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THE BRAUER-MANIN OBSTRUCTION TO THE

LOCAL-GLOBAL PRINCIPLE FOR THE EMBEDDING

PROBLEM

AMBRUS PÁL AND TOMER M. SCHLANK

Abstract. We study an analogue of the Brauer-Manin obstruction to the
local-global principle for embedding problems over global fields. We will prove
the analogues of several fundamental structural results. In particular we show
that the (algebraic) Brauer-Manin obstruction is the only one to weak ap-
proximation when the embedding problem has abelian kernel. As a part of
our investigations we also give a new, elegant description of the Tate duality
pairing and prove a new theorem on the cup product.

1. Introduction

Let F be an arbitrary field. Fix a separable closure F of F and let Γ = Gal(F |F )
denote the absolute Galois group of F . An embedding problem E over F is a
diagram:

(1.0.1)

Γ

ψ

y

G1
φ

−−−−→ G2

where G1, G2 are finite groups, φ and ψ are group homomorphisms, the map φ is
surjective, and ψ is assumed to be continuous with respect to the Krull topology
on Γ and the discrete topology on G2. We say that the embedding problem E

is solvable if there is a continuous homomorphism ψ̃ : Γ → G1 which makes the

diagram above commutative. We will call such a homomorphism ψ̃ a solution of
E. Let Ker(E) = Ker(φ). We will say that two solutions of E are conjugate if
they are conjugate by an element of Ker(E). Conjugacy is clearly an equivalence
relation. Let Sol(E) denote the set of equivalence classes of this relation. Note that
in the subject of field arithmetic it is common to define a solution to an embedding

problem to be a surjective continuous homomorphism ψ̃ : Γ → G1, and to refer
to our notion of solution as a weak solution. In this paper we will not impose the
surjectivity condition.

Assume now that F is a global field. In this case there is an obvious family of
obstructions to the solvability of E which we will call local obstructions. Let |F |
denote the set of all places of F and for every x ∈ |F | let Fx denote the completion
of F with respect to x. Fix a separable closure F x of Fx and let Γx = Gal(F |F )
denote the absolute Galois group of Fx. The choice of an F -embedding ηx : F → F x
induces an injective homomorphism ιx : Γx → Γ whose conjugacy class is actually
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independent of these choices. Let E be an embedding problem over F . Then for
every x ∈ |F | we define the embedding problem Ex over Fx associated to (E, x) to
be the diagram:

Γx

ιx◦ψ

y

G1
φ

−−−−→ G2.
Clearly the embedding problem Ex is solvable if the problem E is; this is the local
obstruction we mentioned above. The analogue of the local-global principle in this
setting is the following statement:

Local-global principle for embedding problems. Let F and E be as above
and assume that for every x ∈ |F | there is no local obstruction to the embedding
problem E at the place x. Then E is solvable.

It is known that the principle above fails by the work of P. Roquette (see [14]).
The aim of this article is to examine the potential failure of the local-global principle
for embedding problems by studying an analogue of the Brauer-Manin obstruction.
In particular our results imply that this obstruction explains all failures of the
local-global principle in a large class of cases, including the counterexamples pro-
vided in [14]. In order to formulate these we need to introduce some new concepts

and notation. For every non-archimedean x ∈ |F | let ux : Γx → Ẑ denote the
homomorphism onto the Galois group of the maximal unramified extension of Fx
in F x. We say that a continuous homomorphism h : Γx → G is unramified if x is
non-archimedean and h factors through ux.

Clearly a solution conjugate to an unramified solution is also unramified. Let
Solun(Ex) be the set of conjugacy classes of all solutions of Ex which are unramified
in the sense above. Let SolA(E) denote the set:

SolA(E) = {
∏

x∈|F |

hx|hx ∈ Solun(Ex) for almost all x ∈ |F |} ⊆
∏

x∈|F |

Sol(Ex).

Similarly by an adèlic solution of the embedding problem E we mean an expression∏
x∈|F | hx such that hx is a solution of the embedding problem Ex for every x ∈ |F |

which is unramified for almost all x. For every x ∈ |F | let rx : Sol(E) → Sol(Ex)

denote the map furnished by the rule ψ̃ 7→ ιx ◦ ψ̃. Then image of the map

r =
∏

x∈|F |

rx : Sol(E)→
∏

x∈|F |

Sol(Ex)

lies in SolA(E). It is not difficult to show (see Lemma 3.2 below) that the local-
global principle above can be reformulated in the following equivalent form:

Adèlic form of the local-global principle. Let F and E be as above. Then the
set Sol(E) is non-empty if and only if the set SolA(E) is non-empty.

In order to study the image of Sol(E) in SolA(E) under the map r we will define
the Brauer group Br(E) of the embedding problem E (see Definition 2.2) and a
pairing:

〈·, ·〉 : SolA(E)× Br(E)→ Q/Z

(see Definition 3.5) such that r(Sol(E)) is annihilated by this pairing (see Lemma
3.6). (This idea can be found already in the paper [19].) Moreover we will also
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define two subgroups Br1(E) and B(E) of Br(E) (see Definition 2.4) analogous
to the algebraic Brauer group and the Brauer group of locally constant elements
of algebraic varieties, respectively, playing an important role in our main results.
Let SolBr

A (E), SolBr1
A

(E) and SolBA(E) denote the subset of SolA(E) annihilated by
Br(E),Br1(E) and by B(E) with respect to the pairing 〈·, ·〉, respectively. Now we
can state our first main result:

Theorem 1.1. Assume that Ker(E) is abelian and char(F ) does not divide the
order of Ker(E). Then the following claims are equivalent:

Sol(E) 6= 0⇔ SolBr
A (E) 6= 0⇔ SolBr1

A
(E) 6= 0⇔ SolBA(E) 6= 0.

Let us make the groups mentioned above a bit more explicit. Let Ker(E)ab denote
the abelianization of Ker(E). Note that the natural action of G1 on Ker(E)ab via
conjugation factors through G2 hence Ker(E)ab is naturally equipped with a Γ-
action. Let Ker(E)∨ab denote its dual as a Γ-module. We will show that the group
Br(E) sits in an exact sequence:

0→ H1(Γ,Ker(E)∨ab)
jE
−→Br(E)→ H2(Ker(E),

⊕

p6=char(F )

Qp/Zp)
Γ → H2(Γ,Ker(E)∨ab)

(see Lemma 2.2) and we will identify the subgroups Br1(E) andB(E) with the image
of the group H1(Γ,Ker(E)∨ab) and its Tate–Shafarevich subgroup X

1(F,Ker(E)∨ab)
under the map jE, respectively (see Definition 2.4 and Proposition 2.7).

In complete analogy with the situation for diophantine equations, we can also
formulate a version of weak approximation, too. Obviously the map r : Sol(E) →
SolA(E) is never surjective unless ψ : G1 → G2 is a bijection. Nevertheless the
situation changes if we take the Brauer-Manin obstruction into account.

Theorem 1.2. Assume that Ker(E) is abelian and char(F ) does not divide the
order of Ker(E). Then we have:

r
(
Sol(E)

)
= SolBr

A
(E) = SolBr1

A
(E).

We will give two proofs for the both theorems, at least in characteristic zero.
The first proof is geometric; given an embedding problem over field F we construct
a connected linear algebraic group G over F and a homogenous space X = X(E)
under G over F such that there is a bijection between X(F )/G(F ) and Sol(E) (see
Theorem 9.6). Then we apply a result of Borovoi (see [1]) on the Brauer-Manin
obstruction for homogeneous spaces with abelian stabilizer. Similarly we can apply
a result of Colliot-Thélène–Xu (see [5]) on strong approximation to deduce Theorem
1.2. Note that homogeneous spaces were used before to study local-global principles
for split embedding problems (see [7] and [8]).

Since our main results are about the structure of the absolute Galois group it is
more natural to have proofs which remain in this context, and do not use methods
of algebraic geometry. Our second proof, which also works in positive characteristic,
is of this sort, in fact it is Galois-cohomological in nature. It also has the advantage
that it lead us to two auxiliary results which are interesting on their own. One
of them gives an elegant description of the Tate duality pairing in terms of the
Brauer-Manin pairing which we will describe next.

Definition 1.3. Let F be again an arbitrary field with absolute Galois group Γ
and let E be an embedding problem given by the diagram (1.0.1). Let Γ(E) denote



4 Ambrus Pál and Tomer M. Schlank

the fibre product group:

Γ(E) = {(a, b) ∈ G1 × Γ|φ(a) = ψ(b)} ≤ G1 × Γ.

Then Γ(E) sits in the exact sequence:

(1.3.1) 1 −−−−→ Ker(E)
iE−−−−→ Γ(E)

πE−−−−→ Γ −−−−→ 1

where the map iE is given by the rule a 7→ (a, 1), and the homomorphism πE is the
restriction onto Γ(E) of the projection of G1×Γ onto the second factor. The group
Γ(E) also inherits a topology from the product topology on G1 × Γ which makes
Γ(E) a profinite group and (1.3.1) an exact sequence in the category of Hausdorff
topological groups.

Let M be a discrete finite abelian Γ-module. For every embedding problem
E over F such that Ker(E) = M and the set SolA(E) is non-empty let cE ∈
H2(F,M) = H2(F,Ker(E)) denote the class of the extension (1.3.1). Note that
cE ∈X

2(F,M) since we assumed that SolA(E) is non-empty. Conversely for every
c ∈X

2(F,M) there is an embedding problem E as above such that c = cE. Let

(1.3.2) b : X1(F,M∨)×X
2(F,M)→ Q/Z

be the unique pairing such that b(b, cE) = 〈h, b〉 for every b ∈ X
1(F,M∨), for

every h ∈ SolA(E), and embedding problem E as above. Note that bE(b) = 〈h, b〉
is independent of the choice of h, and since for every b as above the value of bE(b)
only depends on the isomorphism class of the embedding problem E (see Definition
3.7 and the proof of Lemma 4.5 below), the pairing b is well-defined. Assume now
that char(F ) does not divide the order of M and let

τ : X1(F,M∨)×X
2(F,M) −→ Q/Z

denote the Tate duality pairing.

Theorem 1.4. We have b = −τ .

In the paper [9] Harari and Szamuely gave a geometric interpretation of the du-
ality pairing. Our result offers another geometric interpretation by relating it to
the Brauer–Manin pairing. This result is the key ingredient of the cohomological
proof of Theorem 1.1. The other auxiliary result which we mentioned above is a
result on the cup product (Theorem 6.3) which plays a central role in the cohomo-
logical proof of Theorem 1.2 through its group theoretical counterpart (Corollary
6.5). In the last chapter we also present an example (Example 10.5) which shows
that the algebraic Brauer–Manin obstruction is not sufficient for weak approxima-
tion for embedding problems with non-abelian kernel. However it remains a very
interesting challenge to construct an embedding problem where the failure of the
local-global principle cannot be explained by the Brauer-Manin obstruction.

Contents 1.5. In the next chapter we will define the Brauer group of embedding
problems and study its structure. We will introduce the analogue of the Brauer-
Manin obstruction in the third chapter. In the fourth chapter we show that the
analogue of the algebraic Brauer-Manin obstruction is equivalent to the analogue
of the abelian descent obstruction. This result and the closely related Theorem 4.8
are relatively straightforward consequences of Theorems 1.1 and 1.2 once a suitable
formalism is set up. We prove a local-global principle for cohomology classes using
Poitou-Tate duality in the fifth chapter. In the sixth chapter we prove a theorem
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on the cup product in topology which we use to deduce a similar statement in
group cohomology. We compare the Tate duality pairing with the Brauer–Manin
paring in the seventh chapter. With the help of these results we prove Theorems
1.1 and 1.2 in the eighth chapter. We present a geometric construction and use it
to give another proof of Theorem 1.1 in the ninth chapter. In the last chapter we
present a counter-example to weak approximation not explained by the algebraic
Brauer-Manin obstruction.

Acknowledgement 1.6. The first author was partially supported by the EPSRC
grants P19164 and P36794. The second author was partially supported by a Clore
Fellowship.

2. The Brauer group of embedding problems

Definition 2.1. Via the homomorphism πE we may consider every discrete Γ-
module M a discrete Γ(E)-module, too, which will be denoted also by M by slight
abuse of notation. For every n ∈ N and abelian group M let M [n] denote the n-
torsion ofM and for every suchM letM ct denote the quotient ofM by its torsion.
Let Br(E) denote the cokernel of the homomorphism

π∗
E
: H2(Γ, F

∗
)→ H2(Γ(E), F

∗
).

For every finite discrete abelian Γ-module M let M∨ denote the dual of M :

M∨ = Hom(M,F
∗
).

Assume now that F is either a local or a global field and continue to use the
notation which we introduced above.

Lemma 2.2. We have the following short exact sequence:

0→ H1(Γ,Ker(E)∨ab)
jE
−→Br(E)→ H2(Ker(E),

⊕

p6=char(F )

Qp/Zp)
Γ → H2(Γ,Ker(E)∨ab),

where we equip
⊕

p6=char(F ) Qp/Zp with the trivial Ker(E)-action.

