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Abstract

Most violent crimes happen in urban and suburban cities. 
With emerging tracking techniques, law enforcement officers 
can have real-time location information of the escaping crim-
inals and dynamically adjust the security resource allocation 
to interdict them. Unfortunately, existing work on urban net-
work security games largely ignores such information. This 
paper addresses this omission. First, we show that ignoring 
the real-time information can cause an arbitrarily large loss of 
efficiency. To mitigate this loss, we propose a novel NEtwork 
purSuiT game (NEST) model that captures the interaction be-
tween an escaping adversary and a defender with multiple re-
sources and real-time information available. Second, solving 
NEST is proven to be NP-hard. Third, after transforming the 
non-convex program of solving NEST to a linear program, 
we propose our incremental strategy generation algorithm, 
including: (i) novel pruning techniques in our best response 
oracle; and (ii) novel techniques for mapping strategies be-
tween subgames and adding multiple best response strategies 
at one iteration to solve extremely large problems. Finally, ex-
tensive experiments show the effectiveness of our approach, 
which scales up to realistic problem sizes with hundreds of 
nodes on networks including the real network of Manhattan.

1 Introduction
In 2016, there were nearly 5.36 million violent crimes across 
the United States, most of which happened in the urban 
and suburban cities (NCVRW 2016). Considering just the 
commercial banks, 4,185 robberies happened (FBI 2017). 
When an urban crime occurs, the top priority of law enforce-
ment officers is to dispatch the limited security resources to 
capture the criminal. Nowadays, novel pursuit devices such 
as the StarChase GPS-based system (Gaither et al. 2017), 
UAVs and helicopters can provide the police with the real-
time location of the criminal. Equipped with the up to date 
information, the police can dynamically adjust the resource 
allocation plan to interdict the adversary.

Unfortunately, existing work on resource allocation in 
network security ignores the real-time information about the 
adversary’s location (Jain et al. 2011; McCarthy et al. 2016; 
Wang et al. 2018). Specifically, in existing urban network 
security games (NSG), the defender usually deploys a time-

independent strategy without considering the dynamic relo-
cation of security resources (Jain et al. 2011). Although a
time-dependent policy is discussed in (Zhang et al. 2017),
they do not take the real-time adversarial information into
consideration, which can cause a huge loss of effectiveness
as we will show later. Other branches of related work also
suffer from similar myopia, including pursuit-evasion games
(Parsons 1978) and patrolling security games (Vorobeychik
et al. 2014) (see the next section).

To incorporate such real-time information, we model the
urban network security problem as a zero-sum NEtwork pur-
SuiT game (NEST). In NEST, the adversary picks one es-
cape path to the outside world, while the defender, track-
ing the adversary’s previous moves, decides on the reloca-
tion of her security resources (modeled as a finite-horizon
Markov Decision Process (MDP)). Specifically, in the MDP,
each state includes information about the adversary’s pre-
vious moves and the locations of defender resources, and
each action is the next location of the defender’s resources.
This results in a game with a combinatorial action space
of each state in the MDP for the defender, where the de-
fender has multiple resources with several actions each. For
example, for just ten resources with four actions for each,
there are more than one million joint actions of resources in
a given state. This large strategy space makes the existing
exact solution approaches unable to solve NEST efficiently.
These approaches include: i) the approach for the imperfect
recall game, i.e., normal-form game with sequential strate-
gies (NFGSS), because their incremental strategy genera-
tion (ISG) algorithm does not set bounds to cut branches in
its best-response (BR) oracle that uses a depth-first search
through the whole state space to compute the best response
(Bošanskỳ et al. 2015); and ii) the approach for the per-
fect recall game (Von Stengel 1996) because it will lead to
a significantly larger strategy space than the imperfect re-
call approach (see the discussion in (Bošanskỳ et al. 2015)),
and the bounds are very loose in their branch-and-bound BR
(Bošanskỳ et al. 2014).

In this context, after modeling NEST as an imperfect-
recall game to reduce the strategy space, this paper makes
four additional key contributions. First, we show that the ig-
norance of real-time information in existing work can lead to
an arbitrarily large loss of efficiency. Second, we show that
solving NEST is NP-hard. Third, after transforming the non-



convex program of solving NEST to a linear program (LP),
we propose our ISG with the following novelty: (i) novel
pruning techniques in our BR, including: (1) providing tight
lower and upper bounds by exploiting the combinatorial
structure of each state’s action space; and (2) handling im-
perfect recall by developing an effective lower bound transi-
tion method that causes an evaluated state to be reevaluated
only if a prefix state with a smaller lower bound transits to
it; and (ii) novel techniques to speed up our ISG to solve
extremely large-scale problems, which include: (1) mapping
the computed defender strategy by BR between similar sub-
games to speed up BR, which also speeds up LP if this strat-
egy is optimal; and (2) adding multiple best response strate-
gies to the restricted game at one iteration against different
sampled adversary strategies to reduce the number of iter-
ations for convergence. Finally, experiments show that our
approach can scale up to problem sizes with hundreds of
nodes on networks including the real network of Manhattan.
Thus, for the first time, this paper shows that ISG techniques
can also be scaled for dynamic games when best-response
oracles are tuned with domain-specific pruning techniques,
and other domain-specific improvements are employed.

