

by the replacement of TBP with TBP-related factor 2 (TRF2) at the promoters of

ribosomal protein genes (Wang et al. 2014).

Enhancer transcription

While the role of enhancers is to facilitate transcription initiation at core

promoters, there is also pervasive transcription initiation within enhancers them-

selves (Kim et al. 2010; Wang et al. 2011; Andersson et al. 2014). In fact, tran-

scription initiation at promoters and enhancers is remarkably similar - both have

similar frequencies of core promoter motifs, recruit transcriptional machinery (in-

cluding RNA polymerase II), initiate transcription bidirectionally and have well

positioned up- and downstream nucleosomes (Core et al. 2014). Further, the level

of enhancer transcription is correlated with the activity of the enhancer (Kim et al.

2010; Andersson et al. 2014) and the expression of the target gene (Cheng et al.

2015).

It is currently still unclear whether transcription from enhancers is func-

tional or simply a fortuitous consequence of the recruitment of strong transcriptional

activators to enhancers - a requirement for the activation of their target genes. The

observation that knockdown of some enhancer RNAs (eRNAs) results in the down-

regulation of their target genes has prompted the proposal that eRNAs have a

direct role in transcriptional activation (Li et al. 2013; Mousavi et al. 2013; Hsieh

et al. 2014). Many eRNA functions have been hypothesised, including facilitating
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enhancer-promoter looping (Lai et al. 2013; Li et al. 2013; Hsieh et al. 2014), ensur-

ing accessibility to DNA at the promoter (Mousavi et al. 2013) and recruiting RNA

polymerase II (Johnson et al. 2003; Mousavi et al. 2013). However, it is possible

that many of the observations relating to eRNA level and target gene activation

are solely a consequence of creating a local transcriptionally permissive environment

via the recruitment of strong transcriptional activators (Haberle and Stark 2018).

Supporting this argument is the observation that bidirectional transcription is a

pervasive feature of open chromatin regions, suggesting that this is not specific to

promoters and enhancers (Young et al. 2017). Further, the authors found no ev-

idence of purifying selection on eRNAs within the human population, challenging

their functional significance (Young et al. 2017).

1.1.3 Chromatin conformation and higher-order genome or-

ganisation

Up to this point I have discussed gene regulation by enhancers and pro-

moters without taking into consideration the effects of chromatin conformation and

the 3D organisation of the genome. For an entire genome to fit inside the nucleus of

each cell, it must be highly compacted. This is achieved via DNA association with

histones, yielding nucleosomes, the basic repeating elements of chromatin. Chro-

matin can be more or less compacted, thereby regulating the access of TFs, and

other proteins, to DNA. Further, regions of the genome that are in active and in-

active chromatin conformations tend to separate into distinct multi-megabase scale

compartments that preferentially contact other regions in the same compartment.

Within these compartments smaller scale regions also preferentially interact with

themselves, defining the boundaries beyond which enhancers are physically unable

to target genes.
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Histone modifications

The nucleosome is made up of DNA wrapped around an octamer of histone

proteins. Each histone has an N-terminal domain which extends beyond the core

nucleosome, referred to as the histone tail. Histone tails can be post-translationally

modified (most commonly acetylated, methylated, phosphorylated, ubiquitinated,

sumolated or ribosylated) at multiple residues (Suganuma and Workman 2011). The

post-translational modification of histones is an important factor in the modulation

of chromatin conformation, and thus the accessibility of the DNA to transcriptional

initiators. Histone modifications can directly influence chromatin conformation by

affecting nucleosome-nucleosome interactions (Shogren-Knaak et al. 2006; Lu et al.

2008), however they usually exert their influence by modulating the access of chro-

matin remodelling complexes to nucleosomes, and recruiting TFs that modify the

local chromatin state (Vettese-Dadey et al. 1996; Margueron, Trojer, and Reinberg

2005). Chromatin remodelling complexes influence the accessibility of chromatin by

adjusting the spacing between nucleosomes, mainly via the repositioning or eviction

of nucleosomes at specific locations (reviewed in Clapier et al. 2017). This is a key

step in transcription initiation, as formation of the PIC requires that the nucle-

osome occupying the promoter of a gene be displaced, thereby uncovering TFBS

motifs and facilitating TF binding. A similar process can occur at enhancers al-

lowing TF binding and enhancer activation (Bossen et al. 2015), although enhancer

activation can also be mediated by maintaining the chromatin in an accessible state

without nucleosome depletion (Iwafuchi-Doi et al. 2016).

Following more than a decade of extensive application of techniques to

assay histone modifications, including chromatin immunoprecipitation sequencing

(ChIP-seq) and ChIP-chip, various genomic features have been robustly associated

with specific histone modifications. For example, active promoters tend to be marked

with H3K4me3, while active enhancers are marked by H3K4me1 and H3K27ac. A

number of genomic features and their associated histone modifications are listed
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in Table 1.1. These associations are so robust that histone modification data has

been widely used for the annotation of cis-regulatory elements in multiple metazoan

species. Further, histone modification data has been used to automatically cate-

gorise the genome into functional "segments" using the primary cell lines from the

ENCODE project (Birney et al. 2007) via a chromatin state segmentation by hidden

markov model (ChromHMM) (Ernst and Kellis 2012) and Segway algorithms (Hoff-

man et al. 2012). These include states annotated as active, weak, strong, poised,

and repressed chromatin.

Table 1.1: Genomic features and their associated histone modifications (Adapted
from Rivera and Ren 2013)

Genomic Feature Histone Modification References
Promoters H3K4me3 Bernstein et al. 2005; Kim et al. 2005; Pokholok et al. 2005

Bivalent/Poised Promoter H3K4me3/H3K27me3 Bernstein et al. 2006
Transcribed Gene Body H3K36me3 Barski et al. 2007

Enhancer (active and poised) H3K4me1 Heintzman et al. 2007
Poised Developmental Enhancer H3K4me1/H3K27me3 Creyghton et al. 2010; Rada-Iglesias et al. 2011

Active Enhancer H3K4me1/H3K27ac Heintzman et al. 2007; Creyghton et al. 2010; Rada-Iglesias et al. 2011
Polycomb Repressed Regions H3K27me3 Bernstein et al. 2006; Lee et al. 2006

Heterochromatin H3K9me3 Mikkelsen et al. 2007

Compartments

The regulation of gene expression can also be affected by limiting the po-

tential loci with which an enhancer can interact. This occurs by, or due to, the

organisation of the genome in three dimensions. At the multi-megabase scale, the

genome is divided into two compartments that contain loci which preferentially in-

teract with other loci in the same compartment. These compartments are known

as the A and B compartments (Figure 1.1A). Loci within the A compartment tend

to be gene dense, have high gene expression and correlate with active chromatin

modifications and DNA accessibility (Lieberman-Aiden et al. 2009). Further, the A

and B compartment tend to localise to different regions of the nucleus, with the A

compartment located in the centre and the B compartment found at the periphery

of the nucleus, frequently coinciding with lamina-associated domains (Ryba et al.
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2010). Approximately a third of the genome switches between compartments during

stem cell differentiation (Dixon et al. 2015), and when comparing a broader range

of tissues the proportion of switching regions increases to almost two thirds of the

genome (Schmitt et al. 2016). Switching from the B to the A compartment is asso-

ciated with increased gene expression, suggesting that sequestering genes in the B

compartment may be a way to regulate their expression in cell types in which they

are not required (Lin et al. 2012).

More recent analysis, using higher resolution Hi-C, has further divided com-

partments into five subcompartments (A1-A2 and B1-B3)(Rao et al. 2014). Each

of these subcompartments is associated with a specific set of histone modifications,

however it is still questionable as to whether these divisions represent any further

meaningful biological differences.

Topologically associating domains

Examining 3D genome organisation at higher resolution, it is clear that

within compartments there exist smaller domains that are strongly self-interacting.

These are known as topologically associated domains (TADs) (Figure 1.1A). TADs

have a median size of approximately 800kb in the human and mouse genome and

cover the vast majority of the genome (Dixon et al. 2012). TADs have also been

identified in zebrafish (Gómez-Marín et al. 2015) and Drosophila melanogaster (Sex-

ton et al. 2012). There is accumulating evidence that TADs are a fundamental unit

of genome organisation in metazoan genomes (Dixon, Gorkin, and Ren 2016). First,

TAD boundaries tend to be cell-type invariant (Dixon et al. 2012; Dixon et al. 2015;

Nora et al. 2012) and when compartment switching occurs during development,

TADs switch as a whole (Dixon et al. 2015). TAD boundary positions are also

highly conserved between species (Dixon et al. 2015). Further, TADs appear to be

stable units of replication as the position of replication domain boundaries correlate

very strongly with TAD boundaries (Pope et al. 2014).
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Since enhancers must be in close physical proximity with the promoter of

their target gene, TADs define the 3D space in which an enhancer may perform its

function. This means that while TADs are fundamental units of genome organisa-

tion, they are also discrete, functional units of long-range gene regulation. Upon

deletion of TAD boundaries, interactions between adjacent TADs are significantly

increased and there is disregulation of nearby genes (Nora et al. 2012). Further,

mutation or deletion of binding sites for CTCF, the protein that stabilises TAD

boundaries, results in altered local chromatin structure and disregulation of nearby

genes (Dowen et al. 2014; Guo et al. 2015; Narendra et al. 2015). This occurs due

to the ectopic interaction of enhancers in one TAD with the promoters of genes

in neighbouring TADs, illustrating the essential role TADs play in defining an en-

hancer’s potential search space.

Enhancer-promoter looping

When examining interactions within TADs using very high resolution Hi-C

or 5C data, smaller domains of self-association become apparent (Phillips-Cremins

et al. 2013; Rao et al. 2014). These have been dubbed subTADs or contact domains

(Figure 1.1A). subTADs are much less conserved across cell types and tend to relate

to cell type specific gene expression (Berlivet et al. 2013; Phillips-Cremins et al.

2013). These fine-scale interaction structures seem to be driven by the looping of

enhancers to make contact with their target promoters in the cell types in which

they are active, or by the process of transcription itself. While structural TAD

boundary-stabilising interactions are mediated by the architectural proteins CTCF

and cohesin, subTAD interactions appear to be mediated by Mediator and cohesin,

reflecting their functional regulatory nature (Phillips-Cremins et al. 2013).
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1.2 The evolution of metazoan gene regulation

The emergence of distal cis-regulatory elements was essential for the de-

velopment of the complex multicellular metazoan body plan, and their continual

evolution is a major driver of the extreme phenotypic diversity of extant metazoan

species. The gene repertoire of metazoan species is remarkably well conserved. Per-

haps even more remarkable is the recent observation that some unicellular eukaryotes

contain many of the genes essential for the complex developmental regulation that

is a hallmark of metazoan species. Thus, the major driver of metazoan phenotypic

diversity, and their transition from a single to multicellular lifestyle, is not changes

in gene complement, but evolution of the regulation of these genes and expansion

of their regulatory networks.

1.2.1 Cis-regulatory evolution and the origin of multicellu-

larity

Comparison of simple metazoa and their most closely related unicellular

eukaryotes has shown that unicellular eukaryotes lack distal cis-regulatory elements.

In contrast, and perhaps surprisingly, they contain many of the genes that are im-

portant for metazoan multicellularity-related functions. These genes include cell

adhesion genes crucial for cell-cell and cell-extracellular matrix interactions in the

establishment of cell layers and tissues in animals (King et al. 2008; Sebé-Pedrós et al.

2010; Nichols et al. 2012; Suga et al. 2013), signal transduction genes (Manning et al.

2008; Suga et al. 2012; Suga et al. 2014), including all the intracellular components of

the Hippo pathway (Sebé-Pedrós et al. 2012), and finally, many TFs such as NF-κB,

p53, RUNX and T-box (Sebé-Pedrós et al. 2011; Sebé-Pedrós et al. 2013a). Further,

unicellular eukaryotes undergo temporally controlled cell differentiation to distinct

lifestyle phases, and this process is tightly regulated at the transcriptional level

(Sebé-Pedrós et al. 2013b). The major differences between unicellular eukaryotes
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(with the exception of yeast) and simple metazoa is the lack of distal cis-regulatory

elements, and repressive histone modifications such as H3K27me3 and H3K9me3

(Sebé-Pedrós et al. 2016). Both S. cerevisiae and S. pombe transitioned to unicel-

lularity from multicellular ancestors, and thus repressive histone modifications in

these species may have been acquired in their ancestral transition to multicellularity

(Nagy et al. 2014). Interestingly, typeI and typeIII promoters, which control cell-

type specific and developmental genes respectively, also appear to be a metazoan

innovation (Sebé-Pedrós et al. 2016). Taken together these results suggest that one

of the major factors contributing to the transition from a single to multicellular

lifestyle, was the evolution of complex gene regulation. This includes the evolution

of distal cis-regulatory elements to provide greater spatiotemporal control of gene

expression, the addition of repressive chromatin modifications to securely regulate

important developmental genes, and the diversification of promoter types to allow

for more precise regulation of enhancer-promoter interactions.

1.2.2 Cis-regulatory evolution and metazoan phenotypic di-

versity

The sequencing of hundreds of metazoan genomes over the last two decades

has revealed that, in general, the vast array of phenotypic and morphological diver-

sity observed in metazoan species can not be explained by species-specific differences

in gene content. In fact, the major contributor to phenotypic diversity in closely

related species is changes in the timing, location and magnitude of developmental

gene expression. These changes in gene regulation are the result of the independent

evolution of cis-regulatory elements in each metazoan lineage (Wittkopp, Haerum,

and Clark 2008; McManus et al. 2010). Comparative analyses have shown that while

cis-regulatory elements tend to be evolutionarily conserved, they are under reduced

selective pressure compared to protein coding regions (Asthana et al. 2007). This

combined with the observation that modification of cis-regulatory elements has a
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more subtle effect on gene expression than mutation of the coding sequence (Carroll

2008; Wray 2007), suggests that changes in the cis-regulatory repertoire of a gene

would be better tolerated than coding mutations. In this way, cis-regulatory ele-

ments provide the substrate upon which selection can act to fine tune developmental

gene regulation. Indeed, numerous examples of variation within cis-regulatory ele-

ments providing evolutionary innovations have been identified (Carroll 2005; Wray

2007; Carroll 2008; Wittkopp and Kalay 2012). The modularity of TF binding

within cis-regulatory elements, and in particular enhancers, allows altered binding

of an individual TF to affect only a portion of the full regulatory input provided by

that element. Further, enhancers can act independently of each other, each control-

ling a subset of the total expression pattern of the gene. This modular nature of TF

binding and enhancer function results in reduced pleiotropic effects of changes to

individual enhancers, when compared to mutations in protein coding genes. It has

also been shown that some enhancers exist in pairs with highly overlapping function

(Perry et al. 2010; Osterwalder et al. 2018). These enhancer pairs are hypothesised

to ensure robust expression of the target gene, but it is also plausible that muta-

tions within mostly redundant enhancers would be well tolerated, and could result

in co-option of the existing enhancer to novel functions (Rebeiz et al. 2011).

1.2.3 Mechanisms of cis-regulatory evolution

Differences in gene expression between species are largely driven by species-

specific variability in the timing, location or efficiency with which a gene’s repertoire

of enhancers initiate transcription. This process is chiefly governed by the binding

of TFs, and their associated cofactors, at enhancers and promoters. It is conceivable

then, that changes in sequence content or local chromatin environment that affect

TF binding could drive evolutionary divergence.

In Drosophila species, the binding locations of developmental TFs are

highly conserved, and a linear relationship between quantitative changes in binding
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intensity and evolutionary distance was observed (Bradley et al. 2010; He et al.

2011; Paris et al. 2013). In mammals changes in TF binding intensity around tar-

get genes are also clearly correlated with changes in the gene’s expression pattern,

however the exact location of TF binding is less well conserved (Villar, Flicek, and

Odom 2014). This suggests that upon loss of TF binding, compensatory gain must

occur in the vicinity to maintain the transcriptional output of the target gene (Ku-

narso et al. 2010). Despite the reduction in the conservation of TF binding between

mammalian species, there is still a strong correlation between the proportion of

overlapping binding events and the evolutionary distance of the comparison (Villar,

Flicek, and Odom 2014).

A substantial proportion of TF binding differences between species can be

explained by differences in the underlying sequence bound by the TFs (Zheng et al.

2011). These sequence changes can be derived from point mutations, insertions and

deletions, or genomic rearrangements. Since TFs bind short recognition sequences,

it is possible for neutral sequence changes to generate weak transcription factor

binding sites that can have an effect on gene expression (Stone and Wray 2001).

Accumulation of further sequence changes due to increased accessibility of the region,

accompanied by changes in local chromatin environment, could then result in the

evolution of these weak enhancers into mature, constrained enhancers (Emera et al.

2016). The effect of sequence changes on divergent TF binding is also supported by

the observation that there is an enrichment of TFBS motif-disrupting mutations in

differentially bound loci within the human population (Kasowski et al. 2010; Reddy

et al. 2012).

TFBS motifs can also be introduced by the integration of transposable

elements (TEs). TEs can contain sequences that are similar to the recognition site

of a TF, therefore only requiring a few mutations to become strong binding sites

(Johnson et al. 2006). Further, some TEs, such as endogenous retroviral sequence 1

(ERV1), already contain strong TFBS motifs, and their expansion throughout the
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genome may have recruited new genes the the regulatory network of that TF (Wang

et al. 2007). Repeat expansion may play a more important role in the generation

of TF binding sites for TFs that have longer binding motifs, as these motifs are

less likely to be generated by the accumulation of point mutations (Stone and Wray

2001).

While sequence change is clearly an important factor in the evolution of

TF binding at cis-regulatory elements, it must be noted that a large proportion of

divergent TF binding events can not be explained by sequence differences (Villar,

Flicek, and Odom 2014). It may be that the divergent binding at these sites is

mediated by another mechanism, such as chromatin conformation (Degner et al.

2012; Shibata et al. 2012), or that we do not yet understand all the ways sequence

can affect TF binding. In support of the latter, a study in which TF binding in a

mouse strain containing a segregating copy of human chromosome 21 was compared

to TF binding in human liver samples, found that up to 85-92% of TF binding events

on human chromosome 21 were identical between the mouse and human contexts.

Further, the gene expression profiles for genes on human chromosome 21 were highly

correlated in both contexts (Wilson et al. 2008). This study suggests that sequence

alone is sufficient to direct highly conserved TF binding.

1.3 Extreme non-coding conservation

The comparison of vertebrate genomes has identified numerous stretches of

non-coding DNA that are deeply conserved across vertebrates, known as conserved

non-coding elements (CNEs). A handful of these elements were first identified in the

1980s by comparing mammalian and avian introns and untranslated regions (UTRs)

(Yaffe et al. 1985; Lemaire, Heilig, and Mandel 1988; Hraba-Renevey and Kress

1988; Kajimoto and Rotwein 1991; Rouault et al. 1993), however their pervasive

presence in vertebrate genomes only became apparent upon systematic comparison
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of multiple vertebrate non-coding genomes (Bejerano et al. 2004; Sandelin et al.

2004; Woolfe et al. 2005). Depending on the method used, it is possible to identify

several thousand CNEs that have remained all but unchanged over 450 million years

of evolution. In fact, many of these elements display levels of sequence conservation

well beyond what is observed in protein coding sequences (De Silva, Nichols, and

Elgar 2014; Polychronopoulos et al. 2017). This level of non-coding conservation is

unparalleled in the rest of the genome, and prompted a period of intensive research

seeking to explain this phenomenon.

1.3.1 CNE identification

Since their initial discovery, numerous methods for CNE identification

have been developed. At the most basic level, these methods can be divided into

alignment-based and alignment-free methods.

Alignment-based CNE identification

Alignment-based CNE identification methods aim to identify stretches of

highly conserved non-coding regions in either pairwise or multiple whole-genome

alignments.

In the case of pairwise genome comparisons, whole-genome alignments are

generated using one of many tools, however BLASTZ/LASTZ (Schwartz et al. 2003;

Harris 2007) or LAST (Kiełbasa et al. 2011) are generally favoured. CNEs are then

identified by scanning the alignments for non-coding regions which pass a predeter-

mined conservation threshold, such as 90% sequence identity over 50bp (Dubchak

et al. 2000; Bejerano et al. 2004; Sandelin et al. 2004). The conservation threshold

used for a species comparison is usually selected based on the evolutionary distance

between the two species. The selection of this threshold can be somewhat arbitrary,

leading Babarinde and Saitou to propose an approach for the systematic selection of

CNE identification thresholds. The authors used the sequence divergence at protein

Chapter 1 1.3.1 37



Chapter 1 1.3. EXTREME NON-CODING CONSERVATION

coding genes to define a threshold for CNE identification (Babarinde and Saitou

2013). A more stringent approach was also proposed in which the sequence diver-

gence at protein coding genes was calculated after the exclusion of all third codon

positions, and only non-coding regions that exhibit divergence below the mean di-

vergence of protein coding sequences were defined as CNEs. This approach assumes

that the rate of sequence divergence in protein coding regions is proportional to

that of all sequences under negative selection. It is difficult to assess the validity of

this assumption as coding and non-coding regions would be under different selective

pressures based on their function. It is also unclear whether using this method re-

sults in CNE sets that are biologically different from those defined using an arbitrary

but stringent threshold.

CNE identification using pairwise alignments suffers from poor power to

detect short stretches of conservation. This can be mitigated by comparing multiple

genomes, allowing for estimation of conservation at the resolution of single base pairs.

Whole-genome multiple sequence alignments (MSAs) are most commonly generated

using MULTIZ, an extension of LASTZ adapted for MSA (Blanchette et al. 2004).

Several methods exist for the identification of constrained elements from MSAs, but

two of the most commonly used are phastCons (Siepel et al. 2005) and genomic

evolutionary rate profiling (GERP) (Cooper et al. 2005). PhastCons detects CNEs

from multiple sequence alignments using a two-state hidden Markov model (HMM)

to estimate the probability that each base pair belongs to a conserved element. These

base-by-base conservation scores are then used to predict whole elements. GERP

first builds a phylogenetic tree for the species used, based on the neutral substitution

rates, and then identifies elements that exhibit fewer substitutions than expected.

Candidate elements are then scored based on the magnitude of their substitution

deficit, or how many "rejected substitutions" they contain (Cooper et al. 2005).

Neither of these methods set a minimum sequence length and are therefore able to

detect shorter CNEs than pairwise alignment-based methods. The disadvantage of
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using MSA-based approaches is that since a region must be conserved in multiple

species in the alignment to be identified, they lack power to identify conserved

elements that are turning over more rapidly and independently in different lineages.

Alignment-free CNE identification

Alignment-free methods avoid some of the problems associated with whole

genome alignment, such as computational complexity and aligning highly frag-

mented assemblies. Most alignment free methods are only alignment free in that

there is no requirement for whole-genome alignment. These methods use local align-

ment tools, such a BLAST (Altschul et al. 1990), to perform homology searches on

repeat- and coding sequence-masked genomes (Babarinde and Saitou 2016). An

alternative alignment-free approach was proposed by Warnefors et al. in which all

possible unique k-mers in the reference genome are mapped to the genome of the

species of interest using a short read aligner. Overlapping hits are then merged into

longer elements, yielding CNEs (Warnefors et al. 2016). This approach can over-

come some potential errors in MSA-based CNE detection, such as failing to identify

CNEs due to gap insertion at ambiguous positions of the alignment, or due to CNEs

being split over alignment blocks. However, it also has an increased false positive

rate as a result of poor handling of sequences that occur in multiple copies in the

genome due to duplication or assembly errors (Warnefors et al. 2016).