Proof. The Hochschild-Serre spectral sequence:

(2.2.1) E2
p,q = Hp(Γ, Hq(Ker(E), F

∗
))⇒ Hp+q(Γ(E), F

∗
)

furnishes on H2(Γ(E), F
∗
) a filtration:

(2.2.2) 0 = E2
3 ⊆ E

2
2 ⊆ E

2
1 ⊆ E

2
0 = H2(Γ(E), F

∗
)

such that

E∞
p,2−p

∼= E2
p/E

2
p+1, p = 0, 1, 2.

BecauseH3(Γ, F
∗
) = 0 (see Proposition 15 of [17] on page 93 when F is a local field,

and see Corollary 4.21 of [13], page 80 when F is a global field), the coboundary
map:

d21,1 : E2
1,1 = H1(Γ, H1(Ker(E), F

∗
)) = H1(Γ,Ker(E)∨ab)→ H3(Γ, F

∗
)

is zero and therefore:

E∞
1,1 = E3

1,1 = Ker(d21,1) = H1(Γ,Ker(E)∨ab).
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We have the following short exact sequence of trivial Ker(E)-modules:

0 −→
⊕

p6=char(F )

Qp/Zp −→
u F

∗
−→ (F

∗
)ct −→ 0

where the image of the map u is the module of roots of unity. The Ker(E)-

module (F
∗
)ct is a vector space over Q so its higher cohomology groups vanish.

Hence Hk(Ker(E),
⊕

p6=char(F )Qp/Zp) = Hk(Ker(E), F
∗
) for every positive integer

k. Therefore

E∞
0,2 = E2

0,2 = Ker(d20,2),

where the coboundary map d20,2 is a homomorphism:

E2
0,2 = H2(Ker(E),

⊕

p6=char(F )

Qp/Zp)
Γ → H2(Γ, H1(Ker(E), F

∗
)) = H2(Γ,Ker(E)∨ab).

Because

E∞
2,0 = E3

2,0 = π∗
E
(H2(Γ, F

∗
)) ⊆ H2(Γ(E), F

∗
),

the claim is now clear. �

Assume now that F is a global field. Note that for every x ∈ |F | the following
diagram:

H2(Γ, F
∗
)

ι∗x //

π∗
E

��

H2(Γx, F
∗
)

(ηx)∗ //

π∗
Ex

��

H2(Γx, F
∗

x)

π∗
Ex

��
H2(Γ(E), F

∗
)
(idG1×ιx)

∗

// H2(Γx(Ex), F
∗
)

(ηx)∗ // H2(Γx(Ex), F
∗

x)

is commutative, where the maps on the left are restriction maps in group cohomol-
ogy, and hence it gives rise to a map:

jx : Br(E) −→ Br(Ex).

Definition 2.3. Let B(E) denote the intersection:

B(E) =
⋂

x∈|F |

Ker(jx) ≤ Br(E).

Let Br1(E) denote the kernel of the homomorphism:

Br(E) −→ H2(Ker(E),
⊕

p6=char(F )

Qp/Zp)
Γ.

Lemma 2.4. The group B(E) is a subgroup of Br1(E).

Proof. As we saw in the proof above the Hochschild-Serre spectral sequence

F 2
p,q = Hp(Γx, H

q(Ker(E), F
∗

x))⇒ Hp+q(Γx(Ex), F
∗

x),

furnishes on H2(Γx(Ex), F
∗

x) a filtration:

(2.4.1) 0 = F 2
3 ⊆ F

2
2 ⊆ F

2
1 ⊆ F

2
0 = H2(Γx(Ex), F

∗

x)

such that

F∞
p,2−p

∼= F 2
p /F

2
p+1, p = 0, 1, 2.
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The homomorphism (idG1×ιx)
∗◦(ηx)∗ : H2(Γ(E), F

∗
)→ H2(Γx(Ex), F

∗

x) respects
the filtrations (2.2.2) and (2.4.1) in the sense that (idG1 × ιx)

∗ ◦ (ηx)∗(E2
p) ⊆ F

2
p for

every p = 0, 1, 2. Moreover the homomorphism:

E∞
0,2
∼= E2

0/E
2
1 −→ F 2

0 /F
2
1
∼= F∞

0,2

induced by (idG1 × ιx)
∗ ◦ (ηx)∗ is the restriction of the map:

(2.4.2) H2(Ker(E),
⊕

p6=char(F )

Qp/Zp)
Γ −→ H2(Ker(E),

⊕

p6=char(F )

Qp/Zp)
Γx

onto the kernel of the homomorphism

d20,2 : H2(Ker(E),
⊕

p6=char(F )

Qp/Zp)
Γ → H2(Γ,Ker(E)∨).

Because the homomorphism in (2.4.2) is injective, the claim is now clear. �

Lemma 2.5. The group Br1(E) is annihilated by |Ker(E)|. The group Br(E) is
annihilated by |Ker(E)|2.

Proof. The group Br1(E) is isomorphic to the cohomology group H1(Γ,Ker(E)∨ab)
which is annihilated by |Ker(E)| since the Γ-module Ker(E)∨ab is annihilated by
by |Ker(E)|. For the second claim it will be enough to show that the quotient
Br(E)/Br1(E) is annihilated by |Ker(E)|. This group is isomorphic to a subgroup
of H2(Ker(E),

⊕
p6=char(F ) Qp/Zp). For every Ker(E)-module M the cohomology

group H2(Ker(E),M) is annihilated by the order of the finite group Ker(E). The
claim is now clear. �

Notation 2.6. For every k ∈ N and for finite discrete Γ-module M let Xk(F,M)
denote the subgroup:

X
k(F,M) = Ker


 ∏

x∈|F |

ι∗x : Hk(Γ,M)→ Hk(Γx,M)


 ≤ Hk(Γ,M).

Proposition 2.7. We have:

B(E) = X
1(F,Ker(E)∨ab).

Proof. As we already noted for every x ∈ |F | the homomorphism

(idG1 × ιx)
∗ ◦ (ηx)∗ : H2(Γ(E), F

∗
)→ H2(Γx(Ex), F

∗

x)

respects the filtrations (2.2.2) and (2.4.1), that is: (idG1 × ιx)
∗ ◦ (ηx)∗(E2

p) ⊆ F 2
p

for every p = 0, 1, 2. Moreover the homomorphism:

E∞
1,1
∼= E2

1/E
2
2 −→ F 2

1 /F
2
2
∼= F∞

1,1

induced by (idG1 × ιx)
∗ ◦ (ηx)∗ is the restriction homomorphism:

ι∗x : E∞
1,1 = H1(Γ,Ker(E)∨ab) −→ H1(Γx,Ker(E)∨ab) = F∞

1,1

(where we used that H3(Γx, F
∗

x) = 0). Hence under the isomorphism Br1(E) ∼=
H1(Γ,Ker(E)∨ab) furnished by the spectral sequence (2.2.1) the subgroup B(E) is
identified with the intersection of the kernels of the maps ι∗x for all x ∈ |F |. The
claim is now clear. �

Corollary 2.8. The group B(E) is finite.
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Proof. The group X
1(F,Ker(E)∨ab) is known to be finite (see Theorem 4.10 of [13],

page 70). The claim now follows from the proposition above. �

3. The Brauer-Manin obstruction

Notation 3.1. Let F be again an arbitrary field with absolute Galois group Γ and
let E be an embedding problem given by the diagram (1.0.1). Note that the map
which assigns to every solution h of E the homomorphism

s(h) : Γ→ Γ(E) ⊆ G1 × Γ

given by the rule g 7→ (h(g), g) is a bijection between the solutions of E and con-
tinuous sections of the exact sequence (1.3.1). This bijection induces a bijection
between Sol(E) and the conjugacy classes of sections of (1.3.1). We will always
identify these two pairs of sets under these bijections.

Assume now that F is a global field and let E be as above.

Lemma 3.2. The set SolA(E) is non-empty if and only if for every x ∈ |F | there
is no local obstruction to the embedding problem E at the place x.

Proof. Note that for almost all x ∈ |F | the homomorphism ψ ◦ ιx is unramified and
for every such x the set Solun(Ex) is non-empty since we can lift any continuous

homomorphism Ẑ → G2 to a continuous homomorphism Ẑ → G1 with respect to
the surjective map φ. �

For every x ∈ |F | let

invx : Br(Fx) = H2(Γx, F
∗

x)→ Q/Z

denote the canonical invariant of the Brauer group Br(Fx) of the local field Fx. Let
Inf denote the inflation map in group cohomology, as usual.

Lemma 3.3. For every c ∈ H2(Γ(E), F
∗
) and for every adèlic solution

∏
x∈|F | hx

of E the image of c under the composition:

H2(Γ(E), F
∗
)

(idG1×ιx)
∗

−−−−−−−→ H2(Γx(Ex), F
∗
)

(ηx)∗
−−−−→ H2(Γx(Ex), F

∗

x)
s(hx)

∗

−−−−→

H2(Γx, F
∗

x)
invx−−−−→ Q/Z

is zero for almost all x ∈ |F |.

Proof. Note that there is an open normal subgroup U ⊳ Γ(E) such that c is the

image of a cohomology class c̃ ∈ H2(Γ(E)/U, (F
∗
)U ) with respect to the inflation

map H2(Γ(E)/U, (F
∗
)U )→ H2(Γ(E), F

∗
). Let G = Γ(E)/U be the quotient by U .

Moreover let ρ : Γ(E)→ G denote the quotient map and let ρ : Γ→ G/ρ(Ker(E))
be the unique continuous homomorphism such that ρ ◦ πE is the composition of
ρ and the quotient map G → G/ρ(Ker(E)). We may assume without the loss of
generality that ρ ◦ ιx and hx are unramified. In this the case the homomorphism
ρ ◦ (idG1 × ιx) ◦ s(hx) is also unramified. Therefore the cohomology class

c̃x
def
= (ηx)∗(ρ ◦ (idG1 × ιx) ◦ s(hx))

∗(c̃) ∈ H2(Γx, F
∗

x)

lies in the image of the inflation map H2(Ẑ, (F
∗

x)
Ix) → H2(Γx, F

∗

x) where Ix ⊳ Γx
is the inertia subgroup. Note that for all but finitely many x the image of c̃x under

the map H2(Ẑ, (F
∗

x)
Ix)→ H2(Ẑ,Z) induced by x is zero (for example because the

valuation of the values of a fixed cocycle representing c̃ with respect to x is zero
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for all but finitely many x). Because the map H2(Ẑ, (F
∗

x)
Ix) → H2(Ẑ,Z) is an

isomorphism (see Theorem 2 on page 130 in [16]), the claim is now clear. �

Note that for every x ∈ |F | and hx as above the map s(hx)
∗ only depends on

the conjugacy class of hx, therefore the pairing:

(·, ·) : SolA(E)×H2(Γ(E), F
∗
)→ Q/Z

given by the rule

(
∏

x∈|F |

hx, c) =
∑

x∈|F |

invx(s(hx)
∗((ηx)∗((idG1 × ιx)

∗(c))))

is well-defined, because all but finitely many of the summands are zero by the
lemma above.

Lemma 3.4. The image of group H2(Γ, F
∗
) with respect to the homomorphism π∗

E

is annihilated by the pairing (·, ·).

Proof. Note that for every x ∈ |F | and for every section s : Γx → Γx(Ex) of the
short exact sequence (1.3.1) we have πE ◦ (idG1 × ιx) ◦ s = ιx. Hence for every

c ∈ H2(Γ, F
∗
) and every adèlic solution h =

∏
x∈|F | hx of E we have:

(h, π∗
E
(c)) =

∑

x∈|F |

invx(s(hx)
∗((ηx)∗((idG1 × ιx)

∗(π∗
E
(c)))))

=
∑

x∈|F |

invx((ηx)∗ι
∗
x(c)) = 0

by the reciprocity law for Brauer groups over global fields. �

Definition 3.5. By the lemma above we have a pairing:

〈·, ·〉 : SolA(E)× Br(E)→ Q/Z

such that for every h ∈ SolA(E) and c ∈ H2(Γ(E), F
∗
) we have:

(h, c) = 〈h, σE(h)〉

where σE : H2(Γ(E), F
∗
)→ Br(E) is the tautological surjection. For every subset

X ⊆ Br(E) let SolX
A
(E) denote the set:

SolX
A
(E) = {h ∈ SolA(E)|〈h, c〉 = 0 (∀c ∈ X)}.

In the special case when X = Br(E),Br1(E) or B(E) we will use the shorter super-
scripts Br,Br1 and B, respectively. Clearly we have the inclusions:

SolBr
A
(E) ⊆ SolBr1

A
(E) ⊆ SolB

A
(E) ⊆ SolA(E).

Lemma 3.6. We have r(Sol(E)) ⊆ SolBr
A
(E).

Proof. Let h be a solution of E. Then for every x ∈ |F | we have

(idG1 × ιx) ◦ s(ιx ◦ h) = s(h) ◦ ιx.