2 Related Work
The pursuit-evasion game (PEG) typically assumes that the
evader knows the locations of the pursuer’s units, but the
pursuer does not know the location of the evader (Parsons
1978; Horák and Bošanskỳ 2016). While our model is a
variant of PEG, we focus on a realistic setting in our mo-
tivating scenario where the defender has the adversary’s
real-time location information. Most of the work on PEGs
cannot capture the special structure of specific problems.
For example, although the partially observable stochastic
game (Horák, Bosanskỳ, and Pechoucek 2017) is domain-
independent, their model focuses on infinite-horizon games.
Similarly, the patrolling security game (PSG) (Basilico,
Gatti, and Amigoni 2009; Vorobeychik et al. 2014), where
the defender defends an environment against an unseen in-
truder who needs multiple turns to perform the attack, is
typically modeled as a stochastic game with infinite hori-
zon. Recently, PSGs have been extended to cover the sit-
uation that the defender receives a spatially uncertain sig-
nal after being attacked (Basilico, De Nittis, and Gatti 2017;
Basilico et al. 2017), and has to reach the attacked target to
catch the attacker. However, this signal response game does
not consider real-time information after receiving the signal
due to the fact that no more information is available for the
defender after receiving the signal.

ISG has been successfully used to exactly solve many
games (Jain et al. 2011; Bošanskỳ et al. 2014; 2015; Wang
et al. 2018), whose core part is to compute the best response
strategy. However, the existing exact solution approaches for
both imperfect recall games and perfect recall games are un-
able to solve NEST efficiently. Firstly, NEST is similar to an
imperfect recall game NFGSS (Bošanskỳ et al. 2015), but
NFGSS does not consider real-time information. Note that
the general form of imperfect recall games cannot be exactly
solved by a linear program (Čermák et al. 2018). Although

NFGSS is solved by combining ISG with the network-flow
representation of strategies (Jiang et al. 2013), its algorithm
is impractical for the large NEST as their ISG’s BR with
a depth-first search does not set bounds to cut branches
and then evaluates all related states to compute the best re-
sponse. Secondly, if NEST is modeled as a perfect recall
game (Von Stengel 1996), it will lead to a significantly larger
strategy space than the imperfect recall approach (see the
discussion in (Bošanskỳ et al. 2015)). Moreover, the branch-
and-bound BR in the latest exact algorithm for perfect recall
games (Bošanskỳ et al. 2014) is still impractical for the large
NEST because its bounds are very loose. More specifically,
in their BR, the upper bound for each node always equals the
maximum possible value of the game, and the lower bound
for each succeeding node of the first node in the information
set for the searching player always equals the minimum pos-
sible value of the game. The immediate result is that at least
one succeeding state of each action will be evaluated. How-
ever, it is impractical to evaluate at least one succeeding state
for each action in each state in NEST because NEST has an
extremely large state space and a large action space for each
state in the MDP for the defender.

3 Motivating Scenario
To illustrate the underlying issues and motivation for
our model, we analyze the problem of police vehicle
pursuits. Recently, a new pursuit technology (Fischbach,
Hadsdy, and McCal 2015; Gaither et al. 2017) based on
GPS has been tested and deployed in many cities, e.g.,
New York (Shook 2017) in America and Delta (Baker
2017) in Canada. This technology developed by StarChase
(see http://www.starchase.com) provides police officers with
real-time (every 3 to 5 seconds (Gaither et al. 2017)) GPS lo-
cations of the fleeing vehicle. However, it does not mean that
the evader will always be captured. For example, in the ur-
ban scenario discussed in (Gaither et al. 2017), even obtain-
ing the real-time information provided by StarChase GPS-
based system, police officers only achieved 61% apprehen-
sion rate. Outside the cities, i.e., in the open area, it may
be even harder to capture the evader. Cities, however, have
more advanced facilities and security resources, which make
it much easier to locate the evader’s location in real time and
capture him. Therefore, we can set the roads to the outside
of cities as the exit points. In addition, based on the data in
(Reaves 2017), about 10% of 5,568 pursuits ended because
the vehicle crossed into another jurisdiction. In such a con-
text, we can set the roads to other jurisdictions as the exit
points. Meanwhile, about 50% of cases discussed in (Fis-
chbach, Hadsdy, and McCal 2015) lasted more than 5 min-
utes, and the maximum time is 50 minutes. Therefore, police
officers have limited but sufficient time to deploy security re-
sources to interdict the evader with the aid of the real-time
information about the evader.

Our approach is also suitable for security problems in
other domains including interdicting poachers in the field,
where UAVs can provide poachers’ location information in
real time (Bondi et al. 2018); and combating the threat of
piracy or fighting against illegal fishing on the sea, where a
new system can track ships or boats in real time (Reid 2018).