1.3.2 Sequence properties of CNEs

The majority of CNE studies have been performed in mammalian (Bejerano

et al. 2004; Sandelin et al. 2004; Woolfe et al. 2005; Davies, Tsagkogeorga, and

Rossiter 2014) or vertebrate genomes (Walter et al. 2005; Kikuta et al. 2007a; Lee

et al. 2011; Davies, Tsagkogeorga, and Rossiter 2014), however CNEs have also been

identified in arthropods (Glazov et al. 2005; Siepel et al. 2005; Engström et al. 2007),

nematodes (Siepel et al. 2005; Vavouri et al. 2007), and other metazoan genomes
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(Clarke et al. 2012; Doglio et al. 2013; Irvine 2013; Sanges et al. 2013). Identification

of CNEs in such a broad range of species has enabled the characterisation of their

shared properties, as well as some lineage-specific features of each set.

Comparing CNEs to genomic background sequence, it is clear that CNEs

are strongly enriched in adenine and thymine (AT) relative to their flanking se-

quence. Beyond the general enrichment, there is also a sharp increase in AT content

at CNE boundaries and a sharp decrease in AT content in the boundaries of se-

quences flanking CNEs (Walter et al. 2005). This effect is particularly pronounced

in genomes with a high overall GC content (Vavouri et al. 2007). While this obser-

vation is still unexplained, it has been suggested that it may be due to a role for

CNEs in nucleosome positioning or higher-order chromatin structure (Chiang et al.

2008).

Consistent with the high AT content of CNEs, it has been shown that

over one third of human CNEs contain a TAATTA motif, which contains the core

recognition motif of homeodomain DNA binding proteins (Chiang et al. 2008). In

fact, there is ample evidence that CNEs are enriched in TF binding sites (Abnizova

et al. 2007; Viturawong et al. 2013; Warnefors et al. 2016). One of the earliest

proposed explanations for the extreme conservation observed at CNEs was that they

contain multiple overlapping TF binding sites, similar to the enhanceosome model

for TF binding at enhancers (Levy, Hannenhalli, and Workman 2001; Loots et al.

2002). However, there is no evidence that CNEs are more frequently bound by TFs,

or bound by more TFs, than enhancers that do not exhibit such deep evolutionary

conservation. Further, given the general promiscuity of TF binding, and the rapid

turnover of TF binding sites between species, it does not seem likely that overlapping

TF binding would be sufficient to explain the degree to which CNEs are conserved

(Schmidt et al. 2010).
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1.3.3 Biological functions of CNEs

The most noticeable characteristic of CNEs, which is shared between all

species, is their nonrandom distribution across the genome. CNEs tend to occur

in clusters that frequently span gene deserts and loci of genes encoding develop-

mental transcription factors (Bejerano et al. 2004; Sandelin et al. 2004; Woolfe

et al. 2005; Plessy et al. 2005; Engström et al. 2007; Kikuta et al. 2007a), and

genes involved cell-cell communication (Vavouri et al. 2007). While CNEs identified

independently in different clades do not share sequence conservation, they tend to

cluster around these same functional subsets of genes (Engström et al. 2007; Vavouri

et al. 2007). This observation, combined with the abundance of TF binding sites

within CNEs, suggested that CNEs act as enhancers, regulating early development

in metazoa. Indeed, transgenic reporter assays have shown that the vast majority

of tested CNEs are capable of driving complex spatiotemporal patterns of gene ex-

pression (Kimura-Yoshida 2004; Woolfe et al. 2005; McEwen et al. 2006; Pennacchio

et al. 2006; Navratilova et al. 2009; Bhatia et al. 2014; Parker et al. 2014; Spieler

et al. 2014). The deep evolutionary conservation of CNEs suggests that they are

crucial to embryonic development, however this assumption was initially questioned

when it was shown that the deletion of large clusters of CNEs yielded viable, fertile

mice with no deleterious phenotypes (Ahituv et al. 2007). This counter-intuitive

finding remained a contentious issue in the field, until recently, when Dickel et al.

conducted similar deletion experiments accompanied with deep phenotyping (Dickel

et al. 2018). The authors showed that while CNE deletion yielded fertile, viable

mice, fine-scale phenotyping revealed that these mice had neurological and growth

abnormalities (Dickel et al. 2018). The authors argued that while these phenotypes

appear mild in a lab based setting, in the wild they may have substantial fitness

consequences. Further evidence of the crucial role CNEs play in development comes

from the medical field. There are numerous examples of mutations within CNEs

causing congenital defects in humans (reviewed in Polychronopoulos et al. 2017).

Chapter 1 1.3.3 41



Chapter 1 1.3. EXTREME NON-CODING CONSERVATION

The observation that CNEs are essentially single copy in the haploid

genome led researchers to ask whether they are dosage sensitive (Bejerano et al.

2004). To investigate this possibility, several high quality copy number variation

(CNV) datasets from humans and other model organisms were used to assess the

overlap of CNEs and CNVs (Derti et al. 2006; Chiang et al. 2008; McCole et al.

2014). CNEs are generally depleted from CNVs and segmental duplications in

healthy cells, and this depletion is most likely due to rapid selection against cells

with CNVs containing CNEs. Moreover, CNEs are depleted in de novo CNVs that

have passed through germline meiotic processes at most once. These results led to

the suggestion that CNEs play a role in monitoring the copy number of the genome,

potentially through pairing of homologous CNEs during meiosis, followed by the

initiation of apoptotic processes upon detection of mismatches or copy number

changes. Interestingly, the same study found that CNEs show no depletion, and

in some cases even enrichment, in cancer-specific CNVs; although it is difficult to

disentangle whether the CNE copy number changes in cancerous cells drive disease

or are simply the consequence of widespread genome instability associated with

cancer (McCole et al. 2014). This hypothesis is attractive as it provides another

potential source of selection against CNE sequence changes beyond their role as

enhancers, however evidence of CNE pairing or interaction with mismatch sensing

proteins is required for its validation.

1.3.4 Evolutionary dynamics of CNEs

The prevalence of CNEs in many species from many different kingdoms of

life, and their clustering around equivalent classes of genes, suggests that CNEs are

an ancient innovation of multicellular organisms. Given that one of the key factors

driving the transition from a single- to multicellular lifestyle in eukaryotes was the

evolution of distal cis-regulatory elements (Sebé-Pedrós et al. 2016), it is plausible

that the first CNEs originate from these crucial distal regulators of spatiotemporal
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gene expression. Subsequent recruitment of CNEs to regulate new genes may then

have contributed to increasing developmental complexity and evolution of highly

specialised anatomical structures.

Emergence and recruitment of CNEs

The lack of sequence similarity (beyond AT content) between CNEs iden-

tified within a genome is likely due to recruitment of CNEs from a diverse array of

genomic features. There are examples of CNEs that have been recruited from introns

(Bejerano et al. 2004; Glazov et al. 2005; Siepel et al. 2005), TEs (Bejerano et al.

2006; Lowe, Bejerano, and Haussler 2007), ancient repeats (Kamal, Xie, and Lander

2006), and exons (Lampe et al. 2008; Dong et al. 2009). Interestingly, some exons

can be recruited to enhancer activity, thereby serving both a protein coding and a

regulatory role (Birnbaum et al. 2012; Ritter et al. 2012). The broad range of ele-

ments from which CNEs are recruited suggests that any sequence that is within range

of a gene under long-range regulation can come under extreme purifying selection

after acquiring regulatory function. Neutral sequence probably acquires regulatory

function via neutral mutation towards TFBS motifs, as described in section 1.2.3.

CNE recruitment has been continual throughout vertebrate evolution, with

the rate of recruitment varying between lineages (Wang et al. 2009). Primates appear

to have recruited CNEs particularly rapidly (Babarinde and Saitou 2013), whereas

since the divergence of tetrapods and teleosts, tetrapod CNEs appear to have been

evolving very slowly (Stephen et al. 2008). Beyond vertebrates, there is evidence

that CNEs have been recruited in clusters around equivalent classes of genes in more

anatomically simple phyla such as Porifera and Cnidaria (Ryu, Seridi, and Ravasi

2012). CNEs could not be identified between these phyla, leading the authors to

conclude that they were recruited independently in each phylum, however a more

parsimonious explanation would be that both the source of purifying selection, and

CNE-based gene regulation were already in place in the last common ancestor of
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all phyla studied. The presence of CNEs at functionally equivalent genes in some

of the earliest diverging metazoan species lends further support to the idea that

CNE-based regulation is at least as ancient as the urmetazoan ancestor.

Mutation and loss of CNEs

Mutation and deletion of CNEs has occurred throughout the vertebrate

lineage despite the extraordinary levels of purifying selection required to maintain

them. Such changes in CNEs are likely to be highly deleterious, but many have been

tolerated and underlie lineage-specific traits. For example, CNE losses are hypoth-

esised to explain penile spine loss (McLean et al. 2011) and foot digit shortening in

humans (Indjeian et al. 2016). In snakes, limblessness is associated with partial and

total loss of CNEs that control limb development genes (Sagai et al. 2004; Infante

et al. 2015; Kvon et al. 2016; Leal and Cohn 2016). Substitutions in a CNE nearby

the SHH gene are thought to be sufficient to yield snakes with vestigial limbs, while

total deletion of the same CNE, combined with other changes, results in snakes

with total limb loss (Kvon et al. 2016). Interestingly, hundreds of CNEs have been

identified that have been lost independently in multiple species (Hiller, Schaar, and

Bejerano 2012). Further, it has been shown that independent loss of CNEs drives

convergent morphological adaptations. For example, elbow structure modifications

in dolphins and manatees are thought to be due to independent loss of a CNE near

the EGR2 gene (Marcovitz, Jia, and Bejerano 2016).

CNEs can also undergo bursts of lineage-specific positive selection. This

phenomenon has been extensively studied in humans, identifying thousands of so-

called human accelerated regions. (Sur and Taipale 2016; Pollard et al. 2006; Bird

et al. 2007; Hubisz and Pollard 2014; Gittelman et al. 2015; Dong et al. 2016). These

elements are defined by high conservation within mammals, and frequently beyond,

but exhibit rapid divergence in humans. Transgenic reporter assays have shown

that the equivalent human and chimpanzee elements drive divergent expression,
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suggesting that these accelerated elements may underlie many human-specific traits

including brain size and bipedalism (Prabhakar et al. 2008; Boyd et al. 2015).

Overall these results show that while CNEs are under extreme selective

pressure, they remain dynamic within vertebrate genomes, and their mutation, loss

or gain can have dramatic effects on the phenotype of an organism.

1.4 Genomic regulatory blocks

The requirement for CNEs to remain in cis with the gene that they reg-

ulate has constrained metazoan genome evolution, resulting in syntenic arrays of

CNEs that span developmental regulators (Goode et al. 2005; Kikuta et al. 2007a;

Engström et al. 2007; Akalin et al. 2009). These arrays, known as genomic reg-

ulatory blocks (GRBs), form functional units of long-range regulation, with their

constituent CNEs jointly regulating a single target gene (Akalin et al. 2009) (Figure

1.2A). GRBs are present in all sampled metazoan genomes, and as such represent an

ancient and important feature of animal development. In this section I will discuss

current methods for GRB identification and the defining characteristics of GRBs,

based on the limited number of genomes sampled thus far.

1.4.1 GRB identification

Generally speaking, GRBs are regions of high CNE density, however ac-

curate identification of their boundaries is non-trivial. In close species compar-

isons, high background conservation results in "noisy" CNE density signal across

the genome, while in distant comparisons there is a chance that GRBs will be trun-

cated or split due to the erosion of CNE conservation. Several approaches for GRB

identification have previously been used, and they can be divided into three main

groups based on their methodology: those that rely on the relatively crude merging

of adjacent CNEs, those that use of an HMM to segment the genome into regions
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Figure 1.2: The GRB model of gene regulation. (A) GRBs contain syntenic arrays
of CNEs that each contribute to the regulation of a single developmental target gene.
GRBs can also contain bystander genes which are unresponsive to regulation by CNEs due
to differences in their promoter architecture. GRBs coincide with TADs, indicating that
there is a strong link between genome organisation and long-range regulation. (B) The
MEIS1 and (C) RUNX2 GRBs. Adapted from Harmston et al. 2017.

Chapter 1 1.4.1 46



Chapter 1 1.4. GENOMIC REGULATORY BLOCKS

of high and low conservation, and those based on identification of regions with a

greater observed CNE density than expected under a null model of even distribu-

tion throughout the genome.

Dimitrieva and Bucher identified what they called ultraconserved genomic

regulatory blocks (UGRBs) by merging all neighbouring CNEs that were separated

by less than 0.5Mb in both human and chicken (Dimitrieva and Bucher 2013). Akalin

et al., applied a similar method, but instead of merging CNEs, net alignments which

were within a specified genomic distance of each other were merged (Akalin et al.

2009). The authors used a cut off of 450 kb in the human genome and 150 kb in

zebrafish. These approaches are simple and effective, however the predicted GRB

boundaries will be highly sensitive to lineage specific CNE mutation, loss or gain.

Recently, Harmston et al. developed a more generalisable approach based

on the CNE density profile across the genome (Harmston et al. 2017). The authors

implemented an unsupervised two state HMM that splits the genome in high and

low CNE density regions. The high density regions that were within a predefined

genomic distance of each other were then merged forming blocks of high conservation.

The merging step continues iteratively until the gaps between all adjacent blocks are

greater that a specified quantile of the widths of gaps between all adjacent CNEs.

This method was applied to a range of species comparisons, and the identified GRBs

were generally robust to the species comparison and CNE identification thresholds

used. While this method has been highly successful in the past, it requires repeated

rounds of parameter tuning and visual inspection to yield reliable GRBs. Further,

the current implementation fails to run on less complete genome assemblies with

many unassembled scaffolds (Nash, unpublished observation).

A fourth method is implemented in the CNEr package available for R (Tan

2015). This approach predicts GRBs based on the observed CNE density at a

region compared to the expected density if CNEs were evenly distributed across

the genome. GRBs are defined wherever the observed to expected ratio exceeds a
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predefined cut-off. This is followed by a post-processing step in which the GRB

boundaries are shrunk to the location of the closest CNE to the boundary.

1.4.2 GRB target genes

Under the GRB model of gene regulation, each of the CNEs within a GRB

independently contribute to the overall expression pattern of a single target gene

(Kikuta et al. 2007a; Kikuta et al. 2007b; Akalin et al. 2009). The CNEs within

a GRB are frequently separated from their target gene by intervening genes that

are unresponsive to enhancer-based regulation, known as bystander genes (Figure

1.2A). Bystander genes often contain CNEs within their introns, thereby explaining

their conserved synteny with the target gene (Kikuta et al. 2007a; Kikuta et al.

2007b; Dong, Fredman, and Lenhard 2009). In general, GRB target genes tend to

be developmental TFs, while bystander genes are frequently ubiquitously expressed

(Akalin et al. 2009). An initial set of target and bystander genes were first charac-

terised in a study by Akalin et al. in which the authors defined target genes as those

TFs that occur within a CNE density peak in both the human and zebrafish genome

(Akalin et al. 2009). All other genes were then classed as bystander genes. This

study showed that target and bystander genes differ in a number of ways, but most

crucially in their promoter structure. GRB target genes tend to have a broader tran-

scriptional initiation profile, and their promoters are spanned by multiple long CpG

islands that often extended into the gene body. In contrast, GRB bystanders have

consistently broad transcription initiation, but narrower than most GRB targets.

Further, their promoters were generally spanned by a single short CpG island that

did not extend past the promoter region. These differences in promoter structure

may explain the difference in responsiveness to CNE-based regulation (as described

in 1.1.1) (Akalin et al. 2009).

Recently, a PhD student in the Lenhard group developed a method for

automatic annotation of GRB target and bystander genes (Tan 2018). The method
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makes use of a random forest model trained on the features of the original 259 target

and 830 bystander genes annotated by Akalin et al. to predict target genes in all

GRBs (Akalin et al. 2009). The random forest was trained on 19 informative features

of GRB target genes, the most important of which were the number and size of CpG

islands overlapping the gene, the tissue specificity of the gene’s expression and the

CNE densities surrounding the gene in multiple species comparisons. This method

has significantly expanded our set of target and bystander predictions, and can now

be applied to multiple genomes to further study the properties of GRB target genes.

1.4.3 GRBs and genome organisation

Interestingly, GRBs provide a link between developmental gene regulation

and genome organisation. A recent study by Harmston et al. found that GRB

boundaries strongly coincide with TAD boundaries in both vertebrates and inver-

tebrates (Figure 1.2B)(Harmston et al. 2017). Further, the authors identified a set

of features that define TADs that do and do not coincide with a GRB (GRB-TADS

and nonGRB-TADs). GRB-TADs tend to be larger than nonGRB-TADs and are

more strongly self interacting. Further, GRB-TADs span gene sparse regions, while

nonGRB-TADs span regions of high gene density. It has been proposed that the

difference in interaction strength within GRB-TADs and nonGRB-TADs may reflect

the absence of a need for stable 3D structure in regions of the genome that do not

contain genes under long-range regulation, however this hypothesis requires testing

using newly available high resolution Hi-C data (Harmston et al. 2017).

When TADs switch compartments, they do so as a whole. Given the

concordance between GRBs and TADs, compartment switching provides the ideal

system in which to investigate the effects of different regulatory contexts on the

expression of GRB target and bystander genes. To assess the expression patterns of

target and bystander genes within GRB-TADs, Harmston et al. examined several

loci for evidence of co-regulation. The authors showed that the dynamic range of

Chapter 1 1.4.3 49



Chapter 1 1.5. AIMS OF THIS THESIS

gene expression of GRB target genes, in multiple contexts, was much greater than

that of bystander genes, and interestingly, when GRB-TADs switch compartments

between cell types, only the GRB target gene exhibits strongly correlated changes

in expression (Harmston et al. 2017). This finding supports the hypothesis that

GRB target and bystander genes are independently regulated (Akalin et al. 2009),

however this analysis was only performed on a handful of identifiable loci, and must

be repeated with Hi-C data from diverse cell types and conditions to draw solid

conclusions.

1.5 Aims of this thesis

This thesis focuses on the evolutionary dynamics of GRBs, hoping to pro-

vide further evidence that they are an ancient and crucial feature of metazoan gene

regulation. To study the dynamics of GRB evolution, it is necessary to identify

GRBs in a broad range of species comparisons and genomes (Figure 1.3). This

requires robust methods for calculating genome conservation and identifying GRB

boundaries that are comparable between multiple contexts.

Thus, the first aim of this thesis is to develop a measure of pairwise genome

conservation that is not reliant on the strict minimum identity and length thresholds

that are used in CNE identification. Identification of CNEs in closely related species,

using pairwise genome comparisons, has the greatest ability to identify lineage-

specific conserved gene regulation, however these comparisons suffer from the need to

select extremely stringent conservation criteria, including defining minimum lengths

for CNEs that exceed 400bp. In Chapter 2 I define a novel measure of pairwise

genome conservation that implicitly takes into account the background conservation

of the species compared, thereby reducing the requirement for arbitrary threshold

selection. Further, in this chapter I define a novel approach to accurately identify

GRB boundaries that relies on statistical change point modelling to identify changes
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in the mean and variance of conservation scores across the genome.

Having established a robust set of methods for GRB identification, in Chap-

ter 3 I use these methods to identify and characterise GRBs that exhibit deep and

shallow conservation in three independent metazoan lineages. I show that these

GRBs share many features between lineages, despite independent evolution for hun-

dreds of millions of years, that may explain their relative rates of divergence.

Finally, in Chapter 4, I use these novel methods to identify GRBs in ex-

tremely compact genomes for the first time, and investigate the effects of genome

compaction on the identified GRBs. I also examine the relationship between genome

size and GRB size and composition, and show that GRB size tends to scale propor-

tionally with genome size and GRBs are enriched and depleted for similar genomic

features.
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Figure 1.3: Evolutionary relationship of species studied in this thesis. The
species studied in this thesis are highlighted in blue and accompanied by their outline
(obtained from phylopic.org). Branches within the phylogeny depicted as solid lines are
based on evolutionary distance as estimated from multiple sequence alignment, while those
represented as dashed lines are approximate relationships based on estimated divergence
times.
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Chapter 2 2.1. INTRODUCTION

2.1 Introduction

Studying the dynamics of GRB evolution and the functional relationship

between GRBs and TADs relies on robust methods to identify GRBs across a wide

range of evolutionary timescales. Currently, CNE identification, and therefore GRB

identification, hinges tightly on the selection of a conservation threshold at which a

conserved region is defined as a CNE. For the species comparisons used in Harmston

et al. 2017, the thresholds used ranged from 98% sequence identity over 50bp for

the human - dog comparison (separated by 96 million years) to 70% identity over

30bp for human - spotted gar (separated by 435 million years). The reduction in the

stringency of the thresholds was required to account for the fact that CNEs also di-

verge over time, albeit slowly. While the boundaries of predicted GRBs were robust

to the CNE identification threshold used for relatively distant genome comparisons,

in closely related species the approach breaks down because the neighbouring neu-

trally evolving sequence has not diverged enough to be able to non-arbitrarily define

CNE identification thresholds. Due to the resulting increasing average length of

conserved sequences between closely related species, it is often necessary to choose

very long thresholds for the minimal CNE length (> 400bp), thereby casting doubt

on the biological relevance of comparing the distribution of such elements with those

identified in distant comparisons. In this chapter I address this problem by defining

and exploring a threshold-free measure of pairwise sequence conservation based on

the kurtosis of the distribution of the lengths of all sequences perfectly conserved

between two genomes.

Karl Pearson defined kurtosis as a measure of how flat or peaked the top

of a symmetric distribution is (Pearson 1905). The kurtosis of a distribution is

actually more influenced by scores in the tails of the distribution than the centre

of the distribution, and thus distributions with a high kurtosis can be considered

"fat-tailed" (DeCarlo 1997). Kurtosis has also been defined as the "location- and

scale-free movement of probability mass from the shoulders of a distribution into its
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centre and tails" (Balanda and Macgillivray 1988).

I use kurtosis to measure the effect of the number of extreme observations

on the distribution of the lengths of runs of perfect sequence identity between two

genomes. I show that this measure is highly correlated with CNE density and

can be effectively used to predict high quality GRBs for the species comparisons

used in Harmston et al. 2017. Further, I use this kurtosis-based measure to predict

GRBs between human and non-human primates and show that it is superior to CNE

density at these short evolutionary distances.The ability of my method to detect

GRBs across close evolutionary distances, without the requirement for arbitrary

conversation thresholds, will enable the study of GRB turnover and the detection

of recent lineage-specific changes in gross GRB structure.
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2.2 Methods

2.2.1 Pairwise Genome Alignment

Pairwise genome alignments from human (hg19) to all species used in this

analysis were retrieved from the UCSC Genome Browser (Kent et al. 2002) with the

exception of human to spotted gar (LepOcu1).

The human to spotted gar alignment was produced using LASTZ (Harris

2007). The HoxD55 nucleotide substitution matrix was used for penalising alignment

mismatches and all other parameters were set to the default. This alignment was

generated by Ge Tan.

The species used were chosen based on their genome assembly quality and

to facilitate testing the kurtosis-based conservation measure at multiple evolutionary

time scales. While the spotted gar genome assembly is not of the same quality as

the other species used, it holds a key position in the tree of life, having diverged

from teleost fish shortly before they underwent whole genome duplication (Hoegg

et al. 2004; Amores et al. 2011). Conservation analysis between human and spotted

gar therefore avoids the potential complexities introduced by a genome duplication

event and its aftermath.

2.2.2 CNE Identification

CNEs were identified by scanning the pairwise net whole-genome align-

ments for regions of high identity over a defined length. The alignments were fil-

tered for known repeat regions and exons prior to scanning. Each net alignment

was scanned twice, using each species in turn as a reference. The regions identified

by each scan were then merged. The merged regions were aligned to the human

genome using BLAT (Kent 2002), and any regions which mapped to more than four

sites in the genome were removed as potentially unannotated repeats. CNE density

across the genome was calculated by running a 300kb sliding window across the
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genome, in 1kb increments, and calculating the number of CNEs in each window.