Hence for every c ∈ H2(Γ(E), F
∗
) we have:

(h, c) =
∑

x∈|F |

invx(s(ιx ◦ h)
∗((ηx)∗((idG1 × ιx)

∗(c))))

=
∑

x∈|F |

invx((ηx)∗ι
∗
x(s(h)

∗(c))) = 0
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by the reciprocity law for Brauer groups over global fields applied to the cohomology

class s(h)∗(c) ∈ H2(Γ, F
∗
). �

Now we can formulate an improved version of the local-global principle for em-
bedding problems:

The Brauer-Manin obstruction for embedding problems. The set Sol(E)

is non-empty if and only if the set SolBr
A
(E) is non-empty.

We will say that the Brauer-Manin obstruction is the only one to the local-global
principle for E if the claim above is true for E. Theorem 1.1 implies that this is
the case when Ker(E) is abelian and its order is not divisible by char(F ).

Definition 3.7. Let E be an embedding problem over F such that the set SolA(E)

is non-empty and let b be an element of B(E). Choose a b′ ∈ H2(Γ(E), F
∗
) such

that σE(b
′) = b. By definition for every x ∈ |F | there is a bx ∈ H

2(Γx, F
∗

x) such
that (ηx)∗(idG1×ιx)

∗(b′) = π∗
Ex

(bx). Therefore for every solution hx of Ex we have:

s(hx)
∗((ηx)∗((idG1 × ιx)

∗(b′))) = s(hx)
∗(π∗

Ex
(bx)) = bx,

and hence the value of

bE(b) = 〈h, b〉 =
∑

x∈|F |

invx(bx)

does not depend on the choice of the adèlic solution h =
∏
x∈|F | hx of E. Let

bE : B(E) = X
1(F,Ker(E)∨ab)→ Q/Z

denote the function defined by the formula above.

Remark 3.8. Note that for every
∏
x∈|F | hx ∈

∏
x∈|F | Sol(Ex) and every b, b′ and

bx as above the infinite sum
∑

x∈|F |

invx(s(hx)
∗((ηx)∗((idG1 × ιx)

∗(b′)))) =
∑

x∈|F |

invx(bx)

is actually finite, and it is equal to the value of bE(b). We will use this observation
in the geometric proof of Theorem 1.1 in section 9.

4. Descent for embedding problems

Definition 4.1. Let E and E′ be two embedding problems over an arbitrary field
F given by the diagrams

Γ Γ

ψ

y and ψ′

y

G1
φ

−−−−→ G2 G′
1

φ′

−−−−→ G′
2,

respectively. A map g : E → E′ from the embedding problem E and to the
embedding problem E′ is a pair of group homomorphisms g1 : G1 → G′

1 and
g2 : G2 → G′

2 such that the diagrams

G1
φ

−−−−→ G2 Γ Γ

g1

y g2

y and
yψ ψ′

y

G′
1

φ′

−−−−→ G′
2 G2

g2
−−−−→ G′

2,
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are commutative. Let Prob(F ) denote the category whose objects are embedding
problems over F and whose morphisms are maps between them as defined above.

Definition 4.2. Let Sol denote the functor from Prob(F ) to the category of sets
which maps every object E of Prob(F ) to Sol(E) and every morphism g : E → E′

to the map Sol(g) : Sol(E)→ Sol(E′) furnished by the rule ψ̃ 7→ g1 ◦ ψ̃ where g1 is
as above. There is a similar functor SolA from Prob(F ) to the category of sets that
maps every object E of Prob(F ) to SolA(E) when F is a global field. Moreover
there is a unique functor Γ(·) from Prob(F ) to the category of profinite groups
which maps every object E of Prob(F ) to Γ(E) and for every morphism g : E→ E′

the diagram:
Γ(E) −−−−→ G1 × Γ

Γ(g)

y g1×idΓ

y

Γ(E′) −−−−→ G′
1 × Γ

commutes.

Lemma 4.3. For every morphism g : E→ E′ in Prob(F ) the homomorphism:

Γ(g)∗ : H2(Γ(E′), F
∗
) −→ H2(Γ(E), F

∗
)

respects the filtrations on H2(Γ(E′), F
∗
) and H2(Γ(E), F

∗
) induced by the Hoch-

schild-Serre spectral sequence (2.2.1) for E′ and E, respectively.

Proof. Note that the diagram:

1 −−−−→ Ker(E)
iE−−−−→ Γ(E)

πE−−−−→ Γ −−−−→ 1

g1|Ker(E)

y Γ(g)

y
∥∥∥

1 −−−−→ Ker(E′)
i
E′

−−−−→ Γ(E′)
π
E′

−−−−→ Γ −−−−→ 1

commutes. The claim is now clear. �

Notation 4.4. By the above there is a unique functor from Prob(F ) to the category
of abelian groups which will be denoted by Br and which maps every object E of
Prob(F ) to Br(E) and for every morphism g : E→ E′ the diagram:

H2(Γ(E′), F
∗
)

Γ(g)∗

−−−−→ H2(Γ(E), F
∗
)

σ
E′

y σE

y

Br(E′)
Br(g)
−−−−→ Br(E)

is commutative (where the vertical maps were introduced in Definition 3.5).

Assume now that F is either a local or a global field. An immediate consequence
of the lemma above is the following

Corollary 4.5. For every morphism g : E→ E′ in Prob(F ) the diagram:

H1(Γ,Ker(E′)∨ab)
(gab

1 )∨∗−−−−→ H1(Γ,Ker(E)∨ab)y
y

Br1(E
′)

Br(g)|Br1(E′)

−−−−−−−−→ Br1(E)
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is commutative, where (gab1 )∨ : Ker(E′)∨ab → Ker(E)∨ab is the dual of the abelian-
ization of g1 and the vertical arrows are furnished by the exact sequence in Lemma
2.2. �

Assume now that F is a global field.

Lemma 4.6. For every morphism g : E → E′ in Prob(F ) and for every subset
X ⊆ Br(E) we have:

SolA(g)
−1

(
SolX

A
(E′)

)
= Sol

Br(g)(X)
A

(E).

Proof. Since for every h ∈ SolA(E) and c ∈ H2(Γ(E′), F
∗
) we have:

(h,Γ(g)∗(c)) = (SolA(g)(h), c)

the claim is clear. �

Definition 4.7. Let Eab be the embedding problem given by the diagram:

Γ

ψ

y

G1/[Ker(E),Ker(E)]
φ

−−−−→ G2

where φ is the unique homomorphism such that the composition of the quotient
map e : G1 → G1/[Ker(E),Ker(E)] and φ is φ and we assume that E was given by
the diagram (1.0.1).

Theorem 4.8. Assume that char(F ) does not divide the order of Ker(E)ab. Then
the following claims are equivalent:

Sol(Eab) 6= 0 and SolA(E) 6= 0⇔ SolBA(E) 6= 0.

Proof. Let e : E → Eab be the map given by the homomorphism e : G1 →
G1/[Ker(E),Ker(E)] (introduced in Definition 4.7) and the identity map G2 → G2.
By Corollary 4.5 the map Br(e)|B(Eab) : B(Eab)→ B(E) is an isomorphism. Hence
Lemma 4.6 implies that

(4.8.1) SolB
A
(E) = SolA(e)

−1
(
SolB

A
(Eab)

)
.

First assume that SolB
A
(E) 6= ∅. Obviously in this case SolA(E) 6= ∅ and by (4.8.1)

we have:
∅ 6= SolA(e)

(
SolB

A
(E)

)
⊆ SolB

A
(Eab)

so Theorem 1.1 implies that the set Sol(Eab) is non-empty, too. Now assume
that SolA(E) 6= ∅ and Sol(Eab) 6= ∅. Then the homomorphism bEab is zero hence

SolB
A
(Eab) = SolA(E

ab). So (4.8.1) implies that

SolB
A
(E) = SolA(e)

−1
(
SolA(E

ab)
)
= SolA(E) 6= ∅.

�

Definition 4.9. Let G1 denote the quotient group G1/[Ker(E),Ker(E)] where we
continue to use the notation above. For every π ∈ Sol(Eab) let Eπ be the embedding
problem given by the diagram:

Γ

π

y

G1
e

−−−−→ G1
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Moreover let rπ : SolA(Eπ) → SolA(E) denote the tautological inclusion. The
following result is analogous to the statement (see [4]) that the descent obstruction
for abelian covers is equivalent to the algebraic Brauer-Manin obstruction:

Theorem 4.10. Assume that char(F ) does not divide the order of Ker(E)ab. Then
we have: ⋃

π∈Sol(Eab)

rπ
(
SolA(Eπ)

)
= SolBr1

A
(E).

Proof. The homomorphism Br(e)|Br1(Eab) : Br1(E
ab)→ Br1(E) is an isomorphism

by Corollary 4.5, where e : E → Eab is the map introduced in the proof above.
Therefore Lemma 4.6 implies that

(4.10.1) SolBr1
A

(E) = SolA(e)
−1

(
SolBr1

A
(Eab)

)
= SolA(e)

−1
(
r(Sol(Eab))

)
,

where in the second equation we used Theorem 1.2. For every π ∈ Sol(Eab) we
have SolA(e)

−1(r(π)) = rπ
(
SolA(Eπ)

)
, and hence (4.10.1) implies that

SolBr1
A

(E) =
⋃

π∈Sol(Eab)

rπ
(
SolA(Eπ)

)
.

�

5. A local-global principle for cohomology classes

Notation 5.1. Let M be a discrete finite abelian Γ-module whose order is not
divisible by char(F ). For every k ∈ N and for every x ∈ |F | where M is unramified

let Hk
un(Γx,M) denote the image of the inflation map Hk(Ẑ,M) → Hk(Γx,M).

Moreover for every k as above let Hk
A
(F,M) denote the subgroup:

Hk
A(F,M) = {

∏

x∈|F |

cx|cx ∈ H
k
un(Γx,M) for almost all x ∈ |F |} ≤

∏

x∈|F |

Hk(Γx,M).

Let {·, ·} denote the duality pairing:

H1(Γx,M)×H1(Γx,M
∨)

∪
−−−−→ H2(Γx,M ⊗M∨)

ev∗−−−−→ H2(Γx, F
∗

x)

of local class field theory where ev∗ is the map induced by the evaluation map

ev : M ⊗M∨ → F
∗

x.

Lemma 5.2. For every
∏
x∈|F | cx ∈ H1

A
(F,M) and

∏
x∈|F | dx ∈ H1

A
(F,M∨) we

have:

{cx, dx} = 0

for almost all x ∈ |F |.

Proof. The proof of the claim above is essentially the same as the proof of Lemma
3.3. We may assume without the loss of generality that at x bothM andM∨ are un-
ramified and the cohomology classes cx, dx are in H1

un(Γx,M) and in H1
un(Γx,M

∨),
respectively. In this case the cohomology class {cx, dd} lies in the image of the in-

flation map H2(Ẑ, (F
∗

x)
Ix) → H2(Γx, F

∗

x) where Ix ⊳ Γx is the inertia subgroup.

Because the group H2(Ẑ, (F
∗

x)
Ix) is trivial, the claim is now clear. �
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Notation 5.3. By the lemma above the pairing:

[·, ·] : H1
A(F,M)×H1

A(F,M
∨) −→ Q/Z

given by the rule

[
∏

x∈|F |

cx,
∏

x∈|F |

dx] =
∑

x∈|F |

invx({cx, dx})

is well-defined because all but finitely many of the summands are zero. For every
k ∈ N and for every M as above let

H̃k(F,M) = Im


 ∏

x∈|F |

ι∗x : Hk(Γ,M)→
∏

x∈|F |

Hk(Γx,M)


 ≤ Hk

A(F,M).

Theorem 5.4. Under the pairing the [·, ·] annulator of H̃1(F,M∨) is H̃1(F,M).

Proof. Let c ∈ H1(Γ,M) and d ∈ H1(Γ,M∨). for every x ∈ |F | we have:

{ι∗x(c), ι
∗
x(d)} = (ηx)∗ι

∗
x(ev∗(c ∪ d))

where we let ev∗ also denote the map H2(Γ,M ⊗M∨) → H2(Γ, F
∗
) induced by

the evaluation map ev :M ⊗M∨ → F
∗
. Hence

[
∏

x∈|F |

ι∗x(c),
∏

x∈|F |

ι∗x(d)] =
∑

x∈|F |

invx((ηx)∗ι
∗
x(ev∗(c ∪ d))) = 0

by the reciprocity law for Brauer groups over global fields applied to the cohomol-

ogy class ev∗(c ∪ d) ∈ H2(Γ, F
∗
). So H̃1(F,M) is contained by the annulator of

H̃1(F,M∨) with respect to [·, ·]. In order to continue our proof we need to introduce
some notation.

Definition 5.5. Let M be as above and let S ⊂ |F | be a finite non-empty set that
contains every archimedean place of F and every place where M is ramified. Let
OF,S ⊂ F denote the ring of S-integers in F . Because char(F ) does not divide the
order of M we may also assume that the latter is a unit in OF,S by enlarging S, if
it is necessary. For every k ∈ N and for every M as above let

Hk
S(F,M) = {c ∈ Hk(Γ,M)|ι∗x(c) ∈ H

k
un(Γx,M) (∀x 6∈ S)} ≤ Hk(Γ,M).