4 Problem Description
The NEtwork purSuiT game (NEST) is played between an
evader (adversary) and police officers (defender) on an ur-
ban road network G “ pV,Eq consisting of a set of directed
edges E representing roads and a set of nodes V represent-
ing intersections. W.l.o.g., we assume that the time it takes
to travel through each road segment is one time unit, e.g.,
1 minute, since we can add dummy nodes to separate each
road into several segments with equal length. We denote by
Ve the set of exit nodes, through which the adversary can es-
cape to the external world. The adversary, initially located at
node va0 , tries to escape to the external world, while the de-
fender deploysm identical resources (police officers/teams),
initially located at intersections v10 , . . . , v

m
0 P V , to catch

him. The adversary is caught if he and one of the defender
resources reach the same node at the same time1. We assume
that va0 ‰ vr0 for all r PR“t1, . . . ,mu. The adversary can-
not see the defender until he gets caught (Jain et al. 2011;
Zhang et al. 2017). Motivated by the fact that new pursuit
technology can be used to provide real-time information
about the adversary’s whereabouts, the defender can observe
the adversary’s locations in real time. The initial positions of
both players are common knowledge. For example, police
officers are notified about the location of the crime, while
the locations of the police stations are public information.
Adversary’s Strategies: A pure adversary strategy is a
path from his initial node va0 to an exit node ve P Ve, rep-
resented by a sequence of nodes o visited by the adversary
with a length no longer than tmax

2 (time horizon), where
any pair of consecutive nodes are connected by an edge
in E. The set of adversary pure strategies is denoted by
O. The mixed strategy is a probability distribution over O,
denoted by y “ xyoy where yo represents the probability
of escaping through path o. An observed history h is a
sequence of nodes where the adversary is spotted. We say
that h1 is a descendant of h or hĂh1 if h is any strict prefix
of h1. We denote by Oh “ to | oPO, hĎou the set of paths
generating history h, H “ th|Do P O, h Ď ou the set of
valid histories, andCHh “ th

1 | h1 P H, Dv P V, h1 “ h¨v :
v will be reached at the next step after generating history hu
the set of child histories of h.
Defender’s Strategies: The defender’s decision problem
is modeled as an MDP. Let l “ pv1l , ..., v

m
l q denote the lo-

cation of m resources, where vrl denotes the location of re-
source r. Let L represent the set of all possible locations. We
say two locations l and l1 are adjacent if l1 can be reached
from l with a one-step move. That is, for any r P R, either
vrl “ v

r
l1 or pvrl , v

r
l1q PE. Let l0“pv10 , . . . , v

m
0 q be the initial

location of m resources. A pure strategy for the defender is
a deterministic policy π : SÑA. Each state s P S consists
of two components, the current location ls P L and the ob-
served history hs P H of the adversary’s moves from the
initial state to state s, i.e., s“pls, hsq. Let η : HÑV return

1Our model can be easily extended to cover the case that both
players meet on an edge by extending this definition of capture.

2Assume that after tmax, the defender can deploy sufficient po-
lice forces (e.g., police from neighbor cities) to prevent the adver-
sary from escaping.

the last node in history h PH . A state s is called a capture
state if there exists a resource r P R such that vrls “ ηphsq.
We denote by Sc the set of capture states. On the other hand,
if ηphsqPVe and there exists no resource allocated on ηphsq,
the adversary successfully escapes, and such a state is called
an escape state. Let Se denote the set of all escape states. Let
the terminal state set be St “ Sc Y Se and the initial state
be s0 “ pl0, xva0yq. Each action a P A corresponds to a one-
step move from the current location l to the adjacent location
l1. Thus, we abuse the notation slightly and let A and L be
exchangeable, such that each action is a location to which
the defender plans to transfer her resources. We denote by
As the set of actions in s P SzSt. Specifically, we denote by
Ss,l the set of states reached from s by taking action l P As,
i.e., Ss,l “ ts1 | s1 “ pl, hq, h P CHhs

u, and we say that
s1 P Ss,l is a succeeding state of s. We denote by x the be-
havior strategy of the defender, where in each non-terminal
state s, x defines a probability distribution over As.
Utilities: Assume that the game is zero-sum as we are only
concerned with whether the defender can capture the adver-
sary or not. If it is a capture state, the defender receives a unit
reward, and the adversary suffers a unit loss; otherwise, both
players receive a zero payoff. That is, udpsq “ ´uapsq “ 1
if s P Sc and udpsq “ uapsq “ 0 if s P Se. Given strat-
egy profile px, oq, we denote by Px,opsq the probability that
state s is reached. Notice that: i) if hs Ę o, i.e., the escap-
ing path o does not generate history hs, Px,opsq “ 0; and
ii) otherwise, Px,opsq only depends on x and hs, and is in-
dependent of the adversary’s moves after hs. Therefore, we
can denote by Pxpsq the probability of reaching state s un-
der px, oqwith hs Ď o. Pxpsq is determined by the following
recursive equation:

Pxps0q “ 1,

Pxpsq “
ř

s1PSzSt:sPSs1,ls
Pxps

1qxs1,ls @sPSzts0u,
(1)

where the summation is over states that can transit to s.
Given profile px, oq, the defender’s expected utility is:

Udpx, oq “
ř

sPSt:hsĎo Pxpsqudpsq “
ř

sPSc:hsĎo Pxpsq.