CNE identification was performed using the CNEr package in R (Tan 2015).

The minimum length and identity thresholds for CNE identification must

be adjusted for each species comparison due to the continuous divergence of CNEs

since the last common ancestor of the two species being compared. The identification

thresholds used for each species comparison are listed in Table 2.1.

Table 2.1: Thresholds used for CNE identification in the human genome

Query Species Minimum Identity Minimum Length Divergence Time
(Genome Assembly) (%) (bp) (million years)

Gorilla (gorGor3) 100 400; 600 8.6
Rhesus monkey (rheMac3) 99.3; 100 150 29.4

Dog (canFam3) 80; 96; 100 50 96
Opossum (monDom5) 80; 96; 100 50 159
Chicken (galGal4) 80; 90; 98 50 312

Spotted gar (LepOcu1) 70; 80; 96.6 30 435

2.2.3 CNE-based GRB Identification

CNE-dense regions of the genome were identified using an unsupervised

two-state HMM which partitions the genome into high and low CNE density regions

(as described in Harmston et al. 2017). In brief, the genome was segmented into high-

and low-density regions, and those CNEs within the high-density regions, which were

separated by less than a predefined genomic distance, were merged to form blocks.

This merging continues until the gaps between blocks are greater than a specified

quantile of the widths of gaps between all adjacent CNEs. The quantile was set

for each species comparison based on the how well the predicted GRB boundaries

recapitulated a set of known GRB boundaries. Human - rhesus monkey and human

- gorilla GRBs were generated for this project, while human - opossum GRBs were

previously generated by Nathan Harmston (Harmston et al. 2017).
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2.2.4 Genome-wide Kurtosis Calculation

For each species comparison, the kurtosis of the distribution of the lengths

of all identical sequences was calculated in bins across the genome. Initially, all

runs of 100% sequence identity were extracted from the pairwise whole-genome

alignment and filtered for annotated repeats and exonic sequences. The genome

was then divided into 30kb bins and the lengths of all runs of identity within each

bin were calculated. 30kb was selected as a window size as this is the window size

previously used for CNE density calculation, thereby maximising the comparability

of the two approaches. The kurtosis of the distribution of lengths in each bin was

then calculated as follows:

R(F ) =

(
q0.99(F )− q0.01(F )

)
G50

where F is the distribution of the lengths of runs of perfect sequence identity in a

bin, and G50 is the range of the middle 50% of the distribution of lengths of all runs

of identity from all bins; calculated as follows:

G50 = q0.75(J)− q0.25(J)

where J is the distribution of the lengths of runs of perfect sequence identity across

the whole genome.

For each bin, R(F ) is a ratio of the range of 99% of all lengths of runs of

identical sequence, in a bin, to the range of 50% of all lengths of runs of identity

for the whole genome. In practice it measures the number, and extremity, of long

runs of perfect identity, in each bin, compared to the background conservation for

the whole genome. This is an adaptation of the robust kurtosis measure proposed

in Ruppert 1987.
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2.2.5 Correlation of Kurtosis and CNE density

Maximum kurtosis and CNE density were calculated in 90kb windows

across the genome, with 1000 windows derived from previously defined human -

opossum GRBs and 1000 from non-GRB regions. This was performed for human

to dog, chicken and spotted gar comparisons at each CNE identification threshold

listed in Table 2.1. The Spearman’s correlation between maximum scores in each

window was then calculated. For the purpose of visualisation, a linear model was

fitted to the data for each comparison at each CNE identification threshold.

2.2.6 Kurtosis-based GRB Identification

Kurtosis-based GRBs were generated by using the change point modelling

(CPM) approach to identify change points in the binned kurtosis data, indicating

a shift to higher mean kurtosis values (Ross 2015). Under this framework, kurtosis

values in bins across the genome are treated as a series of n independent observations

x1, ..., xn. The assumption that all observations derived from a genomic window are

identically distributed, according to an undefined distribution F0, can then be tested

by choosing between the following hypotheses:

H0 : Xi ∼ F0(x; θ0), i = 1, ..., n,

H1 : Xi ∼

 F0(x; θ0), i = 1, 2..., k,

F1(x; θ1), i = k + 1, k + 2, ..., n,

where θi represent the unknown parameters of each distribution. In this

scenario the two distributions F0 and F1 represent the distribution of values coming

from non-GRB and GRB regions of the genome respectively. The presence of a

change point can be tested using a two-sampled Mann-Whitney test and the null

hypothesis rejected if the test statistic exceeds a predefined cut-off. For a series
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of observations x1, ..., xt the test statistic is calculated at every xk, for 1 < k < t,

and the maximum test statistic obtained for all values of k is used. As successive

observations are made (successive windows along the genome), the test statistic is

calculated again at every xk, but now for 1 < k < t + 1. If no significant change

point is detected, the next observation, xt+2, is received and the testing is performed

again on x1, ..., xt+2. However if a change is detected at xk, the process begins again

with xk+1 as the first observation in the new series of observations to be tested. For

further details refer to Ross 2015. This analysis was performed using the cpm package

in R, and the ARL0 parameter was set to 370. This is the least stringent ARL0 value

implemented in the package and favours detection of more potential change points

at the risk of including more false positives. Greater sensitivity combined with a

merging step (described below) was preferred to stringent change point detection

which potentially misses GRB boundaries.

Once significant change points in the binned kurtosis values have been

identified, these are treated as potential GRB boundaries. The mean kurtosis within

each range is then calculated, and adjacent ranges are merged if the mean kurtosis

in both is above a specified percentile of all binned kurtosis values. The percentile

used was determined empirically based on the predicted GRBs ability to recapitulate

known GRB boundaries. For all species comparisons used, the quantile used was

0.7.

2.2.7 Hi-C Directionality Index within GRBs

hESC and IMR90 Hi-C data were obtained from the Gene Expression Om-

nibus (GEO Accession: GSE35156) and processed as described in Harmston et al.

2017. In brief, reads were aligned to hg19 using bowtie (Langmead et al. 2009) and

aligned reads were binned into 40kb bins. The directionality index of each bin was

then calculated as follows:
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DI =

(
B − A
|B − A|

)(
(A− E)2

E
− (B − E)2

E

)
where A is the number of reads that map from a given 40kb bin to the 2Mb region

upstream of the bin, B is the number of reads that map from a given bin to the 2Mb

region downstream of the bin, and E is the expected number of reads mapping up

and downstream of the bin. Under the null hypothesis E = (A+B)
2

. This method was

first proposed in Dixon et al. 2012. Nathan Harmston processed all Hi-C datasets

used and produced the corresponding directionality index data.

To visualise how well kurtosis-based GRBs recapitulate TAD boundaries,

heatmaps of genomic windows centred around GRBs and ordered from largest to

smallest GRBs were produced. Each window was then divided into 500 bins and

the average DI within each bin was plotted.

2.2.8 Data visualisation

All plots were produced using a combination of the ggplot2 and

genomation packages in R (Akalin et al. 2015).
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2.3 Results

2.3.1 CNE identification

The first step in this analysis was to identify CNEs between human and

a range of species chosen to represent distinct vertebrate lineages. For each species

comparison I used multiple CNE identification thresholds to facilitate a compre-

hensive comparison between the proposed kurtosis-based conservation measure and

CNE density. The results of CNE identification are presented in Table 2.2.

Table 2.2: CNE sets generated in Chapter 2

Query Species Identification Threshold Number of CNEs Mean Width Divergence Time
(Genome Assembly) (bp) (million years)

Gorilla (gorGor3) 100% over 400bp 105,187 488.3 8.6
.. 100% over 600bp 10,922 721.8 8.6

Rhesus monkey (rheMac3) 99.3% over 150bp 148,757 208.8 29.4
.. 100% over 150bp 48,601 199.9 29.4

Dog (canFam3) 80% over 50bp 3,763,684 104 96
.. 96% over 50bp 312,516 95 96
.. 100% over 50bp 99,079 77.5 96

Opossum (monDom5) 80% over 50bp 280,065 120.1 159
.. 96% over 50bp 53,743 101.4 159
.. 100% over 50bp 21,694 80.8 159

Chicken (galGal4) 80% over 50bp 67,325 149.1 312
.. 90% over 50bp 39,400 132.4 312
.. 98% over 50bp 18,296 102.6 312

Spotted gar (LepOcu1) 70% over 30bp 60,345 77.4 435
.. 80% over 30bp 33,172 81.5 435
.. 96.6% over 30bp 11,898 54.6 435

As expected, the number of CNEs identified for each species comparison

decreases as the stringency of the threshold increases. The mean width of the

elements identified also decreases as the minimum required identity is increased.

In general, the stringency of the threshold used for CNE identification is reduced

as the evolutionary distance between the species compared increases. This is to

account for the continual sequence divergence, in conserved regions, during the time

that the two genomes have been evolving independently. This is due to increasing

difficulty in identifying conserved regions as the amount of time the two genomes
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have been evolving independently increases. The effect of this sequence divergence is

clearly discernible from the number of CNEs identified in dog, opossum, chicken and

spotted gar at 80% identity over 50bp (30bp in spotted gar). The divergence time

between human and each of these species ranges from 96 - 435 million years, and with

the increasing time so the number of CNEs identified drops from 3,763,684 to just

33,172. I produced CNE density tracks for each of these CNE sets for comparison

to kurtosis-based conservation and visualisation.

2.3.2 Comparing kurtosis-based conservation to CNE density

Next, for each of the same species comparisons, I calculated the kurtosis

of the distribution of the lengths of perfectly conserved sequences in bins across the

genome. Figure 2.1A shows the distribution of kurtosis values across the genome

for each comparison. The distributions are very similar across species comparisons,

illustrating that the results of the method are comparable for multiple evolutionary

distances. In the closer species comparisons (gorilla to opossum) the distributions

of kurtosis values are centred on 4.5. This is the kurtosis of the negative binomial

distribution NB(1, 0.222) (after dropping all zero observations), and therefore in

the majority of bins, 99% of identical sequences are shorter than 18bp. As the

evolutionary distance of the comparison increases, so the number of bins containing

a value of zero increases, and the median kurtosis value drops. The increasing

number of zero bins is due to an increasing numbers of bins that do not contain any

alignable sequence. This trend shows that, as expected, with increasing evolutionary

distance there will be larger portions of the genome that are unalignable due to

continual sequence divergence. It is also striking that the range of the kurtosis

values increases with evolutionary distance. This trend reflects the potential for more

extreme outliers relative to the genomic background in more distant comparisons.

These extreme outliers are the CNEs that we normally identify using traditional

CNE identification approaches described in section 2.2.2. Another notable feature
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of the distributions is the increased dispersion with increasing evolutionary distance.

This is most likely due to the increased variability in the number and length of runs

of sequence identity from bin to bin in the more distant comparisons.

Figure 2.1: Kurtosis and CNE density are highly correlated.
(A) The distribution of binned kurtosis values across the human genome for all species
comparisons. (B) The correlation between CNE density and kurtosis inside and outside of
CNE-based GRBs for the human to dog, chicken and spotted gar species comparisons. (C)
The correlation of CNE density and kurtosis, inside and outside of GRBs, as a function of
evolutionary distance. Each of the three points for each species represents the correlation
between kurtosis values and CNE-density at a separate CNE conservation threshold. CNE
density and kurtosis are highly correlated within GRBs, regardless of the evolutionary
distance of the comparison. Outside of GRBs there is a decreasing linear relationship
between the correlation and the evolutionary distance of the comparison.

To compare kurtosis and CNE density across the genome, I sampled ran-

dom 90kb windows from previously defined CNE-based human - opossum GRBs,

and non-GRB regions of the genome. I then calculated the maximum kurtosis and
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CNE density in each window. I repeated this using CNE density calculated at mul-

tiple thresholds for each species comparison. Next, for each species comparison I

calculated the Spearman’s correlation coefficient between kurtosis and CNE density

for each species comparison inside and outside of GRBs. There is a strong correla-

tion between kurtosis and CNE density, and this correlation is greater within GRBs

than outside GRBs (Figure 2.1B). This trend is confirmed in Figure 2.1C, which

shows the Spearman’s correlation coefficient between kurtosis and CNE density,

calculated for all CNE identification thresholds used for each species comparison. It

is striking that regardless of the evolutionary distance of the comparison, kurtosis

and CNE density values are similarly correlated within GRBs, whereas outside of

GRBs it appears that the correlation drops with increasing evolutionary distance.

The reduced correlation outside of GRBs may be caused by multiple properties of

kurtosis and CNE density:

1. Outside of GRBs, CNE density is consistently either zero or close to zero,

while kurtosis fluctuates around 4.5 from bin to bin, thereby reducing the

correlation. Within GRBs, both the CNE density and kurtosis will be high in

the majority of bins.

2. Outside of GRBs, there may be stretches of identical non-coding sequence

which are shorter than the minimum length of the threshold used for calling

CNEs, and are therefore not identified. However, these stretches will still

result in distributions with relatively high kurtosis, but low CNE density.

Within GRBs there are many identifiable CNEs and thus both CNE density

and kurtosis will be high, resulting in a stronger correlation.

Overall, the consistency of the distribution of kurtosis values for species

comparisons spanning vastly different evolutionary timescales, and its high correla-

tion with CNE density in conserved regions of the genome, suggest that the kurtosis

of the lengths of runs of sequence identity can be used as an effective threshold-free
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proxy for sequence conservation.

2.3.3 Kurtosis-based GRB identification in moderately to

distantly related species

In the past, GRB identification has succeeded for moderate to distant evo-

lutionary comparisons because the CNE density across the genome forms discrete

peaks that are easily distinguished from the genomic background (Engström et al.

2007; Kikuta et al. 2007a; Akalin et al. 2009; Harmston et al. 2017). To test how

well the kurtosis-based measure of conservation can discriminate highly conserved

regions of the genome from non-conserved regions, I used binned kurtosis values to

identify GRBs from human to moderately and distantly related species which have

previously been used for CNE-based GRB prediction (Harmston et al. 2017). I used

the CPM framework (described in Ross 2015) to identify shifts in the mean and

variance of kurtosis across the genome, and treated these change points as potential

GRB boundaries (detailed description in section 2.2.6). I then assigned the regions

between these boundaries as either high or low kurtosis, based on their mean kur-

tosis value, and defined a final set of GRBs. This was performed for human to dog,

opossum, chicken and spotted gar and the number and size of GRBs identified for

each comparison are presented in Table 2.3

Table 2.3: Kurtosis-based GRBs identified in the human genome

Query Species Number of GRBs Average Width (kb)
Dog 559 1,233.1

Opossum 487 1,195
Chicken 426 978.7

Spotted gar 400 804.8

The number of GRBs identified in each comparison is similar, but there

is a slight decrease in total GRBs as the evolutionary distance of the comparison

increases. The average width of the identified GRBs also decreases with increasing

evolutionary distance. The decreasing average width reflects the erosion of sequence
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conservation over time at the boundaries of GRBs, making accurate prediction of

true GRB boundaries difficult over large evolutionary distances. This effect is also

observed in GRBs identified using CNE density and has been previously described

(Harmston et al. 2017). The decreasing number of GRBs may be due to the identi-

fication of relatively rapidly evolving GRBs in the closer comparisons that are not

identifiable in the more distant comparisons. The differences in turnover rate of

GRBs will be addressed in detail in Chapter 3.

As an initial assessment of the quality of the identified GRBs, I visualised

CNE density within genomic windows centred on the kurtosis-based GRBs for each

species comparison (Figure 2.2). GRBs were ordered by width, and thus any feature

which is enriched within GRBs forms a characteristic funnel pattern. From these

heatmaps, it is immediately apparent that there is a very strong enrichment of

CNE density within kurtosis-based GRBs, and that this enrichment is robust to

the CNE identification threshold used. Interestingly, as the stringency of the CNE

identification threshold is increased, there are an increasing number of GRBs that

contain no enrichment for CNE density. This likely reflects the ability of the kurtosis-

based measure to identify runs of non-coding identity that fail to pass the more

stringent CNE identification thresholds.

Previously, it has been shown that the borders of GRBs predicted using

CNE density are robust to the species comparison used to predict the GRBs (Harm-

ston et al. 2017). To investigate how robust the kurtosis-based GRB boundaries

are, I plotted a heatmap for each set of GRBs in which genomic windows were cen-

tred on GRBs and coloured based on the number of sets in which each region of

the window is found inside a GRB (Figure 2.3). The boundaries of kurtosis-based

GRBs are very similar between species comparisons. Each funnel in Figure 2.3 is

overwhelmingly either orange or red, indicating that these regions were predicted to

be within a GRB in three or four of the species comparisons. For the human - dog

and human - opossum GRBs, there is a clear white space immediately outside the
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Figure 2.2: CNE density across kurtosis-based GRBs. GRBs were predicted from
human to dog, opossum, chicken and spotted gar using the kurtosis-based measure of
conservation. The heatmaps in the first column show the extent of the predicted GRBs,
while the next three columns show the density of CNEs in each genomic window. Above
each heatmap is the minimum sequence identity threshold of the CNEs visualised in that
heatmap. For each species comparison the kurtosis-based GRBs are CNE-dense at every
CNE identification threshold used.
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funnel indicating that the majority of predicted GRB boundaries are consistent for

these comparisons. The increased amount of blue and yellow immediately outside

of the human - chicken and human - spotted gar GRB boundaries suggests that,

for these species comparisons, the predicted GRBs are slightly narrower than for

the closer species comparisons. This is also reflected in the mean width of GRBs

identified for these species comparisons (Table 2.3). There also appears to be a re-

lationship between the evolutionary distance of the comparison and the proportion

of the GRBs identified in all four of the species comparisons, with almost all of the

human - spotted gar GRBs being identified in all four sets. This observation re-

flects the effects of regulatory turnover on our ability to successfully identify GRBs

(discussed in detail in Chapter 3).

Figure 2.3: Overlap of all kurtosis-based GRB sets. Genomic windows were centred
on kurtosis-based GRBs (identified from human to dog, opossum, chicken, and spotted gar),
and regions within the windows were coloured based on the number of sets in which they
were predicted to be within a GRB. The number of GRBs identified for each comparison
is shown on the side of the appropriate heatmap.

Since the kurtosis-based GRBs are CNE-dense, there should be significant

overlap between these sets of GRBs and those predicted using CNE density. To

investigate this I plotted genomic windows centred on the predicted GRBs, with re-

gions coloured by whether they appear within a GRB in both methods, or are unique

to either one. I did this for GRBs derived from each method and species comparison
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in turn (Figure 2.4). There is a very high degree of overlap between the kurtosis-

based and CNE-based GRBs, with the entirety of almost every kurtosis-based GRB

overlapping a CNE-based GRB in the human to dog, opossum and chicken com-

parisons. There is a significantly higher proportion of unique GRBs in the human

to spotted gar comparison than any of the other comparisons, further highlighting

the increased difficulty in accurately defining GRBs at large evolutionary distances.

These results are further summarised in Table S1. Another characteristic of the

kurtosis-based GRBs visible from these heatmaps is that, in general, they are nar-

rower than the CNE-based GRBs. This is evidenced by a green stripe outside

of the red funnels in Figure 2.4A, and is most apparent in the human to chicken

GRBs. Looking at the CNE-based GRBs in Figure 2.4B, it is clear that there are

many CNE-based GRBs that are not identified as GRBs using the kurtosis-based

measure, and that this proportion increases with the evolutionary distance of the

comparison.

These results show that kurtosis-based GRB prediction successfully iden-

tifies a CNE-dense set of GRBs which appear to be a high-confidence subset of the

previously defined CNE-based GRBs. The boundaries of these GRBs are robust to

the species comparison used to predict them, but are on average narrower than the

CNE-based boundaries.

To further evaluate the accuracy of the kurtosis-based GRB boundaries,

I took advantage of the fact that GRB boundaries frequently coincide with TAD

boundaries (Harmston et al. 2017) by plotting the Hi-C DI from hESC and IMR90

cells within the same GRB-containing genomic windows as in (Figure 2.5). In these

plots the intensity of red and blue in a region show the frequency with which this

region interacts with downstream and upstream loci respectively. Visualised this

way, TADs appear as a span of red followed by a span of blue. For GRBs defined

from human to dog, opossum and chicken, there is a very clear funnel present in

the DI heatmaps in both cell types (Figure 2.5). The funnels have a well defined
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Figure 2.4: Overlap of kurtosis-based and CNE-based GRBs. For GRBs defined
from human to dog, opossum, chicken and spotted gar, genomic windows were centred on
the predicted GRBs and the regions within the windows were coloured by whether they
were predicted to occur within a GRB by either the kurtosis-based method, CNE-based
method, or both. (A) Kurtosis-based GRBs. (B) CNE-based GRBs.

red boundary followed by a well defined blue boundary, indicating that the GRBs

coincide well with TADs. There is no visible funnel in the human to spotted gar

GRBs, with only a hint of a funnel visible in the very largest GRBs, many of which

are also the most strongly conserved. While these GRBs clearly do not coincide

with TADs, it is possible that at these evolutionary distances, the kurtosis-based

conservation measure is only identifying the core, highly conserved regions of each

GRB and thus underestimating their true extent. Based on the concordance between

the kurtosis-based GRB predictions and the CNE density for all species comparisons,

it is likely that CNE-based GRB prediction will suffer from the same problem.

Taken together, the concordance between kurtosis-based GRB predictions
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Figure 2.5: Hi-C directionality index within kurtosis-based GRBs. The heatmaps
in the first column show the extent of the kurtosis-based GRBs for each species comparison,
while the next 4 columns show the Hi-C directionality index, derived from hESC and IMR90
cells, in each genomic window. For each cell type, the first column shows the binarised DI,
representing the direction of the interaction bias, while the second column shows both the
direction and the strength of the interaction bias. Strongly positive (red) values indicate
that a region preferentially interacts with downstream regions, while strongly negative
(blue) values indicate a preference for upstream interactions.
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and CNE density, the high degree of overlap between kurtosis-based and CNE-based

GRBs, and the strong correlation between GRB and TAD boundaries, suggests that

kurtosis-based conservation can be used to accurately predict high quality GRBs.

2.3.4 Kurtosis-based GRB identification in non-human pri-

mates

CNE identification thresholds necessitate the implementation of an arbi-

trary cut-off for what is defined as a CNE and what is not. At the edge of the

threshold, a single mismatch in two aligned sequences is sufficient for an otherwise

highly conserved region to be declared non-conserved. In the context of GRB iden-

tification, this is seldom a problem for evolutionarily distant species comparisons,

but at shorter evolutionary timescales it becomes increasingly difficult to determine

how long a stretch of perfect sequence identity should be for the region to be de-

clared a CNE. This is the context in which kurtosis-based conservation may see the

most utility. By its nature, kurtosis-based conservation takes into account the back-

ground level of conservation for a particular species comparison, and only defines

those regions with unexpectedly long runs of identity as highly conserved.

I predicted GRBs for human to two non-human primates, the rhesus-

monkey and the gorilla, to test the limits of kurtosis-based conservation for GRB

detection. Humans and rhesus monkeys (referred to as rhesus for the rest of the

chapter) diverged approximately 30 million years ago, while humans and gorillas

diverged only 8.6 million years ago. Using kurtosis-based conservation, I predicted

523 human - rhesus GRBs (mean width = 1,279.9kb) and 483 human - gorilla GRBs

(mean width = 1,242.9kb). This is a similar number of GRBs to the sets identified

to more distant vertebrates, with a slightly larger average width, suggesting that

the method can predict sensible GRBs even at such short evolutionary timescales.