Let H̃k
S(F,M) denote the image of Hk

S(F,M) in
∏
x∈S H

k(Γx,M) with respect to∏
x∈S ι

∗
x. Finally let

[·, ·]S :
∏

x∈S

Hk(Γx,M)×
∏

x∈S

Hk(Γx,M
∨) −→ Q/Z

denote the pairing given by the rule

[
∏

x∈S

cx,
∏

x∈S

dx] 7→
∑

x∈S

invx({cx, dx}).

Lemma 5.6. Under the pairing [·, ·]S the annulator of H̃1
S(Γ,M

∨) is H̃1
S(Γ,M).

Proof. By part (c) of Theorem 4.10 of [13] on pages 70-71 the sequence:

H1
S(F,M)

∏
x∈S ι

∗
x

−−−−−→
∏
x∈SH

1(Γx,M)
c 7→[c,·]S
−−−−−→ H1

S(F,M
∨)∗

is exact where the superscript ∗ denotes the dual Hom(·,Q/Z). �

Let X1
S(F,M) denote the kernel of

∏
x∈S ι

∗
x in H1

S(F,M).
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Lemma 5.7. There is a finite subset S ⊂ |F | of the type considered above such
that the image of X1

S(F,M) in H1
A
(F,M) with respect to

∏
x∈|F | ι

∗
x is trivial.

Proof. Let R ⊂ |F | be a set of the type considered above. By part (a) of Theorem
4.10 of [13] on pages 70-71 the group X

1
R(F,M) is finite. Therefore there is a finite

set S ⊂ |F | containing R such that
⋂

x∈|F |

Ker(ι∗x|X1
R(F,M)) =

⋂

x∈S

Ker(ι∗x|X1
R(F,M)).

Because X
1
S(F,M) ≤X

1
R(F,M) the claim is now clear. �

End of the proof of Theorem 5.4. By the above we only have to show that every

c =
∏
x∈|F | cx ∈ H

1
A
(F,M) annihilated by H̃1(F,M∨) with respect to [·, ·] actually

lies in H̃1(F,M). By definition there is a finite subset S ⊂ |F | of the type considered
above such that cx ∈ H1

un(Γx,M) for every x ∈ |F | − S. By Lemma 5.7 we may
also assume that the image of X1

S(F,M) with respect to
∏
x∈|F | ι

∗
x is trivial by

enlarging S if it is necessary. Let R ⊂ |F | be finite subset containing S. Note that
for every d ∈ H1

R(F,M
∨) we have:

[c, d] = [
∏

x∈R

cx,
∏

x∈R

ι∗x(d)]R

since for every x ∈ |F | − R the cohomology classes cx and ι∗x(d) are H1
un(Γx,M)

and in H1
un(Γx,M

∨), respectively. Hence the element
∏
x∈R cx ∈

∏
x∈S H

1(Γx,M)

is annihilated by H̃1
R(F,M

∨) with respect to the pairing [·, ·]R. Since OF,R ⊇ OF,S
the order of M is invertible in OF,R and hence there is a cR ∈ H1

R(F,M) such that

(5.7.1) ι∗x(cR) = cx (∀x ∈ R)

by Lemma 5.6. Now for any pair of finite subsets R1, R2 ⊂ |F | containing S we
have cR1 − cR2 ∈X

1
S(F,M) by (5.7.1). Therefore we get that for every R ⊂ |F |

the image of cR with respect to
∏
x∈|F | ι

∗
x is independent of the choice of R and it

is actually equal to c, again by (5.7.1). �

6. A topological theorem on the cup product

Definition 6.1. In this chapter all topological spaces are Hausdorff and locally
contractible. For every topological space T and abelian group A let AT denote the
constant sheaf A on T . Let p : X → Y be a fibre bundle with a connected fibre
F . Let r : Y → X and s : Y → X be sections of the fibration p. Let p! denote
the derived left adjoint of the pull-back functor p∗ from the category of complexes
of sheaves on Y to category of complexes of sheaves on X . (The adjoint p! exists
because p∗ commutes with arbitrary limits, since we assumed p to be a fibre bundle,
and so we may apply Freyd’s adjoint functor theorem.) By functoriality both r and
s induces maps rh, sh ∈ [ZY , p!(ZX)] in the derived category of complexes of sheaves
on Y . Let deg ∈ [p!(ZX),ZY ] denote the map from p!(ZX) onto its 0-th homology.
(The latter is ZY because we assumed that the fibres are connected.) Since both r
and s are sections, the compositions of rh, sh with deg are both the identity map
in [ZY ,ZY ]. Let τ>0(p!(ZX)) be the fibre of the map deg in the derived category
and let

τ>0(p!(ZX))
f0

−−−−→ p!(ZX)
deg
−−−−→ ZY −−−−→ τ>0(p!(ZX))[1]
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be the corresponding distinguished triangle. Therefore their difference rh − sh ∈
[ZY , p!(ZX)] is the image of a map [r − s] ∈ [ZY , τ>0(p!(ZX))] such that rh − sh =
f0 ◦ [r − s]. This map is unique since [ZY ,ZY [−1]] is zero. Let B be the first
homology of the complex τ>0(p!(ZX)), let h1 : τ>0(p!(ZX))→ B[1] be the Postnikov
truncation, and consider the distinguished triangle:

τ>1(p!(ZX))
f1

−−−−→ τ>0(p!(ZX))
h1−−−−→ B[1] −−−−→ τ>1(p!(ZX))[1].

Let ∆(r, s) ∈ [ZY ,B[1]] = H1(Y,B) denote h1 ◦ [r − s].

Definition 6.2. For every y ∈ Y let Xy = p−1(y) be the fibre of p over y and let
iy : Xy → X denote the inclusion map. Let A be a locally constant sheaf of abelian
groups on the base Y and let H2(X, p∗(A))0 denote the intersection of the kernels
of the maps:

i∗x : H2(X, p∗(A)) −→ H2(Xy, p
∗(A)|Xy )

for every y ∈ Y . Note that

H2(X, p∗(A))0 =
⋂

y∈S

ker(i∗y)

where S ⊆ Y is any set such that for every connected component C ⊆ Y there is a
y ∈ C ∩ S. Note that H2(X, p∗(A))0 is the kernel of the edge homomorphism:

ǫ : H2(X, p∗(A)) −→ H0(Y,R2p∗(p
∗(A)))

furnished by the Leray spectral sequence:

Hp(Y,Rqp∗(p
∗(A)))⇒ Hp+q(X, p∗(A)).

So the higher edge homomorphism of this spectal sequence is a homomorphism:

δ : H2(X, p∗(A))0 −→ H1(Y,R1p∗(p
∗(A))) = H1(Y,Hom(B,A))

where we used that there is a natural isomorphism:

R1p∗(p
∗(A)) = Hom(B,A).

Let
∪ : H1(Y,B)×H1(Y,Hom(B,A)) −→ H2(Y,A)

be the cup product furnished by the evaluation map:

B ⊗Hom(B,A) −→ A.

Note that every section s of p induces a homomorphism:

s∗ : Hi(X, p∗(A)) −→ Hi(Y, s∗(p∗(A))) = Hi(Y,A) (∀i ∈ N).

Theorem 6.3. For every c ∈ H2(X, p∗(A))0 and for every pair of sections r, s of
the fibration p we have:

r∗(c)− s∗(c) = ∆(r, s) ∪ δ(c) ∈ H2(Y,A).

Proof. For every topological space T and complexes of sheaves C,D and E on T let

m(C,D, E) : [C,D]× [D, E ] −→ [C, E ]

denote the map given by the rule (f, g) 7→ f ◦ g. Moreover for every f ∈ [C,D] let

f◦ : [D, E ] −→ [C, E ]

denote the map given by the rule g 7→ f ◦ g, and similarly for every g ∈ [D, E ] let

◦g : [C,D] −→ [C, E ]
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denote the map given by the rule f 7→ f◦g. Then we have the following commutative
diagram:

[ZY ,B[1]]× [B[1],A[2]]

h1◦

��

m(ZY ,B[1],A[2])

--❩❩❩❩❩❩
❩❩❩❩

❩❩❩❩
❩❩❩❩

❩❩❩❩
❩❩❩❩

❩❩❩❩
❩❩❩❩

❩❩❩

[ZY , τ>0(p!(ZX))]× [τ>0(p!(ZX)),A[2]]

◦h1

OO

◦f0

��

m(ZY ,τ>0(p!(ZX )),A[2]) // [ZY ,A[2]].

[ZY , p!(ZX)]× [p!(ZX),A[2]]

f0◦

OO

m(ZY ,p!(ZX),A[2])

11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

For every section t : Y → X of p let th ∈ [ZY , p!(ZX)] be the map induced by t,
similarly to the notation we introduced in Definition 6.1. Note that [p!(ZX),A[2]] =
H2(X,A) and under this identification for every section t : Y → X as above and
c ∈ H2(X,A) we have th ◦ c = t∗(c). Therefore

r∗(c)− s∗(c) = rh ◦ c− sh ◦ c = (rh − sh) ◦ c = [r − s] ◦ (f0 ◦ c)

by the commutativity of the diagram above. Note that

[B[1],A[2]] = [B,A[1]] = H1(Y,Hom(B,A)),

and under this identification δ(c) ∈ [B[1],A[2]] is such that h1◦δ(c) = f0◦c. Indeed

[τ>1(p!(ZX)),A[2])] = H0(Y,R2p∗(p
∗(A))

and under this identification

(f1 ◦ f0)◦ : [p!(ZX),A[2])] −→ [τ>1(p!(ZX)),A[2])]

is the edge homomorphism ǫ in Definition 6.2. In particular the kernel of (f1 ◦ f0)◦
is H2(X,A)0. The second distinguished triangle in Definition 6.1 induces a long
exact sequence:

[τ>1(p!(ZX))[1],A[2])] −−−−→ [B[1],A[2]]
h1◦−−−−→ [τ>0(p!(ZX)),A[2])]

f1◦
−−−−→ [τ>1(p!(ZX)),A[2])].

Since

[τ>1(p!(ZX))[1],A[2])] = [τ>1(p!(ZX)),A[1])] = 0,

there is a unique homomorphism:

∂ : H2(X,A)0 −→ [B[1],A[2]] = H1(Y,Hom(B,A))

such that the diagram

H2(X,A)0

∂

��

f0◦|H2(X,A)0

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

[B[1],A[2]]
h1◦ // [τ>0(p!(ZX)),A[2])]

is commutative. The map ∂ is actually the higher edge homomorphism δ in Defi-
nition 6.2. Now the relation h1 ◦ δ(c) = f0 ◦ c is clear. Now [ZY ,B[1]] = H1(Y,B)
and [ZY ,B[2]] = H2(Y,B), and under these identifications m(ZY ,B[1],A[2]) is the
cup product:

∪ : H1(Y,B)×H1(Y,Hom(B,A)) −→ H2(Y,A)
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in Definition 6.2 above. So by using the commutativity of the diagram above again
we get that

[r − s] ◦ (f0 ◦ c) = ∆(r, s) ◦ δ(c) = ∆(r, s) ∪ δ(c),

and the theorem follows. �

Definition 6.4. Let M a finite abelian group and let

(6.4.1) 1 −−−−→ M −−−−→ Ω −−−−→ Π −−−−→ 1

be an exact sequence in the category of prodiscrete groups. Let A be a discrete
Π-module and let H2(Ω, A)0 denote the kernel of the restriction map:

H2(Ω, A) −→ H2(M,A).

Moreover let

δ : H2(Ω, A)0 −→ H1(Π,Hom(M,A)) = H1(Π, H1(M,A))

be the homomorphism furnished by the Hochschild-Serre spectral sequence:

Hp(Π, Hq(M,A))⇒ Hp+q(Ω, A)

where we equip M with its Π-module structure induced by the exact sequence
(6.4.1). For every pair of sections s1, s2 : Π → Ω of the exact sequence (6.4.1) the
1-cochain in C1(Π,M) given by the rule g 7→ s1(g)s2(g)

−1 is actually is a cocycle.
Let [s1 − s2] ∈ H1(Π,M) be cohomology class represented by this cocycle. Finally
let

∪ : H1(Π,M)×H1(Π,Hom(M,A)) −→ H2(Π, A)

be the cup product induced by the evaluation map M ⊗Hom(M,A)→ A.

Corollary 6.5. For every c ∈ H2(Ω, A)0 and for every pair of sections s1, s2 of
the exact sequence (6.6.1) we have:

s∗1(c)− s
∗
2(c) = [s1 − s2] ∪ δ(c) ∈ H

2(Π, A).