Accordingly, we have Udpx,yq “
ř

oPO yoUdpx, oq. Since
the game is zero-sum, Uapx,yq “ ´Udpx,yq.
Equilibrium: We use Nash equilibrium (NE) as the so-
lution concept as both players move simultaneously. Gen-
erally, px‹,y‹q is NE if and only if: (i) Udpx‹,y‹q ě
Udpx,y

‹q,@x; and (ii) Uapx‹,y‹q ě Uapx
‹,yq,@y.

5 Theoretical Analysis
This section first shows the cost of ignoring the real-time
information, and then proves that solving NEST is NP-hard.
Cost of Ignoring Information: Here, we denote the strat-
egy that does not consider the up to date information about
the adversary as the non-real-time strategy and its counter-
part as the real-time strategy.

1
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Figure 1: Example

Consider the example in the left fig-
ure, where a unique defender resource
is at node 6, the adversary is at node 1,
and exit nodes are 4 and 5. If the de-
fender ignores the real-time informa-

tion, in the worst case (under the NE of the zero-sum game),



the adversary reaches each exit node with probability 0.5,
while the defender’s optimal non-real-time strategy moves
the single resource to nodes 4 or 5 with equal probability.
That is to say, the defender’s expected utility is 0.5. How-
ever, the defender can ensure the capture of the adversary by
doing the following. (i) If the adversary’s current location
is at the starting node, the defender just stays at node 6. (ii)
When the adversary moves to node 2, the defender moves
her resource to node 5, and 4 if she observes that the adver-
sary has moved to node 3. As long as the time horizon is
finite, the defender will capture the adversary for sure, and
the expected utility is 1, much higher than 0.5.

Proposition 1. The defender’s optimal non-real-time strat-
egy under the NE can be arbitrarily worse compared with
the optimal real-time strategy under the NE.3

Complexity Analysis
Theorem 1. Computing the NE of NEST is NP-hard.

6 Computing the Optimal Solution
This section first transforms the non-convex program of
computing the NE to LP, then develops our ISG algorithm
with a novel BR oracle, and finally proposes two additional
techniques to speed up our ISG significantly.

6.1 Transformation to the Linear Program
The NE strategy x‹ of the defender in NEST can be com-
puted by: x‹ P argmaxx minoPO Udpx, oq, i.e.,

max
x

U‹d (2a)

s.t. U‹d ď Udpx, oq, @o P O (2b)
ř

lPAs
xs,l “ 1, @s P SzSt (2c)

xs,l P r0, 1s, @l P As,@s P SzSt (2d)

Unfortunately, program (2) is non-convex, since the prob-
ability Pxpsq of reaching state s involves multiplication of
various entities in x due to the recursive property defined in
Eq.(1). To transform it to an LP, based on the propagation of
the probability starting from s0 towards terminal states, we
develop a flow representation of the defender’s strategy.

Definition 1. f is the flow representation of the defender’s
strategy where fs,l specifies the probability that the defender
reaches state s P SzSt and takes the action l P As.

Given f and o, the defender’s expected utility is:
Udpf , oq “

ř

sPSc:hsĎo

ř

s1PSzSt:sPSs1,ls
fs1,ls , where,

ř

lPAs0
fs0,l “ 1 (3a)

ř

s1PSzSt:sPSs1,ls
fs1,ls “

ř

lPAs
fs,l,@sPSzpts0uYStq (3b)

fs,l ě 0, @l P As,@s P SzSt. (3c)

Eqs.(3a)–(3c) ensure that f is feasible, which is initialized
by Eq.(3a), and Eq.(3b) is the flow conservation equality.

3All proofs in this paper are in Section A of the Appendix avail-
able at http://www.ntu.edu.sg/home/boan/papers/
AAAI19_Urban_Appendix.pdf.

Algorithm 1: IGRS
1 Initialize S1

“ ts0u and A1
“ H;

2 repeat
3 px,yq Ð solution of Problem (6) under pS1, A1

q;
4 pV, πq Ð BRps0, Udpx,yqq;
5 for each s reached from s0 by π with V psq ą 0 do
6 if s R S1 then S1

Ð S1
Y tsu, A1

Ð A1
Y tπpsqu;

7 else
8 if πpsq R A1

s then A1
s Ð A1

s Y tπpsqu;
9 until V ps0q “ Udpx,yq;

10 return px,yq.