To assess the quality of these GRBs, I plotted CNE density and Hi-C DI

across genomic windows centred on the kurtosis-based GRB predictions, as previ-
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Figure 2.6: Kurtosis-based GRBs in primates. Kurtosis-based GRBs were identified
from human to rhesus monkey and gorilla. Grey heatmaps represent the extent of the
predicted GRBs. (A) CNE density and (B) Hi-C DI within genomic windows centred on
predicted GRBs. (C) Average Hi-C DI strength within kurtosis- and CNE-based GRBs
for human - rhesus monkey and human - gorilla.
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ously described (Figure 2.6A-CB). For the human-rhesus GRBs there is a strong

enrichment of CNE density within the predicted GRBs, indicating that for this

species comparison kurtosis is a good proxy for conserved non-coding conservation.

For the human to gorilla comparison there is also a visible CNE density enrichment

within the predicted GRBs, but the strength of the enrichment is much reduced.

The average mismatch rate between human and gorilla is only 1.75%, and therefore

it is very surprising that there is any CNE density enrichment within the kurtosis-

based GRBs (Scally et al. 2012). This result is strong evidence that kurtosis-based

conservation can identify highly conserved regions of the genome. Examining the

DI heatmaps, it is clear that the rhesus GRBs have a visible funnel, although it is

not as strong as in the more distant comparisons. The largest rhesus GRBs have

the weakest correspondence with the DI, and appear to span multiple TADs. These

are probably physically close GRBs that have been merged by the GRB prediction.

This may also account for the increased mean GRB width in this set. Separating

adjacent synteny blocks using sequence conservation alone is a known difficulty in

GRB prediction (Harmston et al. 2017), and kurtosis-based GRB prediction ap-

pears to suffer from the same issue. For the human-gorilla GRBs a similar issue is

visible. The largest third of GRBs display no visible funnel in the DI heatmaps,

however there is a noisy funnel visible in the rest of the GRBs. Overall these re-

sults suggest that kurtosis-based conservation can identify signatures of non-coding

conservation in very closely related species, but that GRB boundary prediction in

these comparisons is less precise than in the more distant comparisons.

Next I compared the kurtosis-based GRBs to CNE-based GRBs predicted

as described in Harmston et al. (Harmston et al. 2017). I predicted CNE-based

GRBs in human to rhesus and gorilla using a two-state HMM that partitions the

genome into conserved and non-conserved regions (details in Section 2.2.3), and

plotted the average Hi-C DI across the predicted GRBs from both sets (Figure

2.6C). The CNE-based GRB prediction yielded 744 human to rhesus GRBs with
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a mean width of 482.9kb and 2220 human to gorilla GRBs with a mean width of

504,4kb. The number of GRBs identified in human-rhesus is greater than for the

other species comparisons used so far, but not exceedingly so. For the human-gorilla

comparison, however, there were an unreasonable number of GRBs predicted. In

Figure 2.6C, the average Hi-C DI is plotted across the predicted GRBs from both

sets. We can clearly see that for the human - rhesus comparison the kurtosis-based

GRBs have a much stronger peak of the positive and negative DI, at their starts

and ends respectively, than the CNE-based GRBs. There is also a much sharper

boundary effect in the kurtosis-based GRBs, with the peaks of DI spreading well

beyond the boundaries of the CNE-based GRBs. In the human - gorilla comparison

the kurtosis-based GRBs boundaries also coincide with peaks in the positive and

negative DI, while the CNE-based GRBs show no enrichment of DI score at either

boundary.

These results conclusively demonstrate that the kurtosis-based conserva-

tion measure can identify highly conserved regions of the genome, even in very closely

related species, and that kurtosis-based GRB predictions recapitulate TAD bound-

aries better than the CNE-based GRB predictions at these evolutionary timescales.

2.4 Discussion

In this chapter I have defined a novel measure of pairwise sequence conser-

vation based on the kurtosis of the distribution of the lengths of sequences perfectly

conserved between two genomes. I have shown that the kurtosis-based measure

is highly correlated with CNE density and can be used to generate high quality

GRB predictions for moderate to distant species comparisons. I have also shown

that kurtosis-based GRB prediction far outperforms CNE-based GRB prediction in

closely related species. The identification of GRB-like structures between human

and gorilla is a surprising result as previously it has been impossible to define con-

Chapter 2 2.4.0 76



Chapter 2 2.4. DISCUSSION

served regulatory domains between such closely related species. Humans and gorillas

share over 98% of their genome sequence, and so to be able to use sequence con-

servation to define regulatory regions that coincide with TADs is strong testament

to my method’s ability to account for the general background conservation between

two genomes.

Most importantly, unlike CNE-based conservation analysis, my method

works without needing the definition of a minimum length or sequence identity

threshold required for a sequence to be considered conserved. Having a threshold-

free approach for measuring conservation allows us to directly compare the results of

species comparisons spanning a range of evolutionary distances. This feature, com-

bined with the success in identifying GRB-like structures in extremely closely related

species opens up the possibility of systematically investigating the evolutionary dy-

namics of GRBs in multiple closely related metazoan lineages, potentially yielding

a greater understanding of the origin and evolution of long-range gene regulation in

metazoan genomes.

Further, my method may have utility in the analysis of GRB developmental

gene regulation in species that have undergone extreme genome compaction such as

the puffer fish, Tetraodon nigroviridis, and the sea squirt, Oikopleura dioica. The

tiny size of these genomes makes it very difficult to define the minimum length a

stretch of conserved sequence should be to be considered a conserved element, and

as described above, comparing the results of this analysis with those performed in

larger genomes is problematic. My method may provide the ability to accurately

define GRB boundaries in compact genomes and therefore deliver insights into the

effects of genome compaction of long-range gene regulation.
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3.1 Introduction

GRBs, or clusters of CNEs, have been identified at functionally similar

classes of genes in many metazoan lineages, including mammals, teleost fish, insects

and nematodes (Akalin et al. 2009; Engström et al. 2007; Kikuta et al. 2007a; Vavouri

et al. 2007). The similarity in the genomic distribution of CNEs in multiple phyletic

groups suggests that they perform a common function in each group, however, the

CNEs identified in different phlya share no sequence conservation. This lack of

non-coding sequence conservation between phyla has previously been attributed

to lineage-specific CNE recruitment. Vavouri et al. posited that the presence of

unrelated CNEs around similar developmental genes in humans, D. melanogaster

and C. elegans can be explained by the parallel evolution of long-range regulation of

key developmental regulatory genes, resulting in "distinct yet parallel sets of CNEs"

(Vavouri et al. 2007). Lowe et al. used a multiple sequence alignment of 40 vertebrate

genomes to infer the evolutionary time point at which human CNEs came under

selection, concluding that CNEs were recruited around specific functional classes of

genes during three distinct periods of vertebrate evolution (Lowe et al. 2011). The

first period was reported to have occurred from the last common vertebrate ancestor

until approximately 300 million years ago, with CNEs being preferentially recruited

around transcription factors and the developmental genes that they regulate. The

second period ranged from approximately 300 million years ago until 100 million

years ago, and CNEs were mostly recruited at cell signalling genes. The final wave

was reported to have occurred in placental mammals less than 100 million years

ago, with recruitment of CNEs taking place predominantly at post-translational

modification genes involved in intracellular signalling (Lowe et al. 2011).

Contrarily, it been proposed that GRB-like gene regulation is an ancient

feature of metazoan gene regulation, and that the lack of sequence conservation

between CNEs identified in different lineages is due to gradual and continual CNE

turnover within GRBs (Harmston, Baresic, and Lenhard 2013). This model is sup-
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ported by the observations that conservation of gene expression between species

is not dependent on conservation of its enhancers (Fisher et al. 2006; Hare et al.

2008), that small sequence changes are capable of driving both de novo gain and

loss of enhancer function (Eichenlaub and Ettwiller 2011), and that there is perva-

sive turnover of functional non-coding sequences, occurring at different rates, within

mammalian genomes (Meader, Ponting, and Lunter 2010). Under this model, given

enough time, all CNEs would accumulate enough sequence changes that they would

no longer be identifiable across lineages based on sequence conservation alone. Fur-

ther, if sequence turnover is occurring at different rates around distinct functional

classes of genes, this model can also explain what appears to be the three distinct

periods of CNE recruitment described by Lowe et al. (Lowe et al. 2011).

In this chapter I assess the validity of the turnover model by comparing

high- and low-turnover GRBs identified in three distinct metazoan lineages. As-

suming that the turnover model is correct, GRBs have been undergoing sequence

turnover at different rates since their initial recruitment, and therefore, there should

be many shared features between GRBs which are high- or low-turnover in each

lineage respectively. For this analysis I make use of the kurtosis-based measure of

conservation, described in Chapter 2, as it is threshold-free and implicitly accounts

for the background conservation of the species compared. This is particularly useful

when predicting GRBs in closely related species, thereby providing better power to

discriminate between the most and least deeply conserved GRBs. I find that similar

classes of genes are regulated by high- and low-turnover GRBs in each lineage, and

that these groups of GRBs are distinct from each other with respect to timing of

target-gene expression during development, epigenetic state, and repeat content.
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3.2 Methods

3.2.1 Species used in Chapter 3

For this chapter, GRBs were identified between a reference species and a

number of query species in three separate phylogenies. Throughout the chapter the

species are referred to by their genome assembly abbreviations. Table 3.1 lists the

species used, their common name and their genome assembly abbreviations.

Table 3.1: Species used in Chapter 3

Species Common name Genome Assembly
Homo sapiens Human hg19

Macaca mulatta Rhesus monkey rheMac3
Canis familiaris Dog canFam3

Monodelphis domestica Grey short-tailed opossum monDom5
Gallus gallus Chicken galGal4

Meleagris gallopavo Wild turkey melGal1
Taeniopygia guttata Zebra finch taeGut2
Anolis carolinensis Carolina anole lizard anoCar2
Xenopus tropicalis Western clawed frog xenTro3

Drosophila melanogaster Fruit fly dm6
Drosophila ananassae Fruit fly droAna2

Drosophila pseudoobscura Fruit fly dp2
Drosophila mojavensis Fruit fly droMoj2

3.2.2 Pairwise genome alignment

Pairwise genome alignments from each of the three reference species (hg19,

galGal4, and dm6) to all species used in this analysis were either retrieved from the

UCSC genome browser (Kent et al. 2002) or generated using LASTZ (Harris 2007).

The source of all alignments used in this chapter is listed in Table 3.2.

The three reference species were selected to be representative of three vastly

different metazoan lineages, and therefore facilitate analysis of the conservation of

the regulatory dynamics of GRBs. The species used in each phylogeny were selected

such that each phylogeny spanned approximately equivalent evolutionary distance

from the last common ancestor at the root of each tree. These species were also
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Table 3.2: Pairwise alignments from the hg19, galGal4, and dm6 genomes

Reference Species Query Species Divergence Time Source Generated By
(million years)

Human (hg19) Rhesus monkey (rheMac3) 29.4 UCSC UCSC
.. Dog (canFam3) 96 UCSC UCSC
.. Opossum (monDom5) 159 UCSC UCSC
.. Chicken (galGal4) 312 UCSC UCSC

Chicken (galGal4) Turkey (melGal1) 37 Lenhard group Alexander Nash
.. Zebra finch (taeGut2) 98 UCSC UCSC
.. Lizard (anoCar2) 280 Lenhard group Ge Tan
.. Frog (xenTro3) 352 Lenhard group Ge Tan

D. melanogaster (dm6) D. ananassae (droAna2) 34 Lenhard group Ge Tan
.. D. pseudoobscura (dp2) 37 Lenhard group Ge Tan
.. D. mojavensis (droMoj2) 50 Lenhard group Ge Tan

selected so that each comparison to the reference species spanned a unique evolu-

tionary time in that phylogeny. While the Drosophila species diverged much more

recently, due to their short generation time the evolutionary distance between the

species is similar. For example, it has been estimated that the degree of diver-

gence between humans and chickens and D. melanogaster and D. pseudoobscura is

approximately equal (Stark et al. 2007), as measured by substitutions per fourfold

degenerate site.

3.2.3 Kurtosis-based conservation

For each phylogeny, pairwise kurtosis-based conservation was calculated

between the reference species and all other species in the phylogeny. This was

performed as described in Section 2.2.4. In brief, the reference genome was binned

and for each bin the lengths of sequences which were perfectly conserved between

the reference and the query genome were extracted from the pairwise alignment.

The kurtosis of the distribution of these lengths was then calculated. Bin sizes of

20kb were used for the two vertebrate reference species (hg19 and galGal4), while for

dm6, 4kb bins were used. Different bin sizes were used to account for the differences

in genome size between the vertebrates and dm6.
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3.2.4 Kurtosis-based GRB prediction

For each phylogeny, kurtosis-based GRBs were predicted between the ref-

erence species and all other species in the phylogeny. GRBs were predicted as de-

scribed in Section 2.2.6. In brief, the CPM framework was used to identify change

points in the mean and variance of the binned kurtosis-based conservation values

across the genome (Ross 2015). These change points were treated as potential GRB

boundaries. Adjacent windows separated by a potential boundary were then merged

if both windows had a mean kurtosis greater than a predefined quantile of the dis-

tribution of all kurtosis values across the genome. The merged windows were used

as the final set of GRBs.

The quantile used for each reference species was determined by visual in-

spection of how well the GRB predictions recapitulated the boundaries of known

GRBs. For hg19 the quantile used was 0.8, while for galGal4 and dm6, 0.7 was used.

3.2.5 Identification of high- and low-turnover GRBs

To identify a set of high- and low-turnover GRBs, the GRBs predicted

between each reference species and its most closely related species were filtered for

GRBs which were supported by identification in at least one other species in the

phylogeny. This ensured that the analysis was performed on a robust set of GRBs by

excluding any spuriously identified GRBs. Next, the kurtosis values calculated for

each species comparison were quantile-normalised and for each bin in the remaining

GRBs, the value for each species comparison was summed. GRBs were then ranked

based on their maximum summed kurtosis and the top 20% of GRBs were defined

as low-turnover GRBs, while the bottom 20% were defined as high-turnover. This

was performed for each phylogeny in turn.
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3.2.6 CNE density in high- and low-turnover GRBs

CNEs were identified between the reference species and each of the other

species in the phylogeny. The CNE identification thresholds used for each species

comparison are listed in Table 3.3. CNE density across each reference genome was

calculated by running a sliding window across the genome and counting the number

of CNEs in each window. For hg19 and galGal4 a 300 kb window was used, while

for dm6 a 40 kb window was used to account for the differences in genome size.

CNE identification was performed using the CNEr package in R. All heatmaps were

produced using the genomation package in R (Akalin et al. 2015).

Table 3.3: CNE sets used for visualisation of CNE density within GRBs

Reference Species Query Species Minimum Identity Minimum Length Divergence Time
(Genome Assembly) (Genome Assembly) (%) (bp) (million years)

Human (hg19) Rhesus monkey (rheMac3) 99.3 150 29.4
.. Dog (canFam3) 98 50 96
.. Opossum (monDom5) 90 50 159
.. Chicken (galGal4) 80 50 312

Chicken (galGal4) Turkey (melGal1) 100 150 37
.. Zebra finch (taeGut2) 100 50 98
.. Lizard (anoCar2) 80 50 280
.. Frog (xenTro3) 80 50 352

D. melanogaster (dm6) D. ananassae (droAna2) 98 50 34
.. D. pseudoobscura (dp2) 98 50 37
.. D. mojavensis (droMoj2) 96 50 50

3.2.7 GRB boundary stability and TAD comparisons

To assess how consistently the boundaries of high- and low-turnover GRBs

are predicted, I calculated the distance from the boundaries of each GRB predicted

in the most closely related to the nearest boundary predicted in each other species

in the phylogeny. These distances were then presented as cumulative distributions

where each line represents the distance from the initial set of boundaries to the

boundaries identified in that particular species. This was performed on each phy-

logeny in turn.

To compare the ability of high- and low-turnover GRBs to recapitulate
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TAD boundaries, the distance from high- and low-turnover GRB boundaries to

the nearest TAD boundary was calculated. Hi-C data for hg19 was retrieved and

processed as described in Section 2.2.7. The dm6 Hi-C data was produced by Sexton

et al. and retrieved from the GEO (GEO Accession: GSM849422)(Sexton et al.

2012). The data was processed using the same pipeline described in Section 2.2.7

and Harmston et al. 2017. All Hi-C data was retrieved and processed by Nathan

Harmston.

3.2.8 High- and Low-turnover GRB gene ontology enrich-

ment

All genes contained within high- or low-turnover GRBs were tested for

enrichment of biological process (BP) and molecular function (MF) gene ontology

(GO) terms against a background of all annotated protein coding and micro-RNA

genes in the genome. The top 10 most enriched terms from high- and low-turnover

GRBs for each phylogeny were then plotted together to illustrate the overlap of en-

riched terms between phylogenies. GO enrichment was performed using the GOstats

package in R (Falcon and Gentleman 2007).

3.2.9 GRB target-gene expression in development

Genes within hg19 high- and low-turnover GRBs were filtered for genes

predicted to be the targets of GRB regulation. GRB target-gene prediction was

performed by Ge Tan using a random forest based machine learning approach (Tan

2018). In brief, the random forest was trained on a manually annotated set of 259

target and 830 bystander genes (Akalin et al. 2009). Random forest predictions were

based on a set of 19 informative features of GRB target genes, the most important

of which were the number and size of CpG islands overlapping the gene, the tissue

specificity of the gene’s expression and the CNE densities surrounding the gene in
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multiple species comparisons.

As GRB target gene predictions were only available for the human genome,

ENSEMBL’s ortholog predictions were used to identify the mm9 high- and low-

turnover GRB target gene orthologs. This was performed using the biomaRt package

for R.

GRB target gene expression during embryonic development was then anal-

ysed using the FANTOM5 CAGE mouse developmental time course (Forrest et al.

2014). The data was downloaded, processed and normalized using the standard

pipeline detailed in the CAGEr package in R (Haberle et al. 2015). Promoters were

identified across all developmental samples with a minimum requirement that each

promoter have a normalized tag per million (tpm) value of greater than 1 in all sam-

ples to be included. A self organising map (SOM) was then used to split consensus

tag clusters into groups based on their expression dynamics during mouse embryonic

development. The enrichment or depletion of high- and low-turnover GRB target

genes in groups corresponding to early development, late development and constant

stable expression was then tested using a Fisher’s exact test, using the distribution

of all GRB target genes between clusters as the expected distribution.

3.2.10 Chromatin modifications at high- and low-turnover

GRBs

Human and D. melanogaster chromatin modification data was downloaded

from the Roadmap Epigenomics (Kundaje et al. 2015) and modENCODE (Roy et

al. 2010) repositories respectively. Details of the datasets used are listed in Table

3.4.

The Roadmap Epigenomics data was downloaded as raw ChIP-seq read

density across the genome. The modENCODE data was downloaded in a processed

format in which the raw ChIP-seq read density had been normalised against input

and presented as log of the fold change over input. In both cases, the average ChIP-
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Table 3.4: Publicly available chromatin modification data used in Chapter 3

Data Type Sample Genome Assembly Source GEO
H3K27me3 ChIP-seq Fetal brain hg19 Roadmap Epigenomics GSM806937
H3K4me1 ChIP-seq Fetal brain hg19 Roadmap Epigenomics GSM806934
H3K4me3 ChIP-seq Fetal brain hg19 Roadmap Epigenomics GSM669624
H3K27me3 ChIP-seq 20-24hr Embryo dm6 modENCODE GSM439443
H3K27ac ChIP-seq 20-24hr Embryo dm6 modENCODE GSM401423
H3K4me1 ChIP-seq 20-24hr Embryo dm6 modENCODE GSM439464
H3K4me3 ChIP-seq 20-24hr Embryo dm6 modENCODE GSM400673

seq signal for each chromatin modification (raw or normalised) was visualised across

high- and low-turnover GRBs.

3.2.11 Repeat content of high- and low-turnover GRBs

RepeatMasker-annotated repeats were downloaded for the hg19 genome

(RepeatMasker Open-4.0.). The average coverage of long interspersed nuclear el-

ements (LINEs), short interspersed nuclear elements (SINEs) and long terminal

repeats (LTRs), the three most prominent repeat families in human genome, was

calculated in bins across ht- and ltGRBs and visualised as a metaplot. The difference

between SINE density within ht- and ltGRBs was then quantified as the number of

elements per kb in each GRB.

To assess the activity of repeats in the human fetal brain, repeats were

overlapped with H3K27ac peaks retrieved from Yan et al. (Yan et al. 2016, GEO

Accession:GSE63634). H3K27ac consensus peaks were identified by taking the in-

tersection of peaks identified independently in each replicate. Those repeats that

overlapped an H3K27ac consensus peak were considered active. The proportion of

active repeats in both high- and low-turnover GRBs were compared to the propor-

tion of active repeats in non-GRB regions.
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3.3 Results

3.3.1 GRB identification in three distinct metazoan lineages

To assess the evolutionary dynamics of GRBs that have been evolving in-

dependently for millions of years, I identified GRBs in three reference species from

distinct metazoan lineages. In each reference species, GRBs were predicted us-

ing genome-wide kurtosis-based conservation (described in Chapter 2) for multiple

species comparisons. The species used were selected such that, within a phylogeny,

each species comparison spans a unique evolutionary distance, and between phylo-

genies the species comparisons span comparable distances (Figure 3.1A). I selected

hg19, galGal4 and dm6 as reference species as these species have well assembled

genomes and abundant publicly available functional genomics data, allowing for

further characterisation of the identified GRBs. The number, and average width of

the GRBs identified for each species comparison are listed in Table 3.5.

Table 3.5: Kurtosis-based GRBs identified in hg19, galGal4, and dm6

Reference Species Query Species Number of GRBs Average Width (kb)
hg19 rheMac3 501 763.2
.. canFam3 522 826.4
.. monDom5 444 895.6
.. galGal4 363 738.6

galGal4 melGal1 429 495.2
.. taeGut2 370 556.3
.. anoCar2 298 558.7
.. xenTro3 251 528.8

dm6 droAna2 250 130.6
.. dp2 221 125.7
.. droMoj2 223 126.1

In Table 3.5, the query species are ordered by increasing evolutionary dis-

tance from the reference species, and it is clear that there is a general trend towards

identification of a greater number of GRBs in the shortest evolutionary comparisons.

Under the turnover model this result is intuitive as the most recently diverged species

will have had the least time to accumulate sequence changes in their GRBs, thereby
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Figure 3.1: GRB identification in distinct metazoan lineages. (A) GRBs were
identified for multiple species comparisons to three reference species (marked with an
asterisk) from distinct metazoan lineages. For each species, the time since divergence
from the reference species is shown in millions of years above the appropriate branch
point. (B) The proportion of GRBs unique to a specific species comparison is related to
the evolutionary distance of the comparison. GRB sets identified between closely related
species tend to have a greater proportion of unique GRBs.

Chapter 3 3.3.1 89



Chapter 3 3.3. RESULTS

facilitating their identification.

The average size of the GRBs identified in each reference species is fairly

consistent for each individual species comparison, however we see that the average

size of the GRBs varies significantly between reference species. This is consistent

with previous observations that the average size of GRBs identified in a species is

approximately proportional to its genome size (Harmston et al. 2017).

Lastly, for each phylogeny I calculated the number of GRBs uniquely iden-

tified in each species comparison as a proportion of the total number of GRBs

identified for that comparison. The results for each reference species are presented

in Figure 3.1B. From this figure it is clear that there is an inverse relationship be-

tween the evolutionary distance of the species comparison and the number of GRBs

that are uniquely identified in that comparison. The increase in the number of

GRBs identified and the proportion of uniquely identified GRBs with decreasing

evolutionary distance appears to be continuous, suggesting that sequence turnover

within GRBs is continual and that CNEs have not been recruited in distinct bursts.