Proof. We may assume that Π is actually finite by applying the usual limit argu-
ment. The proof will be based on giving topological interpretation to both sides of
the equation. The homomorphism Ω→ Π furnishes a Serre-fibration of classifying
spaces p : BΩ → BΠ with fibre BM . The sections s1, s2 induce sections of the
fibration p which we will denote by the same symbols by abuse of notation. Let B
denote the locally constant sheaf on BΠ corresponding to the Π-module A. Then
H1(Ω,M) = H1(BΩ,B) and the cohomolology classes denoted by [s1 − s2] in Def-
initions 6.1 and 6.4 correspond to each other. There is a locally constant sheaf A
on BΠ corresponding to the Π-module A. Note that H2(Ω, A) = H2(BΩ,A), and
also H2(Ω, A)0 = H2(BΩ,A)0, where we use the notation of Definition 6.2 for the
fibration p. Moreover H1(Ω, A) = H2(BΩ,A), and the edge homomorphisms

H2(Ω, A)0 −→ H1(Π,Hom(M,A)) and H2(BΩ,A)0 −→ H1(BΠ,Hom(B,A))

correspond to each other under these identifications. Consequently the cohomology
classes denoted by δ(c) in Definitions 6.2 and 6.4 also correspond to each other.
The claim now follows immediately from Theorem 6.3. �
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7. The Tate duality pairing and the Brauer-Manin pairing

Definition 7.1. By a continuous (or discrete) module over a pro-finite group ∆ we
mean a ∆-moduleM such that the action of ∆ is continuous with respect to the dis-
crete topology on M . For every pro-finite group ∆ letM(∆), C(∆), C+(∆), C−(∆),
and C±(∆) denote the category of continuous ∆-modules, the category of com-
plexes of continuous ∆-modules, the category of complexes in C(∆) bounded from
above, the category of complexes in C(∆) bounded from below, and the category
of complexes in C(∆) which are either bounded from above or below, respectively.
For every object C of C(∆) let Hn(C) denote the n-th homology group of C. When
∆ is the absolute Galois group Γ = Gal(F |F ) of a field F , for every complex C

· · · ←−−−− C−1 ←−−−− C0 ←−−−− C1 ←−−−− · · ·

in C(∆) let C∨ denote the dual complex:

· · · Hom(C1, F
∗
)oo Hom(C0, F

∗
)oo Hom(C−1, F

∗
)oo · · ·oo

where Hom denotes the group of continuous group homomorphisms (and we equip

F
∗
with the discrete topology).

Definition 7.2. Note that for every pro-finite group ∆ the category M(∆) has
enough injectives, so right exact functors from M(∆) has derived functors. For
every complex C in C±(∆) let Hi(∆, C) denote its hypercohomology with respect
to the functor of ∆-invariants. Similarly for any object C in C±(∆) let Extn∆(C, ·)
denote the n-th derived functor of HomC(∆)(C, ·). When ∆ = Γ = Gal(F |F ), as

above, we will use the notation Hi(F,C) for Hi(Γ, C). When F is a global field let

HiΠ(F,C) =
∏

x∈|F |

Hi(Fx, C)

where for every x ∈ |F | we consider C as an object of C(Γx) via the embedding
ιx : Γx → Γ, and we interpret Hi(Fx, C) accordingly. For every such x there is a
pull-back map i∗x : Hi(F,C)→ Hi(Fx, C). Let

X
i(F,C) = Ker

( ∏

x∈|F |

ι∗x : Hi(F,C)→ HiΠ(F,C)
)
.

Theorem 7.3. Let F be a global field and let C be a complex in C±(Γ) such that
Hn(C) is finite for every n and not divisible by the characteristic of F . Then there
is a perfect pairing

〈·, ·〉 : Xi(F,C) ×X
3−i(F,C∨) −→ Q/Z.

Proof. This is exactly Theorem 3.5.9 from [12], when F is a number field. The
function field case can be proved exactly the same way. It is also important to note
that this pairing specializes to the usual Poitou–Tate pairing for Γ-modules, i.e. for
complexes concentrated in degree zero. �

Definition 7.4. Let E be an embedding problem over an arbitrary field F given by
the diagram (1.0.1). Let E∗ denote the contractible simplicial set freely generated
by G1. At the level of sets Ei = Gi+1

1 . The diagonal right-action of G1 on each
Ei induces a free right action of G1 on E∗, and therefore a free right action of
Ker(E) on E∗, too. Then we have a left action of G2 on E∗/Ker(E) and thus by
pulling back with respect to φ a left action of Γ on E∗/Ker(E). Let B(E)∗ denote
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this simplicial object in the category of Γ-sets. Let ZB(E)∗ denote the complex
where ZB(E)n is the free abelian group generated by B(E)n and the differential is
the usual alternating sum. Equipped with the induced Γ-action this complex is an
object of C+(Γ).

Definition 7.5. As a simplicial set B(E)∗ is weakly equivalent to the Eilenberg–
MacLane space BKer(E), and hence

Hn(ZB(E)∗) ∼= Hn(Ker(E),Z).

Let deg ∈ [ZB(E)∗,Z] denote the map from ZB(E)∗ onto its 0-th homology, let
τ>0(ZB(E)∗) be the fibre of the map deg in the derived category, and let

τ>0(ZB(E)∗)
f0

−−−−→ ZB(E)∗
deg
−−−−→ Z −−−−→ τ>0(ZB(E)∗)[1]

be the corresponding distinguished triangle. By construction

Hn(τ>0(ZB(E)∗)) ∼=

{
Hn(Ker(E),Z), if n 6= 0,
0, if n = 0.

In particular when Ker(E) is abelian we haveH1(τ>0(ZB(E)∗)) ∼= H1(Ker(E),Z) ∼=
Ker(E). Let h1 : τ>0(ZB(E)∗) → Ker(E)[1] be the Postnikov truncation in this
case.

Definition 7.6. Let

π∗
E
: C(Γ)→ C(Γ(E))

denote the functor which we get by pulling back with respect to the surjective
homomorphism πE : Γ(E)→ Γ. For any object M ofM(Γ(E)) let πE!(M) denote
the Ker(E)-coinvariants ofM , that is, the quotient ofM by the subgroup generated
by the set:

{x− γ(x)|x ∈M,γ ∈ Ker(E)}.

Since the latter is a Γ(E)-submodule, there is a natural action of Γ on πE!(M), and
hence we get a functor πE :M(Γ(E))→M(Γ) which in turn induces a functor:

πE! : C(Γ(E)) −→ C(Γ).

It can be easily seen that this functor is the left adjoint of π∗
E
.

Definition 7.7. Let ZE∗ denote the chain complex of the contractible simplicial
set E∗. For every object C of C(Γ(E)) we may take (the total complex of) the
tensor product C ⊗ ZE∗ in the category of complexes of Z-modules and equip it
with the diagonal Γ(E)-action; this makes C ⊗ ZE∗ an object of C(Γ(E)). Let
LπE!(C) denote πE!(C ⊗ ZE∗). As we will shortly see, the functor LπE! is the
left derived functor of πE! in a suitable interpretation, although the latter is not
defined in the sense of classical homological algebra, as M(Γ(E)) does not have
enough projectives.

Lemma 7.8. There is an isomorphism:

LπE!(Z) ∼= ZB(E)∗.

Proof. Clearly Z⊗ ZE∗
∼= ZE∗ and πE!(ZE∗) ∼= ZB(E)∗. �

Definition 7.9. Let ∆ be any pro-finite group, as above, and for any pair M,N of
continuous ∆-modules let Hom∆(M,N) denote the group of ∆-module homomor-
phisms from M to N . Now let A = {An}n∈Z, B = {Bn}n∈Z be two complexes in
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C(∆). Let Hom∆(A,B) = {Homn
∆(A,B)}n∈Z be the equivariant mapping complex

from A to B, where

Homn
∆(A,B) =

∏

i∈Z

Hom∆(Ai, Bi−n),

and the differential

d : Homn
∆(A,B) −→ Homn+1

∆ (A,B)

for any f =
∏
i∈Z

fi ∈
∏
i∈Z

Hom∆(Ai, Bi−n) is given by

d(f)i = fi−1 ◦ d
A
i + (−1)ndBi−n ◦ fi,

where dAi : Ai → Ai−1 and d
B
i : Bi → Bi−1 are differentials of A andB, respectively.

We denote the kernel of d by Zn(A,B) ⊆ Homn
∆(A,B). Note that Zn(A,B) consists

of exactly those elements of Homn
∆(A,B) which are maps of complexes of degree n

from A to B.

Lemma 7.10. There are natural isomorphisms:

ExtnΓ(LπE!
(C), D) ∼= ExtnΓ(E)(C, π

∗
E
(D)) (∀n ∈ N),

for every C in C(Γ(E)) and D in C(Γ).

Proof. This isomorphism can be explained as an instance of Quillen adjunctions
between model categories, or ∞-adjunctions between (∞, 1)-categories. However

we will give a simple direct proof. Let D̃ be an resolution of D by injective Γ-

modules. The groups ExtnΓ(LπE!
(C), D) are the homologies of HomΓ(LπE!

(C), D̃).
Then we have:

HomΓ(LπE!
(C), D̃) ∼= HomΓ(πE!

(C ⊗ ZE∗), D̃) ∼= HomΓ(E)(C ⊗ ZE∗, π
∗
E
(D̃)),

where we used the definition of LπE!
in the first isomorphism, and the fact that

πE!
is the left adjoint of π∗

E
in the second. Moreover

HomΓ(E)(C ⊗ ZE∗, π
∗
E
(D̃)) ∼= HomΓ(E)(C,Hom(ZE∗, π

∗
E
(D̃))),

where Hom(·, ·) denotes the internal Hom in the category of Γ(E)-complexes. (Ex-

plicitly Hom(·, ·) is the mapping complex of the underlying Z-complexes which we
equip with a continuous Γ-action via conjugation.) In order to conclude it is enough

to note that Hom(ZE∗, π
∗
E
(D̃)) is an injective resolution of π∗

E
(D). �

Lemma 7.11. There are natural isomorphisms:

Hn(Γ(E), F
∗
) ∼= Hn(Γ,ZB(E)∨∗ ) (∀n ∈ N).

Proof. By the uniqueness of n-th derived functors we have:

Hn(Γ(E), F
∗
)
def
= Hn(Γ(E), π∗

E
(F

∗
)) ∼= ExtnΓ(E)(Z, π

∗
E
(F

∗
)),

as there is a natural isomorphism Hn(∆, C) ∼= Extn∆(Z, C) (where C is an object of
C(∆) and ∆ is any pro-finite group). By Lemma 7.10 we have:

ExtnΓ(E)(Z, π
∗
E
(F

∗
)) ∼= ExtnΓ(LπE!

(Z), F
∗
).

Note that there is a spectral sequence:

ExtpΓ(Z,Ext
q(LπE!

(Z), F
∗
))⇒ Extp+qΓ (LπE!

(Z), F
∗
),
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where Ext∗(LπE!
(Z), ·) is the derived functor of Hom(LπE!

(Z), ·). Since F
∗
is di-

visible, this sequence degenerates, and hence we have an isomorphism:

ExtnΓ(LπE!
(Z), F

∗
) ∼= ExtnΓ(Z,LπE!

(Z)∨),

while by Lemma 7.8 and by the uniqueness of n-th derived functors we have:

ExtnΓ(Z,LπE!
(Z)∨) ∼= ExtnΓ(Z,ZB(E)∨∗ )

∼= Hn(Γ,ZB(E)∨∗ ).

�

Lemma 7.12. Assume that F is either a global or a local field. Then we have:

Br(E) ∼= H2(Γ, τ>0(ZB(E)∗)
∨).

Proof. The distinguished triangle:

τ>0(ZB(E)∗)
f0

−−−−→ ZB(E)∗
deg
−−−−→ Z −−−−→ τ>0(ZB(E)∗)[1]

gives rise to another distinguished triangle:

F
∗
−−−−→ ZB(E)∨∗ −−−−→ τ>0(ZB(E)∗)

∨ −−−−→ F
∗
[1]

by taking duals. Since H3(Γ, F
∗
) = 0 (see Proposition 15 of [17] on page 93 when

F is a local field, and see Corollary 4.21 of [13], page 80 when F is a global field),
the associated cohomological long exact sequence looks like:

H2(Γ, F
∗
)→ H2(Γ,ZB(E)∨∗ )→ H2(Γ, τ>0(ZB(E)∗)

∨)→ 0.

The first map is the composition:

H2(Γ, F
∗
) ∼= Ext2Γ(Z, F

∗
)→ Ext2Γ(ZB(E)∗, F

∗
) ∼= H2(Γ,ZB(E)∨∗ ),

where the middle map is induced by the degree map deg: ZB(E)∗ → Z. The derived
adjunction LπE!

⊣ π∗ give rise to a co-unit map: LπE!
(π∗(Z)) → Z which, under

the identification in Lemma 7.8, is deg. Using Lemma 7.11 the first map of the
sequence above can be viewed as a homomorphism:

H2(Γ, F
∗
) = H2(Γ, F

∗
)→ H2(Γ,ZB(E)∨∗ ) = H2(Γ(E), F

∗
).

As this map is induced by the co-unit, it is the pull-back map (with respect to the
surjection Γ(E) → Γ). The cokernel of the latter is Br(E) by definition, so the
claim follows. �

Corollary 7.13. Assume that F is a global field. Then we have:

B(E) ∼= X
2(F, τ>0(ZB(E)∗)

∨).

Proof. This follows from Lemma 7.12 applied to F and all its completions. �

Remark 7.14. The Postnikov truncation

h1 : τ>0(ZB(E)∗)→ Ker(E)[1]

furnishes an isomorphism:

X
1(F, τ>0(ZB(E)∗) −→X

1(F,Ker(E)[1]) ∼= X
2(F,Ker(E)).
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Definition 7.15. Let s : Γ → Γ(E) be a continuous section of the map πE :
Γ(E)→ Γ. The identity map id ∈ Ext0Γ(LπE!