We now show how to derive the associated flow represen-
tation from the behavior strategy and vice versa. Given x, its
corresponding flow representation f is:

fs,l “ Pxpsqxs,l, @l P As,@s P SzSt. (4)

Given f , Pxpsq“
ř

s1PSzSt:sPSs1,ls
fs1,ls if s‰s0, Pxpsq“1 if

s“s0, and its corresponding behavior strategy x is:

xs,l“

#

fs,l
Pxpsq

if Pxpsq ą 0,
1
|As|

otherwise,
@l P As,@s P SzSt. (5)

We prove that the flow representation is equivalent with the
behavior strategy in terms of expected utility in Theorem 2.

Theorem 2. For any pair of x and f satisfying Eqs.(4) and
(5), Udpx, oq “ Udpf , oq @o P O.

Finally, we obtain the following LP equivalent with (2).

max
f

U‹d (6a)

s.t. U‹d ď Udpf , oq, @o P O (6b)
Eqs.p3aq ´ p3cq. (6c)

6.2 Incremental Strategy Generation
Although we can compute the optimal solution with LP (6),
it does not scale up due to the exponentially large state space.
To mitigate this issue, we propose the Iteratively Generated
Reachable States (IGRS) algorithm shown in Algorithm 1,
which works as follows. Starting from the restricted NEST
GpS1, A1q where S1 Ă S and A1 Ă A, LP (6) solves the
equilibrium px,yq on GpS1, A1q (Line 3).4 We then solve
the defender’s best response policy π in the original strategy
space pS,Aq (Line 4) and expand A1 and S1 (Lines 5–8).

Defender’s Best Response: Our Best-Response (BR) al-
gorithm shown in Algorithm 2 computes the best determin-
istic π against the adversary’s strategy y. Due to the large
strategy space, to speed up, BR adopts a branch-and-bound
approach in a depth-first manner. A branch is a state with an
expected value representing the probability of catching the
adversary starting from this branch. The lower bound of a
branch is the minimum value that this branch must obtain in
order to be part of the best response, while its upper bound is
the maximum value. Using these bounds, BR cuts branches
which will certainly not be part of the best response.

4Note that, at initialization (Line 1), s0 is temporarily treated
as an escape state in order to compute a solution px,yq.



Algorithm 2: BRps,bsq: s´current state, bś lower bound
1 if s is visited and bs ě bpsq then return V psq;
2 if s P St then V psq Ð udpsq ˆ

ř

oPOhs
yo, return V psq;

3 for r P R do
4 for lr P Asprq,o P Ohspyo ą 0q do
5 if distplr, Ve X oq ` |hs| ` 1 ď |o| then
6 Or,lr Ð Or,lr Y tou, A

1
sprq Ð A1

sprq Y tlru;
7 if A1

sprq “ H then A1
sprq Ð tvrlsu;

8 A1
s Ð ˆrPRA

1
sprq: the best joint action candidate set;

9 for l P A1
s do Ol Ð YrPROr,lr ;

10 sort l P A1
s descending according to value Bl Ð

ř

oPOl
yo;

11 V psq Ð maxtbs ´ 2ˆ ε, 0u, bpsq Ð ´8, Ql Ð 0p@lPA1
s);

12 for l P A1
s do

13 if V psq ` ε ď Bl then
14 sort pl, hq (h P CHhs ) descending according to value

Bpl,hq Ð
ř

oPOhXOl
yo, B1

Ð
ř

hPCHhs
Bpl,hq;

15 for h P CHhs , Bpl,hq ą 0 do
16 bpl,hq Ð V psq ` ε´ pQl ` pB

1
´Bpl,hqqq;

17 if bpl,hq ą Bpl,hq then break;
18 else
19 V pl, hq ÐBRppl, hq, bpl,hqq;
20 if bpl,hq ą V pl, hq then break;
21 else QlÐQl` V pl, hq, B1

ÐB1
´Bpl,hq;

22 if V psq ă Ql then V psq Ð Ql, πpsq Ð l;
23 if V psq ă bs then bpsq Ð bs;
24 return V psq.

BR works as follows. Given a state s, if BR does not termi-
nate at Lines 1 and 2, BR estimates bounds and cuts branches
if: (1) the upper bound Bl of action l is less than its lower
bound (V psq ` ε) (Line 13); (2) the upper bound Bpl,hq of
succeeding state pl, hq is not more than 0 (Line 15) or is less
than its lower bound bpl,hq (Line 17); or (3) the state value
V pl, hq is less than bpl,hq (Line 20). Then, BR updates ac-
tion value Ql and returns state value V psq“maxlQl (Lines
21–24).

Specifically, BR estimates tight bounds as follows. Firstly,
given the combinatorial action space, BR estimates tight up-
per bounds (Lines 3–10 and 14). The idea is that, given a
joint action l, BR can estimate all the possible paths that the
defender has a chance to interdict (i.e., the possibly inter-
dicted path set (PIPS)) by taking l. That is, given a resource
r’s action lr in l and an adversary path o P Ohs

, BR can de-
termine if r taking lr has a chance to interdict o by compar-
ing the time from its current adversary location ηphsq to exit
node ve P o through o and the shortest time from action (lo-
cation) lr to ve (Line 5). Thus, BR obtains lr’s PIPS (Or,lr
(Line 6) initialized as H with the corresponding best ac-
tion candidate setA1sprq), l’s PIPS (Ol (Line 9)), and pl, hq’s
PIPS (Ol X Oh (Line 14)). Secondly, to be the best action,
an action’s value must be larger than the obtained maximum
action value, and then the lower bounds for the remaining ac-
tions and succeeding states will adaptively increase. Specifi-
cally, V psq is initialized at Line 11 to guarantee that the best
action is computed if s’s optimal value V ‹psq “ bs; and bl,h
is estimated by assuming that all the remaining succeeding
states will return the maximum value (Line 16).