3.3.2 Identification of high- and low-turnover GRBs

To compare the features of GRBs that exhibit similar levels of conservation

in independent lineages, I identified shallowly and deeply conserved GRBs in each

phylogeny. Under the assumption that loss of conservation within a GRB is, in

the majority of cases, due to turnover within regulatory elements, I define these

as high- and low-turnover GRBs respectively. I assessed the depth of conservation

of each GRB identified in the closest species comparison by summing the kurtosis-

based conservation score from all species comparisons across its length. GRBs were

then ranked based on their maximum summed kurtosis value, and the bottom 20%

of GRBs were defined as high-turnover GRBs (htGRBs), while the top 20% were

defined as low-turnover GRBs (ltGRBs). This was performed for each phylogeny

separately. To confirm that each set of GRBs exhibited the expected conservation
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patterns, I visualised CNE density for each species comparison in genomic windows

centred on ht- and ltGRBs respectively (Figure 3.2 and Figure S1).

From these figures we can see that, as expected, there is a clear enrichment

of CNEs within ltGRBs regardless of the distance of the species comparison, while

in htGRBs, the enrichment is lost in the more distant species comparisons. This

is summarised in the form of a metaplot in Figure 3.3. Under the turnover model

this difference in the depth of conservation of these two sets of GRBs would be

explained by differing rates of sequence turnover within each set. These sets of

high- and low-turnover GRBs are by no means exhaustive, as by using a quantile

of a continuum of conservation values to group GRBs will inevitably exclude some

GRBs that have similar conservation patterns but fall just outside the included

quantile. However, for the purpose of this analysis, selecting the two extremes of

a distribution of turnover rates should facilitate identification of potential shared

characteristics or mechanisms which might explain the difference in rate of turnover

at each set of GRBs.

3.3.3 High-turnover GRB boundary positions are less con-

served than low-turnover GRBs

A clear difference between htGRBs and ltGRBs is their average width,

visible as narrower funnels in Figure 3.2. In all three reference species, htGRBs are

significantly narrower than ltGRBs (Figure 3.4A; hg19 p = 2.29x10-13; galGal4 p =

6.99x10-6; dm6 p = 3.79x10-6). This may be due to the most deeply conserved GRBs

targeting genes whose expression pattern is the most tightly regulated, or function

in a larger number of contexts. These genes would require numerous enhancers

to ensure the robust regulation of their expression, thereby extending the size of

the GRB, as we observe here. This may also be due to non-coding conservation

degrading more rapidly at the boundaries of htGRBs than ltGRBs. If conserved

enhancers at the edges of GRBs gain mutations, thus reducing the conservation of
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Figure 3.2: CNE Density in high- and low-turnover GRBs. CNE density for each
of the species comparisons from hg19 (A) and dm6 (B) was plotted in high- and low-
turnover GRBs. The grey funnels represent the extent of the GRBs, while the coloured
plots show the CNE density in the same genomic windows. In the ltGRBs, there is visible
enrichment of CNEs within the GRBs for all species comparisons, while in the htGRBs,
this enrichment is only visible in the most closely related species comparisons and appears
to decrease with increasing distance of the comparison (from left to right).
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Figure 3.3: Average CNE Density in high- and low-turnover GRBs. The average
CNE density in high- and low-turnover GRBs in each reference species (hg19, galGal4 and
dm6). Each line represents the density of CNEs identified between the reference species
and each of the species in its phylogeny. Low-turnover GRBs exhibit high CNE density
for all species comparisons, while in high-turnover GRBs there is a loss of CNE density in
the more distant comparisons.

that region, then GRB detection will truncate the GRB, resulting in shorter GRBs

on average. Further, if their is a loss of sequence conservation in the centre of the

GRB, it may be identified as two separate shorter GRBs.

If the effect is primarily due to the degradation of non-coding sequence con-

servation at the edges of htGRBs, then the boundaries should be less consistently

predicted over multiple species comparisons. To assess this assumption I calculated

the distance from GRB boundaries predicted in the closest species, for each phy-

logeny, to the nearest boundary predicted in each of the other species comparisons.

Figure 3.4B shows these results as cumulative distributions of distances for ht- and

ltGRBs. In this figure, we can see that in htGRBs, there is a trend towards increasing

difference between boundary predictions as the distance of the evolutionary com-
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parison increases, while the boundaries of ltGRBs are consistently predicted across

all evolutionary timescales. These results indicate that GRB boundary prediction

over multiple evolutionary timescales is less consistent in htGRBs than ltGRBs,

supporting the hypothesis there is increased degradation of sequence conservation

at htGRB boundaries, or that htGRB boundaries are more able to shift through

evolution than ltGRB boundaries.

3.3.4 High- and low-turnover GRB boundaries are equally

predictive of TAD boundaries

While degradation of non-coding conservation in distant genomes would

strongly influence GRB boundary prediction in more distant comparisons, this effect

should be reduced in the most closely related species comparisons. To assess the

effects of sequence degradation on htGRB identification in closely related species, I

compared how well the boundaries of ht- and ltGRBs coincide with TAD boundaries

(Figure 3.4C). For this analysis publicly available hg19 and dm6 Hi-C data were

used to identify a set of TADs for each species. I then compared the concordance

of GRB and TAD boundaries by visualising the distance from each GRB boundary

to its closest TAD boundary. From these figures it appears that ht- and ltGRBs

coincide equally well with TADs, suggesting that htGRBs defined in close species

comparisons are as accurately predicted as the ltGRBs.

Given the dramatic difference in the widths of ht- and ltGRBs, it would

be expected that the TADs overlapping these two groups would also differ in width.

However, when comparing TADs overlapping htGRBs (htTADs) and TADs over-

lapping ltGRBs (ltTADs), I find that the difference in widths is minimal. In hg19,

htTADs are significantly narrower than ltTADs (Figure 3.4D; hg19 p = 0.021),

however the difference in width is small. In dm6 htTADs tend to be narrower than

ltTADs, but the difference is not statistically significant. Together, these results sug-

gest that over short evolutionary distances htGRBs correspond as well with TADs
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Figure 3.4: High- and low-turnover GRB width and boundary prediction. (A)
High- and low-turnover GRB widths in each of the reference species used. (B) Cumulative
distributions of the distance from the boundaries of GRBs identified in the closest species
to the reference, in each phylogeny, to the nearest boundary identified in each of the other
species comparisons. (C) Cumulative distributions of the distance from hg19 and dm6
GRB boundaries to the nearest TAD boundary. (D) The widths of TADs overlapping ht-
and ltGRBs in hg19 and dm6. (E) Distributions of the number of TADs overlapped by
ht- and ltGRBs.
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as ltGRBs, and these TADs tend to be narrower than TADs overlapping ltGRBs,

however differences in ht- and ltTAD widths are not sufficient to explain the striking

difference in ht- and ltGRB widths.

Previously it has been noted that some of the largest and most strongly

conserved GRBs are actually two or more GRBs in such close physical proximity

that it is impossible to separate them using sequence conservation alone (Harmston

et al. 2017). This is another potential explanation for the differences in ht- and

ltGRB widths, as ltGRBs span multiple TADs significantly more often than htGRBs

(Figure 3.4E; hg19 p = 2.63x10-5; dm6 p = 0.037).

Taken together these results suggest that while htGRB boundary are less

conserved over multiple species comparisons, in close species comparisons, htGRBs

still correspond as well with TADs as ltGRBs. The TADs which coincide with

htGRBs appear to be narrower in general than those which coincide with ltGRBs,

supporting the theory that ltGRB target genes have a larger array of enhancers to

ensure their robust spatiotemporal expression. However, the large difference in the

average widths of htGRBs and ltGRBs is likely due to merging of highly conserved

neighbouring GRBs in the ltGRB set.

3.3.5 High- and low-turnover GRBs target distinct subsets

of genes

The next step in characterising high- and low-turnover GRBs was to test

whether they regulate specific classes of genes, and whether this is consistent across

phylogenies. For each phylogeny, I retrieved the co-ordinates of all protein coding,

microRNA and long non-coding RNA genes in each reference genome. Next, I subset

these genes into those that overlap htGRBs and ltGRBs. I performed GO enrich-

ment analysis on the high- low-turnover sets separately in each reference species.

When examining the ten most enriched GO terms from each reference species, it

is clear that htGRBs and ltGRBs regulate functionally distinct subsets of genes
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(Figure 3.5). Genes in ltGRBs are strongly enriched for BP terms related to the

regulation of transcription, RNA biosynthetic processes and pattern specification

in embryogenesis, while genes in htGRBs are enriched for cell adhesion, nervous

system development and general multicellular organism development terms. These

differences are also reflected in the MF terms, with ltGRB genes enriched for DNA

binding and transcription factor activity terms, and htGRBs enriched for cell-surface

receptor related terms such as calcium ion binding, transmembrane receptor protein

tyrosine kinase activity and neurotrophin receptor binding (Figure S2).

Most importantly, the differences in enrichment seen in the high- and low-

turnover sets are largely consistent across all three reference species. This indicates

that similar classes of genes are undergoing similar rates of regulatory turnover in

three distantly related phylogenies, and that the GRBs we identify as either deeply

or shallowly conserved in each of the three phylogenies are functionally equivalent. It

is likely that the rate of regulatory turnover within a GRB may be directly influenced

by the function of the gene it regulates. This phenomenon is illustrated in Figure

3.6. Shown are the orthologous regulatory landscapes surrounding the hg19, galGal4

and dm6 equivalents of the MEIS2 and CDH6 genes. MEIS2, a transcription factor

crucial to the regulation of early development, is located within a ltGRB in all three

phylogenies, and the GRB boundaries predicted from each species comparison are

highly similar regardless of the distance of the comparison. In contrast, CDH6, a

cell membrane glycoprotein that mediates homophilic cell-adhesion during kidney

development, occurs within a htGRB in all three phylogenies. It is clear that in all

three phylogenies the non-coding conservation surrounding CDH6 is only maintained

between closely related species, and robust GRBs are only predicted from each

reference species to its most closely related species.
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Figure 3.5: High- and low-turnover GRB target gene GO enrichment. Gene
ontology (GO) enrichment analysis was performed for the target genes of ht- and ltGRBs.
The -log10 p-values for the top 10 enriched BP terms from each reference species are shown
here. Biological process GO terms indicate that ht- and ltGRBs are enriched for distinct
subsets of developmental genes, and that the enrichment is consistent across the three
reference species used.
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Figure 3.6: Patterns of regulatory turnover are conserved across distinct phy-
logenies. CNE density, kurtosis-based GRB predictions and kurtosis-based conservation
are shown around each reference species ortholog of a hg19 ltGRB target gene (MEIS2 )
and htGRB target gene (CDH6 ). Conservation patterns around each class of target gene
are very similar in all three phylogenies. Note that for clarity, only the predicted GRB
target genes are shown in this figure.
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3.3.6 High- and low-turnover GRB target gene expression

during development

Since the genes regulated by ht- and ltGRBs appear to tolerate turnover

within their regulatory landscapes differently, I sought to further characterise them

and identify shared properties that may explain the differing GRB conservation

patterns. I used ENSEMBL’s ortholog predictions to map hg19 GRB target genes

to their mouse (mm9) orthologs and then assessed their expression dynamics during

mouse embryonic development using CAGE data from the FANTOM5 consortium

(Forrest et al. 2014). The FANTOM5 mouse developmental time course begins at

embryonic day 11, spanning 9 time-points until embryonic day 18. Using a SOM,

I clustered all mouse genes based on their dynamics through development (Figure

3.7A). SOMs tend to place the largest and most distinct clusters at the corners of

the grid, and in this case the three most distinct clusters represent early expressed

genes with decreasing expression as development progresses, late expressed genes

which start low and increase their expression as development progresses, and genes

expressed stably throughout development. The fourth corner of the SOM contains

genes which don’t show any consistent pattern across development, and I therefore

excluded this cluster from further analysis.

To assess whether ht- and ltGRB target genes display different expression

dynamics during development, I subset all genes overlapping ht- and ltGRBs based

on whether they were predicted to be targets of GRB regulation (see Section 3.2.9).

Next I performed a Fisher’s exact test for enrichment or depletion of high- and low-

turnover target genes in the early, late and stable expression clusters derived from

the SOM. The expected number of high- and low-turnover genes in each cluster was

based on the distribution of all GRB target genes between clusters (Figure 3.7B).

High- and low-turnover GRB target genes are significantly differently distributed

between all clusters (p < 0.0005). Low-turnover target genes are significantly en-

riched in the early expression cluster (p < 6.38e-08) and significantly depleted in the
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Figure 3.7: High- and low-turnover GRB target gene expression during de-
velopment. (A) Gene expression profiles obtained by self-organising map clustering of
CAGE signal at mouse promoters during development. Each box represents a cluster and
contains a beanplot representing the relative expression of the genes, in each cluster, at
each developmental time point. The developmental time points used, which serve as the
x-axis for all boxes, are show on the bottom. (B) The observed and expected number of
ht- and ltGRB target genes in the early, late and stably expressed gene expression clusters.

late expression cluster (p < 0.024), while high-turnover target genes are depleted

in the early cluster (p < 0.0195) and significantly enriched in the late expression

cluster (p < 0.026). Neither high- nor low-turnover target genes have any significant

enrichment or depletion in the stably expressed cluster.

These results are in agreement with the functional classes of high- and low-

turnover GRB genes identified in Section 3.3.5. Low-turnover genes are enriched

for transcription factors involved in pattern specification in the developing embryo,

which occurs early in development. High-turnover genes are enriched for genes

involved cell-cell adhesion in neural development. These are processes which are

specific to distinct tissues in the developing embryo, and therefore occur later in

development than the initial establishment of the embryonic body plan.
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Altering the regulation of a gene expressed early in development is likely

to have greater pleiotropic effects than genes expressed later in development. Any

detrimental change in the regulation of an early expressed gene will have an impact

on the cells in which the gene is expressed, as well as all of the tissues which are

derived from those cells. In this scenario it is likely that selection against regulatory

change in ltGRBs is greater than in htGRBs due to the difference in function and

timing of expression of the genes that they regulate.

3.3.7 High- and low-turnover GRBs occur in distinct chro-

matin states

It has been shown that GRBs tend to be maintained in a silent or polycomb

repressed chromatin state in adult tissues (Harmston et al. 2017). This is due

to the vast majority of GRBs being active during development and subsequently

silenced in mature tissues. Given that there were differences in the developmental

expression and function of genes targeted by ht- and ltGRBs, I next sought to

identify concomitant differences in chromatin state at ht- and ltGRBs.

To this end, I plotted the average coverage of H3K27me3, H3K4me1 and

H3K4me3 across ht- and ltGRBs using hg19 fetal brain chromatin modification

data from the NIH Roadmap Epigenomics Consortium (Kundaje et al. 2015). Since

htGRB target genes are expressed late in development and enriched in neural de-

velopmental GO terms, fetal brain samples provide an excellent tissue in which to

observe differences in ht- and ltGRB chromatin state. ltGRBs exhibit a clear and

strong enrichment of H3K27me3 and H3K4me1, but no enrichment of H4K4me3

(Figure 3.8A). H3K27me3 enrichment indicates that as expected, ltGRBs are poly-

comb repressed. Further, the combination of H3K27me3 and H3K4me1 is usually

associated with poised enhancers, but can also mark enhancers that have been in-

activated following a period of activity during development (Bonn et al. 2012). The

human chromatin modification data used in this chapter was generated from 17 week
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old embryos and, given that the majority of ltGRB target genes are expressed early

in development, we would expect that at this stage of development most ltGRBs

would be inactive rather than poised. Unlike ltGRBs, htGRBs are not polycomb

repressed in the fetal brain. There is no enrichment of H3K27me3 inside htGRBs,

and in fact there appears to be a slight dip in coverage within their boundaries.

Similar to the ltGRBs, htGRBs are enriched for H3K4me1, but to a greater ex-

tent. There is also a sharp increase in H3K4me3 at htGRB boundaries and at their

centre, suggesting that they contain both active enhancers and promoters. Taken

together these results suggest that htGRBs are more active in the human fetal brain,

while ltGRBs are polycomb repressed and inactive. This result is in agreement with

the GO results, which identified an enrichment in neural development genes within

htGRBs.

To test whether these results generalise to other species, I retrieved dm6

chromatin modification data from the modENCODE consortium (Roy et al. 2010).

Unfortunately the developmental samples available from modENCODE are not di-

vided by tissue, so I could not directly compare the developing brains of the two

organisms. Instead I retrieved chromatin modification data derived from embryos

20-24hr post fertilisation. This is the final stage prior to hatching and the subsequent

larval stages of Drosophila development. Drosophila larvae hatch with a complete

central nervous system, and therefore at least some of the signal observed in the

whole organism will be contributed by the developing nervous system. Further, this

is a late stage of the first Drosophila developmental phase, thereby maximising the

chances that we can observe active htGRBs. As with the hg19 GRBs, I plotted the

H3K27me3, H3K27ac, H3K4me1 and H3K4me3 signal across dm6 ht- and ltGRBs

(Figure 3.8B). In this case, the coverage is presented as the log fold enrichment over

input.

Similar to hg19 ltGRBs, dm6 ltGRBs show the characteristic enrichment

of H3K27me3 and concomitant depletion of H3K27ac. htGRBs, however, are not en-
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Figure 3.8: Chromatin modifications at high- and low-turnover GRBs. (A)
Average coverage of human fetal brain H3K27me3, H3K4me1 and H3K4me3 ChIP-seq
reads across ht- and lt-GRBs. (B) Log2 fold enrichment of D. melanogaster H3K27me3,
H3K27ac, H3K4me1 and H3K4me3 ChIP-seq signal over input across ht- and ltGRBs.
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riched for H3K27me3, mirroring what we see in the hg19 htGRBs. There is very little

difference between dm6 ht- and ltGRBs with respect to H3K4me1 and H3K4me3

enrichment. Both are relatively depleted for H3K4me1, and have no specific en-

richment of H3K4me3. Interestingly, there is a strong enrichment of H3K4me3

just outside the boundaries of dm6 GRBs. It has been previously reported that

Drosophila TADs are flanked by clusters of housekeeping genes (Sexton et al. 2012).

Given the strong concordance between GRBs and TADs, H3K4me3 enrichment at

GRB boundaries is likely due to clusters of active housekeeping genes. The depletion

of H3K4me1 in both ht- and ltGRBs in dm6 is unexpected, but could be explained

by both sets of GRBs being inactive in the majority of tissues, thereby diluting the

signal from active tissues. These results suggest that in 20-24h post fertilisation

Drosophila embryos, target genes in ltGRBs are polycomb repressed, while target

genes in htGRBs may occur within open chromatin. Inclusion of more chromatin

modification data may help to clarify the chromatin state at htGRBs.

Taken together, these results show that ht- and ltGRBs are active in dif-

ferent tissues and time points during development. From the time points sampled,

it appears that htGRBs are more likely to be active in late neural development than

ltGRBs in humans. In Drosophila htGRBs are potentially in open chromatin re-

gions in the final stage before hatching while ltGRBs are polycomb repressed. These

results are consistent with the results of the GO enrichment and the developmental

expression analysis, identifying a tendency towards later expression in htGRBs and

a potential role in neural development.

3.3.8 High-turnover GRBs are more likely to contain active

repeat elements that low-turnover GRBs

GRBs are known to be depleted of repeat elements, including SINEs,

LINEs, and LTRs, presumably because repeat element insertion may disrupt the

regulation of the GRB target gene, and is therefore not tolerated (Harmston et al.
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2017). However, repeat elements have been shown to play an instrumental role in the

evolution of gene regulation in general (Thornburg, Gotea, and Makałowski 2006;

Feschotte and Pritham 2007; Feschotte 2008; Chuong, Elde, and Feschotte 2017),

and LINEs and SINEs in particular have contributed to the evolution of mammalian

brain development (Sasaki et al. 2008; Singer et al. 2010). Given the role of htGRBs

in neural development, and their evidence of activity in the human fetal brain, I

compared the repeat content of ht- and ltGRBs, hypothesising that repeats may be

better tolerated in htGRBs and may contribute to their regulatory turnover.

To this end, I downloaded all RepeatMasker annotated hg19 repeats and

visualised the density of SINEs, LINEs, and LTRs across ht- and ltGRBs (Figure

3.9A). ltGRBs exhibit the expected patterns, with visible depletion of all three

repeat families within the boundaries of GRBs. htGRBs, however, while depleted of

LINEs and LTRs, are not visibly depleted of SINEs. Quantified as SINEs per 10kb,

ltGRBs are significantly less SINE dense than htGRBs (Figure 3.9B, p=0.0492).

Figure 3.9: Repeats in high- and low-turnover GRBs. (A) Average repeat coverage
across ht- and ltGRBs. (B) SINEs per 10kb in ht- and ltGRBs. (C) The proportion of
SINEs which are active (as determined by H3K27ac) in htGRB, ltGRB and nonGRB
regions

While htGRBs are more SINE dense than ltGRBs, SINE elements are gen-

erally silenced in the human genome, and thus their presence alone is not sufficient

evidence that they have an effect on target gene regulation in these GRBs (Rhee
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et al. 2002; Carnell and Goodman 2003). To assess whether SINEs in htGRBs are

more likely to be functional in development than SINEs in ltGRBs, I determined

the proportion of SINEs which are marked by H3K27ac in the fetal human brain

for SINEs within htGRB, ltGRB and nonGRB regions of the genome, using this a

proxy for activity (Figure 3.9C). In general only a tiny proportion of SINEs in the

human genome are active in the fetal human brain, however SINEs in both ht- and

ltGRBs are significantly less likely to be active than SINEs in the rest of the genome

(htGRB: p = 1.37x10-5; ltGRB: p < 2.2x10-16). This likely reflects silencing of SINEs

within GRBs, as they have the potential to act as regulatory elements and alter the

expression of GRB target genes. Further, SINEs in htGRBs are significantly more

likely to be active than SINEs in ltGRBs (p = 3.73x10-7).

These results suggests that htGRBs are not only more likely to tolerate

SINE insertions, but that SINEs within htGRBs are more likely to be active during

neural development and may potentially be exapted into regulatory function within

these GRBs.
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3.4 Discussion

In this chapter I have successfully identified GRBs that exhibit deep and

shallow evolutionary conservation in three distinct metazoan lineages using kurtosis-

based conservation. I define these as ht- and ltGRBs and, in support of the turnover

model, show that they share many characteristics between lineages. Firstly, ht- and

ltGRBs target distinct subsets of genes - ltGRBs mostly regulate developmental

transcription factors, while htGRBs tend to regulate developmental genes involved in

cell adhesion and neural development. Further, ht- and ltGRBs consistently regulate

the same classes of genes regardless of the phylogeny in which they were identified.

Next I showed that ht- and ltGRB target genes are expressed at different stages

of development, with ltGRB targets expressed early and htGRB targets expressed

late. Additionally, in late development, ht- and ltGRBs are maintained in different

chromatin states. In both hg19 and dm6, htGRBs lack polycomb repression and

appear to be active while ltGRBs are polycomb repressed and silent. Finally, I

show that htGRBs in hg19 are more likely to contain active SINEs, potentially

contributing to the regulatory turnover in these regions.

Lowe et al. proposed that there have been three distinct periods of regu-

latory innovation during vertebrate evolution (Lowe et al. 2011). They posit that

a first wave of innovation occurred at developmental transcription factors, a sec-

ond at cell-signalling genes and a third, mammalian specific wave, occurred at post

translational modification genes. Interestingly, these are the same classes of genes I

identify in my turnover analysis, with the ltGRBs targeting Lowe et al.’s first wave

genes, and the htGRBs targeting their second and third wave genes. Given that

htGRBs identified in a mammalian, vertebrate and invertebrate lineage all target

highly similar classes of genes, a more parsimonious explanation than independent,

lineage-specific recruitment of enhancers can be provided by the turnover model.