(Z),LπE!
(Z)) via the isomorphism:

Ext0Γ(LπE!
(Z),LπE!

(Z))) ∼= Ext0Γ(E)(Z, π
∗
E
(LπE!

(Z)))

furnished by Lemma 7.10 furnishes an element idE ∈ Ext0Γ(E)(Z, π
∗
E
(LπE!

(Z))). By
pulling back with respect to s we get an element:

s∗(idE) ∈ Ext0Γ(s
∗(Z), s∗(π∗

E
(LπE!(Z)))).

Since s∗ ◦ π∗
E
= id∗Γ = id and s∗(Z) ∼= Z, we get an element:

[s] ∈ Ext0Γ(Z,LπE!(Z)) ∼= H0(Γ,ZB(E)∗)

(using Lemma 7.8), which we will call the classifying element of the section s. Note
that the map

H0(Γ,ZB(E)∗) −→ H0(Γ,Z) ∼= Z

induced by deg sends [s] to 1.

Note that each element in b ∈ H2(Γ(E), F
∗
) can be considered as an element of

H2(Γ,ZB(E)∨∗ ) via the isomorphism in Lemma 7.11. Let

∪ : H2(Γ,ZB(E)∨∗ )×H0(Γ,ZB(E)∗)→ H2(Γ, F
∗
)

be the cup product induced by the natural bilinear pairing:

ZB(E)∨∗ × ZB(E)∗ −→ F
∗

of complexes.

Lemma 7.16. We have:

b ∪ [s] = s∗(b) ∈ H2(Γ, F
∗
)

for every b ∈ H2(Γ(E), F
∗
) and continuous section s of πE.

Proof. This claim follows at once from comparing the cup product above with the
Yoneda pairing:

Ext0Γ(Z,ZB(E)∗)× Ext2Γ(ZB(E)∗, F
∗
)→ Ext2Γ(Z, F

∗
)

via the isomorphisms

H0(Γ,ZB(E)∗) ∼= Ext0Γ(Z,ZB(E)∗), H2(Γ,ZB(E)∨∗ )
∼= Ext2Γ(ZB(E)∗, F

∗
),

H2(Γ, F
∗
) ∼= Ext0Γ(Z, F

∗
).

We leave the details to the reader. �

Definition 7.17. Let M be a discrete finite abelian Γ-module. For every embed-
ding problem E over F such that Ker(E) = M and the set SolA(E) is non-empty
let cE ∈ H2(F,M) = H2(F,Ker(E)) denote the class of the extension (1.3.1). Note
that cE ∈X

2(F,M) since we assumed that SolA(E) is non-empty. Conversely for
every c ∈X

2(F,M) there is an embedding problem E as above such that c = cE.
Let

(7.17.1) b : X1(F,M∨)×X
2(F,M)→ Q/Z

be the unique pairing such that b(b, cE) = bE(b) for every b ∈ X
1(F,M∨) and

embedding problem E as above. Since for every b ∈X
1(F,M∨) the value of bE(b)

only depends on the isomorphism class of the embedding problem E (see the proof
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of Lemma 4.6), the pairing b is well-defined. Assume now that char(F ) does not
divide the order of M and let

τ : X1(F,M∨)×X
2(F,M) −→ Q/Z

denote the Tate duality pairing.

Theorem 7.18. We have b = −τ .

We think that this theorem is very interesting on its own, since it gives an
elegant description of the Tate duality pairing. It will proved in the rest of this
section. We will continue to use the notation which we have introduces so far. Let
E an embedding problem of the type considered in Definition 7.17. Consider the
cohomological long exact sequence:

H0(F,ZB(E)∗)
deg
−−−−→ H0(F,Z)

∂
−−−−→ H1(F, τ>0(ZB(E)∗))

corresponding to the distinguished triangle:

τ>0(ZB(E)∗)
f0

−−−−→ ZB(E)∗
deg
−−−−→ Z −−−−→ τ>0(ZB(E)∗)[1],

and set δ = ∂(1) ∈X
1(F, τ>0(ZB(E)∗)).

Lemma 7.19. The image of the classifying element cE ∈ X
2(F,Ker(E)) under

the isomorphism

X
2(F,Ker(E)) ∼= X

1(F, τ>0(ZB(E)∗))

in Remark 7.14 is the δ above.

Proof. This is just a direct computation involving the representing cocycles. The
details are left to the reader. �

Let

〈·, ·〉 : X1(F, τ>0(ZB(E)∗))×X
2(F, τ>0(ZB(E)∗)

∨) −→ Q/Z

be the perfect pairing in Theorem 7.3. Now let b ∈ X
2(F, τ>0(ZB(E)∗)

∨) be

arbitrary. Since H3(F, F
∗
) = 0, the map

H2(F,ZB(E)∨∗ )→ H2(F, τ>0(ZB(E)∗)
∨)

is onto, and thus b can be lifted to an element b ∈ H2(F,ZB(E)∨∗ ), and we can take
the localisation map to obtain

bx
def
= ι∗x(b) ∈ H2(Fx,ZB(E)∨∗ ).

Recall that we assumed that SolA(E) is non-empty, so for every x ∈ |F | let hx be a
solution of Ex such that hx is unramified for almost all x. Let sx denote the section
s(hx) corresponding to hx for every x ∈ |F |. Finally let ∪ denote the cup product
introduced after Definition 7.15 (over any field, including all completions of F ).

Proposition 7.20. We have the equality:

〈δ, b〉 = −
∑

x∈|F |

invx([sx] ∪ bx) ∈ Q/Z.
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By Lemma 7.16 the right hand side is −bE(b). On the other hand the isomor-
phisms:

X
1(F,Ker(E)∨) ∼= X

2(F, τ>0(ZB(E)∗)
∨),X2(F,Ker(E)) ∼= X

1(F, τ>0(ZB(E)∗))

in Corollary 7.13 and Remark 7.14 respect the pairing in the sense that the resulting
diagram:

X
1(F,Ker(E)∨)×X

2(F,Ker(E))

�� ��

〈·,·〉 // Q/Z

X
2(F, τ>0(ZB(E)∨∗ )×X

1(F, τ>0(ZB(E)∗))
〈·,·〉 // Q/Z

is commutative. Therefore by Lemma 7.19 the left hand side is τ(cE, b). So Theorem
7.18 follows from Proposition 7.20, and hence we only have to prove the latter.

Definition 7.21. For every pro-finite group ∆ and open normal subgroup U ≤
∆ let E(∆/U) denote the standard (bar) resolution complex by free Z[∆/U ]-
modules of Z, equipped with the tautological ∆-action. Note that since E(∆/U)
is quasi-isomorphic to Z, any map of degree i between E(∆/U) and another com-
plex C in C(∆) gives rise to a hypercohomology class in Hi(∆, C). For every
g ∈ Zi(E(∆/U), C) let [g] denote the class in Hi(∆, C) represented by g.

Notation 7.22. Now let ∆′ be another pro-finite group, let U ′ ≤ ∆′ be an open
normal subgroup, and let φ : ∆′ → ∆ be a continuous homomorphism such that
φ(U ′) ⊆ U . Then φ induces a homomorphism ∆′/U ′ → ∆/U , which induces a map
E(∆′/U ′)→ E(∆/U) of complexes, which furnishes a homomorphism

φ∗ : Homi
∆(E(∆/U), C)→ Homi

∆′(E(∆′/U ′), C)

compatible with the pull-back map on cohomology. We will drop φ∗ from the
notation when φ is the identity map on ∆.

Definition 7.23. Now let A = {An}n∈Z, B = {Bn}n∈Z and C = {Cn}n∈Z be three
complexes in C(∆) such that there is a pairing:

m : A⊗B −→ C.

Let U and E(∆/U) be as above, and let

c : E(∆/U) −→ E(∆/U)⊗ E(∆/U)

denote the Alexander–Whitney map (see formula (1.4) of [3] on page 108). Now
consider the composition:

Hom∗
∆(E(∆/U), A)×Hom∗

∆(E(∆/U), B)

��
Hom∗

∆(E(∆/U)⊗ E(∆/U), A⊗B)

��
Hom∗

∆(E(∆/U), A⊗B)

��
Hom∗

∆(E(∆/U), C),
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where the first map is furnished by the functorial property of tensor products, the
second is induced by the co-multiplication c, and the third map is induced by the
multiplication m. Let ∪ denote the resulting pairing of complexes:

Hom∗
∆(E(∆/U), A)×Hom∗

∆(E(∆/U), B) −→ Hom∗
∆(E(∆/U), C).

Note the induced map on the cohomology is the exterior cup product.

Proof of Proposition 7.20. In order to prove the statement we shall use an explicit
description of the pairing

〈·, ·〉 : X1(F, τ>0(ZB(E)∗))×X
2(F, τ>0(ZB(E)∨∗ ) −→ Q/Z

similar to the one given by Milne in §I.4 of [13]. Let c ∈ ZB(E)0 be such that
deg(c) = 1. Denote by U ⊳ Γ the stabiliser of c. Let g ∈ Hom0

Γ(E(Γ/U),ZB(E)∗)
be such that g0(σ) = σc for σ ∈ Γ/U and gi = 0 for i 6= 0. Note that [deg ◦g]
represents 1 ∈ H0(F,Z) and so α = dg ∈ Z1(E(Γ/U), τ>0(ZB(E)∗)) represents
δ = ∂(1) ∈ H1(F, τ>0(ZB(E)∗)). Shrink U enough so that one can represent b by
a map β ∈ Z2 (E(Γ/U), τ>0(ZB(E)∗)

∨), and b by β ∈ Z2(E(Γ/U),ZB(E)∨∗ ). Now
set

ǫ = g ∪ β ∈ Hom2
Γ(E(Γ/U), F

∗
).

Note that dǫ = dg ∪ β = α ∪ β. Set gx = ι∗x(g) for every x ∈ |F |. For every
place x we can take a small enough Ux ⊳ Γx such that we can represent gx in
Hom0

Γ(E(Γx/Ux),ZB(E)∗) (that is, we have Ux ⊆ Γx ∩ U), and we can represent
[sx] ∈ H0(Fx,ZB(E)∗) by an fx ∈ Z0(E(Γx/Ux),ZB(E)∗). Denote hx = gx − fx.
Then

dhx = dgx − dfx = αx

where αx = ι∗x(α) (for every x ∈ |F |). Since deg(hx) = 0 we see that hx actually
lies in Hom0

Γ(E(Γx/Ux), τ>0(ZB(E)∗)). Hence we can cup it with βx = ι∗x(β) ∈

Z1(E(Γx/Ux), τ>0(ZB(E)∗)
∨) and get an element in Hom1

Γ(E(Γx/Ux), F
∗

x). We
then observe that

d(hx ∪ βx) = dhx ∪ βx = αx ∪ βx = dǫx,

where ǫx = ι∗x(ǫ) (for every x ∈ |F |), and so we can define

cx = [hx ∪ βx − ǫx] ∈ H2(Fx, F
∗

x).

Our generalisation for Milne’s formula is the following expression for the pairing:

〈δ, b〉 =
∑

x∈|F |

invx(cx) ∈ Q/Z.

Now by naturality

hx ∪ βx = hx ∪ βx,

where the first cup is computed in τ>0(ZB(E)∗), τ>0(ZB(E)∗)
∨ and the second in

ZB(E)∗,ZB(E)∨∗ . We then get

cx = [hx∪βx−ǫx] = [hx∪βx−gx∪βx] = [hx∪βx−gx∪βx] = [−fx∪βx] = −[sx]∪bx,

because bx = [βx] (for every x ∈ |F |). �
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8. Proof of the main results

Proof of Theorem 1.1. The implications:

Sol(E) 6= 0⇒ SolBr
A
(E) 6= 0⇒ SolBr1

A
(E) 6= 0⇒ SolB

A
(E) 6= 0

are trivially true. Assume now that SolBA(E) 6= 0. Then the homomorphism:

bE : X1(Ker(E)∨)→ Z/Q

is zero by definition. Hence the cohomology class cE ∈ H2(Γ,Ker(E)) of the exten-
sion (1.3.1) is annihilated by the pairing b of (1.3.2). By part (a) of Theorem 4.10
of [13] on page 70 the pairing τ is perfect. Therefore the pairing b is also perfect
by Theorem 1.4. The claim is now clear. �

Proof of Theorem 1.2. Because of the inclusions:

r(Sol(E)) ⊆ SolBr
A
(E) ⊆ SolBr1

A
(E)

we only have to show that SolBr1
A

(E) ⊆ r(Sol(E)). This claim is trivial when

SolBr1
A

(E) is empty. Assume now that SolBr1
A

(E) 6= ∅. Then by Theorem 1.1 the
set Sol(E) is non-empty. Therefore the short exact sequence (1.3.1) splits. Choose
such a splitting h ∈ Sol(E); such a choice furnishes a natural bijection:

α : Sol(E) −→ H1(Γ,Ker(E))

between the sections of the short exact sequence (1.3.1) and the cohomology group
H1(Γ,Ker(E)) mapping h to zero. Moreover the splitting above induces a splitting
of the short exact sequence:

(8.0.1) 1 −−−−→ Ker(E)
iEx−−−−→ Γx(Ex)

πEx−−−−→ Γx −−−−→ 1

for every x ∈ |F | which in turn furnishes a natural bijection:

αx : Sol(Ex) −→ H1(Γx,Ker(E))

mapping rx(h) to zero. Moreover for every x ∈ |F | where Ker(E) is unramified we
have αx(Solun(Ex)) = H1

un(Γx,Ker(E)) hence there is a commutative diagram

(8.0.2)

Sol(E)
α

−−−−→ H1(Γ,Ker(E))

r

y
y∏

x∈|F | ι
∗
x

SolA(E)
αA−−−−→ H1

A
(Γ,Ker(E))

where

αA =
∏

x∈|F |

αx|SolA(E).