In addition, BR effectively handles imperfect recall of
NEST where a state may be visited by different prefix states.
To avoid repeated computation, BR stores the computed state
value for state s as V psq that is immediately returned if s is
visited again (Line 1). However, while setting tight bounds,
only using this method may cause some wrong cuts. Here, if
bs (that is set for swhile being visited by its prefix state s1) is
tight, and V psq is computed such that V psq ă bs, then V psq
may not be optimal because some cuts may happen. If V psq
is not optimal (i.e., V psq ă V ‹psq ă bs) and s is revisited by
another prefix state s2 with b1s such that V psq ă b1s ă V ‹psq,
then the wrong cut will happen in s2 after V psq is returned
to s2. To avoid these wrong cuts, BR records the computed
state value with the corresponding lower bound (recorded as
bpsq) if this value is less than this bound (Line 23), and this
value will be recomputed only if this state’s prefix state with
a smaller lower bound transits to it (Line 1).
Theorem 3. IGRS converges to an NE.

6.3 Improving the Scalability of IGRS
Even though our IGRS is far more efficient than LP, it still
cannot handle the very large NEST. Thus, we further im-
prove the scalability of IGRS by developing two techniques5.

The first technique is to map the computed defender strat-
egy by BR in a subgame to its similar subgames to speed up
BR. Here, NEST is the full game, and part of NEST is the
subgame. Moreover, if this computed strategy is optimal in
NEST (i.e., part of the equilibrium in NEST), we can also
speed up LP and map this strategy to more subgames.

Formally, subgame Gs has initial state s, where the de-
fender’s strategy space pSGs , AGsq includes all states reach-
able from s (i.e., if s1 in SGs

transits to s2, then s2 P SGs
)

with the corresponding action space, and the adversary’s
strategy space includes all paths generating hs, i.e., Ohs

.6
Here, the defender has the same action space in states with
the same location for her. Given states s1 and s2, Ohs1

is
similar to Ohs2

after ηphs1q if ηphs1q “ ηphs2q, and a one-
to-one correspondence exists between Ohs1

and Ohs2
such

that each such pair o1 P Ohs1
and o2 P Ohs2

satisfies
qphs1 , o1q “ qphs2 , o2q (qph1, h2q is a subsequence of h2
after ηph1q such that h1 Y qph1, h2q “ h2). That is, the ad-
versary has the same move space after ηphs1q by both sets.

Two subgames Gs1 and Gs2 are similar if ls1 “ ls2 , and
Ohs1

is similar to Ohs2
after ηphs1q. Then, states si P Ss1

and sj P Ss2 are similar if lsi “ lsj and qphs1 , hsiq “
qphs2 , hsj q. The best response strategy πs1 in Gs1 against y
is defined by: Given the best response π against y by BR,

πs1ps
1q “ πps1qp@s1 P SGs1

q. (7)

Here, for s1 P SGs1
, if s1 is reached from s1 by πs1 , we

define Pπs1
ps1q “ 1; otherwise, Pπs1

ps1q “ 0. Therefore,
a mapping strategy πs1Ñs2 from Gs1 to its similar subgame
Gs2 is defined by: Given πs1 defined by Eq.(7), @sj P SGs2

,

πs1Ñs2psjq “ πs1psiq, (8)

5We illustrate both techniques in Section B of the Appendix
6We define the subgame like this because we only compute the

defender’s strategies in subgames through BR given y over O.



where si in SGs1
and sj are similar. We use this mapping

only if the adversary takes both paths at each pair of the
one-to-one correspondence betweenOhs1

andOhs2
with the

same probability. This mapping could happen at the iteration
when πs1 is computed during calling BR or at the future it-
erations due to the loop in IGRS.
Theorem 4. For any Gs1 with πs1 defined by Eq.(7) as the
best response inGs1 against y, ifGs2 is its similar subgame
with y1 satisfying yo1 “ y1o2 for each pair o1 P Ohs1

and
o2 P Ohs2

with qphs1 , o1q “ qphs2 , o2q in the one-to-one
correspondence between Ohs1

and Ohs2
, then πs1Ñs2 de-

fined by Eq.(8) is the best response in Gs2 against y1.
A defender strategy π‹s in Gs is optimal in NEST if given

any strategy y over O and any policy πs in Gs, V πspsq ď

V π
‹
s psq, and we say that this π‹s is part of the equilibrium

in NEST. π‹s is defined by: Given πs defined by Eq.(7) as
the best response in Gs against some y over O with yo ą 0
(@o P Ohs ) such that V πspsq “