It is more plausible that these genes were under this form of long-range regulation

in the metazoan ancestor, and that due to continual sequence turnover it is not
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possible to identify GRBs by sequence comparison alone for large evolutionary dis-

tances. Thus the classes of genes proposed to have been the subject of more recent

regulatory innovation, as identified by Lowe et al., are those undergoing more rapid

regulatory sequence turnover, thereby appearing to be recently recruited in a spe-

cific lineage. While these results support the turnover model, it is also true that

lineage-specific CNE recruitment does occur (Wang et al. 2009). It is possible that

recruitment is more likely to take place within htGRBs as these regions are more

permissive environments for regulatory changes in general. Thus validation of the

turnover model would not invalidate the conclusions made by Lowe et al., rather

recent lineage-specific recruitment of CNEs in htGRBs would be continuous with

the turnover model.

To understand why certain classes of genes tolerate sequence turnover in

their regulatory regions better than others, I characterised ht- and ltGRB target

genes with respect to timing of expression during development, chromatin state,

and repeat content. The general picture that emerged is that ltGRBs are expressed

early in development, are polycomb repressed in neural tissues in humans and late

in development in D. melanogaster, and are significantly depleted of SINE elements.

In contrast htGRBs appear to be expressed late in development, are not polycomb

repressed in either human neural tissue or late D. melanogaster development, and

are not significantly depleted of SINE elements. The timing of expression of ht- and

ltGRB target genes could potentially explain many of the trends I observe. It is

plausible that perturbation of the gene expression pattern of genes expressed in the

early stages of development (via sequence changes to their regulatory elements) is

more strongly selected against than those expressed later in development. Any alter-

ation of the expression pattern of a very early gene is more likely to have pleiotropic

effects on the cell expressing the gene, but also all those cell populations derived from

that cell. This effect could also explain the increased tolerance of SINE insertions

in htGRBs, and their increased overall activity in developing neural tissues. It has

Chapter 3 3.4.0 109



Chapter 3 3.4. DISCUSSION

been repeatedly shown that transposable elements can be exapted into regulatory

function (Girard and Freeling 1999; Deininger et al. 2003; Mikkelsen et al. 2007;

Chuong, Elde, and Feschotte 2017), and in particular Alu elements (SINEs) have

been shown to resemble enhancers and may be able to function as proto-enhancers

(Su et al. 2014). Further, knockdown of enhancer SINEs in mouse cortical neu-

rons induces defects of both cortical radial migration in vivo and activity-dependent

dendritogenesis in vitro (Policarpi et al. 2017). Therefore, ltGRBs would be less

likely to tolerate insertion of potential new regulatory sequences as the viability of

the developing embryo may be more sensitive to misregulation of early expressed

ltGRB target genes. In the future it would be interesting to directly investigate this

hypothesis by comparing the number of distinct cell types/populations which are

derived from progenitor cell that express ht- and ltGRBs respectively.

Overall, the identification of GRBs that have similar conservation patterns

and target similar classes of genes, in three independent metazoan lineages, is strong

support for the turnover model. The most parsimonious explanation for these sim-

ilarities is that GRBs are an ancient feature of metazoan gene regulation, and that

since the initial evolution of distantly acting cis-regulatory elements, CNEs and

GRBs have been under strong negative selective pressure due to their role in mul-

ticellular development. While selection against sequence changes in these regions

is incredibly strong, it is likely that no sequence is totally indispensable, and thus

given enough time these regions will turnover to the point that they are no longer

identifiable by sequence conservation alone.
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4.1 Introduction

The relationship between GRB and genome size was first investigated

by comparing the size of opossum, human, mouse, chicken, spotted gar and D.

melanogaster GRBs to their respective genome sizes (Harmston et al. 2017). The

authors observed that GRB size scaled with genome size, and that the size of GRBs

identified in one species was highly predictive of the size of their orthologous GRBs

in another species. These results suggest that GRBs expand and contract at a com-

parable rate to the genome, although none of the species studied had undergone a

high degree of genome contraction. Under the assumption that genome expansion

or contraction does not alter the selective pressure on the regulation of a gene under

GRB regulation, GRB expansion and contraction should occur by changes in the

spacing between CNEs rather than sweeping gain or loss events.

While this is an intuitive assumption, it is at odds with a 2006 study that

found that the distance between pairs of adjacent CNEs is highly conserved between

species (Sun, Skogerbø, and Chen 2006). The authors compared the distance be-

tween pairs of CNEs in the human genome to the distance between their orthologs

in the mouse, rat and dog genome and found that the distance between CNEs was

significantly better conserved than the distance between pairs of exons and genes.

However, when the analysis was extended to include non-mammalian vertebrates,

a significant proportion of the CNE pairs were more closely spaced in the non-

mammalian vertebrates than the human genome, with the remainder maintaining

a conserved distance. Further, the smaller the genome, the more pronounced the

effect, with human to fugu and tetraodon comparisons showing that approximately

half of all CNE pairs were much more closely spaced in the fugu and tetraodon

genomes than in the human genome. Interestingly, the authors note that the subset

of CNE pairs that maintain a conserved spacing in the more distant comparisons

are those that were already relatively close together (< 40kb). The bimodality of

these results may imply that there is a minimum spacing required between CNEs for
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them to function correctly, as was shown for the stripe enhancers in D. melanogaster

(Small, Arnosti, and Levine 1993). This could explain why, in the context of genome

compaction in fugu and tetraodon, the distance between closely spaced CNEs was

relatively well conserved, while distantly spaced CNE pairs are found much closer

together post genome compaction.

If there is indeed a minimum required distance between CNEs, GRBs

should also be limited in their minimum size. Thus far GRBs have only been identi-

fied in large vertebrate genomes and the Drosophila melanogaster genome. While it

appears that GRBs in the Drosophila genome have contracted proportionally with

genome size, GRBs need to be identified in more genomes that have undergone

rapid compaction to discover whether this is Drosophila-specific or a general trend

of genome compaction.

Two species that satisfy this criterion are Caenorhabditis elegans and Oiko-

pleura dioica. C. elegans is a hermaphroditic nematode with a 97Mb genome (The

C. elegans Sequencing Consortium 1998). Genome compaction in C. elegans is

thought to have occurred due to the transition from outcrossing to self-fertilisation,

as all self-fertilising Caenorhabditis species have significantly smaller genomes than

their outcrossing relatives (Fierst et al. 2015). O. dioica is a pelagic tunicate with

a 70Mb genome, the smallest metazoan genome sequenced to date (Denoeud et al.

2010). O. dioica are extremely fast evolving, perhaps contributing to the genome

plasticity required for such extreme compaction (Berna and Alvarez-Valin 2014),

however the reason for this compaction is unknown.

In this chapter I identify GRBs in the highly compacted Caenorhabditis

elegans and Oikopleura dioica genomes for the first time, and analyse the effects

of genome compaction on GRBs. Initially I show that these GRBs are functionally

equivalent to GRBs identified in larger genomes with respect to chromatin modifica-

tions and target gene enrichment. Next, I analyse the relationship between genome

and GRB size and find that GRB size scales proportionally with genome size, even
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in highly compacted genomes. Further, I show that while GRB and genome compo-

sition vary widely between the species analysed, GRBs appear to be under similar

constraints with respect to sequence feature composition. This is the first time

GRBs have been identified in such highly compact genomes, and their functional

equivalence with previously identified GRBs strengthens the argument that GRBs

are an ancient feature of metazoan gene regulation.
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4.2 Methods

4.2.1 Species used in Chapter 4

To facilitate a systematic and unbiased comparison of the properties of

GRBs in multiple genomes of varying sizes and compositions, GRBs were identified

in each of the species listed in Table 4.1. GRBs were identified using the kurtosis-

based GRB identification pipeline first outlined in Chapter 2. Throughout this

chapter species will be referred to by their genome assembly identifiers.

Table 4.1: Species used in Chapter 4

Species Common name Genome Assembly
Homo sapiens Human hg19
Mus musculus Mouse mm10
Danio rerio Zebrafish danRer10
Gallus gallus Chicken galGal4

Tetraodon nigroviridis Green spotted puffer fish tetNig2
Drosophila melanogaster Fruit fly dm6
Caenorhabditis elegans Roundworm ce10

Oikopleura dioica Sea squirt OikDioicaNorway

4.2.2 Pairwise genome alignment

All pairwise genome alignments used in this analysis were either retrieved

from the UCSC genome browser or generated using LASTZ (Harris 2007), as de-

scribed in section 2.2.1. The source of all alignments used in this chapter is listed

in Table 4.2.

Table 4.2: Pairwise alignments used in Chapter 4

Reference Species Query Species Source Generated By
Human (hg19) Mouse (mm10) UCSC UCSC
Mouse (mm10) Human (hg19) UCSC UCSC

Zebrafish (danRer10) Blind Cave Fish (AstMex102) Lenhard group Ge Tan
Chicken (galGal4) Zebra finch (taeGut2) UCSC UCSC

Green spotted puffer fish (tetNig2) Japanese puffer fish (fr3) UCSC UCSC
Fruit fly (dm6) Fruit fly (droMoj2) Lenhard group Ge Tan

Roundworm (ce10) Roundworm (cb3) Lenhard group Ge Tan
Sea squirt (OikDioicaNorway) Sea squirt (OikDioicaJapan) Lenhard group Ge Tan
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4.2.3 CNE identification

CNEs were identified in ce10 and OikDioicaNorway to facilitate a com-

parison between CNE-based and kurtosis-based GRBs. CNEs were identified as de-

scribed in section 2.2.2. Briefly, pairwise net whole-genome alignments were scanned

for regions of high sequence identity over a predefined length. Regions that passed

the minimum sequence identity and length criteria were filtered such that those

overlapping repeat regions or exons were excluded. To prevent the inclusion of

unannotated repeats, the remaining regions were aligned to the reference genome,

using BLAT, and those which mapped to more than four loci were removed (Kent

2002). The remaining regions constitute the final set of CNEs. CNE identification

was performed using the CNEr package in R. The parameters used for both species

are listed in Table 4.3.

CNE density across the genome was calculated by sliding a window across

the genome in 1kb increments and counting the number of CNEs in each window.

A 20kb and 10kb window was used for ce10 and OikDioicaNorway respectively.

Table 4.3: Parameters used for CNE identification in ce10 and OikDioicaNor-
way

Parameter ce10 OikDioicaNorway
Minimum Identity (%) 96.6 98
Minimum Length (bp) 30 50

Smoothing Window Size (kb) 20 10
Smoothing Step Size (kb) 1 1

4.2.4 Kurtosis-based conservation calculation

Kurtosis-based conservation was calculated as described in section 2.2.4

for all species comparisons listed in Table 4.2. In summary, the reference genome

was divided into bins and for each bin all sequences perfectly conserved between the

reference and the query genome were extracted from the pairwise alignment. The

kurtosis of the distribution of the lengths of these sequences was then calculated.

The bin sizes were selected such that the range of sizes used in each species was the
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same relative to the size of that species’ genome. The bins used for each species were

approximately 1/150000, 1/100000, 1/75000 of the genome size for that species. The

bin sizes used for each reference species are listed in Table 4.4.

Table 4.4: Bin sizes used for kurtosis-based conservation calculation

Reference Species Query Species Bin Size (kb)
Human (hg19) Mouse (mm10) 20; 30; 40
Mouse (mm10) Human (hg19) 18; 27; 36

Zebrafish (danRer10) Blind Cave Fish (AstMex102) 9; 14; 18
Chicken (galGal4) Zebra finch (taeGut2) 7; 10; 14

Green spotted puffer fish (tetNig2) Japanese puffer fish (fr3) 2.4; 3.6; 4.8
Fruit fly (dm6) Fruit fly (droMoj2) 1; 1.4, 1.9

Roundworm (ce10) Roundworm (cb3) 0.7; 1; 1.3
Sea squirt (OikDioicaNorway) Sea squirt (OikDioicaJapan) 0.5; 0.7; 0.9

4.2.5 GRB identification

For ce10 and OikDioicaNorway, the CPM framework was used to identify

GRBs from both CNE density and kurtosis-based conservation. For the remainder

of the species comparisons listed in Table 4.4, only kurtosis-based conservation was

used. The GRB prediction method is described in detail in section 2.2.6. Briefly,

change points in the mean and variance of the input signal (either CNE density or

kurtosis-based conservation) were identified across the genome. These change points

were then treated as potential GRB boundaries. Adjacent windows, on either side

of a potential GRB boundary, were then merged if both windows had a mean signal

greater than a predefined quantile of the distribution of all signal values across the

genome. The merged windows were then used as the final set of GRBs.

Multiple quantiles were used for GRB calling to ensure the identified trends

relate to GRB properties and genome size and are not caused by the thresholding

applied. GRBs were called with merging occurring when the mean signal in both

adjacent windows was above 70%, 80% and 90% of all signal values across the

genome.
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4.2.6 Chromatin modifications in GRBs

Publicly available chromatin modification data was used to assess the qual-

ity of the predicted GRBs in ce10 and OikDioicaNorway. The datasets used are listed

in Table 4.5. Processed signal tracks were retrieved for all datasets.

Table 4.5: Publicly available chromatin modification data used in Chapter 2

Data type Sample Genome assembly Citation GEO accession
H3K27me3 ChIP-chip Ovary OikDioicaNorway Navratilova et al. 2017 GSE78915
H3K27ac ChIP-chip Ovary OikDioicaNorway Navratilova et al. 2017 GSE78915
H3K4me1 ChIP-chip Ovary OikDioicaNorway Navratilova et al. 2017 GSE78915
H3K4me3 ChIP-chip Ovary OikDioicaNorway Navratilova et al. 2017 GSE78915
H3K27me3 ChIP-seq Early Embryo ce10 No citation provided GSE49738
H3K27ac ChIP-seq Early Embryo ce10 No citation provided GSE49734
H3K4me1 ChIP-seq Early Embryo ce10 No citation provided GSE50262
H3K4me3 ChIP-seq Early Embryo ce10 No citation provided GSE49739
H3K27me3 ChIP-seq Larvae L3 ce10 No citation provided GSE49724
H3K27ac ChIP-seq Larvae L3 ce10 No citation provided modENCODE
H3K4me1 ChIP-seq Larvae L3 ce10 No citation provided GSE49206
H3K4me3 ChIP-seq Larvae L3 ce10 No citation provided GSE28770
H3K27me3 ChIP-seq Young Adult ce10 No citation provided GSE50314
H3K27ac ChIP-seq Young Adult ce10 No citation provided modENCODE
H3K4me1 ChIP-seq Young Adult ce10 No citation provided GSE50312/GSE50287

To assess the chromatin state of predicted GRBs, heatmaps were produced

in which each row is a genomic window centred on a predicted GRB, and the intensity

of the colour represents the enrichment of a particular chromatin modification in that

genomic location. The rows are ordered by the width of the predicted GRBs, and

thus, in these figures, any chromatin modification enriched inside the GRBs forms a

funnel shape. This was performed for all chromatin modifications available for each

species.

For all metaplots, the predicted GRBs were extended to 3 times their width

and the resulting windows were divided into 300 bins. For each bin, the average

ChIP-chip or ChIP-seq signal was then calculated. For OikDioicaNorway the ChIP-

chip enrichment is presented as log2 fold enrichment over input DNA, while for

ce10 the ChIP-seq data is presented as raw read coverage. K-means clustering of

these windows was used to separate ce10 GRBs into those which displayed active

chromatin modifications and those which did not.
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4.2.7 Gene ontology enrichment analysis

GO enrichment analysis was performed on all genes within predicted GRBs,

compared to a universe of all annotated genes. The resulting p-values were false

discovery rate (FDR) corrected and the top 15 most enriched BP and MF terms

in each species were visualised. For OikDioicaNorway, gene to GO term mappings

were retrieved from OikoBase, a curated Oikopleura database (Danks et al. 2013).

GO enrichment analysis was performed for ce10 and OikDioicaNorway separately

using the GOstats package in R.

4.2.8 GRB size and composition analysis

GRBs were predicted from kurtosis-based conservation, calculated in bins

across the genome, for all species listed in Table 4.1. For each species, the bin sizes

used correspond to approximately 1/150000, 1/100000 and 1/75000 of the genome

size. Further, in the GRB identification step, three quantiles were used for merging

of neighbouring windows. Thus, for each species 9 sets of GRBs were generated. To

examine the relationship between GRB size and genome size, the mean GRB width

was determined for each set and plotted against genome size. GRB sets identified

using the same merging quantile were analysed together, and a linear model was

fitted based on the mean widths at each bin size for each species. Similarly, the

proportion of the genome covered by each GRB set was calculated and visualised

against genome size.

To investigate the composition of GRBs, the locations of all exons, introns

and repeat regions were retrieved for each genome. The exon and intron coordinates

were retrieved from ENSEMBL for all species except OikDioicaNorway (Zerbino

et al. 2018). The OikDioicaNorway gene annotation was retrieved from OikoBase

(Danks et al. 2013). The repeat coordinates were retrieved from the RepeatMasker

(RepeatMasker Open-4.0.) database for all species except for OikDioicaNorway and

tetNig2. RepeatMasker generated tetNig2 repeats were downloaded from the UCSC
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genome browser, while the OikDioicaNorway repeats were specifically generated

for this analysis using RepeatMasker with default settings. For each species, the

remaining sequence which overlapped neither exons, introns nor repeats was desig-

nated intergenic sequence.

To identify the enrichment or depletion of specific features within GRBs

compared to the rest of the genome, a chi-squared test was performed for the ob-

served abundance of each feature within GRBs versus an expected abundance based

on the proportion of the genome covered by that feature. The average width of

exons, introns and repeats within GRBs was also compared to the average width in

the rest of the genome. For this comparison, the mean width of a particular class

of element within GRBs was visualised as a proportion of the mean width in the

rest of the genome. For clarity of visualisation, the log2 of these proportions was

taken. A similar process was followed to visualise the average density of each class

of element within GRBs compared to the genome.
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4.3 Results

4.3.1 CNEs within compact genomes occur in clusters

To evaluate the viability of GRB detection in highly compacted genomes, I

first assessed the occurrence and distribution of CNEs in the ce10 and OikDioicaNor-

way genomes. In the ce10 genome, I identified CNEs (96.6% identical over 30bp)

by pairwise comparison with Caenorhabditis briggsae, while in the OikDioicaNor-

way genome, I identified CNEs (98% identical over 50bp) by pairwise comparison

with another Oikopleura dioica strain, OikDioicaJapan. O. dioica is extremely fast

evolving, making it possible to detect signatures of extreme non-coding conservation

between strains of the same species (Denoeud et al. 2010). CNE detection yielded

8105 ce10 CNEs with a mean width of 38.77bp and 40275 OikDioicaNorway CNEs

with a mean width of 81.62bp. The much larger number of CNEs identified in Oik-

DioicaNorway is due to the short evolutionary distance of the species comparison.

It would be preferable to use a more distantly related species for CNE identification,

unfortunately the only other sequenced Oikopleura genomes are those of O. albicans

and O. vanhoeffeni, both of which are too distantly related to O. dioica for CNE

detection (unpublished data).

Next, I visualised the CNE distribution across the genomes of both species

(Figure 4.1). In these figures we can see the location of all CNEs on the three

largest chromosomes (or scaffolds in the case of OikDiocaNorway) for both species.

In Figure 4.1A and B it appears that the CNEs are quite evenly spread across the

chromosome, as evidenced by the even diagonal line formed by the CNE locations.

This can be caused by high background conservation or the absence of CNE cluster-

ing, however in this case it is due to the compact nature of these two genomes. In

Figure 4.1C we can see the CNE distribution, but across a 500kb region of scaffold_2

in OikDioicaNorway and chrV in ce10. In this figure it is clear that the distribution

of CNEs is made up of very small clusters (vertical lines) interspersed with sparsely
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populated regions. There appear to be very short gaps between clusters of CNEs,

thus giving the impression that the genome is evenly covered by CNEs as seen in

Figure 4.1A-B.

Figure 4.1: CNE distribution in the ce10 and OikDioicaNorway genomes. (A)
The distribution of CNEs across the three largest ce10 chromosomes. The x-axis represents
the genomic location, while the y is the CNE index. (B) The distribution of CNEs across
the three largest OikDioicaNorway scaffolds. (C) The CNE distribution across a 500kb
region of scaffold_2 in OikDioicaNorway and chrV in ce10.

These results suggest that GRBs may exist within these small genomes, but

that they are much reduced in size compared to species in which we have previously

identified GRBs. Further, the spaces between CNE clusters also appear to have
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been greatly reduced upon genome compaction.

4.3.2 GRB identification in compact genomes

As this was the first attempt at GRB identification in such compact

genomes, I predicted GRBs using both CNE- and kurtosis-based conservation

and compared the quality of the predicted GRBs identified using both methods.

To investigate general features of compact GRBs that are independent of GRB

identification parameters, multiple GRB merging quantiles and, for kurtosis-based

conservation, bin sizes for conservation calculation, were used for GRB identifica-

tion. The results of GRB prediction are presented in Figure 4.2 (Detailed results in

Table S2).

Figure 4.2: The properties of GRB sets identified in OikDioicaNorway and
ce10. The mean width (A) and number (B) of GRBs identified using either CNE- or
kurtosis-based GRB identification. GRB sets are split by GRB merging quantile, and in
the case of kurtosis-based GRB sets, bin size used in the GRB identification pipeline. As
there is no bin size paramter used in the identification of CNE-based GRBs, instead of a
bin size they are marked with "CNE" on the x-axis.

From this figure we can see that, in general, CNE-based and kurtosis-
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based GRB identification predict a similar number of putative GRBs with similar

mean widths. Overall, I identify between 167 and 813 putative GRBs in ce10 with

mean widths ranging from 23kb to 51.6kb. In OikDioicaNorway I identify between

186 and 822 putative GRBs with mean widths ranging from 14.7kb to 31.9kb. At

the most stringent merging quantiles and largest bin sizes, the number of putative

GRBs identified is low compared to sets previously identified in invertebrates and

mammals (Harmston et al. 2017), however the majority of parameter combinations

predict a similar number of GRBs to past studies. In both species all parameter

combinations yielded extremely narrow GRBs, suggesting they have undergone a

similar degree of compaction to the genome. This is consistent with the results

presented by Harmston et al. (Harmston et al. 2017).

It appears that the merging quantile and bin size have a larger influence on

both the mean width and number of putative GRBs identified than the method used.

In general, when using the same merging quantile, the width of GRBs identified using

kurtosis-based conservation increase with increasing bin size, while the number of

GRBs identified shows the opposite trend. This could be due to an increased chance

that a narrower bin may contain no, or very few, runs of perfect sequence identity.

These breaks in the continuity of high-kurtosis within a GRB may then result in

the fragmentation of large GRBs into multiple smaller GRBs

Based on visual inspection of the concordance between GRB sets and

CNE-density or kurtosis-based conservation, I selected one CNE-based set and one

kurtosis-based set of putative GRBs to use for the remainder of the analysis. For

ce10 the CNE-based set used was predicted using a merging quantile of 0.8 and the

kurtosis-based set used was predicted on kurtosis-based conservation calculated in

1kb bins with a merging quantile of 0.7. For OikDioicaNorway the CNE-based set

was predicted using a merging quantile of 0.8 and the kurtosis-based set used was

predicted on kurtosis-based conservation calculated in 500bp bins using a merging

quantile of 0.7. While for the remainder of the chapter I will present results based
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on these sets of putative GRBs, the other sets produced very similar results for all

analyses.