Because the vertical maps in the diagram (8.0.2) are bijections the claim follows
from Theorem 5.4 and the proposition below. �

Proposition 8.1. For every g ∈ SolA(E) and for every c ∈ H1(Γ,Ker(E)∨) we
have:

〈g, jE(c)〉 = [αA(g),
∏

x∈|F |

ι∗x(c)].
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Proof. Let g =
∏
x∈|F | gx. Then we have:

〈g, jE(c)〉 =
∑

x∈|F |

invx(s(gx)
∗(j∗

Ex
(ι∗x(c))))

=
∑

x∈|F |

invx(s(gx)
∗(j∗

Ex
(ι∗x(c))) − s(hx)

∗(j∗
Ex

(ι∗x(c)))) + 〈h, jE(c)〉

=
∑

x∈|F |

invx({αx(gx), ι
∗
x(c)}) + 〈h, jE(c)〉

= [αA(g),
∏

x∈|F |

ι∗x(c)]

where the third equation follows from Corollary 6.5 applied to the short exact
sequence (8.0.1) for every x ∈ |F | and the fourth equation is a consequence of
Lemma 3.6. �

9. A geometric construction

Notation 9.1. For every scheme V defined over a field F let V denote the base
change of V to F . In this paper by the cohomology of a smooth group scheme G
over a base scheme V we mean the cohomology of the sheaf it represents for the
étale topology on V . For every geometrically connected variety V over a field F
let π1(V ) denote the isomorphism class of the étale fundamental group of V with
respect to any geometric point as a base point.

Definition 9.2. Let V be a geometrically connected variety defined over F . Let
η be a F -valued point of V . Then Grothendieck’s short exact sequence of étale
fundamental groups for V is:

(9.2.1) 1 −−−−→ π1(V , η) −−−−→ π1(V, η) −−−−→ Γ −−−−→ 1,

which is an exact sequence of profinite groups in the category of topological groups.
Every F -rational point x ∈ V (F ) induces a section Γ → π1(V, η) of the sequence
(9.2.1), well-defined up to conjugation by π1(V , η). Let Sec(V/F ) denote the set of
conjugacy classes of sections of (9.2.1) (in the category of profinite groups where
morphisms are continuous homomorphisms). Then we have a map:

sV/F : V (F ) −→ Sec(V/F )

which sends every point x ∈ V (F ) to the corresponding conjugacy class of sections.
This map is called the section map. Note that for a different base point η′ ∈ X(F )
there is a canonical identification between the corresponding section maps, so it is
justified to suppress them from the notation.

Definition 9.3. Let E be an embedding problem over the field F given by the
diagram (1.0.1). Equip G2 with the trivial Γ-action. Then

H1(F,G2) = Hom(Γ, G2)/ ∼,

where ∼ is the conjugacy relation. Let [ψ] ∈ H1(F,G2) be the class corresponding
to the homorphism ψ ∈ Hom(Γ, G2) defining E. Corresponding to the cohomology
class [ψ] there is a rightG2-torsor over F which we will denote by T (E). ConsiderG1

as a subgroup of G(E) = SL|G1|+1 over F via its augmented regular representation
(the regular representation with an additional dimension to fix the determinant).
Let X(E) be quotient of G(E) × T (E) via the diagonal action of G1 on the right,



The Brauer-Manin obstruction for the embedding problem 29

where we let G1 act on T (E) via the homomorphism φ. We will call X(E) the
classifying space of the embedding problem E. The left action of G(E) on the first
factor of the product G(E)×T (E) descends uniquely to X(E) making the quotient
map G(E)× T (E)→ X(E) into a G(E)-equivariant morphism.

Lemma 9.4. The following holds:

(i) with respect to the action defined above X(E) is a homogeneous space over
G(E), and the geometric stabiliser of X(E) is Ker(E),

(ii) π1(X(E)) ∼= Ker(E),
(iii) Grothendieck’s short exact sequence of étale fundamental groups for V =

X(E) is:

1 −−−−→ Ker(E) −−−−→ Γ(E) −−−−→ Γ −−−−→ 1,

the short exact sequence (1.3.1) associated to the embedding problem E.

Proof. Since the homomorphism φ is surjective, the base changeX(E) is connected,

so the action of G(E) is transitive, and hence X(E) is a homogeneous space over
G(E). Moreover the geometric stabiliser of X(E) is the kernel of φ, so the first
claim is clear. Since G(E) is simply connected, claim (ii) follows from (i). Now
fix an F -valued point η of X(E) and let π2 : π1(X(E), η) → Γ be the surjection
supplied by the short exact sequence (9.2.1). Moreover let π1 : π1(X(E), η) → G1

be the homomorphism corresponding to the Galois cover G(E) × T (E) → X(E).
Then π1 × π2 is injective by part (ii). Since the composition φ ◦ π1 is ψ ◦ π2 by
construction, we get that the image of π1(X(E), η) with respect to π1 × π2 lies in
Γ(E). As the projection π2 is surjective, and its kernel is isomorphic to Ker(E), we
get that the image of π1 × π2 is exactly Γ(E). Claim (iii) is now clear. �

Definition 9.5. By part (iii) of above Sec(X(E)/F ) = Sol(E). Since G(E) is
simply connected, the section map is constant on the orbits of the action of G(E),
so sX(E)/F furnishes a map:

σE : X(E)(F )/G(E)(F ) −→ Sol(E).

Theorem 9.6. The map σE is a bijection.

Proof. We may assume that Sol(E) 6= ∅ without the loss of generality. Let s be an
arbitrary section of Grothendieck’s short exact sequence associated to X(E). The
image Im(s) of s is a closed subgroup of π1(X(E), η) with finite index, and hence it is
an open subgroup, too. Let πs : Xs → X(E) be the finite, étale cover corresponding
to this open subgroup, that is, for some choice of an F -valued base point γ of Xs

mapping to η the image of the homomorphism π1(πs) : π1(Xs, γ) → π1(X(E), η)
induced by πs is Im(s). Note that the base change of this cover to F is the universal

cover of X(E), so in particular Xs is isomorphic to G(E). Consider the following
commutative diagram:

Xs

πs

��
G(E)×Xs

idG(E)×πs

//

ms

22

G(E)×X(E) mE

// X(E),

where mE is the action of G(E) on X(E). Since the product G(E) × Xs is ge-
ometrically simply connected, the pull-back of the cover πs with respect to the
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composition mE ◦ (idG(E) × πs) is constant. The restriction of the pull-back onto
Xs
∼= {1} × Xs, where 1 ∈ G(E) is the identity element, is the pull-back of πs

with respect to πs. Therefore it has a section, namely the diagonal map. Since the
pull-back onto G(E) × Xs is constant, this diagonal map has a unique extension
to a section on G(E) × Xs, which supplies a map ms : G(E) × Xs → Xs making
the diagram above commutative and whose restriction onto Xs

∼= {1} ×Xs is the
identity map.

So in short, we get that the cover Xs is equipped with a right G(E)-action such
that πs is G(E)-equivariant. Since the base change of this action to F is the usual

right action of G(E) on itself G(E) = Xs, we get that Xs is a G(E)-torsor. Consider
the generalised Γ-equivariant short exact sequence:

1 −−−−→ SL|G1|+1(F ) −−−−→ GL|G1|+1(F ) −−−−→ F
∗
−−−−→ 1

of pointed sets equipped with a continuous Γ-action. (Here continuous means that
the stabiliser of every point is open in Γ.) The corresponding cohomological long
exact sequence of pointed sets is:

· · · → GL|G1|+1(F )→ F ∗ → H1(F, SL|G1|+1(F ))→ H1(F,GL|G1|+1(F ))→ · · ·

By Hilbert’s theorem 90 for the general linear group the last term is zero. Since
the determinant is surjective, we get that the term H1(F, SL|G2|+1(F )) = 0 is also
zero. Therefore every G(E)-torsor is trivial, and so Xs is isomorphic to G(E).

Note that s lies in sX(E)/F (x) for a rational point x ∈ X(E) if and only if x has
an F -rational lift to Xs with respect to πs. By the above Xs(F ) is non-empty for
every section s, so the map σE is surjective. Now let x, y ∈ X(E) be such that
sX(E)/F (x) = sX(E)/F (y). Choose a representative s of this common conjugacy
class. As we already noted there are x′, y′ ∈ Xs(F ) mapping under πs to x,y,
respectively. Since Xs is the trivial G(E)-torsor, the points x′ and y′ are in the
same G(E)-orbit. Since πs is G(E)-equivariant, the same is true for x and y. We
get that σE is injective, too. �

Definition 9.7. Let V be again a geometrically connected smooth F -variety. We
may calculate the étale cohomology groups Hi(V,Gm) by considering all hyper-
coverings of V . One can restrict to only those that come from connected Galois
coverings of V and thus get natural maps:

ρiV : Hi(π1(V ), F
∗
) −→ Hi(V,Gm),

where the action of the pro-finite group π1(V ) on F
∗
is furnished via the projection

π1(V )→ Γ.

Lemma 9.8. The map:

ρi
X(E)

: Hi(π1(X(E)), F
∗
) −→ Hi(X(E),Gm)

is an isomorphism for i = 0, 1, 2.

Proof. By part (ii) of Lemma 9.4 we have π1(X(E)) = Ker(E), and by part (i) we

have X(E) = G(E)/Ker(E). Consider the Hochschild-Serre spectral sequence:

Hp(Ker(E), Hq(G(E),Gm))⇒ Hp+q(G(E)/Ker(E),Gm).

Now H0(G(E),Gm) = F
∗
, and the edge homomorphism:

Hi(Ker(E), F
∗
) = Hi(Ker(E), H0(G(E),Gm)) −→ Hi(X(E),Gm),
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of this spectral sequence is ρi
X(E)

. Since G(E) = SL|G1|+1, we get that

H1(G(E),Gm) = H2(G(E),Gm) = 0

(for example because the étale homotopy type of G(E) is 2-connected). The claim
is now clear. �

Lemma 9.9. The natural map

ρiX(E) : H
i(π1(X(E)), F

∗
) −→ Hi(X(E),Gm)

is an isomorphism for i = 0, 1, 2.

Proof. The short exact sequence

1 −−−−→ Ker(E) −−−−→ π1(X(E)) −−−−→ Γ −−−−→ 1

funishes a Hochschild–Serre spectral sequence:

Hp(F,Hq(Ker(E), F
∗
))⇒ Hp+q(π1(X(E)), F

∗
).

There is also another Hochschild–Serre spectral sequence:

Hp(F,Hq(X(E),Gm))⇒ Hp+q(G(E)/Ker(E), F
∗
).

There is a map from the first spectral sequence to the second (induced by the map
of étale topoi) such that the corresponding homomorphisms:

Hp(π1(X(E)), Hq(Ker(E), F
∗
)) −→ Hp,q(X(E),Gm)

of the Ep,q2 terms are induced by the Γ-module maps ρq
X(E)

. Since the latter are

isomorphisms for q < 3 by Lemma 9.8, the claim follows. �

Notation 9.10. Recall that for any scheme V over a field F the relative Brauer
group Br(V/F ) is by definition the cokernel of the map

ωV : H2(Spec(F ),Gm)→ H2(V,Gm)

induced by the structural morphism V → Spec(F ). When V = X(E) then the
diagram:

H2(π1(X(E)), F
∗
)

ρ2X(E) // H2(X(E),Gm)

H2(Γ, F
∗
),

π∗
E

hh◗◗◗◗◗◗◗◗◗◗◗◗ ωX(E)

77♦♦♦♦♦♦♦♦♦♦♦♦

is commutative, and hence the map ρ2X(E) induces an isomorphism

Br(E) −→ Br(X(E)/F )

by Lemma 9.9, which we will denote by βE.

Definition 9.11. Assume now that F is a number field. Let V be a scheme
over a field F , and for every x ∈ |F | let Vx denote the base change of V to Fx.
Let B(V/F ) ≤ Br(V/F ) denote the set of all elements whose image under the map
Br(V/F )→ Br(Vx/Fv) induced by the base change map H2(V,Gm)→ H2(Vx,Gm)
is zero.