ř

oPOhs
yo,

π‹sps
1q “ πsps

1qp@s1 P SGs
q. (9)

Lemma 1. Given any y over O, V π
‹
s psq “

ř

oPOhs
yo un-

der π‹s defined by Eq.(9).
Theorem 5. π‹s defined by Eq.(9) is optimal in NEST.7

Given π‹s defined by Eq.(9), the defender will certainly
catch the adversary in Gs. Therefore, after computing π‹s in
Gs, if Gs is reached again, the defender’s expected utility
ř

oPOhs
yo is returned immediately. Therefore, LP for the

restricted game can exclude constraints and variables for the
succeeding states of s; and, for any adversary strategy, BR
does not need to compute the best response starting from s
anymore, which will speed up LP and BR.

We can map π‹s1 defined by Eq.(9) in Gs1 to its similar
subgames through Eq.(8). Besides, we can map this π‹s1 to
more subgames, where the initial location of m resources
is not ls1 . In fact, given π‹s1 , we can trace the interdiction
back to which resource r starting from s1 contributes to this
interdiction by following π‹s1 , and we may find that we only
need part ofm resources to interdict the adversary. Then, we
only need to map the actions of these key resources to other
subgames to capture the adversary certainly. For example,
consider Gs1 and Gs2 , where ls1 “ pv1, v2q, ls2 “ pv1, v3q,
Ohs1

is similar to Ohs2
after ηphs1q, and only the first re-

source in Gs1 will contribute to the interdiction by π‹s1 .
Then, the adversary will be captured certainly in Gs2 if the
resource initially at v1 inGs2 takes the action of the resource
initially at v1 in Gs1 by π‹s1 .

Formally, we define this strategy mapping between semi-
similar subgames. Two subgames Gs1 and Gs2 are semi-
similar on l if l Ď ls1 , l Ď ls2 , and Ohs1

is similar to Ohs2

after ηphs1q. Similar subgames are certainly semi-similar.8

7Note that, for games with imperfect information, the general
subgame solving technique cannot guarantee optimality (Brown
and Sandholm 2017).

8We still need to consider similar subgames because we can-
not have the property similar to Theorem 4 between semi-similar
subgames (see Section C of the Appendix).

Here, si P Ss1 and sj P Ss2 are semi-similar if l, with l Ď lsi
and l Ď lsj , is reached from l by the corresponding resources
in s1 and s2, respectively, and qphs1 , hsiq “ qphs2 , hsj q.

Given π‹s1 defined by Eq.(9), if resource r starting from
s1 by π‹s1 can interdict at least one of the paths in Os1 (i.e.,
there exists o P Ohs1

such that there is a capture state sc
with Pπ‹s1 pscq “ 1, hsc Ď o, and vrlsc “ ηphscq), we call
r’s location vrls1 in s1 as the key location. Let l˚s1 Ď ls1 be
the set of these key locations in s1. If Gs2 and Gs1 are semi-
similar on l˚s1 with π‹s1 defined by Eq.(9) in Gs1 , then its
mapping strategy π‹s1Ñs2 in Gs2 is defined by: @sj P SGs2

,

π‹s1Ñs2psjq “ p¨ ¨ ¨ , lr, ¨ ¨ ¨ q, (10)

where if vrls2 P l
˚
s1 , then lr “ π‹s1psiqr˚,vr˚ls1“v

r
ls2

(si in SGs1

is semi-similar to sj with Pπ‹s1 psiq “ 1) which means that
resource r in sj follows π‹s1psiq for resource r˚ in si whose
location vr˚ls1 in s1 overlaps r’s location vrls2 in s2; otherwise,
lr “ vrlsj

, i.e., staying at the current node.

Theorem 6. π‹s1Ñs2 defined by Eq.(10) is optimal in NEST.

The second technique is to add multiple defender best re-
sponse strategies at one iteration to reduce the number of it-
erations for the convergence of IGRS. More specifically, we
sample multiple adversary strategies to add the correspond-
ing defender’s best response strategies to the restricted game
GpS1, A1q by calling BR in IGRS at one iteration.

We sample a uniform strategy over Ohs
for each state s in

GpS1, A1q based on the following intuition. On the one hand,
for different adversary strategies, the corresponding best re-
sponse strategies involve different states and actions that will
be added to GpS1, A1q before the convergence of IGRS, and
the number of iterations will be enormous if the strategy
space is large. At each iteration, LP will be solved once to
generate the adversary equilibrium strategy in GpS1, A1q. If
we can sample some of these strategies, then we can reduce
the number of iterations of IGRS and times to solve LP. On
the other hand, if s is added to GpS1, A1q (i.e., s is part of
the best response), at least one of the paths in Ohs

is in the
support set of the equilibrium strategy in GpS1, A1q. Then, it
is possible that the adversary will escape through the paths
in Ohs , and the defender needs a corresponding strategy to
interdict him. To generate such a strategy immediately, we
can sample a uniform strategy over Ohs

and then call BR.
Finally, IGRS embedded with the above two additional

techniques (IGRS++) is still optimal.