4.3.3 CNE-based and kurtosis-based GRBs in compact

genomes are highly concordant

Next, I assessed the degree of overlap between CNE-based and kurtosis-

based GRB predictions to confirm that both methods were identifying biologically

similar sets of candidate GRBs. To this end, I visualised the enrichment of CNE

density within kurtosis-based GRBs and vice versa (Figure 4.3A). In these figures,

each row is a genomic window centred on a GRB, with the putative GRBs ordered

by width. The intensity of the colour represents the CNE density or kurtosis-based

conservation respectively. From this figure it is clear that in both species there is an

enrichment of CNE density within kurtosis-based GRBs, and also an enrichment of

high kurtosis-based conservation scores within CNE-based GRBs. This is compelling

evidence that both techniques are identifying strong conservation in similar genomic

loci.

To further investigate the concordance between CNE-based and kurtosis-

based GRB predictions, I plotted genomic windows centred on putative GRBs and

coloured regions based on whether they were predicted to be in a GRB in either the

CNE-based set, the kurtosis-based set, both sets or neither set. This was performed

for GRB predictions derived from each method in turn in both species (Figure 4.3B).

There is significant overlap of the putative GRBs identified by the two methods, as

shown by the strong enrichment of red within the funnels in these figures. To

quantify this observation, the Jaccard coefficient for the two sets was calculated for

each species. In this context, the Jaccard coefficient measures the overlap of two sets

of ranges by calculating the intersect of the two sets divided by their union. In ce10,

the Jaccard coefficient for CNE-based and kurtosis-based GRBs is 0.47, while for

OikDioicaNorway it is 0.41. In both species, the GRB predictions derived from each
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Figure 4.3: Comparing CNE-based and kurtosis-based GRB predictions. (A)
For both ce10 (above) and OikDioicaNorway (below), CNE density was visualised within
genomic windows centred on kurtosis-based GRB predictions. Conversely, kurtosis-based
conservation was visualised in genomic windows centred on CNE-based GRB predictions.
Both measures are enriched within their counterpart’s predicted GRB, highlighting the
overlap of the GRB predictions derived from each method. (B) Genomic windows, cen-
tred on either CNE-based or kurtosis-based GRB predictions, were coloured by whether
they fell within predicted kurtosis-based GRBs, CNE-based GRBs, both, or neither. (C)
The correlation between maximum CNE density and kurtosis-based conservation in 1000
random windows sampled from GRB and non-GRB windows in both species.
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method are very similar, but are slightly less overlapping that GRBs identified using

the two methods in human, in Chapter 2 on page 64 (human to opossum, Jaccard =

0.52). Further when examining the correlation between kurtosis-based conservation

and CNE density in 1000 random windows, derived from GRB and non-GRB loci

across the genome (Figure 4.3C), it is clear that the correlation is much lower than

in the human genome (Figure 2.1C). This could be due to difficulty in assigning an

appropriate minimum length for CNE density in such highly compacted genomes.

While these results provide clear evidence that, in both species, the two

sets derived from each method are largely overlapping, it is also true that they are

not completely interchangeable. The degree of overlap of GRB predictions derived

from the two methods suggests that they are genuine GRBs, however biological

validation is required.

4.3.4 Chromatin modifications in C. elegans and O. dioica

GRBs

GRBs tend to be broadly marked with H3K27me3 in adult tissues (Harm-

ston et al. 2017), and in Chapter 3 I showed that several chromatin modifications

exhibit either enrichment or depletion that is clearly delineated by GRB boundaries.

Here, I use these known features to simultaneously assess the quality of the CNE-

and kurtosis-based GRB predictions, and to characterise the chromatin features of

the ce10 and OikDioicaNorway GRBs.

For OikDioicaNorway, I retrieved publicly available ovary H3K27ac,

H3K27me3, H3K4me3 and H3K4me1 ChIP-chip data (Navratilova et al. 2017) and

visualised their enrichment within genomic windows centred on both CNE-based

and kurtosis-based GRB predictions (Figure 4.4A). I also extended putative GRBs

to 3 times their width, binned the resulting windows and plotted the average

ChIP-chip enrichment within each bin for each chromatin modification (Figure

4.4B). From these figures we can see that in both sets of GRBs are enriched for
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Figure 4.4: Chromatin modifications inside Oikopleura kurtosis- and CNE-
based GRBs. (A) Heatmaps showing the enrichment of OikDioicaNorway ovary derived,
chromatin modification, ChIP-chip data in genomic windows centred on either CNE-based
or kurtosis-based GRBs. The grey heatmap shows the extent of the GRBs. (B) Metaplots
showing the average enrichment of each chromatin modification in CNE-based and kurtosis-
based GRBs.

H3K27me3. This is similar to what we observe in other GRBs, and expected

as the ovary is a terminally differentiated, highly specialised tissue. GRB target

genes are generally expressed in development, and thus GRBs should be silenced
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in this context. When comparing GRB predictions, we can see that H3K27me3

more clearly demarcates the span of the CNE-based GRBs than the kurtosis-based

GRBs. There is also a visible depletion of H3K27ac in the CNE-based GRBs that is

not apparent in the kurtosis-based GRBs (Figure 4.4A). These results suggest that,

in OikDioicaNorway, the CNE-based GRB boundaries are more reliably estimated

than the kurtosis-based GRBs. Therefore for the rest of the analysis I will use this

set as my OikDioicaNorway GRBs.

For ce10, I retrieved L3 larval H3K27ac, H3K27me, H3K4me3 and

H3K4me1 ChIP-seq data from modENCODE (Gerstein et al. 2010). As with

OikDioicaNorway, I visualised the coverage of each chromatin modification within

genomic windows centred on both CNE-based and kurtosis-based GRB predictions

in turn (Figure 4.5). In contrast to OikDioicaNorway, in ce10 there is a clear

enrichment of H3K27ac and H3K4me1 inside both CNE-based and kurtosis-based

GRBs. H3K27ac and H3K4me1 in combination indicate the presence of active

enhancers, however it is unusual to see such broad domains covered by both

modifications together. In L3 larvae, there are still several developing tissues,

in particular the gonadal tissues (Kimble and Hirsh 1979), and therefore the

enrichment of active marks may be driven by a subset of GRBs that are still active

in the L3 stage. Indeed, when clustering GRBs based on their chromatin state,

approximately one third of GRBs are enriched in H3K27ac and H3K4me1 and

depleted of H3K27me3 (Figure 4.6). The remainder do not appear to be strongly

enriched for any modification, however there is a weak enrichment of H3K27me3,

within these GRBs. This suggests that these GRBs are polycomb repressed and

silent.

When examining the meta-profiles of the clusters derived from ce10 CNE-

based and kurtosis-based GRBs, it is obvious that there is a much sharper boundary

effect on the chromatin modifications in the kurtosis-based GRBs than the CNE-

based GRBs (Figure 4.5B and Figure 4.6B). This implies that the kurtosis-based
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Figure 4.5: Chromatin modifications inside C. elegans kurtosis- and CNE-
based GRBs. (A) Heatmaps showing the coverage of ce10 L3 larvae derived, chromatin
modification ChIP-seq data in genomic windows centred on either CNE-based or kurtosis-
based GRBs. The grey heatmap shows the extent of the GRBs. (B) Metaplots showing the
average coverage of each chromatin modification in CNE-based and kurtosis-based GRBs.

GRBs predict the boundaries of GRBs better than the CNE-based set, and thus for

the remainder of this analysis I use the kurtosis-based GRBs as my ce10 GRBs.

Taken together, the strong enrichment and depletion of specific chromatin

modifications within the predicted ce10 and OikDioicaNorway GRBs is convincing
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Figure 4.6: A subset of C. elegans GRBs appear to be active. (A) Heatmaps of
chromatin modification enrichment within CNE-based and kurtosis-based GRBs. GRBs
were extended to three times their width and the resulting windows were divided into bins.
The windows were then clustered based on their histone modification patterns. The x-axis
indicates the position of the 5’ and 3’ boundary of the GRBs. For both sets of GRBs
approximately one third of the GRBs are covered by active chromatin modifications. (B)
Metaplots showing the average coverage of chromatin modifications within the two clusters
of GRBs defined in the heatmaps.
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evidence that GRB detection successfully identified biologically significant regions of

high non-coding conservation in highly compacted genomes for the first time. Fur-

ther, given the similarities between these GRBs and those that have been detected

in non-compacted genomes, it is likely that they are functionally equivalent.

4.3.5 Gene ontology enrichment analysis of C. elegans and

O. dioica GRB genes

To further assess the functional equivalence of GRBs in compact genomes

and those in larger genomes, I performed GO analysis on all genes within ce10 and

OikDioicaNorway GRBs. Similar to Chapter 3, GRB genes were compared to a

universe of all annotated genes. Figure 4.7 shows the top 15 most enriched BP and

MF terms for GRB genes in ce10 and OikDioicaNorway.

In Figure 4.7A we can see that OikDioicaNorway GRB genes are very

strongly enriched for BP terms related to the regulation of transcription such as "nu-

cleic acid-templated transcription", "regulation of RNA biosynthetic process" and

"positive regulation of transcription from RNA polymerase II promoter". These are

terms frequently associated with transcription factors, and indeed the only MF terms

enriched in OikDioicaNorway GRB genes are "DNA binding transcription factor ac-

tivity" and "sequence-specific DNA binding" confirming that these are transcription

factor genes. The OikDioicaNorway GRBs are also strongly enriched for general de-

velopmental BP terms such as "multicellular organism development" and "animal

organ morphogenesis". These results confirm that there is an over representation of

developmental transcription factor genes within OikDioicaNorway GRBs. This is in

line with what has previously been described for GRB target genes, thereby confirm-

ing both the quality of the predicted OikDioicaNorway GRBs, and their similarity

to GRBs identified in larger genomes.

In ce10, the picture is slightly different. Looking at the ce10 enriched

MF terms, there is still an enrichment of transcription factor related terms such
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Figure 4.7: GRB gene ontology enrichment analysis. Gene ontology (GO) enrich-
ment analysis was performed for GRB genes from ce10 (left) and OikDioicaNorway (right)
GRBs. The multiple test corrected -log10 p-values for the top 15 enriched (A) biological
process and (B) molecular function terms from each species are shown. In each case the
dashed line represents the threshold of statistical significance.
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as "regulatory region nucleic acid binding" and "RNA polymerase II regulatory

region sequence-specific DNA binding", however, the most enriched and abundant

terms are related to cell-cell communication. Further, when examining the enriched

BP terms there is a strong enrichment for terms related to neural development,

cell adhesion and cell-cell signalling. This is unexpected, as the majority of the

terms are far more specific than the developmental terms usually observed for GRB

genes. Overall, the enriched BP and MF terms suggest that GRBs in ce10 tend

to regulate a mixture of developmental transcription factors and components of

cell signalling pathways involved in neurogenesis, axon guidance and general cell

adhesion and communication. These results could be influenced by the overall tissue

composition of C. elegans. Of the 959 somatic cells in an adult animal, 302 are

neurons, and therefore perhaps the enrichment in neural developmental terms is

due to the complexity of the ce10 nervous system relative to the overall complexity

of the animal (White 1988). If the majority of genes that require GRB-like regulation

are related to neural development, it is likely that GO analysis of GRB genes would

identify enriched neural development terms. While the most enriched GO terms in

ce10 GRB genes are more specific than what we expect, they are all still children of

the terms frequently associated with GRBs.

In summary, both OikDioicaNorway and ce10 appear to target genes typ-

ically associated with GRBs, thereby confirming their functional equivalence with

previously identified GRBs. Compared to previously defined GRB target genes, ce10

GRBs are more frequently associated with neural development and cell communi-

cation genes. This enrichment in axon guidance and cell adhesion GO terms in the

general population of ce10 GRB genes is interesting as these are the terms enriched

in high-turnover GRBs identified in three independent phylogenies in Chapter 3.

Chapter 4 4.3.6 134



Chapter 4 4.3. RESULTS

4.3.6 GRB size is proportional to genome size

To assess the effect of genome compaction on GRB size, and to identify

the overall relationship between GRB and genome size, I identified GRBs for all the

species comparisons listed in Table 4.4. The number and size of GRBs identified in

all species are listed in Table S3. Similar to Chapter 3, overall the mean GRB width

increases and total number of predicted GRBs decreases as bin sizes for kurtosis

calculation are increased. There is also a strong trend towards decreasing GRB

number and width with increasing merging quantile. This is due to the increased

stringency in the GRB prediction method, requiring regions to have higher non-

coding conservation to be predicted as a GRB. To assess the relationship between

GRB and genome size, I plotted the mean width of GRBs predicted for each bin

size, split by GRB merging quantile, for each species. From Figure 4.8A, it is clear

that regardless of the bin size used in the kurtosis-based conservation calculation,

or the merging quantile used in the GRB prediction, there is a very strong linear

relationship between GRB and genome size. This result shows that GRBs have

indeed undergone either compaction or expansion at a comparable rate to genome

compaction or expansion. Further, identification of such compact, functional GRBs

in the OikDioicaNorway genome suggests that either there is no maximal level of

compaction a GRB can achieve before becoming nonfunctional, or we have not yet

identified GRBs in compact enough genomes to identify such a limit.

The ancestral metazoan genome underwent significant innovation with re-

spect to gene content, predominantly acquiring novel nucleic acid binding, transcrip-

tion factor and cell signalling genes - genes frequently found within GRBs (Paps and

Holland 2018). Further, the evolution of long-range gene regulation was likely one

of the major drivers of the transition to multicellularity (Sebé-Pedrós et al. 2016).

These results suggest that GRB-like gene regulation first emerged in the metazoan

ancestor and therefore it is plausible that there are a core set of GRBs present in all

metazoa. In support of this, the proportion of the genome covered by GRBs, at the
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Figure 4.8: GRB size and proportion of the genome covered by GRBs vs
genome size. (A) The log of the mean GRB size from GRB sets predicted using kurtosis-
based conservation calculated in three bin sizes plotted against log genome size. GRB sets
were stratified by the merging quantile used in GRB prediction. A linear model was fit to
the data for each merging quantile separately, and the grey region around the fitted line
represents the 95% confidence interval of the model fit. (B) For all GRB sets identified
at a GRB merging quantile, the proportion of the genome covered by the predicted GRBs
was plotted against the log of the size of the genome from which they were derived. Again,
a linear model was fit to the data for each merging quantile.
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most stringent GRB prediction thresholds, is approximately equal in all genomes

(Figure 4.8B). Further, the most stringent GRB prediction also identifies approxi-

mately the same number of GRBs in all species, despite the total number ranging

widely at the less stringent thresholds (Figure S3). As the stringency of the merging

quantile is reduced, the proportion of the genome covered by GRBs increases in all

species. This effect is most apparent in the compact genomes, likely due to reduced

spacing between adjacent GRBs in compact genomes.

4.3.7 GRB composition is under similar selective pressure in

all species

GRBs tend to be distinct from the genome with respect to gene density,

repeat content and intron size (Engström et al. 2007; Akalin et al. 2009). Each of the

genomes used in this analysis have undergone species-specific gene duplication and

loss events, repeat integration and deletion, and general expansion and contraction.

While it is clear from Figure 4.8A that GRBs expand and contract proportionally

with the genome in which they are identified, it is unknown whether this expansion

and contraction occurs via the proportional gain or loss of the same genomic features

as the rest of the genome; or whether GRBs tend to maintain a specific environment

which is favourable for long-range gene regulation. To address this question, I re-

trieved, or generated, gene and repeat annotation for all species and compared the

composition of GRBs and the genome with respect to exons, introns, repeats and

intergenic regions.

Figure 4.9A shows the proportion of the genome and GRBs covered by each

genomic feature for each species. Genome composition varies substantially between

species. With decreasing genome size there is a trend towards an increase in the

proportion of exonic sequence. The large genomes contain a greater proportion of

repeats, with the exception of the chicken genome which is known to have a relatively

low repeat content (Wicker et al. 2005). The intergenic portion of the genome does
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Figure 4.9: GRB and genome composition. (A) Each species exonic, intronic,
repeat and intergenic content, presented as a proportion of the total genome or GRB size.
Species are ordered from left to right by decreasing genome size. (B) The enrichment of
each genomic feature within GRBs presented as log2 of the observed content divided by the
expected content. For each species, the expected GRB content of each feature was based
on the whole-genome content. The stars above each bar represent whether the enrichment
or depletion was statistically significant as defined by a Chi-squared test. The mean width
(C) and density (D) of exons, introns and repeats within GRBs compared to the genome
average.
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not show a clear trend relative to genome size. In general it is expected that the

compact genomes should contain less intergenic space relative to the larger genomes,

however this is not the case in the OikDioicNorway and tetNig2 genomes. This may

be due to incomplete annotation in these genomes, increasing the proportion that

appears to be unannotated intergenic space. When comparing GRB and genome

content, it is clear that in each species GRB content is significantly different to

genome content. This suggests that there is selective pressure to maintain a specific

regulatory environment within GRBs, and therefore GRB contraction and expansion

may occur by specific gain and loss of particular genomic features, independent of

the general pattern observed in the rest of the genome.

To better assess the differences between a species genome and GRB content,

I directly visualised the enrichment or depletion of specific genomic features in GRBs

compared to the genomic background (Figure 4.9B). In general GRBs are depleted

of exonic and repeat sequence, and enriched for intergenic and intronic sequence.

Further, it appears that GRBs in compact genomes are more depleted of repeat

sequence than larger genomes. Examining the mean width of exons, introns and

repeats within GRBs compared to the genome-wide mean (Figure 4.9C), it is clear

that, in general, repeats within GRBs are smaller than the rest of the genome, while

introns tend to be longer within GRBs. To complete the picture of GRB vs genome

content, I also calculated the density of exons, introns and repeats in each GRB and

compared it to the density within the genome (Figure 4.9D). GRBs tend to contain

fewer exons and introns than the rest of the genome, however in all but the most

compact genomes, the repeat density is very similar to the genome average.

The reduced density of exons and introns within GRBs is expected, as

GRBs tend to occur within gene deserts, frequently only containing the gene that

is subject to regulation by that GRB. The increased mean width of introns within

GRBs has been previously reported within D. melanogaster (Engström et al. 2007),

however here we can see that the this phenomenon is observable in all but two of the
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species analysed. In general the enrichment of intergenic and intronic space within

GRBs is due to these regions containing the arrays of conserved enhancers that

constitute the GRB. The depletion of repeat content is likely due to the potential

for repeat insertion to disrupt existing enhancers or to act as enhancers themselves,

thereby causing misregulation of the target gene. This phenomenon might also

explain the observation that GRBs in the larger genomes tend to have a similar

density of repeats to the rest of the genome, but shorter repeats. Insertion of a

short element is less likely to disrupt the spacing and interaction between existing

enhancers within the GRB. The trend towards stronger depletion of repeats in the

more compact genomes is likely due to the already reduced space which can be

occupied by enhancers. This would increase the chance that repeat insertion could

disrupt the regulation of the target gene.

It is clear that despite the differences in GRB composition between species,

compared to their genomic background composition, GRBs are similarly enriched

and depleted of specific genomic features. This suggests that GRBs are functionally

similar and under common constraints to maintain a favourable environment for

long-range regulation in all of the analysed genomes, regardless of genome size or

composition.
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4.4 Discussion

In this chapter I have successfully identified GRBs in C. elegans and O.

dioica for the first time. In both species, chromatin modification data shows that

the predicted GRBs are biologically distinct from background genomic sequence. In

O. dioica ovaries these GRBs are broadly marked by H3K27me3, showing that they

are polycomb repressed in this tissue. This agrees with previous studies on chro-

matin state at GRBs (Akalin et al. 2009; Harmston et al. 2017). Surprisingly, the

predicted C. elegans GRBs are not strongly marked by H3K27me3 at the L3 larval

stage, instead a subset of the GRBs are broadly marked by H3K27ac and H3K4me1

- modifications that, in combination, suggest the presence of active enhancers. It is

possible that this subset of GRBs are still active during L3 larval stage, directing

the remainder of the developmental trajectory of C. elegans larvae. Interestingly,

the subset of C. elegans GRBs that do not show active chromatin marks at the L3

stage also don’t show an enrichment of H3K27me3. As these GRBs are presumably

no longer active at this stage, they should be repressed. It is possible that at this

stage these GRBs have already been compacted into heterochromatin domains. The

inclusion of H3K9me3, a modification found specifically at heterochromatin, would

make it possible to investigate this hypothesis. Overall the chromatin modifica-

tion data shows that in both species, GRBs are distinct from background genomic

sequence and thus likely biologically relevant.

As further evidence of the quality of the predicted GRBs, and their equiva-

lency with previously identified GRBs, I showed that C. elegans and O. dioica GRBs

are enriched for developmental genes. O. dioica GRBs are enriched for developmen-

tal transcription factors, genes which are typically associated with GRBs (Kikuta

et al. 2007a; Engström et al. 2007; Akalin et al. 2009), while in C. elegans GRBs

there is an enrichment of developmental genes, but not a strong enrichment of tran-

scription factors. C. elegans GRB genes were most enriched for cell signalling, cell

adhesion and neural development terms. Interestingly, these are the gene families I
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found to be enriched in the htGRB target genes in Chapter 3 This may be due to C.

elegans having simpler, more deterministic development, resulting in a greater rela-

tive proportion of cell-cell communication and axon guidance genes under long-range

regulation than early patterning TFs. The identification of GRBs, that appear to be

functionally equivalent to vertebrate GRBs, in two more non-vertebrate genomes,

provides further support for the hypothesis that GRBs are ancient feature of meta-

zoan gene regulation, rather than a vertebrate innovation resulting from multiple

rounds of vertebrate specific CNE recruitment (Lowe et al. 2011). The identification

of clusters of non-coding conservation around the same classes of genes described in

Lowe et al. in two species which diverged from vertebrates between 600-800 million

years ago suggests that GRBs, or GRB-like structures, were already in place in the

bilaterian ancestor.

Using these, and other newly identified GRBs, I was able to show that GRB

size scales proportionally with genome size. This is in agreement with the results

presented by Harmston et al., but expands this preliminary analysis to include the

smallest known metazoan genome. Even in the O. dioica genome, the relationship

between GRB size and genome size remained proportional, with the average GRB

size being approximately 25kb. These GRBs are on average narrower than the gaps

between pairs of consecutive CNEs that showed conserved spacing between human

and tetraodon in Sun et al., suggesting that either there is no minimum distance

allowed between consecutive CNEs in GRBs, or that we are yet to identify compact

enough GRBs to identify this limit. In the future, a direct analysis of O. dioica

CNEs may yield further insights into the minimum spacing between CNEs.

In this chapter I also showed that when using the most stringent GRB

identification parameters, approximately equal proportions of the genome are cov-

ered by GRBs in all species. GRB calling using stringent parameters results in

identification of only the most highly conserved regions of the genome, and thus it

is tempting to assume that the GRBs identified using these stringent parameters
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are a core set of essential GRBs identified in all species. Paps et al. found that

there is a set of 25 homology groups (or gene families) that were innovated in the

metazoan ancestor and remain in the genomes of almost all metazoa today. These

essential animal homology groups are enriched for genes frequently associated with

GRBs, and therefore it would be interesting to analyse how many of these genes

fall in GRBs identified using stringent parameters, and whether perhaps this equal

proportion of the genome covered is due to the need to appropriately regulate these

essential genes in all genomes.

Finally, in this chapter I showed that regardless of the overall composition

of the genome or the GRBs identified in that genome, GRBs tend to be enriched and

depleted of the same genomic features. GRBs are enriched for intergenic and intronic

sequence, and depleted of exonic and repeat sequence. The enrichment of intergenic

and intronic sequence within GRBs is due to reduced gene density and longer in-

trons within GRBs. This is a logical result of GRBs containing multiple conserved

enhancers within the intronic and intergenic sequences surrounding the target gene.