Lemma 9.12. The restriction of βE onto B(E) induces an isomorphism:

βE|B(E) : B(E) −→ B(X(E)/F ).
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Proof. Note that the base change of X(E) to Fx is X(Ex) for every x ∈ |X |. The
claim now immediately follows from the fact that the maps βE and βEx (for every
x ∈ |X |) are all isomorphisms. �

Definition 9.13. Let V be again a geometrically connected smooth F -variety. Let

〈·, ·〉 : V (K)×Hi(V,Gm) −→ Hi(Spec(K),Gm) = Hi(Γ, F
∗
)

denote the pairing which is the pull-back of the class in with respect to the section
Spec(K) → V corresponding to the K-rational point. Note that for every section

s : Γ → π1(V, η) of the short exact sequence (9.2.1) and every c ∈ Hi(π1(V ), F
∗
)

the pull-back s∗(c) ∈ Hi(Γ, F
∗
) only depends on the conjugacy class of s. Therefore

we have a well-defined pairing:

{·, ·} : Sec(V/F ) ×Hi(π1(V ), F
∗
) −→ Hi(Γ, F

∗
)

defined by taking the pull-back of the right argument with respect to some repre-
sentative of the left argument.

Lemma 9.14. The diagram:

V (K)×Hi(V,Gm)

sV/K

��

〈·,·〉 // Hi(Γ, F
∗
)

Sec(V/F )×Hi(π1(V ), F
∗
)

ρiV

OO

{·,·} // Hi(Γ, F
∗
),

commutes.

Proof. The lemma is immediate from the naturality of the map ρiV . �

Definition 9.15. We will continue to work under the assumptions of Definition
9.11, and to use the notation there. Assume that Vx(Fx) 6= ∅ for every x ∈ |F |.
Let b ∈ B(V/F ) be arbitrary and choose a c ∈ H2(V,Gm) which maps to b under
the quotient map. For every x ∈ |F | let cx ∈ H2(Vx,Gm) be the base change of c
to Vx. Note that for every

∏
x∈|F | px ∈

∏
v∈|F | Vx(Fx) the sum:

∑

x∈|F |

invx(p
∗
x(cx)) ∈ Q/Z

is finite, (i.e. all but finitely many summands are zero), and its value i(b) in Q/Z
only depends on b, not on the choice of c or the px. (See 6.2 of [15] why.) We
say that the unramified Brauer–Manin obstruction is the only one for the local–
global principle for a class of varieties over F if for every V in the class such that
Vx(Fx) 6= ∅ for every x ∈ |F | the condition:

i(b) = 0 (∀b ∈ B(V/F ))

implies that V (F ) is non-empty.

We will need the following crucial theorem due to Borovoi:

Theorem 9.16. The unramified Brauer–Manin obstruction is the only one for the
local–global principle for homogeneous spaces over geometrically simply connected
reductive groups with abelian geometric stabiliser.

Proof. See Theorem 2.2 of [1] on page 185. �
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Now we are ready to give a geometric

Proof of Theorem 1.1. Assume now that F is a number field. As we already noted
we only need to show that SolBA(E) 6= 0 implies that Sol(E) 6= 0. For the sake of
simple notation let X denote X(E) and for every v ∈ |F | let Xv denote the base
change of X to Fv. Note that Xv = X(Ev) by construction. For every v ∈ |F |
there is a bijection:

σEv : Xv(Fv)/G(Ex)(Fv) −→ Sol(Ev),

by Theorem 9.6, so our assumption implies that for every v ∈ |F | the set Xv(Fv)
is non-empty. Note that i(βE(b)) = bE(b) for every b ∈ B(E) by Lemmas 9.4 and
9.14, so the claim follows from Theorem 9.16 combined with Lemma 9.12. �

In the rest of this section we want to apply our geometric construction to the
problem of exhibiting splitting varieties for Massey products. Such splitting va-
rieties were constructed by Hopkins and Wickelgren in [10] for order-3 Massey
products. Our more general construction will give splitting varieties for Massey
products of any order.

Definition 9.17. Let C∗ be a differential graded associative algebra with product
∪, differential δ : C∗ → C∗+1, and cohomology H∗ = Ker(δ)/Im(δ). Choose an
integer n ≥ 2 and let a1, a2, . . . , an be a set of cohomology classes in H1. A defining
system for the order-n Massey product of a1, a2, . . . , an is a set aij of elements of
C1 for 1 ≤ i < j ≤ n+ 1 and (i, j) 6= (1, n+ 1) such that

δ(aij) =

j−1∑

k=i+1

aik ∪ akj

and a1, a2, . . . , an is represented by a12, a23, . . . , an,n+1. We say that the order-n
Massey product of a1, a2, . . . , an is defined if there exists a defining system. The
order-nMassey product 〈a1, a2, . . . , an〉aij of a1, a2, . . . , an with respect to the defin-
ing system aij is the cohomology class of

n∑

k=2

a1k ∪ ak,n+1

in H2. Let 〈a1, a2, . . . , an〉 denote the subset ofH2 consisting of the order-nMassey
products of a1, a2, . . . , an with respect to all defining systems.

Definition 9.18. Let eij : Matn(Z/2Z) → Z/2Z be the function taking an n× n
matrix with coefficients in Z/2Z to its (i, j)-entry. Let

Un = {U ∈Matn(Z/2Z) | eii(U) = 1, eij(U) = 0 (∀ i > j)}

be the group of unipotent n × n matrices with coefficients in Z/2Z. Let Γ again
denote the absolute Galois group of a field F , and let C∗ be now the differential
graded algebra of Z/2Z-cochains in continuous group cohomology. Then H1 is
naturally isomorphic to Hom(Γ,Z/2Z). Given n homomorphisms

ai : Γ −→ Z/2Z (i = 1, 2, . . . , n),
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let E(a1, a2, . . . , an) denote the embedding problem:

Γ
ya1×a2×···×an

Un+1
φ

−−−−→ (Z/2Z)n,

where φ is given by the rule U 7→ (e12(U), e23(U), . . . , enn+1(U)).

We will need the following result due to Dwyer:

Theorem 9.19. The order-n Massey product 〈a1, a2, . . . , an〉 is defined and con-
tains 0 if and only if the embedding problem E(a1, a2, . . . , an) has a solution.

Proof. See Theorem 2.4 of [6]. �

Definition 9.20. Let

κ : F ∗ −→ H1(Γ,Z/2Z) = Hom(Γ,Z/2Z)

be the Kummer map associated to the short exact sequence:

0 −−−−→ Z/2Z −−−−→ F
∗ x 7→x2

−−−−→ F
∗
−−−−→ 0

of Γ-modules. Let a1, a2, . . . , an ∈ F ∗ be arbitrary. We say that a variety X over
F is a splitting variety for the order-n Massey product 〈κ(a1), κ(a2), . . . , κ(an)〉 if
X has an F -rational point if and only if 〈κ(a1), κ(a2), . . . , κ(an)〉 is defined and
contains 0. Let X(a1, a2, . . . , an) denote the classifying space for the embedding
problem E(κ(a1), κ(a2), . . . , κ(an)).

One of the main results of [10] (Theorem 1.1) is the construction of a splitting
variety for the order-3 Massey product 〈κ(a1), κ(a2), κ(a3)〉. However the existence
of such a variety is an easy consequence of our results:

Theorem 9.21. The construction X(a1, a2, . . . , an) is a splitting variety for the
order-n Massey product 〈κ(a1), κ(a2), . . . , κ(an)〉.

Proof. This is an immediate consequence of Theorems 9.6 and 9.19. �

10. A transcendental counter-example to weak approximation

By slight abuse of notation for every y ∈ |F | let

jy : H2(Γ(E), F
∗
) −→ H2(Γy(Ey), F

∗

y)

denote the composition (ηy)∗ ◦ (idG1 × ιy)
∗.

Lemma 10.1. Let E be an embedding problem over a global field F such that

SolA(E) 6= ∅. If there exists a place y ∈ |F | and an element c ∈ H2(Γ(E), F
∗
) such

that the map

Sol(Ey) −→ H2(Γy, F
∗

y)

given by the rule:

h 7→ s(h)∗(jy(c))

is not constant, then

SolBr
A (E) ( SolA(E).
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Proof. Let h =
∏
x∈|F | hx ∈ SolA(E) be an adèlic solution. If (h, c) 6= 0 then

h 6∈ SolBr
A (E) by definition. Otherwise choose an h′y ∈ Sol(Ey) such that

s(h′y)
∗(jy(c)) 6= s(hy)

∗(jy(c)).

Now for every x ∈ |F | such that x 6= y we set h′x = hx. Then h′ =
∏
x∈|F | h

′
x ∈

SolA(E) but

(h′, c) = (h, c) + s(h′y)
∗(jy(c))− s(hy)

∗(jy(c)) 6= 0.

�

Definition 10.2. Let E be an embedding problem over a global field F described
by the diagram (1.0.1). We shall say that a place x ∈ |F | splits in E if the restriction
ψ ◦ ιx : Γx → G2 is trivial.

Lemma 10.3. Let E be an embedding problem over a global field F such that
Ker(E)ab = 0 and SolA(E) 6= ∅. Let y ∈ |F | be a place that splits in E, and assume
that the pairing:

(10.3.1) Hom(Γy,Ker(E))×H2(Ker(E),
⊕

p6=char(F )

Qp/Zp)
Γ → H2(Γy,

⊕

p6=char(F )

Qp/Zp)

given by the rule (a, c) 7→ a∗(c) is non-zero. Then we have:

SolBr
A (E) ( SolBr1

A
(E) = SolA(E).

Proof. For simplicity let

µ∞ =
⊕

p6=char(F )

Qp/Zp,

equipped with the trivial Ker(E)-action. Since Ker(E)ab = 0 we have

SolBr1
A

(E) = SolA(E)

by Theorem 4.10. Therefore it will be enough to show that

SolBr
A
(E) ( SolA(E).

Choose a pair (a, c) ∈ Hom(Γy,Ker(E)) × H2(Ker(E), µ∞)Γ such that a∗(c) 6= 0.
Since Ker(E)ab = 0 the map:

p : H2(Γ(E), F
∗
) −→ H2(Ker(E), µ∞)Γ

in the short exact sequence in Lemma 2.2 is surjective. Let c̃ ∈ H2(Γ(E), F
∗
) be

an element such p(c̃) = c. Since y splits we have Γy(E) ∼= Ker(E)×Γy and Sol(Ey)
is just Hom(Γy,Ker(E)). We have a commutative diagram:

Sol(Ey)×H2(Γ(E), F
∗
)

p

��

// H2(Γy, F
∗
)

Hom(Γy ,Ker(E))×H2(Ker(E), µ∞)Γ

∼= σ

OO

// H2(Γy, µ∞),

where the upper horizontal map is given by the rule:

(h, d) 7→ s(h)∗(jy(d))
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and the lower horizontal map is the pull-back with respect to homomorphisms.
The commutativity of the diagram above follows from the fact that for every b ∈
Hom(Γy,Ker(E)) the diagram:

Γy

IdΓy×b %%❏❏
❏❏

❏
❏❏

❏❏
❏❏

σ(b) // Γy(E) //

∼=

��

Γ(E)

Γy ×Ker(E)
π2 // Ker(E)

OO

is commutative. Now let 0 ∈ Hom(Γy,Ker(E)) be the trivial map. By the above
we have:

s(σ(0))∗(jy(c̃)) = 0∗(c) = 0, s(σ(a))∗(jy(c̃)) = a∗(c) 6= 0,

so by Lemma 10.1 we have:

SolBr
A (E) ( SolA(E).

�

Proposition 10.4. Let E be an embedding problem over a number field F such
that Ker(E)ab = 0 and SolA(E) 6= ∅. Let y ∈ |F | be a real place such that y splits
in E, and assume further that the pairing

(10.4.1) Hom(Z/2Z,Ker(E))×H2(Ker(E),Z/2Z)→ H2(Z/2Z,Z/2Z)

given by the rule (a, c) 7→ a∗(c) is non-zero. Then we have:

SolBr
A (E) ( SolBr1

A
(E) = SolA(E).

Proof. Because y is real we have Γy ∼= Z/2Z. Since y splits in E the group Γy acts
trivially on Ker(E), and so on the group H2(Ker(E),Z/2Z), and hence the pairing
in (10.4.1) is the same as the pairing in (10.3.1). So the claim follows from the
previous lemma. �

Example 10.5. Let

(10.5.1) 1 −→ A5
i
−→ S5

p
−→ Z/2Z −→ 1

be the short exact sequence where i the inclusion of A5 into S5. Consider now the
embedding problem over Q defined by the diagram:

(10.5.2)

Γ

ψ

y

S5
p

−−−−→ Z/2Z

where the map ψ corresponds to the extension Q(
√
(d))/Q for some square free

positive integer d. Since (10.5.1) splits we have Sol(E) 6= 0. Moreover the unique
real place of Q splits in E, since d is positive. It is well known that Aab5 is trivial and
H2(A5,Z) = Z/2Z. In fact the nontrivial element in H2(A5,Z/2Z) corresponds to
the central extension:

1 −→ Z/2Z −→ I −→ A5 −→ 1,

where I is the binary icosahedral group. Now when pulling back by the map
Z/2Z→ A5 sending 1 to (1, 2)(3, 4) we get the sequence

1 −→ Z/2Z −→ Z/4Z −→ Z/2Z −→ 1
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which corresponds to the non-trivial element in H2(Z/2Z,Z/2Z). So Proposition
10.4 implies that

SolBr
A
(E) ( SolBr1

A
(E) = SolA(E).
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