Theorem 7. IGRS++ converges to an NE.

7 Experimental Evaluation
We demonstrate the efficiency of our algorithms through nu-
merical experiments. We use CPLEX (version 12.6) to solve
the linear program. All computations are performed on a
machine with a 3.2GHz quad core CPU and 16GB mem-
ory. All results are averaged over 30 randomly generated in-
stances. All random planar graphs are generated by the grid
model with random edges (Peng et al. 2014), which sam-
ples an L ˆW square grid where horizontal/vertical edges
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Figure 2: Solution quality: (a)–(b); Influence of tmax: (c)–(d); Scalability: (e)–(i) (log y-axis in (i)); Real network: (j)–(l).

between neighbors are generated with probability p, and di-
agonal ones with q. We choose p from r0.4, 0.9s and q from
r0.0, 0.5s to match most real-world road networks. In our
evaluation, va0 is located at the center node, m defender re-
sources are uniformly distributed on the network at initial-
ization, and |Ve| exit nodes are randomly distributed at the
border. By default, L “W “ 5, pp, qq “ p0.5, 0.1q, horizon
tmax “ L, |Ve| “ 10, and m “ 4.
Solution Quality: We compare the solution quality of our
approach (represented by IGRS++) with one baseline, the
algorithm for the discussed network security game model
(Jain et al. 2011; Zhang et al. 2017) considering time-
dependent strategies, denoted as NSG. Figures 2(a) and 2(b)
vary parameters: (1) the number of intersections, denoted by
LˆW , and (2) edge generation probabilities. It can be seen
that IGRS++ significantly outperforms NSG. These results
are similar to ones for varying the number of exit nodes or
resources (not shown here). Here the defender’s utility does
not decrease with the size of the network because although
the adversary has more strategies on larger networks, the de-
fender can exploit more real-time information about him.

We evaluate the influence of the horizon tmax on the solu-
tion quality on networks with different scales in Figure 2(c)
and networks with different density of edges in Figure 2(d).
Results show that the defender’s expected utility converges
when tmax is large enough, e.g., tmax is almost equal to L.
Scalability: We evaluate the scalability of IGRS with
two baselines: (1) using the bounds setting in (Bošanskỳ et
al. 2014) for IGRS (IGRS+OldB), and (2) only using our
new lower bound setting without the tight upper bound for
IGRS (IGRS-UB). Specifically, IGRS+OldB can cut some
branches only when the searching player’s information set
has at least two nodes. To be fair, each state s in IGRS+OldB
is treated as a defender’s information set, and each child his-

tory of hs corresponds to one node in this information set.
In addition, to evaluate our second technique at Section 6.3,
we have a baseline, IGRS+Same, where IGRS++ uses the
method that adds several best response strategies against the
same adversary strategy based on (Wang, Yin, and An 2016).

Results in Figures 2(e)–2(h) show that: 1) The runtime
generally increases except that it reflects the “easy-hard-
easy” pattern in security games (Jain, Leyton-Brown, and
Tambe 2012) in Figure 2(g). 2) IGRS++ significantly out-
performs IGRS and IGRS+Same, especially when the size
of the problem is extremely large. 3) IGRS significantly out-
performs IGRS-UB, and IGRS-UB significantly outperforms
IGRS+OldB. To further evaluate the effect of our prun-
ing techniques, Figure 2(i) shows the number of evaluated
states for computing the best response against the adver-
sary’s uniform strategy, i.e., yo “ 1{|O|p@o P Oq, where re-
sults are consistent with the ones in Figures 2(e)–2(h). Here,
IGRS+Same runs slower than IGRS because its BR evaluates
too many states to compute several best response strategies,
and it adds too many strategies to the restricted game.
The Real-World Network: We also evaluate our ap-
proach on the road network of the whole Manhattan is-
land of New York as shown in Figure 2(j). In this network,
there are 702 nodes with 1,216 links extracted from OSM
(www.openstreetmap.org). The initial positions of four po-
lice officers and the adversary are chosen randomly, and
seven exit nodes are chosen based on the connection to the
external world of the island. A total of 30 cases with differ-
ent adversary initial positions are tested. As shown in Fig-
ures 2(k) and 2(l) (note that IGRS-UB and IGRS+OldB can-
not run on networks of this size), results are consistent with
ones in Figures 2(a)–2(i) on random networks. In particu-
lar, IGRS++ significantly outperforms others and efficiently
solves NEST until the defender’s expected utility converges.



8 Conclusions
This paper studies the problem of optimal interdiction of
urban criminals with the aid of real-time information. We
show that ignoring such information can cause an arbitrarily
large loss and then propose our NEST. We show that solving
NEST is NP-hard, therefore develop an optimal algorithm
IGRS++ to solve it efficiently. Extensive experiments show
the effectiveness of our approach in a wide range of settings.
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