The depletion of exonic sequence is also due to the general reduction of gene density

within GRBs, again likely due to the requirement for increased enhancer-harbouring

intergenic space. The depletion of repeat sequence within GRBs appears to be a

combination of a reduction in the number and width of repeat elements within

GRBs. This may be due to the potential for repeat insertion within a GRB to affect

the regulation of the target gene by either disrupting an existing enhancer, or ac-

quiring enhancer activity itself. These results are in agreement with previous studies

on GRB content (Engström et al. 2007; Akalin et al. 2009; Harmston et al. 2017),

but extends this analysis to extremely compact genomes. In contrast to previous

analyses, in this analysis I did not observe a strong reduction of repeat density in

the larger genomes analysed. This may be to the treatment of all repeat classes

together rather than splitting them by repeat class. Different classes of repeats have

different regulatory potential, and thus would differently tolerated within GRBs.
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For example, Alu elements in primates resemble enhancers and require only slight

modification to acquire regulatory function (Su et al. 2014), while low complex-

ity repeats are less likely to acquire regulatory function. Future analysis of repeat

content of GRBs, split by class would likely resolve these disagreements. Overall,

the identification of similar selective pressure on GRBs derived from such diverse

genomes (in size and content) is yet again support for the hypothesis that GRBs are

ancient features of metazoan gene regulation.
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In this thesis I have used robust GRB identification methods to analyse

the evolutionary dynamics of GRBs in metazoan genomes. First I presented a novel

method for calculating pairwise genome conservation and applied a rigorous sta-

tistical framework to the problem of GRB boundary identification. Using these

newly developed techniques I have explored the evolutionary dynamics of GRBs in

distinct metazoan lineages and genomic contexts. In Chapter 2, I outline a novel

kurtosis-based measure of genome conservation and show that it performs as well

as CNE-based GRB identification in moderate to distantly related species compar-

isons, but far outperforms CNE-based GRB identification in closely related species.

In Chapter 3, I apply this method to identify GRBs for multiple species compar-

isons in three independent metazoan lineages. I then define deeply and shallowly

conserved GRBs in each lineage and show that they share many features between

lineages, supporting the hypothesis that GRBs are an ancient feature of metazoan

gene regulation. Finally, in Chapter 4 I identify GRBs in the extremely compact

Caenorhabditis elegans and Oikopleura dioica genomes for the first time. I show that

these GRBs are functionally equivalent to GRBs in larger metazoan genomes, and

go on to assess the impacts of genome compaction on GRB size and composition. In

this chapter I will summarise the main results of this thesis and discuss their impli-

cations. I will also consider future work that would further our understanding of the

origin and evolution of GRBs, and their relationship with 3D genome organisation.

5.1 Kurtosis-based GRB identification

In Chapter 2, I defined a novel kurtosis-based measure of pairwise genome

conservation. Previously used CNE-based measures of conservation rely on the selec-

tion of arbitrary thresholds for the minimum length and sequence identity required

for a region to be defined as conserved. The kurtosis-based approach identifies all

stretches of perfectly conserved sequence in bins across the genome, and effectively
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measures the contribution of extremely long stretches to the distribution in each

bin. This measure implicitly takes into account the background conservation of the

species comparison, because for a bin to have high kurtosis, it must contain many

long runs of perfect conservation, relative to the general genome-wide distribution

of all runs of perfect identity. Most importantly, this allows for the identification

of highly conserved regions of the genome without the need for arbitrary threshold

selection. In the remainder of the chapter I showed that GRB identification using

kurtosis-based conservation successfully identifies high quality GRBs in moderately

distant species comparisons, and that in close species comparisons it outperforms

CNE-based GRB identification. This is likely due to the difficulty in selecting an

appropriate threshold for CNE identification in very close species comparisons. For

example, in the human to gorilla comparison it was necessary to define a minimum

length of 400bp for CNE identification, however the relevance of excluding perfectly

conserved sequences of 399bp is dubious at best. The kurtosis-based measure ac-

counts for all lengths of perfect conservation, resulting in far better estimates of

human - gorilla GRBs. This method also has great utility in compact genomes (as

demonstrated in Chapter 4), as the selection of the minimum length threshold in

a genome of 79Mb compared to a genome of 3Gb poses its own problems. Either

selecting a minimum size based on the genome size, or selecting the same mini-

mum size regardless of genome size, makes comparison of the results difficult to

interpret. Using kurtosis-based conservation it is possible to more systematically

compare highly conserved regions in vastly different genomic contexts.

While the kurtosis-based measure is a great improvement on CNE-based

approaches for very close species comparisons, it has its own set of potential lim-

itations. During the conservation calculation and subsequent GRB identification

pipeline, there is still the need to select two parameters - the bin size in which kur-

tosis is calculated, and the merging quantile used for merging of adjacent ranges

during GRB identification. Both thresholds can affect the size and number of GRBs
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identified, as shown in Chapter 4. Small bins for kurtosis calculation can result in

GRB fragmentation due to the increased chance of a bin containing no stretches

of perfectly conserved sequence. This is of particular importance in distant species

comparisons due to the reduced conservation between the species. The merging

quantile used affects the size and number of GRBs identified, as increasing strin-

gency results in identification of increasingly strongly conserved GRB regions. While

this is a limitation, it should also be possible to systematically evaluate the param-

eter selection to define the most robust set of GRBs for a species comparison. This

could perhaps be achieved through GRB identification using multiple combinations

of parameters followed by identification of the most consistently identified bound-

aries. A second potential limitation of the kurtosis-based method is that it does not

identify the exact locations of long stretches of perfectly conserved sequence, however

if analysis downstream of GRB identification requires this information, the general

CNE identification pipeline can be used to define a set of conserved sequences.

Overall, kurtosis-based GRB identification works well and identifies reliable

GRBs for species comparisons spanning most evolutionary distances. Further, the

implicit compensation for the background conservation of the species compared al-

lows for more reliable and robust comparisons of GRBs identified in multiple species.

While it is unlikely that this approach will completely replace CNE-based analyses,

it is a powerful addition to the current methodology, especially in the analysis of

closely related species or compact genomes.

5.2 Regulatory turnover within GRBs

In Chapter 3, I used kurtosis-based GRB identification to define GRBs for

multiple species comparisons in three distinct metazoan lineages. Next I identified

subsets of GRBs that exhibit either deep or shallow conservation within each lin-

eage, defining these as low- and high-turnover GRBs, respectively. I showed that
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ht- and ltGRBs regulate different functional classes of developmental genes, with

ltGRBs generally targeting developmental transcription factors and htGRBs tar-

geting genes involved in cell-cell communication and neural development, such as

cell adhesion molecules and axon guidance genes. Further, very similar genes were

enriched in the respective sets when comparing the results from each lineage. These

results suggest that not only are similar classes of genes regulated by GRBs in each

metazoan lineage, but also that the similar classes of genes are subject to similar

rates of sequence turnover within their regulatory regions in each lineage. This

is strong support for the turnover model originally proposed by Harmston et al.

(Harmston, Baresic, and Lenhard 2013). The turnover model states that GRB-like

gene regulation likely evolved in the metazoan ancestor, and that CNEs have been

gradually accumulating sequence changes, since their initial recruitment, albeit ex-

tremely slowly. Under this model, the lack of sequence conservation between lineages

at typical GRB target genes would be explained by complete turnover of the CNEs

in these regions, making it impossible to identify GRBs by sequence conservation

alone. Identification of GRBs at similar functional classes of genes, which exhibit

similar conservation patterns within each lineage provides strong evidence for this

model, as this is a far more parsimonious explanation than independent evolution

of GRB-based regulation at these loci in each lineage.

In the remainder of the chapter I characterised human ht- and ltGRBs

with respect to the timing of their expression in development, their chromatin state

in late neural development, and their repeat content. htGRBs tend to be active

later in development than ltGRBs, are enriched for histone modifications associated

with active enhancers in the fetal brain, and are more likely to contain active SINEs

than ltGRBs. Taken together, these results show that htGRBs are more likely to

be active during late neural development than ltGRBs. The timing of expression

during development may explain the differences in the conservation patterns between

ht- and ltGRBs. Changes in the expression pattern of genes expressed early in
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development will have far greater pleiotropic effects than those expressed later in

development, simply due to differences in the number of tissues and cell types derived

from the cells expressing those genes. Therefore it is plausible that ltGRB target

gene expression is under stronger selection than that of htGRB target genes.

This analysis has a few important limitations that should be noted. Firstly,

this is by no means an exhaustive identification of ht- and ltGRBs. The two sets

were identified by belonging to either the bottom or top 20% of GRBs, ranked by

kurtosis-based conservation summed across all species comparisons. As a result

there are likely many GRBs excluded from this analysis that show similar conser-

vation patterns to those included. Further, the division of GRBs into two classes is

in itself artificial, as the rate of turnover within GRBs is likely continuous. How-

ever, the emphasis here was on identifying the features of GRBs that may explain

these differing rates of turnover, and therefore selecting extreme examples from two

tails of a distribution facilitated a strong comparison. A second shortcoming of this

analysis is the use of imperfect target gene prediction in the analysis of the timing

of GRB target gene expression during development. GRB target gene prediction

is currently only available for human GRBs, and the predictions remain largely ex-

perimentally unverified. Target gene predictions were used for this analysis because

when attempting to identify enrichment for different expression dynamics through

development in each group of GRBs, the signal from ubiquitously expressed by-

stander genes overpowered the signal from GRB targets. The lack of target gene

prediction in other species, combined with difficulty in assigning orthologs over large

evolutionary distances (~650 million years), also prevented replication of the results

observed for human GRB targets for either chicken or fruitfly GRB target genes. It

would be of great interest to repeat this analysis after applying GRB target gene

prediction to both other species.

Overall, this analysis successfully identified ht- and ltGRBs in three inde-

pendent species, and strengthened support for the GRB turnover model. Further,
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it provides a hypothesis for the origin of differing rates of turnover within GRBs,

namely that decreased pleiotropy of htGRB target genes results in decreased selec-

tion against regulatory changes, and a more permissive environment for sequence

turnover and enhancer recruitment.

5.3 GRBs in compact genomes

In Chapter 4, the final analysis chapter in this thesis, I identified GRBs

in the extremely compact Caenorhabditis elegans and Oikopleura dioica genomes. I

showed that these GRBs are enriched for similar histone modifications, and regulate

similar genes to GRBs identified in larger genomes, thereby confirming their func-

tional equivalence. This is the first time GRBs have been identified in both genomes,

and the identification of GRBs in species from two more metazoan lineages (nema-

todes and tunicates respectively) provides further support for the ancient origin

of GRB-based gene regulation. The identification of such compact GRBs in these

genomes may guide future Hi-C analysis in these species. Previous attempts at TAD

prediction in C. elegans only identified TAD-like structures on the X chromosome,

with very little detectable 3D structure identified on the autosomes (Crane et al.

2015). Given the general concordance between GRBs and TADs, it may be that

deeper sequencing is required in C. elegans to provide the resolution required to

identify such fine-scale structures.

To assess the effects of genome size on GRB size and content, I identified

kurtosis-based GRBs in multiple metazoan genomes, using multiple combinations of

GRB identification parameters. I showed that there is a strong linear relationship

between genome and GRB size, suggesting that GRB size scales proportionally

with genome size. This analysis confirms preliminary observations by Harmston

et al. (Harmston et al. 2017), but extends the analysis of this trend to extremely

compact genomes. It has been suggested that the spacing between adjacent CNEs is
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highly conserved between species, however this observation is most apparent when

comparing genomes that are of a similar size (Sun, Skogerbø, and Chen 2006).

When comparing the distance between orthologous human and tetraodon CNEs,

only CNEs that were already relatively closely spaced exhibited conserved spacing

between the two species (Sun, Skogerbø, and Chen 2006). This result suggests that

there may be a minimum space between CNEs for them to function correctly. In

this analysis I found no evidence for a minimum GRB size. This could be due to

no such requirement existing, or due to not analysing GRB size in small enough

genomes.

In Chapter 4, I also showed that using the most stringent GRB identifi-

cation parameters in all species resulted in GRB predictions that covered a similar

proportion of each genome. It is tempting to speculate that this is due to the pres-

ence of a core set of developmental transcription factors in all metazoan genomes

that are extremely tightly regulated, resulting in the presence of highly conserved

GRBs at these genes in all species. This hypothesis is supported by the identification

of a number of gene families that evolved in the metazoan ancestor, and remain in

all metazoan genomes to this day (Paps and Holland 2018), many of which perform

similar functions to the GRB target genes.

Finally, I showed that GRB composition (with respect to exonic, intronic,

intergenic and repeat content) is significantly different from the background genome

composition. Further, I showed that while a species’ GRB composition is more

similar to its genome composition than to other species’ GRB composition, the

differences between GRBs and their genome of origin are due to enrichment and

depletion of similar genomic features. This suggests that GRBs experience similar

selective pressure to maintain a permissive environment for long-range gene regula-

tion. In general GRBs are depleted of exonic and repeat sequence and enriched in

intergenic and intronic sequence. The depletion in exonic sequence is due to the gen-

eral gene sparsity within GRBs (Kikuta et al. 2007a; Engström et al. 2007; Akalin
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et al. 2009; Harmston et al. 2017), while the depletion of repeats is likely due to the

ability of repeat elements to acquire enhancer function, and the potential for repeat

insertion to disrupt existing enhancers. The enrichment of intergenic and intronic

sequence is due to the presence of CNEs within the introns and intergenic space in

GRBs, making them larger than average, especially in compact genomes.

5.4 Future directions

In this thesis I have identified GRBs in numerous metazoan species, many

for the first time. This has certainly cemented the assertion that GRB-like gene

regulation is a pervasive feature of metazoan gene regulation, however there are still

many outstanding questions regarding the origin and evolution of GRBs.

The observation that GRBs and TADs coincide in both vertebrates and

invertebrates (Harmston et al. 2017) shows that TADs act as functional units of

both 3D genome organisation and long-range gene regulation. However, it is not

known whether TADs evolved to insulate GRBs, or GRBs expanded to the bound-

aries of TADs after their evolution. Recently it has been suggested that long-range

gene regulation by distal cis-regulatory elements is a metazoan innovation that con-

tributed to the transition from a uni- to a multicellular lifestyle (Sebé-Pedrós et al.

2016). This is derived from two key observations. First, the cnidarian species Ne-

matostella vectensis has distal cis-regulatory elements that are present in similar

genomic features to bilatarian genomes (Schwaiger et al. 2014), and second, the

unicellular eukaryote with the largest known gene repertoire for transcriptional reg-

ulation, Capsaspora owczarzaki, lacks any evidence of distal regulation (Sebé-Pedrós

et al. 2016). Interestingly, CTCF, the architectural protein that stabilises TADs,

does not have an identifiable ortholog outside of bilaterian species (Acemel, Maeso,

and Gómez-Skarmeta 2017), implying that long-range gene regulation preceded TAD

formation, or that TADs evolved before CTCF. It is possible that prior to the evolu-
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tion of CTCF, and the formation of strongly insulated TADs, that long-range gene

regulation was mediated by cohesin and other general transcription factors - similar

to enhancer-promoter looping, or subTADs in vertebrates (Phillips-Cremins et al.

2013). Given then, that CNEs have been identified in very basic species at the root of

metazoa, including poriferan and cnidarian species (Ryu, Seridi, and Ravasi 2012),

it is tempting to speculate that GRBs preceded TADs, and that TADs evolved to

provide better insulation between neighbouring GRBs. Physical separation of the

target genes of neighbouring GRBs would provide a more permissive environment

for regulatory innovation, as it would reduce the potential for ectopic interaction of

newly evolved enhancers with target genes in other GRBs, and also reduce the po-

tential impact of regulatory innovation by limiting the interaction of newly recruited

enhancers to the promoters of a single developmental gene. It is also possible that

GRBs preceded TADs, but that the GRBs in these genomes were very small rela-

tive to the genome size. Evolution of TADs may have facilitated enhancer-promoter

interactions over larger genomic distances, thereby enabling the expansion of GRBs

to the boundaries of TADs.

To test these hypotheses I would identify CNEs and GRBs in the sea

anenome, Nematostella vectensis, by comparison to other sequenced cnidarian

genomes, including the stony coral, Stylophora pistillata (Voolstra et al. 2017),

the complex coral, Acropora digitifera (Shinzato et al. 2011) and the fresh-water

polyp Hydra magnipapillata (Chapman et al. 2010). Depending on the distance of

the species comparison, this could be performed using a combination of traditional

CNE- and kurtosis-based approaches. Next I would analyse the size, composition

and chromatin state of the identified GRBs, and determine whether cnidarian

GRBs appear to be functionally equivalent to GRBs in more complex organisms.

Nematostella vectensis is an ideal candidate for this analysis as there is publicly

available chromatin modification data for this species, and previously it has been

successfully cultivated in the lab (Sebé-Pedrós et al. 2018). This is essential, as the
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final data required for this analysis would be Nematostella vectensis Hi-C data.

Hi-C data would be essential to determine whether the lack of CTCF in cnidaria

is coupled with a lack of TADs, or perhaps whether TAD formation in cnidaria

is mediated by different complexes than TADs in bilateria. The Hi-C data would

also facilitate the comparison of GRBs and the 3D structure of the Nematostella

genome, thereby addressing the questions on the origin of GRBs and TADs. This

analysis would provide great insights into the origin and evolution of both GRBs

and TADs in primitive metazoan species and provide a model for the evolution of

long-range gene regulation in metazoa.
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Supplementary Figures
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Figure S1: CNE Density in high- and low-turnover galGal4 GRBs. CNE density
for each of the species comparisons from galGal4 was plotted in high- and low-turnover
GRBs. The grey funnels represent the GRB bounds, while the coloured plots show the
CNE density in the same genomic windows. In the ltGRBs, there is visible enrichment of
CNEs within the GRBs for all species comparisons, while in the htGRBs, this enrichment
is only visible in the most closely related species comparisons and appears to decrease with
increasing distance of the comparison.
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Figure S2: High and Low-turnover GRB target gene MF GO enrichment. Gene
ontology (GO) enrichment analysis was performed for the target genes of ht- and ltGRBs.
The -log10 p-values for the top 10 enriched MF terms from each reference species are shown
here. Terms which occur in more than one reference species are highlighted in bold, and the
bars for each reference species’ p-value are overlaid. MF GO terms indicate that ht- and
ltGRBs are enriched for distinct subsets of developmental genes, and that the enrichment
is consistent across the three reference species used.
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Figure S3: GRB number vs genome size. The number of GRBs predicted from
kurtosis-based conservation calculated in three bin sizes was plotted against the log genome
size from which they were derived. GRB sets were stratified by the merging quantile used
in GRB prediction.

183



Appendix B

Supplementary Tables

184



Table S1: Properties of kurtosis-based and CNE density-based GRBs predicted
in Chapter 2. The number of GRBs predicted, using either kurtosis- or CNE density-
based GRB identification, and the proportion of the genome they cover, are shown for
GRBs predicted from human to each of the species listed in the table. Also shown is the
width of the intersection between the sets identified using either method, as a proportion
of the total width of the GRBs identified using either particular method.

Dog Opossum Chicken Spotted gar
Number of GRBs (Kurtosis) 559 487 426 400

Number of GRBs (CNE density) 1426 1026 848 403
Proportion of genome covered (Kurtosis) 0.22 0.19 0.13 0.10

Proportion of genome covered (CNE density) 0.32 0.31 0.31 0.14
Intersection width/Total width (Kurtosis) 0.84 0.92 0.95 0.60

Intersection width/Total width (CNE density) 0.58 0.55 0.40 0.43
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Table S2: GRB sets identified in ce10 and OikDioicaNorway

Reference species Conservation measure Bin size (bp) Merging quantile Number of GRBs Mean width (kb)
ce10 CNE density - 0.7 634 33.9
ce10 CNE density - 0.8 518 29.4
ce10 CNE density - 0.9 334 22.8
ce10 Kurtosis-based conservation 700 0.7 813 33.7
ce10 Kurtosis-based conservation 700 0.8 603 25.5
ce10 Kurtosis-based conservation 700 0.9 301 16.9
ce10 Kurtosis-based conservation 1000 0.7 571 43.6
ce10 Kurtosis-based conservation 1000 0.8 427 30.8
ce10 Kurtosis-based conservation 1000 0.9 221 23
ce10 Kurtosis-based conservation 1300 0.7 467 51.6
ce10 Kurtosis-based conservation 1300 0.8 334 35.1
ce10 Kurtosis-based conservation 1300 0.9 167 24.1

OikDioicaNorway CNE density - 0.7 554 22.3
OikDioicaNorway CNE density - 0.8 433 18.6
OikDioicaNorway CNE density - 0.9 229 16.4
OikDioicaNorway Kurtosis-based conservation 500 0.7 822 21.3
OikDioicaNorway Kurtosis-based conservation 500 0.8 634 15.6
OikDioicaNorway Kurtosis-based conservation 500 0.9 343 10.7
OikDioicaNorway Kurtosis-based conservation 700 0.7 604 26.7
OikDioicaNorway Kurtosis-based conservation 700 0.8 455 18.5
OikDioicaNorway Kurtosis-based conservation 700 0.9 232 12.9
OikDioicaNorway Kurtosis-based conservation 900 0.7 458 31.9
OikDioicaNorway Kurtosis-based conservation 900 0.8 358 21.2
OikDioicaNorway Kurtosis-based conservation 900 0.9 186 14.7
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Table S3: Number and mean width of all GRB sets predicted in Chapter 4

Reference species Bin size (bp) Merging quantile Number of GRBs Mean width (kb)
hg19 20; 30; 40 0.7 588; 486; 414 991.4; 1124.2; 1288.9
hg19 20; 30; 40 0.8 404; 330; 293 851.2; 1003.5; 1108.5
hg19 20; 30; 40 0.9 204; 171; 146 715.9; 873.5; 1006.3
mm10 18; 27; 36 0.7 565; 460; 393 918.9; 1104.5; 1312.9
mm10 18; 27; 36 0.8 416; 330; 292 710.6; 849.9; 1023.5
mm10 18; 27; 36 0.9 204; 165; 151 577.3; 728.2; 832.8

danRer10 9; 14; 18 0.7 454; 373; 337 384.8; 464.2; 530.7
danRer10 9; 14; 18 0.8 304; 239; 222 325.9; 394.5; 437.4
danRer10 9; 14; 18 0.9 148; 125; 120 315.1; 390.4; 422.7
galGal4 7; 10; 14 0.7 376; 358; 299 440.3; 489.3; 552.8
galGal4 7; 10; 14 0.8 255; 245; 202 369.7; 425.5; 482.4
galGal4 7; 10; 14 0.9 119; 110; 95 331.4; 383.4; 446.5
tetNig2 2.4; 3.6; 4.8 0.7 489; 377; 322 100.7; 126.1; 147.7
tetNig2 2.4; 3.6; 4.8 0.8 334; 262; 229 83.1; 103.2; 114
tetNig2 2.4; 3.6; 4.8 0.9 170; 131; 116 79.5; 95.2; 110.7
dm6 1; 1.4; 1.9 0.7 714; 571; 447 52; 66.2; 82.5
dm6 1; 1.4; 1.9 0.8 478; 372; 301 50.3; 66.9; 81.9
dm6 1; 1.4; 1.9 0.9 219; 175; 147 50.6; 64.5; 75.9
ce10 0.7; 1; 1.3 0.7 802; 571; 466 34; 43.6; 51.7
ce10 0.7; 1; 1.3 0.8 594; 427; 332 25.8; 30.8; 35.3
ce10 0.7; 1; 1.3 0.9 299; 221; 166 17; 23; 24.1

OikDioicaNorway 0.5; 0.7; 0.9 0.7 763; 579; 477 22.5; 27.5; 32.5
OikDioicaNorway 0.5; 0.7; 0.9 0.8 581; 429; 341 16.5; 19.2; 21.9
OikDioicaNorway 0.5; 0.7; 0.9 0.9 291; 207; 170 11.5; 13.5; 15.2
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